This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The ratio (Ds)\mathcal{R}(D_{s}) for BsDsνB_{s}\to D_{s}\ell\nu_{\ell} by using the QCD light-cone sum rules within the framework of heavy quark effective field theory

Yi Zhang yizhangphy@cqu.edu.cn Department of Physics, Chongqing University, Chongqing 401331, P.R. China    Tao Zhong zhongtao1219@sina.com Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China    Hai-Bing Fu fuhb@cqu.edu.cn Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China    Wei Cheng chengwei@cqupt.edu.cn School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China    Long Zeng zenglongz@outlook.com Department of Physics, Chongqing University, Chongqing 401331, P.R. China    Xing-Gang Wu wuxg@cqu.edu.cn Department of Physics, Chongqing University, Chongqing 401331, P.R. China Chongqing Key Laboratory for Strongly Coupled Physics and Southwest Center for Theoretical Physics, Chongqing University, Chongqing 401331, P.R. China
Abstract

In the paper, we study the BsDsB_{s}\to D_{s} transition form factors by using the light-cone sum rules within the framework of heavy quark effective field theory. We adopt a chiral current correlation function to do the calculation, the resultant transition form factors f+BsDs(q2)f_{+}^{B_{s}\to D_{s}}(q^{2}) and f0BsDs(q2)f_{0}^{B_{s}\to D_{s}}(q^{2}) are dominated by the contribution of DsD_{s}-meson leading-twist distribution amplitude, while the contributions from less certain DsD_{s}-meson twist-3 distribution amplitudes are greatly suppressed. At the largest recoil point, we obtain f+,0BsDs(0)=0.5330.094+0.112f_{+,0}^{B_{s}\to D_{s}}(0)=0.533^{+0.112}_{-0.094}. By further extrapolating the transition form factors into all the physically allowable q2q^{2} region with the help of the zz-series parametrization approach, we calculate the branching fractions (BsDsν)\mathcal{B}(B_{s}\to D_{s}\ell^{\prime}\nu_{\ell^{\prime}}) with (=e,μ)(\ell^{\prime}=e,\mu) and (BsDsτντ)\mathcal{B}(B_{s}\to D_{s}\tau\nu_{\tau}), which gives (Ds)=0.334±0.017\mathcal{R}(D_{s})=0.334\pm 0.017.

I Introduction

It is one of the most attractive research topics in the field of high energy physics to accurately test the standard model (SM) and to search new physics effects beyond the SM. The BD()B\to D^{(\ast)} semileptonic decay provides such an example. The ratio (D())=(BD()τν¯τ)/(BD()ν¯)\mathcal{R}(D^{(\ast)})=\mathcal{B}(B\to D^{(\ast)}\tau\bar{\nu}_{\tau})/\mathcal{B}(B\to D^{(\ast)}\ell^{\prime}\bar{\nu}_{\ell^{\prime}}) with (=e,μ\ell^{\prime}=e,\mu) has been measured by various groups, e.g. the BaBar Collaboration firstly reported exp.(D)=0.440±0.058±0.042\mathcal{R}^{\rm exp.}(D)=0.440\pm 0.058\pm 0.042 and exp.(D)=0.332±0.024±0.018\mathcal{R}^{\rm exp.}(D^{\ast})=0.332\pm 0.024\pm 0.018 BaBar:2012obs ; BaBar:2013mob , the BELLE Collaboration subsequently given exp.(D)=0.375±0.064±0.026\mathcal{R}^{\rm exp.}(D)=0.375\pm 0.064\pm 0.026 and exp.(D)=0.293±0.038±0.015\mathcal{R}^{\rm exp.}(D^{\ast})=0.293\pm 0.038\pm 0.015 in year 2015 Belle:2015qfa , exp.(D)=0.270±0.0350.025+0.028\mathcal{R}^{\rm exp.}(D^{\ast})=0.270\pm 0.035^{+0.028}_{-0.025} in year 2016 Belle:2016dyj ; Belle:2017ilt , and exp.(D)=0.307±0.037±0.016\mathcal{R}^{\rm exp.}(D)=0.307\pm 0.037\pm 0.016 and exp.(D)=0.283±0.018±0.014\mathcal{R}^{\rm exp.}(D^{\ast})=0.283\pm 0.018\pm 0.014 in year 2019 Belle:2019rba , and the LHCb Collaboration reported exp.(D)=0.336±0.027±0.030\mathcal{R}^{\rm exp.}(D^{\ast})=0.336\pm 0.027\pm 0.030 in year 2015 LHCb:2015gmp and exp.(D)=0.283±0.018±0.014\mathcal{R}^{\rm exp.}(D^{\ast})=0.283\pm 0.018\pm 0.014 in year 2017 LHCb:2017smo ; LHCb:2017rln . The Heavy Flavor Average Group (HFLAG) gave the weighted average of those measurements, i.e. exp.(D)=0.339±0.026±0.014\mathcal{R}^{\rm exp.}(D)=0.339\pm 0.026\pm 0.014 and exp.(D)=0.295±0.010±0.010\mathcal{R}^{\rm exp.}(D^{\ast})=0.295\pm 0.010\pm 0.010 HFLAV:2019otj , where they also gave the averages of theoretical predictions th.(D)=0.298±0.003\mathcal{R}^{\rm th.}(D)=0.298\pm 0.003 and th.(D)=0.252±0.005\mathcal{R}^{\rm th.}(D^{\ast})=0.252\pm 0.005 from Refs. Bigi:2016mdz ; Bordone:2019vic ; Gambino:2019sif . Those theoretical values are consistent with other predictions calculated using various approaches, such as the heavy quark effective theory (HQET) Fajfer:2012vx ; Tanaka:2010se , the lattice QCD (LQCD) MILC:2015uhg ; Na:2015kha ; Aoki:2016frl , the light-cone sum rules (LCSR) Wang:2017jow ; Zhong:2018exo . Since the theoretical predictions are generally smaller than the measured ones, this difference may indicate new physics beyond the SM Celis:2012dk ; Celis:2013jha ; Li:2016vvp ; Li:2018lxi .

The LHCb collaboration has measured the branching fraction (Bs0Dsμ+νμ)=(2.49±0.12±0.14±0.16)×102\mathcal{B}(B_{s}^{0}\to D_{s}^{-}\mu^{+}\nu_{\mu})=(2.49\pm 0.12\pm 0.14\pm 0.16)\times 10^{-2} LHCb:2020cyw and gave the ratio of the branching fractions (Bs0Dsμ+νμ)\mathcal{B}(B_{s}^{0}\to D_{s}^{-}\mu^{+}\nu_{\mu}) and (B0Dμ+νμ)\mathcal{B}(B^{0}\to D^{-}\mu^{+}\nu_{\mu}), i.e., =1.09±0.05±0.06±0.05\mathcal{R}=1.09\pm 0.05\pm 0.06\pm 0.05. This indicates BsDsνB_{s}\to D_{s}\ell\nu_{\ell} could behave closely to BDνB\to D\ell\nu_{\ell}. Therefore, it is meaningful to make a detailed study on the similar ratio (Ds)\mathcal{R}(D_{s}).

At present, there is still no published data on the ratio (Ds)\mathcal{R}(D_{s}), while many theoretical studies on it have been done in Refs.Fan:2013kqa ; Hu:2019bdf ; Bhol:2014jta ; Faustov:2012mt ; Monahan:2017uby ; Monahan:2018lzv ; Dutta:2018jxz ; McLean:2019qcx ; Soni:2021fky . As the key components of calculating the ratio (Ds)\mathcal{R}(D_{s}), the BsDsB_{s}\to D_{s} transition form factors (TFFs) f+BsDs(q2)f_{+}^{B_{s}\to D_{s}}(q^{2}) and f0BsDs(q2)f_{0}^{B_{s}\to D_{s}}(q^{2}) have been studied under various approaches, e.g. the QCD sum rules (QCDSR) Blasi:1993fi , the constituent quark model (CQM) Zhao:2006at , the light-cone sum rules (LCSR) Li:2009wq , the Bethe-Salpeter equation (BSE) Chen:2011ut , and the lattice QCD (LQCD) Monahan:2017uby ; Monahan:2018lzv ; Dutta:2018jxz ; McLean:2019qcx . Different approaches are applicable in various energy scale regions, for example, the LCSR is applicable in the largest low and intermediate q2q^{2}-region; and in the present paper, as the same as the previous treatment of BπB\to\pi TFFs Zhou:2019jny , we will adopt the LCSR approach within the framework of heavy quark effective field theory (HQEFT) Wu:1992zw ; Wang:1999zd ; Yan:1999kt ; Wu:2000jq ; Wang:2000sc ; Wang:2000gs to calculate BsDsB_{s}\to D_{s} TFFs. The HQEFT separates the non-perturbative long-distance terms from the short-distance dynamics via a systematic way, and the long-distance terms can be decreased to a series over the non-perturbative wave functions or transition form factors. It has been pointed out that by choosing a proper chiral correlator, as will be adopted in this paper, one can suppress the uncertainties from the high-twist LCDAs and achieve a more accurate LCSR prediction of the BsDsB_{s}\to D_{s} TFFs.

