This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The restricted quantum double of the Yangian

Curtis Wendlandt Department of Mathematics and Statistics, University of Saskatchewan. wendlandt@math.usask.ca
Abstract.

Let 𝔤\mathfrak{g} be a complex semisimple Lie algebra with associated Yangian Y𝔤Y_{\hbar}\mathfrak{g}. In the mid-1990s, Khoroshkin and Tolstoy formulated a conjecture which asserts that the algebra DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} obtained by doubling the generators of Y𝔤Y_{\hbar}\mathfrak{g}, called the Yangian double, provides a realization of the quantum double of the Yangian. We provide a uniform proof of this conjecture over [[]]\mathbb{C}[\![\hbar]\!] which is compatible with the theory of quantized enveloping algebras. As a byproduct, we identify the universal RR-matrix of the Yangian with the canonical element defined by the pairing between the Yangian and its restricted dual.

2020 Mathematics Subject Classification:
Primary 17B37; Secondary 81R10

1. Introduction

1.1.

This article is a continuation of [WDYhg], which studied the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} associated to an arbitrary symmetrizable Kac–Moody algebra 𝔤\mathfrak{g} through the lens of a \mathbb{Z}-graded algebra homomorphism

Φz:DY𝔤LY𝔤^zY𝔤[[z±1]].\Phi_{z}:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\subset Y_{\hbar}\mathfrak{g}[\![z^{\pm 1}]\!].

Here LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is a naturally defined \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra, described explicitly in Lemma 4.5, and Y𝔤Y_{\hbar}\mathfrak{g} is the Yangian of 𝔤\mathfrak{g}, defined over [[]]\mathbb{C}[\![\hbar]\!]. This homomorphism, called the formal shift operator, naturally extends the so-called shift homomorphism τz\tau_{z} on the Yangian, and has a number of remarkable properties. For instance, it induces a family of isomorphisms between completions of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and Y𝔤Y_{\hbar}\mathfrak{g}, realizes Y𝔤Y_{\hbar}\mathfrak{g} as a degeneration of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and is injective provided 𝔤\mathfrak{g} is of finite type or of simply laced affine type. In addition, it was applied in [GWPoles] to characterize the category of finite-dimensional representations of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, for ×\hbar\in\mathbb{C}^{\times} and 𝔤\mathfrak{g} of finite type, as the tensor-closed Serre subcategory of that of the Yangian consisting of those representations which have no poles at zero.

In this article, we narrow our focus to the case where 𝔤\mathfrak{g} is a finite-dimensional simple Lie algebra, and apply these results in conjunction with those of the recent paper [GTLW19] to prove one of the main conjectures from the work [KT96] of Khoroshkin and Tolstoy. Namely, we establish that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, which is defined by doubling the generators of Y𝔤Y_{\hbar}\mathfrak{g} (see Definition 4.1), is isomorphic to the restricted quantum double of the Yangian Y𝔤Y_{\hbar}\mathfrak{g}, where the prefix “restricted” indicates that all duality operations are taken so as to respect the underlying gradings. As a consequence of this result and its proof, we find that Φz\Phi_{z} identifies the universal RR-matrix of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, which arises from the quantum double construction, with Drinfeld’s universal RR-matrix (z)(Y𝔤Y𝔤)[[z1]]\mathcal{R}(z)\in(Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g})[\![z^{-1}]\!]. Our argument makes essential use of the constructive proof of the existence of (z)\mathcal{R}(z) given in [GTLW19], which is independent from Drinfeld’s cohomological construction of (z)\mathcal{R}(z) from the foundational paper [Dr].

1.2. Main results

Let us now sketch our main results in detail. The two results alluded to above form Parts (1) and (2) of the following theorem.

Theorem I.

There is a unique \mathbb{Z}-graded Hopf algebra structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} over [[]]\mathbb{C}[\![\hbar]\!] such that the formal shift operator

Φz:DY𝔤LY𝔤^zY𝔤[[z±1]]\Phi_{z}:\mathrm{D}Y_{\hbar}\mathfrak{g}\hookrightarrow\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\subset Y_{\hbar}\mathfrak{g}[\![z^{\pm 1}]\!]

intertwines the Hopf structures on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and Y𝔤Y_{\hbar}\mathfrak{g}. Moreover:

  1. (1)

    DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is isomorphic, as a \mathbb{Z}-graded Hopf algebra, to the restricted quantum double of the Yangian Y𝔤Y_{\hbar}\mathfrak{g}.

  2. (2)

    Under the above identifications, the universal RR-matrix 𝓡{\boldsymbol{\EuScript{R}}} of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} satisfies

    (ΦwΦz)(𝓡)=(wz)Y𝔤2[w][[z1]](\Phi_{w}\otimes\Phi_{z})({\boldsymbol{\EuScript{R}}})=\mathcal{R}(w-z)\in Y_{\hbar}\mathfrak{g}^{\otimes 2}[w][\![z^{-1}]\!]

This is a combination of the three main results of this article: Theorems 7.5, 8.5 and 9.8. Part (1) is the statement of our second main result — Theorem 8.5 — and is precisely the variant of the conjecture from [KT96]*§2 which we establish in the present paper. Our approach to proving it is, in a certain sense, dual to the strategy outlined in [KT96] which was brought to fruition for 𝔤=𝔰𝔩2\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{2}. In more detail, our argument hinges on the fact, proven in Proposition 7.1, that the universal RR-matrix (z)\mathcal{R}(z) of the Yangian gives rise to a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

Φz:𝖸˙𝔤Y𝔤[[z1]]\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!]

which is compatible with the Hopf algebra structure on Y𝔤Y_{\hbar}\mathfrak{g} and the co-opposite Hopf structure on the dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} of the Yangian Y𝔤Y_{\hbar}\mathfrak{g} taken in the category of \mathbb{Z}-graded quantized enveloping algebras. That is, 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is the restricted (or graded) dual of the Drinfeld–Gavarini [DrQG, Gav02] subalgebra 𝖸˙𝔤Y𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\subset Y_{\hbar}\mathfrak{g}, defined in Section 5, and provides a homogeneous quantization of the restricted dual t1𝔤[t1]t^{-1}\mathfrak{g}[t^{-1}] to the \mathbb{N}-graded Lie bialgebra 𝔤[t]\mathfrak{g}[t], as we prove in detail in Section 6; see Theorem 6.7.

Using the construction of (z)\mathcal{R}(z) given in [GTLW19] and properties of Φz\Phi_{z} established in [WDYhg], we deduce that the image of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} under Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is contained in the image of Φz\Phi_{z}. We may thus compose Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} with Φz1\Phi_{z}^{-1} to obtain a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

ıˇ:=Φz1Φz:Y𝔤DY𝔤,\check{\imath}:=\Phi_{z}^{-1}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\mathrm{D}Y_{\hbar}\mathfrak{g},

where Y𝔤:=(𝖸˙𝔤)copY_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}){\vphantom{)}}^{\scriptscriptstyle\mathrm{cop}}. In our first main result — Theorem 7.5 — we show that there is a unique \mathbb{Z}-graded Hopf algebra structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} for which both ıˇ\check{\imath} and the natural inclusion ı:Y𝔤DY𝔤\imath:Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g} are injective homomorphisms of graded Hopf algebras. This is exactly the Hopf structure alluded to in the statement of Theorem I, and is such that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} provides a homogeneous quantization of the restricted Drinfeld double 𝔤[t±1]\mathfrak{g}[t^{\pm 1}] of 𝔤[t]\mathfrak{g}[t]. Using Theorem 7.5, it is then not difficult to establish Part (1) above (i.e., Theorem 8.5) using the double cross product realization of the restricted quantum double (see Section 8.2).

Our third and final main result, Theorem 9.8, is a strengthening of Part (2) above. Indeed, it outputs the Gauss decomposition for 𝓡{\boldsymbol{\EuScript{R}}} while identifying each factor appearing in this decomposition with the factors ±(z)\mathcal{R}^{\pm}(z) and 0(z)\mathcal{R}^{0}(z) of (z)\mathcal{R}(z), which were studied in detail in [GTLW19, GTL3].

1.3. Motivation

Part (2) of Theorem I implies that (z)\mathcal{R}(z) can be recovered from the canonical element defined by the pairing between Y𝔤Y_{\hbar}\mathfrak{g} and its restricted dual Y𝔤DY𝔤Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\subset\mathrm{D}Y_{\hbar}\mathfrak{g} by applying the injection Φz\Phi_{\shortminus{z}} to its second tensor factor:

(𝟏Φz)(𝓡)=(z)Y𝔤2[[z1]].(\mathbf{1}\otimes\Phi_{\shortminus{z}})({\boldsymbol{\EuScript{R}}})=\mathcal{R}(z)\in Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!].

Here we refer the reader to Theorem 9.8 for further details, which takes into account the topological subtleties surrounding this statement. Obtaining this interpretation of (z)\mathcal{R}(z) is in fact our original motivation for addressing the conjecture of [KT96]*§2, and brings the theory surrounding the universal RR-matrix of the Yangian to a more equal footing with that of the (extended, untwisted) quantum affine algebra Uq(𝔤^)U_{q}(\widehat{\mathfrak{g}}) and the quantum loop algebra Uq(L𝔤)U_{q}(L\mathfrak{g}). The differences are, however, still quite pronounced. Indeed, Uq(𝔤^)U_{q}(\widehat{\mathfrak{g}}) is itself nearly the quantum double of its (quantum Kac–Moody) Borel subalgebra Uq(𝔟+)U_{q}(\mathfrak{b}^{+}), and its universal RR-matrix \mathscr{R} lies in a completion of Uq(𝔟+)Uq(𝔟)U_{q}(\mathfrak{b}^{+})\otimes U_{q}(\mathfrak{b}^{-}). One then recovers the universal RR-matrix L𝔤\mathscr{R}_{L\mathfrak{g}} of Uq(L𝔤)U_{q}(L\mathfrak{g}) as a truncation of \mathscr{R}, and its zz-dependent analogue is

L𝔤(z):=(𝟏Dz1)(L𝔤)Uq(L𝔤)2[[z]],\mathscr{R}_{L\mathfrak{g}}(z):=(\mathbf{1}\otimes D_{z^{-1}})(\mathscr{R}_{L\mathfrak{g}})\in U_{q}(L\mathfrak{g})^{\otimes 2}[\![z]\!],

where DzD_{z} is given by the \mathbb{Z}-grading on Uq(L𝔤)U_{q}(L\mathfrak{g}); see [EFK-Book]*§9.4 or [FR92]*§4, for instance. Crucially, \mathscr{R} can be constructed by computing dual bases with respect to the pairing between Uq(𝔟+)U_{q}(\mathfrak{b}^{+}) and Uq(𝔟)U_{q}(\mathfrak{b}^{-}), and was done explicitly by Damiani in [Damiani98]. In contrast, the Yangian Y𝔤Y_{\hbar}\mathfrak{g} is not of Kac–Moody type and does not arise as a Hopf algebra from the quantum double construction applied to any analogue of Uq(𝔟+)U_{q}(\mathfrak{b}^{+})111We refer the reader to [YaGu3]*§4 for a related construction of Y𝔤Y_{\hbar}\mathfrak{g} with respect to its deformed Drinfeld coproduct, which does not endow Y𝔤Y_{\hbar}\mathfrak{g} with the structure of a Hopf algebra.. In addition, (z)\mathcal{R}(z) and L𝔤(z)\mathscr{R}_{L\mathfrak{g}}(z) exhibit significantly different analytic behaviour when evaluated on finite-dimensional representations [GTLW19]. Nonetheless, the results of this article further cement that there are very strong parallels to be drawn between the two pictures. Indeed, one obtains the Y𝔤Y_{\hbar}\mathfrak{g}-analogue of the above story by replacing Uq(𝔟+)U_{q}(\mathfrak{b}^{+}) by Y𝔤Y_{\hbar}\mathfrak{g}, Uq(L𝔤)U_{q}(L\mathfrak{g}) by the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and DzD_{z} by the formal shift operator Φz\Phi_{z}.

It should be noted that it appears that this realization of (z)\mathcal{R}(z) has been anticipated for some time in the mathematical physics community; see for instance [Stukopin07]*§5, which considers its super-analogue. The direction taken therein is, however, based on both the conjecture from [KT96]*§2 at the heart of the present article, and on the infinite product formulas for the factors 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm} of 𝓡{\boldsymbol{\EuScript{R}}} given [KT96]*§5, which remain conjectural. Some more discussion on this point is given in Section 9.4.

1.4. Remarks

Let us now give a few brief remarks. Firstly, it is essential that the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is defined as a topological algebra over [[]]\mathbb{C}[\![\hbar]\!] for the above results to hold true. To expand on this, DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} can be realized as the \hbar-adic completion of a \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra 𝔻Y𝔤ȷ\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath} defined by generators and relations; see Remark 4.2. One can further specialize \hbar to any nonzero complex number ζ\zeta to obtain a \mathbb{C}-algebra 𝔻Yζ𝔤=𝔻Y𝔤ȷ/(ζ)𝔻Y𝔤ȷ\mathds{D}Y_{\zeta}\mathfrak{g}=\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}/(\hbar-\zeta)\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}, whose category of finite-dimensional representations was characterized in terms of that of the corresponding Yangian Yζ(𝔤)Y_{\zeta}(\mathfrak{g}) in [GWPoles]. Though this category has a tensor structure which corresponds to the Hopf structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, it is important to note that 𝔻Yζ𝔤\mathds{D}Y_{\zeta}\mathfrak{g} is not a Hopf algebra over \mathbb{C}, and in particular it does not coincide with the (restricted) quantum double of Yζ(𝔤)Y_{\zeta}(\mathfrak{g}) defined in any reasonable sense.

That being said, 𝔻Yζ𝔤\mathds{D}Y_{\zeta}\mathfrak{g} admits a natural \mathbb{Z}-filtration corresponding to the \mathbb{Z}-grading on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and the expectation is that the formal completion of 𝔻Yζ𝔤\mathds{D}Y_{\zeta}\mathfrak{g} with respect to this filtration coincides with the (restricted) quantum double of Yζ(𝔤)Y_{\zeta}(\mathfrak{g}) taken in the appropriate category of \mathbb{Z}-filtered, complete topological Hopf algebras. This is in fact the version of Part (2) of Theorem I conjectured in [KT96], and is consistent with the situation that transpires in type A for the RR-matrix realization of the Yangian, which has been developed in great detail in the recent paper [Naz20]. For our purposes, it is more natural to work over [[]]\mathbb{C}[\![\hbar]\!] within the framework of quantized enveloping algebras first developed by Drinfeld [DrQG], where we may study DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} from the point of view of quantization of Lie bialgebras. At the same time, many of our results are “global” (in the sense of [Gav07]) and admit an interpretation over both []\mathbb{C}[\hbar] and \mathbb{C}, including the realization of (z)\mathcal{R}(z) provided by Theorem 9.8; see Appendix A.

{comment}

Theorem LABEL:T:R-can and Proposition LABEL:P:Rchi-can imply that the universal RR-matrix (z)\mathcal{R}(z) and its Gauss components can be computed, at least in principal, combinatorially as the canonical tensors associated to the pairing ,\langle\langle\,,\rangle\rangle and its appropriate restrictions. Since +(z)=21(z)1\mathcal{R}^{+}(z)=\mathcal{R}_{21}^{-}(-z)^{-1} and 0(z)\mathcal{R}^{0}(z) is known explicitly, obtaining a closed expression for (z)\mathcal{R}(z) in this form reduces to computing the canonical tensor (z)\mathds{R}^{-}\sim\mathcal{R}^{-}(z) with respect to the pairing 𝖸˙(𝔤)×ı(𝖸˙𝔤)[[]]\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})\times\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}{\vphantom{)}}^{\star})\to\mathbb{C}[\![\hbar]\!].

This problem was considered in the foundational work [KT96] of Khoroshkin and Tolstoy, where an infinite product formula for \mathds{R}^{-} (equivalently, for (z)\mathcal{R}^{-}(z)) was obtained for 𝔤=𝔰𝔩2\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{2}; see Theorem 5.1 therein. A distinct formula for 𝔰𝔩2(z)\mathcal{R}^{-}_{\mathfrak{s}\mathfrak{l}_{2}}(z) was obtained in Theorem 5.5 of [GTLW19] by solving the recurrence relation (3.23).

1.5. Outline

The paper is written so as to provide a complete picture, accessible to non-experts, where possible. For this reason, we take great care to lay the foundation needed to state and prove the results outlined in Section 1.2. The first three sections — Sections 2, 3 and 4 – are intended to serve a preliminary role: Section 2 surveys the theory of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules, algebras and Hopf algebras, including homogeneous quantizations of graded Lie bialgebras. This theory plays a prominent role throughout the article. In Section 3, we review the definition and main properties of the Yangian Y𝔤Y_{\hbar}\mathfrak{g}, defined both over []\mathbb{C}[\hbar] and [[]]\mathbb{C}[\![\hbar]\!]. Notably, this includes a review of the construction of the universal RR-matrix (z)\mathcal{R}(z) carried out in [GTLW19]. Section 4 is focused on the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and, in particular, on reviewing the main results of [WDYhg]; see Theorems 4.6 and 4.8.

In Sections 5 and 6, we study the Drinfeld–Gavarini subalgebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} of the Yangian, its []\mathbb{C}[\hbar]-form, and its restricted dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} in detail. This includes a detailed proof that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} provides a homogeneous quantization of t1𝔤[t1]t^{-1}\mathfrak{g}[t^{-1}], equipped with the Yangian Lie bialgebra structure; see Definition 6.1 and Theorem 6.7.

The last three sections of the article contain its three main results: Theorems 7.5, 8.5 and 9.8. We refer the reader to Section 1.2 above, where these are outlined in detail. Finally, in Appendix A we explain how to translate the construction of the universal RR-matrix given in [GTLW19] for ×\hbar\in\mathbb{C}^{\times} to the setting of the present paper, in which \hbar is a formal variable; see Proposition A.1, which appears in Section 3.6 as Theorem 3.9.

1.6. Acknowledgments

I would like to thank Alex Weekes, Andrea Appel, Sachin Gautam, and Valerio Toledano Laredo for the many insightful discussions and helpful comments they have been the source of over the last few years. These have played a significant role in shaping this article.

2. Homogeneous quantizations

2.1. Topological modules

Recall that a [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬\mathsf{M} is separated if the intersection of the family of submodules n𝖬\hbar^{n}\mathsf{M} is trivial, and it is complete if the natural [[]]\mathbb{C}[\![\hbar]\!]-linear map

𝖬limn(𝖬/n𝖬)\mathsf{M}\to\varprojlim_{n}(\mathsf{M}/\hbar^{n}\mathsf{M})

is surjective, where the inverse limit is taken over the set \mathbb{N} of non-negative integers. In particular, 𝖬\mathsf{M} is both separated and complete if and only if the above map is an isomorphism. If 𝖬\mathsf{M} is separated, complete and torsion free as a [[]]\mathbb{C}[\![\hbar]\!]-module, then it is said to be topologically free. This is equivalent to the existence of a [[]]\mathbb{C}[\![\hbar]\!]-module isomorphism 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] for a complex vector space 𝖵\mathsf{V}. Such an isomorphism is specified by a choice of complement 𝖵𝖬\mathsf{V}\subset\mathsf{M} to 𝖬\hbar\mathsf{M}:

𝖬=𝖵𝖬.\mathsf{M}=\mathsf{V}\oplus\hbar\mathsf{M}.

More generally, if 𝖬\mathsf{M} is any [[]]\mathbb{C}[\![\hbar]\!]-module, then the space 𝖵=𝖬/𝖬\mathsf{V}=\mathsf{M}/\hbar\mathsf{M} is called the semiclassical limit of 𝖬\mathsf{M}. Similarly, the semiclassical limit of a [[]]\mathbb{C}[\![\hbar]\!]-linear map τ:𝖬𝖭\uptau:\mathsf{M}\to\mathsf{N} is the \mathbb{C}-linear map τ¯:𝖬/𝖬𝖭/𝖭\bar{\uptau}:\mathsf{M}/\hbar\mathsf{M}\to\mathsf{N}/\hbar\mathsf{N} uniquely determined by the commutativity of the diagram

𝖬{\mathsf{M}}𝖭{\mathsf{N}}𝖬/𝖬{\mathsf{M}/\hbar\mathsf{M}}𝖭/𝖭{\mathsf{N}/\hbar\mathsf{N}}τ\scriptstyle{\uptau}τ¯\scriptstyle{\bar{\uptau}}

As the following elementary result illustrates, the semiclassical limit of a [[]]\mathbb{C}[\![\hbar]\!]-module homomorphism encodes important information about the original map.

Lemma 2.1.

Let 𝖬\mathsf{M}, 𝖭\mathsf{N}, τ\uptau and τ¯\bar{\uptau} be as above.

  1. (1)

    Suppose that 𝖬\mathsf{M} is separated, 𝖭\mathsf{N} is torsion free and τ¯\bar{\uptau} is injective. Then τ\uptau is injective.

  2. (2)

    Suppose that 𝖬\mathsf{M} is complete, 𝖭\mathsf{N} is separated and τ¯\bar{\uptau} is surjective. Then τ\uptau is surjective.

The topological tensor product 𝖬^𝖭\mathsf{M}\,{\widehat{\otimes}}\,\mathsf{N} of two [[]]\mathbb{C}[\![\hbar]\!]-modules 𝖬\mathsf{M} and 𝖭\mathsf{N} is the \hbar-adic completion of the algebraic tensor product 𝖬[[]]𝖭\mathsf{M}\otimes_{\mathbb{C}[\![\hbar]\!]}\mathsf{N}:

𝖬^𝖭=limn(𝖬[[]]𝖭)/n(𝖬[[]]𝖭).\mathsf{M}\,{\widehat{\otimes}}\,\mathsf{N}=\varprojlim_{n}(\mathsf{M}\otimes_{\mathbb{C}[\![\hbar]\!]}\mathsf{N})/\hbar^{n}(\mathsf{M}\otimes_{\mathbb{C}[\![\hbar]\!]}\mathsf{N}).

If 𝖬\mathsf{M} and 𝖭\mathsf{N} are topologically free with 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] and 𝖭𝖶[[]]\mathsf{N}\cong\mathsf{W}[\![\hbar]\!], then 𝖬^𝖭\mathsf{M}\,{\widehat{\otimes}}\,\mathsf{N} is topologically free and isomorphic to (𝖵𝖶)[[]](\mathsf{V}\otimes_{\mathbb{C}}\mathsf{W})[\![\hbar]\!].

In this article, we shall say that 𝖬\mathsf{M} is a topological module over [[]]\mathbb{C}[\![\hbar]\!] if 𝖬\mathsf{M} is a [[]]\mathbb{C}[\![\hbar]\!]-module which is both separated and complete. For any such module, we have

[[]]^𝖬𝖬𝖬^[[]].\mathbb{C}[\![\hbar]\!]\,\widehat{\otimes}\,\mathsf{M}\cong\mathsf{M}\cong\mathsf{M}\,\widehat{\otimes}\,\mathbb{C}[\![\hbar]\!].

Similarly, by a topological algebra 𝖠\mathsf{A} over [[]]\mathbb{C}[\![\hbar]\!] we shall always mean that 𝖠\mathsf{A} is a [[]]\mathbb{C}[\![\hbar]\!]-algebra which is both separated and complete as a module over [[]]\mathbb{C}[\![\hbar]\!]. In particular, the multiplication mm can be viewed as a [[]]\mathbb{C}[\![\hbar]\!]-linear map

m:𝖠^𝖠𝖠.m:\mathsf{A}\,{\widehat{\otimes}}\,\mathsf{A}\to\mathsf{A}.

A topological Hopf algebra 𝖧\mathsf{H} over [[]]\mathbb{C}[\![\hbar]\!] is a topological [[]]\mathbb{C}[\![\hbar]\!]-algebra equipped with a counit ε:𝖧[[]]\varepsilon:\mathsf{H}\to\mathbb{C}[\![\hbar]\!], a coproduct Δ:𝖧𝖧^𝖧\Delta:\mathsf{H}\to\mathsf{H}\,\widehat{\otimes}\,\mathsf{H} and an antipode S:𝖧𝖧S:\mathsf{H}\to\mathsf{H} which collectively satisfy the axioms of a Hopf algebra with all tensor products given by the topological tensor product ^\widehat{\otimes}. By modifying these definitions in the expected way, one obtains the notion of a topological coalgebra and bialgebra over [[]]\mathbb{C}[\![\hbar]\!].

If 𝖬\mathsf{M} and 𝖭\mathsf{N} are topological [[]]\mathbb{C}[\![\hbar]\!]-modules and 𝖭𝖶[[]]\mathsf{N}\cong\mathsf{W}[\![\hbar]\!] is topologically free, then the space of [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms Hom[[]](𝖬,𝖭)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\mathsf{M},\mathsf{N}) is separated, complete and torsion free. If in addition 𝖬\mathsf{M} is topologically free with 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!], then one has

Hom[[]](𝖬,𝖭)Hom(𝖵,𝖶)[[]].\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\mathsf{M},\mathsf{N})\cong\mathrm{Hom}_{\mathbb{C}}(\mathsf{V},\mathsf{W})[\![\hbar]\!].

In particular, the [[]]\mathbb{C}[\![\hbar]\!]-linear dual 𝖬:=Hom[[]](𝖬,[[]])\mathsf{M}^{\ast}:=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\mathsf{M},\mathbb{C}[\![\hbar]\!]) of a topologically free [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] satisfies 𝖬𝖵[[]]\mathsf{M}^{\ast}\cong\mathsf{V}^{\ast}[\![\hbar]\!].

2.2. Graded topological modules

Let us now turn towards the \mathbb{Z}-graded analogues of the above definitions. Henceforth, we view []=kk\mathbb{C}[\hbar]=\bigoplus_{k\in\mathbb{N}}\mathbb{C}\hbar^{k} as an \mathbb{N}-graded ring. For brevity, we shall denote its \mathbb{N}-graded quotient []/n[]\mathbb{C}[\hbar]/\hbar^{n}\mathbb{C}[\hbar] by 𝖪n\mathsf{K}_{n}, for each nn\in\mathbb{N}.

Definition 2.2.

We say that a topological [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬\mathsf{M} is \mathbb{Z}-graded if, for each nn\in\mathbb{N}, 𝖬/n𝖬=k(𝖬/n𝖬)k\mathsf{M}/\hbar^{n}\mathsf{M}=\bigoplus_{k\in\mathbb{Z}}(\mathsf{M}/\hbar^{n}\mathsf{M})_{k} is a \mathbb{Z}-graded 𝖪n\mathsf{K}_{n}-module and the natural homomorphism

𝖬/n+1𝖬𝖬/n𝖬\mathsf{M}/\hbar^{n+1}\mathsf{M}\to\mathsf{M}/\hbar^{n}\mathsf{M}

is \mathbb{Z}-graded. If (𝖬/n𝖬)k(\mathsf{M}/\hbar^{n}\mathsf{M})_{k} is trivial for k<0k<0, we say that 𝖬\mathsf{M} is \mathbb{N}-graded.

A [[]]\mathbb{C}[\![\hbar]\!]-module homomorphism 𝖬𝖭\mathsf{M}\to\mathsf{N} between \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules 𝖬\mathsf{M} and 𝖭\mathsf{N} is said to be \mathbb{Z}-graded if the induced morphisms

𝖬/n𝖬𝖭/n𝖭\mathsf{M}/\hbar^{n}\mathsf{M}\to\mathsf{N}/\hbar^{n}\mathsf{N}

are all \mathbb{Z}-graded. More generally, it is \mathbb{Z}-graded of degree aa\in\mathbb{Z} if each of these induced morphisms is homogeneous of degree aa.

The category of \mathbb{Z}-graded topological modules is closed under the tensor product ^\widehat{\otimes}. Indeed, this follows from the elementary observation that, given two [[]]\mathbb{C}[\![\hbar]\!]-modules 𝖬\mathsf{M} and 𝖭\mathsf{N}, one has

(𝖬^𝖭)/n(𝖬^𝖭)(𝖬[[]]𝖭)/n(𝖬[[]]𝖭)𝖬/n𝖬𝖪n𝖭/n𝖭,(\mathsf{M}\,\widehat{\otimes}\,\mathsf{N})/\hbar^{n}(\mathsf{M}\,\widehat{\otimes}\,\mathsf{N})\cong(\mathsf{M}\otimes_{\mathbb{C}[\![\hbar]\!]}\mathsf{N})/\hbar^{n}(\mathsf{M}\otimes_{\mathbb{C}[\![\hbar]\!]}\mathsf{N})\cong\mathsf{M}/\hbar^{n}\mathsf{M}\otimes_{\mathsf{K}_{n}}\mathsf{N}/\hbar^{n}\mathsf{N},

which can be equipped with the standard tensor product grading, provided 𝖬/n𝖬\mathsf{M}/\hbar^{n}\mathsf{M} and 𝖭/n𝖭\mathsf{N}/\hbar^{n}\mathsf{N} are both \mathbb{Z}-graded.

Definition 2.3.

A topological algebra 𝖠\mathsf{A} is said to be \mathbb{Z}-graded if it is graded as a topological [[]]\mathbb{C}[\![\hbar]\!]-module and the multiplication map

m:𝖠^𝖠𝖠m:\mathsf{A}\,\widehat{\otimes}\,\mathsf{A}\to\mathsf{A}

is a \mathbb{Z}-graded homomorphism. Similarly, a topological Hopf algebra 𝖧\mathsf{H} is \mathbb{Z}-graded if it is \mathbb{Z}-graded as a topological algebra and the structure maps

Δ:𝖧𝖧^𝖧,ε:𝖧[[]],S:𝖧𝖧\Delta:\mathsf{H}\to\mathsf{H}\,\widehat{\otimes}\,\mathsf{H},\quad\varepsilon:\mathsf{H}\to\mathbb{C}[\![\hbar]\!],\quad S:\mathsf{H}\to\mathsf{H}

are all \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms. Equivalently, a topological algebra or Hopf algebra 𝖧\mathsf{H} is \mathbb{Z}-graded if the conditions of Definition 2.2 hold and each 𝖧/n𝖧\mathsf{H}/\hbar^{n}\mathsf{H} is a \mathbb{Z}-graded algebra or Hopf algebra over 𝖪n\mathsf{K}_{n}, respectively.

Of course, one also has the notion of a \mathbb{Z}-graded topological coalgebra and bialgebra, which are defined by making the obvious modifications to the above definition.

The prototypical example of a \mathbb{Z}-graded topological module over [[]]\mathbb{C}[\![\hbar]\!] is 𝖬=𝖵[[]]\mathsf{M}=\mathsf{V}[\![\hbar]\!] where 𝖵=k𝖵k\mathsf{V}=\bigoplus_{k\in\mathbb{Z}}\mathsf{V}_{k} is a \mathbb{Z}-graded complex vector space. In this case one has

𝖬/n𝖬𝖵[]/n𝖵[]\mathsf{M}/\hbar^{n}\mathsf{M}\cong\mathsf{V}[\hbar]/\hbar^{n}\mathsf{V}[\hbar]

which is naturally graded, as 𝖵[]\mathsf{V}[\hbar] is graded with 𝖵[]k=n0n𝖵kn\mathsf{V}[\hbar]_{k}=\bigoplus_{n\geq 0}\hbar^{n}\mathsf{V}_{k-n}, and n𝖵[]\hbar^{n}\mathsf{V}[\hbar] is a graded submodule. The assertion that 𝖬\mathsf{M} is \mathbb{Z}-graded may be recaptured as follows. For each kk\in\mathbb{Z}, set

𝖬k:=limn𝖵[]k/n𝖵[]knnn𝖵kn𝖵[[]].\mathsf{M}_{k}:=\varprojlim_{n}\mathsf{V}[\hbar]_{k}/\hbar^{n}\mathsf{V}[\hbar]_{k-n}\cong\prod_{n\in\mathbb{N}}\hbar^{n}\mathsf{V}_{k-n}\subset\mathsf{V}[\![\hbar]\!].

Then each 𝖬k\mathsf{M}_{k} is a closed subspace of 𝖬\mathsf{M} satisfying 𝖬k/n𝖬kn(𝖬/n𝖬)k\mathsf{M}_{k}/\hbar^{n}\mathsf{M}_{k-n}\cong(\mathsf{M}/\hbar^{n}\mathsf{M})_{k}, and 𝖬\mathsf{M} contains the \mathbb{Z}-graded []\mathbb{C}[\hbar]-module k𝖬k\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k} as a dense []\mathbb{C}[\hbar]-submodule. Moreover, the \hbar-adic topology on this submodule coincides with the subspace topology, so 𝖬\mathsf{M} is the \hbar-adic completion of k𝖬k\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k}. If in addition 𝖵\mathsf{V} is \mathbb{N}-graded, then k𝖬k\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k} coincides with the polynomial space 𝖵[]𝖵[[]]\mathsf{V}[\hbar]\subset\mathsf{V}[\![\hbar]\!].

The below lemma provides an equivalent characterization of the definition of a \mathbb{Z}-graded topological module and algebra which generalizes this picture.

Lemma 2.4.

A topological [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬\mathsf{M} is \mathbb{Z}-graded if and only if it admits a dense, \mathbb{Z}-graded []\mathbb{C}[\hbar]-submodule

𝖬=k𝖬k𝖬\mathsf{M}_{\mathbb{Z}}=\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k}\subset\mathsf{M}

with each 𝖬k\mathsf{M}_{k} a closed subspace of 𝖬\mathsf{M} and n𝖬𝖬=n𝖬\hbar^{n}\mathsf{M}\cap\mathsf{M}_{\mathbb{Z}}=\hbar^{n}\mathsf{M}_{\mathbb{Z}} for all nn\in\mathbb{N}.

If in addition 𝖬\mathsf{M} has the structure of a topological algebra, then it is \mathbb{Z}-graded if and only if the above conditions hold and 𝖬\mathsf{M}_{\mathbb{Z}} is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-subalgebra of 𝖬\mathsf{M}.

{comment}
Proof.

We will prove the topological algebra variant of the lemma. Suppose the conditions of the lemma hold. Then, we have

𝖠/n𝖠=𝖠/(n𝖠𝖠)𝖠/n𝖠\mathsf{A}_{\mathbb{Z}}/\hbar^{n}\mathsf{A}_{\mathbb{Z}}=\mathsf{A}_{\mathbb{Z}}/(\hbar^{n}\mathsf{A}\cap\mathsf{A}_{\mathbb{Z}})\cong\mathsf{A}/\hbar^{n}\mathsf{A}

where the second equality follows from the fact that 𝖠\mathsf{A}_{\mathbb{Z}} is dense in 𝖠\mathsf{A}, which yields that the natural inclusion 𝖠/(n𝖠𝖠)𝖠/n𝖠\mathsf{A}_{\mathbb{Z}}/(\hbar^{n}\mathsf{A}\cap\mathsf{A}_{\mathbb{Z}})\subset\mathsf{A}/\hbar^{n}\mathsf{A} is an equality. Since n𝖠\hbar^{n}\mathsf{A}_{\mathbb{Z}} is a graded submodule of 𝖠\mathsf{A}_{\mathbb{Z}}, this shows that 𝖠/n𝖠\mathsf{A}/\hbar^{n}\mathsf{A} is graded, and thus that 𝖠\mathsf{A} is graded in the sense of Definition 2.3.

Conversely, suppose that 𝖠\mathsf{A} is \mathbb{Z}-graded in the sense of Definition 2.3. Then, for each kk\in\mathbb{Z}, we may introduce 𝖠k𝖠\mathsf{A}_{k}\subset\mathsf{A} by

𝖠k:=limn(𝖠/n𝖠)klimn𝖠/n𝖠=𝖠,\mathsf{A}_{k}:=\varprojlim_{n}(\mathsf{A}/\hbar^{n}\mathsf{A})_{k}\subset\varprojlim_{n}\mathsf{A}/\hbar^{n}\mathsf{A}=\mathsf{A},

where here we have used that 𝖠\mathsf{A} is separated and complete. As the product on the inverse limit limn𝖠/n𝖠n𝖠/n𝖠\varprojlim_{n}\mathsf{A}/\hbar^{n}\mathsf{A}\subset\prod_{n}\mathsf{A}/\hbar^{n}\mathsf{A} is componentwise, one has 𝖠k𝖠𝖠k+\mathsf{A}_{k}\cdot\mathsf{A}_{\ell}\subset\mathsf{A}_{k+\ell} for all k,k,\ell\in\mathbb{Z}. As 𝖠1\hbar\in\mathsf{A}_{1}, it follows that 𝖠:=k𝖠k\mathsf{A}_{\mathbb{Z}}:=\sum_{k\in\mathbb{Z}}\mathsf{A}_{k} is a []\mathbb{C}[\hbar]-subalgebra of 𝖠\mathsf{A}, which will be graded provided the sum is direct. To this end note that, since the homomorphisms 𝗊n\mathsf{q}_{n} are graded, the \mathbb{C}-linear projections πn,k:𝖠/n𝖠(𝖠/n𝖠)k\pi_{n,k}:\mathsf{A}/\hbar^{n}\mathsf{A}\to(\mathsf{A}/\hbar^{n}\mathsf{A})_{k} give rise to a linear projection

πk:=limnπn,k:𝖠𝖠kk.\pi_{k}:=\varprojlim_{n}\pi_{n,k}:\mathsf{A}\to\mathsf{A}_{k}\quad\forall\;k\in\mathbb{Z}.

The existence of these maps implies that k𝖠k=k𝖠k\sum_{k\in\mathbb{Z}}\mathsf{A}_{k}=\bigoplus_{k\in\mathbb{Z}}\mathsf{A}_{k}.

Let us now see that the remaining conditions of the lemma are satisfied. First note that, for each kk\in\mathbb{Z}, we have

𝖠k/n𝖠kn(𝖠/n𝖠)kn.\mathsf{A}_{k}/\hbar^{n}\mathsf{A}_{k-n}\cong(\mathsf{A}/\hbar^{n}\mathsf{A})_{k}\quad\forall\;n\in\mathbb{N}.

Indeed, consider the natural projection of 𝗉n:𝖠kn(𝖠/n𝖠)k\mathsf{p}_{n}:\mathsf{A}_{k}\subset\prod_{n}(\mathsf{A}/\hbar^{n}\mathsf{A})_{k} onto its nn-th component (𝖠/n𝖠)k(\mathsf{A}/\hbar^{n}\mathsf{A})_{k}. The kernel of this projection contains n𝖠kn\hbar^{n}\mathsf{A}_{k-n}. On the other hand, any x𝖠kx\in\mathsf{A}_{k} can be represented as a sequence x=([ym])mx=([y_{m}])_{m\in\mathbb{N}}, where [ym](𝖠/m𝖠)k[y_{m}]\in(\mathsf{A}/\hbar^{m}\mathsf{A})_{k} and 𝗊a,b([ya])=[yb]\mathsf{q}_{a,b}([y_{a}])=[y_{b}] for all a>ba>b, where 𝗊a,b:𝖠/a𝖠𝖠/b𝖠\mathsf{q}_{a,b}:\mathsf{A}/\hbar^{a}\mathsf{A}\to\mathsf{A}/\hbar^{b}\mathsf{A} is the composite 𝗊b+1𝗊a1𝗊a\mathsf{q}_{b+1}\circ\cdots\circ\mathsf{q}_{a-1}\circ\mathsf{q}_{a}, with 𝗊n:𝖠/n𝖠/n1𝖠\mathsf{q}_{n}:\mathsf{A}/\hbar^{n}\to\mathsf{A}/\hbar^{n-1}\mathsf{A} the natural homomorphism. Therefore, if xKer(𝗉n)x\in\mathrm{Ker}(\mathsf{p}_{n}), then we have [ym]=0[y_{m}]=0 for all mnm\leq n, and

[ym](𝖠/m𝖠)kn(𝖠/m𝖠)m>n.[y_{m}]\in(\mathsf{A}/\hbar^{m}\mathsf{A})_{k}\cap\hbar^{n}(\mathsf{A}/\hbar^{m}\mathsf{A})\quad\forall\;m>n.

Therefore, [ym]n(𝖠/m𝖠)kn[y_{m}]\in\hbar^{n}(\mathsf{A}/\hbar^{m}\mathsf{A})_{k-n} for all mm\in\mathbb{N}, and so xn𝖠knx\in\hbar^{n}\mathsf{A}_{k-n}. This shows that 𝗉n\mathsf{p}_{n} has kernel n𝖠kn\hbar^{n}\mathsf{A}_{k-n} and so induces the claimed isomorphism.

As a consequence of this observation, we have

𝖠/n𝖠k𝖠k/n𝖠knk(𝖠/n𝖠)k=𝖠/n𝖠.\mathsf{A}_{\mathbb{Z}}/\hbar^{n}\mathsf{A}_{\mathbb{Z}}\cong\bigoplus_{k\in\mathbb{Z}}\mathsf{A}_{k}/\hbar^{n}\mathsf{A}_{k-n}\cong\bigoplus_{k\in\mathbb{Z}}(\mathsf{A}/\hbar^{n}\mathsf{A})_{k}=\mathsf{A}/\hbar^{n}\mathsf{A}.

This implies that 𝖠\mathsf{A}_{\mathbb{Z}} is dense in 𝖠\mathsf{A} with n𝖠𝖠=n𝖠\hbar^{n}\mathsf{A}\cap\mathsf{A}_{\mathbb{Z}}=\hbar^{n}\mathsf{A}_{\mathbb{Z}} for all nn\in\mathbb{N}. Finally, since n𝖠𝖠k=n𝖠kn\hbar^{n}\mathsf{A}\cap\mathsf{A}_{k}=\hbar^{n}\mathsf{A}_{k-n} and 𝖠k/n𝖠kn(𝖠/n𝖠)k\mathsf{A}_{k}/\hbar^{n}\mathsf{A}_{k-n}\cong(\mathsf{A}/\hbar^{n}\mathsf{A})_{k}, the definition of 𝖠k\mathsf{A}_{k} guarantees that it is a closed subspace of 𝖠\mathsf{A}.

In complete detail, suppose that xx is a limit point of 𝖠k\mathsf{A}_{k}. That is, there is a sequence (sn)n(s_{n})_{n\in\mathbb{N}} of elements in 𝖠k\mathsf{A}_{k} such that xsnn𝖠x-s_{n}\in\hbar^{n}\mathsf{A} for all nn\in\mathbb{N}. Apply πk\pi_{k} to get πk(x)snn𝖠kn\pi_{k}(x)-s_{n}\in\hbar^{n}\mathsf{A}_{k-n}, from which it follows easily that (sn)n(s_{n})_{n\in\mathbb{N}} is a Cauchy sequence in 𝖠k\mathsf{A}_{k}, and so converges to some s𝖠ks\in\mathsf{A}_{k}. As πk(x)\pi_{k}(x) and ss are both limits of the same sequence and 𝖠\mathsf{A} is separated, we get πk(x)=s𝖠k\pi_{k}(x)=s\in\mathsf{A}_{k}. If mkm\neq k, we instead get πm(x)n𝖠mn\pi_{m}(x)\in\hbar^{n}\mathsf{A}_{m-n} for all nn, which yields πm(x)=0\pi_{m}(x)=0. ∎

If 𝖬\mathsf{M} is a \mathbb{Z}-graded topological module then the kk-th component 𝖬k\mathsf{M}_{k} of 𝖬\mathsf{M}_{\mathbb{Z}} from Lemma 2.4 is uniquely determined and recovered as the inverse limit

(2.1) 𝖬k:=limn(𝖬/n𝖬)klimn𝖬/n𝖬=𝖬.\mathsf{M}_{k}:=\varprojlim_{n}(\mathsf{M}/\hbar^{n}\mathsf{M})_{k}\subset\varprojlim_{n}\mathsf{M}/\hbar^{n}\mathsf{M}=\mathsf{M}.

Moreover, one has (𝖬/n𝖬)k𝖬k/n𝖬kn(\mathsf{M}/\hbar^{n}\mathsf{M})_{k}\cong\mathsf{M}_{k}/\hbar^{n}\mathsf{M}_{k-n} for all nn\in\mathbb{N} and kk\in\mathbb{Z}.

We further observe that, for each kk\in\mathbb{Z}, the system of linear projections πn,k:𝖬/n𝖬(𝖬/n𝖬)k\pi_{n,k}:\mathsf{M}/\hbar^{n}\mathsf{M}\to(\mathsf{M}/\hbar^{n}\mathsf{M})_{k} gives rise to a projection

πk:=limnπn,k:𝖬𝖬k\pi_{k}:=\varprojlim_{n}\pi_{n,k}:\mathsf{M}\to\mathsf{M}_{k}

which restricts to the projection of 𝖬\mathsf{M}_{\mathbb{Z}} onto its kk-th homogeneous component. In particular, a [[]]\mathbb{C}[\![\hbar]\!]-linear map τ:𝖬𝖭\uptau:\mathsf{M}\to\mathsf{N} between \mathbb{Z}-graded topological modules is graded if and only if πk𝖭τ=τπk𝖬\pi_{k}^{\mathsf{N}}\circ\uptau=\uptau\circ\pi_{k}^{\mathsf{M}} for each kk\in\mathbb{Z}.