The remaining parts of the paper are organized as follows. In Sec. II, we present the calculation technologies for the two TFFs of the BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell} semileptonic decays by using the light-cone sum rules within the framework of HQEFT. In Sec. III, we present our numerical results and discussions. Sec. IV is reserved for a summary.

II Calculation technology

II.1 BsDsB_{s}\to D_{s} Transition Matrix Element

For the BsDslν¯lB_{s}\to D_{s}l\bar{\nu}_{l} decays, the transition matrix element can be parameterized as follows:

Ds(p)|c¯γμb|Bs(p+q)\displaystyle\langle D_{s}(p)|\bar{c}\gamma_{\mu}b|B_{s}(p+q)\rangle (1)
=\displaystyle= 2f+BsDs(q2)pμ+[f+BsDs(q2)+fBsDs(q2)]qμ\displaystyle 2f_{+}^{B_{s}\to D_{s}}(q^{2})p_{\mu}+\left[f_{+}^{B_{s}\to D_{s}}(q^{2})+f_{-}^{B_{s}\to D_{s}}(q^{2})\right]q_{\mu}

and

f0BsDs(q2)=f+BsDs(q2)+q2mBs2mDs2fBsDs(q2),\displaystyle f_{0}^{B_{s}\to D_{s}}(q^{2})=f_{+}^{B_{s}\to D_{s}}(q^{2})+\frac{q^{2}}{m_{B_{s}}^{2}-m_{D_{s}}^{2}}f_{-}^{B_{s}\to D_{s}}(q^{2}), (2)

where pp is the momentum of the DsD_{s}-meson and (p+q)(p+q) is the momentum of BsB_{s}-meson. At the maximum recoil point, we have f+BsDs(0)=f0BsDs(0)f_{+}^{B_{s}\to D_{s}}(0)=f_{0}^{B_{s}\to D_{s}}(0). The transition matrix element can be expanded as 1/mb1/m_{b}-power series within the framework of HQEFT. Based on the heavy quark symmetry, the transition matrix element of heavy quark in the effective theory is parameterized as Wang:1999zd ; Wang:2000sc ; Wang:2000gs :

Ds(p)|c¯γμb|Bs(p+q)\displaystyle\langle D_{s}(p)|\bar{c}\gamma_{\mu}b|B_{s}(p+q)\rangle =\displaystyle= mBsΛ¯BsDs(p)|u¯γμbv+|Bsv\displaystyle\frac{\sqrt{m_{B_{s}}}}{\sqrt{\bar{\Lambda}_{B_{s}}}}\langle D_{s}(p)|\bar{u}\gamma_{\mu}b_{v}^{+}|{B_{s}}_{v}\rangle (3)
=\displaystyle= mBsΛ¯BsTr[Ds(v,p)γμv],\displaystyle-\frac{\sqrt{m_{B_{s}}}}{\sqrt{\bar{\Lambda}_{B_{s}}}}{\rm Tr}[D_{s}(v,p){\gamma_{\mu}}{\mathcal{M}}_{v}],

where

Λ¯Bs\displaystyle\bar{\Lambda}_{B_{s}} =\displaystyle= mBsmb,\displaystyle m_{B_{s}}-m_{b},
Ds(v,p)\displaystyle D_{s}(v,p) =\displaystyle= γ5[A(vp)+p^B(vp)],\displaystyle{\gamma^{5}}[A(v\cdot p)+\not\!\hat{p}B(v\cdot p)], (4)
v\displaystyle{\mathcal{M}}_{v} =\displaystyle= Λ¯(1+v)γ5/2,\displaystyle-\sqrt{\bar{\Lambda}}(1+\not\!v)\gamma^{5}/2,

where bv+b_{v}^{+} is the effective bb-quark field and vv is the BsB_{s}-meson velocity, p^μ=pμ/(vp)\hat{p}^{\mu}=p^{\mu}/(v\cdot p). A(vp)A(v\cdot p) and B(vp)B(v\cdot p) are leading-order heavy flavor-spin independent coefficient functions. Λ¯=limmbΛ¯Bs\bar{\Lambda}=\mathop{\lim}\limits_{m_{b}\to\infty}{\bar{\Lambda}_{B_{s}}}, which is the heavy flavor independent binding energy that reflects the effects of light degrees of freedom in the heavy hadron. Using those formulas, we obtain the BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell} TFFs f±(q2)f_{\pm}(q^{2}), which are

f±BsDs(q2)=Λ¯mBsΛ¯Bs[A(y)±mBsyB(y)]+,\displaystyle f_{\pm}^{B_{s}\to D_{s}}(q^{2})=\frac{\sqrt{\bar{\Lambda}}}{\sqrt{m_{B_{s}}\bar{\Lambda}_{B_{s}}}}\left[A(y)\pm\frac{m_{B_{s}}}{y}B(y)\right]+\cdots, (5)

with

y=vp=(mBs2+mDs2q2)/(2mBs),y=v\cdot p=(m^{2}_{B_{s}}+m^{2}_{D_{s}}-q^{2})/(2m_{B_{s}}), (6)

where “\cdots” denotes the higher-order 𝒪(1/mb){\cal O}(1/{m_{b}}) contributions that will not be taken into consideration here.

II.2 Light-Cone Sum Rule For f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2})

To derive the sum rules of the two leading order heavy flavor-spin independent coefficient functions A(y)A(y) and B(y)B(y), we construct the following correlator:

Fμ(p,q)=id4xeiqxDs(p)|T{jn(x),j0(0)}|0,\displaystyle F_{\mu}(p,q)=i\int d^{4}xe^{iq\cdot x}\langle D_{s}(p)|T\{j_{n}(x),j^{\dagger}_{0}(0)\}|0\rangle, (7)

where the currents

jn(x)\displaystyle j_{n}(x) =\displaystyle= c¯(x)γμ(1+γ5)b(x)\displaystyle\bar{c}(x)\gamma_{\mu}(1+\gamma_{5})b(x) (8)
j0(0)\displaystyle j^{{\dagger}}_{0}(0) =\displaystyle= b¯(0)i(1+γ5)s(0)\displaystyle\bar{b}(0)i(1+\gamma_{5})s(0) (9)

Following the standard procedure of LCSR approach, we first deal with the hadronic representation for the correlation function. One can insert a complete series of the intermediate hadronic states in the correlator (15) in the physical q2q^{2}-region and isolate the pole term of the lowest pseudoscalar state from the hadronic representation. Then the correlator Fμ(p,q)F_{\mu}(p,q) becomes:

FμHad.(p,q)=Ds(p)|c¯γμb|BsBs|b¯iγ5s|0mBs2(p+q)2\displaystyle F_{\mu}^{\rm Had.}(p,q)=\frac{\langle D_{s}(p)|\bar{c}\gamma_{\mu}b|B_{s}\rangle\langle B_{s}|\bar{b}i\gamma_{5}s|0\rangle}{m_{B_{s}}^{2}-(p+q)^{2}} (10)
+BsHDs(p)|c¯γμ(1+γ5)b|BsHBsH|b¯i(1+γ5)s|0mBsH2(p+q)2.\displaystyle\quad+\sum\limits_{B_{s}^{H}}\frac{\langle D_{s}(p)|\bar{c}\gamma_{\mu}(1+\gamma_{5})b|B_{s}^{H}\rangle\langle B_{s}^{H}|\bar{b}i(1+\gamma_{5})s|0\rangle}{m_{B_{s}^{H}}^{2}-(p+q)^{2}}.
(11)