We conclude this preliminary subsection with two corollaries of the above discussion. The first shows that any topologically free \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-module is of the form described above Lemma 2.4.

Corollary 2.5.

Suppose 𝖬\mathsf{M} is a \mathbb{Z}-graded topologically free module over [[]]\mathbb{C}[\![\hbar]\!], and let 𝖵\mathsf{V} denote the \mathbb{Z}-graded complex vector space 𝖬/𝖬=k𝖬k/𝖬k1\mathsf{M}/\hbar\mathsf{M}=\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k}/\hbar\mathsf{M}_{k-1}. Then

𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!]

as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module. In particular, one has

𝖬=k𝖬kk𝖵[[]]k𝖵[[]], where 𝖵[[]]k=nn𝖵kn\mathsf{M}_{\mathbb{Z}}=\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k}\cong\bigoplus_{k\in\mathbb{Z}}\mathsf{V}[\![\hbar]\!]_{k}\subset\mathsf{V}[\![\hbar]\!],\quad\text{ where }\;\mathsf{V}[\![\hbar]\!]_{k}=\prod_{n\in\mathbb{N}}\hbar^{n}\mathsf{V}_{k-n}
Proof.

This is a refinement of the elementary result, alluded to at the beginning of the section, that 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] as a [[]]\mathbb{C}[\![\hbar]\!]-module; see [KasBook95]*Prop. XVI.2.4, for instance. In more detail, an isomorphism of \mathbb{Z}-graded topological modules 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] is specified by choosing, for each kk\in\mathbb{Z}, a complement 𝖵k𝖬k\mathsf{V}_{k}\subset\mathsf{M}_{k} to 𝖬k1\hbar\mathsf{M}_{k-1} in 𝖬k\mathsf{M}_{k}:

𝖬k=𝖵k𝖬k1.\mathsf{M}_{k}=\mathsf{V}_{k}\oplus\hbar\mathsf{M}_{k-1}.

Setting 𝖵:=k𝖵k𝖬\mathsf{V}:=\bigoplus_{k\in\mathbb{Z}}\mathsf{V}_{k}\subset\mathsf{M}_{\mathbb{Z}}, we then have

𝖵𝖬/𝖬=𝖬/𝖬\displaystyle\mathsf{V}\cong\mathsf{M}_{\mathbb{Z}}/\hbar\mathsf{M}_{\mathbb{Z}}=\mathsf{M}/\hbar\mathsf{M}
𝖬k/n𝖬kn𝖵k𝖵k1n1𝖵kn+1𝖵[]k/n𝖵[]kn\displaystyle\mathsf{M}_{k}/\hbar^{n}\mathsf{M}_{k-n}\cong\mathsf{V}_{k}\oplus\hbar\mathsf{V}_{k-1}\oplus\cdots\oplus\hbar^{n-1}\mathsf{V}_{k-n+1}\cong\mathsf{V}[\hbar]_{k}/\hbar^{n}\mathsf{V}[\hbar]_{k-n}
𝖬/n𝖬k𝖬k/n𝖬knk𝖵[]k/n𝖵[]kn=𝖵[[]]/n𝖵[[]]\displaystyle\mathsf{M}/\hbar^{n}\mathsf{M}\cong\bigoplus_{k\in\mathbb{Z}}\mathsf{M}_{k}/\hbar^{n}\mathsf{M}_{k-n}\cong\bigoplus_{k\in\mathbb{Z}}\mathsf{V}[\hbar]_{k}/\hbar^{n}\mathsf{V}[\hbar]_{k-n}=\mathsf{V}[\![\hbar]\!]/\hbar^{n}\mathsf{V}[\![\hbar]\!]

where the third line is an identification of \mathbb{Z}-graded modules. Here we note that the second line follows from the definition of 𝖵k\mathsf{V}_{k} and that 𝖬\mathsf{M} is a torsion free [[]]\mathbb{C}[\![\hbar]\!]-module. Taking inverse limits, one finds that 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] as \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules. ∎

Let us now shift our attention to the case where 𝖬˙=k𝖬˙k\dot{\mathsf{M}}=\bigoplus_{k\in\mathbb{N}}\dot{\mathsf{M}}_{k} is an \mathbb{N}-graded []\mathbb{C}[\hbar]-module. Any such module is automatically separated, and so embeds into its \hbar-adic completion

𝖬=limn(𝖬˙/n𝖬˙),\mathsf{M}=\varprojlim_{n}(\dot{\mathsf{M}}/\hbar^{n}\dot{\mathsf{M}}),

which is an \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module. Moreover, if 𝖬˙\dot{\mathsf{M}} is a torsion free []\mathbb{C}[\hbar]-module, then 𝖬\mathsf{M} is topologically free as a [[]]\mathbb{C}[\![\hbar]\!]-module. Since 𝖬˙kn\dot{\mathsf{M}}_{k-n} is trivial for n>kn>k, the submodule 𝖬k\mathsf{M}_{k} of 𝖬\mathsf{M} (see (2.1)) coincides with 𝖬˙k\dot{\mathsf{M}}_{k} and so, in the notation of Lemma 2.4, one has 𝖬˙=𝖬\dot{\mathsf{M}}=\mathsf{M}_{\mathbb{N}}. These observations, coupled with Corollary 2.5 and that 𝖵[[]]k=𝖵[]k\mathsf{V}[\![\hbar]\!]_{k}=\mathsf{V}[\hbar]_{k} when 𝖵\mathsf{V} is \mathbb{N}-graded, yield the following.

Corollary 2.6.

Let 𝖬˙\dot{\mathsf{M}} be an \mathbb{N}-graded, torsion free []\mathbb{C}[\hbar]-module. Then 𝖬\mathsf{M} is a topologically free \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-module. Moreover, we have

𝖬˙k=limn(𝖬˙k/n𝖬˙kn)=𝖬k for all k.\dot{\mathsf{M}}_{k}=\varprojlim_{n}(\dot{\mathsf{M}}_{k}/\hbar^{n}\dot{\mathsf{M}}_{k-n})=\mathsf{M}_{k}\quad\text{ for all }\;k\in\mathbb{N}.

Consequently, 𝖬˙\dot{\mathsf{M}} coincides with 𝖬\mathsf{M}_{\mathbb{N}} and there is an isomorphism of \mathbb{N}-graded []\mathbb{C}[\hbar]-modules

𝖬˙𝖵[]=k𝖵[]k, where 𝖵:=𝖬˙/𝖬˙.\dot{\mathsf{M}}\cong\mathsf{V}[\hbar]=\bigoplus_{k\in\mathbb{N}}\mathsf{V}[\hbar]_{k},\quad\text{ where }\;\mathsf{V}:=\dot{\mathsf{M}}/\hbar\dot{\mathsf{M}}.

Note that if 𝖬˙\dot{\mathsf{M}} is a \mathbb{N}-graded []\mathbb{C}[\hbar]-algebra or Hopf algebra, then 𝖬\mathsf{M} is automatically an \mathbb{N}-graded topological algebra or Hopf algebra, respectively.

2.3. The restricted dual

For a given \mathbb{Z}-graded complex vector space 𝖵=n𝖵n\mathsf{V}=\bigoplus_{n}\mathsf{V}_{n}, we let 𝖵=n(𝖵)n𝖵\mathsf{V}^{\star}=\bigoplus_{n}(\mathsf{V}^{\star})_{n}\subset\mathsf{V}^{\ast} denote the restricted, or graded, dual of 𝖵\mathsf{V}, where

(𝖵)n={f𝖵:f(𝖵m)m+n}(𝖵n)(\mathsf{V}^{\star})_{n}=\{f\in\mathsf{V}^{\ast}:f(\mathsf{V}_{m})\subset\mathbb{C}_{m+n}\}\cong(\mathsf{V}_{-n})^{\ast}

and \mathbb{C} is given the trivial grading with 0=\mathbb{C}_{0}=\mathbb{C} and m={0}\mathbb{C}_{m}=\{0\} for m0m\neq 0. One can similarly define the restricted dual 𝖬𝖬\mathsf{M}^{\star}\subset\mathsf{M}^{\ast} in the category of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules. In this subsection we will recall some properties of this duality operation in the \mathbb{N}-graded setting which will be applied to construct the dual Yangian in Section 6.

Suppose that 𝖬\mathsf{M} is an \mathbb{N}-graded, topological [[]]\mathbb{C}[\![\hbar]\!]-module with \mathbb{N}-graded []\mathbb{C}[\hbar]-submodule 𝖬=k𝖬k\mathsf{M}_{\mathbb{N}}=\bigoplus_{k\in\mathbb{N}}\mathsf{M}_{k} as in Lemma 2.4. For each nn\in\mathbb{N}, let 𝖩k\mathsf{J}_{k} denote the \hbar-adic completion of the ideal kn𝖬k\bigoplus_{k\geq n}\mathsf{M}_{k} of 𝖬\mathsf{M}_{\mathbb{N}}. The gradation topology on 𝖬\mathsf{M} is the topology associated to the descending filtration

𝖬=𝖩0𝖩1𝖩n\mathsf{M}=\mathsf{J}_{0}\supset\mathsf{J}_{1}\supset\cdots\supset\mathsf{J}_{n}\supset\cdots

Equipped with this terminology, we may make the following definition.

Definition 2.7.

The restricted dual 𝖬\mathsf{M}^{\star} is defined to be the [[]]\mathbb{C}[\![\hbar]\!]-submodule of 𝖬\mathsf{M}^{\ast} consisting of those ff which are continuous with respect to the gradation topology:

𝖬:={f𝖬:f(𝖩k)n[[]]n and k0}.\mathsf{M}^{\star}:=\{f\in\mathsf{M}^{\ast}:f(\mathsf{J}_{k})\subset\hbar^{n}\mathbb{C}[\![\hbar]\!]\quad\forall\;n\in\mathbb{N}\;\text{ and }\;k\gg 0\}.

The restricted dual of any \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬\mathsf{M} is easily seen to be separated, complete and torsion free. Let us now see that is admits a \mathbb{Z}-graded structure.

For each aa\in\mathbb{Z}, let Hom[[]]a(𝖬,[[]])𝖬\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!])\subset\mathsf{M}^{\star} denote the (closed) subspace consisting of \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms f:𝖬[[]]f:\mathsf{M}\to\mathbb{C}[\![\hbar]\!] of degree aa. Equivalently:

Hom[[]]a(𝖬,[[]])={f𝖬:f(𝖬k)[]k+ak}.\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!])=\{f\in\mathsf{M}^{\ast}:f(\mathsf{M}_{k})\subset\mathbb{C}[\hbar]_{k+a}\quad\forall\;k\in\mathbb{N}\}.

Then the sum aHom[[]]a(𝖬,[[]])\sum_{a\in\mathbb{Z}}\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!]) is direct and the space

(𝖬):=aHom[[]]a(𝖬,[[]])𝖬(\mathsf{M}^{\star})_{\mathbb{Z}}:=\bigoplus_{a\in\mathbb{Z}}\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!])\subset\mathsf{M}^{\star}

is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-submodule of 𝖬\mathsf{M}^{\star}.

Remark 2.8.

Under the natural identification of 𝖬\mathsf{M}^{\ast} with Hom[](𝖬,[[]])\mathrm{Hom}_{\mathbb{C}[\hbar]}(\mathsf{M}_{\mathbb{N}},\mathbb{C}[\![\hbar]\!]) one has Hom[[]]a(𝖬,[[]])Hom[]a(𝖬,[])\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!])\cong\mathrm{Hom}_{\mathbb{C}[\hbar]}^{a}(\mathsf{M}_{\mathbb{N}},\mathbb{C}[\hbar]) and (𝖬)(\mathsf{M}^{\star})_{\mathbb{Z}} coincides with the graded dual (𝖬)Hom[](𝖬,[])(\mathsf{M}_{\mathbb{N}})^{\star}\subset\mathrm{Hom}_{\mathbb{C}[\hbar]}(\mathsf{M}_{\mathbb{N}},\mathbb{C}[\hbar]) of 𝖬\mathsf{M}_{\mathbb{N}} taken in the category of \mathbb{Z}-graded []\mathbb{C}[\hbar]-modules.

It is not difficult to prove that, for each nn\in\mathbb{N}, one has

n𝖬(𝖬)=n(𝖬) and (𝖬)/n(𝖬)𝖬/n𝖬.\hbar^{n}\mathsf{M}^{\star}\cap(\mathsf{M}^{\star})_{\mathbb{Z}}=\hbar^{n}(\mathsf{M}^{\star})_{\mathbb{Z}}\quad\text{ and }\quad(\mathsf{M}^{\star})_{\mathbb{Z}}/\hbar^{n}(\mathsf{M}^{\star})_{\mathbb{Z}}\cong\mathsf{M}^{\star}/\hbar^{n}\mathsf{M}^{\star}.

Consequently, 𝖬\mathsf{M}^{\star} coincides with the \hbar-adic completion of (𝖬)(\mathsf{M}^{\star})_{\mathbb{Z}} and, by Lemma 2.4, is a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module. We note that, although Definition 2.7 is strictly for an \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-module 𝖬\mathsf{M}, one can define the restricted dual in the \mathbb{Z}-graded setting precisely as the \hbar-adic completion of the space (𝖬)(\mathsf{M}^{\star})_{\mathbb{Z}}.

If 𝖬\mathsf{M} is itself topologically free with 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] for a graded vector space 𝖵=k𝖵n\mathsf{V}=\bigoplus_{k\in\mathbb{N}}\mathsf{V}_{n}, then the natural homomorphism 𝖬/𝖬𝖵\mathsf{M}^{\star}/\hbar\mathsf{M}^{\star}\to\mathsf{V}^{\star} is an isomorphism of graded vector spaces. As 𝖬\mathsf{M}^{\star} is topologically free, Corollary 2.5 yields the following.

Corollary 2.9.

Suppose that 𝖬\mathsf{M} is a topologically free \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-module with 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] for a graded vector space 𝖵=k𝖵k\mathsf{V}=\bigoplus_{k\in\mathbb{N}}\mathsf{V}_{k}. Then 𝖬\mathsf{M}^{\star} is isomorphic to 𝖵[[]]\mathsf{V}^{\star}[\![\hbar]\!] as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module.

We shall say that a topologically free \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-module is of finite type if the graded components 𝖵k\mathsf{V}_{k} of 𝖵𝖬/𝖬\mathsf{V}\cong\mathsf{M}/\hbar\mathsf{M} from the above corollary are all finite-dimensional complex vector spaces.

Now suppose that 𝖧\mathsf{H} is an \mathbb{N}-graded topological Hopf algebra with coproduct Δ\Delta, counit ε\varepsilon, antipode SS, product mm and unit ι\iota. Since these are all \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms and [[]][[]]\mathbb{C}[\![\hbar]\!]^{\star}\cong\mathbb{C}[\![\hbar]\!], taking transposes yields \mathbb{Z}-graded maps

Δt:(𝖧^𝖧)𝖧,εt:[[]]𝖧,St:𝖧𝖧\displaystyle\Delta^{t}:(\mathsf{H}\,\widehat{\otimes}\,\mathsf{H})^{\star}\to\mathsf{H}^{\star},\quad\varepsilon^{t}:\mathbb{C}[\![\hbar]\!]\to\mathsf{H}^{\star},\quad S^{t}:\mathsf{H}^{\star}\to\mathsf{H}^{\star}
mt:𝖧(𝖧^𝖧),ιt:𝖧[[]]\displaystyle m^{t}:\mathsf{H}^{\star}\to(\mathsf{H}\,\widehat{\otimes}\,\mathsf{H})^{\star},\quad\iota^{t}:\mathsf{H}^{\star}\to\mathbb{C}[\![\hbar]\!]

which formally satisfy the axioms of a Hopf algebra. In particular, 𝖧\mathsf{H}^{\star} is a topological [[]]\mathbb{C}[\![\hbar]\!]-algebra with unit εt\varepsilon^{t} and product given by restricting Δt\Delta^{t}. It is not in general a topological coalgebra (or Hopf algebra) as mtm^{t} does not necessarily have image in 𝖧^𝖧\mathsf{H}^{\star}\,\widehat{\otimes}\,\mathsf{H}^{\star}. However, this is the case when 𝖧\mathsf{H} is of finite type, as we now explain.

In general, for any two \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules 𝖬\mathsf{M} and 𝖭\mathsf{N}, there is a canonical injective homomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules

γ:𝖬^𝖭(𝖬^𝖭).\upgamma:\mathsf{M}^{\star}\,\widehat{\otimes}\,\mathsf{N}^{\star}\hookrightarrow(\mathsf{M}\,\widehat{\otimes}\,\mathsf{N})^{\star}.

If 𝖬\mathsf{M} and 𝖭\mathsf{N} are topologically free with 𝖬𝖵[[]]\mathsf{M}\cong\mathsf{V}[\![\hbar]\!] and 𝖭𝖶[[]]\mathsf{N}\cong\mathsf{W}[\![\hbar]\!], then the semiclassical limit of γ\upgamma is the natural inclusion 𝖵𝖶(𝖵𝖶)\mathsf{V}^{\star}\otimes_{\mathbb{C}}\mathsf{W}^{\star}\hookrightarrow(\mathsf{V}\otimes_{\mathbb{C}}\mathsf{W})^{\star} which is an isomorphism provided the graded components of 𝖵\mathsf{V} or 𝖶\mathsf{W} are all finite-dimensional. This observation, together with Lemma 2.1, implies the following proposition.

Proposition 2.10.

Let 𝖬\mathsf{M} and 𝖭\mathsf{N} be topologically free, \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-modules and suppose that either 𝖬\mathsf{M} or 𝖭\mathsf{N} is of finite type. Then γ\upgamma is an isomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules

γ:𝖬^𝖭(𝖬^𝖭)\upgamma:\mathsf{M}^{\star}\,\widehat{\otimes}\,\mathsf{N}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}(\mathsf{M}\,\widehat{\otimes}\,\mathsf{N})^{\star}

Consequently, if 𝖧\mathsf{H} is a topologically free \mathbb{N}-graded Hopf algebra of finite type, then 𝖧\mathsf{H}^{\star} is a \mathbb{Z}-graded topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!].

Remark 2.11.

Henceforth, we shall simply write \otimes for the topological tensor product ^\widehat{\otimes}. More generally, the use of the symbol \otimes will always be clear from context and will be clarified should any ambiguity arise.

2.4. Homogeneous quantizations

Let us now recall some basic constructions from the theory of quantum groups, adapted to the graded setting.

{comment}

We note that the semiclassical limit of a topological Hopf algebra 𝖧\mathsf{H} is naturally a Hopf algebra over the complex numbers. If 𝐔\mathbf{U} is a Hopf algebra which arises in this way, then we say 𝖧\mathsf{H} a Hopf algebra deformation of 𝐔\mathbf{U} over [[]]\mathbb{C}[\![\hbar]\!]. It is a flat deformation of 𝐔\mathbf{U} if it is topologically free. The same terminology will be used for topological algebras, with the prefix “Hopf” omitted.

A topological Hopf algebra 𝖧\mathsf{H} over [[]]\mathbb{C}[\![\hbar]\!] is called a quantized enveloping algebra if it is a flat deformation of the universal enveloping algebra U(𝔟)U(\mathfrak{b}) of a complex Lie algebra 𝔟\mathfrak{b} as a Hopf algebra. Equivalently:

  • The semiclassical limit 𝖧/𝖧\mathsf{H}/\hbar\mathsf{H} of 𝖧\mathsf{H} is isomorphic to U(𝔟)U(\mathfrak{b}) as a Hopf algebra.

  • 𝖧\mathsf{H} is topologically free, and thus isomorphic to U(𝔟)[[]]U(\mathfrak{b})[\![\hbar]\!] as a [[]]\mathbb{C}[\![\hbar]\!]-module.

If 𝖧=U𝔟\mathsf{H}=U_{\hbar}\mathfrak{b} is a quantized enveloping algebra with semiclassical limit U(𝔟)U(\mathfrak{b}), then 𝔟\mathfrak{b} inherits from U𝔟U_{\hbar}\mathfrak{b} the structure of a Lie bialgebra with cocommutator δ𝔟:𝔟𝔟𝔟U(𝔟)2\delta_{\mathfrak{b}}:\mathfrak{b}\to\mathfrak{b}\wedge\mathfrak{b}\subset U(\mathfrak{b})^{\otimes 2} given by the formula

(2.2) δ𝔟(x):=Δ(x˙)Δop(x˙)modU𝔟U𝔟x𝔟,\delta_{\mathfrak{b}}(x):=\frac{\Delta(\dot{x})-{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(\dot{x})}{\hbar}\mod\hbar U_{\hbar}\mathfrak{b}\otimes U_{\hbar}\mathfrak{b}\quad\forall\;x\in\mathfrak{b},

where x˙U𝔟\dot{x}\in U_{\hbar}\mathfrak{b} is any lift of xx. We refer the reader to Propositions 6.2.3 and 6.2.7 of [CPBook] for a detailed discussion of this point.

Conversely, if (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) is a Lie bialgebra, then a quantization of (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) is a quantized enveloping algebra U𝔟U_{\hbar}\mathfrak{b} with semiclassical limit U(𝔟)U(\mathfrak{b}), such that δ𝔟\delta_{\mathfrak{b}} coincides with the cocommutator (2.2).

Now let us shift our attention to the graded setting. In what follows, we will say that a Lie bialgebra (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) is \mathbb{Z}-graded if 𝔟=k𝔟k\mathfrak{b}=\bigoplus_{k\in\mathbb{Z}}\mathfrak{b}_{k} is \mathbb{Z}-graded as a Lie algebra, and the cocommutator δ𝔟\delta_{\mathfrak{b}} is a graded linear map of degree dd, for some dd\in\mathbb{Z}. That is, δ𝔟Homd(𝔟,𝔟2)\delta_{\mathfrak{b}}\in\mathrm{Hom}_{\mathbb{C}}^{d}(\mathfrak{b},\mathfrak{b}^{\otimes 2}).

Definition 2.12.

Let 𝔟\mathfrak{b} be a \mathbb{Z}-graded complex Lie bialgebra with cocommutator δ𝔟\delta_{\mathfrak{b}}. Then a homogeneous quantization of (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) is a topological Hopf algebra U𝔟U_{\hbar}\mathfrak{b} satisfying:

  1. (1)

    U𝔟U_{\hbar}\mathfrak{b} is a quantization of (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}).

  2. (2)

    U𝔟U_{\hbar}\mathfrak{b} is \mathbb{Z}-graded as a topological Hopf algebra, and the natural inclusion

    𝔟U(𝔟)U𝔟/U𝔟\mathfrak{b}\hookrightarrow U(\mathfrak{b})\cong U_{\hbar}\mathfrak{b}/\hbar U_{\hbar}\mathfrak{b}

    is a \mathbb{Z}-graded linear map.

Note that the last condition guarantees that the grading on U(𝔟)U(\mathfrak{b}) inherited from U𝔟U_{\hbar}\mathfrak{b} coincides with that induced by the Lie algebra grading on 𝔟\mathfrak{b}. In addition, since the coproduct Δ\Delta is homogeneous of degree zero, (2.2) implies that the cocommutator δ𝔟\delta_{\mathfrak{b}} must be of degree d=1d=-1.

We shall employ similar terminology to the above in the \mathbb{N}-graded setting over []\mathbb{C}[\hbar]. Namely, if (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) is an \mathbb{N}-graded Lie bialgebra, then a homogeneous quantization of (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) over []\mathbb{C}[\hbar] is a space 𝕌𝔟\mathds{U}_{\hbar}\mathfrak{b} such that

  1. (1)

    𝕌𝔟\mathds{U}_{\hbar}\mathfrak{b} is an \mathbb{N}-graded torsion free Hopf algebra over []\mathbb{C}[\hbar].

  2. (2)

    The semiclassical limit 𝕌𝔟/𝕌𝔟\mathds{U}_{\hbar}\mathfrak{b}/\hbar\mathds{U}_{\hbar}\mathfrak{b} is isomorphic to U(𝔟)U(\mathfrak{b}) as a graded Hopf algebra, with the cocommutator δ𝔟\delta_{\mathfrak{b}} given by (2.2).

Note that, by Corollary 2.6, such a quantization 𝕌𝔟\mathds{U}_{\hbar}\mathfrak{b} is isomorphic to U(𝔟)[]U(\mathfrak{b})[\hbar] as an \mathbb{N}-graded []\mathbb{C}[\hbar]-module, and its \hbar-adic completion is a homogeneous quantization of 𝔟\mathfrak{b} over [[]]\mathbb{C}[\![\hbar]\!].

2.5. The Yangian Manin triple

The most well-known, non-trivial, example of a homogeneous quantization is the Yangian Y𝔤Y_{\hbar}\mathfrak{g} associated to an arbitrary simple Lie algebra 𝔤\mathfrak{g} over the complex numbers. In this article we shall encounter two other, closely related, examples: the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}. Collectively, these three quantum groups arise as a quantization of a restricted Manin triple structure on (𝔱,𝔱+,𝔱)(\mathfrak{t},\mathfrak{t}_{\scriptscriptstyle{+}},\mathfrak{t}_{\scriptscriptstyle{-}}), where

𝔱:=𝔤[t±1],𝔱+:=𝔤[t] and 𝔱:=t1𝔤[t1].\mathfrak{t}:=\mathfrak{g}[t^{\pm 1}],\quad\mathfrak{t}_{\scriptscriptstyle{+}}:=\mathfrak{g}[t]\quad\text{ and }\quad\mathfrak{t}_{\scriptscriptstyle{-}}:=t^{-1}\mathfrak{g}[t^{-1}].

In this section we briefly recall how this structure is defined.

The Lie algebra 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}] comes equipped with a nondegenerate, invariant bilinear form ,:𝔱𝔱\langle\,,\,\rangle:\mathfrak{t}\otimes\mathfrak{t}\to\mathbb{C} given by

(2.3) f(t),g(s):=Rest(f(t),g(t)),\langle f(t),g(s)\rangle:=-\mathrm{Res}_{t}(f(t),g(t)),

where (,)(\,,\,) is a fixed symmetric, invariant and non-degenerate bilinear form on 𝔤\mathfrak{g}, which has been extended to a [t±1]\mathbb{C}[t^{\pm 1}]-valued bilinear form on 𝔱\mathfrak{t} by [t±1]\mathbb{C}[t^{\pm 1}]-linearity. The above form is a degree 11 element of the restricted dual (𝔱𝔱)(\mathfrak{t}\otimes\mathfrak{t})^{\star}, as defined in the beginning of Section 2.3. Namely, it vanishes on

(𝔱𝔱)k=a+b=k𝔱a𝔱b(\mathfrak{t}\otimes\mathfrak{t})_{k}=\bigoplus_{a+b=k}\mathfrak{t}_{a}\otimes\mathfrak{t}_{b}

for any k1k\neq-1, and restricts to a nondegenerate pairing 𝔱a𝔱a1\mathfrak{t}_{a}\otimes\mathfrak{t}_{-a-1}\to\mathbb{C} for any aa\in\mathbb{Z}. Moreover, one has the polarization

𝔱=𝔱+𝔱 for 𝔱+=𝔤[t],𝔱=t1𝔤[t1]\mathfrak{t}=\mathfrak{t}_{\scriptscriptstyle{+}}\oplus\mathfrak{t}_{\scriptscriptstyle{-}}\quad\text{ for }\quad\mathfrak{t}_{\scriptscriptstyle{+}}=\mathfrak{g}[t],\quad\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}]

with 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} and 𝔱\mathfrak{t}_{\scriptscriptstyle{-}} isotropic, graded Lie subalgebras of 𝔱\mathfrak{t}, with gradings concentrated in non-negative and non-positive degrees, respectively. Said in fewer words, the above data gives rise to a restricted Manin triple (𝔱,𝔱+,𝔱)(\mathfrak{t},\mathfrak{t}_{\scriptscriptstyle{+}},\mathfrak{t}_{\scriptscriptstyle{-}}); see §5.2–5.3 of [Andrea-Valerio-19].

Since each homogeneous component 𝔱k\mathfrak{t}_{k} of 𝔱\mathfrak{t} is finite-dimensional, this data gives rise to dual Lie bialgebra structures on 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} and 𝔱\mathfrak{t}_{\scriptscriptstyle{-}}, obtained as follows. The residue form (2.3) yields isomorphisms of graded vector spaces

𝖱𝖾𝗌±:𝔱±𝔱\mathsf{Res}_{\pm}:\mathfrak{t}_{\scriptscriptstyle\pm}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathfrak{t}_{\scriptscriptstyle\mp}^{\star}

which are homogeneous of degree 11: 𝖱𝖾𝗌±(𝔱±,n)=(𝔱)n+1\mathsf{Res}_{\pm}(\mathfrak{t}_{{\scriptscriptstyle\pm},n})=(\mathfrak{t}^{\star}_{\scriptscriptstyle\mp})_{n+1} for all nn\in\mathbb{Z}. Dualizing Lie brackets then gives rise to honest, degree 1-1, Lie bialgebra cobrackets

δ±=[,]𝔱t:𝔱±𝔱±𝔱±.\delta_{\scriptscriptstyle\pm}=[,]_{\mathfrak{t}_{\mp}}^{t}:\mathfrak{t}_{\scriptscriptstyle\pm}\to\mathfrak{t}_{\scriptscriptstyle\pm}\wedge\mathfrak{t}_{\scriptscriptstyle\pm}.

Since the Casimir tensor Ω𝔤(𝔤𝔤)𝔤\Omega_{\mathfrak{g}}\in(\mathfrak{g}\otimes\mathfrak{g})^{\mathfrak{g}} satisfies

([x1,Ω𝔤],yz)𝔤𝔤=(x,[y,z])x,y,z𝔤,([x\otimes 1,\Omega_{\mathfrak{g}}],y\otimes z)_{\mathfrak{g}\otimes\mathfrak{g}}=-(x,[y,z])\quad\forall\;x,y,z\in\mathfrak{g},

where (,)𝔤𝔤=(,)(,)(2 3):𝔤𝔤𝔤𝔤(,)_{\mathfrak{g}\otimes\mathfrak{g}}=(,)\otimes(,)\circ(2\,3):\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\otimes\mathfrak{g}\to\mathbb{C}. It follows readily from this observation and the definition of 𝖱𝖾𝗌±\mathsf{Res}_{\pm} that δ+\delta_{\scriptscriptstyle+} and δ\delta_{\scriptscriptstyle-} are given explicitly on each graded component by

δ+(xtk)=a+b=k1[x1,Ω𝔤]tasb𝔤[t]𝔤[s]=𝔱+𝔱+,\displaystyle\delta_{\scriptscriptstyle+}(xt^{k})=\sum_{a+b=k-1}\![x\otimes 1,\Omega_{\mathfrak{g}}]t^{a}s^{b}\in\mathfrak{g}[t]\otimes\mathfrak{g}[s]=\mathfrak{t}_{+}\otimes\mathfrak{t}_{+},
δ(xtk1)=a+b=k[x1,Ω𝔤]ta1sb1t1𝔤[t1]s1𝔤[s1]=𝔱𝔱\displaystyle\delta_{\scriptscriptstyle-}(xt^{-k-1})=\sum_{a+b=k}[x\otimes 1,\Omega_{\mathfrak{g}}]t^{-a-1}s^{-b-1}\in t^{-1}\mathfrak{g}[t^{-1}]\otimes s^{-1}\mathfrak{g}[s^{-1}]=\mathfrak{t}_{-}\otimes\mathfrak{t}_{-}

where we have used the natural identification of (𝔤𝔤)[t±1,s±1](\mathfrak{g}\otimes\mathfrak{g})[t^{\pm 1},s^{\pm 1}] with 𝔤[t±1]𝔤[s±1]\mathfrak{g}[t^{\pm 1}]\otimes\mathfrak{g}[s^{\pm 1}], and a,ba,b take values in \mathbb{N}. Since

(zw)a=0kzawka=zk+1wk+1,(z-w)\sum_{a=0}^{k}z^{a}w^{k-a}=z^{k+1}-w^{k+1},

the linear map δ:=δ+(δ):𝔱𝔱𝔱\delta:=\delta_{\scriptscriptstyle+}\oplus(-\delta_{\scriptscriptstyle-}):\mathfrak{t}\to\mathfrak{t}\wedge\mathfrak{t} is given by the formula

δ(f)(t,s)=[f(t)1+1f(s),Ω𝔤ts]𝔤[t±1]𝔤[s±1]f(t)𝔤[t±1]\delta(f)(t,s)=\left[f(t)\otimes 1+1\otimes f(s),\frac{\Omega_{\mathfrak{g}}}{t-s}\right]\in\mathfrak{g}[t^{\pm 1}]\otimes\mathfrak{g}[s^{\pm 1}]\quad\forall\;f(t)\in\mathfrak{g}[t^{\pm 1}]

and defines a Lie bialgebra structure on the Lie algebra 𝔱\mathfrak{t} such that (𝔱+,δ+)(\mathfrak{t}_{\scriptscriptstyle{+}},\delta_{\scriptscriptstyle+}) and (𝔱,δ)(\mathfrak{t}_{\scriptscriptstyle{-}},-\delta_{\scriptscriptstyle-}) are Lie sub-bialgebras. This construction identifies 𝔱\mathfrak{t} with the restricted Drinfeld double D(𝔱+)D(\mathfrak{t}_{\scriptscriptstyle{+}}) of the \mathbb{N}-graded Lie bialgebra 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}, as defined in [Andrea-Valerio-19]*§5.4, for instance.

3. The Yangian revisited

3.1. The Lie algebra 𝔤\mathfrak{g}

We henceforth fix 𝔤\mathfrak{g} to be a finite-dimensional simple Lie algebra over the complex numbers, with invariant form (,)(\,,\,) as in Section 2.5. Let 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} be a Cartan subalgebra, {αi}i𝐈𝔥\{\alpha_{i}\}_{i\in\mathbf{I}}\subset\mathfrak{h}^{\ast} a basis of simple roots, and {αi}i𝐈\{\alpha_{i}^{\vee}\}_{i\in\mathbf{I}} the set of simple coroots, so that αj(αi)=aij=2(αi,αj)/(αi,αi)\alpha_{j}(\alpha_{i}^{\vee})=a_{ij}=2(\alpha_{i},\alpha_{j})/(\alpha_{i},\alpha_{i}) are the entries of the Cartan matrix 𝐀=(aij)i,j𝐈\mathbf{A}=(a_{ij})_{i,j\in\mathbf{I}} of 𝔤\mathfrak{g}. Let Δ+𝔥\Delta^{+}\subset\mathfrak{h}^{\ast} be the associated set of positive roots, and let Q=i𝐈αiQ=\bigoplus_{i\in\mathbf{I}}\mathbb{Z}\alpha_{i} and Q+=i𝐈αiQ_{+}=\bigoplus_{i\in\mathbf{I}}\mathbb{N}\alpha_{i} denote the root lattice and its positive cone, respectively, where we recall that \mathbb{N} denotes the set of non-negative integers. Set

dij=(αi,αj)2 and di=diii,j𝐈.d_{ij}=\frac{(\alpha_{i},\alpha_{j})}{2}\;\text{ and }\;d_{i}=d_{ii}\quad\forall\;i,j\in\mathbf{I}.

We normalize (,)(\,,\,), if necessary, so that the square length of a short root is 22. In particular, we then have {di}i𝐈{1,2,3}\{d_{i}\}_{i\in\mathbf{I}}\subset\{1,2,3\}. Let {ei,fi}i𝐈\{e_{i},f_{i}\}_{i\in\mathbf{I}} denote the Chevalley generators of 𝔤\mathfrak{g}, as in [KacBook90]*§1.3, and set

hi=diαi,xi+=diei,xi=difii𝐈.h_{i}=d_{i}\alpha_{i}^{\vee},\quad x_{i}^{+}=\sqrt{d_{i}}e_{i},\quad x_{i}^{-}=\sqrt{d_{i}}f_{i}\quad\forall\;i\in\mathbf{I}.

These normalized generators satisfy (xi+,xi)=1(x_{i}^{+},x_{i}^{-})=1 and hi=[xi+,xi]h_{i}=[x_{i}^{+},x_{i}^{-}] for all i𝐈i\in\mathbf{I}.

3.2. The Yangian

We now recall the definition of the Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}). Let SmS_{m} denote the symmetric group on {1,,m}\{1,\ldots,m\}.

Definition 3.1.

The Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) is the unital associative []\mathbb{C}[\hbar]-algebra generated by {xir±,hir}i𝐈,r\{x_{ir}^{\pm},h_{ir}\}_{i\in\mathbf{I},r\in\mathbb{N}}, subject to the following relations for i,j𝐈i,j\in\mathbf{I} and r,sr,s\in\mathbb{N}:

(3.1) [hir,hjs]=0\displaystyle[h_{ir},h_{js}]=0
(3.2) [hi0,xjs±]=±2dijxjs±,\displaystyle[h_{i0},x_{js}^{\pm}]=\pm 2d_{ij}x_{js}^{\pm},
(3.3) [xir+,xjs]=δijhi,r+s,\displaystyle[x_{ir}^{+},x_{js}^{-}]=\delta_{ij}h_{i,r+s},
(3.4) [hi,r+1,xjs±][hir,xj,s+1±]=±dij(hirxjs±+xjs±hir),\displaystyle[h_{i,r+1},x_{js}^{\pm}]-[h_{ir},x_{j,s+1}^{\pm}]=\pm\hbar d_{ij}(h_{ir}x_{js}^{\pm}+x_{js}^{\pm}h_{ir}),
(3.5) [xi,r+1±,xjs±][xir±,xj,s+1±]=±dij(xir±xjs±+xjs±xir±),\displaystyle[x_{i,r+1}^{\pm},x_{js}^{\pm}]-[x_{ir}^{\pm},x_{j,s+1}^{\pm}]=\pm\hbar d_{ij}(x_{ir}^{\pm}x_{js}^{\pm}+x_{js}^{\pm}x_{ir}^{\pm}),
(3.6) πSm[xi,rπ(1)±,[xi,rπ(2)±,,[xi,rπ(m)±,xjs±]]]=0,\displaystyle\sum_{\pi\in S_{m}}\left[x_{i,r_{\pi(1)}}^{\pm},\left[x_{i,r_{\pi(2)}}^{\pm},\cdots,\left[x_{i,r_{\pi(m)}}^{\pm},x_{js}^{\pm}\right]\cdots\right]\right]=0,

where in the last relation iji\neq j, m=1aijm=1-a_{ij} and r1,,rmr_{1},\ldots,r_{m}\in\mathbb{N}.

The Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded []\mathbb{C}[\hbar]-algebra, with grading

Y(𝔤)=kY(𝔤)kY_{\hbar}(\mathfrak{g})=\bigoplus_{k\in\mathbb{N}}Y_{\hbar}(\mathfrak{g})_{k}

determined by degxir±=deghir=r\deg x_{ir}^{\pm}=\deg h_{ir}=r for all i𝐈i\in\mathbf{I} and rr\in\mathbb{N}. Moreover, Definition 3.1 is such that Y(𝔤)Y_{\hbar}(\mathfrak{g}) provides an \mathbb{N}-graded []\mathbb{C}[\hbar]-algebra deformation of the enveloping algebra U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}), where we recall that 𝔱+=𝔤[t]\mathfrak{t}_{\scriptscriptstyle{+}}=\mathfrak{g}[t]. Indeed, the identification Y(𝔤)/Y(𝔤)U(𝔱+)Y_{\hbar}(\mathfrak{g})/\hbar Y_{\hbar}(\mathfrak{g})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}}) is induced by the graded algebra epimorphism q:Y(𝔤)U(𝔱+)q:Y_{\hbar}(\mathfrak{g})\twoheadrightarrow U(\mathfrak{t}_{\scriptscriptstyle{+}}) given on generators by

q:xir±xi±tr,hirhitri𝐈 and r.q:\;x_{ir}^{\pm}\mapsto x_{i}^{\pm}t^{r},\quad h_{ir}\mapsto h_{i}t^{r}\quad\forall\;i\in\mathbf{I}\;\text{ and }\;r\in\mathbb{N}.

In addition, the relations (3.1)–(3.6) imply that the assignment

xi±xi0±,hihi0i𝐈x_{i}^{\pm}\mapsto x_{i0}^{\pm},\quad h_{i}\mapsto h_{i0}\quad\forall\;i\in\mathbf{I}

determines a \mathbb{C}-algebra homomorphism U(𝔤)Y(𝔤)U(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g}), which is injective as its composition with qq is the identity map 𝟏U(𝔤)\mathbf{1}_{U(\mathfrak{g})} on U(𝔤)U(\mathfrak{g}). Henceforth, we shall identify 𝔤\mathfrak{g} with its image in Y(𝔤)Y_{\hbar}(\mathfrak{g}) without further comment.

To specify the standard Hopf algebra structure on Y(𝔤)Y_{\hbar}(\mathfrak{g}), we first note that Y(𝔤)Y_{\hbar}(\mathfrak{g}) is generated as a []\mathbb{C}[\hbar]-algebra by the set 𝔤{ti1}i𝐈Y(𝔤)\mathfrak{g}\cup\{t_{i1}\}_{i\in\mathbf{I}}\subset Y_{\hbar}(\mathfrak{g}), where

ti1:=hi12hi02i𝐈.t_{i1}:=h_{i1}-\frac{\hbar}{2}h_{i0}^{2}\quad\forall\;i\in\mathbf{I}.

More precisely, for each s>0s>0, xis±x_{is}^{\pm} and hi,s+1h_{i,s+1} are determined by the recursive formulas

xis±=±12di[ti1,xi,s1±] and hi,s+1=[xis+,xi1].x_{is}^{\pm}=\pm\frac{1}{2d_{i}}\left[t_{i1},x_{i,s-1}^{\pm}\right]\quad\text{ and }\quad h_{i,s+1}=[x_{is}^{+},x_{i1}^{-}].

Now let 𝗋𝔫𝔫+\mathsf{r}\in\mathfrak{n}_{-}\otimes\mathfrak{n}_{+} denote the canonical tensor associated to the pairing (,)|𝔫×𝔫+(\,,\,)|_{\mathfrak{n}_{-}\times\mathfrak{n}_{+}}, where 𝔫±=αΔ+𝔤±α\mathfrak{n}_{\pm}=\bigoplus_{\alpha\in\Delta^{+}}\mathfrak{g}_{\pm\alpha} is the Lie subalgebra of 𝔤\mathfrak{g} generated by {xi±}i𝐈\{x_{i}^{\pm}\}_{i\in\mathbf{I}}. Equivalently, 𝗋\mathsf{r} is the unique preimage of the identity map under the natural isomorphism 𝔫𝔫+End(𝔫)\mathfrak{n}_{-}\otimes\mathfrak{n}_{+}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{End}_{\mathbb{C}}(\mathfrak{n}_{-}), determined by (,)|𝔫×𝔫+(\,,\,)|_{\mathfrak{n}_{-}\times\mathfrak{n}_{+}}. In addition, we set

𝗋i:=[hi1,𝗋i]i𝐈.\mathsf{r}_{i}:=[h_{i}\otimes 1,\mathsf{r}_{i}]\quad\forall\quad i\in\mathbf{I}.

If xα±𝔤±αx_{\alpha}^{\pm}\in\mathfrak{g}_{\pm\alpha} are root vectors satisfying (xα+,xα)=1(x_{\alpha}^{+},x_{\alpha}^{-})=1, then one has the formulae

𝗋=αΔ+xαxα+ and 𝗋i=αΔ+α(hi)xαxα+.\mathsf{r}=\sum_{\alpha\in\Delta^{+}}x_{\alpha}^{-}\otimes x_{\alpha}^{+}\quad\text{ and }\quad\mathsf{r}_{i}=-\sum_{\alpha\in\Delta^{+}}\alpha(h_{i})x_{\alpha}^{-}\otimes x_{\alpha}^{+}.

The following proposition describes the Hopf algebra structure on Y(𝔤)Y_{\hbar}(\mathfrak{g}), where m:Y(𝔤)2Y(𝔤)m:Y_{\hbar}(\mathfrak{g})^{\otimes 2}\to Y_{\hbar}(\mathfrak{g}) denote the multiplication map.

Proposition 3.2.

The Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded Hopf algebra with counit ε\varepsilon, coproduct Δ\Delta and antipode SS uniquely determined by the requirement that 𝔤\mathfrak{g} is primitive and that, for each i𝐈i\in\mathbf{I}, one has

ε(ti1)=0,Δ(ti1)=ti11+1ti1+𝗋i,S(ti1)=ti1+m(𝗋i).\displaystyle\varepsilon(t_{i1})=0,\quad\Delta(t_{i1})=t_{i1}\otimes 1+1\otimes t_{i1}+\hbar\mathsf{r}_{i},\quad S(t_{i1})=-t_{i1}+m(\hbar\mathsf{r}_{i}).

In particular, Y(𝔤)Y_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded Hopf algebra deformation of U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) over []\mathbb{C}[\hbar].

The crux of the proof of this proposition lies in showing that Δ\Delta is an algebra homomorphism. Though this is a consequence of [Dr]*Thm. 2 and [DrNew]*Thm. 1 (see also [GRWEquiv]*Thm. 2.6), a complete proof has only recently appeared in [GNW]; see Theorem 4.9 therein.

The Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) also admits a QQ-grading compatible with the above \mathbb{N}-grading; that is to say, it is ×Q\mathbb{N}\times Q-graded as a Hopf algebra. This QQ-grading arises from the adjoint action of the Cartan subalgebra 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} on Y(𝔤)Y_{\hbar}(\mathfrak{g}). Namely, one has Y(𝔤)=βQY(𝔤)βY_{\hbar}(\mathfrak{g})=\bigoplus_{\beta\in Q}Y_{\hbar}(\mathfrak{g})_{\beta}, where Y(𝔤)βY_{\hbar}(\mathfrak{g})_{\beta} is just the β\beta-weight space

Y(𝔤)β={xY(𝔤):[h,x]=β(h)xh𝔥}βQ.Y_{\hbar}(\mathfrak{g})_{\beta}=\{x\in Y_{\hbar}(\mathfrak{g}):\;[h,x]=\beta(h)x\quad\forall\quad h\in\mathfrak{h}\}\quad\forall\;\beta\in Q.
{comment}

To conclude this subsection, we note the following equivalent form of the defining relations of Definition 3.1, which follows from [GTL2]*Prop. 2.3.

Proposition 3.3.

For each i𝐈i\in\mathbf{I}, define xi±(u),hi(u)Y(𝔤)[[u1]]x_{i}^{\pm}(u),h_{i}(u)\in Y_{\hbar}(\mathfrak{g})[\![u^{-1}]\!] by

xi±(u)=r0xir±ur1 and hi(u)=r0hirur1.x_{i}^{\pm}(u)=\sum_{r\geq 0}x_{ir}^{\pm}u^{-r-1}\quad\text{ and }\quad h_{i}(u)=\sum_{r\geq 0}h_{ir}u^{-r-1}.

Then the defining relations (3.1)–(3.6) of Y(𝔤)Y_{\hbar}(\mathfrak{g}) are equivalent to the following relations for i,j𝐈i,j\in\mathbf{I}:

(3.7) [hi(u),hj(v)]=0\displaystyle[h_{i}(u),h_{j}(v)]=0
(3.8) (uv)[xi+(u),xj(v)]=δij(hi(v)hi(u)),\displaystyle(u-v)[x_{i}^{+}(u),x_{j}^{-}(v)]=\delta_{ij}(h_{i}(v)-h_{i}(u)),
(3.9) (uvdij)hi(u)xj±(v)=(uv±dij)xj±(v)hi(u)±2dijxj±(v)[hi(u),xj0±],\displaystyle\begin{aligned} (u-v\mp\hbar&d_{ij})h_{i}(u)x_{j}^{\pm}(v)\\ &=(u-v\pm\hbar d_{ij})x_{j}^{\pm}(v)h_{i}(u)\pm 2d_{ij}x_{j}^{\pm}(v)-[h_{i}(u),x_{j0}^{\pm}],\end{aligned}
(3.10) (uvdij)xi±(u)xj±(v)=(uv±dij)xj±(v)xi±(u)+[xi0±,xj±(v)][xi±(u),xj0±],\displaystyle\begin{aligned} (u-v\mp\hbar&d_{ij})x_{i}^{\pm}(u)x_{j}^{\pm}(v)\\ &=(u-v\pm\hbar d_{ij})x_{j}^{\pm}(v)x_{i}^{\pm}(u)+[x_{i0}^{\pm},x_{j}^{\pm}(v)]-[x_{i}^{\pm}(u),x_{j0}^{\pm}],\end{aligned}
(3.11) πSm[xi±(uπ(1)),[xi±(uπ(2)),,[xi±(uπ(m)),xj±(v)]]]=0,\displaystyle\sum_{\pi\in S_{m}}\left[x_{i}^{\pm}(u_{\pi(1)}),\left[x_{i}^{\pm}(u_{\pi(2)}),\cdots,\left[x_{i}^{\pm}(u_{\pi(m)}),x_{j}^{\pm}(v)\right]\cdots\right]\right]=0,

where in the last relation iji\neq j and m=1aijm=1-a_{ij}.

3.3. Automorphisms

There are two families of (anti)automorphisms of Y(𝔤)Y_{\hbar}(\mathfrak{g}) which will play an especially pronounced role in this article: the shift automorphisms and the Chevalley involution. The former are a family {τc}cAut(Y(𝔤))\{\tau_{c}\}_{c\in\mathbb{C}}\subset\mathrm{Aut}(Y_{\hbar}(\mathfrak{g})) which give rise to an action of the additive group \mathbb{C} on Y(𝔤)Y_{\hbar}(\mathfrak{g}) by Hopf algebra automorphisms. In more detail, τc\tau_{c} is defined explicitly by

(3.12) τc(xi±(u))=xi±(uc) and τc(hi(u))=hi(uc)i𝐈,\tau_{c}(x_{i}^{\pm}(u))=x_{i}^{\pm}(u-c)\quad\text{ and }\quad\tau_{c}(h_{i}(u))=h_{i}(u-c)\quad\forall\;i\in\mathbf{I},

where we have introduced the generating series xi±(u)x_{i}^{\pm}(u) and hi(u)h_{i}(u) in Y(𝔤)[[u1]]Y_{\hbar}(\mathfrak{g})[\![u^{-1}]\!] by

xi±(u)=rxir±ur1 and hi(u)=rhirur1.x_{i}^{\pm}(u)=\sum_{r\in\mathbb{N}}x_{ir}^{\pm}u^{-r-1}\quad\text{ and }\quad h_{i}(u)=\sum_{r\in\mathbb{N}}h_{ir}u^{-r-1}.
{comment}

In terms of the generators xir±x_{ir}^{\pm} and hirh_{ir}, the above formulas read as

τc(xir±)=k=0r(rk)xik±crk and τc(hir)=k=0r(rk)hikcrk.\tau_{c}(x_{ir}^{\pm})=\sum_{k=0}^{r}\binom{r}{k}x_{ik}^{\pm}c^{r-k}\quad\text{ and }\quad\tau_{c}(h_{ir})=\sum_{k=0}^{r}\binom{r}{k}h_{ik}c^{r-k}.

Replacing cc by a formal variable zz in (3.12), one obtains an \mathbb{N}-graded embedding

(3.13) τz:Y(𝔤)Y(𝔤)[z]\tau_{z}:Y_{\hbar}(\mathfrak{g})\hookrightarrow Y_{\hbar}(\mathfrak{g})[z]

called the formal shift homomorphism, where degz=1\deg z=1. Let us now turn to defining the Chevalley involution, beginning with the following lemma.

Lemma 3.4.

The assignments ω\omega and ς\varsigma defined by

ω(xi±(u))=xi(u),ω(hi(u))=hi(u)\displaystyle\omega(x_{i}^{\pm}(u))=x_{i}^{\mp}(u),\quad\omega(h_{i}(u))=h_{i}(u)
ς(xi±(u))=xi±(u),ς(hi(u))=hi(u)\displaystyle\varsigma(x_{i}^{\pm}(u))=x_{i}^{\pm}(-u),\quad\varsigma(h_{i}(u))=h_{i}(-u)

extend to commuting anti-involutions ω\omega and ς\varsigma of Y(𝔤)Y_{\hbar}(\mathfrak{g}). Moreover, ω\omega and ς\varsigma satisfy

τcω=ωτc,τcς=ςτcc,\displaystyle\tau_{c}\circ\omega=\omega\circ\tau_{c},\quad\tau_{-c}\circ\varsigma=\varsigma\circ\tau_{c}\quad\forall\;c\in\mathbb{C},
εω=ε,(ωω)Δ=Δopω,ωS=Sω,\displaystyle\varepsilon\circ\omega=\varepsilon,\quad(\omega\otimes\omega)\circ\Delta={\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}\circ\omega,\quad\omega\circ S=S\circ\omega,
ες=ε,(ςς)Δ=Δς,ςS1=Sς.\displaystyle\varepsilon\circ\varsigma=\varepsilon,\quad(\varsigma\otimes\varsigma)\circ\Delta=\Delta\circ\varsigma,\quad\varsigma\circ S^{-1}=S\circ\varsigma.

This result, which has appeared in various forms in the literature (for instance, [ChPr1]*Prop. 2.9), is readily established using Definition 3.1 and the relations of Proposition 3.2. By the lemma, ω\omega is an involutive Hopf algebra anti-automorphism of Y(𝔤)Y_{\hbar}(\mathfrak{g}), which we call the Chevalley involution of Y(𝔤)Y_{\hbar}(\mathfrak{g}). On 𝔤Y(𝔤)\mathfrak{g}\subset Y_{\hbar}(\mathfrak{g}), this recovers the standard Chevalley involution, given by

ω(xi±)=xi and ω(hi)=hii𝐈.\omega(x_{i}^{\pm})=x_{i}^{\mp}\quad\text{ and }\quad\omega(h_{i})=h_{i}\quad\forall\;i\in\mathbf{I}.

Similarly, under the identification Y(𝔤)/Y(𝔤)U(𝔱+)Y_{\hbar}(\mathfrak{g})/\hbar Y_{\hbar}(\mathfrak{g})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}}), the semiclassical limit ω¯:U(𝔱+)U(𝔱+)\bar{\omega}:U(\mathfrak{t}_{\scriptscriptstyle{+}})\to U(\mathfrak{t}_{\scriptscriptstyle{+}}) of ω\omega coincides with the anti-involution of U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) uniquely extending the Lie algebra anti-automorphism

(3.14) ω¯(xtr)=ω(x)trx𝔤 and r.\bar{\omega}(xt^{r})=\omega(x)t^{r}\quad\forall\;x\in\mathfrak{g}\;\text{ and }\;r\in\mathbb{N}.

In addition, we note that the composite κ:=ως\upkappa:=\omega\circ\varsigma is an involutive algebra automorphism of Y(𝔤)Y_{\hbar}(\mathfrak{g}), given explicitly by

(3.15) κ(xi±(u))=xi(u) and κ(hi(u))=hi(u)i𝐈.\upkappa(x_{i}^{\pm}(u))=x_{i}^{\mp}(-u)\quad\text{ and }\quad\upkappa(h_{i}(u))=h_{i}(-u)\quad\forall\;i\in\mathbf{I}.

This automorphism is itself often called the Chevalley or Cartan involution of Y(𝔤)Y_{\hbar}(\mathfrak{g}), though here we shall reserve the former terminology for ω\omega.

3.4. Poincaré–Birkhoff–Witt Theorem

An important foundational result in the theory of Yangians is the Poincaré–Birkhoff–Witt Theorem, which asserts the flatness of Y(𝔤)Y_{\hbar}(\mathfrak{g}) as an \mathbb{N}-graded Hopf algebra deformation of U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}). It can be stated concisely as follows.

Theorem 3.5.

The Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) is a torsion free []\mathbb{C}[\hbar]-module, and thus provides a flat deformation of Y(𝔤)/Y(𝔤)U(𝔱+)Y_{\hbar}(\mathfrak{g})/\hbar Y_{\hbar}(\mathfrak{g})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}}) as a graded Hopf algebra over []\mathbb{C}[\hbar]. In particular, Y(𝔤)Y_{\hbar}(\mathfrak{g}) is isomorphic to U(𝔱+)[]U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar] as an \mathbb{N}-graded []\mathbb{C}[\hbar]-module.

As Y(𝔤)Y_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded algebra deformation of U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}), an isomorphism Y(𝔤)U(𝔱+)[]Y_{\hbar}(\mathfrak{g})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar] can be obtained by specifying an ordered, homogeneous, lift 𝔾Y(𝔤)\mathds{G}\subset Y_{\hbar}(\mathfrak{g}) of any fixed homogeneous basis of the Lie algebra 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}. For our purposes, it will be useful to specify a class of isomorphisms of this type with a number of useful properties.

For each βΔ+\beta\in\Delta^{+}, we may choose i(β)𝐈i(\beta)\in\mathbf{I} and 𝐗βU(𝔫+)βαi(β)U(𝔤)\mathbf{X}^{\beta}\in U(\mathfrak{n}_{+})_{\beta-\alpha_{i(\beta)}}\subset U(\mathfrak{g}) such that

(3.16) xβ+:=𝐗βxi(β)+𝔤β and xβ:=ω(xβ+)𝔤βx_{\beta}^{+}:=\mathbf{X}^{\beta}\cdot x_{i(\beta)}^{+}\in\mathfrak{g}_{\beta}\quad\text{ and }\quad x_{\beta}^{-}:=\omega(x_{\beta}^{+})\in\mathfrak{g}_{-\beta}

satisfy the duality condition (xβ+,xβ)=1(x_{\beta}^{+},x_{\beta}^{-})=1, where 𝐗β\mathbf{X}^{\beta} acts on xi(β)+x_{i(\beta)}^{+} via the adjoint action of 𝔤\mathfrak{g} on U(𝔤)U(\mathfrak{g}). In particular, we can (and shall) take 𝐗αi=1\mathbf{X}^{\alpha_{i}}=1 for all i𝐈i\in\mathbf{I}, so that xαi±=xi±x_{\alpha_{i}}^{\pm}=x_{i}^{\pm}. For each kk\in\mathbb{N}, we then set

xβ,k+:=𝐗βxi(β),k+Y(𝔤)β and xβ,k:=ω(xβ,k+)Y(𝔤)β,x_{\beta,k}^{+}:=\mathbf{X}^{\beta}\cdot x_{i(\beta),k}^{+}\in Y_{\hbar}(\mathfrak{g})_{\beta}\quad\text{ and }\quad x_{\beta,k}^{-}:=\omega(x_{\beta,k}^{+})\in Y_{\hbar}(\mathfrak{g})_{-\beta},

where 𝔤\mathfrak{g} now operates on Y(𝔤)Y_{\hbar}(\mathfrak{g}) via the adjoint action. This definition is such that q(xβ,k±)=xβ±tkq(x_{\beta,k}^{\pm})=x_{\beta}^{\pm}t^{k} for all βΔ+\beta\in\Delta^{+} and kk\in\mathbb{N}, {comment}

xβ±tr=xβ,r±modβΔ+,rx_{\beta}^{\pm}t^{r}=x_{\beta,r}^{\pm}\mod\hbar\quad\forall\;\beta\in\Delta^{+},\,r\in\mathbb{N}

and hence the set of elements

𝔾:=k{hik,xβ,k±}i𝐈,βΔ+\mathds{G}:=\bigcup_{k\in\mathbb{N}}\{h_{ik},x_{\beta,k}^{\pm}\}_{i\in\mathbf{I},\beta\in\Delta^{+}}

reduces modulo \hbar to the basis of 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} consisting of all Cartan elements hitkh_{i}t^{k} and root vector xβ±tkx_{\beta}^{\pm}t^{k}. For each choice of total order \preceq on 𝔾\mathds{G}, the corresponding set of ordered monomials

B(𝔾)={x1x2xn:n,xi𝔾 and xixji<j}B(\mathds{G})=\{x_{1}x_{2}\cdots x_{n}:n\in\mathbb{N},\,x_{i}\in\mathds{G}\;\text{ and }\;x_{i}\preceq x_{j}\;\forall\;i<j\}

is therefore a homogeneous basis of the []\mathbb{C}[\hbar]-module Y(𝔤)Y_{\hbar}(\mathfrak{g}), and so defines an isomorphism \mathbb{N}-graded modules

(3.17) ν𝔾:Y(𝔤)U(𝔱+)[]\upnu_{\mathds{G}}:Y_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]

uniquely determined by the property that ν𝔾|B(𝔾)\upnu_{\mathds{G}}|_{B(\mathds{G})} coincides with the restriction of the quotient map qq to B(𝔾)B(\mathds{G}). We note that ν𝔾\upnu_{\mathds{G}} is automatically an isomorphism of 𝔥\mathfrak{h}-modules, and is thus QQ-graded.

We shall single out a subclass of isomorphisms of this type which are compatible with Chevalley involutions and satisfies a triangularity condition. To make this precise, we must first recall that Y(𝔤)Y_{\hbar}(\mathfrak{g}) admits a triangular decomposition, compatible with the decomposition

𝔤=𝔫+𝔥𝔫.\mathfrak{g}=\mathfrak{n}_{+}\oplus\mathfrak{h}\oplus\mathfrak{n}_{-}.

Let us define Y0(𝔤)Y_{\hbar}^{0}(\mathfrak{g}) and Y±(𝔤)Y_{\hbar}^{\pm}(\mathfrak{g}) to be the unital associative subalgebras of Y(𝔤)Y_{\hbar}(\mathfrak{g}) generated by {hir}i𝐈,r\{h_{ir}\}_{i\in\mathbf{I},r\in\mathbb{N}} and {xir±}i𝐈,r\{x_{ir}^{\pm}\}_{i\in\mathbf{I},r\in\mathbb{N}}, respectively. These are ×Q\mathbb{N}\times Q-graded subalgebras of Y(𝔤)Y_{\hbar}(\mathfrak{g}). The triangular decomposition of Y(𝔤)Y_{\hbar}(\mathfrak{g}) is then encoded by the following proposition, which is a well-known consequence of Theorem 3.5.

Proposition 3.6.
  1. (1)

    Y±(𝔤)Y_{\hbar}^{\pm}(\mathfrak{g}) is isomorphic to the unital, associative []\mathbb{C}[\hbar]-algebra generated by the set {xir±}i𝐈,r\{x_{ir}^{\pm}\}_{i\in\mathbf{I},r\in\mathbb{N}}, subject to relations (3.5) and (3.6) of Definition 3.1:

    [xi,r+1±,xjs±][xir±,xj,s+1±]=±dij(xir±xjs±+xjs±xir±)\displaystyle[x_{i,r+1}^{\pm},x_{js}^{\pm}]-[x_{ir}^{\pm},x_{j,s+1}^{\pm}]=\pm\hbar d_{ij}(x_{ir}^{\pm}x_{js}^{\pm}+x_{js}^{\pm}x_{ir}^{\pm})
    πSm[xi,rπ(1)±,[xi,rπ(2)±,,[xi,rπ(m)±,xjs±]]]=0,\displaystyle\sum_{\pi\in S_{m}}\left[x_{i,r_{\pi(1)}}^{\pm},\left[x_{i,r_{\pi(2)}}^{\pm},\cdots,\left[x_{i,r_{\pi(m)}}^{\pm},x_{js}^{\pm}\right]\cdots\right]\right]=0,

    where all indices are constrained as in Definition 3.1. In particular, Y±(𝔤)Y_{\hbar}^{\pm}(\mathfrak{g}) is an \mathbb{N}-graded, torsion free []\mathbb{C}[\hbar]-algebra deformation of U(𝔫±[t])U(\mathfrak{n}_{\pm}[t]).

  2. (2)

    The assignment hikhitkh_{ik}\mapsto h_{i}t^{k}, for all i𝐈i\in\mathbf{I} and kk\in\mathbb{N}, extends to an isomorphism of \mathbb{N}-graded, commutative []\mathbb{C}[\hbar]-algebras

    ξ:Y0(𝔤)U(𝔥[t])[]=𝖲(𝔥[t])[].\upxi:Y_{\hbar}^{0}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{h}[t])[\hbar]=\mathsf{S}(\mathfrak{h}[t])[\hbar].
  3. (3)

    The multiplication map

    m:Y+(𝔤)Y0(𝔤)Y(𝔤)Y(𝔤)m:Y_{\hbar}^{+}(\mathfrak{g})\otimes Y_{\hbar}^{0}(\mathfrak{g})\otimes Y_{\hbar}^{-}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g})

    is an isomorphism of graded []\mathbb{C}[\hbar]-modules.

As a consequence of Part (1) of Proposition 3.6 and Corollary 2.6, one has Y±(𝔤)U(𝔫±[t])[]Y_{\hbar}^{\pm}(\mathfrak{g})\cong U(\mathfrak{n}_{\pm}[t])[\hbar] as \mathbb{N}-graded []\mathbb{C}[\hbar]-modules. Following the procedure outlined at the beginning of the section, let us fix an arbitrary total order +\preceq_{\scriptscriptstyle+} on the union

𝔾+=k{xβ,k+}βΔ+=𝔾Y+(𝔤).\mathds{G}_{+}=\bigcup_{k\in\mathbb{N}}\{x_{\beta,k}^{+}\}_{\beta\in\Delta^{+}}=\mathds{G}\cap Y_{\hbar}^{+}(\mathfrak{g}).

The set of ordered monomials B(𝔾+)B(\mathds{G}_{+}) in 𝔾+\mathds{G}_{+} is a basis of Y+(𝔤)Y_{\hbar}^{+}(\mathfrak{g}), and thus gives rise to an isomorphism of ×Q\mathbb{N}\times Q-graded []\mathbb{C}[\hbar]-modules

ν+:Y+(𝔤)U(𝔫+[t])[],\upnu_{+}:Y_{\hbar}^{+}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{n}_{+}[t])[\hbar],

sending each ordered monomial in 𝔾+\mathds{G}_{+} to its image in Y+(𝔤)/Y+(𝔤)U(𝔫+[t])Y_{\hbar}^{+}(\mathfrak{g})/\hbar Y_{\hbar}^{+}(\mathfrak{g})\cong U(\mathfrak{n}_{+}[t]). Using the Chevalley involution ω\omega and its semiclassical limit ω¯\bar{\omega} (see (3.14)), we then obtain an isomorphism

ν:=ω¯ν+ω:Y(𝔤)U(𝔫[t])[]\upnu_{-}:=\bar{\omega}\circ\upnu_{+}\circ\omega:Y_{\hbar}^{-}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{n}_{-}[t])[\hbar]

Combining ν±\upnu_{\pm} with ξ\upxi from Part (2) of Proposition 3.6 outputs an isomorphism of ×Q\mathbb{N}\times Q-graded []\mathbb{C}[\hbar]-modules

(3.18) ν:=m¯(ν+ξν)m1:Y(𝔤)U(𝔱+)[]\upnu:=\bar{m}\circ(\upnu_{+}\otimes\upxi\otimes\upnu_{-})\circ m^{-1}:Y_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]

where m¯:U(𝔫+[t])U(𝔥[t])U(𝔫[t])U(𝔱+)\bar{m}:U(\mathfrak{n}_{+}[t])\otimes_{\mathbb{C}}U(\mathfrak{h}[t])\otimes_{\mathbb{C}}U(\mathfrak{n}_{-}[t])\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{+}}) is the multiplication map, which we extend trivially by []\mathbb{C}[\hbar]-linearity. By construction, ν\upnu is compatible with the underlying triangular decompositions on Y(𝔤)Y_{\hbar}(\mathfrak{g}) and U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) and satisfies

νω=ω¯ν.\upnu\circ\omega=\bar{\omega}\circ\upnu.

The definition (3.18) is such that ν=ν𝔾\upnu=\upnu_{\mathds{G}} for any total order \preceq on 𝔾\mathds{G} which restricts to +\preceq_{\scriptscriptstyle{+}}, satisfies x+hxx^{+}\preceq h\preceq x^{-} for all x±𝔾Y±(𝔤)x^{\pm}\in\mathds{G}\cap Y_{\hbar}^{\pm}(\mathfrak{g}) and hY0(𝔤)h\in Y_{\hbar}^{0}(\mathfrak{g}), and for which ω\omega is a decreasing function on 𝔾\mathds{G}. We will denote the inverse of ν\upnu by μ\mu:

μ:=ν1:U(𝔱+)[]Y(𝔤).\mu:=\upnu^{-1}:U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]\to Y_{\hbar}(\mathfrak{g}).

Note that, for any total order on 𝔾\mathds{G}, one has μ(x)=ν𝔾1(x)\mu(x)=\upnu_{\mathds{G}}^{-1}(x) for all x𝔾x\in\mathds{G}.

3.5. Quantization

As a consequence of Proposition 3.2 and Theorem 3.5, the Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}) provides a homogeneous quantization of an \mathbb{N}-graded Lie bialgebra structure on the Lie algebra 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} over []\mathbb{C}[\hbar], with cocommutator δ\delta determined by the formula (2.2). By Proposition 3.2, δ\delta is uniquely determined by δ(𝔤)=0\delta(\mathfrak{g})=0 and

δ(hit)=𝗋i𝗋i21=[hi1,Ω𝔤]=[hit1+1his,Ω𝔤ts]=δ+(hit)i𝐈,\delta(h_{i}t)=\mathsf{r}_{i}-\mathsf{r}_{i}^{21}=[h_{i}\otimes 1,\Omega_{\mathfrak{g}}]=\left[h_{i}t\otimes 1+1\otimes h_{i}s,\frac{\Omega_{\mathfrak{g}}}{t-s}\right]=\delta_{\scriptscriptstyle+}(h_{i}t)\quad\forall\;i\in\mathbf{I},

and thus coincides with δ+\delta_{\scriptscriptstyle+} from Section 2.5. This recovers the following well-known result, originally due to Drinfeld [Dr]*Thm. 2:

Theorem 3.7.

Y(𝔤)Y_{\hbar}(\mathfrak{g}) is a homogeneous quantization of (𝔱+,δ+)(\mathfrak{t}_{\scriptscriptstyle{+}},\delta_{\scriptscriptstyle+}) over []\mathbb{C}[\hbar].

As explained in Section 2.4, it follows immediately that the \hbar-adic completion

(3.19) Y𝔤:=limn(Y(𝔤)/nY(𝔤))Y_{\hbar}\mathfrak{g}:=\varprojlim_{n}(Y_{\hbar}(\mathfrak{g})/\hbar^{n}Y_{\hbar}(\mathfrak{g}))

is a homogeneous quantization of (𝔱+,δ+)(\mathfrak{t}_{\scriptscriptstyle{+}},\delta_{\scriptscriptstyle+}) over [[]]\mathbb{C}[\![\hbar]\!]. We refer the reader to Definition 2.12 and Corollary 2.6 for a detailed discussion of this point.

Remark 3.8.

Let Y±𝔤Y_{\hbar}^{\pm\!}\mathfrak{g} and Y0𝔤Y_{\hbar}^{0}\mathfrak{g} denote the topological [[]]\mathbb{C}[\![\hbar]\!]-algebras

Y±𝔤:=limnY±(𝔤)/nY±(𝔤) and Y0𝔤:=limnY0(𝔤)/nY0(𝔤)Y_{\hbar}^{\pm\!}\mathfrak{g}:=\varprojlim_{n}Y_{\hbar}^{\pm}(\mathfrak{g})/\hbar^{n}Y_{\hbar}^{\pm}(\mathfrak{g})\quad\text{ and }\quad Y_{\hbar}^{0}\mathfrak{g}:=\varprojlim_{n}Y_{\hbar}^{0}(\mathfrak{g})/\hbar^{n}Y_{\hbar}^{0}(\mathfrak{g})

It follows from Corollary 2.6 and Proposition 3.6 that these are subalgebras of Y𝔤Y_{\hbar}\mathfrak{g}, with Y0𝔤Y_{\hbar}^{0}\mathfrak{g} isomorphic to U(𝔥[t])[[]]𝖲(𝔥[t])[[]]U(\mathfrak{h}[t])[\![\hbar]\!]\cong\mathsf{S}(\mathfrak{h}[t])[\![\hbar]\!] as an \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra, and Y±𝔤Y_{\hbar}^{\pm\!}\mathfrak{g} a topologically free \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra with semiclassical limit equal to U(𝔫±[t])U(\mathfrak{n}_{\pm}[t]). By Part (3) of Proposition 3.6, the product mm on Y𝔤Y_{\hbar}\mathfrak{g} gives rise to an isomorphism of \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules

(3.20) m:Y+𝔤Y0𝔤Y𝔤Y𝔤,m:Y_{\hbar}^{+\!}\mathfrak{g}\otimes Y_{\hbar}^{0}\mathfrak{g}\otimes Y_{\hbar}^{-\!}\mathfrak{g}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}Y_{\hbar}\mathfrak{g},

where, following Remark 2.11, \otimes should now be understood to be the topological tensor product ^\widehat{\otimes} of [[]]\mathbb{C}[\![\hbar]\!]-modules. For later purposes, we note that the product on Y𝔤Y_{\hbar}\mathfrak{g} also gives rise to an isomorphism

Y𝔤Y0𝔤Y+𝔤Y𝔤Y_{\hbar}^{-\!}\mathfrak{g}\otimes Y_{\hbar}^{0}\mathfrak{g}\otimes Y_{\hbar}^{+\!}\mathfrak{g}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}Y_{\hbar}\mathfrak{g}

which can be realized as κm(κκ0κ+)\upkappa\circ m\circ(\upkappa_{-}\otimes\upkappa_{0}\otimes\upkappa_{+}), where mm is the isomorphism (3.20), κ\upkappa is the involutive automorphism of Y𝔤Y_{\hbar}\mathfrak{g} defined in (3.15) (extended by continuity), and κχ:=κ|Yχ𝔤:Yχ𝔤Yχ𝔤\upkappa_{\chi}:=\upkappa|_{Y_{\hbar}^{\chi}\mathfrak{g}}:Y_{\hbar}^{\chi}\mathfrak{g}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}Y_{\hbar}^{\shortminus\chi}\mathfrak{g}.

3.6. The Universal RR-matrix

We complete our survey of Y(𝔤)Y_{\hbar}(\mathfrak{g}) by reviewing the construction of the universal RR-matrix (z)\mathcal{R}(z) of the Yangian, whose existence and uniqueness was first established by Drinfeld in [Dr]*Thm. 3. We shall, however, need a refined version of Drinfeld’s theorem only recently proven in [GTLW19]*§7.4, which reconstructs (z)\mathcal{R}(z) from the factors in its Gauss decomposition

(z)=+(z)0(z)(z).\mathcal{R}(z)=\mathcal{R}^{+}(z)\mathcal{R}^{0}(z)\mathcal{R}^{-}(z).

Let us begin with a few preliminaries. For each positive integer nn, let

Y(𝔤)n[z;z1]]=kzkY(𝔤)n[[z1]]Y(𝔤)n[[z±1]]Y_{\hbar}(\mathfrak{g})^{\otimes n}[z;z^{-1}]\!]=\bigcup_{k\in\mathbb{N}}z^{k}Y_{\hbar}(\mathfrak{g})^{\otimes n}[\![z^{-1}]\!]\subset Y_{\hbar}(\mathfrak{g})^{\otimes n}[\![z^{\pm 1}]\!]

denote the algebra of formal Laurent series in z1z^{-1} with coefficients in Y(𝔤)nY_{\hbar}(\mathfrak{g})^{\otimes n}. Following [WDYhg]*§4.2, we then introduce the subspace

Y𝔤^z(n):=k(Y(𝔤)n)kzkY(𝔤)n[[z1]],\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(n)}}_{z}:=\prod_{k\in\mathbb{N}}(Y_{\hbar}(\mathfrak{g})^{\otimes n})_{k}z^{-k}\subset Y_{\hbar}(\mathfrak{g})^{\otimes n}[\![z^{-1}]\!],

where (Y(𝔤)n)k(Y_{\hbar}(\mathfrak{g})^{\otimes n})_{k} is the kk-th graded component of the \mathbb{N}-graded algebra Y(𝔤)nY_{\hbar}(\mathfrak{g})^{\otimes n}. This is a \mathbb{C}-algebra isomorphic to the completion of Y(𝔤)nY_{\hbar}(\mathfrak{g})^{\otimes n} with respect to its grading. The [z,z1]\mathbb{C}[z,z^{-1}]-submodule of Y(𝔤)n[z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes n}[z;z^{-1}]\!] that it generates is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra

(3.21) 𝕃(Y𝔤^z(n)):=kzkY𝔤^z(n)Y(𝔤)n[z;z1]]\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(n)}}_{z}):=\bigoplus_{k\in\mathbb{Z}}z^{k}\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(n)}}_{z}\subset Y_{\hbar}(\mathfrak{g})^{\otimes n}[z;z^{-1}]\!]

Though for the moment we shall only be interested in the case where n=2n=2, such formal series spaces will reappear in later sections. In addition to the above, we shall make use of two functions Q+Q_{+}\to\mathbb{N}. First, we have the standard additive height function ht\mathrm{ht} given by

ht(β)=i𝐈ni for each β=i𝐈niαiQ+.\mathrm{ht}(\beta)=\sum_{i\in\mathbf{I}}n_{i}\quad\text{ for each }\;\beta=\sum_{i\in\mathbf{I}}n_{i}\alpha_{i}\in Q_{+}.

Secondly, we have an auxiliary function ν:Q+\nu:Q_{+}\to\mathbb{N} defined by

(3.22) ν(β)=min{k:β1,,βkΔ+ with β=β1++βk},\nu(\beta)=\min\{k\in\mathbb{N}:\exists\,\beta_{1},\ldots,\beta_{k}\in\Delta^{+}\;\text{ with }\;\beta=\beta_{1}+\cdots+\beta_{k}\},

where it is understood that ν(0)=0\nu(0)=0.

Let us now recall the construction of the factor (z)\mathcal{R}^{-}(z). Fix a Cartan element

ζ𝔥β0Ker(β),\zeta\in\mathfrak{h}\setminus\bigcup_{\beta\neq 0}\mathrm{Ker}(\beta),

where the union runs over all nonzero βQ+\beta\in Q_{+}. We then introduce

β(z)(Y(𝔤)βY+(𝔤)β)[[z1]]βQ+\mathcal{R}^{-}_{\beta}(z)\in(Y_{\hbar}^{-}(\mathfrak{g})_{-\beta}\otimes Y_{\hbar}^{+}(\mathfrak{g})_{\beta})[\![z^{-1}]\!]\quad\forall\;\beta\in Q_{+}

by setting 0(z)=1\mathcal{R}^{-}_{0}(z)=1 and defining β(z)\mathcal{R}^{-}_{\beta}(z) inductively in ht(β)\mathrm{ht}(\beta) using the formula

(3.23) β(z)=p0𝐓(ζ)p(zβ(ζ))p+1αΔ+α(ζ)βα(z)(xαxα+),\mathcal{R}^{-}_{\beta}(z)=\hbar\sum_{p\geq 0}\frac{\mathbf{T}(\zeta)^{p}}{(z\beta(\zeta))^{p+1}}\sum_{\alpha\in\Delta^{+}}\alpha(\zeta)\mathcal{R}_{\beta-\alpha}(z)(x_{\alpha}^{-}\otimes x_{\alpha}^{+}),

where γ(z)=0\mathcal{R}_{\gamma}(z)=0 whenever γQ+\gamma\notin Q_{+} and 𝐓(ζ)=ad(T(ζ)1+1T(ζ)),\mathbf{T}(\zeta)=\mathrm{ad}(\mathrm{T}(\zeta)\otimes 1+1\otimes\mathrm{T}(\zeta)), with T:𝔥Y0(𝔤)\mathrm{T}:\mathfrak{h}\to Y_{\hbar}^{0}(\mathfrak{g}) the embedding determined by

T(hi)=ti1i𝐈.\mathrm{T}(h_{i})=t_{i1}\quad\forall\;i\in\mathbf{I}.

Using the fact that, for each pp\in\mathbb{N}, 𝐓(ζ)pzp1\mathbf{T}(\zeta)^{p}z^{-p-1} is a homogeneous operator on 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}) of degree 1-1, one deduces from the recursive formula (3.23) that

β(z)ν(β)𝕃(Y𝔤^z(2))ν(β)zν(β)Y(𝔤)2[[z1]]βQ+.\mathcal{R}^{-}_{\beta}(z)\in\hbar^{\nu(\beta)}\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})_{-\nu(\beta)}\subset z^{-\nu(\beta)}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!]\quad\forall\;\beta\in Q_{+}.

As the set {βQ+:ν(β)k}\{\beta\in Q_{+}:\nu(\beta)\leq k\} is finite for any kk\in\mathbb{N}, we obtain a well defined formal series

(z)=βQ+β(z)(Y(𝔤)Y+(𝔤))[[z1]]\mathcal{R}^{-}(z)=\sum_{\beta\in Q_{+}}\mathcal{R}^{-}_{\beta}(z)\in(Y_{\hbar}^{-}(\mathfrak{g})\otimes Y_{\hbar}^{+}(\mathfrak{g}))[\![z^{-1}]\!]

which by construction satisfies (z)1+𝕃(Y𝔤^z(2))1Y𝔤^z(2).\mathcal{R}^{-}(z)\in 1+\hbar\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})_{-1}\subset\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}.

By Theorem 4.1 of [GTLW19], (z)\mathcal{R}^{-}(z) is independent of the choice of ζ𝔥\zeta\in\mathfrak{h} made above and satisfies a number of remarkable properties. Notably, it intertwines τz𝟏Δ\tau_{z}\otimes\mathbf{1}\circ\Delta and the formal, deformed Drinfeld coproduct ΔzD\Delta_{z}^{\scriptscriptstyle{\operatorname{D}}} on Y(𝔤)Y_{\hbar}(\mathfrak{g}), as defined in [GTLW19]*§3.4. We will not make direct use of these properties here, and refer the reader to [GTLW19] for a detailed treatment of (z)\mathcal{R}^{-}(z).

Let us now recall the definition of the abelian RR-matrix 0(z)Y0(𝔤)2[[z1]]\mathcal{R}^{0}(z)\in Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] from [GTLW19]*§6. {comment} Let 𝓁\mathscr{l} denote half the eigenvalue of the Casimir element ωU(𝔤)\omega\in U(\mathfrak{g}) in the adjoint representation of 𝔤\mathfrak{g}. Equivalently,

𝓁=(θ,θ)2h,\mathscr{l}=\frac{(\theta,\theta)}{2}h^{\vee},

where hh^{\vee} is the dual Coxeter number of 𝔤\mathfrak{g} and θΔ+\theta\in\Delta^{+} is the highest root. Let 𝐁=(diaij)\mathbf{B}=(d_{i}a_{ij}) denote the symmetrization of the Cartan matrix 𝐀\mathbf{A}. Given an indeterminate vv, we let 𝐁(v)=([diaij]v)GL𝐈((v))\mathbf{B}(v)=([d_{i}a_{ij}]_{v})\subset\mathrm{GL}_{\mathbf{I}}(\mathbb{Q}(v)) be the associated matrix of vv-numbers, where

[m]v=vmvmvv1.[m]_{v}=\frac{v^{m}-v^{-m}}{v-v^{-1}}.

Then it is is known [GTL3]*Thm. A.1 that the auxiliary matrix

𝐂(v)=(cij(v))=[2κ]v𝐁(v)1\mathbf{C}(v)=(c_{ij}(v))=[2\kappa]_{v}\mathbf{B}(v)^{-1}

has entries cij(v)c_{ij}(v) in [v,v1]\mathbb{N}[v,v^{-1}], where 4κ4\kappa is the eigenvalue of the Casimir element of 𝔤\mathfrak{g} in the adjoint representation.

Next, for each index i𝐈i\in\mathbf{I}, we introduce the series ti(u)Y0(𝔤)[[u1]]t_{i}(u)\in\hbar Y_{\hbar}^{0}(\mathfrak{g})[\![u^{-1}]\!] and its inverse Borel transform Bi(u)Y0(𝔤)[[u]]B_{i}(u)\in\hbar Y_{\hbar}^{0}(\mathfrak{g})[\![u]\!] by

ti(u)=r0tirur1=log(1+hi(u)) and Bi(u)=r0tirr!ur.t_{i}(u)=\hbar\sum_{r\geq 0}t_{ir}u^{-r-1}=\log(1+\hbar h_{i}(u))\quad\;\text{ and }\;\quad B_{i}(u)=\hbar\sum_{r\geq 0}\frac{t_{ir}}{r!}u^{r}.

Note that ti1t_{i1} coincides with the element of the same name introduced in Section 3.2. From this data, we obtain an element (z)(/z)2Y0(𝔤)2[[z1]]\mathcal{L}(z)\in(\hbar/z)^{2}Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] defined by

(z)=T2κi,j𝐈cij(T)Bi(z)Bj(z)(z2),\mathcal{L}(z)=T^{2\kappa}\sum_{i,j\in\mathbf{I}}c_{ij}(T)B_{i}(\partial_{z})\otimes B_{j}(-\partial_{z})(-z^{-2}),

where TT is the shift operator T(f(z))=f(z+2)T(f(z))=f(z+\frac{\hbar}{2}) on Y(𝔤)2[[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!]. Equivalently:

T=exp(2z):Y(𝔤)2[[z1]]Y(𝔤)2[[z1]].T=\exp\!\left(\frac{\hbar}{2}\partial_{z}\right):Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!]\to Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!].

As (z)z2Y0(𝔤)2[[z1]]\mathcal{L}(z)\in\hbar z^{-2}Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] and Y0(𝔤)2Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2} is torsion free, there is a unique solution 𝒮(z)\mathcal{S}(z) to the formal difference equation

(z)=𝒮(z+2κ)𝒮(z) with 𝒮(z)z1Y0(𝔤)2[[z1]].\mathcal{L}(z)=\mathcal{S}(z+2\kappa\hbar)-\mathcal{S}(z)\quad\text{ with }\;\mathcal{S}(z)\in z^{-1}Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!].

If g(z)z1[[z1]]g(z)\in z^{-1}\mathbb{C}[\![z^{-1}]\!] is the unique solution of z2=g(z+1)g(z)-z^{-2}=g(z+1)-g(z), then by Proposition 6.6 of [GTLW19], we have

(3.24) 𝒮(z)=T2κ(2κ)2i,j𝐈cij(T)Bi(z)Bj(z)(g(z2κ)),\mathcal{S}(z)=\frac{T^{2\kappa}}{(2\kappa\hbar)^{2}}\sum_{i,j\in\mathbf{I}}c_{ij}(T)B_{i}(\partial_{z})\otimes B_{j}(-\partial_{z})\left(g\!\left(\frac{z}{2\kappa\hbar}\right)\right),

where g(z/2κ)g(z/2\kappa\hbar) is viewed as an element of 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}). The abelian RR-matrix 0(z)\mathcal{R}^{0}(z) is defined to be the formal series exponential of this solution:

0(z)=exp(𝒮(z))1+z1Y0(𝔤)2[[z1]].\mathcal{R}^{0}(z)=\exp(\mathcal{S}(z))\in 1+z^{-1}Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!].

Equivalently, it is the unique formal solution in 1+z1Y0(𝔤)2[[z1]]1+z^{-1}Y_{\hbar}^{0}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] of the equation

0(z+2κ)=𝒜(z)0(z),\mathcal{R}^{0}(z+2\kappa\hbar)=\mathcal{A}(z)\mathcal{R}^{0}(z),

where 𝒜(z)=exp((z))\mathcal{A}(z)=\exp(\mathcal{L}(z)). As TT and 2Bi(z)Bj(z)\hbar^{-2}B_{i}(\partial_{z})\otimes B_{j}(-\partial_{z}) are homogeneous operators of degree zero on 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}), it follows from (3.24) that

0(z)1+𝕃(Y𝔤^z(2))1Y𝔤^z(2).\mathcal{R}^{0}(z)\in 1+\hbar\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})_{-1}\subset\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}.

We are now in a position to introduce the universal RR-matrix of the Yangian. Set +(z)=21(z)1\mathcal{R}^{+}(z)=\mathcal{R}_{21}(-z)^{-1} and define

(z):=+(z)0(z)(z)1+z1Y(𝔤)2[[z1]].\mathcal{R}(z):=\mathcal{R}^{+}(z)\mathcal{R}^{0}(z)\mathcal{R}^{-}(z)\in 1+z^{-1}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!].

The following result is the content of Theorem 7.4 of [GTLW19].

Theorem 3.9.

(z)\mathcal{R}(z) is the unique formal series in 1+z1Y(𝔤)2[[z1]]1+z^{-1}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] satisfying the intertwiner equation

(3.25) τz𝟏Δop(x)=(z)τz𝟏Δ(x)(z)1xY(𝔤)\tau_{z}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)=\mathcal{R}(z)\cdot\tau_{z}\otimes\mathbf{1}\circ\Delta(x)\cdot\mathcal{R}(z)^{-1}\quad\forall\;x\in Y_{\hbar}(\mathfrak{g})

in Y(𝔤)2[z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[z;z^{-1}]\!], in addition to the cabling identities

Δ𝟏((z))\displaystyle\Delta\otimes\mathbf{1}(\mathcal{R}(z)) =13(z)23(z)\displaystyle=\mathcal{R}_{13}(z)\mathcal{R}_{23}(z)
𝟏Δ((z))\displaystyle\mathbf{1}\otimes\Delta(\mathcal{R}(z)) =13(z)12(z)\displaystyle=\mathcal{R}_{13}(z)\mathcal{R}_{12}(z)

in Y(𝔤)3[[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 3}[\![z^{-1}]\!]. Moreover, (z)\mathcal{R}(z) has the following properties:

  1. (1)

    It is unitary: (z)1=21(z)\mathcal{R}(z)^{-1}=\mathcal{R}_{21}(-z).

  2. (2)

    For any a,ba,b\in\mathbb{C}, one has

    (τaτb)(z)=(z+ab).(\tau_{a}\otimes\tau_{b})\mathcal{R}(z)=\mathcal{R}(z+a-b).
  3. (3)

    (z)\mathcal{R}(z) is a homogeneous, degree zero, element of 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}), with

    (z)1𝕃(Y𝔤^z(2))1=z1Y𝔤^z(2)\mathcal{R}(z)-1\in\hbar\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})_{-1}=\hbar z^{-1}\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}

    and semiclassical limit given by

    q21((z)1)=Ω𝔤z+tw(U(𝔤[t])U(𝔤[w]))[[z1]]q^{\otimes 2}\hbar^{-1}({\mathcal{R}(z)-1})=\frac{\Omega_{\mathfrak{g}}}{z+t-w}\in(U(\mathfrak{g}[t])\otimes U(\mathfrak{g}[w]))[\![z^{-1}]\!]