In the effective theory of heavy quark, the hadronic representation (11) can be expanded in powers of 1/mb1/m_{b}. Taking the transition matrix element (3) into consideration and neglecting the contributions from higher 1/mb1/m_{b} order, we can further write the hadronic representation as:

FμHad.(p,q)\displaystyle F_{\mu}^{\rm Had.}(p,q) =\displaystyle= 2FA(y)vμ+B(y)p^μ2Λ¯Bs2vk\displaystyle 2F\frac{A(y)v^{\mu}+B(y)\hat{p}^{\mu}}{2\bar{\Lambda}_{B_{s}}-2v\cdot k} (13)
+s0𝑑sρ(y,s)s2vk+Subtractions,\displaystyle+\int_{s_{0}}^{\infty}ds\frac{\rho(y,s)}{s-2v\cdot k}+{\rm Subtractions},

with the matrix element Korner:2002ba

Bs|b¯v+iγ5d|0=i2FTr[γ5v],\displaystyle\langle B_{s}|\bar{b}^{+}_{v}i\gamma_{5}d|0\rangle=\frac{i}{2}F{\rm Tr}[\gamma_{5}\mathcal{M}_{v}], (14)

where FF is the leading-order decay constant of the BsB_{s}-meson Wang:2001mi ; Wang:2002zba . kk is the residual momentum of the heavy hadronic. Using the ansatz of the quark-hadron duality the spectral density ρ(y,s)\rho(y,s) can be obtained Shifman:1978bx ; Shifman:1978by .

On the other hand, we apply the operator product expansion (OPE) to the correlator in the deep Euclidean region. The correlator (15) can be explicitly written as

Fμ(p,q)\displaystyle F_{\mu}(p,q) =\displaystyle= id4xei(qmb)xDs(p)|T{c¯(x)γμ(1+γ5)bv+(x),\displaystyle i\int d^{4}xe^{i(q-m_{b})\cdot x}\langle D_{s}(p)|T\{\bar{c}(x)\gamma_{\mu}(1+\gamma_{5})b^{+}_{v}(x), (15)
b¯v+(0)i(1+γ5)s(0)}|0.\displaystyle\bar{b}^{+}_{v}(0)i(1+\gamma_{5})s(0)\}|0\rangle.

Using the BB-meson heavy-quark propagator S(x,v)=(1+/v)×0dtδ(xvt)/2S(x,v)=(1+/\!\!\!v)\times\int_{0}^{\infty}dt\delta(x-vt)/2 Wang:2001mi , the correlator can be expanded as a complex power series over the DsD_{s}-meson LCDAs. Due to the chiral suppressions, it is noted that the main contribution to the correlator comes from the leading-twist LCDA, and the contributions from all the twist-3 LCDAs are exactly zero.

Through the dispersion relation, the OPE in deep Euclidean region and the hadron expression in physical region can be matched. And by further applying the Borel transformation to suppress the contributions from power-suppressed terems, the LCSRs for the coefficient functions A(y)A(y) and B(y)B(y) are

A(y)\displaystyle A(y) =\displaystyle= fDs2F0s0Bs𝑑se(2Λ¯Bss)/T1y2ug2(u)|u=1s2y,\displaystyle-\frac{f_{D_{s}}}{2F}\int_{0}^{s_{0}^{B_{s}}}dse^{(2\bar{\Lambda}_{B_{s}}-s)/T}\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)\bigg{|}_{u=1-\frac{s}{2y}}, (16)
B(y)\displaystyle B(y) =\displaystyle= fDs2F0s0Bsdse(2Λ¯Bss)/T[ϕ2;Ds(u)\displaystyle-\frac{f_{D_{s}}}{2F}\int_{0}^{s_{0}^{B_{s}}}dse^{(2\bar{\Lambda}_{B_{s}}-s)/T}\bigg{[}-\phi_{2;D_{s}}(u) (17)
+(1yu)2g1(u)1y2ug2(u)]|u=1s2y,\displaystyle+\bigg{(}\frac{1}{y}\frac{\partial}{\partial u}\bigg{)}^{2}g_{1}(u)-\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)\bigg{]}\bigg{|}_{u=1-\frac{s}{2y}},

where TT is the Borel parameter and s0Bss_{0}^{B_{s}} is the continuum threshold, g1g_{1} and g2g_{2} are twist-four LCDAs. Since the contributions from the twist-4 LCDAs are only several percent, so we shall directly adopt the light pseudo-scale ones to do the calculations, whose explicit forms can be found in Refs.Ball:1998je . Substituting them into Eqs.(2,5), we obtain

f+BsDs(q2)\displaystyle f_{+}^{B_{s}\to D_{s}}(q^{2}) =\displaystyle= fDsΛ¯2FmBsΛ¯Bs0s0Bs𝑑se(2Λ¯Bss)/T\displaystyle-\frac{f_{D_{s}}\sqrt{\bar{\Lambda}}}{2F\sqrt{m_{B_{s}}\bar{\Lambda}_{B_{s}}}}\int_{0}^{s_{0}^{B_{s}}}dse^{(2\bar{\Lambda}_{B_{s}}-s)/T} (18)
×\displaystyle\times {1y2ug2(u)+mBsy[ϕ2;Ds(u)\displaystyle\bigg{\{}\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)+\frac{m_{B_{s}}}{y}\bigg{[}-\phi_{2;D_{s}}(u)
+\displaystyle+ (1yu)2g1(u)1y2ug2(u)]}|u=1s2y,\displaystyle\bigg{(}\frac{1}{y}\frac{\partial}{\partial u}\bigg{)}^{2}g_{1}(u)-\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)\bigg{]}\bigg{\}}\bigg{|}_{u=1-\frac{s}{2y}},
f0BsDs(q2)\displaystyle f_{0}^{B_{s}\to D_{s}}(q^{2}) =\displaystyle= fDsΛ¯2FmBsΛ¯Bs0s0Bs𝑑se(2Λ¯Bss)/T\displaystyle-\frac{f_{D_{s}}\sqrt{\bar{\Lambda}}}{2F\sqrt{m_{B_{s}}\bar{\Lambda}_{B_{s}}}}\int_{0}^{s_{0}^{B_{s}}}dse^{(2\bar{\Lambda}_{B_{s}}-s)/T} (19)
×\displaystyle\times {(1+q2mBs2mDs2)1y2ug2(u)\displaystyle\bigg{\{}\bigg{(}1+\frac{q^{2}}{m_{B_{s}}^{2}-m_{D_{s}}^{2}}\bigg{)}\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)
+\displaystyle+ (1q2mBs2mDs2)mBsy[ϕ2;Ds(u)\displaystyle\bigg{(}1-\frac{q^{2}}{m_{B_{s}}^{2}-m_{D_{s}}^{2}}\bigg{)}\frac{m_{B_{s}}}{y}\bigg{[}-\phi_{2;D_{s}}(u)
+\displaystyle+ (1yu)2g1(u)1y2ug2(u)]}|u=1s2y.\displaystyle\bigg{(}\frac{1}{y}\frac{\partial}{\partial u}\bigg{)}^{2}g_{1}(u)-\frac{1}{y^{2}}\frac{\partial}{\partial u}g_{2}(u)\bigg{]}\bigg{\}}\bigg{|}_{u=1-\frac{s}{2y}}.

The Borel parameter TT and the continuum threshold s0Bss_{0}^{B_{s}} shall be fixed such that the resulting TFFs do not depend too much on the precise values of those parameters. In addition, the continuum contribution, which is the part of the dispersive integral from s0Bss_{0}^{B_{s}} to \infty that is subtracted from both sides of the equation, should not be too large.