The series (z)\mathcal{R}(z) is the universal RR-matrix of the Yangian, and is related to the element D(z)Y(𝔤)2[[z1]]\mathcal{R}^{D}(z)\in Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] introduced by Drinfeld in Theorem 3 of [Dr] by (z)=D(z)1\mathcal{R}(z)=\mathcal{R}^{D}(-z)^{-1}; see §1.1 and Corollary 7.4 of [GTLW19].

Remark 3.10.

Strictly speaking, the results of [GTLW19] are stated with \hbar replaced by an arbitrary nonzero complex number. However, it is easy to translate between the numerical and formal \hbar settings via a homogenization procedure, and for the sake of completeness we make this rigorous in Appendix A; see Proposition A.1.

The final result of this section shows that, in particular, (z)\mathcal{R}(z) is invariant under the Chevalley involution ω\omega of Section 3.3.

Corollary 3.11.

The universal RR-matrix (z)\mathcal{R}(z) satisfies

(ωω)(z)=(z) and (ςς)(z)=21(z)=(κκ)(z).(\omega\otimes\omega)\mathcal{R}(z)=\mathcal{R}(z)\quad\text{ and }\quad(\varsigma\otimes\varsigma)\mathcal{R}(z)=\mathcal{R}_{21}(z)=(\upkappa\otimes\upkappa)\mathcal{R}(z).
Proof.

Set ω(z):=(ωω)(z)\mathcal{R}^{\omega}(z):=(\omega\otimes\omega)\mathcal{R}(z) and ς(z):=(ςς)(z)\mathcal{R}^{\varsigma}(z):=(\varsigma\otimes\varsigma)\mathcal{R}(z). Applying the anti-automorphisms ωω\omega\otimes\omega and ςς\varsigma\otimes\varsigma to the intertwiner equation (8.3), while making use of the relations of Lemma 3.4, we find that

τz𝟏Δ(x)=ω(z)1τz𝟏Δop(x)ω(z)\displaystyle\tau_{z}\otimes\mathbf{1}\circ\Delta(x)=\mathcal{R}^{\omega}(z)^{-1}\cdot\tau_{z}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)\cdot\mathcal{R}^{\omega}(z)
τz𝟏Δop(x)=ς(z)1τz𝟏Δ(x)ς(z)\displaystyle\tau_{-z}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)=\mathcal{R}^{\varsigma}(z)^{-1}\cdot\tau_{-z}\otimes\mathbf{1}\circ\Delta(x)\cdot\mathcal{R}^{\varsigma}(z)

for all xY(𝔤)x\in Y_{\hbar}(\mathfrak{g}). Hence, ω(z)\mathcal{R}^{\omega}(z) and ς(z)1=21ς(z)\mathcal{R}^{\varsigma}(-z)^{-1}=\mathcal{R}_{21}^{\varsigma}(z) are both solutions of (8.3). One verifies similarly that these both satisfy the cabling identities, and hence coincide with (z)\mathcal{R}(z) by the uniqueness statement of Theorem 3.9. Since κ=ςω\upkappa=\varsigma\circ\omega, this completes the proof of the proposition. ∎

4. The Yangian double

We now recall the definition and main properties of the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, including a review of some of the results of [WDYhg]. These results, summarized in Theorems 4.6 and 4.8, will play an integral role in establishing in Sections 7 and 8 that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a homogeneous quantization of the Lie bialgebra 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}] isomorphic to the restricted quantum double of the Yangian.

4.1. The Yangian double

The definition of the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is obtained by allowing the second index of the generators in Definition 3.1 to take values in \mathbb{Z}, while working in the category of topological [[]]\mathbb{C}[\![\hbar]\!]-algebras:

Definition 4.1.

The Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is the unital, associative [[]]\mathbb{C}[\![\hbar]\!]-algebra topologically generated by {xir±,hir}i𝐈,r\{x_{ir}^{\pm},h_{ir}\}_{i\in\mathbf{I},r\in\mathbb{Z}}, subject to the relations (3.1) – (3.6) of Definition 3.1. In terms of generating series

𝒳i±(u)=rxir±ur1 and i(u)=rhirur1,\mathcal{X}_{i}^{\pm}(u)=\sum_{r\in\mathbb{Z}}x_{ir}^{\pm}u^{-r-1}\quad\text{ and }\quad\mathcal{H}_{i}(u)=\sum_{r\in\mathbb{Z}}h_{ir}u^{-r-1},

these defining relations can be expressed as follows, for i,j𝐈i,j\in\mathbf{I}:

[i(u),j(v)]=0,\displaystyle[\mathcal{H}_{i}(u),\mathcal{H}_{j}(v)]=0,
[hi0,𝒳j±(u)]=±2dij𝒳j±(u),\displaystyle[h_{i0},\mathcal{X}_{j}^{\pm}(u)]=\pm 2d_{ij}\mathcal{X}_{j}^{\pm}(u),
(uvdij)i(u)𝒳j±(v)=(uv±dij)𝒳j±(v)i(u),\displaystyle\left(u-v\mp\hbar d_{ij}\right)\mathcal{H}_{i}(u)\mathcal{X}_{j}^{\pm}(v)=\left(u-v\pm\hbar d_{ij}\right)\mathcal{X}_{j}^{\pm}(v)\mathcal{H}_{i}(u),
(uvdij)𝒳i±(u)𝒳j±(v)=(uv±dij)𝒳j±(v)𝒳i±(u),\displaystyle\left(u-v\mp\hbar d_{ij}\right)\mathcal{X}_{i}^{\pm}(u)\mathcal{X}_{j}^{\pm}(v)=\left(u-v\pm\hbar d_{ij}\right)\mathcal{X}_{j}^{\pm}(v)\mathcal{X}_{i}^{\pm}(u),
[𝒳i+(u),𝒳j(v)]=δiju1δ(v/u)i(v),\displaystyle[\mathcal{X}_{i}^{+}(u),\mathcal{X}_{j}^{-}(v)]=\delta_{ij}u^{-1}\delta(v/u)\mathcal{H}_{i}(v),
πSm[𝒳i±(uπ(1)),[𝒳i±(uπ(2)),,[𝒳i±(uπ(m)),𝒳j±(v)]]]=0,\displaystyle\sum_{\pi\in S_{m}}\left[\mathcal{X}_{i}^{\pm}(u_{\pi(1)}),\left[\mathcal{X}_{i}^{\pm}(u_{\pi(2)}),\cdots,\left[\mathcal{X}_{i}^{\pm}(u_{\pi(m)}),\mathcal{X}_{j}^{\pm}(v)\right]\cdots\right]\right]=0,

where δ(u)=rur[[u±1]]\delta(u)=\sum_{r\in\mathbb{Z}}u^{r}\in\mathbb{C}[\![u^{\pm 1}]\!] is the formal delta function and in the last relation iji\neq j and m=1aijm=1-a_{ij}.

DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is \mathbb{Z}-graded as a topological [[]]\mathbb{C}[\![\hbar]\!]-algebra, with grading induced by the degree assignment degxir±=deghir=r\deg x_{ir}^{\pm}=\deg h_{ir}=r for all i𝐈i\in\mathbf{I} and rr\in\mathbb{Z}. That is, if DY𝔤k\mathrm{D}Y_{\hbar}\mathfrak{g}_{k} denotes the closure of the subspace of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} spanned over the complex numbers by monomials in xir±x_{ir}^{\pm}, hirh_{ir} and \hbar of total degree kk, then

𝔻Y𝔤:=kDY𝔤k\mathds{D}Y_{\hbar}\mathfrak{g}:=\bigoplus_{k\in\mathbb{Z}}\mathrm{D}Y_{\hbar}\mathfrak{g}_{k}

is a dense, \mathbb{Z}-graded []\mathbb{C}[\hbar]-subalgebra of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} satisfying the conditions of Lemma 2.4. In particular, in the notation of Section 2.2, one has 𝔻Y𝔤=DY𝔤\mathds{D}Y_{\hbar}\mathfrak{g}=\mathrm{D}Y_{\hbar}\mathfrak{g}_{\mathbb{Z}}.

Remark 4.2.

Let 𝔻Y𝔤ȷ\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath} denote the []\mathbb{C}[\hbar]-algebra generated by {xir±,hir}i𝐈,r\{x_{ir}^{\pm},h_{ir}\}_{i\in\mathbf{I},r\in\mathbb{Z}}, subject to the defining relations (3.1)–(3.6). Then 𝔻Y𝔤ȷ\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath} is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra, and there is a natural algebra homomorphism

ȷ:𝔻Y𝔤ȷ𝔻Y𝔤DY𝔤.\jmath:\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}\to\mathds{D}Y_{\hbar}\mathfrak{g}\subset\mathrm{D}Y_{\hbar}\mathfrak{g}.

The kernel of ȷ\jmath is the graded ideal nn𝔻Y𝔤ȷ\cap_{n\in\mathbb{N}}\hbar^{n}\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}, and DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} can be recovered as the \hbar-adic completion of 𝔻Y𝔤ȷ\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}; see [WDYhg]*Prop. 2.7. Thus ȷ(𝔻Y𝔤ȷ)\jmath(\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}) is a dense, \mathbb{Z}-graded []\mathbb{C}[\hbar]-subalgebra of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}. It is, however, a proper subalgebra of 𝔻Y𝔤\mathds{D}Y_{\hbar}\mathfrak{g} as the graded components ȷ(𝔻Y𝔤kȷ)\jmath(\mathds{D}Y_{\hbar}\mathfrak{g}^{\jmath}_{k}) are not closed in DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}. Rather, one has

DY𝔤k=limn(𝔻Y𝔤kȷ/n𝔻Y𝔤knȷ)k.\mathrm{D}Y_{\hbar}\mathfrak{g}_{k}=\varprojlim_{n}(\mathds{D}Y_{\hbar}\mathfrak{g}_{k}^{\jmath}/\hbar^{n}\mathds{D}Y_{\hbar}\mathfrak{g}_{k-n}^{\jmath})\quad\forall\;k\in\mathbb{Z}.

The above definition implies that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra deformation of the enveloping algebra U(𝔱)U(\mathfrak{t}), where we recall that 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}]. Analogously to the Yangian case recalled in Section 3.2, the identification DY𝔤/DY𝔤U(𝔱)\mathrm{D}Y_{\hbar}\mathfrak{g}/\hbar\mathrm{D}Y_{\hbar}\mathfrak{g}\cong U(\mathfrak{t}) is induced by the graded [[]]\mathbb{C}[\![\hbar]\!]-algebra epimorphism DY𝔤U(𝔱)\mathrm{D}Y_{\hbar}\mathfrak{g}\twoheadrightarrow U(\mathfrak{t}) given by

xir±xi±tr,hirhitri𝐈 and r.x_{ir}^{\pm}\mapsto x_{i}^{\pm}t^{r},\quad h_{ir}\mapsto h_{i}t^{r}\quad\forall\;i\in\mathbf{I}\;\text{ and }\;r\in\mathbb{Z}.

The Poincaré–Birkhoff–Witt Theorem for DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, established in Theorem 6.2 of [WDYhg], asserts that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-module, and thus a flat deformation of U(𝔱)U(\mathfrak{t}):

Theorem 4.3.

DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a flat deformation of the \mathbb{Z}-graded algebra DY𝔤/DY𝔤U(𝔱)\mathrm{D}Y_{\hbar}\mathfrak{g}/\hbar\mathrm{D}Y_{\hbar}\mathfrak{g}\cong U(\mathfrak{t}) over [[]]\mathbb{C}[\![\hbar]\!]. {comment}That is, it is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-algebra, \mathbb{Z}-graded as a topological algebra, with semiclassical limit U(𝔱)U(\mathfrak{t}). In particular, DY𝔤U(𝔱)[[]]\mathrm{D}Y_{\hbar}\mathfrak{g}\cong U(\mathfrak{t})[\![\hbar]\!] as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module.

The notation for the generators of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} may seem, on the surface, to conflict with the notation used for generators in the Yangian associated to 𝔤\mathfrak{g}. However, there is a natural \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

(4.1) ı:Y𝔤DY𝔤\imath:Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}

sending each generator of Y(𝔤)Y𝔤Y_{\hbar}(\mathfrak{g})\subset Y_{\hbar}\mathfrak{g} to the corresponding element of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, denoted with the same symbol. By Corollary 4.4 of [WDYhg] ı\imath is injective, and we shall henceforth identify Y𝔤Y_{\hbar}\mathfrak{g} with ı(Y𝔤)\imath(Y_{\hbar}\mathfrak{g}).

4.2. Automorphisms and root vectors

To each i𝐈i\in\mathbf{I}, we may associate series x˙i±(u)\dot{x}_{i}^{\pm}(u) and h˙i(u)\dot{h}_{i}(u) in DY𝔤[[u]]\mathrm{D}Y_{\hbar}\mathfrak{g}[\![u]\!] by setting

x˙i±(u):=xi±(u)𝒳i±(u) and h˙i±(u):=hi±(u)i±(u).\dot{x}_{i}^{\pm}(u):=x_{i}^{\pm}(u)-\mathcal{X}_{i}^{\pm}(u)\quad\text{ and }\quad\dot{h}_{i}^{\pm}(u):=h_{i}^{\pm}(u)-\mathcal{H}_{i}^{\pm}(u).

The following lemma is then a straightforward consequence of the defining relations of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, where ω\omega and ς\varsigma are as in Lemma 3.4.

Lemma 4.4.

There are unique extensions of the anti-automorphisms ω\omega and ς\varsigma of Y(𝔤)Y_{\hbar}(\mathfrak{g}) to anti-automorphisms of the [[]]\mathbb{C}[\![\hbar]\!]-algebra DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} such that, for each i𝐈i\in\mathbf{I},

ω(x˙i±(u))=x˙i(u),ω(h˙i(u))=h˙i(u),\displaystyle\omega(\dot{x}_{i}^{\pm}(u))=\dot{x}_{i}^{\mp}(u),\quad\omega(\dot{h}_{i}(u))=\dot{h}_{i}(u),
ς(x˙i±(u))=x˙i±(u),ς(h˙i(u))=h˙i(u).\displaystyle\varsigma(\dot{x}_{i}^{\pm}(u))=\dot{x}_{i}^{\pm}(-u),\quad\varsigma(\dot{h}_{i}(u))=\dot{h}_{i}(-u).

Following the terminology from Section 3.3, we shall refer to the involution ω\omega as the Chevalley involution of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}.

The adjoint action of 𝔥DY𝔤\mathfrak{h}\subset\mathrm{D}Y_{\hbar}\mathfrak{g} on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} gives rise to a topological QQ-grading on the [[]]\mathbb{C}[\![\hbar]\!]-algebra DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} (cf. Corollary 6.5 and [WDYhg]*§3.1) with graded components given by the weight spaces

DY𝔤β:={xDY𝔤:[h,x]=β(h)xh𝔥}βQ.\mathrm{D}Y_{\hbar}\mathfrak{g}_{\beta}:=\{x\in\mathrm{D}Y_{\hbar}\mathfrak{g}:[h,x]=\beta(h)x\quad\forall\;h\in\mathfrak{h}\}\quad\forall\;\beta\in Q.

That is to say, each of these subspaces is a closed [[]]\mathbb{C}[\![\hbar]\!]-submodule of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and the direct sum

DY𝔤Q:=βQDY𝔤β\mathrm{D}Y_{\hbar}\mathfrak{g}_{Q}:=\bigoplus_{\beta\in Q}\mathrm{D}Y_{\hbar}\mathfrak{g}_{\beta}

is a QQ-graded dense [[]]\mathbb{C}[\![\hbar]\!]-subalgebra of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} whose subspace topology coincides with its \hbar-adic topology. Here we have borrowed, and modified appropriately, the terminology of Section 2.2. It should be emphasized that the word topological is key in this statement, as the QQ-graded algebra DY𝔤Q\mathrm{D}Y_{\hbar}\mathfrak{g}_{Q} is a proper subset of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}.

We now introduce root vectors in DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} of arbitrary degree, following the procedure used in Section 3.4. Recall from (3.16) that to each positive root βΔ+\beta\in\Delta^{+} we attached an index i(β)𝐈i(\beta)\in\mathbf{I} and an element 𝐗βU(𝔫+)βαi(β)\mathbf{X}^{\beta}\in U(\mathfrak{n}_{+})_{\beta-\alpha_{i(\beta)}}. For each kk\in\mathbb{Z}, we then set

xβ,k+:=𝐗βxi(β),k+DY𝔤β and xβ,k:=ω(xβ,k+)DY𝔤β,x_{\beta,k}^{+}:=\mathbf{X}^{\beta}\cdot x_{i(\beta),k}^{+}\in\mathrm{D}Y_{\hbar}\mathfrak{g}_{\beta}\quad\text{ and }\quad x_{\beta,k}^{-}:=\omega(x_{\beta,k}^{+})\in\mathrm{D}Y_{\hbar}\mathfrak{g}_{-\beta},

where 𝔤\mathfrak{g} operates on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} via the adjoint action. For kk\in\mathbb{N}, these elements are identical to those introduced below (3.16). Moreover, we have

xβ±tr=xβ,r±modβΔ+,r.x_{\beta}^{\pm}t^{r}=x_{\beta,r}^{\pm}\mod\hbar\quad\forall\;\beta\in\Delta^{+},\,r\in\mathbb{Z}.

It shall be convenient for us to organize the above elements into generating series xβ±(u)DY𝔤±β[[u1]]x_{\beta}^{\pm}(u)\in\mathrm{D}Y_{\hbar}\mathfrak{g}_{\pm\beta}[\![u^{-1}]\!] and x˙β±(u)DY𝔤±β[[u]]\dot{x}_{\beta}^{\pm}(u)\in\mathrm{D}Y_{\hbar}\mathfrak{g}_{\pm\beta}[\![u]\!] by setting

xβ±(u):=rxβ,r±ur1 and x˙β±(u):=rxβ,r1±urβΔ+.x_{\beta}^{\pm}(u):=\sum_{r\in\mathbb{N}}x_{\beta,r}^{\pm}u^{-r-1}\quad\text{ and }\quad\dot{x}_{\beta}^{\pm}(u):=-\sum_{r\in\mathbb{N}}x_{\beta,-r-1}^{\pm}u^{r}\quad\forall\quad\beta\in\Delta^{+}.

4.3. The formal shift operator

We now shift our attention to recalling some of the main constructions of [WDYhg], subject to our standing assumption that 𝔤\mathfrak{g} is a finite-dimensional simple Lie algebra. To begin, we introduce a number of relevant spaces built from the Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}), following §4.1–4.2 of [WDYhg] and Section 3.6 above. Firstly, let

Y𝔤^=kY(𝔤)k\widehat{Y_{\hbar}\mathfrak{g}}=\prod_{k\in\mathbb{N}}Y_{\hbar}(\mathfrak{g})_{k}

denote the formal completion of Y(𝔤)Y_{\hbar}(\mathfrak{g}) with respect to its \mathbb{N}-grading. This is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-algebra containing Y𝔤Y_{\hbar}\mathfrak{g} as a subalgebra; see [GTL1]*Prop. 6.3 or [WDYhg]*Lem. 4.1.

Next, let 𝕃Y𝔤^z\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} and Y𝔤^z\widehat{Y_{\hbar}\mathfrak{g}}_{z} denote the subspaces 𝕃(Y𝔤^z(1))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(1)}}_{z}) and Y𝔤^z(1)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(1)}}_{z} of the space of Laurent series Y(𝔤)[z;z1]]Y_{\hbar}(\mathfrak{g})[z;z^{-1}]\!] introduced in Section 3.6. That is,

Y𝔤^z=kY(𝔤)kzkY(𝔤)[[z1]],\widehat{Y_{\hbar}\mathfrak{g}}_{z}=\prod_{k\in\mathbb{N}}Y_{\hbar}(\mathfrak{g})_{k}z^{-k}\subset Y_{\hbar}(\mathfrak{g})[\![z^{-1}]\!],

and 𝕃Y𝔤^z\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is the \mathbb{Z}-graded subalgebra of Y(𝔤)[z;z1]]Y_{\hbar}(\mathfrak{g})[z;z^{-1}]\!] over []\mathbb{C}[\hbar] defined by

𝕃Y𝔤^z=nznY𝔤^z.\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}=\bigoplus_{n\in\mathbb{Z}}z^{n}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

The following lemma, established in [WDYhg]*Prop. 4.2, provides a characterization of the \hbar-adic completion of 𝕃Y𝔤^z\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

Lemma 4.5.

The \hbar-adic completion LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} of 𝕃Y𝔤^z\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is the subspace of Y𝔤[[z±1]]Y_{\hbar}\mathfrak{g}[\![z^{\pm 1}]\!] consisting of formal series

kzkfk(z),fk(z)Y𝔤^z\sum_{k\in\mathbb{Z}}z^{k}f_{k}(z),\quad f_{k}(z)\in\widehat{Y_{\hbar}\mathfrak{g}}_{z}

with the property that, for each nn\in\mathbb{N}, \exists NnN_{n}\in\mathbb{N} such that

fk(z)(/z)nY𝔤^z|k|Nn.f_{k}(z)\in(\hbar/z)^{n}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\quad\forall\quad|k|\geq N_{n}.

Moreover, LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is a topologically free \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra with

(LY𝔤^z)=𝕃Y𝔤^z.(\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z})_{\mathbb{Z}}=\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

The last statement of the lemma employs the notation from Lemma 2.4 and follows from the fact that 𝕃Y𝔤^z\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is a torsion free \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra and that each subspace zkY𝔤^zz^{k}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is closed in Y𝔤[[z±1]]Y_{\hbar}\mathfrak{g}[\![z^{\pm 1}]\!], equipped with the \hbar-adic topology, and thus in LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

Next, recall that τz\tau_{z} is the formal shift homomorphism of the Yangian introduced in (3.13), which we may view as a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

τz:Y𝔤Y𝔤[[z]].\tau_{z}:Y_{\hbar}\mathfrak{g}\hookrightarrow Y_{\hbar}\mathfrak{g}[\![z]\!].

In addition, we set z(n)=1n!zn\partial_{z}^{(n)}=\frac{1}{n!}\partial_{z}^{n} for each nn\in\mathbb{N}, where z\partial_{z} is the partial derivative operator with respect to zz. The following theorem, which is a combination of a special case of Theorems 4.3 and 6.2 of [WDYhg], introduces the so-called formal shift operator Φz\Phi_{z} on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}.

Theorem 4.6.

There is a unique homomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

Φz:DY𝔤LY𝔤^z\Phi_{z}:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}

with the property that Φzı=τz\Phi_{z}\circ\imath=\tau_{z}. Moreover:

  1. (1)

    Φz\Phi_{z} is injective, and satisfies

    Φz(x˙β±(u))\displaystyle\Phi_{z}(\dot{x}_{\beta}^{\pm}(u)) =n(1)nunz(n)xβ±(z)βΔ+,\displaystyle=\sum_{n\in\mathbb{N}}(-1)^{n}u^{n}\partial_{z}^{(n)}x_{\beta}^{\pm}(-z)\quad\forall\;\beta\in\Delta^{+},
    Φz(h˙i(u))\displaystyle\Phi_{z}(\dot{h}_{i}(u)) =n(1)nunz(n)hi(z)i𝐈.\displaystyle=\sum_{n\in\mathbb{N}}(-1)^{n}u^{n}\partial_{z}^{(n)}h_{i}(-z)\quad\forall\;i\in\mathbf{I}.
  2. (2)

    The restriction of Φz\Phi_{z} to 𝔻Y𝔤\mathds{D}Y_{\hbar}\mathfrak{g} is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra homomorphism

    Φz|𝔻Y𝔤:𝔻Y𝔤𝕃Y𝔤^z=nznY𝔤^zY(𝔤)[z;z1]].\Phi_{z}|_{\mathds{D}Y_{\hbar}\mathfrak{g}}:\mathds{D}Y_{\hbar}\mathfrak{g}\to\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}=\bigoplus_{n\in\mathbb{Z}}z^{n}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\subset Y_{\hbar}(\mathfrak{g})[z;z^{-1}]\!].
Remark 4.7.

In the terminology of Section 2.2, Part (2) is equivalent to the assertion that Φz\Phi_{z} is a \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism. This is implied by Part (2) of Theorem 4.3 in [WDYhg], which asserts that the composition Φzȷ\Phi_{z}\circ\jmath is a \mathbb{Z}-graded algebra homomorphism, where ȷ\jmath is as in Remark 4.2.

By [WDYhg]*Prop. 4.2 (4) the evaluation map

(4.2) 𝓋:LY𝔤^zY𝔤^,f(z)f(1),\mathscr{Ev}:\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\to\widehat{Y_{\hbar}\mathfrak{g}},\quad f(z)\mapsto f(1),

is an epimorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras. We may thus compose Φz\Phi_{z} with 𝓋\mathscr{Ev} to obtain a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

Φ:=𝓋Φz:DY𝔤Y𝔤^.\Phi:=\mathscr{Ev}\circ\Phi_{z}:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\widehat{Y_{\hbar}\mathfrak{g}}.

By Theorem 6.2 of [WDYhg], this homomorphism is injective. One of the main results of [WDYhg] is that Φ\Phi induces an isomorphism between completions of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} of Y(𝔤)Y_{\hbar}(\mathfrak{g}). To make this precise, let 𝒥DY𝔤\mathcal{J}\subset\mathrm{D}Y_{\hbar}\mathfrak{g} denote the kernel of the composition

DY𝔤0U(𝔤[t±1])t1U(𝔤),\mathrm{D}Y_{\hbar}\mathfrak{g}\xrightarrow{\hbar\mapsto 0}U(\mathfrak{g}[t^{\pm 1}])\xrightarrow{t\mapsto 1}U(\mathfrak{g}),

and define DY𝔤^\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}} to be the completion of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} with respect to the 𝒥\mathcal{J}-adic filtration

DY𝔤=𝒥0𝒥𝒥2𝒥n\mathrm{D}Y_{\hbar}\mathfrak{g}=\mathcal{J}^{0}\supset\mathcal{J}\supset\mathcal{J}^{2}\supset\cdots\supset\mathcal{J}^{n}\supset\cdots

We then have the following analogue of [GTL1]*Thm. 6.2, which is a special case of Theorem 5.5 in [WDYhg].

Theorem 4.8.

Φ\Phi is injective and induces an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

Φ^:DY𝔤^Y𝔤^\widehat{\Phi}:\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\widehat{Y_{\hbar}\mathfrak{g}}

with inverse Γ\Gamma uniquely extending the embedding ıτ1:Y(𝔤)DY𝔤\imath\circ\tau_{-1}:Y_{\hbar}(\mathfrak{g})\to\mathrm{D}Y_{\hbar}\mathfrak{g}.

Remark 4.9.

One subtle consequence of this result is that the natural homomorphism

DY𝔤DY𝔤^\mathrm{D}Y_{\hbar}\mathfrak{g}\to\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}

is injective. Indeed, its composition with the isomorphism Φ^\widehat{\Phi} recovers the injection Φ\Phi. Henceforth, we shall freely make use of this fact and view DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as a subalgebra of DY𝔤^\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}. We further note that the subspace topology on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, with respect to the \hbar-adic topology on DY𝔤^\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}, coincides with the \hbar-adic topology on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}. Indeed, as DY𝔤^Y𝔤^\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}\cong\widehat{Y_{\hbar}\mathfrak{g}} is torsion free, to see this it suffices to show that

DY𝔤^DY𝔤=DY𝔤.\hbar\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}\cap\mathrm{D}Y_{\hbar}\mathfrak{g}=\hbar\mathrm{D}Y_{\hbar}\mathfrak{g}.

This, however, follows immediately from the injectivity of the semiclassical limit of Φ\Phi, established in [WDYhg]*Thm. 6.2. In particular, this discussion implies that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a closed subspace of the topological [[]]\mathbb{C}[\![\hbar]\!]-module DY𝔤^\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}. Similarly, one deduces that Φz(DY𝔤)\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}) is a closed subspace of LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

{comment}

Note. Let’s establish this last statement. Since LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} is torsion free, it is sufficient to show that

LY𝔤^zΦz(DY𝔤)=Φz(DY𝔤).\hbar\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\cap\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g})=\hbar\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}).

Let x\hbar x be an element of this intersection. Applying 𝓋\mathscr{Ev}, we obtain 𝓋(x)Y𝔤^Φ(DY𝔤)\hbar\mathscr{Ev}(x)\in\hbar\widehat{Y_{\hbar}\mathfrak{g}}\cap\Phi(\mathrm{D}Y_{\hbar}\mathfrak{g}). Since DY𝔤^DY𝔤=DY𝔤\hbar\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}\cap\mathrm{D}Y_{\hbar}\mathfrak{g}=\hbar\mathrm{D}Y_{\hbar}\mathfrak{g}, this intersection is Φ(DY𝔤)\hbar\Phi(\mathrm{D}Y_{\hbar}\mathfrak{g}). Therefore, there is yDY𝔤y\in\mathrm{D}Y_{\hbar}\mathfrak{g} such that 𝓋(x)=Φ(y)\mathscr{Ev}(x)=\Phi(y). Consider x˙:=Φz(y)Φz(DY𝔤)\dot{x}:=\Phi_{z}(y)\in\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}). We have 𝓋(x˙)=Φ(y)=𝓋(x)\mathscr{Ev}(\hbar\dot{x})=\hbar\Phi(y)=\mathscr{Ev}(\hbar x) . Since 𝓋Φz=Φ\mathscr{Ev}\circ\Phi_{z}=\Phi is injective, 𝓋|Φz(DY𝔤)\mathscr{Ev}|_{\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g})} is injective, and hence we must have x=x˙Φz(DY𝔤)\hbar x=\hbar\dot{x}\in\hbar\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}).

To conclude this preliminary section on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, we introduce the auxiliary [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

(4.3) Γz:=Γ𝓋:LY𝔤^zDY𝔤^\Gamma_{z}:=\Gamma\circ\mathscr{Ev}:\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\to\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}

which has the property that Γz|Im(Φz)=Φz1\Gamma_{z}|_{\mathrm{Im}(\Phi_{z})}=\Phi_{z}^{-1}. This homomorphism shall play a prominent role in the main result of Section 7 and its proof; see Theorem 7.5.

5. The Drinfeld–Gavarini Yangian

In this section and Section 6, we give a self-contained exposition to the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, which provides a homogeneous quantization of the graded dual 𝔱=t1𝔤[t1]\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}] to the Lie bialgebra 𝔱+=𝔤[t]\mathfrak{t}_{\scriptscriptstyle{+}}=\mathfrak{g}[t], as will be explained in detail in Section 6. The definition of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} takes as input the so-called Drinfeld–Gavarini subalgebra of the Yangian. The goal of the present section is to introduce this subalgebra and survey some of its key properties.

5.1. Quantum duality

To provide context, let us first briefly recall the general construction of the dual of a quantized enveloping algebra, following [DrQG]*§7 and [Gav02]; see also [Etingof-Kazhdan-I]*§4.4 and [Andrea-Valerio-18]*§2.19, for example.

Suppose that U𝔟U_{\hbar}\mathfrak{b} is a quantization of a finite-dimensional Lie bialgebra (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}), where we follow the terminology and notation from Section 2.4. One would then like to introduce a notion of duality which sends U𝔟U_{\hbar}\mathfrak{b} to a quantization of the Lie bialgebra dual (𝔟,δ𝔟=[,]𝔟)(\mathfrak{b}^{\ast},\delta_{\mathfrak{b}^{\ast}}=[\,,\,]_{\mathfrak{b}}^{\ast}) to (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}). The first crucial observation is that [[]]\mathbb{C}[\![\hbar]\!]-linear dual U𝔟=Hom[[]](U𝔟,[[]])U_{\hbar}\mathfrak{b}^{\ast}=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(U_{\hbar}\mathfrak{b},\mathbb{C}[\![\hbar]\!]) of U𝔟U_{\hbar}\mathfrak{b} is not itself a quantized enveloping algebra; see Lemma 2.1 of [Gav02], in addition to [DrQG]*§7 and [Andrea-Valerio-18]*§2.19. The correct notion of duality within the category of quantized enveloping algebras was introduced in [DrQG]*§7. One considers the [[]]\mathbb{C}[\![\hbar]\!]-submodule

U𝔟:={xU𝔟:(𝟏ε)nΔn(x)nU𝔟nn}U𝔟,U_{\hbar}\mathfrak{b}^{\prime}:=\{x\in U_{\hbar}\mathfrak{b}:(\mathbf{1}-\varepsilon)^{\otimes n}\Delta^{n}(x)\in\hbar^{n}U_{\hbar}\mathfrak{b}^{\otimes n}\;\forall\;n\in\mathbb{N}\}\subset U_{\hbar}\mathfrak{b},

where ε\varepsilon and Δ\Delta are the counit and coproduct, respectively, on the topological Hopf algebra U𝔟U_{\hbar}\mathfrak{b}, and all notation is as in Section 5.2 below. Then, by [Gav02]*Prop. 3.6, U𝔟U_{\hbar}\mathfrak{b}^{\prime} is a quantized formal series Hopf algebra, with semiclassical limit isomorphic as an algebra to the completion of the symmetric algebra 𝖲(𝔟)=n𝖲n(𝔟)\mathsf{S}(\mathfrak{b})=\bigoplus_{n\in\mathbb{N}}\mathsf{S}^{n}(\mathfrak{b}) with respect to its standard grading. In particular, this means that although U𝔟U_{\hbar}\mathfrak{b}^{\prime} is not in general a topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] in the sense of Section 2.1, it is a topological Hopf algebra with respect to the 𝐉𝔟\mathbf{J}_{\mathfrak{b}}-adic topology, where

𝐉𝔟=U𝔟U𝔟=ε|U𝔟1([[]]).\mathbf{J}_{\mathfrak{b}}=\hbar U_{\hbar}\mathfrak{b}\cap U_{\hbar}\mathfrak{b}^{\prime}=\varepsilon|_{U_{\hbar}\mathfrak{b}^{\prime}}^{-1}(\hbar\mathbb{C}[\![\hbar]\!]).

The subspace U𝔟(U𝔟)U_{\hbar}\mathfrak{b}^{\circ}\subset(U_{\hbar}\mathfrak{b}^{\prime})^{\ast} consisting of continuous linear forms with respect to this topology is then a quantization of (𝔟,δ𝔟)(\mathfrak{b}^{\ast},\delta_{\mathfrak{b}^{\ast}}). This is the quantized enveloping algebra dual of U𝔟U_{\hbar}\mathfrak{b}.

Remark 5.1.

Here we note that U𝔟U_{\hbar}\mathfrak{b}^{\circ} can be equivalently defined as the \hbar-adic completion of the [[]]\mathbb{C}[\![\hbar]\!]-module

(U𝔟)×=nn𝔪𝔟n(())[[]]U𝔟,(U_{\hbar}\mathfrak{b}^{\ast})^{\times}=\sum_{n\in\mathbb{N}}\hbar^{-n}\mathfrak{m}^{n}_{\mathfrak{b}}\subset\mathbb{C}(\!(\hbar)\!)\otimes_{\mathbb{C}[\![\hbar]\!]}U_{\hbar}\mathfrak{b}^{\ast},

where 𝔪𝔟:={fU𝔟:f(1)[[]]}\mathfrak{m}_{\mathfrak{b}}:=\{f\in U_{\hbar}\mathfrak{b}^{\ast}:f(1)\in\hbar\mathbb{C}[\![\hbar]\!]\}. That this produces a topological Hopf algebra which can be identified with U𝔟U_{\hbar}\mathfrak{b}^{\circ} is a non-trivial result, which is part of the quantum duality principle. This was first announced in [DrQG]*§7, and proven in detail in [Gav02]; see Theorem 1.6 therein. We will not, however, need this equivalent formulation in the present paper.

In our setting, 𝔟=𝔱+=𝔤[t]\mathfrak{b}=\mathfrak{t}_{\scriptscriptstyle{+}}=\mathfrak{g}[t] is not finite-dimensional, but rather an \mathbb{N}-graded Lie bialgebra 𝔟=n𝔟n\mathfrak{b}=\bigoplus_{n\in\mathbb{N}}\mathfrak{b}_{n} with finite-dimensional graded components. As Y𝔤=U𝔟Y_{\hbar}\mathfrak{g}=U_{\hbar}\mathfrak{b} is a homogeneous quantization of 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}, the above construction remains valid, provided the notion of duality is adjusted so as to respect the underlying gradings. In fact, one can replace U𝔟U_{\hbar}\mathfrak{b}^{\prime} with an \mathbb{N}-graded topological Hopf algebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} over [[]]\mathbb{C}[\![\hbar]\!] of finite type, and U𝔟U_{\hbar}\mathfrak{b}^{\circ} with the restricted dual of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}, as defined in Section 2.3. The topological Hopf algebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} and its []\mathbb{C}[\hbar]-form 𝖸˙(𝔤)=(𝖸˙𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})=(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g})_{\mathbb{N}} (see Section 2.2) are the focus of the present section.

5.2. The Drinfeld–Gavarini subalgebra

Let us define Δn\Delta^{n} for any nn\in\mathbb{N} by setting Δ0=ε\Delta^{0}=\varepsilon, Δ1=𝟏=𝟏Y(𝔤)\Delta^{1}=\mathbf{1}=\mathbf{1}_{Y_{\hbar}(\mathfrak{g})} and

Δn:=(Δ𝟏(n2))Δn1:Y(𝔤)Y(𝔤)n\Delta^{n}:=(\Delta\otimes\mathbf{1}^{\otimes(n-2)})\circ\Delta^{n-1}:Y_{\hbar}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g})^{\otimes n}

for all n2n\geq 2. We then define the []\mathbb{C}[\hbar]-submodule 𝖸˙(𝔤)Y(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\subset Y_{\hbar}(\mathfrak{g}) by

𝖸˙(𝔤):={xY(𝔤):(𝟏ε)nΔn(x)nY(𝔤)nn}.\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}):=\{x\in Y_{\hbar}(\mathfrak{g}):(\mathbf{1}-\varepsilon)^{\otimes n}\Delta^{n}(x)\in\hbar^{n}Y_{\hbar}(\mathfrak{g})^{\otimes n}\;\forall\;n\in\mathbb{N}\}.

By Lemma 3.2 and Proposition 3.5 of [KasTu00] (see also [Gav02]*Prop. 2.6, [Gav07]*Thm. 3.5 and [FiTs19]*Lem. A.1), 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a subalgebra of Y(𝔤)Y_{\hbar}(\mathfrak{g}) which is commutative modulo \hbar:

(5.1) [x,y]𝖸˙(𝔤)x,y𝖸˙(𝔤).[x,y]\in\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\quad\forall\;x,y\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

As the structure maps 𝟏\mathbf{1}, ε\varepsilon and Δn\Delta^{n} are graded, 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) inherits from Y(𝔤)Y_{\hbar}(\mathfrak{g}) the structure of an \mathbb{N}-graded algebra. We shall call 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) the Drinfeld–Gavarini subalgebra of the Yangian Y(𝔤)Y_{\hbar}(\mathfrak{g}). Its algebraic structure has been described in detail by Tsymbaliuk and Weekes in Appendix A of [FiTs19], following the general results obtained in the works [Gav02, Gav07] of Gavarini. In this subsection we review, and partially extend, this description.

Let 𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) denote the Rees algebra associated to the standard enveloping algebra filtration 𝐅\mathbf{F}_{\bullet} on U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}):

𝖱(U(𝔱+))=nn𝐅n(U(𝔱+))U(𝔱+)[].\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))=\bigoplus_{n\in\mathbb{N}}\hbar^{n}\mathbf{F}_{n}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))\subset U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar].

Consider now the symmetric algebra 𝖲(𝔱+)𝖲(𝔱+)[]\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\subset\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar] on 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}. Here \hbar can be viewed as a gradation parameter associated to the standard \mathbb{N}-grading on the symmetric algebra 𝖲(𝔱+)\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}}). Namely, 𝖲(𝔱+)n𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cap\hbar^{n}\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}}) is precisely the nn-th symmetric power 𝖲n(𝔱+)=n𝖲n(𝔱+)\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})=\hbar^{n}\mathsf{S}^{n}(\mathfrak{t}_{\scriptscriptstyle{+}}), and 𝖲(𝔱+)𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}}) as an \mathbb{N}-graded algebra. As U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) is a filtered deformation of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) (that is, one has grU(𝔱+)𝖲(𝔱+)\mathrm{gr}\,U(\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})), 𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) is a flat deformation of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) over []\mathbb{C}[\hbar]. Let

𝗊:𝖱(U(𝔱+))𝖲(𝔱+)\mathsf{q}:\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))\twoheadrightarrow\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})

be the natural quotient map, under the identification of 𝖱(U(𝔱+))/𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))/\hbar\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) with grU(𝔱+)𝖲(𝔱+)\mathrm{gr}\,U(\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}). In what follows we shall be primarily interested in the loop gradings on 𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) and 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}), inherited from the natural grading on U(𝔱+)[]U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar] compatible with the \mathbb{N}-grading on 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}. Namely, one has

deg(𝔱+,k)=deg(𝔤tk)=k+1k.\deg(\hbar\mathfrak{t}_{{\scriptscriptstyle{+}},k})=\deg(\hbar\mathfrak{g}t^{k})=k+1\quad\forall\;k\in\mathbb{N}.

We shall denote the nn-th graded component of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) by 𝖲n(𝔱+)\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) so that

𝖲(𝔱+)=n𝖲n(𝔱+).\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})=\bigoplus_{n\in\mathbb{N}}\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}).
{comment}

In particular 𝖱(U(𝔱+))n=k=0nk𝐅k(U(𝔱+)nk)\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))_{n}=\bigoplus_{k=0}^{n}\hbar^{k}\mathbf{F}_{k}(U(\mathfrak{t}_{\scriptscriptstyle{+}})_{n-k}), where 𝐅k(U(𝔱+)nk)=𝐅k(U(𝔱+))U(𝔱+)nk\mathbf{F}_{k}(U(\mathfrak{t}_{\scriptscriptstyle{+}})_{n-k})=\mathbf{F}_{k}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))\cap U(\mathfrak{t}_{\scriptscriptstyle{+}})_{n-k} is spanned by those monomials in 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} of length less than equal to kk which have degree nkn-k.

Recall from Section 3.4 that ν𝔾\upnu_{\mathds{G}} denotes the graded []\mathbb{C}[\hbar]-module isomorphism

ν𝔾:Y(𝔤)U(𝔱+)[]\upnu_{\mathds{G}}:Y_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]

defined in (3.17), which depends on a fixed total order on the set 𝔾\mathds{G}. We equip 𝔾\hbar\mathds{G} with the induced ordering, for which multiplication by \hbar defines an isomorphism of ordered sets 𝔾𝔾\mathds{G}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\hbar\mathds{G}, and we let B(𝔾)Y(𝔤)B(\hbar\mathds{G})\subset Y_{\hbar}(\mathfrak{g}) denote the corresponding set of ordered monomials in 𝔾\hbar\mathds{G}. We further recall that μ:U(𝔱+)[]Y(𝔤)\mu:U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]\to Y_{\hbar}(\mathfrak{g}) is the inverse of the specific choice ν=ν𝔾\upnu=\upnu_{\mathds{G}} defined in (3.18).

The following Proposition is a consequence of Proposition 3.3 of [Gav07] in addition to Proposition A.2 and Theorem A.7 of [FiTs19]; see also [Gav02]*§3.5.

Proposition 5.2.

Let ν˙𝔾\dot{\upnu}_{\mathds{G}} denote the restriction of ν𝔾\upnu_{\mathds{G}} to 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). Then:

  1. (1)

    𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded Hopf subalgebra of Y(𝔤)Y_{\hbar}(\mathfrak{g}).

  2. (2)

    ν˙𝔾\dot{\upnu}_{\mathds{G}} is an isomorphism of \mathbb{N}-graded []\mathbb{C}[\hbar]-modules

    ν˙𝔾:𝖸˙(𝔤)𝖱(U(𝔱+))\dot{\upnu}_{\mathds{G}}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))
  3. (3)

    𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is generated as a []\mathbb{C}[\hbar]-algebra by μ(𝔱+)\hbar\mu(\mathfrak{t}_{\scriptscriptstyle{+}}) and has basis B(𝔾)B(\hbar\mathds{G}).

  4. (4)

    The composition 𝗊˙:=𝗊ν˙𝔾\dot{\mathsf{q}}:=\mathsf{q}\circ\dot{\upnu}_{\mathds{G}} is an epimorphism of \mathbb{N}-graded algebras which descends to an isomorphism

    𝖸˙(𝔤)/𝖸˙(𝔤)𝖲(𝔱+).\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}).
Proof of (2) and (3).