III Numerical analysis

III.1 Input parameters

To determine the TFFs f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) of the exclusive process BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell}, we take Zyla:2020zbs ; Wang:2000sc

mBs\displaystyle m_{B_{s}} =\displaystyle= 5.367±0.00014GeV,\displaystyle 5.367\pm 0.00014{\rm GeV},
mDs\displaystyle m_{D_{s}} =\displaystyle= 1.968±0.00007GeV,\displaystyle 1.968\pm 0.00007{\rm GeV},
fDs\displaystyle f_{D_{s}} =\displaystyle= 0.256±0.0042GeV,\displaystyle 0.256\pm 0.0042{\rm GeV},
F\displaystyle F =\displaystyle= 0.30±0.04GeV3/2.\displaystyle 0.30\pm 0.04{\rm GeV^{3/2}}.
Table 1: The DsD_{s}-meson leading-twist LCDA parameters at the scale μ=3GeV\mu=3{\rm GeV}. The values in the second row are for the central values, and the values in third and fourth rows are uncertainties.
 ADs(GeV1)A_{D_{s}}({\rm GeV}^{-1})  B1DsB^{D_{s}}_{1}  B2DsB^{D_{s}}_{2}  B3DsB^{D_{s}}_{3}  B4DsB^{D_{s}}_{4}  βDs(GeV)\beta_{D_{s}}({\rm GeV})
 1.2461.246  0.214-0.214  0.167-0.167  0.0550.055  0.0050.005  5.5215.521
 11.00111.001  0.165-0.165  0.0140.014  0.004-0.004  0.0030.003  1.0461.046
 1.1841.184  0.189-0.189  0.163-0.163  0.0470.047  0.0080.008  6.9706.970
Refer to caption
Figure 1: The behavior of LCDA ϕ2;Ds(u,μ=3GeV)\phi_{2;Ds}(u,\mu=3{\rm GeV}), the shaded area indicates LCDA’s uncertainties

.

For the DsD_{s}-meson leading-twist LCDA ϕ2;Ds(u,μ)\phi_{2;D_{s}}(u,\mu) in the LCSRs of TFFs (18) and (19), we adopt the light cone harmonic oscillator (LCHO) model suggested in Ref.Zhang:2021wnv , which has a better end-point behavior and takes the following form:

ϕ2;Ds(u,μ)\displaystyle\phi_{2;D_{s}}(u,\mu) =\displaystyle= 6ADsβDs2π2fDsuu¯φ2;Ds(u)\displaystyle\frac{\sqrt{6}A_{D_{s}}\beta_{D_{s}}^{2}}{\pi^{2}f_{D_{s}}}u\bar{u}\varphi_{2;D_{s}}(u) (20)
×\displaystyle\times exp[m^c2u+m^s2u¯8βDs2uu¯]\displaystyle\exp\left[-\frac{\hat{m}_{c}^{2}u+\hat{m}_{s}^{2}\bar{u}}{8\beta_{D_{s}}^{2}u\bar{u}}\right]
×\displaystyle\times {1exp[μ28βDs2uu¯]},\displaystyle\left\{1-\exp\left[-\frac{\mu^{2}}{8\beta_{D_{s}}^{2}u\bar{u}}\right]\right\},

where u¯=1u\bar{u}=1-u and φ2;Ds(u)=1+n=14BnDs×Cn3/2(ξ)\varphi_{2;D_{s}}(u)=1+\sum^{4}_{n=1}B_{n}^{D_{s}}\times C_{n}^{3/2}(\xi) with ξ=uu¯\xi=u-\bar{u}. m^c\hat{m}_{c} and m^s\hat{m}_{s} are cc- and ss-constituent quark masses, whose values are taken as m^c1.5GeV\hat{m}_{c}\simeq 1.5~{}{\rm GeV} and m^s0.5GeV\hat{m}_{s}\simeq 0.5~{}{\rm GeV}. ADsA_{D_{s}}. βDs\beta_{D_{s}}, B1DsB_{1}^{D_{s}}, B2DsB_{2}^{D_{s}}, B3DsB_{3}^{D_{s}} and B4DsB_{4}^{D_{s}} are model parameters, whose initial values at the scale μ=2GeV\mu=2{\rm GeV} have been given in Ref. Zhang:2021wnv . For the present process, the typical factorization scale μ\mu = (mBs2mb2)1/2=3GeV(m^{2}_{B_{s}}-m_{b}^{2})^{1/2}=3{\rm GeV}. The input parameters at the scale μ=3GeV\mu=3{\rm GeV} can be achieved by using the conventional one-loop evolution equation Lepage:1980fj , and these values are given in Table 1. Figure 1 shows the behavior of the DsD_{s}-meson leading-twist LCDA ϕ2;Ds(u,μ=3GeV)\phi_{2;D_{s}}(u,\mu=3{\rm GeV}) with the typical values exhibited in Table 1, where the solid line is the central value and the shaded band shows its uncertainty given in Table 1.

III.2 The BsDsB_{s}\to D_{s} TFFs

Refer to caption
Refer to caption
Figure 2: The TFFs f+BsDs(q2)f_{+}^{B_{s}\to D_{s}}(q^{2}) and f0BsDs(q2)f_{0}^{B_{s}\to D_{s}}(q^{2}) versus the Borel parameter TT, where several typical q2q^{2} are adopted and all input parameters have been set as their central values.

Next, we calculate the BsDsB_{s}\to D_{s} TFFs f+BsDs(q2)f^{B_{s}\to D_{s}}_{+}(q^{2}) and f0BsDs(q2)f^{B_{s}\to D_{s}}_{0}(q^{2}) by using the LCSRs (18) and (19) in the q2q^{2}-region when the LCSR approach is applicable, i.e., 0<q2<7GeV20<q^{2}<7{\rm GeV^{2}}. For the purpose, we first determine the continuum threshold s0Bss_{0}^{B_{s}} and the Borel parameter TT. Within the framework of HQEFT, the continuum threshold s0Bs2Λ¯Bs=2(mBsmb)s_{0}^{B_{s}}\equiv 2\bar{\Lambda}_{B_{s}^{*}}=2(m_{B_{s}^{*}}-m_{b}) with BsB_{s}^{*} being the BsB_{s}-meson first excited state Wang:2001mi , and we take s0Bs=3.85±0.15GeVs_{0}^{B_{s}}=3.85\pm 0.15{\rm GeV}. To determine the Borel window, as suggested in Refs.Wang:2001mi ; Wang:2002zba , we require the TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}) to be as stable as possible within corresponding Borel windows. Figure 2 shows the TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}) versus the Borel parameter TT at several typical squared momenta transfer, in which the solid, the dashed, the dot-dashed and the dotted lines are for q2=0,3,5,7GeV2q^{2}=0,3,5,7{\rm GeV}^{2}, respectively. One can find that, the TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}) are stable for a large TT, e.g. the uncertainty caused by TT is less than 5%5\% when T10GeVT\geq 10{\rm GeV} for all those q2q^{2} values. Therefore, we take the Borel window as 10GeV<T<20GeV10{\rm GeV}<T<20{\rm GeV}.

Table 2: Theoretical predictions of the TFF f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) at the maximum recoil point under various approaches.
Methods f+,0BsDs(0)f_{+,0}^{B_{s}\to D_{s}}(0)
This work (HQEFT) 0.5330.094+0.1120.533^{+0.112}_{-0.094}
pQCD Fan:2013kqa 0.550.12+0.150.55^{+0.15}_{-0.12}
pQCD+LQCD Hu:2019bdf 0.52±0.100.52\pm 0.10
RQM Bhol:2014jta 0.74±0.020.74\pm 0.02
LQCD Monahan:2017uby 0.656±0.0310.656\pm 0.031
LQCD Monahan:2018lzv 0.661±0.0420.661\pm 0.042
QCDSR Blasi:1993fi 0.7±0.10.7\pm 0.1
QCDSR Azizi:2008tt 0.240.24
LCSR Li:2009wq 0.430.08+0.090.43^{+0.09}_{-0.08}
BSE Chen:2011ut 0.570.03+0.020.57^{+0.02}_{-0.03}

At the maximum recoil point q2=0q^{2}=0, we have

f+,0BsDs(0)\displaystyle f^{B_{s}\to D_{s}}_{+,0}(0) =\displaystyle= 0.5330.063+0.082|ϕ2;Ds+0.007|T+0.0650.014|s0Bs0.063\displaystyle 0.533^{+0.082}_{-0.063}|_{\phi_{2;D_{s}}}\ ^{+0.007}{}_{-0.014}|_{T}\ ^{+0.065}{}_{-0.063}|_{s_{0}^{B_{s}}} (21)
|F+0.0040.037+0.027|mb0.004.{}^{+0.027}_{-0.037}|_{F}\ ^{+0.004}{}_{-0.004}|_{m_{b}}.