These statements are a minor modification of the statement of Theorem A.7 of [FiTs19]. For the sake of completeness, let us recall the main ingredients, beginning with the proof that 𝔾\hbar\mathds{G} (and thus μ(𝔱+)\hbar\mu(\mathfrak{t}_{\scriptscriptstyle{+}})) is contained in 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), given in Lemmas A.5 and A.6 of [FiTs19].

For each nn\in\mathbb{N}, x𝔤x\in\mathfrak{g} and i𝐈i\in\mathbf{I}, the formulas of Proposition 3.2 imply that

Δn(x)=a=1nx(a) and Δn(ti1)=a=1nti1(a)+a<b𝗋iab,\Delta^{n}(x)=\sum_{a=1}^{n}x^{(a)}\quad\text{ and }\quad\Delta^{n}(t_{i1})=\sum_{a=1}^{n}t_{i1}^{(a)}+\hbar\sum_{a<b}\mathsf{r}_{i}^{ab},

where y(b)=1(b1)y1(nb)Y(𝔤)ny^{(b)}=1^{\otimes(b-1)}\otimes y\otimes 1^{\otimes(n-b)}\in Y_{\hbar}(\mathfrak{g})^{\otimes n} for any yY(𝔤)y\in Y_{\hbar}(\mathfrak{g}) and, for each a<ba<b, BBabB\mapsto B^{ab} is the algebra homomorphism Y(𝔤)2Y(𝔤)nY_{\hbar}(\mathfrak{g})^{\otimes 2}\to Y_{\hbar}(\mathfrak{g})^{\otimes n} given on simple tensors by (xy)ab=x(a)y(b)(x\otimes y)^{ab}=x^{(a)}y^{(b)}. Since (𝟏ε)(\mathbf{1}-\varepsilon) projects Y(𝔤)Y_{\hbar}(\mathfrak{g}) onto Ker(ε)\mathrm{Ker}(\varepsilon), it follows readily from these formulas that

𝔤{ti1}i𝐈𝖸˙(𝔤).\hbar\mathfrak{g}\cup\{\hbar t_{i1}\}_{i\in\mathbf{I}}\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

We may now deduce that 𝔾𝖸˙(𝔤)\hbar\mathds{G}\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) as follows. By (5.1) and the above, 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a 𝔤\mathfrak{g}-submodule of Y(𝔤)Y_{\hbar}(\mathfrak{g}) which is preserved by the operators {ad(ti1)}i𝐈\{\mathrm{ad}(t_{i1})\}_{i\in\mathbf{I}}. Hence, the elements

xik±=(±1)kad(Ti)k(xi±) and hik=[xi+,xik]\hbar x_{ik}^{\pm}=(\pm 1)^{k}\mathrm{ad}(\mathrm{T}_{i})^{k}(\hbar x_{i}^{\pm})\quad\text{ and }\quad\hbar h_{ik}=[x_{i}^{+},\hbar x_{ik}^{-}]

necessarily belong to 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) for each i𝐈i\in\mathbf{I} and kk\in\mathbb{N}, where Ti=(2di)1ti1\mathrm{T}_{i}=(2d_{i})^{-1}t_{i1}. As xα,k±\hbar x_{\alpha,k}^{\pm} belongs to the 𝔤\mathfrak{g}-submodule of Y(𝔤)Y_{\hbar}(\mathfrak{g}) generated by xik±\hbar x_{ik}^{\pm}, we can conclude that 𝔾𝖸˙(𝔤)\hbar\mathds{G}\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

Since 𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) has basis given by the set of ordered monomials in q(𝔾)\hbar q(\mathds{G}), to complete the proof of both Parts (2) and (3), it suffices to see that B(𝔾)B(\hbar\mathds{G}) spans 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). This follows from the fact that B(𝔾)B(\mathds{G}) is a basis of Y(𝔤)Y_{\hbar}(\mathfrak{g}) together with the crucial Lemma 3.3 of [Gav02] (see also [Etingof-Kazhdan-I]*Lem. 4.12). We refer the reader to the proof of [FiTs19]*Prop. A.2 for complete details.

Proof of (1).

We have already seen that 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded subalgebra of Y(𝔤)Y_{\hbar}(\mathfrak{g}). That it is a Hopf subalgebra of Y(𝔤)Y_{\hbar}(\mathfrak{g}) is a special case of Proposition 3.3 of [Gav07], which passes to completions and makes use of a modification of a technical result for quantized formal series Hopf algebras established in [Enriquez-Halbout-03]*Prop. 2.1. It is worth pointing out that, in our specialized setting, it is possible to give a concise direct proof that 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a subcoalgebra of Y(𝔤)Y_{\hbar}(\mathfrak{g}) stable under the antipode SS.

Indeed, by Proposition 3.2, one has Δ(x)𝖸˙(𝔤)2\Delta(\hbar x)\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2} for x𝔤{ti1}i𝐈x\in\hbar\mathfrak{g}\cup\{t_{i1}\}_{i\in\mathbf{I}}. As 𝖸˙(𝔤)2\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2} is a 𝔤\mathfrak{g}-submodule of Y(𝔤)2Y_{\hbar}(\mathfrak{g})^{\otimes 2} stable under all operators ad(ti11+1ti1)\mathrm{ad}(t_{i1}\otimes 1+1\otimes t_{i1}), the inclusion Δ(𝔾)𝖸˙(𝔤)2\Delta(\hbar\mathds{G})\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2} will hold provided 𝖸˙(𝔤)2\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2} is preserved by the operators ad(𝗋i)\mathrm{ad}(\hbar\mathsf{r}_{i}). This is itself a consequence of the fact that 𝗋i𝔤𝔤\mathsf{r}_{i}\in\mathfrak{g}\otimes\mathfrak{g}, the inclusion 𝔤𝖸˙(𝔤)\hbar\mathfrak{g}\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), that 𝖸˙(𝔤)2\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2} is a 𝔤\mathfrak{g}-submodule of Y(𝔤)2Y_{\hbar}(\mathfrak{g})^{\otimes 2}, and the relation

[𝗋i,xy]=[𝗋i,x(1)]y(2)+x(1)[𝗋i,y(2)]x,y𝖸˙(𝔤).[\hbar\mathsf{r}_{i},x\otimes y]=[\hbar\mathsf{r}_{i},x^{(1)}]y^{(2)}+x^{(1)}[\hbar\mathsf{r}_{i},y^{(2)}]\quad\forall\;x,y\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

Hence, by Part (3), we can conclude that Δ(𝖸˙(𝔤))𝖸˙(𝔤)2\Delta(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2}. A similar argument, using the formulas of Proposition 3.2 and that 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a 𝔤\mathfrak{g}-submodule of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) stable under the operators ad(S(ti1))\mathrm{ad}(S(t_{i1})), implies that S(𝖸˙(𝔤))𝖸˙(𝔤)S(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

Proof of (4).

By Part (2), 𝗊˙\dot{\mathsf{q}} is an \mathbb{N}-graded []\mathbb{C}[\hbar]-linear epimorphism with kernel 𝖸˙(𝔤)\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), and thus gives rise to an isomorphism of graded vector spaces 𝗊¨:𝖸˙(𝔤)/𝖸˙(𝔤)𝖲(𝔱+)\ddot{\mathsf{q}}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}). To conclude, it suffices to prove that 𝗊¨\ddot{\mathsf{q}} is an algebra homomorphism. By (5.1), 𝖸˙(𝔤)/𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is commutative, and so the linear map 𝔱+𝖸˙(𝔤)/𝖸˙(𝔤)\hbar\mathfrak{t}_{\scriptscriptstyle{+}}\to\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) sending any x𝔱+\hbar x\in\hbar\mathfrak{t}_{\scriptscriptstyle{+}} to the image of μ(x)\hbar\mu(x) in 𝖸˙(𝔤)/𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) uniquely extends to an algebra homomorphism 𝗉:𝖲(𝔱+)𝖸˙(𝔤)/𝖸˙(𝔤)\mathsf{p}:\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\to\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). Since 𝗊¨𝗉=𝟏\ddot{\mathsf{q}}\circ\mathsf{p}=\mathbf{1}, we can conclude that 𝗊\mathsf{q} is the inverse of 𝗉\mathsf{p}, and thus an algebra homomorphism. ∎

Recall from (3.19) that Y𝔤Y_{\hbar}\mathfrak{g} denotes the \hbar-adically complete Yangian associated to 𝔤\mathfrak{g}, and let 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} denote the \hbar-adic completion of the Hopf algebra 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}):

𝖸˙𝔤:=limn(𝖸˙(𝔤)/n𝖸˙(𝔤)).\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}:=\varprojlim_{n}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar^{n}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})).

As an immediate consequence of the above proposition and Corollary 2.6, we obtain the following result.

Corollary 5.3.

𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is a topologically free, \mathbb{N}-graded topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] of finite type. Moreover:

  1. (1)

    𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is a flat deformation of the \mathbb{N}-graded algebra 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) over [[]]\mathbb{C}[\![\hbar]\!]. In particular, 𝖸˙𝔤𝖲(𝔱+)[[]]\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})[\![\hbar]\!] as an \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module.

  2. (2)

    𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is a topological Hopf subalgebra of the completed Yangian Y𝔤Y_{\hbar}\mathfrak{g}.

The statement that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is of finite type reduces to the fact that the homogeneous components 𝖲n(𝔱+)\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) are all finite-dimensional complex vector spaces; see below Corollary 2.9.

{comment}
Remark 5.4.

We note that, by Corollary 2.6, the \hbar-adic completion

𝖸˙𝔤:=limn(𝖸˙(𝔤)/n𝖸˙(𝔤))\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}:=\varprojlim_{n}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\hbar^{n}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))

of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a topologically free, \mathbb{N}-graded Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] which provides a flat deformation of the \mathbb{N}-graded algebra 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) and is a topological Hopf subalgebra of the completed Yangian Y𝔤Y_{\hbar}\mathfrak{g} (see (3.19)).

In addition, we emphasize that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is of finite type (see below Corollary 2.9) as the homogeneous components 𝖲n(𝔱+)\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) are all finite-dimensional complex vector spaces.

Note.

Proof that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} embeds into Y𝔤Y_{\hbar}\mathfrak{g}.

To see this, one can just use topological bases. Alternatively, suppose x=(qn(xn))x=(\mathrm{q}_{n}(x_{n})) is in the kernel of the natural map 𝖸˙𝔤Y𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to Y_{\hbar}\mathfrak{g}. Then xn𝐉n=nY(𝔤)𝖸˙(𝔤)x_{n}\in\mathbf{J}^{n}=\hbar^{n}Y_{\hbar}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) for all nn. Suppose x0x\neq 0, and let nn be minimal such that qn(xn)0\mathrm{q}_{n}(x_{n})\neq 0. Then, for each mnm\geq n, we have xm𝐉mm𝖸˙(𝔤)x_{m}\in\mathbf{J}^{m}\setminus\hbar^{m}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). Let us expand xmx_{m} in terms of B(𝔾)B(\hbar\mathds{G}):

xm=γam,γ(γ)Xγ.x_{m}=\sum_{\gamma}a_{m,\gamma}\hbar^{\ell(\gamma)}X_{\gamma}.

By assumption, an,γa_{n,\gamma} is not divisible by n\hbar^{n} for at least one γ\gamma, say γ0\gamma_{0}. On the other hand, x(γ0)+n𝐉(γ0)+nx_{\ell(\gamma_{0})+n}\in\mathbf{J}^{\ell(\gamma_{0})+n}, so a(γ0)+n,γ0(γ0)a_{\ell(\gamma_{0})+n,\gamma_{0}}\hbar^{\ell(\gamma_{0})} must be divisible by (γ0)+n\hbar^{\ell(\gamma_{0})+n} and thus a(γ0)+n,γ0a_{\ell(\gamma_{0})+n,\gamma_{0}} is divisible by n\hbar^{n}. As x(γ0)+n=xnmodn𝖸˙(𝔤)x_{\ell(\gamma_{0})+n}=x_{n}\mod\hbar^{n}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), we have a(γ0)+n,γ0=an,γ0modn[]a_{\ell(\gamma_{0})+n,\gamma_{0}}=a_{n,\gamma_{0}}\mod\hbar^{n}\mathbb{C}[\hbar]. This contradicts the assumption that an,γ0a_{n,\gamma_{0}} is not divisible by n\hbar^{n}. ∎

Henceforth, we will identify 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) with the semiclassical limit of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) as an \mathbb{N}-graded Hopf algebra. We emphasize that this is a non-cocommutative Hopf algebra; in particular, it is not isomorphic to the standard symmetric Hopf algebra on 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}, which we denote by 𝕊(𝔱+)\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}). However, 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) and 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) are filtered deformations of 𝖱(U(𝔱+))\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}})) and 𝕊(𝔱+)\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}), respectively, as we now explain. Consider the Hopf ideal

(5.2) 𝐉:=Y(𝔤)𝖸˙(𝔤)𝖸˙(𝔤)\mathbf{J}:=\hbar Y_{\hbar}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})

Here we note that it follows from Part (3) of the above proposition that, for each pair of positive integers k,n+k,n\in\mathbb{N}_{+}, one has

(5.3) kY(𝔤)n𝖸˙(𝔤)n=k1++kn=k𝐉k1𝐉kn.\hbar^{k}Y_{\hbar}(\mathfrak{g})^{\otimes n}\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes n}=\sum_{\scriptscriptstyle k_{1}+\ldots+k_{n}=k}\!\mathbf{J}^{k_{1}}\otimes\cdots\otimes\mathbf{J}^{k_{n}}.

In particular, 𝐉k=kY(𝔤)𝖸˙(𝔤)\mathbf{J}^{k}=\hbar^{k}Y_{\hbar}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) for each kk\in\mathbb{N}, and so the associated graded Hopf algebra gr𝐉(𝖸˙(𝔤))\mathrm{gr}_{\mathbf{J}}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})) with respect to the 𝐉\mathbf{J}-adic filtration embeds inside the associated graded Hopf algebra gr(Y(𝔤))\mathrm{gr}_{\hbar}(Y_{\hbar}(\mathfrak{g})) of Y(𝔤)Y_{\hbar}(\mathfrak{g}) with respect to the \hbar-adic filtration. Since Y(𝔤)Y_{\hbar}(\mathfrak{g}) is a torsion free Hopf algebra deformation of U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) over []\mathbb{C}[\hbar], we have isomorphisms of graded Hopf algebras

gr(Y(𝔤))=nnY(𝔤)/n+1Y(𝔤)nnU(𝔱+)=U(𝔱+)[]\displaystyle\mathrm{gr}_{\hbar}(Y_{\hbar}(\mathfrak{g}))=\bigoplus_{n\in\mathbb{N}}\hbar^{n}Y_{\hbar}(\mathfrak{g})/\hbar^{n+1}Y_{\hbar}(\mathfrak{g})\cong\bigoplus_{n\in\mathbb{N}}\hbar^{n}U(\mathfrak{t}_{\scriptscriptstyle{+}})=U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]
gr𝐉(𝖸˙(𝔤))=n𝐉n/𝐉n+1nn𝐅n(U(𝔱+))=𝖱(U(𝔱+))\displaystyle\mathrm{gr}_{\mathbf{J}}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))=\bigoplus_{n\in\mathbb{N}}\mathbf{J}^{n}/\mathbf{J}^{n+1}\cong\bigoplus_{n\in\mathbb{N}}\hbar^{n}\mathbf{F}_{n}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))=\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))

where the second isomorphism follows from the first and Proposition 5.2. In fact, the module isomorphisms ν𝔾\upnu_{\mathds{G}} and ν˙𝔾\dot{\upnu}_{\mathds{G}} are filtered, and the above identifications can be realized as the associated graded maps gr(ν𝔾)\mathrm{gr}(\upnu_{\mathds{G}}) and gr(ν˙𝔾)\mathrm{gr}(\dot{\upnu}_{\mathds{G}}), respectively.

The image of 𝐉\mathbf{J} under the quotient map 𝗊˙\dot{\mathsf{q}} is the Hopf ideal

(5.4) 𝕁:=n>0𝖲n(𝔱+)𝖲(𝔱+)\mathbb{J}:=\bigoplus_{n>0}\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})

where 𝖲n(𝔱+)\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) denotes the nn-th symmetric power of 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}. This is also a Hopf ideal in 𝕊(𝔱+)\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}), and one has a canonical isomorphism gr𝕁𝕊(𝔱+)𝕊(𝔱+)\mathrm{gr}_{\mathbb{J}}\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) of graded Hopf algebras. Since the elements of μ(𝔱+)\mu(\mathfrak{t}_{\scriptscriptstyle{+}}) are primitive modulo Y(𝔤)2\hbar Y_{\hbar}(\mathfrak{g})^{\otimes 2}, the subspace 𝔱+=𝕁/𝕁2\hbar\mathfrak{t}_{\scriptscriptstyle{+}}=\mathbb{J}/\mathbb{J}^{2} of gr𝕁𝖲(𝔱+)\mathrm{gr}_{\mathbb{J}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) consists of primitive elements, and we can conclude that

gr𝕁𝖲(𝔱+)𝕊(𝔱+)gr𝕁𝕊(𝔱+)\mathrm{gr}_{\mathbb{J}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cong\mathrm{gr}_{\mathbb{J}}\mathbb{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})

as graded Hopf algebras.

Remark 5.5.

Since 𝐉k=kY(𝔤)𝖸˙(𝔤)\mathbf{J}^{k}=\hbar^{k}Y_{\hbar}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) for each kk\in\mathbb{N}, the closure of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) in the quantized enveloping algebra Y𝔤Y_{\hbar}\mathfrak{g} coincides with the 𝐉\mathbf{J}-adic completion

Y𝔤:=limn(𝖸˙(𝔤)/𝐉n)Y𝔤.Y_{\hbar}\mathfrak{g}^{\prime}:=\varprojlim_{n}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})/\mathbf{J}^{n})\subset Y_{\hbar}\mathfrak{g}.

This is precisely the quantized formal series Hopf algebra U𝔟U_{\hbar}\mathfrak{b}^{\prime} from Section 5.1 associated to U𝔟=Y𝔤U_{\hbar}\mathfrak{b}=Y_{\hbar}\mathfrak{g}. As 𝐉\mathbf{J} surjects onto the ideal 𝕁\mathbb{J} from (5.4), the quotient map 𝗊˙\dot{\mathsf{q}} induces an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

Y𝔤/Y𝔤𝖲(𝔱+)^:=n𝖲n(𝔱+)limn(𝖲(𝔱+)/𝕁n).Y_{\hbar}\mathfrak{g}^{\prime}/\hbar Y_{\hbar}\mathfrak{g}^{\prime}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}\widehat{(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})}:=\prod_{n\in\mathbb{N}}\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\cong\varprojlim_{n}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})/\mathbb{J}^{n}).

5.3. Triangular decomposition

Proposition 5.2 implies that the triangular decomposition of Y(𝔤)Y_{\hbar}(\mathfrak{g}), reviewed in Section 3.4, induces a triangular decomposition on 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), with the \mathbb{N}-graded []\mathbb{C}[\hbar]-algebras

𝖸˙±(𝔤):=Y±(𝔤)𝖸˙(𝔤) and 𝖸˙0(𝔤):=Y0(𝔤)𝖸˙(𝔤).\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}):=Y_{\hbar}^{\pm}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\quad\text{ and }\quad\dot{\mathsf{Y}}_{\hbar}^{0}(\mathfrak{g}):=Y_{\hbar}^{0}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

playing the roles of Y±(𝔤)Y_{\hbar}^{\pm}(\mathfrak{g}) and Y0(𝔤)Y_{\hbar}^{0}(\mathfrak{g}), respectively. In this subsection we spell this out explicitly. Let us set

𝔱+±:=𝔫[t]𝔱+ and 𝔱+0:=𝔥[t]𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm}:=\mathfrak{n}_{\mp}[t]\subset\mathfrak{t}_{\scriptscriptstyle{+}}\quad\text{ and }\quad\mathfrak{t}_{\scriptscriptstyle{+}}^{0}:=\mathfrak{h}[t]\subset\mathfrak{t}_{\scriptscriptstyle{+}}

and recall from Section 6.5 that ν±\upnu_{\pm} and ξ\upxi are the isomorphisms

ν±:Y±(𝔤)U(𝔱+±)[] and ξ:Y0(𝔤)𝖲(𝔱+0)[]\upnu_{\pm}:Y_{\hbar}^{\pm}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm})[\hbar]\quad\text{ and }\quad\upxi:Y_{\hbar}^{0}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}}^{0})[\hbar]

defined above (3.18) and in the statement of Proposition 3.6, respectively. We further recall from (3.22) that, for each βQ+\beta\in Q_{+}, ν(β)\nu(\beta)\in\mathbb{N} is defined by

ν(β)=min{k:β1,,βkΔ+ with β=β1++βk}.\nu(\beta)=\min\{k\in\mathbb{N}:\exists\,\beta_{1},\ldots,\beta_{k}\in\Delta^{+}\;\text{ with }\;\beta=\beta_{1}+\cdots+\beta_{k}\}.

The following corollary provides an analogue of Proposition 5.2 for the subalgebras 𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) and 𝖸˙0(𝔤)\dot{\mathsf{Y}}_{\hbar}^{0}(\mathfrak{g}).

Corollary 5.6.

Let ν˙±\dot{\upnu}_{\pm} and ξ˙\dot{\upxi} denote the restrictions of ν±\upnu_{\pm} and ξ\upxi to 𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) and 𝖸˙0(𝔤)\dot{\mathsf{Y}}_{\hbar}^{0}(\mathfrak{g}), respectively. Then:

  1. (1)

    ν˙±\dot{\upnu}_{\pm} is an isomorphism of \mathbb{N}-graded []\mathbb{C}[\hbar]-modules

    ν˙±:𝖸˙±(𝔤)𝖱(U(𝔱+±))U(𝔱+±)[].\dot{\upnu}_{\pm}:\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm}))\subset U(\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm})[\hbar].
  2. (2)

    ξ˙\dot{\upxi} is an isomorphism of \mathbb{N}-graded []\mathbb{C}[\hbar]-algebras

    ξ˙:𝖸˙0(𝔤)𝖲(𝔱+0)[]𝖲(𝔱+0)[].\dot{\upxi}:\dot{\mathsf{Y}}_{\hbar}^{0}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{0})[\hbar]\subset\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{+}}^{0})[\hbar].
  3. (3)

    𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) is a torsion free, \mathbb{N}-graded []\mathbb{C}[\hbar]-algebra deformation of 𝖲(𝔱+±)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm}). In particular, there is an isomorphism of graded []\mathbb{C}[\hbar]-modules

    𝖸˙±(𝔤)𝖲(𝔱+±)[].\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm})[\hbar].
  4. (4)

    𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) is a QQ-graded subalgebra of 𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) with

    𝖸˙±(𝔤)±β𝐉ν(β)ν(β)Y±(𝔤)±ββQ+.\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta}\subset\mathbf{J}^{\nu(\beta)}\subset\hbar^{\nu(\beta)}Y_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta}\quad\forall\;\beta\in Q_{+}.

We note that each of these results follows readily from Propositions 3.6 and 5.2, in addition to Corollary 2.6 in the case of Part (3). We leave the details as an exercise to the interested reader. As a consequence of this corollary and Proposition 5.2, we obtain the following analogue of Part (3) from Proposition 3.6.

Corollary 5.7.

The multiplication map

m˙:𝖸˙+(𝔤)𝖸˙0(𝔤)𝖸˙(𝔤)𝖸˙(𝔤)\dot{m}:\dot{\mathsf{Y}}_{\hbar}^{+}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}^{0}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})\to\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})

is an isomorphism of \mathbb{N}-graded []\mathbb{C}[\hbar]-modules.

Remark 5.8.

As in Remark 3.8, the above results can easily be lifted to the \hbar-adic setting using Corollary 2.6; see also Corollary 5.3. We especially note that, for each choice of the symbol χ\chi, the \hbar-adic completion

𝖸˙χ𝔤:=limn𝖸˙χ(𝔤)/n𝖸˙χ(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}:=\varprojlim_{n}\dot{\mathsf{Y}}_{\hbar}^{\chi}(\mathfrak{g})/\hbar^{n}\dot{\mathsf{Y}}_{\hbar}^{\chi}(\mathfrak{g})

is a topologically free \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra of finite type, which provides a flat deformation of the symmetric algebra 𝖲(𝔱+χ)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}) over [[]]\mathbb{C}[\![\hbar]\!]. In addition, 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g} embeds inside the completed Yangian Y𝔤Y_{\hbar}\mathfrak{g}, and the multplication map induces an isomorphism of \mathbb{N}-graded [[]]\mathbb{C}[\![\hbar]\!]-modules

m˙:𝖸˙+𝔤𝖸˙0𝔤𝖸˙𝔤𝖸˙𝔤,\dot{m}:\dot{\mathsf{Y}}_{\hbar}^{+}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},

where \otimes is now the topological tensor product ^\widehat{\otimes} over [[]]\mathbb{C}[\![\hbar]\!]; see Remark 2.11.

5.4. The adjoint and coadjoint actions

We now prove two lemmas concerning the Drinfeld–Gavarini subalgebra 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) which will play an important role in the main results and constructions of Sections 7 and 8. The first of these, Lemma 5.9, will be used to construct the quantum double of the Yangian in Section 8.2.

Let :Y(𝔤)Y(𝔤)Y(𝔤)\blacktriangledown:Y_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g}) and :Y(𝔤)Y(𝔤)Y(𝔤)\blacktriangle:Y_{\hbar}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}) denote the left adjoint action of Y(𝔤)Y_{\hbar}(\mathfrak{g}) on itself, and the right adjoint coaction of Y(𝔤)Y_{\hbar}(\mathfrak{g}) on itself, respectively. That is,

=m3(𝟏2S)(2 3)(Δ𝟏)\displaystyle\blacktriangledown=m^{3}\circ(\mathbf{1}^{\otimes 2}\otimes S)\circ(2\,3)\circ(\Delta\otimes\mathbf{1})
=(1m)(1 2)(S𝟏2)Δ3\displaystyle\blacktriangle=(1\otimes m)\circ(1\,2)\circ(S\otimes\mathbf{1}^{\otimes 2})\circ\Delta^{3}

The \hbar-adic analogue of the below result, for a quantized enveloping algebra U𝔟U_{\hbar}\mathfrak{b} with 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) replaced by U𝔟U_{\hbar}\mathfrak{b}^{\prime}, was established in Propositions 4.3 and 4.4 of [Andrea-Valerio-18]; see also Proposition A.5 therein.

Lemma 5.9.

One has

(Y(𝔤)𝖸˙(𝔤))𝖸˙(𝔤) and (Y(𝔤))Y(𝔤)𝖸˙(𝔤).\blacktriangledown(Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))\subset\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\quad\text{ and }\quad\blacktriangle(Y_{\hbar}(\mathfrak{g}))\subset Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).
Proof.
{comment}

First, we note that the general arguments of [Andrea-Valerio-18] can be adapted to the []\mathbb{C}[\hbar]-setting without issue. However, it is also possible to give a concise proof of the lemma using the aguments which featured in the proof of Proposition 5.2, as we now spell out. Since \blacktriangledown makes Y(𝔤)Y_{\hbar}(\mathfrak{g}) a left module, to prove the first inclusion it suffices to show that xy:=(xy)𝖸˙(𝔤)x\cdot y:=\blacktriangledown(x\otimes y)\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) for all x𝔤{ti1}i𝐈x\in\mathfrak{g}\cup\{t_{i1}\}_{i\in\mathbf{I}} and y𝖸˙(𝔤)y\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). Since

xy=[x,y] and ti1y=[ti1,y]+m([y(1),𝗋i])x𝔤,i𝐈,y𝖸˙(𝔤),\displaystyle x\cdot y=[x,y]\quad\text{ and }\quad t_{i1}\cdot y=[t_{i1},y]+m([y^{(1)},\hbar\mathsf{r}_{i}])\quad\forall\;x\in\mathfrak{g},\,i\in\mathbf{I},\,y\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),

this follows from the observation that 𝗋i𝔤𝔤𝔤𝖸˙(𝔤)\hbar\mathsf{r}_{i}\in\mathfrak{g}\otimes\hbar\mathfrak{g}\subset\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) and the fact that 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a 𝔤\mathfrak{g}-submodule of Y(𝔤)Y_{\hbar}(\mathfrak{g}) stable under ad(ti1)\mathrm{ad}(t_{i1}) for all i𝐈i\in\mathbf{I}.

As for the second inclusion, note that \blacktriangle is a homomorphism of right modules:

(5.5) m=γ(𝟏),\blacktriangle\circ m=\gamma\circ(\blacktriangle\otimes\mathbf{1}),

where γ:Y(𝔤)2Y(𝔤)Y(𝔤)2\gamma:Y_{\hbar}(\mathfrak{g})^{\otimes 2}\otimes Y_{\hbar}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g})^{\otimes 2} is the right action defined by

γ=mm2(𝟏2S𝟏2)(2 4)(𝟏2Δ3).\gamma=m\otimes m^{2}\circ(\mathbf{1}^{\otimes 2}\otimes S\otimes\mathbf{1}^{\otimes 2})\circ(2\,4)\circ(\mathbf{1}^{\otimes 2}\otimes\Delta^{3}).

This right action preserves Y(𝔤)𝖸˙(𝔤)Y(𝔤)2Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\subset Y_{\hbar}(\mathfrak{g})^{\otimes 2}. Indeed, if yY(𝔤)y\in Y_{\hbar}(\mathfrak{g}), z𝖸˙(𝔤)z\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) and x𝔤x\in\mathfrak{g}, we have

γ(yzx)=y[z,x]+yxzY(𝔤)𝖸˙(𝔤),\gamma(y\otimes z\otimes x)=y\otimes[z,x]+yx\otimes z\in Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),

and replacing xx by ti1t_{i1}, for any i𝐈i\in\mathbf{I}, yields instead

γ(yzti1)=y([z,ti1]+m([z(2),𝗋i]))+yti1z+y(1)(z(2)𝗋i𝗋i21z(2))\gamma(y\otimes z\otimes t_{i1})=y\otimes([z,t_{i1}]+m([z^{(2)},\hbar\mathsf{r}_{i}]))+yt_{i1}\otimes z+y^{(1)}(z^{(2)}\hbar\mathsf{r}_{i}-\hbar\mathsf{r}_{i}^{21}z^{(2)})

which again belongs to Y(𝔤)𝖸˙(𝔤)Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) as 𝗋i21,𝗋i(𝔤𝔤)(𝔤𝔤)\hbar\mathsf{r}_{i}^{21},\hbar\mathsf{r}_{i}\in(\hbar\mathfrak{g}\otimes\mathfrak{g})\cap(\mathfrak{g}\otimes\hbar\mathfrak{g}) and 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is an ad(ti1)\mathrm{ad}(t_{i1})-stable 𝔤\mathfrak{g}-submodule of Y(𝔤)Y_{\hbar}(\mathfrak{g}).

Since Y(𝔤)𝖸˙(𝔤)Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is a right submodule of Y(𝔤)2Y_{\hbar}(\mathfrak{g})^{\otimes 2} under γ\gamma, the condition (5.5) guarantees that (Y(𝔤))Y(𝔤)𝖸˙(𝔤)\blacktriangle(Y_{\hbar}(\mathfrak{g}))\subset Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) will hold provided it holds on 𝔤{ti1}i𝐈\mathfrak{g}\cup\{t_{i1}\}_{i\in\mathbf{I}}. To conclude, it suffices to note that, for each x𝔤x\in\mathfrak{g} and i𝐈i\in\mathbf{I}, one has

(x)=x1Y(𝔤)𝖸˙(𝔤),\displaystyle\blacktriangle(x)=x\otimes 1\in Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),
(ti1)=ti11+(𝗋i𝗋i21)Y(𝔤)𝖸˙(𝔤).\displaystyle\blacktriangle(t_{i1})=t_{i1}\otimes 1+\hbar(\mathsf{r}_{i}-\mathsf{r}_{i}^{21})\in Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).\qed

5.5. The RR-matrix

The second lemma we will need concerns the universal RR-matrix (z)\mathcal{R}(z) of the Yangian, and will play a crucial role in identifying the dual Yangian as a subalgebra of the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} in Section 7. In what follows, all notation is as in Section 3.6.

Lemma 5.10.

The factors ±(z)\mathcal{R}^{\pm}(z) and 0(z)\mathcal{R}^{0}(z) of the universal RR-matrix (z)\mathcal{R}(z) have coefficients in (𝖸˙(𝔤)Y(𝔤))(Y(𝔤)𝖸˙(𝔤))(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))\cap(Y_{\hbar}(\mathfrak{g})\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})). Consequently,

(z)(𝖸˙(𝔤)Y(𝔤))[[z1]](Y(𝔤)𝖸˙(𝔤))[[z1]].\mathcal{R}(z)\in(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!]\cap(Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!].
Proof.

Since 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is preserved by ad(ti1)\mathrm{ad}(t_{i1}) for any i𝐈i\in\mathbf{I} and, for each αΔ+\alpha\in\Delta^{+}, the simple tensor xαxα+=xαxα+\hbar x_{\alpha}^{-}\otimes x_{\alpha}^{+}=x_{\alpha}^{-}\otimes\hbar x_{\alpha}^{+} belongs to the intersection of 𝖸˙(𝔤)Y(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}) and Y(𝔤)𝖸˙(𝔤)Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), it follows from (3.23) and induction on ht(β)\mathrm{ht}(\beta) that

β(z)(𝖸˙(𝔤)Y(𝔤))[[z1]](Y(𝔤)𝖸˙(𝔤))[[z1]]βQ+.\mathcal{R}^{-}_{\beta}(z)\in(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!]\cap(Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!]\quad\forall\;\beta\in Q_{+}.

Consequently, both (z)\mathcal{R}^{-}(z) and +(z)=21(z)1\mathcal{R}^{+}(z)=\mathcal{R}^{-}_{21}(-z)^{-1} belong to the intersection of (𝖸˙(𝔤)Y(𝔤))[[z1]](\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!] and (Y(𝔤)𝖸˙(𝔤))[[z1]](Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!]. It is thus enough to prove that

0(z)(𝖸˙(𝔤)Y(𝔤))[[z1]](Y(𝔤)𝖸˙(𝔤))[[z1]].\mathcal{R}^{0}(z)\in(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!]\cap(Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!].

Recall from (5.2) that 𝐉=𝖸˙(𝔤)Y(𝔤)\mathbf{J}=\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\cap\hbar Y_{\hbar}(\mathfrak{g}). Since hi(u)𝐉[[u1]]\hbar h_{i}(u)\in\mathbf{J}[\![u^{-1}]\!], the logarithm ti(u)=log(1+hi(u))t_{i}(u)=\log(1+\hbar h_{i}(u)) and its Borel transform Bi(u)B_{i}(u) both have coefficients in 𝐉\mathbf{J}. Therefore, we have

1Bi(u)Bj(u)(𝖸˙(𝔤)Y(𝔤))[[u]](Y(𝔤)𝖸˙(𝔤))[[u]]i,j𝐈.\hbar^{-1}B_{i}(u)\otimes B_{j}(-u)\in(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![u]\!]\cap(Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}))[\![u]\!]\quad\forall\;i,j\in\mathbf{I}.

Since g(z/2κ)g(z/2\kappa\hbar) is divisible by \hbar, it follows from (3.24) that the logarithm 𝒮(z)\mathcal{S}(z) of 0(z)\mathcal{R}^{0}(z), and thus 0(z)\mathcal{R}^{0}(z) itself, has coefficients belonging to the intersection of 𝖸˙(𝔤)Y(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}) and Y(𝔤)𝖸˙(𝔤)Y_{\hbar}(\mathfrak{g})\otimes\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). ∎

6. The dual Yangian

With Section 5 at our disposal, we are now in a position to introduce the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. After defining 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and spelling out some of its basic properties in Sections 6.1 and 6.2, we prove in Sections 6.3 and 6.4 that it is a homogeneous quantization of the Lie bialgebra (𝔱,δ)(\mathfrak{t}_{\scriptscriptstyle{-}},\delta_{\scriptscriptstyle{-}}) defined in Section 2.5. We conclude in Section 6.5 by identifying a family of generators for 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and establishing a triangular decomposition.

6.1. The dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}

By Corollary 5.3, the \hbar-adic completion 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is an \mathbb{N}-graded topological Hopf algebra of finite type. We may thus apply the machinery from Section 2.3 to obtain a \mathbb{Z}-graded topological Hopf structure on its restricted dual.

In more detail, by Proposition 2.10 the restricted dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, as defined in Definition 2.7, is a \mathbb{Z}-graded topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] with product, unit, coproduct, counit and antipode given by the transposes

Δt:𝖸˙𝔤𝖸˙𝔤𝖸˙𝔤,εt:[[]]𝖸˙𝔤,\displaystyle\Delta^{t}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},\quad\varepsilon^{t}:\mathbb{C}[\![\hbar]\!]\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},
mt:𝖸˙𝔤𝖸˙𝔤𝖸˙𝔤,ιt:𝖸˙𝔤[[]],St:𝖸˙𝔤𝖸˙𝔤,\displaystyle m^{t}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},\quad\iota^{t}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\mathbb{C}[\![\hbar]\!],\quad S^{t}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},

respectively, where Δ\Delta, ε\varepsilon, mm, ι\iota and SS are the coproduct, counit, product, unit and antipode of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}, respectively, and \otimes is the topological tensor product over [[]]\mathbb{C}[\![\hbar]\!]; see Remark 2.11.

Definition 6.1.

The topological Hopf algebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} introduced above is called the dual Yangian of 𝔤\mathfrak{g}.

Explicitly, 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is the subspace of the [[]]\mathbb{C}[\![\hbar]\!]-linear dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\ast} consisting of those f:𝖸˙𝔤[[]]f:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to\mathbb{C}[\![\hbar]\!] which are continuous with respect to the gradation topology on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}. It can be recovered as the \hbar-adic completion of the \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra

(𝖸˙𝔤):=a𝖸˙𝔤a𝖸˙(𝔤),(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})_{\mathbb{Z}}:=\bigoplus_{a\in\mathbb{Z}}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{a}\cong\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star},

where 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star} is the graded dual of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) over []\mathbb{C}[\hbar] which, as explained in Remark 2.8, coincides with (𝖸˙𝔤)(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})_{\mathbb{Z}} under the natural identification of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\ast} with Hom[](𝖸˙(𝔤),[[]])\mathrm{Hom}_{\mathbb{C}[\hbar]}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),\mathbb{C}[\![\hbar]\!]). Here we have set

𝖸˙𝔤a:=Hom[[]]a(𝖸˙𝔤,[[]])Hom[]a(𝖸˙(𝔤),[])a.\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{a}:=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},\mathbb{C}[\![\hbar]\!])\cong\mathrm{Hom}_{\mathbb{C}[\hbar]}^{a}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),\mathbb{C}[\hbar])\quad\forall\;a\in\mathbb{Z}.
{comment}

Hom[[]]a(𝖬,[[]])Hom[]a(𝖬,[])\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\mathsf{M},\mathbb{C}[\![\hbar]\!])\cong\mathrm{Hom}_{\mathbb{C}[\hbar]}^{a}(\mathsf{M}_{\mathbb{N}},\mathbb{C}[\hbar]). If ff is in the left-hand side, then f|𝖬f|_{\mathsf{M}_{\mathbb{N}}} is in the right-hand side. If gg is in the right-hand side, then gg extends by continuity to an element ff of the left-hand side. In more detail, get gn:𝖬/n𝖬𝖪ng_{n}:\mathsf{M}/\hbar^{n}\mathsf{M}\to\mathsf{K}_{n}, and we may set f=limgnf=\varprojlim g_{n}. If x𝖬x\in\mathsf{M}_{\mathbb{N}}, then f(x)=(gn(qn(x)))=(g(x)modn)=g(x)f(x)=(g_{n}(q_{n}(x)))=(g(x)\mod\hbar^{n})=g(x).

By Corollary 2.9, 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a flat deformation of the graded Hopf algebra

𝖸˙𝔤/𝖸˙𝔤𝖲(𝔱+).\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}.

In particular, the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is isomorphic to 𝖲(𝔱+)[[]]\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}[\![\hbar]\!] as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module. Here we recall that 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} is the graded dual of the \mathbb{N}-graded Hopf algebra 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) over \mathbb{C}. As a vector space, one has

𝖲(𝔱+)=n𝖲(𝔱+)n\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}=\bigoplus_{n\in\mathbb{N}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{-n}

where 𝖲(𝔱+)n=𝖲n(𝔱+)Hom(𝖲(𝔱+),)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{-n}=\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\ast}\subset\mathrm{Hom}_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}),\mathbb{C}). We shall identify this Hopf algebra with the enveloping algebra of the Lie algebra 𝔱=t1𝔤[t1]\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}] in Section 6.3 below.

Now let us make a few comments which concern the restricted dual Y𝔤Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} of the full, completed, Yangian Y𝔤Y_{\hbar}\mathfrak{g}. Since Y𝔤Y_{\hbar}\mathfrak{g} is an \mathbb{N}-graded topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!], the formalism of Section 2.3 implies that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra, which provides a flat deformation of the algebra U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} over [[]]\mathbb{C}[\![\hbar]\!]. In particular, there is an isomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules

Y𝔤U(𝔱+)[[]].Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong U(\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}[\![\hbar]\!].

However, Y𝔤Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is not itself a topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] with respect to the \hbar-adic topology. It is, however, naturally a subalgebra of the topological Hopf algebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. This is made explicit by the below result.

Proposition 6.2.

The [[]]\mathbb{C}[\![\hbar]\!]-linear map

Y𝔤𝖸˙𝔤,ff|𝖸˙𝔤fY𝔤,Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},\quad f\mapsto f|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}\quad\forall\quad f\in Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},

is an injective homomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebras.

Proof.

Since 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} is a \mathbb{Z}-graded Hopf subalgebra of Y𝔤Y_{\hbar}\mathfrak{g}, the map ff|𝖸˙𝔤f\mapsto f|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}} respects the underlying \mathbb{Z}-graded algebra structures. Moreover, if fY𝔤f\in Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} vanishes on the basis B(𝔾)B(\hbar\mathds{G}) from Proposition 5.2, then it vanishes on the basis B(𝔾)B(\mathds{G}) of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) as [[]]\mathbb{C}[\![\hbar]\!] is torsion free. This yields the injectivity. ∎

Remark 6.3.

Let 𝐉\mathbf{J} be as in (5.2). Then, since 𝐉\mathbf{J} satisfies

𝐉nkn𝖸˙(𝔤)kn,\mathbf{J}^{n}\subset\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{k}\quad\forall\;n\in\mathbb{N},

every f𝖸˙𝔤f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is automatically continuous with respect to the 𝐉\mathbf{J}-adic topology on 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), and so uniquely extends to an element of the associated topological dual Y𝔤Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\circ} to Y𝔤Y_{\hbar}\mathfrak{g}^{\prime}; see Section 5.1 and Remark 5.5. In this sense, the notion of duality considered here is compatible with that for a general quantized enveloping algebra U𝔟U_{\hbar}\mathfrak{b} outlined in Section 5.1, despite the fact that we did not need to leave the category of topological Hopf algebras over [[]]\mathbb{C}[\![\hbar]\!] to define 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}.

Remark 6.4.

An alternative description of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} using the formalism of Remark 5.1 can be found in [Etingof-Kazhdan-III]*§3.1.

6.2. Chevalley involution and 𝔤\mathfrak{g}-action

We now make a handful of simple observations which will play an important role in the remainder of this article. In what follows, we shall freely make use of the fact that 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} can be naturally viewed as a subspace of Hom[](𝖸˙(𝔤),[[]])\mathrm{Hom}_{\mathbb{C}[\hbar]}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),\mathbb{C}[\![\hbar]\!]).

Since the Chevalley involution ω\omega defined in Lemma 3.4 is an anti-automorphism of the graded Hopf algebra Y(𝔤)Y_{\hbar}(\mathfrak{g}), it follows from the definition of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) (or, alternatively, from Proposition 5.2) that it restricts to an anti-automorphism of the graded Hopf algebra 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), which we again denote by ω\omega. Consequently, the transpose ωt\omega^{t} of ω\omega, uniquely determined by

ωt(f)(x)=f(ω(x))f𝖸˙𝔤 and x𝖸˙(𝔤),\omega^{t}(f)(x)=f(\omega(x))\quad\forall\;f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\;\text{ and }\;x\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),

is an involutive Hopf algebra anti-automorphism of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. We call ωt\omega^{t} the Chevalley involution of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}.

Next, recall that the adjoint action of 𝔤\mathfrak{g} on Y(𝔤)Y_{\hbar}(\mathfrak{g}) preserves the Drinfeld–Gavarini subalgebra 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}). Since each graded component 𝖸˙(𝔤)k\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{k} is also a submodule, the restricted dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a 𝔤\mathfrak{g}-module equipped with the coadjoint action

(xf)(y)=f(S(x)y)xU(𝔤),y𝖸˙(𝔤) and f𝖸˙𝔤.(x\cdot f)(y)=f(S(x)\cdot y)\quad\forall\;x\in U(\mathfrak{g}),\;y\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\;\text{ and }\;f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\star}.

We now introduce a topological QQ-grading on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} compatible with the above action which is analogous to that obtained for DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} in Section 4.2. For each βQ\beta\in Q, define the closed [[]]\mathbb{C}[\![\hbar]\!]-submodule 𝖸˙𝔤β𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta}\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} by

𝖸˙𝔤β={f𝖸˙𝔤:f(𝖸˙(𝔤)α)[[]]α+βαQ},\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta}=\{f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:f(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{\alpha})\subset\mathbb{C}[\![\hbar]\!]_{\alpha+\beta}\;\forall\;\alpha\in Q\},

where [[]]α\mathbb{C}[\![\hbar]\!]_{\alpha} is [[]]\mathbb{C}[\![\hbar]\!] if α=0\alpha=0 and is {0}\{0\} otherwise. It is easy to see that 𝖸˙𝔤β\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta} is just the β\beta-weight space of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} with respect to the 𝔤\mathfrak{g}-module structure introduced above. That is, one has

𝖸˙𝔤β={f𝖸˙𝔤:hf=β(h)fh𝔥}.\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta}=\{f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:\,h\cdot f=\beta(h)f\quad\forall\;h\in\mathfrak{h}\}.

As 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) is QQ-graded as a Hopf algebra, the direct sum

𝖸˙𝔤Q=βQ𝖸˙𝔤β𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{Q}=\bigoplus_{\beta\in Q}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta}\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}

is a QQ-graded [[]]\mathbb{C}[\![\hbar]\!]-subalgebra of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. Moreover, the counit, coproduct and antipode of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} are all QQ-graded, degree zero, maps. It is not difficult to prove that 𝖸˙𝔤Q\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{Q} is a dense subalgebra of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} whose subspace topology coincides with its \hbar-adic topology. Hence, we obtain the following result:

Corollary 6.5.

𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is QQ-graded as a topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!].

{comment}

Indeed, let πβ:𝖸˙(𝔤)𝖸˙(𝔤)β\pi_{\beta}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\to\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{\beta} denote the natural projection onto the β\beta-component of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}), with respect to its QQ-grading. Then, given kk\in\mathbb{Z} and f𝖸˙(𝔤)kf\in\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\star}_{k}, the element fπβf\circ\pi_{-\beta} belongs to 𝖸˙𝔤β\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\star}_{\beta}, and it is not difficult to prove that the infinite sum βQfπβ\sum_{\beta\in Q}f\circ\pi_{\beta} converges in the \hbar-adic topology to ff.

6.3. Classical duality

We now wish to identify the graded dual 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} of the \mathbb{N}-graded Hopf algebra 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) with the enveloping algebra U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}), where we recall that 𝔱=t1𝔤[t1]\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}].

To formulate this result optimally, we must first give a few preliminary remarks. To begin, we note that the semiclassical limit of the Chevalley involution ωt\omega^{t} of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} coincides, by definition, with the tranpose ω˙t\dot{\omega}^{t} of the automorphism ω˙\dot{\omega} of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) given on 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}} by

ω˙(x)=ω¯(x)x𝔱+,\dot{\omega}(\hbar x)=\hbar\bar{\omega}(x)\quad\forall\;x\in\mathfrak{t}_{\scriptscriptstyle{+}},

where ω¯\bar{\omega} is as in (3.14). Similarly, the coadjoint action of 𝔤\mathfrak{g} on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} introduced in Section 6.2 specializes to an action of 𝔤\mathfrak{g} on 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}. By definition, this action is dual to that of 𝔤\mathfrak{g} on 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) inherited from the adjoint action of 𝔤\mathfrak{g} on 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}).

On the other hand, the Chevalley involution ω¯\bar{\omega} of U(𝔤[t±1])U(\mathfrak{g}[t^{\pm 1}]), defined as in (3.14) with rr taking values in \mathbb{Z}, and the adjoint action of 𝔤\mathfrak{g} on U(𝔤[t±1])U(\mathfrak{g}[t^{\pm 1}]) both preserve U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}). The resulting involution and 𝔤\mathfrak{g}-module structure on U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) will be compared to those of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} described in the previous paragraph in (3) of Proposition 6.6.

Consider now the standard symmetric algebra grading

𝖲(𝔱+)=n𝖲n(𝔱+),\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})=\bigoplus_{n\in\mathbb{N}}\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}),

where 𝖲n(𝔱+)\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) is the nn-th symmetric power of 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}, as in (5.4). Since 𝖲1(𝔱+)=𝔱+\mathsf{S}^{1}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})=\hbar\mathfrak{t}_{\scriptscriptstyle{+}}, every linear functional ff in (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\ast} trivially extends to an element of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\ast} satisfying f(𝖲n(𝔱+))=0f(\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}))=0 for all n1n\neq 1, which is contained in 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} provided f(𝔱+)f\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}. That is, we have (𝔱+)𝖲(𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}. In addition, we have a homogeneous, degree zero, isomorphism of graded vector spaces

𝖱𝖾𝗌:𝔱(𝔱+),𝖱𝖾𝗌(x)(y)=𝖱𝖾𝗌(x)(y)=x,yx𝔱,y𝔱+,\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}:\mathfrak{t}_{\scriptscriptstyle{-}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star},\quad\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}(x)(\hbar y)=\mathsf{Res}_{\scriptscriptstyle-}(x)(y)=\langle x,y\rangle\quad\forall\;x\in\mathfrak{t}_{\scriptscriptstyle{-}},\,y\in\mathfrak{t}_{\scriptscriptstyle{+}},

where 𝖱𝖾𝗌\mathsf{Res}_{\scriptscriptstyle-} and ,\langle\,,\,\rangle are as defined in Section 2.5. With the above at our disposal, we are now prepared to identify 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} and U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}).

Proposition 6.6.

The restricted dual 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} has the following properties:

  1. (1)

    (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} is the Lie algebra of primitive elements in 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}, with bracket

    [f,g]=(fg)δ+f,g(𝔱+).[f,g]=(f\otimes g)\circ\hbar\delta_{\scriptscriptstyle+}\quad\forall\quad f,g\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}.
  2. (2)

    𝖱𝖾𝗌\mathsf{Res}_{\scriptscriptstyle-}^{\hbar} uniquely extends to an isomorphism of graded Hopf algebras

    φ:U(𝔱)𝖲(𝔱+)\varphi:U(\mathfrak{t}_{\scriptscriptstyle{-}})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}
  3. (3)

    φ\varphi is a 𝔤\mathfrak{g}-module intertwiner commuting with Chevalley involutions.

Parts (1) and (2) of this proposition can be viewed as a variant of [KWWY]*Cor. 3.4 applied to a restricted version of the setting in [KWWY]*§3E. They can be seen as a consequence of a graded generalization of (a special case of) Theorem 4.8 in [Gav07]. It is not difficult to prove this variant directly using a fairly general argument, as we illustrate below.

Proof of (1).

An element f𝖲(𝔱+)f\in\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} is primitive precisely when it satisfies

(6.1) f(xy)=f(x)ε(y)+ε(x)f(y)x,y𝖲(𝔱+).f(xy)=f(x)\varepsilon(y)+\varepsilon(x)f(y)\quad\forall\;x,y\in\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}).

Since the counit ε\varepsilon of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) vanishes on 𝕁=n>0𝖲n(𝔱+)\mathbb{J}=\bigoplus_{n>0}\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}), it follows readily that ff must vanish on 𝕁2=n>1𝖲n(𝔱+)\mathbb{J}^{2}=\bigoplus_{n>1}\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}). Moreover, the above condition gives f(1)=2f(1)f(1)=2f(1), and hence ff vanishes on \mathbb{C}. It follows that f𝖲1(𝔱+)=(𝔱+)f\in\mathsf{S}^{1}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{(}}^{\star}=(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}.

Conversely, if f(𝔱+)f\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}, then Δ(f)\Delta(f) vanishes on 𝖲n(𝔱+)𝖲m(𝔱+)\mathsf{S}^{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})\otimes\mathsf{S}^{m}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) unless n+m=1n+m=1, and on 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}\otimes\mathbb{C} and 𝔱+\mathbb{C}\otimes\hbar\mathfrak{t}_{\scriptscriptstyle{+}} the identity (6.1) trivially holds. This completes the proof that the Lie algebra Prim𝖲(𝔱+)\mathrm{Prim}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} coincides with (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} as a vector space. Let us now prove that its bracket is given by

[f,g]=(fg)δ+f,g(𝔱+).[f,g]=(f\otimes g)\circ\hbar\delta_{\scriptscriptstyle+}\quad\forall\quad f,g\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}.

Since [f,g](𝔱+)[f,g]\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}, it is enough to establish this equality on 𝔱+\hbar\mathfrak{t}_{\scriptscriptstyle{+}}. By definition, we have

[f,g](x)=(fggf)(x)=(fg)(ΔΔop)(x)x𝔱+.[f,g](\hbar x)=(fg-gf)(\hbar x)=(f\otimes g)(\Delta-{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}})(\hbar x)\quad\forall\;\hbar x\in\hbar\mathfrak{t}_{\scriptscriptstyle{+}}.

It thus suffices to prove that (ΔΔop)|𝔱+δ+(\Delta-{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}})|_{\hbar\mathfrak{t}_{\scriptscriptstyle{+}}}-\hbar\delta_{\scriptscriptstyle+} has image in Ker(fg)\mathrm{Ker}(f\otimes g). As Y(𝔤)Y_{\hbar}(\mathfrak{g}) is a quantization of (𝔱+,δ+)(\mathfrak{t}_{\scriptscriptstyle{+}},\delta_{\scriptscriptstyle+}), we have

(ΔY(𝔤)ΔY(𝔤)op)(μ(x))2(μμ)δ+(x)3Y(𝔤)2𝖸˙(𝔤)2,(\Delta_{Y_{\hbar}(\mathfrak{g})}-{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}_{Y_{\hbar}(\mathfrak{g})})(\hbar\mu(x))-\hbar^{2}(\mu\otimes\mu)\delta_{\scriptscriptstyle+}(x)\in\hbar^{3}Y_{\hbar}(\mathfrak{g})^{\otimes 2}\cap\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})^{\otimes 2},

where we recall that μ=ν1\mu=\upnu^{-1}, with ν\upnu as in (3.18). Applying 𝗊˙𝗊˙\dot{\mathsf{q}}\otimes\dot{\mathsf{q}} and taking note of (5.3), we obtain

(6.2) (ΔΔop)(x)δ+(x)n+m=3𝕁n𝕁mKer(fg),(\Delta-{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}})(\hbar x)-\hbar\delta_{\scriptscriptstyle+}(\hbar x)\in\sum_{n+m=3}\mathbb{J}^{n}\otimes\mathbb{J}^{m}\subset\mathrm{Ker}(f\otimes g),

which completes the proof of (1). ∎

Proof of (2).

Consider now (2). By Part (1), 𝖱𝖾𝗌\mathsf{Res}_{\scriptscriptstyle-}^{\hbar} is an isomorphism of graded Lie algebras 𝔱Prim𝖲(𝔱+)𝖲(𝔱+)\mathfrak{t}_{\scriptscriptstyle{-}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{Prim}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}. By the universal property of U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}), it extends uniquely to a homomorphism of graded Hopf algebras

φ:U(𝔱)𝖲(𝔱+),\varphi:U(\mathfrak{t}_{\scriptscriptstyle{-}})\to\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star},

which is necessarily injective (by [Mont]*Lem. 5.3.3, for instance). As the finite-dimensional graded components U(𝔱)nU(\mathfrak{t}_{\scriptscriptstyle{-}})_{-n} and 𝖲(𝔱+)n=𝖲n(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{-n}=\mathsf{S}_{n}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{(}}^{\ast} have the same dimension for each nn\in\mathbb{N}, it follows that φ\varphi is an isomorphism.

Proof of (3).

If x𝔱x\in\mathfrak{t}_{\scriptscriptstyle{-}}, then φ(ω¯(x))\varphi(\bar{\omega}(x)) is the element of (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} determined by

φ(ω¯(x))(y)=ω¯(x),y=x,ω¯(y)=ω˙t(φ(x))(y)y𝔱+,\varphi(\bar{\omega}(x))(\hbar y)=\langle\bar{\omega}(x),y\rangle=\langle x,\bar{\omega}(y)\rangle=\dot{\omega}^{t}(\varphi(x))(\hbar y)\quad\forall\;y\in\mathfrak{t}_{\scriptscriptstyle{+}},

where the second equality follows from the fact that the bilinear form (,)(\,,\,) on 𝔤\mathfrak{g} is ω\omega-invariant. As (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} is stable under ω˙t\dot{\omega}^{t} and U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) is generated by 𝔱\mathfrak{t}_{\scriptscriptstyle{-}}, we may conclude that φω¯=ω˙tφ\varphi\circ\bar{\omega}=\dot{\omega}^{t}\circ\varphi.

Similarly, if x𝔤x\in\mathfrak{g} and y𝔱y\in\mathfrak{t}_{\scriptscriptstyle{-}}, then φ([x,y])(𝔱+)\varphi([x,y])\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} is determined by

φ([x,y])(z)=[x,y],z=y,[z,x]=φ(y)([z,x])z𝔱+.\varphi([x,y])(\hbar z)=\langle[x,y],z\rangle=\langle y,[z,x]\rangle=\varphi(y)(\hbar[z,x])\quad\forall\;z\in\mathfrak{t}_{\scriptscriptstyle{+}}.

On the other hand, since 𝕁k\mathbb{J}^{k} is a 𝔤\mathfrak{g}-submodule of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}) for each kk\in\mathbb{N}, xφ(y)x\cdot\varphi(y) also belongs to (𝔱+)(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}. Moreover, we have

(xφ(y))(z)=φ(y)(S(x)z)=φ(y)([z,x])z𝔱+,(x\cdot\varphi(y))(\hbar z)=\varphi(y)\left(S(x)\cdot\hbar z\right)=\varphi(y)(\hbar[z,x])\quad\forall\;z\in\mathfrak{t}_{\scriptscriptstyle{+}},

where we have used that S(x)z[z,x]𝕁2Ker(φ(y))S(x)\cdot\hbar z-\hbar[z,x]\in\mathbb{J}^{2}\subset\mathrm{Ker}(\varphi(y)), which is proven analogously to (6.2). Since 𝔤\mathfrak{g} acts on both U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) and 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} by derivations and U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) is generated by 𝔱\mathfrak{t}_{\scriptscriptstyle{-}}, the above computation proves that φ\varphi is a 𝔤\mathfrak{g}-module homomorphism. ∎

6.4. 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} as a quantization

Since the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a \mathbb{Z}-graded topologically free Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] with semiclassical limit that, by Proposition 6.6, can be identified with U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) as a graded Hopf algebra, it is a quantized enveloping algebra which provides a homogeneous quantization of a \mathbb{Z}-graded Lie bialgebra structure (𝔱,δ)(\mathfrak{t}_{\scriptscriptstyle{-}},\delta) on the graded Lie algebra 𝔱=t1𝔤[t1]\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}].

The following theorem asserts that this Lie bialgebra structure on 𝔱\mathfrak{t}_{\scriptscriptstyle{-}} is precisely that associated to the Manin triple (𝔱,𝔱+,𝔱)(\mathfrak{t},\mathfrak{t}_{\scriptscriptstyle{+}},\mathfrak{t}_{\scriptscriptstyle{-}}) from Section 2.5.

Theorem 6.7.

𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a homogeneous quantization of the Lie bialgebra (𝔱,δ)(\mathfrak{t}_{\scriptscriptstyle{-}},\delta_{\scriptscriptstyle-}).

Proof.

In light of the above discussion, the definition δ\delta_{\scriptscriptstyle-} given in Section 2.5, and the identification of Proposition 6.6, it is sufficient to prove that the Lie bialgebra structure on 𝔱(𝔱+)\mathfrak{t}_{\scriptscriptstyle{-}}\cong(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} quantized by 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} has cobracket δ\delta given by

δ(f)(xy)=f([x,y])x,y𝔱+,f(𝔱+).\delta(f)(\hbar x\otimes\hbar y)=f(\hbar[x,y])\quad\forall\;x,y\in\mathfrak{t}_{\scriptscriptstyle{+}},\,f\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}.

By definition, δ\delta is given by the formula

δ(f):=1(mt(f^)m21t(f^))mod𝖸˙𝔤𝖸˙𝔤,\delta(f):=\hbar^{-1}(m^{t}(\hat{f})-m^{t}_{21}(\hat{f}))\mod\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},

where f^𝖸˙𝔤\hat{f}\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is any lift of f(𝔱+)f\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} and mm is the product on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}. For any two elements x,y𝔱+x,y\in\mathfrak{t}_{\scriptscriptstyle{+}}, we have

(6.3) [μ(x),μ(y)]μ[x,y]𝐉2f^1([[]])[\mu(x),\hbar\mu(y)]-\hbar\mu[x,y]\in\mathbf{J}^{2}\subset\hat{f}^{-1}(\hbar\mathbb{C}[\![\hbar]\!])

which implies the desired result:

(δ(f)\displaystyle(\delta(f)- f1[,])(xy)\displaystyle f\circ\hbar^{-1}[,])(\hbar x\otimes\hbar y)
=f^([μ(x),μ(y)]μ[x,y])mod[[]]=0.\displaystyle=\hat{f}([\mu(x),\hbar\mu(y)]-\hbar\mu[x,y])\mod\hbar\mathbb{C}[\![\hbar]\!]=0.\qed

6.5. The dual triangular decomposition

Our main goal in this subsection is to establish a triangular decomposition for 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} dual to that for 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} established in Corollaries 5.6 and 5.7; see also Remark 5.8. Along the way, we shall identify a family of generators for 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}; see Lemma 6.8.

For each choice of the symbol χ\chi, consider the restricted dual 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} of the \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}. By Corollaries 2.9 and 5.6, this is a \mathbb{Z}-graded topologically free [[]]\mathbb{C}[\![\hbar]\!]-module with semiclassical limit equal to the graded dual

𝖲(𝔱+χ)=n𝖲(𝔱+χ)n\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}=\bigoplus_{n\in\mathbb{N}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}_{-n}

of the symmetric algebra 𝖲(𝔱+χ)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}). Moreover, by Remark 2.8, 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} coincides with the \hbar-adic completion of the graded dual to 𝖸˙χ(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\chi}(\mathfrak{g}) taken in the category of \mathbb{Z}-graded []\mathbb{C}[\hbar]-modules. Now let πχ:𝖸˙𝔤𝖸˙χ𝔤\pi^{\chi}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g} denote the [[]]\mathbb{C}[\![\hbar]\!]-linear projection associated to the identification of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} with 𝖸˙+𝔤𝖸˙0𝔤𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{+}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g} established in Remark 5.8. That is, we have

π+=𝟏𝖸˙+𝔤εε,π0=ε𝟏𝖸˙0𝔤ε and π=εε𝟏𝖸˙𝔤.\pi^{+}=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{+}\mathfrak{g}}\otimes\varepsilon\otimes\varepsilon,\quad\pi^{0}=\varepsilon\otimes\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}}\otimes\varepsilon\quad\text{ and }\quad\pi^{-}=\varepsilon\otimes\varepsilon\otimes\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}}.

Taking the transpose of πχ\pi^{\chi} yields a \mathbb{Z}-graded embedding of [[]]\mathbb{C}[\![\hbar]\!]-modules

(πχ)t:𝖸˙χ𝔤𝖸˙𝔤,ffπχf𝖸˙χ𝔤,(\pi^{\chi})^{t}:\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}\hookrightarrow\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},\quad f\mapsto f\circ\pi^{\chi}\quad\forall\quad f\in\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star},

with image consisting of precisely those g𝖸˙𝔤g\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} for which gπχ=gg\circ\pi^{\chi}=g. Note that if ng\hbar^{n}g is contained in this image for some nn\in\mathbb{N} then gg itself is, and so the subspace topology on (πχ)t(𝖸˙χ𝔤)(\pi^{\chi})^{t}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}) coincides with its \hbar-adic topology. Furthermore, the semiclassical limit of (πχ)t(\pi^{\chi})^{t} is the embedding 𝖲(𝔱+χ)𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}\hookrightarrow\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} induced by the projection 𝔱+=𝔱++𝔱+0𝔱+𝔱+χ\mathfrak{t}_{\scriptscriptstyle{+}}=\mathfrak{t}_{\scriptscriptstyle{+}}^{+}\oplus\mathfrak{t}_{\scriptscriptstyle{+}}^{0}\oplus\mathfrak{t}_{\scriptscriptstyle{+}}^{-}\to\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}.

We shall henceforth adopt the viewpoint that 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a \mathbb{Z}-graded topological submodule of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, with the above identification assumed. We further note that the Chevalley involution ωt\omega^{t} of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} satisfies

ωt(𝖸˙±𝔤)=𝖸˙𝔤 and ωt|𝖸˙0𝔤=𝟏𝖸˙0𝔤.\omega^{t}(\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star})=\dot{\mathsf{Y}}_{\hbar}^{\mp}\mathfrak{g}{\vphantom{)}}^{\star}\quad\text{ and }\quad\omega^{t}|_{\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}}=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}}.

Let us now identify a set of elements which generate 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} as a topological [[]]\mathbb{C}[\![\hbar]\!]-algebra. These generators are constructed so as to naturally correspond to the coefficients of the DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}-valued series h˙i(u)\dot{h}_{i}(u) and x˙β±(u)\dot{x}_{\beta}^{\pm}(u) defined in Section 4.2, and such an identification will be made precise in the proof of Lemma 7.4; see (7.2).

Given βQ\beta\in Q, let πβ:𝖸˙(𝔤)𝖸˙(𝔤)β\pi_{\beta}:\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})\to\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})_{\beta} denote the natural projection onto the β\beta-component of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g}). Since the []\mathbb{C}[\hbar]-module isomorphism

ν˙=ν|𝖸˙(𝔤):𝖸˙(𝔤)𝖱(U(𝔱+))U(𝔱+)[]\dot{\upnu}=\upnu|_{\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{R}_{\hbar}(U(\mathfrak{t}_{\scriptscriptstyle{+}}))\subset U(\mathfrak{t}_{\scriptscriptstyle{+}})[\hbar]

is QQ-graded and respects the underlying triangular decompositions, we have

ν˙(παi(𝖸˙(𝔤)))k[]xitk𝔱+[]i𝐈.\dot{\upnu}(\pi_{-\alpha_{i}}(\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})))\subset\bigoplus_{k\in\mathbb{N}}\mathbb{C}[\hbar]\cdot\hbar x_{i}^{-}t^{k}\subset\hbar\mathfrak{t}_{\scriptscriptstyle{+}}[\hbar]\quad\forall\;i\in\mathbf{I}.

We may thus compose ν˙παi\dot{\upnu}\circ\pi_{-\alpha_{i}} with 𝖱𝖾𝗌(xi+tk1)(𝔱+)\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}(x_{i}^{+}t^{-k-1})\in(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star}, as defined above Proposition 6.6, for any fixed kk\in\mathbb{N}. This outputs a degree k1-k-1 element

(6.4) 𝖷i,k1+:=𝖱𝖾𝗌(xi+tk1)ν˙παi𝖸˙𝔤𝖸˙𝔤,\mathsf{X}_{i,-k-1}^{+}:=\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}(x_{i}^{+}t^{-k-1})\circ\dot{\upnu}\circ\pi_{-\alpha_{i}}\in\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g}{\vphantom{)}}^{\star}\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star},

where we work through the identification of Hom[]a(𝖸˙(𝔤),[])\mathrm{Hom}_{\mathbb{C}[\hbar]}^{a}(\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g}),\mathbb{C}[\hbar]) with the aa-th component Hom[[]]a(𝖸˙𝔤,[[]])\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}^{a}(\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g},\mathbb{C}[\![\hbar]\!]) of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g}{\vphantom{)}}^{\star}; see Remark 2.8. We now enlarge this family of elements to a generating set for the [[]]\mathbb{C}[\![\hbar]\!]-algebra 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} using the coadjoint action of 𝔤\mathfrak{g} on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and the Chevalley involution ωt\omega^{t} from Section 6.2. For each i𝐈i\in\mathbf{I}, βΔ+\beta\in\Delta^{+} and kk\in\mathbb{N}, we introduce the degree k1-k-1 elements

𝗁i,k1=xi𝖷i,k1+,\displaystyle\mathsf{h}_{i,-k-1}=-x_{i}^{-}\cdot\mathsf{X}_{i,-k-1}^{+},
𝖷β,k1+:=𝐗β𝖷i(β),k1+𝖸˙𝔤β,𝖷β,k1:=ωt(𝖷β,k1+)𝖸˙𝔤β,\displaystyle\mathsf{X}_{\beta,-k-1}^{+}:=\mathbf{X}^{\beta}\cdot\mathsf{X}_{i(\beta),-k-1}^{+}\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\beta},\quad\mathsf{X}_{\beta,-k-1}^{-}:=\omega^{t}(\mathsf{X}_{\beta,-k-1}^{+})\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-\beta},

where i(β)𝐈i(\beta)\in\mathbf{I} and 𝐗βU(𝔫+)βαi(β)\mathbf{X}^{\beta}\in U(\mathfrak{n}_{+})_{\beta-\alpha_{i(\beta)}} are as in (3.16). In the same spirit as in Section 4.2, we organize these elements into generating series in 𝖸˙𝔤[[u]]\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}[\![u]\!] by setting

𝗁i(u):=r<0𝗁i,rur1 and 𝖷β±(u):=r<0𝖷β,r±ur1\mathsf{h}_{i}(u):=-\sum_{r<0}\mathsf{h}_{i,r}u^{-r-1}\quad\text{ and }\quad\mathsf{X}_{\beta}^{\pm}(u):=-\sum_{r<0}\mathsf{X}_{\beta,r}^{\pm}u^{-r-1}\quad

for each i𝐈i\in\mathbf{I} and βΔ+\beta\in\Delta^{+}. We then have the following lemma.

Lemma 6.8.

The dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is topologically generated as a [[]]\mathbb{C}[\![\hbar]\!]-algebra by the coefficients of {𝖷β±(u)}βΔ+\{\mathsf{X}_{\beta}^{\pm}(u)\}_{\beta\in\Delta^{+}} and {𝗁i(u)}i𝐈\{\mathsf{h}_{i}(u)\}_{i\in\mathbf{I}}. Moreover, their images under the quotient map 𝖸˙𝔤𝖸˙𝔤/𝖸˙𝔤U(𝔱)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\twoheadrightarrow\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong U(\mathfrak{t}_{\scriptscriptstyle{-}}) are given by

𝗁i,rhitr and 𝖷β,r±xβ±tri𝐈,βΔ+ and r<0.\mathsf{h}_{i,r}\mapsto h_{i}t^{r}\quad\text{ and }\quad\mathsf{X}_{\beta,r}^{\pm}\mapsto x_{\beta}^{\pm}t^{r}\quad\forall\quad i\in\mathbf{I},\,\beta\in\Delta^{+}\;\text{ and }\;r<0.
Proof.

As 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a flat deformation of the algebra U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) over [[]]\mathbb{C}[\![\hbar]\!] and the elements hitk1h_{i}t^{-k-1} and xβ±tk1x_{\beta}^{\pm}t^{-k-1} generate 𝔱=t1𝔤[t1]\mathfrak{t}_{\scriptscriptstyle{-}}=t^{-1}\mathfrak{g}[t^{-1}] as a Lie algebra, it is sufficient to prove the second assertion of the proposition.

That the element 𝖷ir+\mathsf{X}_{ir}^{+} coincides with xi+trx_{i}^{+}t^{r} modulo 𝖸˙𝔤\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is an immediate consequence of its definition and the identification of U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) with 𝖸˙𝔤/𝖸˙𝔤𝖲(𝔱+)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} provided by Part (2) of Proposition 6.6. The remaining equivalences now follow from the definitions of hih_{i} and xβ±x_{\beta}^{\pm} (see (3.16)) and Part (3) of Proposition 6.6, which implies that the quotient map 𝖸˙𝔤U(𝔱)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\twoheadrightarrow U(\mathfrak{t}_{\scriptscriptstyle{-}}) is a 𝔤\mathfrak{g}-module homomorphism intertwining Chevalley involutions. ∎

{comment}
Remark 6.9.

Since 𝔾\mathds{G}{\vphantom{)}}^{\star} is a lift of a homogeneous basis of 𝔱\mathfrak{t}_{\scriptscriptstyle{-}}, the set of ordered monomials B(𝔾)B(\mathds{G}{\vphantom{)}}^{\star}) in 𝔾\mathds{G}{\vphantom{)}}^{\star}, with respect to any fixed total order on 𝔾\mathds{G}{\vphantom{)}}^{\star}, is linearly independent over [[]]\mathbb{C}[\![\hbar]\!] and provides a homogeneous, topological basis of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}.

In more detail, for each kk\in\mathbb{Z} the complex vector space 𝖵k𝖸˙𝔤\mathsf{V}_{k}\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} with basis consisting of degree kk elements of B(𝔾)B(\mathds{G}{\vphantom{)}}^{\star}) provides a decomposition 𝖸˙𝔤k=𝖵k𝖸˙𝔤k1\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{k}=\mathsf{V}_{k}\oplus\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{k-1} and one has 𝖸˙𝔤𝖵[[]]\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong\mathsf{V}[\![\hbar]\!] as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-module, where 𝖵=k𝖵k\mathsf{V}=\bigoplus_{k\in\mathbb{Z}}\mathsf{V}_{k}. We refer the reader to Corollary 2.5 and the discussion below Theorem 3.5 for further details.

Let us now turn towards establishing a triangular decomposition for the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. Following the notation from Section 5.3, let us introduce the Lie subalgebras 𝔱χ\mathfrak{t}_{\scriptscriptstyle{-}}^{\chi} of 𝔱=t1𝔤[t1]\mathfrak{t}=t^{-1}\mathfrak{g}[t^{-1}] by setting

𝔱±:=t1𝔫±[t1]𝔱 and 𝔱0:=t1𝔥[t1]𝔱.\mathfrak{t}_{\scriptscriptstyle{-}}^{\pm}:=t^{-1}\mathfrak{n}_{\pm}[t^{-1}]\subset\mathfrak{t}_{\scriptscriptstyle{-}}\quad\text{ and }\quad\mathfrak{t}_{\scriptscriptstyle{-}}^{0}:=t^{-1}\mathfrak{h}[t^{-1}]\subset\mathfrak{t}_{\scriptscriptstyle{-}}.

The below proposition provides a strengthening of the \hbar-adic analogues of Proposition 3.2 and Theorem 4.2 (i) from [KT96].

Proposition 6.10.

𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} are [[]]\mathbb{C}[\![\hbar]\!]-subalgebras of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. Moreover:

  1. (1)

    𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} is a flat deformation of the \mathbb{Z}-graded algebra U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\mp}) over [[]]\mathbb{C}[\![\hbar]\!]. In particular, there is an isomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules

    𝖸˙±𝔤U(𝔱)[[h]].\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}\cong U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\mp})[\![h]\!].
  2. (2)

    𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} is commutative and isomorphic to U(𝔱0)[[]]𝖲(𝔱0)[[]]U(\mathfrak{t}_{\scriptscriptstyle{-}}^{0})[\![\hbar]\!]\cong\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{-}}^{0})[\![\hbar]\!] as a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra.

  3. (3)

    𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} are topologically generated as [[]]\mathbb{C}[\![\hbar]\!]-algebras by the coefficients of {𝖷β(u)}βΔ+\{\mathsf{X}_{\beta}^{\mp}(u)\}_{\beta\in\Delta^{+}} and {𝗁i(u)}i𝐈\{\mathsf{h}_{i}(u)\}_{i\in\mathbf{I}}, respectively.

Proof.

One can deduce that 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a subalgebra of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} using properties of the Yangian coproduct, as in [KT96]*Prop. 3.2. We shall give an alternate simple proof of this fact in Section 7.3 which illustrates that it follows naturally from properties of (z)\mathcal{R}(z); see Corollary 7.7 and Remark 7.8.

Let us complete the proof of the Proposition assuming Corollary 7.7 which, as explained in Remark 7.8, also implies that the coefficients of {𝖷β(u)}βΔ+\{\mathsf{X}_{\beta}^{\mp}(u)\}_{\beta\in\Delta^{+}} and {𝗁i(u)}i𝐈\{\mathsf{h}_{i}(u)\}_{i\in\mathbf{I}} belong to 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{\mp}\mathfrak{g}{\vphantom{)}}^{\star} and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}, respectively, and that 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} is commutative.

Proof of (1) and (2).

The graded Lie bialgebra isomorphism 𝖱𝖾𝗌:𝔱(𝔱+)\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}:\mathfrak{t}_{\scriptscriptstyle{-}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}})^{\star} of Proposition 6.6 restricts to an isomorphism 𝔱χ(𝔱+χ)𝖲(𝔱+χ)\mathfrak{t}_{\scriptscriptstyle{-}}^{\shortminus\chi}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi})^{\star}\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}. Since 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a subalgebra of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, its semiclassical limit 𝖲(𝔱+χ)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star} is a \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-subalgebra of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{()}}^{\star} and not just a submodule. It follows from these observations that the graded Hopf algebra isomorphism φ\varphi of Proposition 6.6 restricts to an injective \mathbb{Z}-graded algebra homomorphsim

(6.5) φχ:U(𝔱χ)𝖲(𝔱+χ)𝖲(𝔱+)\varphi_{\chi}:U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\shortminus\chi})\to\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}

which is surjective by the same argument as used in the proof of Part (2) of Proposition 6.6. Since 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a \mathbb{Z}-graded topologically free [[]]\mathbb{C}[\![\hbar]\!]-algebra with semiclassical limit 𝖲(𝔱+χ)U(𝔱χ)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}\cong U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\shortminus\chi}), taking χ=±\chi=\pm recovers Part (1) of the Proposition.

As for Part (2), since 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} is a commutative topological [[]]\mathbb{C}[\![\hbar]\!]-algebra containing {𝗁ik}i𝐈,k<0\{\mathsf{h}_{ik}\}_{i\in\mathbf{I},k<0} (by Corollary 7.7), there is a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

η:𝖲(𝔱0)[[]]𝖸˙0𝔤\upeta:\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{-}}^{0})[\![\hbar]\!]\to\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}

uniquely determined by η(hitk)=𝗁ik\upeta(h_{i}t^{k})=\mathsf{h}_{ik} for all i𝐈i\in\mathbf{I} and k<0k<0. By Lemma 6.8, the semiclassical limit η¯:𝖲(𝔱0)U(𝔱0)\bar{\upeta}:\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{-}}^{0})\to U(\mathfrak{t}_{\scriptscriptstyle{-}}^{0}) of η\upeta satisfies η¯(hitk)=hitk\bar{\upeta}(h_{i}t^{k})=h_{i}t^{k} for all i𝐈i\in\mathbf{I} and k<0k<0, and thus coincides with the canonical isomorphism 𝖲(𝔱0)U(𝔱0)\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{-}}^{0})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}U(\mathfrak{t}_{\scriptscriptstyle{-}}^{0}). Here we have assumed the identification of 𝖸˙0𝔤/𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} with U(𝔱0)U(\mathfrak{t}_{\scriptscriptstyle{-}}^{0}) provided by φ0\varphi_{0} from (6.5) above. As 𝖲(𝔱0)\mathsf{S}(\mathfrak{t}_{\scriptscriptstyle{-}}^{0}) and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} are both topologically free, we can conclude from Lemma 2.1 that η\upeta is an isomorphism of topological [[]]\mathbb{C}[\![\hbar]\!]-algebras.

Proof of (3).

For 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}, this follows from the definition of the isomorphism η\upeta given in the proof of (2) above.

Similarly, by Lemma 6.8 and Corollary 7.7, 𝖷β,k\mathsf{X}_{\beta,k}^{\mp} belongs to 𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} and specializes to xβtkx_{\beta}^{\mp}t^{k} in 𝖸˙±𝔤/𝖸˙±𝔤U(𝔱)U(𝔱)\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}\cong U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\mp})\subset U(\mathfrak{t}_{\scriptscriptstyle{-}}), for each βΔ+\beta\in\Delta^{+} and k<0k<0. Since the elements xβtkx_{\beta}^{\mp}t^{k} generate the Lie algebra 𝔱\mathfrak{t}_{\scriptscriptstyle{-}}^{\mp} and, by Part (1), 𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} is a flat deformation of the algebra U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}^{\mp}) over [[]]\mathbb{C}[\![\hbar]\!], this completes the proof of the proposition.

Remark 6.11.

We caution that 𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} is not generated by the elements 𝖷i,k1\mathsf{X}_{i,-k-1}^{\mp}, for i𝐈i\in\mathbf{I} and kk\in\mathbb{N}, unless 𝔤=𝔰𝔩2\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{2}, just as t1𝔫[t1]t^{-1}\mathfrak{n}_{\mp}[t^{-1}] is not generated as a Lie algebra by the elements xitk1x_{i}^{\mp}t^{-k-1} outside of the rank one case. In particular, the statement of Part (i) in [KT96]*Thm. 4.2, which is the analogue of Part (2) above, should be adjusted.

As an application of Lemma 2.1, Proposition 6.10, the decomposition 𝔱=𝔱𝔱0𝔱+\mathfrak{t}_{\scriptscriptstyle{-}}=\mathfrak{t}_{\scriptscriptstyle{-}}^{-}\oplus\mathfrak{t}_{\scriptscriptstyle{-}}^{0}\oplus\mathfrak{t}_{\scriptscriptstyle{-}}^{+} and the Poincaré–Birkhoff–Witt Theorem for enveloping algebras, we obtain the following variant of Theorem 3.1 (ii) in [KT96].

Corollary 6.12.

The multiplication map

𝗆:𝖸˙+𝔤𝖸˙0𝔤𝖸˙𝔤𝖸˙𝔤\mathsf{m}:\dot{\mathsf{Y}}_{\hbar}^{+}\mathfrak{g}{\vphantom{)}}^{\star}\otimes\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}\otimes\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}{\vphantom{)}}^{\star}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}

is an isomorphism of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules.

Remark 6.13.

We note that for the statement of [KT96]*Thm. 3.1 to hold, the tensor product \otimes must be taken to be a completion of the algebraic tensor product \otimes_{\mathbb{C}} compatible with the underlying \mathbb{Z}-filtrations.

7. DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as a quantization

In this section, we construct a \mathbb{Z}-graded topological Hopf algebra structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} which quantizes the graded Lie bialgebra structure on the loop algebra 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}] defined in Section 2.5. This will be achieved in Theorem 7.5 using Proposition 7.1 and Corollary 7.3. As a consequence of these results, we obtain in Section 7.3 a characterization of the restricted duals 𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} in terms of the universal RR-matrix (z)\mathcal{R}(z) which completes the proof of Proposition 6.10.

7.1. The morphism Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}

Henceforth, the notation Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} will be used to denote the topological Hopf algebra (𝖸˙𝔤)cop(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}){\vphantom{)}}^{\scriptscriptstyle\mathrm{cop}} over [[]]\mathbb{C}[\![\hbar]\!]. That is, Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} coincides with the dual Yangian 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} as an algebra, and has coproduct Δ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, counit ε\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and antipode SS^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} given by

Δ:=(1 2)mt:Y𝔤Y𝔤Y𝔤,\displaystyle\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=(1\,2)\circ m^{t}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},
ε:=ιt:Y𝔤[[]],S:=(S1)t:Y𝔤Y𝔤,\displaystyle\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=\iota^{t}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\mathbb{C}[\![\hbar]\!],\quad S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=(S^{-1})^{t}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where mm, ι\iota and SS are the product, unit and antipode of the Drinfeld–Gavarini Yangian 𝖸˙𝔤Y𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\subset Y_{\hbar}\mathfrak{g}; see Section 6.1. By Theorem 6.7, Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a flat deformation of the enveloping algebra U(𝔱)=U(t1𝔤[t1])U(\mathfrak{t}_{\scriptscriptstyle{-}})=U(t^{-1}\mathfrak{g}[t^{-1}]) over [[]]\mathbb{C}[\![\hbar]\!] which provides a homogeneous quantization of the Lie bialgebra (𝔱,δ)(\mathfrak{t}_{\scriptscriptstyle{-}},-\delta_{\scriptscriptstyle-}).

Our present goal is to construct a homomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

Φz:Y𝔤Y𝔤[[z1]]\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!]

which is compatible with both the formal shift operator Φz\Phi_{z} of Theorem 4.6 and the Hopf structures on Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Y𝔤Y_{\hbar}\mathfrak{g}. This is achieved using the universal RR-matrix (z)\mathcal{R}(z) of the Yangian as follows. By Lemma 5.10, (z)\mathcal{R}(z) is an element of (𝖸˙(𝔤)Y(𝔤))[[z1]](\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!], and thus gives rise to a [[]]\mathbb{C}[\![\hbar]\!]-module homomorphism

Φz:Y𝔤Y𝔤[[z1]],f(f𝟏)(z)fY𝔤.\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!],\quad f\mapsto(f\otimes\mathbf{1})\mathcal{R}(-z)\quad\forall\;f\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Now recall that h˙i(u),x˙β±(u)DY𝔤[[u]]\dot{h}_{i}(u),\dot{x}_{\beta}^{\pm}(u)\in\mathrm{D}Y_{\hbar}\mathfrak{g}[\![u]\!] and 𝗁i(u),𝖷β±(u)Y𝔤[[u]]\mathsf{h}_{i}(u),\mathsf{X}_{\beta}^{\pm}(u)\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}[\![u]\!] are the generating series defined in Sections 4.2 and 6.5, respectively. In addition, we let 𝓏\EuScript{E}_{z} denote the canonical [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

𝓏:𝒴𝔤[[𝓌1]]𝒴𝔤[[𝓏1]]𝒴𝔤2[[𝓏1]]\EuScript{E}_{z}:Y_{\hbar}\mathfrak{g}[\![w^{-1}]\!]\otimes Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!]\to Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!]

given by evaluating ww to zz. The following proposition asserts that Φz\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z} indeed has the desired properties.

Proposition 7.1.

Φz\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z} has the following properties:

  1. (1)

    It is a homomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras satisfying

    ΔΦz=𝓏(Φ𝓌Φ𝓏)Δ,εΦ𝓏=ε and 𝒮Φ𝓏=Φ𝓏𝒮.\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\EuScript{E}_{z}\circ(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{w}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\quad\varepsilon\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\quad\text{ and }\quad S\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}\circ S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.
  2. (2)

    It is a U(𝔤)U(\mathfrak{g})-module homomorphism compatible with Chevalley involutions:

    Φzωt=ωΦz.\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}\circ\omega^{t}=\omega\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}.
  3. (3)

    Its restriction to 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star} is a \mathbb{Z}-graded []\mathbb{C}[\hbar]-algebra homomorphism

    Φz|𝖸˙(𝔤):𝖸˙(𝔤)𝕃Y𝔤^z.\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}|_{\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star}}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star}\to\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.
  4. (4)

    For each βΔ+\beta\in\Delta^{+} and i𝐈i\in\mathbf{I}, one has

    Φz(𝖷β±(u))=n(1)nunz(n)xβ±(z)=Φz(x˙β±(u)),\displaystyle\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(\mathsf{X}_{\beta}^{\pm}(u))=\sum_{n\in\mathbb{N}}(-1)^{n}u^{n}\partial_{z}^{(n)}x_{\beta}^{\pm}(-z)=\Phi_{z}(\dot{x}_{\beta}^{\pm}(u)),
    Φz(𝗁i(u))=n(1)nunz(n)hi(z)=Φz(h˙i(u)).\displaystyle\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(\mathsf{h}_{i}(u))=\sum_{n\in\mathbb{N}}(-1)^{n}u^{n}\partial_{z}^{(n)}h_{i}(-z)=\Phi_{z}(\dot{h}_{i}(u)).
Proof of (1).

This is a modification of the standard result that if HH is a finite-dimensional quasitriangular Hopf algebra over a field 𝕂\mathbb{K} with RR-matrix RH𝕂HR\in H\otimes_{\mathbb{K}}H, then the map f(f𝟏H)Rf\mapsto(f\otimes\mathbf{1}_{H})R defines a homomorphism of Hopf algebras (H)copH(H^{\ast}){\vphantom{)}}^{\scriptscriptstyle\mathrm{cop}}\to H; see for instance [CPBook]*§4.2.B or [Radford93]*§2. The only novelty in the present setting is the appearance of the formal parameter zz. Nonetheless, for the sake of completeness we shall give a full proof.

As the product on Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is the transpose of the coproduct Δ\Delta on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} and Δ𝟏((z))=13(z)23(z)\Delta\otimes\mathbf{1}(\mathcal{R}(z))=\mathcal{R}_{13}(z)\mathcal{R}_{23}(z), we have

Φz(fg)=fg𝟏(13(z)23(z))=Φz(f)Φz(g)f,gY𝔤.\displaystyle\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(fg)=f\otimes g\otimes\mathbf{1}(\mathcal{R}_{13}(-z)\mathcal{R}_{23}(-z))=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(g)\quad\forall\;f,g\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Since in addition (ε𝟏)(z)=1(\varepsilon\otimes\mathbf{1})\mathcal{R}(z)=1, we can conclude that Φz\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z} is a homomorphism of unital, associative [[]]\mathbb{C}[\![\hbar]\!]-algebras.