There are also errors caused by the uncertainties of mBsm_{B_{s}} and mDsm_{D_{s}}, which are negligibly small. It is fond that the uncertainties of the DsD_{s}-meson leading-twist LCDA ϕ2;Ds\phi_{2;D_{s}} and the continuum threshold s0Bss_{0}^{B_{s}} are main errors of f+,0BsDs(0)f^{B_{s}\to D_{s}}_{+,0}(0). By adding all those errors in quadrature, we obtain f+,0BsDs(0)=0.5330.128+0.160f^{B_{s}\to D_{s}}_{+,0}(0)=0.533^{+0.160}_{-0.128}. We present the theoretical predictions of f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) at the maximum recoil point q2=0q^{2}=0 in Table 2, where the predictions under the pQCD approach Fan:2013kqa , the pQCD+LQCD approach Hu:2019bdf , the LQCD approach Monahan:2017uby ; Monahan:2018lzv , the QCD SR approach Blasi:1993fi ; Azizi:2008tt , the LCSR approach Li:2009wq , the BSE approach Chen:2011ut and the RQM approach Bhol:2014jta are also presented. Our present prediction of f+,0BsDs(0)f^{B_{s}\to D_{s}}_{+,0}(0) is in good agreement with the values calculated with the pQCD prediction Fan:2013kqa , the pQCD+LQCD prediction Hu:2019bdf and the BSE prediction Chen:2011ut .

As mentioned above, the LCSRs (18) and (19) for TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}) are only reliable in low and intermediate regions, i.e., 0<q2<7GeV20<q^{2}<7{\rm GeV^{2}}. To estimate the total decay width of the semi-leptonic decay BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell}, we extrapolate the TFFs to the whole physically allowable q2q^{2}-region, 0<q2<(mBsmDs)2=11.50GeV20<q^{2}<(m_{B_{s}}-m_{D_{s}})^{2}=11.50{\rm GeV^{2}}, via the zz-series parametrization Khodjamirian:2011ub ; Bourrely:2008za :

f+BsDs(q2)\displaystyle f_{+}^{B_{s}\to D_{s}}(q^{2}) =\displaystyle= f+BsDs(0)1q2/mBs2{1+k=1N1bk[z(q2)kz(0)k\displaystyle\frac{f_{+}^{B_{s}\to D_{s}}(0)}{1-q^{2}/m_{B_{s}^{*}}^{2}}\bigg{\{}1+\sum_{k=1}^{N-1}b_{k}\bigg{[}z(q^{2})^{k}-z(0)^{k} (22)
(1)NkkN(z(q2)Nz(0)N)]},\displaystyle-(-1)^{N-k}\frac{k}{N}(z(q^{2})^{N}-z(0)^{N})\bigg{]}\bigg{\}},
f0BsDs(q2)\displaystyle f_{0}^{B_{s}\to D_{s}}(q^{2}) =\displaystyle= f0BsDs(0){1+k=1N1bk(z(q2)kz(0)k)}.\displaystyle f_{0}^{B_{s}\to D_{s}}(0)\bigg{\{}1+\sum_{k=1}^{N-1}b_{k}(z(q^{2})^{k}-z(0)^{k})\bigg{\}}.

where

z(q2)\displaystyle z(q^{2}) =\displaystyle= t+q2t+t0t+q2+t+t0,\displaystyle\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}},
t0\displaystyle t_{0} =\displaystyle= t+(11t+/t),\displaystyle t_{+}(1-\sqrt{1-t_{+}/t_{-}}),
t±\displaystyle t_{\pm} =\displaystyle= (mBs±mDs)2.\displaystyle(m_{B_{s}}\pm m_{D_{s}})^{2}.

Then, by fitting the values of the TFFs in low and intermediate regions calculated via the LCSRs (18) and (19), the coefficients b1b_{1}, b2b_{2} and b3b_{3} in extrapolation formula (22) and (LABEL:Eq:f0EX) can be determined, and which have been exhibited in Table 3. The quality-of-fit is defined as:

Δ=t|fiffit|t|fi|×100%,t{0,12,,232,12}GeV2.\Delta=\frac{\sum_{t}{|f^{i}-f^{\rm fit}|}}{\sum_{t}{|f^{i}|}}\times 100\%,t\in\bigg{\{}0,\frac{1}{2},...,\frac{23}{2},12\bigg{\}}~{}\rm{GeV}^{2}. (24)

The coefficients bib_{i} are determined such that the quality-of-fit (Δ)(\Delta) is no more than 1%1\%. The Δ\Delta values for the central, the upper and lower TFFs are shown in Table 3. These quality-of-fits are much smaller than 1%1\%, indicating that our present extrapolations are of high accuracy. We present the extrapolated TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}) in Figure 3, where the shaded hands are theoretical uncertainties from all the mentioned error sources. For comparison, we present the results of the pQCD+LQCD approach Hu:2019bdf , the pQCD approach Hu:2019bdf , the RQM approach Faustov:2012mt and the LQCD approach Monahan:2017uby .

Table 3: The fitted parameters and the quality-of-fit for the extrapolated TFFs f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}).
f0BsDs(q2)f_{0}^{B_{s}\to D_{s}}(q^{2})  b1b_{1}  b2b_{2}  b3b_{3}  (Δ)(\Delta)
0.5330.533  2.378-2.378  19.414-19.414  196.397196.397  0.006%0.006\%
0.533+0.1120.533^{+0.112}  3.586-3.586  15.843-15.843  236.929236.929  0.006%0.006\%
0.5330.0940.533_{-0.094}  4.646-4.646  12.450-12.450  281.244281.244  0.006%0.006\%
f+BsDs(q2)f_{+}^{B_{s}\to D_{s}}(q^{2})  b1b_{1}  b2b_{2}  b3b_{3}  (Δ)(\Delta)
0.5330.533  4.389-4.389  0.641-0.641  123.375123.375  0.006%0.006\%
0.533+0.1120.533^{+0.112}  4.888-4.888  1.687-1.687  165.880165.880  0.008%0.008\%
0.5330.0940.533_{-0.094}  5.459-5.459  4.242-4.242  209.787209.787  0.006%0.006\%
Refer to caption
Refer to caption
Figure 3: The extrapolated TFFs f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) versus q2q^{2}. The solid line are central values and the shaded bands are corresponding uncertainties. As a comparison, the predictions under the pQCD+LQCD approach Hu:2019bdf , the pQCD approach Hu:2019bdf , and the RQM approach Faustov:2012mt and the LQCD approach Monahan:2017uby are also presented.

III.3 The BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell} branching fractions and the ratio (Ds)\mathcal{R}(D_{s})

The branching fraction of the semileptonic decay BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell} is defined as

(BsDsν¯)=τBs×0(mBsmDs)2𝑑q2dΓ(BsDsν¯)dq2,\mathcal{B}(B_{s}\to D_{s}\ell\bar{\nu}_{\ell})=\tau_{B_{s}}\times\int^{(m_{B_{s}}-m_{D_{s}})^{2}}_{0}\!\!\!dq^{2}\frac{d\Gamma(B_{s}\to D_{s}\ell\bar{\nu}_{\ell})}{dq^{2}}, (25)

where qmax2=(mBsmDs)2q_{\rm max}^{2}=(m_{B_{s}}-m_{D_{s}})^{2} and τBs\tau_{B_{s}} is the BsB_{s}-meson lifetime. Here the differential decay widths is

dΓ(BsDsν¯)dq2\displaystyle\frac{d\Gamma(B_{s}\to D_{s}\ell\bar{\nu}_{\ell})}{dq^{2}} =\displaystyle= GF2|Vcb|2192π3mBs3(1m2q2)2[(1+m22q2)\displaystyle\frac{G_{F}^{2}|V_{cb}|^{2}}{192\pi^{3}m_{B_{s}}^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\left[\left(1+\frac{m_{\ell}^{2}}{2q^{2}}\right)\right. (26)
×λ32(q2)|f+BsDs(q2)|2\displaystyle\times\lambda^{\frac{3}{2}}(q^{2})|f_{+}^{B_{s}\to D_{s}}(q^{2})|^{2}
+3m22q2(mBs2mDs2)2\displaystyle+\frac{3m^{2}_{\ell}}{2q^{2}}(m^{2}_{B_{s}}-m^{2}_{D_{s}})^{2}
×λ12(q2)|f0BsDs(q2)|2],\displaystyle\times\left.\lambda^{\frac{1}{2}}(q^{2})|f_{0}^{B_{s}\to D_{s}}(q^{2})|^{2}\right],