Let us now verify the coproduct identity ΔΦz=𝓏(Φ𝓌Φ𝓏)Δ\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\EuScript{E}_{z}\circ(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{w}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} on fY𝔤f\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. Using the cabling identity 𝟏Δ((z))=13(z)12(z)\mathbf{1}\otimes\Delta(\mathcal{R}(z))=\mathcal{R}_{13}(z)\mathcal{R}_{12}(z), we obtain

Δ(Φz(f))\displaystyle\Delta(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(f)) =(fΔ)((z))\displaystyle=(f\otimes\Delta)(\mathcal{R}(-z))
=(f𝟏𝟏)(13(z)12(z))\displaystyle=(f\otimes\mathbf{1}\otimes\mathbf{1})(\mathcal{R}_{13}(-z)\mathcal{R}_{12}(-z))
=(Δ(f)𝟏𝟏)(13(z)24(z))\displaystyle=(\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)\otimes\mathbf{1}\otimes\mathbf{1})(\mathcal{R}_{13}(-z)\mathcal{R}_{24}(-z))
=(𝓏(Δ(𝒻)𝟏𝟏))(13(𝓌)24(𝓏))\displaystyle=(\EuScript{E}_{z}\circ(\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)\otimes\mathbf{1}\otimes\mathbf{1}))(\mathcal{R}_{13}(-w)\mathcal{R}_{24}(-z))
=(𝓏(Φ𝓌Φ𝓏)Δ)(𝒻).\displaystyle=(\EuScript{E}_{z}\circ(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{w}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(f).

Finally, the remaining two identities follow from the relations (𝟏ε)(z)=1(\mathbf{1}\otimes\varepsilon)\mathcal{R}(z)=1 and (S1𝟏)(z)=(𝟏S)(z)(S^{-1}\otimes\mathbf{1})\mathcal{R}(z)=(\mathbf{1}\otimes S)\mathcal{R}(z). Indeed, for each fY𝔤f\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, we have

εΦz(f)=(fε)(z)=f(1)=ε(f),\displaystyle\varepsilon\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(f)=(f\otimes\varepsilon)\mathcal{R}(-z)=f(1)=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f),
SΦz(f)=(fS)(z)=(S(f)𝟏)(z)=ΦzS(f).\displaystyle S\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(f)=(f\otimes S)\mathcal{R}(-z)=(S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)\otimes\mathbf{1})\mathcal{R}(-z)=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}\circ S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f).
Proof of (2).

Since τz\tau_{z} restricts to the identity on U(𝔤)U(\mathfrak{g}), the intertwiner equation (3.25) implies that (z)\mathcal{R}(z) is a 𝔤\mathfrak{g}-invariant element of Y(𝔤)2[[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!]:

[x1+1x,(z)]=0x𝔤.[x\otimes 1+1\otimes x,\mathcal{R}(z)]=0\quad\forall\;x\in\mathfrak{g}.

It follows readily from this fact, and the definition of the 𝔤\mathfrak{g}-module structure on Y𝔤=𝖸˙𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} introduced in Section 6.2, that Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a U(𝔤)U(\mathfrak{g})-module homomorphism.

Similarly, by Corollary 3.11 the Chevalley involution ω\omega satisfies (ωω)(z)=(z)(\omega\otimes\omega)\mathcal{R}(z)=\mathcal{R}(z), and we thus have

Φz(ωt(f))=((fω)ω2)(z)=(fω)(z)=ω(Φz(f))fY𝔤.\displaystyle\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(\omega^{t}(f))=((f\circ\omega)\otimes\omega^{2})\mathcal{R}(-z)=(f\otimes\omega)\mathcal{R}(-z)=\omega(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f))\quad\forall\;f\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.
Proof of (3).

Suppose that ff is a degree kk element of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star} for some kk\in\mathbb{Z}. Then f𝟏:𝖸˙(𝔤)Y(𝔤)Y(𝔤)f\otimes\mathbf{1}:\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g})\to Y_{\hbar}(\mathfrak{g}) is homogeneous of degree kk, and hence

f𝟏(Y𝔤^z(2)(𝖸˙(𝔤)Y(𝔤))[[z1]])zknY(𝔤)n+kznkzkY𝔤^z,f\otimes\mathbf{1}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}\cap(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!])\subset z^{k}\prod_{n\in\mathbb{N}}Y_{\hbar}(\mathfrak{g})_{n+k}z^{-n-k}\subset z^{k}\widehat{Y_{\hbar}\mathfrak{g}}_{z},

where Y𝔤^z(2)=n(Y(𝔤)2)nzn\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}=\prod_{n\in\mathbb{N}}(Y_{\hbar}(\mathfrak{g})^{\otimes 2})_{n}z^{-n}, as in Section 3.6. The assertion now follows from Part (3) of Theorem 3.9 and Lemma 5.10, which yield

(z)Y𝔤^z(2)(𝖸˙(𝔤)Y(𝔤))[[z1]].\mathcal{R}(z)\in\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}\cap(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})\otimes Y_{\hbar}(\mathfrak{g}))[\![z^{-1}]\!].
Proof of (4).

Since Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a U(𝔤)U(\mathfrak{g})-module homomorphism intertwining Chevalley involutions, it is sufficient to establish that

(7.1) Φz(𝖷i,k1+)=(1)k+1z(k)xi+(z)=Φz(xi,k1+)i𝐈 and k,\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(\mathsf{X}_{i,-k-1}^{+})=(-1)^{k+1}\partial_{z}^{(k)}x_{i}^{+}(-z)=\Phi_{z}(x_{i,-k-1}^{+})\quad\forall\;i\in\mathbf{I}\;\text{ and }k\in\mathbb{N},

where we recall that 𝖷i,k1+\mathsf{X}_{i,-k-1}^{+} was defined explicitly in (6.4). Since ε𝟏\varepsilon\otimes\mathbf{1} sends both 0(z)\mathcal{R}^{0}(z) and +(z)\mathcal{R}^{+}(z) to 11 and 𝖷i,k1+\mathsf{X}_{i,-k-1}^{+} vanishes on 𝖸˙(𝔤)β\dot{\mathsf{Y}}_{\hbar}^{-}(\mathfrak{g})_{\beta} for βαi\beta\neq-\alpha_{i}, we have

Φz(𝖷i,k1+)=(𝖷i,k1+𝟏)αi(z).\displaystyle\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}(\mathsf{X}_{i,-k-1}^{+})=(\mathsf{X}_{i,-k-1}^{+}\otimes\mathbf{1})\mathcal{R}^{-}_{\alpha_{i}}(z).

Using (3.23), we deduce that the element αi(z)\mathcal{R}^{-}_{\alpha_{i}}(z) is given by

αi(z)=p0αi(ζ)𝐓(ζ)p(zαi(ζ))p+1(xi,0xi,0+)=p0n=0p(pn)(1)nxi,nxi,pn+zp1,\mathcal{R}^{-}_{\alpha_{i}}(z)=\sum_{p\geq 0}\frac{\alpha_{i}(\zeta)\mathbf{T}(\zeta)^{p}}{(z\alpha_{i}(\zeta))^{p+1}}(\hbar x_{i,0}^{-}\otimes x_{i,0}^{+})=\sum_{p\geq 0}\sum_{n=0}^{p}\binom{p}{n}(-1)^{n}\hbar x_{i,n}^{-}\otimes x_{i,p-n}^{+}z^{-p-1},

where we have used ad(T(ζ))p(xi,0±)=(±1)pαi(ζ)pxi,p±\mathrm{ad}(\mathrm{T}(\zeta))^{p}(x_{i,0}^{\pm})=(\pm 1)^{p}\alpha_{i}(\zeta)^{p}x_{i,p}^{\pm}. This can be rewritten as

αi(z)=nxi,nz(n)xi+(z)=nxi,nΦz(xi,n1+),\mathcal{R}^{-}_{\alpha_{i}}(z)=\sum_{n\in\mathbb{N}}\hbar x_{i,n}^{-}\otimes\partial_{z}^{(n)}x_{i}^{+}(z)=-\sum_{n\in\mathbb{N}}\hbar x_{i,n}^{-}\otimes\Phi_{-z}(x_{i,-n-1}^{+}),

where the second equality is due to Part (1) of Theorem 4.6. As 𝖷i,k1+(xi,n)=𝖱𝖾𝗌(xi+tk1)(xitn)=δkn\mathsf{X}_{i,-k-1}^{+}(\hbar x_{i,n}^{-})=\mathsf{Res}_{\scriptscriptstyle-}^{\hbar}(x_{i}^{+}t^{-k-1})(\hbar x_{i}^{-}t^{n})=-\delta_{kn} for all k,nk,n\in\mathbb{N}, this implies the identity (7.1). ∎

Remark 7.2.

As Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} are \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebras with

(Y𝔤)=(𝖸˙𝔤)𝖸˙(𝔤) and (LY𝔤^z)=𝕃Y𝔤^z.(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})_{\mathbb{Z}}=(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})_{\mathbb{Z}}\cong\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}){\vphantom{)}}^{\star}\quad\text{ and }\quad(\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z})_{\mathbb{Z}}=\mathds{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

Part (3) of the Proposition is equivalent to the assertion that Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism Φz:Y𝔤LY𝔤^z\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}.

Since Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} has image in LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}, we may compose it with 𝓋\mathscr{Ev} from (4.2) to obtain a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

Φ:=𝓋Φz:Y𝔤Y𝔤^.\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=\mathscr{Ev}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\widehat{Y_{\hbar}\mathfrak{g}}.

Our present goal is to apply Part (1) of Proposition 7.1 to interpret Φ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} as a homomorphism of topological Hopf algebras, where the topological structure on the completed Yangian is that induced by the gradation topology on Y𝔤Y_{\hbar}\mathfrak{g}. To make this precise, let us define Y𝔤^(n)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)}, for any nn\in\mathbb{N}, to be the formal completion of Y(𝔤)nY_{\hbar}(\mathfrak{g})^{\otimes n} with respect to its \mathbb{N}-grading:

Y𝔤^(n):=k(Y(𝔤)n)k.\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)}:=\prod_{k\in\mathbb{N}}(Y_{\hbar}(\mathfrak{g})^{\otimes n})_{k}.

Equivalently, it is the completion of the \mathbb{N}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra Y𝔤nY_{\hbar}\mathfrak{g}^{\otimes n} with respect to the filtration defining its gradation topology, as defined in Section 2.3. By [WDYhg]*Prop. A.1, this is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-algebra containing Y𝔤nY_{\hbar}\mathfrak{g}^{\otimes n} as a subalgebra; see also [WDYhg]*Lem. 4.1 and Section 4.3 above. Furthermore, we can (and shall) view

(Y𝔤^)nY𝔤^(n)n,(\widehat{Y_{\hbar}\mathfrak{g}})^{\otimes n}\subset\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)}\quad\forall\;n\in\mathbb{N},

where \otimes denotes the topological tensor product over [[]]\mathbb{C}[\![\hbar]\!]. {comment} Note that the notation Y𝔤^(n)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)} is consistent with that used in both Sections 3.6 and 4.3. Namely, Y𝔤^(n)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)} is isomorphic to Y𝔤^z(n)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(n)}_{z} as a \mathbb{C}-algebra and Y𝔤^(1)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(1)} coincides with Y𝔤^\widehat{Y_{\hbar}\mathfrak{g}}.

Next, observe that the \mathbb{N}-graded Hopf algebra structure on Y(𝔤)Y_{\hbar}(\mathfrak{g}) induces a topological Hopf structure on Y𝔤^\widehat{Y_{\hbar}\mathfrak{g}}, equipped with the grading-completed tensor product. More precisely, as the multiplication mm, coproduct Δ\Delta, counit ε\varepsilon, and antipode SS on Y(𝔤)Y_{\hbar}(\mathfrak{g}) are \mathbb{N}-graded, they uniquely extend to [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms

m:Y𝔤^(2)Y𝔤^,Δ:Y𝔤^Y𝔤^(2),ε:Y𝔤^[[]],S:Y𝔤^Y𝔤^,\displaystyle m:\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(2)}\to\widehat{Y_{\hbar}\mathfrak{g}},\quad\Delta:\widehat{Y_{\hbar}\mathfrak{g}}\to\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(2)},\quad\varepsilon:\widehat{Y_{\hbar}\mathfrak{g}}\to\mathbb{C}[\![\hbar]\!],\quad S:\widehat{Y_{\hbar}\mathfrak{g}}\to\widehat{Y_{\hbar}\mathfrak{g}},

which collectively satisfy the axioms of a Hopf algebra. Proposition 7.1 then admits the following corollary.

Corollary 7.3.

The [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism Φ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a morphism of topological Hopf algebras. That is, it satisfies

ΔΦ=(ΦΦ)Δ,εΦ=ε and SΦ=ΦS.\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\quad\varepsilon\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\quad\text{ and }\quad S\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\circ S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

In particular, one has Im(ΔΦ)Y𝔤^Y𝔤^\mathrm{Im}(\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\subset\widehat{Y_{\hbar}\mathfrak{g}}\otimes\widehat{Y_{\hbar}\mathfrak{g}}.

Proof.

The counit and antipode relations are obtained by applying 𝓋\mathscr{Ev} to the corresponding relations of Part (1) of Proposition 7.1 and appealing to the identity Φ=𝓋Φz\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\mathscr{Ev}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. The idea now is that the relation ΔΦ=(ΦΦ)Δ\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} should follow by applying 𝓋𝓋\mathscr{Ev}\otimes\mathscr{Ev} to both sides of the identity ΔΦz=𝓏(Φ𝓌Φ𝓏)Δ\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\EuScript{E}_{z}\circ(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{w}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

However, to make this precise we must first make a few technical observations. Recall from (3.21) that 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}) is the \mathbb{Z}-graded subalgebra of Y(𝔤)2[z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[z;z^{-1}]\!] with kk-th homogeneous component zkY𝔤^z(2)z^{k}\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}, where

Y𝔤^z(2)=n(Y(𝔤)2)nznY(𝔤)2[[z1]].\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}=\prod_{n\in\mathbb{N}}(Y_{\hbar}(\mathfrak{g})^{\otimes 2})_{n}z^{-n}\subset Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!].

Following Section 4.3, we shall write L(Y𝔤^z(2))\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}) for the \hbar-adic completion of 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}). This is a \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra contained in the formal series space (Y𝔤Y𝔤)[[z±1]](Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g})[\![z^{\pm 1}]\!]; see Lemma 4.5. As in (4.2), evaluation at z=1z=1 yields a [[]]\mathbb{C}[\![\hbar]\!]-algebra epimorphism

𝓋(2):L(Y𝔤^z(2))Y𝔤^(2),f(z)f(1).\mathscr{Ev}^{\scriptscriptstyle{(2)}}:\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})\twoheadrightarrow\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(2)},\quad f(z)\mapsto f(1).

Next, let 𝓏L\EuScript{E}_{z}^{\mathrm{L}} denote the natural [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

𝓏L:L𝒴𝔤^𝓌L𝒴𝔤^𝓏L(𝒴𝔤^𝓏(2))\EuScript{E}_{z}^{\mathrm{L}}:\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}_{w}\otimes\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\to\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})

given by evaluating wzw\mapsto z. Then, since Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is a \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism Y𝔤LY𝔤^zY_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} and Δ\Delta is homogeneous of degree zero, the first relation of Part (1) in Proposition 7.1 is equivalent to the identity

ΔΦz=𝓏L(Φ𝓌Φ𝓏)Δ\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}=\EuScript{E}_{z}^{\mathrm{L}}\circ(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{w}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}

in Hom[[]](Y𝔤,L(Y𝔤^z(2)))\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})). As 𝓏L\EuScript{E}_{z}^{\mathrm{L}} satisfies the relation 𝓋(2)𝓏L=𝓋𝓋\mathscr{Ev}^{\scriptscriptstyle{(2)}}\circ\EuScript{E}_{z}^{\mathrm{L}}=\mathscr{Ev}\otimes\mathscr{Ev}, applying 𝓋(2)\mathscr{Ev}^{\scriptscriptstyle{(2)}} to the above identity recovers ΔΦ=(ΦΦ)Δ\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. ∎

7.2. DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as a quantization

With Proposition 7.1 and Corollary 7.3 in hand, we now turn to proving that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} provides a homogeneous quantization of the \mathbb{Z}-graded Lie bialgebra 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}], equipped with the Lie cobracket δ\delta defined in Section 2.5.

To begin, observe that the homomorphisms Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Φ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} satisfy the relation

ΓΦ=ΓzΦz,\Gamma\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\Gamma_{z}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where Γ\Gamma and Γz\Gamma_{z} are as in Theorem 4.8 and (4.3), respectively. The [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism defined by either side of this relation shall be denoted ıˇ\check{\imath}:

ıˇ:=ΓzΦz:Y𝔤DY𝔤^.\check{\imath}:=\Gamma_{z}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\widehat{\mathrm{D}Y_{\hbar}\mathfrak{g}}.

The following lemma shows that ıˇ\check{\imath} is injective, \mathbb{Z}-graded, and has image contained in the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}.

Lemma 7.4.

The morphism ıˇ\check{\imath} is an embedding of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebras

ıˇ:Y𝔤DY𝔤\check{\imath}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\hookrightarrow\mathrm{D}Y_{\hbar}\mathfrak{g}

satisfying Φıˇ=Φ\Phi\circ\check{\imath}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Φzıˇ=Φz\Phi_{z}\circ\check{\imath}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}. In particular, Φ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} are both injective.

Proof.

Since ΓzΦz=𝟏DY𝔤\Gamma_{z}\circ\Phi_{z}=\mathbf{1}_{\mathrm{D}Y_{\hbar}\mathfrak{g}}, Part (4) of Proposition 7.1 yields

(7.2) ıˇ(𝖷β±(u))=Γz(Φz(x˙β±(u)))=x˙β±(u)βΔ+,ıˇ(𝗁i(u))=Γz(Φz(h˙i(u)))=h˙i(u)i𝐈.\begin{gathered}\check{\imath}\,(\mathsf{X}_{\beta}^{\pm}(u))=\Gamma_{z}(\Phi_{z}(\dot{x}_{\beta}^{\pm}(u)))=\dot{x}_{\beta}^{\pm}(u)\quad\forall\;\beta\in\Delta^{+},\\ \check{\imath}\,(\mathsf{h}_{i}(u))=\Gamma_{z}(\Phi_{z}(\dot{h}_{i}(u)))=\dot{h}_{i}(u)\quad\forall\;i\in\mathbf{I}.\end{gathered}

By Remark 4.9, DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a closed subspace of its 𝒥\mathcal{J}-adic completion, viewed as a topological [[]]\mathbb{C}[\![\hbar]\!]-module. As Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is topologically generated as a [[]]\mathbb{C}[\![\hbar]\!]-algebra by the coefficients of all the series 𝖷β±(u)\mathsf{X}_{\beta}^{\pm}(u) and 𝗁i(u)\mathsf{h}_{i}(u) (by Lemma 6.8), the equalities (7.2) imply that ıˇ\check{\imath} has image in DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and thus can be viewed as a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

ıˇ:Y𝔤DY𝔤\check{\imath}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to\mathrm{D}Y_{\hbar}\mathfrak{g}

which necessarily satisfies Φıˇ=Φ\Phi\circ\check{\imath}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. Similarly, since Φz(DY𝔤)\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}) is closed in LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z} (see Remark 4.9), Part (4) of Proposition 7.1 and (7.2) give Φzıˇ=Φz\Phi_{z}\circ\check{\imath}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{z}.

As Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} are both topologically free, it follows from Lemma 2.1 That ıˇ\check{\imath} will be injective provided its semiclassical limit ı¯ˇ:U(𝔱)U(𝔱)\check{\underline{\imath}}:U(\mathfrak{t}_{\scriptscriptstyle{-}})\to U(\mathfrak{t}) is. That this is indeed the case is a consequence of Lemma 6.8, the relations (7.2), and the definitions of x˙β±(u)\dot{x}_{\beta}^{\pm}(u) and h˙i(u)\dot{h}_{i}(u) given in Section 4.2, which imply that ı¯ˇ\check{\underline{\imath}} coincides with the natural inclusion of U(𝔱)U(\mathfrak{t}_{\scriptscriptstyle{-}}) into U(𝔱)U(\mathfrak{t}) induced by the polarization 𝔱=𝔱+𝔱=𝔤[t]t1𝔤[t1]\mathfrak{t}=\mathfrak{t}_{\scriptscriptstyle{+}}\oplus\mathfrak{t}_{\scriptscriptstyle{-}}=\mathfrak{g}[t]\oplus t^{-1}\mathfrak{g}[t^{-1}].

Finally, by Part (2) of Theorem 4.6 and Part (3) of Proposition 7.1, Φz\Phi_{z} and Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} are both \mathbb{Z}-graded; see Remarks 4.7 and 7.2. As Φz\Phi_{z} is injective, it follows automatically that ıˇ\check{\imath} is \mathbb{Z}-graded.∎

The embedding ıˇ\check{\imath} is at the heart of the following theorem, which provides the first main result of this article.

Theorem 7.5.

There is a unique \mathbb{Z}-graded topological Hopf algebra structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} such that the inclusions

Y𝔤ıDY𝔤ıˇY𝔤Y_{\hbar}\mathfrak{g}\xrightarrow{\;\imath^{\,}\;}\mathrm{D}Y_{\hbar}\mathfrak{g}\xleftarrow{\;\check{\imath}^{\,}\;}Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}

are morphisms of \mathbb{Z}-graded topological Hopf algebras over [[]]\mathbb{C}[\![\hbar]\!]. Equipped with this Hopf structure, DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a homogeneous quantization of the Lie bialgebra (𝔱,δ)(\mathfrak{t},\delta).

Proof.

If DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} can be equipped with a coproduct Δ˙\dot{\Delta}, counit ε˙\dot{\varepsilon} and antipode S˙\dot{S} which give it the structure of a topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] and, in addition, make ı\imath and ıˇ\check{\imath} morphisms of \mathbb{Z}-graded topological Hopf algebras, then this structure is necessarily unique and \mathbb{Z}-graded. Indeed, Δ˙\dot{\Delta}, ε˙\dot{\varepsilon} and S˙\dot{S} are determined by their values on any set of generators of the topological algebra DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and thus by their values on ı(Y𝔤)ıˇ(Y𝔤)\imath(Y_{\hbar}\mathfrak{g})\cup\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}).

Let us now establish the existence of a topological Hopf structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} over [[]]\mathbb{C}[\![\hbar]\!] with the claimed properties. We begin by observing that ı\imath and ıˇ\check{\imath} satisfy the relations

(7.3) ΔΦı\displaystyle\Delta\circ\Phi\circ\imath =(ΦΦ)(ıı)Δ,\displaystyle=(\Phi\otimes\Phi)\circ(\imath\otimes\imath)\circ\Delta,
ΔΦıˇ\displaystyle\Delta\circ\Phi\circ\check{\imath} =(ΦΦ)(ıˇıˇ)Δ.\displaystyle=(\Phi\otimes\Phi)\circ(\check{\imath}\otimes\check{\imath})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

The first relation follows from the identity Φı=τ1\Phi\circ\imath=\tau_{1} and that, for each cc\in\mathbb{C}, τc\tau_{c} is a Hopf algebra automorphism; see Section 3.3. As for the second relation, since Φıˇ=Φ\Phi\circ\check{\imath}=\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, Corollary 7.3 yields

ΔΦıˇ\displaystyle\Delta\circ\Phi\circ\check{\imath} =ΔΦ=(ΦΦ)Δ=(ΦΦ)(ıˇıˇ)Δ.\displaystyle=\Delta\circ\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Phi^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(\Phi\otimes\Phi)\circ(\check{\imath}\otimes\check{\imath})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Since DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a generated as a topological [[]]\mathbb{C}[\![\hbar]\!]-algebra by ı(Y𝔤)ıˇ(Y𝔤)\imath(Y_{\hbar}\mathfrak{g})\cup\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}), these relations imply that ΔΦ\Delta\circ\Phi has image satisfying

Im(ΔΦ)Im(ΦΦ)Y𝔤^Y𝔤^,\mathrm{Im}(\Delta\circ\Phi)\subset\mathrm{Im}(\Phi\otimes\Phi)\subset\widehat{Y_{\hbar}\mathfrak{g}}\otimes\widehat{Y_{\hbar}\mathfrak{g}},

where we view the right-hand side as subspace of Y𝔤^(2)\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{)}}^{\scriptscriptstyle(2)}, as in Corollary 7.3. We may therefore introduce a [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism Δ˙\dot{\Delta} by

Δ˙:=(ΓΓ)ΔΦ:DY𝔤DY𝔤DY𝔤,\dot{\Delta}:=(\Gamma\otimes\Gamma)\circ\Delta\circ\Phi:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}\otimes\mathrm{D}Y_{\hbar}\mathfrak{g},

where Γ\Gamma is the inverse of Φ^\widehat{\Phi}, as in Theorem 4.8. Since ΓΦ=𝟏\Gamma\circ\Phi=\mathbf{1}, it follows from this definition and the relations (7.3) that

(7.4) Δ˙ı=(ıı)Δ and Δ˙ıˇ=(ıˇıˇ)Δ.\dot{\Delta}\circ\imath=(\imath\otimes\imath)\circ\Delta\quad\text{ and }\quad\dot{\Delta}\circ\check{\imath}=(\check{\imath}\otimes\check{\imath})\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Similarly, from Corollary 7.3 and the relations τ1S=Sτ1\tau_{1}\circ S=S\circ\tau_{1} and ετ1=ε\varepsilon\circ\tau_{1}=\varepsilon, we find that ı\imath and ıˇ\check{\imath} satisfy

SΦı=ΦıS,SΦıˇ=ΦıˇS,\displaystyle S\circ\Phi\circ\imath=\Phi\circ\imath\circ S,\quad S\circ\Phi\circ\check{\imath}=\Phi\circ\check{\imath}\circ S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},
εΦı=ε,εΦıˇ=ε.\displaystyle\varepsilon\circ\Phi\circ\imath=\varepsilon,\quad\varepsilon\circ\Phi\circ\check{\imath}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

In particular, these relations imply that Im(SΦ)Im(Φ)\mathrm{Im}(S\circ\Phi)\subset\mathrm{Im}(\Phi). We may therefore define morphisms S˙\dot{S} and ε˙\dot{\varepsilon} by

S˙:=ΓSΦ:DY𝔤DY𝔤 and ε˙:=εΦ:DY𝔤[[]]\dot{S}:=\Gamma\circ S\circ\Phi:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}\quad\text{ and }\quad\dot{\varepsilon}:=\varepsilon\circ\Phi:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathbb{C}[\![\hbar]\!]

which by construction satisfy the compatibility relations

(7.5) S˙ı=ıS,S˙ıˇ=ıˇS,ε˙ı=ε and ε˙ıˇ=ε.\dot{S}\circ\imath=\imath\circ S,\quad\dot{S}\circ\check{\imath}=\check{\imath}\circ S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\quad\dot{\varepsilon}\circ\imath=\varepsilon\quad\text{ and }\quad\dot{\varepsilon}\circ\check{\imath}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Since Γ|Im(Φ)=Φ1\Gamma|_{\mathrm{Im}(\Phi)}=\Phi^{-1} and Y𝔤Y_{\hbar}\mathfrak{g} is a topological Hopf algebra with coproduct Δ\Delta, antipode SS and counit ε\varepsilon, the above definitions imply that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] with coproduct Δ˙\dot{\Delta}, antipode S˙\dot{S}, and counit ε˙\dot{\varepsilon}. Moreover, the relations (7.4) and (7.5) prove that, when DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is given this Hopf structure, the \mathbb{Z}-graded embeddings ı\imath and ıˇ\check{\imath} are homomorphisms of topological Hopf algebras.

We are left to establish the second assertion of the Theorem. By what we have shown so far and Theorem 4.3, DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a flat, \mathbb{Z}-graded Hopf algebra deformation of the universal enveloping U(𝔱)U(\mathfrak{t}) of 𝔱=𝔤[t±1]\mathfrak{t}=\mathfrak{g}[t^{\pm 1}] over [[]]\mathbb{C}[\![\hbar]\!]. It thus provides a homogeneous quantization of a \mathbb{Z}-graded Lie bialgebra structure on the Lie algebra 𝔱\mathfrak{t} with cobracket δ𝔱\delta_{\mathfrak{t}} given by the formula (2.2). From Theorem 3.7, Theorem 6.7 and the first part of the theorem, δ𝔱\delta_{\mathfrak{t}} satisfies δ𝔱|𝔱+=δ+\delta_{\mathfrak{t}}|_{\mathfrak{t}_{\scriptscriptstyle{+}}}=\delta_{\scriptscriptstyle+} and δ𝔱|𝔱=δ\delta_{\mathfrak{t}}|_{\mathfrak{t}_{\scriptscriptstyle{-}}}=-\delta_{\scriptscriptstyle-}. As 𝔱=𝔱+𝔱\mathfrak{t}=\mathfrak{t}_{\scriptscriptstyle{+}}\oplus\mathfrak{t}_{\scriptscriptstyle{-}}, we can conclude that δ𝔱\delta_{\mathfrak{t}} coincides with the Lie cobracket δ\delta defined in Section 2.5. ∎

Remark 7.6.

The proof of Theorem 7.5 shows that the coproduct Δ˙\dot{\Delta}, counit ε˙\dot{\varepsilon} and antipode S˙\dot{S} on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} are uniquely determined by the requirement that Φ\Phi is a homomorphism of topological Hopf algebras

Φ:DY𝔤Y𝔤^,\Phi:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\widehat{Y_{\hbar}\mathfrak{g}},

where Y𝔤^\widehat{Y_{\hbar}\mathfrak{g}} is given the topological Hopf structure defined above Corollary 7.3. Here we emphasize that although DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a genuine topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!] in the sense of Section 2.1, the completed Yangian Y𝔤^\widehat{Y_{\hbar}\mathfrak{g}} is not. In the same breath, the Hopf algebra structure on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is uniquely characterized by the requirement that Φz\Phi_{z} satisfies the relations

ΔΦz=𝓏L(Φ𝓌Φ𝓏)Δ˙,εΦ𝓏=ε˙ and 𝒮Φ𝓏=Φ𝓏𝒮˙,\Delta\circ\Phi_{z}=\EuScript{E}_{z}^{\mathrm{L}}\circ(\Phi_{w}\otimes\Phi_{z})\circ\dot{\Delta},\quad\varepsilon\circ\Phi_{z}=\dot{\varepsilon}\quad\text{ and }\quad S\circ\Phi_{z}=\Phi_{z}\circ\dot{S},

where 𝓏L\EuScript{E}_{z}^{\mathrm{L}} is as in the proof of Corollary 7.3. In particular, this makes precise the uniqueness statement in the first assertion of Theorem I.

7.3. The dual triangular decomposition revisited

We conclude this section by giving an equivalent characterization of the restricted dual 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} to 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g} considered in Section 6.5, where we recall that χ\chi takes value ++, - or 0.

Corollary 7.7.

For each each choice of χ\chi, 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} satisfies

𝖸˙χ𝔤={f𝖸˙𝔤:Φz(f)=(f𝟏)χ(z)}=(Φz)1(Yχ𝔤[[z1]]).\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}=\{f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=(f\otimes\mathbf{1})\mathcal{R}^{\chi}(-z)\}=(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})^{-1}(Y_{\hbar}^{\shortminus\chi}\mathfrak{g}[\![z^{-1}]\!]).
Proof.

From the definitions of 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g} and Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, and the Gauss decomposition of the universal RR-matrix, we obtain the sequence of inclusions

𝖸˙χ𝔤{f𝖸˙𝔤:Φz(f)=(f𝟏)χ(z)}(Φz)1(Yχ𝔤[[z1]]).\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}\subset\{f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=(f\otimes\mathbf{1})\mathcal{R}^{\chi}(-z)\}\subset(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})^{-1}(Y_{\hbar}^{\shortminus\chi}\mathfrak{g}[\![z^{-1}]\!]).

It therefore suffices to show that (Φz)1(Yχ𝔤[[z1]])𝖸˙χ𝔤(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})^{-1}(Y_{\hbar}^{\shortminus\chi}\mathfrak{g}[\![z^{-1}]\!])\subset\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}. We shall establish this for χ=\chi=-. The proof in the remaining cases is identical, and hence omitted.

Let π+:Y𝔤Y+𝔤\pi_{+}:Y_{\hbar}\mathfrak{g}\to Y_{\hbar}^{+\!}\mathfrak{g} be the [[]]\mathbb{C}[\![\hbar]\!]-linear projection associated to the opposite triangular decomposition Y𝔤Y𝔤Y0𝔤Y+𝔤Y_{\hbar}\mathfrak{g}\cong Y_{\hbar}^{-\!}\mathfrak{g}\otimes Y_{\hbar}^{0}\mathfrak{g}\otimes Y_{\hbar}^{+\!}\mathfrak{g} from Remark 3.8, and suppose f𝖸˙𝔤f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} satisfies Φz(f)Y+𝔤[[z1]]\Phi_{z}(f)\in Y_{\hbar}^{+}\!\mathfrak{g}[\![z^{-1}]\!]. We wish to show that f𝖸˙𝔤f\in\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g}{\vphantom{)}}^{\star}.

To begin, note that since (𝟏ε)χ(z)=1(\mathbf{1}\otimes\varepsilon)\mathcal{R}^{\chi}(z)=1, we have

Φz(f)=π+(Φz(f))=(f1)(z).\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=\pi_{+}(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f))=(f\otimes 1)\mathcal{R}^{-}(z).

Consider now the element fπ𝖸˙𝔤𝖸˙𝔤f\circ\pi^{-}\in\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}{\vphantom{)}}^{\star}\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, where π:𝖸˙𝔤𝖸˙𝔤\pi^{-}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g} is as in Section 6.5. Since (π𝟏)(z)=(z)(\pi^{-}\otimes\mathbf{1})\mathcal{R}(z)=\mathcal{R}^{-}(z), it satisfies

Φz(fπ)=(f1)(z)=Φz(f).\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f\circ\pi^{-})=(f\otimes 1)\mathcal{R}^{-}(z)=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f).

As Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is injective (by Lemma 7.4) we can conclude that f=fπ𝖸˙𝔤f=f\circ\pi^{-}\in\dot{\mathsf{Y}}_{\hbar}^{-}\mathfrak{g}{\vphantom{)}}^{\star}. ∎

Remark 7.8.

Since Y±𝔤Y_{\hbar}^{\pm\!}\mathfrak{g} and Y0𝔤Y_{\hbar}^{0}\mathfrak{g} are [[]]\mathbb{C}[\![\hbar]\!]-subalgebras of Y𝔤Y_{\hbar}\mathfrak{g}, it follows from this corollary that 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a [[]]\mathbb{C}[\![\hbar]\!]-subalgebra of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} for each choice of χ\chi. In addition, it is immediate from this characterization and Part (4) of Proposition 7.1 that the coefficients of the series 𝖷β±(u)\mathsf{X}_{\beta}^{\pm}(u) and 𝗁i(u)\mathsf{h}_{i}(u) belong to 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{\mp}\mathfrak{g}{\vphantom{)}}^{\star} and 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}, respectively, for each βΔ+\beta\in\Delta^{+} and i𝐈i\in\mathbf{I}. Similarly, since Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is injective and Y0𝔤Y_{\hbar}^{0}\mathfrak{g} is commutative, we deduce that 𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star} is commutative.

In particular, these observations complete the proof of Proposition 6.10. We emphasize that we have not applied that Proposition in establishing any of the results in Section 7.

8. DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as a quantum double

We now turn to reframing Theorem 7.5 in the context of the quantum double. Our central objective is to prove the second main result of this article, Theorem 8.5, which establishes that the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is isomorphic, as a \mathbb{Z}-graded topological Hopf algebra over [[]]\mathbb{C}[\![\hbar]\!], to the restricted quantum double of the Yangian, which is defined explicitly in Section 8.2.

8.1. The quantum double of U𝔟U_{\hbar}\mathfrak{b}

Let us begin by recalling, in broad strokes, the general construction of the quantum double of a quantized enveloping algebra, as was first outlined by Drinfeld in [DrQG]*§13.

Suppose that U𝔟U_{\hbar}\mathfrak{b} is a quantization of a finite-dimensional Lie bialgebra 𝔟\mathfrak{b}, and let U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} denote the quantized enveloping algebra (U𝔟)cop(U_{\hbar}\mathfrak{b}^{\circ}){\vphantom{)}}^{\scriptscriptstyle\mathrm{cop}}, where U𝔟U_{\hbar}\mathfrak{b}^{\circ} is the topological dual to U𝔟U_{\hbar}\mathfrak{b}^{\prime} introduced in Section 5.1. Then there exists a unique topological Hopf algebra D(U𝔟)D(U_{\hbar}\mathfrak{b}) over [[]]\mathbb{C}[\![\hbar]\!], the quantum double of U𝔟U_{\hbar}\mathfrak{b}, satisfying the following three properties:

  1. (1)

    There are embeddings of topological Hopf algebras

    U𝔟ıD(U𝔟)ıˇU𝔟.U_{\hbar}\mathfrak{b}\xrightarrow{\;\imath\;}D(U_{\hbar}\mathfrak{b})\xleftarrow{\;\check{\imath}\;}U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.
  2. (2)

    The composite m(ıˇı):U𝔟U𝔟D(U𝔟)m\circ(\check{\imath}\otimes\imath):U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes U_{\hbar}\mathfrak{b}\to D(U_{\hbar}\mathfrak{b}) is an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-modules.

  3. (3)

    The canonical element RU𝔟U𝔟D(U𝔟)D(U𝔟)R\in U_{\hbar}\mathfrak{b}^{\prime}\otimes U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\subset D(U_{\hbar}\mathfrak{b})\otimes D(U_{\hbar}\mathfrak{b}) associated to the pairing between U𝔟U_{\hbar}\mathfrak{b}^{\prime} and U𝔟U_{\hbar}\mathfrak{b}^{\circ}, which coincides with the canonical tensor in U𝔟U𝔟U_{\hbar}\mathfrak{b}\otimes U_{\hbar}\mathfrak{b}^{\ast}, defines a quasitriangular structure on D(U𝔟)D(U_{\hbar}\mathfrak{b}). That is, one has:

    Δop(x)=RΔ(x)R1xD(U𝔟),\displaystyle{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)=R\Delta(x)R^{-1}\quad\forall\;x\in D(U_{\hbar}\mathfrak{b}),
    Δ𝟏(R)=R13R23,𝟏Δ(R)=R13R12.\displaystyle\Delta\otimes\mathbf{1}(R)=R_{13}R_{23},\quad\mathbf{1}\otimes\Delta(R)=R_{13}R_{12}.

In addition, D(U𝔟)D(U_{\hbar}\mathfrak{b}) provides a quantization of the Drinfeld double of the finite-dimensional Lie bialgebra 𝔟\mathfrak{b}.

The quantum double D(U𝔟)D(U_{\hbar}\mathfrak{b}) can be realized explicitly as the tensor product of topological coalgebras U𝔟U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes U_{\hbar}\mathfrak{b}, with multiplication determined from the cross relations

(8.1) ı(x)ıˇ(f)=f3(x1)f1(S1(x3))f2x2xU𝔟,fU𝔟,\imath(x)\check{\imath}(f)=f_{3}(x_{1})f_{1}\!\left(S^{-1}(x_{3})\right)f_{2}\otimes x_{2}\quad\forall\;x\in U_{\hbar}\mathfrak{b}^{\prime},\,f\in U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where we have used the sumless Sweedler notation for iterated coproducts on U𝔟U_{\hbar}\mathfrak{b} and U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, and ı\imath and ıˇ\check{\imath} are now given by ı(x)=1x\imath(x)=1\otimes x and ıˇ(f)=f1\check{\imath}(f)=f\otimes 1 for all xU𝔟x\in U_{\hbar}\mathfrak{b} and fU𝔟f\in U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. As spelled out in detail in [Andrea-Valerio-18]*§A.5, this can be realized as a special instance of the double cross product construction. Namely, one has

D(U𝔟)=U𝔟U𝔟,D(U_{\hbar}\mathfrak{b})=U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie U_{\hbar}\mathfrak{b},

with respect to the left coadjoint action \rhd of U𝔟U_{\hbar}\mathfrak{b} on U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and the right coadjoint action \lhd on U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} on U𝔟U_{\hbar}\mathfrak{b}. Given the U𝔟U_{\hbar}\mathfrak{b} analogue of Lemma 5.9, established in [Andrea-Valerio-18]*Prop. A.5, this construction of D(U𝔟)D(U_{\hbar}\mathfrak{b}) proceeds identically to the analogous construction for the quantum double of a finite-dimensional Hopf algebra; we refer the reader to the texts [Majid-book]*§7, [KasBook95]*§IX.4, [KS-book]*§8.2 and [Mont]*§10.3, for instance, as well as the articles [Radford93, Majid-90a, Majid-94].

{comment}

If instead U𝔟U_{\hbar}\mathfrak{b} is a homogeneous quantization of an infinite-dimensional, \mathbb{N}-graded Lie bialgebra (𝔟,δ𝔟)(\mathfrak{b},\delta_{\mathfrak{b}}) with finite-dimensional graded components 𝔟k\mathfrak{b}_{k}, then one may replace the continuous dual U˙𝔟\dot{U}_{\hbar}\mathfrak{b}^{\circ} with the restricted, or graded, dual U˙𝔟\dot{U}_{\hbar}\mathfrak{b}{\vphantom{)}}^{\star} to U˙𝔟\dot{U}_{\hbar}\mathfrak{b} in the above double cross product to obtain the restricted quantum double of U𝔟U_{\hbar}\mathfrak{b}, which we shall again denote by D(U𝔟)D(U_{\hbar}\mathfrak{b}). It follows from this definition that the restricted quantum double of U𝔟U_{\hbar}\mathfrak{b} is a \mathbb{Z}-graded topological Hopf algebra which provides a homogeneous quantization of the restricted Drinfeld double of the Lie bialgebra 𝔟\mathfrak{b}, as defined in [Andrea-Valerio-19]*§5.4. We outline the construction in detail in the next subsection in the case of interested to us, where U𝔟=Y𝔤U_{\hbar}\mathfrak{b}=Y_{\hbar}\mathfrak{g}.

Remark 8.1.

One stipulation to working in the graded setting is that the canonial tensor RR, although formally satisfying the relations of (3), does not converge in the \hbar-adically complete tensor product U˙𝔟U𝔟\dot{U}_{\hbar}\mathfrak{b}\otimes U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. This can be remedied in various ways; for instance, by viewing 𝖱\mathsf{R} as an element of an appropriate gradation completion of this tensor product. In the Yangian setting, a more natural solution is identify RR with (z)\mathcal{R}(z), as will be done explicitly in Section 9.

8.2. The restricted quantum double of the Yangian

In our case, U𝔟=Y𝔤U_{\hbar}\mathfrak{b}=Y_{\hbar}\mathfrak{g} is not a quantization of a finite-dimensional Lie bialgebra, but rather a homogeneous quantization of an \mathbb{N}-graded Lie bialgebra 𝔟\mathfrak{b} with finite-dimensional graded components 𝔟k\mathfrak{b}_{k}. In this setting, the double cross product construction alluded to above remains valid provided all duals are taken in the category of \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-modules; that is, we replace U𝔟U_{\hbar}\mathfrak{b}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} with Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. This produces the restricted quantum double D(U𝔟)D(U_{\hbar}\mathfrak{b}) of U𝔟U_{\hbar}\mathfrak{b}.

Let us now give the detailed construction of this topological Hopf algebra. Following Section 5.4, let \blacktriangledown and \blacktriangle denote the left adjoint action of Y𝔤Y_{\hbar}\mathfrak{g} on itself, and the right adjoint coaction of Y𝔤Y_{\hbar}\mathfrak{g} on itself, respectively:

=m3(𝟏2S)(2 3)(Δ𝟏),\displaystyle\blacktriangledown=m^{3}\circ(\mathbf{1}^{\otimes 2}\otimes S)\circ(2\,3)\circ(\Delta\otimes\mathbf{1}),
=(1m)(1 2)(S𝟏2)Δ3,\displaystyle\blacktriangle=(1\otimes m)\circ(1\,2)\circ(S\otimes\mathbf{1}^{\otimes 2})\circ\Delta^{3},

where all tensor products are now taken to be the topological tensor product over [[]]\mathbb{C}[\![\hbar]\!]. By Lemma 5.9, we have

(Y𝔤𝖸˙𝔤)𝖸˙𝔤 and (Y𝔤)Y𝔤𝖸˙𝔤.\blacktriangledown(Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g})\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\quad\text{ and }\quad\blacktriangle(Y_{\hbar}\mathfrak{g})\subset Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}.

We may thus dualize \blacktriangledown and \blacktriangle to obtain the so-called left and right coadjoint actions

:Y𝔤Y𝔤Y𝔤 and :Y𝔤Y𝔤Y𝔤,\displaystyle\vartriangleright:Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\quad\text{ and }\quad\vartriangleleft:Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g},

respectively, of Y𝔤Y_{\hbar}\mathfrak{g} on Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and of Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} on Y𝔤Y_{\hbar}\mathfrak{g}. These are defined on simple tensors by the formulas

xf=𝟏f(𝟏S1)(x) and (xf)(y)=f(S1(x)y)\displaystyle x\vartriangleleft f=\mathbf{1}\otimes f\circ(\mathbf{1}\otimes S^{-1})\circ\blacktriangle(x)\quad\text{ and }\quad(x\vartriangleright\!f)(y)=f(S^{-1}(x)\cdot y)

for all xY𝔤x\in Y_{\hbar}\mathfrak{g}, fY𝔤f\in Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and y𝖸˙𝔤y\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}, where the action of S1(x)S^{-1}(x) on yy is given by \blacktriangledown and we have written xfx\vartriangleright\!f for (xf)\vartriangleright\!(x\otimes f) and xfx\vartriangleleft f for (xf)\vartriangleleft\!(x\otimes f).