where λ(q2)=(mBs2+mDs2q2)24mBs2mDs2\lambda(q^{2})=(m_{B_{s}}^{2}+m_{D_{s}}^{2}-q^{2})^{2}-4m_{B_{s}}^{2}m_{D_{s}}^{2}, which is the phase-space factor. |Vcb||V_{cb}|, GFG_{F} and mm_{\ell} are CKM matrix element, the Fermi-coupling constant and the lepton mass, respectively, and we take Zyla:2020zbs : τBs=(1.510±0.004)×1012s\tau_{B_{s}}=(1.510\pm{0.004})\times 10^{-12}s, |Vcb|=(40.5±1.5)×103|V_{cb}|=(40.5\pm 1.5)\times 10^{-3}, GF=1.1663787(6)×105GeV2G_{F}=1.1663787(6)\times 10^{-5}{\rm GeV}^{-2} and τ\tau-lepton mass mτ=1.776±0.00012GeVm_{\tau}=1.776\pm 0.00012{\rm GeV}. For lepton =e\ell^{\prime}=e or μ\mu, its mass is negligible, and then the above differential decay width can be simplified as

dΓ(BsDsν¯)dq2=GF2|Vcb|2192π3mBs3λ3/2(q2)|f+BsDs(q2)|2,\frac{d\Gamma(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}})}{dq^{2}}=\frac{G_{F}^{2}|V_{cb}|^{2}}{192\pi^{3}m_{B_{s}}^{3}}\,\lambda^{3/2}(q^{2})|f_{+}^{B_{s}\to D_{s}}(q^{2})|^{2}, (27)

where f0BsDs(q2)f_{0}^{B_{s}\to D_{s}}(q^{2}) has zero contribution due to chiral suppression.

Refer to caption
Refer to caption
Figure 4: The differential decay widths of BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell}, where the uncertainties are squared averages of those from all the mentioned error sources. The predictions under the LQCD approach McLean:2019qcx and the RQM approach Faustov:2012mt are also presented.

We present the differential decay widths of BsDsτν¯τB_{s}\to D_{s}\tau\bar{\nu}_{\tau} and BsDsν¯B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}} in Figure 4, in which the solid lines are for the central choices of input parameters, and the shaded bands are uncertainties by adding all the errors caused by the error sources such as f+,0BsDs(q2)f^{B_{s}\to D_{s}}_{+,0}(q^{2}), mBsm_{B_{s}}, mDsm_{D_{s}}, |Vcb||V_{cb}|, GFG_{F} and mm_{\ell}, etc., in quadrature. In addition, the predictions under the RQM approach Faustov:2012mt and the LQCD approach McLean:2019qcx are also given. One may observe that our prediction of dΓ(BsDsτν¯τ)/dq2d\Gamma(B_{s}\to D_{s}\tau\bar{\nu}_{\tau})/dq^{2} is consistent with the LQCD and RQM predictions in Refs. McLean:2019qcx ; Faustov:2012mt ; And for dΓ(BsDsν¯)/dq2d\Gamma(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}})/dq^{2}, our prediction agrees with the LQCD and RQM predictions McLean:2019qcx ; Faustov:2012mt in larger q2q^{2} region, but is smaller than those predictions in lower q2q^{2} region.

Table 4: Theoretical predictions of the branching fractions (BsDsν¯)\mathcal{B}(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}}) and (BsDsτν¯τ)\mathcal{B}(B_{s}\to D_{s}\tau\bar{\nu}_{\tau}) (in unit: 10210^{-2}).
Methods (BsDsν¯)\mathcal{B}(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}}) (BsDsτν¯τ)\mathcal{B}(B_{s}\to D_{s}\tau\bar{\nu}_{\tau})
This work (HQEFT) 1.8170.571+0.8021.817^{+0.802}_{-0.571} 0.6060.211+0.2660.606^{+0.266}_{-0.211}
pQCD Hu:2019bdf 1.970.51+0.891.97^{+0.89}_{-0.51} 0.720.23+0.320.72^{+0.32}_{-0.23}
pQCD+LQCD Hu:2019bdf 1.840.51+0.771.84^{+0.77}_{-0.51} 0.630.13+0.170.63^{+0.17}_{-0.13}
pQCD Fan:2013kqa 2.130.77+1.122.13^{+1.12}_{-0.77} 0.840.28+0.380.84^{+0.38}_{-0.28}
RQM Faustov:2012mt 2.1±0.22.1\pm 0.2 0.62±0.050.62\pm 0.05
RQM Bhol:2014jta 2.540.27+0.282.54^{+0.28}_{-0.27} 0.6950.075+0.0850.695^{+0.085}_{-0.075}
CQM Zhao:2006at 2.733.002.73-3.00 -
QCDSR Blasi:1993fi 2.46±0.382.46\pm 0.38 -
QCDSR Azizi:2008tt 2.83.52.8-3.5 -
LCSR Zhang:2021wnv 2.030.49+0.352.03^{+0.35}_{-0.49} -
LCSR Li:2009wq 1.00.3+0.41.0^{+0.4}_{-0.3} 0.330.11+0.140.33^{+0.14}_{-0.11}
LQCD Dutta:2018jxz 2.0132.4692.013-2.469 0.6190.7240.619-0.724
BSE Chen:2011ut 1.41.71.4-1.7 0.470.550.47-0.55

We present the branching fractions (BsDsν¯)\mathcal{B}(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}}) and (BsDsτν¯τ)\mathcal{B}(B_{s}\to D_{s}\tau\bar{\nu}_{\tau}) in Table 4, where the predictions under various approaches are also presented as a comparison. It is noted that our present predictions are consistent with most of the previous predictions within errors. Especially, our prediction of (BsDsν¯)\mathcal{B}(B_{s}\to D_{s}\ell^{\prime}\bar{\nu}_{\ell^{\prime}}) is in good agreement with the pQCD prediction of Refs.Fan:2013kqa ; Hu:2019bdf and the pQCD+LQCD approach Hu:2019bdf , and our prediction of (BsDsτν¯τ)\mathcal{B}(B_{s}\to D_{s}\tau\bar{\nu}_{\tau}) is in good agreement with the pQCD+LQCD prediction Hu:2019bdf and the RQM predictions of Refs.Faustov:2012mt ; Bhol:2014jta .

Table 5: The ratios (Ds)\mathcal{R}(D_{s}) under various approaches.
Methods (Ds)\mathcal{R}(D_{s})
This work (HQEFT) 0.334±0.0170.334\pm 0.017
pQCD Hu:2019bdf 0.3650.012+0.0090.365^{+0.009}_{-0.012}
pQCD+LQCD Hu:2019bdf 0.3410.025+0.0240.341^{+0.024}_{-0.025}
pQCD Fan:2013kqa 0.392±0.0220.392\pm 0.022
RQM Faustov:2012mt 0.2950.295
RQM Bhol:2014jta 0.2740.019+0.0200.274^{+0.020}_{-0.019}
LQCD Dutta:2018jxz 0.2990.022+0.0270.299^{+0.027}_{-0.022}
LQCD Monahan:2017uby 0.314±0.0060.314\pm 0.006
CCQM Soni:2021fky 0.271±0.0690.271\pm 0.069
LCSR Li:2009wq 0.330.33

Combining Eqs. (25), (26) and (27), we can obtain the ratio (Ds)\mathcal{R}(D_{s})

(Ds)=mτ2qmax2𝑑Γ(BsDsτν¯τ)/𝑑q20qmax2𝑑Γ(BsDslν¯l)/𝑑q2,\displaystyle\mathcal{R}(D_{s})=\frac{\int^{q^{2}_{max}}_{m^{2}_{\tau}}d\Gamma(B_{s}\to D_{s}\tau\bar{\nu}_{\tau})/dq^{2}}{\int^{q^{2}_{max}}_{0}d\Gamma(B_{s}\to D_{s}l^{\prime}\bar{\nu}_{l^{\prime}})/dq^{2}}, (28)

which leads to

(Ds)=0.334±0.017.\displaystyle\mathcal{R}(D_{s})=0.334\pm 0.017. (29)

We present the ratios under various approaches in Table 5. And to be consistent with the above branching fractions, our ratio (Ds)\mathcal{R}(D_{s}) is in good agreement with prediction under the pQCD+LQCD approach Hu:2019bdf .

IV summary

In the present paper, we make a detailed study on the TFFs of the semileptonic decay BsDsνB_{s}\to D_{s}\ell\nu_{\ell} under the LCSR approach within the framework of HQEFT. By using the chiral correlator, the TFFs f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) are dominated by the leading-twist contributions and the accuracy of the LCSR prediction is improved. At the maximum recoil point, we have f+,0BsDs(0)=0.5330.094+0.112f_{+,0}^{B_{s}\to D_{s}}(0)=0.533^{+0.112}_{-0.094}. After applying the zz-series extrapolation, we obtain the TFFs in the whole physical q2q^{2}-region. Figure 3 and Figure 4 show the extrapolated TFFs f+,0BsDs(q2)f_{+,0}^{B_{s}\to D_{s}}(q^{2}) and the differential decay widths of BsDsν¯B_{s}\to D_{s}\ell\bar{\nu}_{\ell}, respectively. Furthermore, we derive the branching fractions (BsDsν¯)=(1.8170.571+0.802)×102\mathcal{B}(B_{s}\to D_{s}\ell\bar{\nu}_{\ell})=(1.817^{+0.802}_{-0.571})\times 10^{-2} and (BsDsτν¯τ)=(6.0612.114+2.660)×103\mathcal{B}(B_{s}\to D_{s}\tau\bar{\nu}_{\tau})=(6.061^{+2.660}_{-2.114})\times 10^{-3}. The resultant ratio (Ds)=0.334±0.017\mathcal{R}(D_{s})=0.334\pm 0.017 agrees well with the previous prediction under a combined approach of pQCD+LQCD Hu:2019bdf . This could be treated as a good example of showing the consistency of the TFFs under various approaches Huang:2004hw . Analyzing the data in Tab. 5, we can find that the predictions of (Ds)\mathcal{R}(D_{s}) through various methods are not in good agreement with each other, which needs more reasonable and accurate research in the future. At the same time, we also look forward to the experimental measurements of (Ds)\mathcal{R}(D_{s}), so as to test the theoretical prediction for (Ds)\mathcal{R}(D_{s}) in the framework of SM.

Acknowledgments: We are grateful to Rui-Yu Zhou for helpful discussions. This work was supported in part by the National Science Foundation of China under Grant No.11875122, No.11947406, No. 12175025 and No. 12147102, the Project of Guizhou Provincial Department of Science and Technology under Grant No.KY[2019]1171 and No.ZK[2021]024, the Project of Guizhou Provincial Department of Education under Grant No.KY[2021]030 and No.KY[2021]003, and by the Chongqing Graduate Research and Innovation Foundation under Grant No.ydstd1912.

References

  • (1) J. P. Lees et al. [BaBar], Evidence for an excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} decays, Phys. Rev. Lett. 109, 101802 (2012).
  • (2) J. P. Lees et al. [BaBar], Measurement of an Excess of B¯D()τν¯τ\bar{B}\to D^{(*)}\tau^{-}\bar{\nu}_{\tau} Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88, 072012 (2013).
  • (3) M. Huschle et al. [Belle], Measurement of the branching ratio of B¯D()τν¯τ\bar{B}\to D^{(\ast)}\tau^{-}\bar{\nu}_{\tau} relative to B¯D()ν¯\bar{B}\to D^{(\ast)}\ell^{-}\bar{\nu}_{\ell} decays with hadronic tagging at Belle, Phys. Rev. D 92, 072014 (2015).
  • (4) S. Hirose et al. [Belle], Measurement of the τ\tau lepton polarization and R(D)R(D^{*}) in the decay B¯Dτν¯τ\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau}, Phys. Rev. Lett. 118, 211801 (2017).
  • (5) S. Hirose et al. [Belle], Measurement of the τ\tau lepton polarization and R(D)R(D^{*}) in the decay B¯Dτν¯τ\bar{B}\rightarrow D^{*}\tau^{-}\bar{\nu}_{\tau} with one-prong hadronic τ\tau decays at Belle, Phys. Rev. D 97, 012004 (2018).
  • (6) G. Caria et al. [Belle], Measurement of (D)\mathcal{R}(D) and (D)\mathcal{R}(D^{*}) with a semileptonic tagging method, Phys. Rev. Lett. 124, 161803 (2020).
  • (7) R. Aaij et al. [LHCb], Measurement of the ratio of branching fractions (B¯0D+τν¯τ)/(B¯0D+μν¯μ)\mathcal{B}(\bar{B}^{0}\to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^{0}\to D^{*+}\mu^{-}\bar{\nu}_{\mu}), Phys. Rev. Lett. 115, 111803 (2015) [erratum: Phys. Rev. Lett. 115, 159901 (2015)].
  • (8) R. Aaij et al. [LHCb], Measurement of the ratio of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} and B0Dμ+νμB^{0}\to D^{*-}\mu^{+}\nu_{\mu} branching fractions using three-prong τ\tau-lepton decays, Phys. Rev. Lett. 120, 171802 (2018).
  • (9) R. Aaij et al. [LHCb], Test of Lepton Flavor Universality by the measurement of the B0Dτ+ντB^{0}\to D^{*-}\tau^{+}\nu_{\tau} branching fraction using three-prong τ\tau decays, Phys. Rev. D 97, 072013 (2018).
  • (10) Y. S. Amhis et al. [HFLAV], Averages of b-hadron, c-hadron, and τ\tau-lepton properties as of 2018, Eur. Phys. J. C 81, 226 (2021). Updated results and plots available at https://hflav.web.cern.ch/
  • (11) D. Bigi and P. Gambino, Revisiting BDνB\to D\ell\nu, Phys. Rev. D 94, 094008 (2016).
  • (12) M. Bordone, M. Jung and D. van Dyk, Theory determination of B¯D()ν¯\bar{B}\to D^{(*)}\ell^{-}\bar{\nu} form factors at 𝒪(1/mc2)\mathcal{O}(1/m_{c}^{2}), Eur. Phys. J. C 80, 74 (2020).
  • (13) P. Gambino, M. Jung and S. Schacht, The VcbV_{cb} puzzle: An update, Phys. Lett. B 795, 386 (2019).
  • (14) S. Fajfer, J. F. Kamenik and I. Nisandzic, On the BDτν¯τB\to D^{*}\tau\bar{\nu}_{\tau} Sensitivity to New Physics, Phys. Rev. D 85, 094025 (2012).
  • (15) M. Tanaka and R. Watanabe, Tau longitudinal polarization in B¯Dτν¯\bar{B}\to D\tau\bar{\nu} and its role in the search for charged Higgs boson, Phys. Rev. D 82, 034027 (2010).
  • (16) J. A. Bailey et al. [MILC], BDνB\to D\ell\nu form factors at nonzero recoil and |Vcb||V_{cb}| from 2+1-flavor lattice QCD, Phys. Rev. D 92, 034506 (2015).
  • (17) H. Na et al. [HPQCD], BDlνB\rightarrow Dl\nu form factors at nonzero recoil and extraction of |Vcb||V_{cb}|, Phys. Rev. D 92, 054510 (2015) [erratum: Phys. Rev. D 93, 119906 (2016)].
  • (18) S. Aoki, Y. Aoki, D. Becirevic, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr and H. Fukaya, et al. Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77, 112 (2017).
  • (19) Y. M. Wang, Y. B. Wei, Y. L. Shen and C. D. Lü, Perturbative corrections to BDB\to D form factors in QCD, JHEP 06, 062 (2017).
  • (20) T. Zhong, Y. Zhang, X. G. Wu, H. B. Fu and T. Huang, The ratio (D)\mathcal{R}(D) and the DD-meson distribution amplitude, Eur. Phys. J. C 78, 937 (2018).
  • (21) A. Celis, M. Jung, X. Q. Li and A. Pich, Sensitivity to charged scalars in BD()τντB\to D^{(*)}\tau\nu_{\tau} and BτντB\to\tau\nu_{\tau} decays, JHEP 01, 054 (2013).
  • (22) A. Celis, M. Jung, X. Q. Li and A. Pich, BD()τντB\to D^{(\ast)}\tau\nu_{\tau} decays in two-Higgs-doublet models, J. Phys. Conf. Ser. 447, 012058 (2013).
  • (23) X. Q. Li, Y. D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D())R(D^{(\ast)}) anomalies and its phenomenological implications, JHEP 08, 054 (2016).
  • (24) Y. Li and C. D. Lü, Recent Anomalies in B Physics, Sci. Bull. 63, 267 (2018).
  • (25) R. Aaij et al. [LHCb], Measurement of |Vcb||V_{cb}| with Bs0Ds()μ+νμB_{s}^{0}\to D_{s}^{(*)-}\mu^{+}\nu_{\mu} decays, Phys. Rev. D 101, 072004 (2020).
  • (26) Y. Y. Fan, W. F. Wang and Z. J. Xiao, Study of B¯s0(Ds+,Ds+)lν¯l\bar{B}_{s}^{0}\to(D_{s}^{+},D_{s}^{*+})l^{-}\bar{\nu}_{l} decays in the pQCD factorization approach, Phys. Rev. D 89, 014030 (2014).
  • (27) X. Q. Hu, S. P. Jin and Z. J. Xiao, Semileptonic decays B/Bs(D(),Ds())lνlB/B_{s}\to(D^{(*)},D_{s}^{(*)})l\nu_{l} in the PQCD approach with the lattice QCD input, Chin. Phys. C 44, 053102 (2020).
  • (28) A. Bhol, Study of BsDs()lνlB_{s}\to D_{s}^{(\ast)}l\nu_{l} semileptonic decays, EPL 106, no.3, 31001 (2014).
  • (29) R. N. Faustov and V. O. Galkin, Weak decays of BsB_{s} mesons to DsD_{s} mesons in the relativistic quark model, Phys. Rev. D 87, 034033 (2013).
  • (30) C. J. Monahan, H. Na, C. M. Bouchard, G. P. Lepage and J. Shigemitsu, BsDsνB_{s}\to D_{s}\ell\nu Form Factors and the Fragmentation Fraction Ratio fs/fdf_{s}/f_{d}, Phys. Rev. D 95, 114506 (2017).
  • (31) C. J. Monahan, C. M. Bouchard, G. P. Lepage, H. Na and J. Shigemitsu, Form factor ratios for BsKνB_{s}\rightarrow K\,\ell\,\nu and BsDsνB_{s}\rightarrow D_{s}\,\ell\,\nu semileptonic decays and |Vub/Vcb||V_{ub}/V_{cb}|, Phys. Rev. D 98, 114509 (2018).
  • (32) R. Dutta and N. Rajeev, Signature of lepton flavor universality violation in BsDsτνB_{s}\to D_{s}\tau\nu semileptonic decays, Phys. Rev. D 97 , 095045 (2018).
  • (33) E. McLean, C. T. H. Davies, J. Koponen and A. T. Lytle, BsDsνB_{s}\to D_{s}\ell\nu Form Factors for the full q2q^{2} range from Lattice QCD with non-perturbatively normalized currents, Phys. Rev. D 101, 074513 (2020).
  • (34) N. R. Soni, A. Issadykov, A. N. Gadaria, Z. Tyulemissov, J. J. Patel and J. N. Pandya, Form factors and branching fraction calculations for BsDs()+νB_{s}\to D_{s}^{(*)}\ell^{+}\nu_{\ell} in view of LHCb observation, [arXiv:2110.12740 [hep-ph]].
  • (35) P. Blasi, P. Colangelo, G. Nardulli and N. Paver, Phenomenology of BsB_{s} decays, Phys. Rev. D 49, 238-246 (1994).
  • (36) S. M. Zhao, X. Liu and S. J. Li, Study on BsDsJ(2317,2460)lν¯B_{s}\to D_{sJ}(2317,2460)l\bar{\nu} Semileptonic Decays in the CQM Model, Eur. Phys. J. C 51, 601 (2007).
  • (37) R. H. Li, C. D. Lu and Y. M. Wang, Exclusive BsB_{s} decays to the charmed mesons Ds+(1968,2317)D^{+}_{s}(1968,2317) in the standard model, Phys. Rev. D 80, 014005 (2009).
  • (38) X. J. Chen, H. F. Fu, C. S. Kim and G. L. Wang, Estimating Form Factors of BsDs()B_{s}\rightarrow D_{s}^{(\ast)} and their Applications to Semi-leptonic and Non-leptonic Decays, J. Phys. G 39, 045002 (2012).
  • (39) R. Y. Zhou, L. Guo, H. B. Fu, W. Cheng and X. G. Wu, The BπνB\to\pi\ell\nu_{\ell} semileptonic decay within the LCSR approach under heavy quark effective field theory, Chin. Phys. C 44, 013101 (2020).
  • (40) Y. L. Wu, A Complete heavy quark effective Lagrangian from QCD, Mod. Phys. Lett. A 8 (1993), 819.
  • (41) Y. L. Wu and Y. A. Yan, |Vub||V_{ub}| and |Vcb||V_{cb}|, charm counting and lifetime differences in inclusive bottom hadron decays, Int. J. Mod. Phys. A 16, 285 (2001).
  • (42) Y. A. Yan, Y. L. Wu and W. Y. Wang, Inclusive decays of bottom hadrons in new formulation of heavy quark effective field theory, Int. J. Mod. Phys. A 15, 2735 (2000).
  • (43) W. Y. Wang and Y. L. Wu, A Consistent calculation of heavy meson decay constants and transition wave functions in the complete HQEFT, Int. J. Mod. Phys. A 16, 377 (2001).
  • (44) W. Y. Wang, Y. L. Wu and Y. A. Yan, Weak matrix elements and |Vcb||V_{cb}| in new formulation of heavy quark effective field theory, Int. J. Mod. Phys. A 15, 1817 (2000).
  • (45) W. Y. Wang and Y. L. Wu, Semileptonic B decays into excited charmed mesons (D1,D2)(D_{1},D_{2}^{\ast}) in HQEFT, Int. J. Mod. Phys. A 16, 2505 (2001).
  • (46) J. G. Korner, C. Liu and C. T. Yan, Light cone HQET sum rules for the BπB\to\pi transition with 1/mQ1/m_{Q} corrections, Phys. Rev. D 66, 076007 (2002).
  • (47) W. Y. Wang and Y. L. Wu, BπνB\to\pi\ell\nu decay and |Vub||V_{ub}|, Phys. Lett. B 515,57 (2001).
  • (48) W. Y. Wang, Y. L. Wu and M. Zhong, Heavy to light meson exclusive semileptonic decays in effective field theory of heavy quarks, Phys. Rev. D 67 , 014024(2003).
  • (49) M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147, 385 (1979).
  • (50) M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147, 448 (1979).
  • (51) P. Ball, Theoretical update of pseudoscalar meson distribution amplitudes of higher twist: The Nonsinglet case, JHEP 01, 010 (1999).
  • (52) P.A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, 083C01 (2020).
  • (53) Y. Zhang, T. Zhong, H. B. Fu, W. Cheng and X. G. Wu, DsD_{s}-meson leading-twist distribution amplitude within the QCD sum rules and its application to the BsDsB_{s}\to D_{s} transition form factor, Phys. Rev. D 103, 114024 (2021).
  • (54) G. P. Lepage and S. J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22, 2157 (1980).
  • (55) K. Azizi, QCD Sum Rules Study of the Semileptonic Bs(B±)(B0)Ds[1968](D0)(D±)lνB_{s}(B^{\pm})(B^{0})\to D_{s}[1968](D^{0})(D^{\pm})l\nu Decays, Nucl. Phys. B 801, 70 (2008).
  • (56) A. Khodjamirian, T. Mannel, N. Offen and Y. M. Wang, BπνlB\to\pi\ell\nu_{l} Width and |Vub||V_{ub}| from QCD Light-Cone Sum Rules, Phys. Rev. D 83, 094031 (2011).
  • (57) C. Bourrely, I. Caprini and L. Lellouch, Model-independent description of BπlνB\to\pi l\nu decays and a determination of |Vub||V_{ub}|, Phys. Rev. D 79, 013008 (2009) [erratum: Phys. Rev. D 82, 099902 (2010)].
  • (58) T. Huang and X. G. Wu, Consistent calculation of the BB to π\pi transition form-factor in the whole physical region, Phys. Rev. D 71, 034018 (2005).