The tuple (Y𝔤,Y𝔤,,)(Y_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\rhd,\lhd) forms a matched pair of \mathbb{Z}-graded topological Hopf algebras over [[]]\mathbb{C}[\![\hbar]\!]. Explicitly, \rhd and \lhd are \mathbb{Z}-graded homomorphisms of topological [[]]\mathbb{C}[\![\hbar]\!]-modules which satisfy the following set of conditions:

  1. (M1)

    (Y𝔤,)(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\rhd) is a left Y𝔤Y_{\hbar}\mathfrak{g}-module coalgebra and (Y𝔤,)(Y_{\hbar}\mathfrak{g},\lhd) is a right Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}-module coalgebra. Equivalently, \rhd and \lhd are morphisms of topological coalgebras:

    Δ=(2 3)ΔΔ,Δ=(2 3)ΔΔ\displaystyle\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\circ\rhd=\rhd\otimes\rhd\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\quad\Delta\circ\lhd=\lhd\otimes\lhd\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}
    εε=ε,εε=ε,\displaystyle\varepsilon\otimes\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\circ\rhd,\quad\varepsilon\otimes\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\varepsilon\circ\lhd,

    which make Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} a left Y𝔤Y_{\hbar}\mathfrak{g}-module and Y𝔤Y_{\hbar}\mathfrak{g} a right Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}-module.

  2. (M2)

    \lhd and \rhd are compatible with the products mm and mm^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} on Y𝔤Y_{\hbar}\mathfrak{g} and Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:

    (m𝟏)=m(𝟏)(𝟏)(3 4)𝟏ΔΔ\displaystyle\lhd\circ(m\otimes\mathbf{1})=m\circ(\lhd\otimes\mathbf{1})\circ(\mathbf{1}\otimes\rhd\otimes\lhd)\circ(3\,4)\circ\mathbf{1}\otimes\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}
    (𝟏m)=m(𝟏)(𝟏)(2 3)ΔΔ𝟏\displaystyle\rhd\circ(\mathbf{1}\otimes m^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})=m^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\circ(\mathbf{1}\otimes\rhd)\circ(\rhd\otimes\lhd\otimes\mathbf{1})\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\mathbf{1}
  3. (M3)

    The unit maps ι\iota and ι\iota^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} are module homomorphisms:

    (ι𝟏)=ιε and (𝟏ι)=ει.\lhd\circ(\iota\otimes\mathbf{1})=\iota\otimes\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\quad\text{ and }\quad\rhd\circ\,(\mathbf{1}\otimes\iota^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})=\varepsilon\otimes\iota^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.
  4. (M4)

    \lhd and \rhd satisfy the compatibility relation

    ()(2 3)ΔΔ=(1 2)()(2 3)ΔΔ.(\lhd\otimes\rhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=(1\,2)\circ(\rhd\otimes\lhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Here we note that the above conditions coincide with those from [KasBook95]*Def. IX.2.2, [Radford93]*§2 and [Andrea-Valerio-18]*§A.1, which agree with those from [Majid-book]*Def. 7.2.1 up to conventions on the order in which the tensor factors appear.

Since Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Y𝔤Y_{\hbar}\mathfrak{g} are matched, we may form the double cross product Hopf algebra Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g} in the category of \mathbb{Z}-graded topological Hopf algebras over [[]]\mathbb{C}[\![\hbar]\!] by following the standard procedure; see [KasBook95]*Thm. IX.2.3 or [Majid-book]*Thm. 7.2.2, for instance. As a \mathbb{Z}-graded topological coalgebra, Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g} coincides with the tensor product of Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and Y𝔤Y_{\hbar}\mathfrak{g}:

Y𝔤Y𝔤=Y𝔤Y𝔤,\displaystyle Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g}=Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g},
ΔD=(2 3)ΔΔ and εD=εε,\displaystyle\Delta_{D}=(2\,3)\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Delta\quad\text{ and }\quad\varepsilon_{D}=\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\varepsilon,

where ΔD\Delta_{D} denotes the coproduct and εD\varepsilon_{D} the counit. The algebra structure on Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g} is uniquely determined by the requirement that the inclusions

ıˇD:Y𝔤Y𝔤Y𝔤 and ıD:Y𝔤Y𝔤Y𝔤\check{\imath}_{D}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g}\quad\text{ and }\quad\imath_{D}:Y_{\hbar}\mathfrak{g}\to Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g}

are [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphisms satisfying the relations

(8.2) mD(ıˇDıD)=𝟏Y𝔤𝟏Y𝔤,mD(ıDıˇD)=()(2 3)ΔΔ,\begin{gathered}m_{D}\circ(\check{\imath}_{D}\otimes\imath_{D})=\mathbf{1}_{Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}}\otimes\mathbf{1}_{Y_{\hbar}\mathfrak{g}},\\ m_{D}\circ(\imath_{D}\otimes\check{\imath}_{D})=(\rhd\otimes\lhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},\end{gathered}

where mDm_{D} denotes the multiplication on D(Y𝔤)D(Y_{\hbar}\mathfrak{g}). In particular, the unit map is ιι\iota^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\iota. Finally, the antipode SDS_{D} on Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g} is given by

SD=mD(ıDıˇD)(SS)(1 2).S_{D}=m_{D}\circ(\imath_{D}\otimes\check{\imath}_{D})\circ(S\otimes S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(1\,2).

This double cross product Hopf algebra is the restricted quantum double of the Yangian, as we formally record in the below definition.

Definition 8.2.

The \mathbb{Z}-graded topological Hopf algebra Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g} is called the restricted quantum double of the Yangian Y𝔤Y_{\hbar}\mathfrak{g}, and is denoted

D(Y𝔤):=Y𝔤Y𝔤.D(Y_{\hbar}\mathfrak{g}):=Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\bowtie Y_{\hbar}\mathfrak{g}.

This definition, together with the general theory, implies that D(Y𝔤)D(Y_{\hbar}\mathfrak{g}) provides a homogeneous quantization of the restricted Drinfeld double 𝔱D(𝔱+)\mathfrak{t}\cong D(\mathfrak{t}_{\scriptscriptstyle{+}}) of the graded Lie bialgebra (𝔱+,δ+)(\mathfrak{t}_{\scriptscriptstyle{+}},\delta_{\scriptscriptstyle+}), realized on the space 𝔱+𝔱+𝔱𝔱+\mathfrak{t}_{\scriptscriptstyle{+}}^{\star}\oplus\mathfrak{t}_{\scriptscriptstyle{+}}\cong\mathfrak{t}_{\scriptscriptstyle{-}}\oplus\mathfrak{t}_{\scriptscriptstyle{+}}222This also follows immediately from Theorem 8.5..

One stipulation to carrying out the quantum double construction in the restricted homogeneous setting is that the canonical element RR associated to the pairing between 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} and 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, although formally satisfying the relations of (3) in Section 8.1, does not converge in the \hbar-adically complete tensor product 𝖸˙𝔤𝖸˙𝔤D(Y𝔤)D(Y𝔤)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\subset D(Y_{\hbar}\mathfrak{g})\otimes D(Y_{\hbar}\mathfrak{g}), and so DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is only topologically quasitriangular. Here the prefix “topologically” is a bit subtle: it does not refer to the \hbar-adic topology and must be handled with care. In Section 9, we shall identify RR with the universal RR-matrix (wz)Y(𝔤)2[w][[z1]]\mathcal{R}(w-z)\in Y_{\hbar}(\mathfrak{g})^{\otimes 2}[w][\![z^{-1}]\!]. This viewpoint allows for a precise interpretation of the relations of (3) in terms of those from Theorem 3.9.

Remark 8.3.

There are many competing, though equivalent, variants of the definition of the quantum double. For instance, it may be realized on the tensor product Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, as in [DrQG]*§13. Here we follow the conventions from [KasBook95, Radford93].

8.3. DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as a quantum double

We now turn to proving the \hbar-adic variant of the main conjecture from [KT96]*§2, which postulates that DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and D(Y𝔤)D(Y_{\hbar}\mathfrak{g}) are one and the same; see Theorem 8.5 below.

Recall from the proof of Corollary 7.3 that L(Y𝔤^z(2))(Y𝔤Y𝔤)[[z±1]]\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})\subset(Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g})[\![z^{\pm 1}]\!] denotes the \mathbb{Z}-graded topological [[]]\mathbb{C}[\![\hbar]\!]-algebra obtained by completing the graded subalgebra 𝕃(Y𝔤^z(2))\mathds{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}) of Y(𝔤)2[z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[z;z^{-1}]\!] defined in (3.21). Given this notation, we have [[]]\mathbb{C}[\![\hbar]\!]-linear maps

πz:LY𝔤^zY𝔤LY𝔤^z,πz:=mz(𝟏τz),\displaystyle\pi_{z}:\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\otimes Y_{\hbar}\mathfrak{g}\to\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z},\quad\pi_{z}:=m_{z}\circ(\mathbf{1}\otimes\tau_{z}),
πz:LY𝔤^zL(Y𝔤^z(2)),πz(y)=(1y)(z),\displaystyle\pi_{z}^{\ast}:\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\to\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z}),\quad\pi_{z}^{\ast}(y)=(1\otimes y)\mathcal{R}(-z),

where mzm_{z} denotes the multiplication in LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}. These obey a Drinfeld–Yetter right action/left coaction compatibility condition, as the next lemma makes explicit.

Lemma 8.4.

The pair (πz,πz)(\pi_{z},\pi_{z}^{\ast}) satisfy the relation

πzπz(1 2)=mπz(4 3 2)˙˙𝟏Δopπz\pi_{z}^{\ast}\circ\pi_{z}\circ(1\,2)=m\otimes\pi_{z}\circ(4\,3\,2)\circ\dot{\blacktriangle}\otimes\dot{\blacktriangledown}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}\otimes\pi_{z}^{\ast}

in Hom[[]](Y𝔤LY𝔤^z,L(Y𝔤^z(2)))\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g}\otimes\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z},\mathrm{L}(\widehat{Y_{\hbar}\mathfrak{g}}{\vphantom{Y_{\hbar}\mathfrak{g}}}^{\scriptscriptstyle{(2)}}_{z})), where we have set

˙:=(S1𝟏)(1 2) and ˙:=(S1𝟏).\dot{\blacktriangle}:=(S^{-1}\otimes\mathbf{1})\circ(1\,2)\circ\blacktriangle\quad\text{ and }\quad\dot{\blacktriangledown}:=\blacktriangledown\circ(S^{-1}\otimes\mathbf{1}).
Proof.

This follows from a straightforward modification of the proof of (9) in [Radford93]*Lem. 1, using the antipode relations

m(𝟏S1)Δop=ιε=m(S1𝟏)Δop,\displaystyle m\circ(\mathbf{1}\otimes S^{-1})\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}=\iota\circ\varepsilon=m\circ(S^{-1}\otimes\mathbf{1})\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}},

the counit relation m(𝟏ε)Δ=𝟏m\circ(\mathbf{1}\otimes\varepsilon)\circ\Delta=\mathbf{1}, and the intertwining relation

(8.3) 1τzΔ(x)=(z)11τzΔop(x)(z)xY𝔤,1\otimes\tau_{z}\circ\Delta(x)=\mathcal{R}(-z)^{-1}\cdot 1\otimes\tau_{z}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)\cdot\mathcal{R}(-z)\quad\forall\;x\in Y_{\hbar}\mathfrak{g},

which itself follows from the identities (1) and (3.25) of Theorem 3.9.

To illustrate this, we apply both sides of the claimed identity to a simple tensor xyY𝔤LY𝔤^zx\otimes y\in Y_{\hbar}\mathfrak{g}\otimes\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}, while exploiting the sumless Sweedler notation Δn(x)=x1xn\Delta^{n}(x)=x_{1}\otimes\cdots\otimes x_{n} for iterated coproducts. Expanding the right-hand side of the resulting expression, while using that ˙(xy)=S1(x2)yx1{\dot{\blacktriangledown}}(x\otimes y)=S^{-1}(x_{2})yx_{1} and ˙(x)=S1(x3)x1x2{\dot{\blacktriangle}}(x)=S^{-1}(x_{3})x_{1}\otimes x_{2}, we obtain

S1(x5)x3S1(x2)y\displaystyle S^{-1}(x_{5})x_{3}S^{-1}(x_{2})\otimes y (z)x1τz(x4)\displaystyle\cdot\mathcal{R}(-z)\cdot x_{1}\otimes\tau_{z}(x_{4})
=S1(x4)y(z)x1ε(x2)τz(x3)\displaystyle=S^{-1}(x_{4})\otimes y\cdot\mathcal{R}(-z)\cdot x_{1}\varepsilon(x_{2})\otimes\tau_{z}(x_{3})
=S1(x3)y(z)x1τz(x2)\displaystyle=S^{-1}(x_{3})\otimes y\cdot\mathcal{R}(-z)\cdot x_{1}\otimes\tau_{z}(x_{2})
=S1(x3)x2yτz(x1)(z)\displaystyle=S^{-1}(x_{3})x_{2}\otimes y\tau_{z}(x_{1})\cdot\mathcal{R}(-z)
=1yτz(x1ε(x2))(z)\displaystyle=1\otimes y\tau_{z}(x_{1}\varepsilon(x_{2}))\cdot\mathcal{R}(-z)
=1yτz(x)(z),\displaystyle=1\otimes y\tau_{z}(x)\cdot\mathcal{R}(-z),

where we have applied the intertwining relation (8.3) in the third equality, and the appropriate Hopf relations listed above in each of the remaining equalities. Since

πzπz(yx)=πz(yτz(x))=(1yτz(x))(z),\pi_{z}^{\ast}\circ\pi_{z}(y\otimes x)=\pi_{z}^{\ast}(y\tau_{z}(x))=(1\otimes y\tau_{z}(x))\mathcal{R}(-z),

the above computation implies the lemma. ∎

We now come to the main theorem of this section. Recall from Definition 8.2 that we may identify the restricted quantum double D(Y𝔤)D(Y_{\hbar}\mathfrak{g}) with Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g} as a topological coalgebra over [[]]\mathbb{C}[\![\hbar]\!]. We further recall that

ı:Y𝔤DY𝔤 and ıˇ:Y𝔤DY𝔤\imath:Y_{\hbar}\mathfrak{g}\hookrightarrow\mathrm{D}Y_{\hbar}\mathfrak{g}\quad\text{ and }\quad\check{\imath}:Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\hookrightarrow\mathrm{D}Y_{\hbar}\mathfrak{g}

are the \mathbb{Z}-graded embeddings of topological Hopf algebras over [[]]\mathbb{C}[\![\hbar]\!] which featured prominently in Theorem 7.5.

Theorem 8.5.

The [[]]\mathbb{C}[\![\hbar]\!]-module homomorphism

Υ:=m(ıˇı):Y𝔤Y𝔤DY𝔤\Upsilon:=m\circ(\check{\imath}\otimes\imath):Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}

is an isomorphism of \mathbb{Z}-graded topological Hopf algebras D(Y𝔤)DY𝔤D(Y_{\hbar}\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{D}Y_{\hbar}\mathfrak{g}.

Proof.

We shall first prove that Υ\Upsilon is an isomorphism of \mathbb{Z}-graded topological coalgebras over [[]]\mathbb{C}[\![\hbar]\!], which follows from Theorem 7.5. Afterwards, we will use Lemma 8.4 to complete the proof of the theorem by proving that Υ\Upsilon is an algebra homomorphism D(Y𝔤)DY𝔤D(Y_{\hbar}\mathfrak{g})\to\mathrm{D}Y_{\hbar}\mathfrak{g}. Here we note that it follows automatically that Υ\Upsilon intertwines the underlying antipodes, though this is straightforward to verify.

{comment}

Here we have employed the fact that SΥ=ΥSDS\circ\Upsilon=\Upsilon\circ S_{D} holds automatically, where SS and SDS_{D} are the antipodes of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and 𝖣(Y𝔤)\mathsf{D}(Y_{\hbar}\mathfrak{g}), respectively. If Υ\Upsilon is an algebra homomorphism, then since Υi=ı\Upsilon\circ i=\imath and Υi=ı\Upsilon\circ i^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, we have

ΥSD\displaystyle\Upsilon\circ S_{D} =ΥmD(ii)(SS)(1 2)\displaystyle=\Upsilon\circ m_{D}\circ(i\otimes i^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(S\otimes S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(1\,2)
=m(ΥΥ)(ii)(SS)(1 2)\displaystyle=m\circ(\Upsilon\circ\Upsilon)\circ(i\otimes i^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(S\otimes S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(1\,2)
=m(ıı)(SS)(1 2)\displaystyle=m\circ(\imath\otimes\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(S\otimes S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(1\,2)
=mSS(1 2)(ıı)\displaystyle=m\circ S\otimes S\circ(1\,2)\circ(\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\imath)
=Smıı\displaystyle=S\circ m\circ\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\imath
=SΥ,\displaystyle=S\circ\Upsilon,

where we have used that, by Part (LABEL:dual:3) of Theorem 7.5, ı\imath and ı\imath^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} are morphisms of Hopf algebras in the fourth equality, and that SS is an antihomomorphism in the fifth equality.

Proof that Υ\Upsilon is an isomorphism of \mathbb{Z}-graded coalgebras.

Since mm, ı\imath and ıˇ\check{\imath} are all \mathbb{Z}-graded [[]]\mathbb{C}[\![\hbar]\!]-module homomorphisms, the same is true of Υ\Upsilon. Moreover, as the coproduct Δ˙\dot{\Delta} of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is an algebra homomorphism, it satisfies

Δ˙Υ\displaystyle\dot{\Delta}\circ\Upsilon =Δ˙m(ıˇı)\displaystyle=\dot{\Delta}\circ m\circ(\check{\imath}\otimes\imath)
=mm(2 3)(Δ˙Δ˙)(ıˇı)\displaystyle=m\otimes m\circ(2\,3)\circ(\dot{\Delta}\otimes\dot{\Delta})\circ(\check{\imath}\otimes\imath)
=mm(2 3)(ıˇıˇıı)(ΔΔ)\displaystyle=m\otimes m\circ(2\,3)\circ(\check{\imath}\otimes\check{\imath}\otimes\imath\otimes\imath)\circ(\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Delta)
=ΥΥ(2 3)ΔΔ.\displaystyle=\Upsilon\otimes\Upsilon\circ(2\,3)\circ\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\Delta.

Similarly, as the counit ε˙\dot{\varepsilon} of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is an algebra homomorphism, one has

ε˙Υ\displaystyle\dot{\varepsilon}\circ\Upsilon =ε˙m(ıˇı)=m(ε˙ε˙)(ıˇı)=mεε.\displaystyle=\dot{\varepsilon}\circ m\circ(\check{\imath}\otimes\imath)=m\circ(\dot{\varepsilon}\otimes\dot{\varepsilon})\circ(\check{\imath}\otimes\imath)=m\circ\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\varepsilon.

This proves that Υ\Upsilon is a \mathbb{Z}-graded homomorphism of topological coalgebras. Now let us turn to establishing the bijectivity of Υ\Upsilon. As Y𝔤Y𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g} is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-module with semiclassical limit U(𝔱)U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{-}})\otimes_{\mathbb{C}}U(\mathfrak{t}_{\scriptscriptstyle{+}}) and DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} is a flat deformation of U(𝔱)U(\mathfrak{t}), Lemma 2.1 asserts that it is sufficient to establish that the semiclassical limit

Υ¯=m¯(ı¯ˇı¯):U(𝔱)U(𝔱+)U(𝔱)\bar{\Upsilon}=\bar{m}\circ(\check{\underline{\imath}}\otimes\underline{\imath}):U(\mathfrak{t}_{\scriptscriptstyle{-}})\otimes_{\mathbb{C}}U(\mathfrak{t}_{\scriptscriptstyle{+}})\to U(\mathfrak{t})

of Υ\Upsilon is an isomorphism, where m¯,ı¯ˇ\bar{m},\check{\underline{\imath}} and ı¯\underline{\imath} are the semiclassical limits of mm, ıˇ\check{\imath} and ı\imath, respectively. As ı¯ˇ\check{\underline{\imath}} and ı¯\underline{\imath} quantize the natural inclusions of 𝔱\mathfrak{t}_{\scriptscriptstyle{-}} and 𝔱+\mathfrak{t}_{\scriptscriptstyle{+}} into 𝔱\mathfrak{t} (as was shown in the proof of Lemma 7.4 for ı¯ˇ\check{\underline{\imath}}) and m¯\bar{m} is the multiplication map on U(𝔱)U(\mathfrak{t}), this follows from the Poincaré–Birkhoff–Witt Theorem for enveloping algebras and the decomposition 𝔱=𝔱𝔱+\mathfrak{t}=\mathfrak{t}_{\scriptscriptstyle{-}}\oplus\mathfrak{t}_{\scriptscriptstyle{+}}.

Proof that Υ\Upsilon is an algebra homomorphism.

By (8.2), we must show that ΥıD\Upsilon\circ\imath_{D} and ΥıˇD\Upsilon\circ\check{\imath}_{D} are [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphisms and that, in addition, Υ\Upsilon satisfies the relations

(8.4) ΥmD(ıˇDıD)=m(ΥΥ)(ıˇDıD),m(ΥΥ)(ıDıˇD)=m(ΥΥ)()(2 3)ΔΔ.\begin{gathered}\Upsilon\circ m_{D}\circ(\check{\imath}_{D}\otimes\imath_{D})=m\circ(\Upsilon\otimes\Upsilon)\circ(\check{\imath}_{D}\otimes\imath_{D}),\\ m\circ(\Upsilon\otimes\Upsilon)\circ(\imath_{D}\otimes\check{\imath}_{D})=m\circ(\Upsilon\otimes\Upsilon)\circ(\rhd\otimes\lhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.\end{gathered}

By definition of Υ\Upsilon, we have ΥıD=ı\Upsilon\circ\imath_{D}=\imath and ΥıˇD=ıˇ\Upsilon\circ\check{\imath}_{D}=\check{\imath}. Moreover, both sides of the identity

ΥmD(ıˇDıD)=m(ΥΥ)(ıˇDıD)\Upsilon\circ m_{D}\circ(\check{\imath}_{D}\otimes\imath_{D})=m\circ(\Upsilon\otimes\Upsilon)\circ(\check{\imath}_{D}\otimes\imath_{D})

coincide with Υ\Upsilon, viewed as a map Y𝔤Y𝔤DY𝔤Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}. Hence, we are left to verify the second relation of (8.4), which we shall establish by appealing to the injective [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism Φz\Phi_{z} from Theorem 4.6. Namely, it is enough to show that

Φzm(ΥΥ)(ıDıˇD)=Φzm(ΥΥ)()(2 3)ΔΔ.\Phi_{z}\circ m\circ(\Upsilon\otimes\Upsilon)\circ(\imath_{D}\otimes\check{\imath}_{D})=\Phi_{z}\circ m\circ(\Upsilon\otimes\Upsilon)\circ(\rhd\otimes\lhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Since Φz\Phi_{z} is an algebra homomorphism satisfying Φzı=τz\Phi_{z}\circ\imath=\tau_{z} and Φzıˇ=Φz\Phi_{z}\circ\check{\imath}=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} (see Lemma 7.4), this is equivalent to

(8.5) mz(τzΦz)=mz(Φzτz)()(2 3)ΔΔ,m_{z}\circ(\tau_{z}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})=m_{z}\circ(\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\otimes\tau_{z})\circ(\rhd\otimes\lhd)\circ(2\,3)\circ\Delta\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where mzm_{z} is the product in LY𝔤^z\mathrm{L}\widehat{Y_{\hbar}\mathfrak{g}}_{z}. The proof that (8.5) is satisfied follows an argument parallel to that employed to establish Part (a) of Theorem 2 in [Radford93], using Lemma 8.4 in place of [Radford93]*(9). For the sake of completeness, we give a complete argument below.

Applying the left-hand side of (8.5) to an arbitrary simple tensor xfx\otimes f, we obtain

τz(x)Φz(f)=(fτz(x))(z)=(f𝟏)πzπz(1x),\tau_{z}(x)\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=(f\otimes\tau_{z}(x))\mathcal{R}(-z)=(f\otimes\mathbf{1})\circ\pi_{z}^{\ast}\circ\pi_{z}(1\otimes x),

which, by Lemma 8.4, may be rewritten as

(8.6) τz(x)Φz(f)=f𝟏mπz(4 3 2)˙˙𝟏Δop(x)(z).\tau_{z}(x)\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=f\otimes\mathbf{1}\circ m\otimes\pi_{z}\circ(4\,3\,2)\circ\dot{\blacktriangle}\otimes\dot{\blacktriangledown}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)\otimes\mathcal{R}(-z).

On the other hand, by definition of Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, \rhd and \lhd, the right-hand side of (8.5) evaluated on xfx\otimes f is

Φz(x1f1)τz(x2f2)=(f1𝟏˙𝟏(x1(z)))(f2τz˙(x2)),\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(x_{1}\rhd f_{1})\cdot\tau_{z}(x_{2}\lhd f_{2})=(f_{1}\otimes\mathbf{1}\circ\dot{\blacktriangledown}\otimes\mathbf{1}(x_{1}\otimes\mathcal{R}(-z)))\cdot(f_{2}\otimes\tau_{z}\circ\dot{\blacktriangle}(x_{2})),

where we have employed the sumless Sweedler notation Δ(x)=x1x2\Delta(x)=x_{1}\otimes x_{2} and Δ(f)=f1f2\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=f_{1}\otimes f_{2}. That this coincides with the expression (8.6) for τz(x)Φz(f)\tau_{z}(x)\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f) is a consequence of the following general computation. For each a𝖸˙𝔤a\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} and bY𝔤b\in Y_{\hbar}\mathfrak{g}, we have

(f1(x1a)b)\displaystyle(f_{1}(x_{1}\bullet a)\otimes b)\cdot (f2τz˙(x2))\displaystyle(f_{2}\otimes\tau_{z}\circ\dot{\blacktriangle}(x_{2}))
=f(x2(1)(x1a))bτz(x2(2))\displaystyle=f(x_{2}^{(1)}(x_{1}\bullet a))b\tau_{z}(x_{2}^{(2)})
=f𝟏mπz(x2(1)(x1a)bx2(2))\displaystyle=f\otimes\mathbf{1}\circ m\otimes\pi_{z}(x_{2}^{(1)}\otimes(x_{1}\bullet a)\otimes b\otimes x_{2}^{(2)})
=(f𝟏mπz(4 3 2)˙˙𝟏Δop𝟏𝟏)(xab),\displaystyle=(f\otimes\mathbf{1}\circ m\otimes\pi_{z}\circ(4\,3\,2)\circ\dot{\blacktriangle}\otimes\dot{\blacktriangledown}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}\otimes\mathbf{1}\otimes\mathbf{1})(x\otimes a\otimes b),

where we have set xa=˙(xa)x\bullet a=\dot{\blacktriangledown}(x\otimes a) and in the first and second equalities we have used the (sumless) Sweedler type notation ˙(x)=x(1)x(2)\dot{\blacktriangle}(x)=x^{(1)}\otimes x^{(2)}. This completes the proof of (8.5), and thus the proof that Υ\Upsilon is an algebra homomorphism. ∎

9. The universal RR-matrix

In this final section, we establish the last assertion of Theorem I, which identifies the universal RR-matrix 𝓡{\boldsymbol{\EuScript{R}}} of the Yangian double DY𝔤D(Y𝔤)\mathrm{D}Y_{\hbar}\mathfrak{g}\cong D(Y_{\hbar}\mathfrak{g}) with Drinfeld’s universal RR-matrix (z)\mathcal{R}(z); see Theorem 9.8. Though this in fact follows without too much effort from the results of Sections 7 and 8, constructing 𝓡{\boldsymbol{\EuScript{R}}} precisely does require some care. After laying the groundwork in Sections 9.1 and 9.2, we define 𝓡{\boldsymbol{\EuScript{R}}} and prove our last main result in Section 9.3. The final two subsections — Sections 9.4 and 9.5 — are devoted to providing additional context pertinent to this theorem.

9.1. The isomorphism Θ\Theta

Let θ\theta denote the canonical [[]]\mathbb{C}[\![\hbar]\!]-module injection

θ:Y𝔤𝖸˙𝔤Hom[[]](𝖸˙𝔤,Y𝔤)\theta:Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\hookrightarrow\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g})

determined on simple tensors by θ(xf)(y)=f(y)x\theta(x\otimes f)(y)=f(y)x. This injection is a homomorphism of topological [[]]\mathbb{C}[\![\hbar]\!]-algebras provided we equip Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}) with the convolution product

φ1φ2:=m(φ1φ2)Δ|𝖸˙𝔤φ1,φ2Hom[[]](𝖸˙𝔤,Y𝔤)\varphi_{1}\star\varphi_{2}:=m\circ(\varphi_{1}\otimes\varphi_{2})\circ\Delta|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}\quad\forall\;\varphi_{1},\varphi_{2}\in\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g})

and identity element ιε\iota\circ\varepsilon, where mm, Δ\Delta, ι\iota and ε\varepsilon are the multiplication, coproduct, unit and counit of Y𝔤Y_{\hbar}\mathfrak{g}, respectively. Our main goal in this subsection is to identity a natural extension of θ\theta which is an isomorphism.

Let us begin by noting some topological properties of the homomorphism space Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}). As Y𝔤Y_{\hbar}\mathfrak{g} and 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} are topologically free with semiclassical limits U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}) and 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}), respectively, Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}) is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-modules with

(9.1) Hom[[]](𝖸˙𝔤,Y𝔤)(Hom(𝖲(𝔱+),U(𝔱+)))[[]].\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g})\cong\left(\mathrm{Hom}_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}),U(\mathfrak{t}_{\scriptscriptstyle{+}}))\right)\![\![\hbar]\!].

In addition, Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}) is a Hausdorff and complete topological space with respect to the topology associated to the descending filtration 𝔼\mathbb{E}_{\bullet} of closed [[]]\mathbb{C}[\![\hbar]\!]-submodules defined by

(9.2) 𝔼n:={fHom[[]](𝖸˙𝔤,Y𝔤):f(𝐉n)=0},\mathbb{E}_{n}:=\{f\in\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}):f(\mathbf{J}_{n})=0\},

where we have set 𝐉n=k<n𝖸˙(𝔤)k\mathbf{J}_{n}=\bigoplus_{k<n}\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{k} with 𝐉0={0}\mathbf{J}_{0}=\{0\}. Said in more algebraic terms, the natural [[]]\mathbb{C}[\![\hbar]\!]-module homomorphism

Hom[[]](𝖸˙𝔤,Y𝔤)limn(Hom[[]](𝖸˙𝔤,Y𝔤)/𝔼n)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g})\to\varprojlim_{n}\left(\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g})/\mathbb{E}_{n}\right)

is an isomorphism, as is readily verified. Moreover, as the coproduct Δ\Delta on Y𝔤Y_{\hbar}\mathfrak{g} is graded, 𝔼\mathbb{E}_{\bullet} is a descending filtration of ideals and the above is an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras.

We now turn towards enlarging the domain of θ\theta. For each nn\in\mathbb{Z}, let 𝖸˙𝔤(n)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} denote the closure of the [[]]\mathbb{C}[\![\hbar]\!]-submodule of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} generated by kn𝖸˙𝔤k\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k}. Since 𝖸˙𝔤k𝖸˙𝔤k1\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{k}\subset\hbar\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{k-1} for k>0k>0, 𝖸˙𝔤(0)=𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(0)}=\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and we have a descending \mathbb{N}-filtration

𝖸˙𝔤=𝖸˙𝔤(0)𝖸˙𝔤(1)𝖸˙𝔤(n)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}=\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(0)}\supset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(1)}\supset\cdots\supset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}\supset\cdots

We may thus introduce the topological tensor product

Y𝔤~𝖸˙𝔤:=limn(Y𝔤𝖸˙𝔤/Y𝔤𝖸˙𝔤(n)).Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:=\varprojlim_{n}(Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}).

Since 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is topologically generated as a [[]]\mathbb{C}[\![\hbar]\!]-algebra by the space k>0𝖸˙𝔤k\bigoplus_{k>0}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k} and, for each nn\in\mathbb{N}, kn𝖸˙𝔤k\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k} is stable under multiplication by any xx in this space, we see that each 𝖸˙𝔤(n)\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} is an ideal in 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. It follows that Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a [[]]\mathbb{C}[\![\hbar]\!]-algebra.

To see that Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is a topologically free [[]]\mathbb{C}[\![\hbar]\!]-module, let us introduce the classical spaces 𝖲(𝔱+)(n)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} and U(𝔱+)~𝖲(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} by setting

𝖲(𝔱+)(n):=kn𝖲(𝔱+)k,\displaystyle\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}:=\bigoplus_{k\geq n}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{{-k}},
U(𝔱+)~𝖲(𝔱+):=nU(𝔱+)𝖲(𝔱+)nlimnU(𝔱+)(𝖲(𝔱+)/𝖲(𝔱+)(n)).\displaystyle U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}:=\prod_{n\in\mathbb{N}}U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{-n}\cong\varprojlim_{n}U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}/\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}).
Lemma 9.1.

The [[]]\mathbb{C}[\![\hbar]\!]-algebra Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is topologically free with

Y𝔤~𝖸˙𝔤/(Y𝔤~𝖸˙𝔤)U(𝔱+)~𝖲(𝔱+).\displaystyle Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\hbar(Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}.
Proof.

Let ν:𝖸˙𝔤𝖲(𝔱+)[[]]\upnu_{\star}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}[\![\hbar]\!] be any fixed \mathbb{Z}-graded isomorphism of topological [[]]\mathbb{C}[\![\hbar]\!]-modules. We claim that

(9.3) ν(𝖸˙𝔤(n))=𝖲(𝔱+)(n)[[]].\upnu_{\star}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)})=\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}[\![\hbar]\!].

To see this, fix nn\in\mathbb{N}. Since ν\upnu_{\star} is graded, we have

ν(𝖸˙𝔤k)=a𝖲(𝔱+)kaa𝖲(𝔱+)(n)[[]]kn.\upnu_{\star}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k})=\prod_{a\in\mathbb{N}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{{-k-a}}\hbar^{a}\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}[\![\hbar]\!]\quad\forall\;k\geq n.

As 𝖲(𝔱+)(n)[[]]\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}[\![\hbar]\!] is a closed [[]]\mathbb{C}[\![\hbar]\!]-submodule of 𝖲(𝔱+)[[]]\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}[\![\hbar]\!], we get ν(𝖸˙𝔤(n))𝖲(𝔱+)(n)[[]]\upnu_{\star}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle{(n)}})\subset\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}[\![\hbar]\!]. Conversely, if a0xaa𝖲(𝔱+)(n)[[]]\sum_{a\geq 0}x_{a}\hbar^{a}\in\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}[\![\hbar]\!], then ya:=ν1(xa)kn𝖸˙𝔤ky_{a}:=\upnu_{\star}^{-1}(x_{a})\in\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k} for each aa\in\mathbb{N}. Therefore, we have

ν(a0xaa)=a0yaa𝖸˙𝔤(n),\upnu_{\star}(\sum_{a\geq 0}x_{a}\hbar^{a})=\sum_{a\geq 0}y_{a}\hbar^{a}\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)},

which completes the proof of (9.3). The statement of the lemma now follows from the sequence of isomorphisms

Y𝔤𝖸˙𝔤/Y𝔤𝖸˙𝔤(n)\displaystyle Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} (U(𝔱+)𝖲(𝔱+))[[]]/(U(𝔱+)𝖲(𝔱+)(n))[[]]\displaystyle\cong(U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star})[\![\hbar]\!]/(U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)})[\![\hbar]\!]
(U(𝔱+)(𝖲(𝔱+)/𝖲(𝔱+)(n)))[[]].\displaystyle\cong\left(U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}/\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{\scriptscriptstyle(n)})\right)[\![\hbar]\!].\qed
{comment}
Remark 9.2.

The proof of the lemma shows that the completion of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} with respect to the filtration 𝖸˙𝔤()\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(\bullet)} is a flat [[]]\mathbb{C}[\![\hbar]\!]-algebra deformation of the completion of 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star} with respect to its natural -\mathbb{N}-grading, which is just the full \mathbb{C}-linear dual 𝖲(𝔱+)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\ast}. It follows from this observation that this completion coincides with the full dual 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\ast}, as can be seen by modifying the proof of Proposition 9.3 below.

The next result outputs the desired extensions of θ\theta.

Proposition 9.3.

The injection θ\theta extends to an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

Θ:Y𝔤~𝖸˙𝔤Hom[[]](𝖸˙𝔤,Y𝔤).\displaystyle\Theta:Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}).
Proof.

Let 𝔼\mathbb{E}_{\bullet} be the filtration of 𝔼:=Hom[[]](𝖸˙𝔤,Y𝔤)\mathbb{E}:=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}) defined in (9.2). Then

θ(Y𝔤𝖸˙𝔤(n))𝔼nn.\theta(Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)})\subset\mathbb{E}_{n}\quad\forall\;n\in\mathbb{N}.

Indeed, this follows from the definition of θ\theta and the fact that if fkn𝖸˙𝔤kf\in\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k} and x𝐉nx\in\mathbf{J}_{n}, then f(x)=0f(x)=0. Hence, we obtain

Θ:Y𝔤~𝖸˙𝔤=lim(Y𝔤𝖸˙𝔤/Y𝔤𝖸˙𝔤(n))lim𝔼/𝔼n=𝔼.\Theta:Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}=\varprojlim(Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)})\to\varprojlim\mathbb{E}/\mathbb{E}_{n}=\mathbb{E}.

As Y𝔤Y_{\hbar}\mathfrak{g} and 𝔼\mathbb{E} are topologically free, to show Θ\Theta is an isomorphism it is sufficient to show its semiclassical limit Θ¯\bar{\Theta} is; see Lemma 2.1. Employing the identifications of (9.1) and Lemma 9.1, we see that Θ¯\bar{\Theta} coincides with the isomorphism

U(𝔱+)~𝖲(𝔱+)Hom(𝖲(𝔱+),U(𝔱+))U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{Hom}_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}),U(\mathfrak{t}_{\scriptscriptstyle{+}}))

uniquely extending the canonical map U(𝔱+)𝖲(𝔱+)Hom(𝖲(𝔱+),U(𝔱+))U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}\hookrightarrow\mathrm{Hom}_{\mathbb{C}}(\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}),U(\mathfrak{t}_{\scriptscriptstyle{+}})), which is the semiclassical limit θ¯\bar{\theta} of θ\theta, by continuity. ∎

We now give two remarks pertinent to the above discussion. {comment}

Remark 9.4.

Since Y𝔤𝖸˙𝔤(n)Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} is a 𝔤\mathfrak{g}-submodule of Y𝔤𝖸˙𝔤Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} for each nn, Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} admits a natural 𝔤\mathfrak{g}-module structure, for which Θ\Theta is an isomorphism of 𝔤\mathfrak{g}-modules.

Remark 9.5.

By Proposition 9.3, we may introduce the [[]]\mathbb{C}[\![\hbar]\!]-subalgebra

𝖸˙𝔤~𝖸˙𝔤:=Θ1(End[[]](𝖸˙𝔤))Y𝔤~𝖸˙𝔤.\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:=\Theta^{-1}(\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}))\subset Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}.

By definition, it comes equipped with an isomorphism

Θ|𝖸˙𝔤~𝖸˙𝔤:𝖸˙𝔤~𝖸˙𝔤End[[]](𝖸˙𝔤)\Theta|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g})

extending the injection θ|𝖸˙𝔤𝖸˙𝔤\theta|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}}. It is worth noting that, by following the above arguments, it is easy to see that 𝖸˙𝔤~𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} admits the equivalent description

𝖸˙𝔤~𝖸˙𝔤limn(𝖸˙𝔤𝖸˙𝔤/𝖸˙𝔤𝖸˙𝔤(n)).\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\cong\varprojlim_{n}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}).

Suppose now that φ,γEnd[[]](𝖸˙𝔤)\varphi,\gamma\in\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}) with γ\gamma homogeneous of degree aa\in\mathbb{Z}. Then φγt\varphi\otimes\gamma^{t} uniquely extends to an element of End[[]](𝖸˙𝔤~𝖸˙𝔤)\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}) and Θ\Theta has the property that

(9.4) φΘ(y)γ=(Θ(φγt))(y)y𝖸˙𝔤~𝖸˙𝔤.\varphi\circ\Theta(y)\circ\gamma=(\Theta\circ(\varphi\otimes\gamma^{t}))(y)\quad\forall\;y\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}.
Remark 9.6.

The argument used to establish Proposition 6.2 implies that the natural [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

End[[]](Y𝔤)Hom[[]](𝖸˙𝔤,Y𝔤),φφ|𝖸˙𝔤,\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g})\to\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}),\quad\varphi\mapsto\varphi|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}},

is an embedding. Hence, we can (and shall) view End[[]](Y𝔤)\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g}) as a subalgebra of Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}). We may thus introduce Y𝔤~Y𝔤Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\subset Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} by setting

Y𝔤~Y𝔤:=Θ1(End[[]](Y𝔤)).Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:=\Theta^{-1}(\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g})).

We then have

(Y𝔤~Y𝔤)(𝖸˙𝔤~𝖸˙𝔤)End[[]]𝖸˙𝔤(Y𝔤),(Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})\cap(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})\cong\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}^{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}(Y_{\hbar}\mathfrak{g}),

where the right-hand side consists of all fEnd[[]](Y𝔤)f\in\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}\mathfrak{g}) for which f(𝖸˙𝔤)𝖸˙𝔤f(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g})\subset\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}.

9.2. The restriction Θχ\Theta_{\chi}

We now give a few comments which concern the triangular decompositions of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g} and 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. For each choice of the symbol χ\chi, let πχ:𝖸˙𝔤𝖸˙χ𝔤\pi^{\chi}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g} denote the [[]]\mathbb{C}[\![\hbar]\!]-linear projection associated to the triangular decomposition of 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}, as defined in Section 6.5. These projections give rise to [[]]\mathbb{C}[\![\hbar]\!]-module embeddings

Hom[[]](𝖸˙χ𝔤,Yχ𝔤)Hom[[]](𝖸˙𝔤,Y𝔤),φχφχπχ.\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g},Y_{\hbar}^{\chi}\mathfrak{g})\hookrightarrow\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}),\quad\varphi^{\chi}\mapsto\varphi^{\chi}\circ\pi^{\chi}.

We shall henceforth adopt the viewpoint that Hom[[]](𝖸˙χ𝔤,Yχ𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g},Y_{\hbar}^{\chi}\mathfrak{g}) is a submodule of Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}), with the above identification assumed. The restriction θχ\theta_{\chi} of θ\theta to Yχ𝔤𝖸˙χ𝔤Y_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is then a [[]]\mathbb{C}[\![\hbar]\!]-module injection

θχ:Yχ𝔤𝖸˙χ𝔤Hom[[]](𝖸˙χ𝔤,Yχ𝔤).\theta_{\chi}:Y_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}\hookrightarrow\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g},Y_{\hbar}^{\chi}\mathfrak{g}).

Following the above procedure, we may introduce the [[]]\mathbb{C}[\![\hbar]\!]-algebra

Yχ𝔤~𝖸˙χ𝔤:=limn(Yχ𝔤𝖸˙χ𝔤/Yχ𝔤𝖸˙χ𝔤(n)),Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}:=\varprojlim_{n}(Y_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}/Y_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}),

where 𝖸˙χ𝔤(n)\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)} is the closure of the [[]]\mathbb{C}[\![\hbar]\!]-submodule of 𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} generated by the direct sum kn𝖸˙χ𝔤k\bigoplus_{k\geq n}\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}_{-k}. The above arguments show that this completed tensor product is a flat [[]]\mathbb{C}[\![\hbar]\!]-algebra deformation of

U(𝔱+χ)~𝖲(𝔱+χ)=nU(𝔱+χ)𝖲(𝔱+χ)n.U(\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}=\prod_{n\in\mathbb{N}}U(\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi})\otimes_{\mathbb{C}}\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\chi}){\vphantom{)}}^{\star}_{-n}.

It follows that the natural algebra homomorphism Yχ𝔤~𝖸˙χ𝔤Y𝔤~𝖸˙𝔤Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}\to Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is injective and, by the proof of Proposition 9.3, that θχ\theta_{\chi} uniquely extends to an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-modules

(9.5) Θχ:Yχ𝔤~𝖸˙χ𝔤Hom[[]](𝖸˙χ𝔤,Yχ𝔤)\Theta_{\chi}:Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g},Y_{\hbar}^{\chi}\mathfrak{g})

which coincides with the restriction of Θ\Theta to Yχ𝔤~𝖸˙χ𝔤Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}. In particular, since Yχ𝔤~𝖸˙χ𝔤Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star} is a subalgebra of Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, the space Hom[[]](𝖸˙χ𝔤,Yχ𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g},Y_{\hbar}^{\chi}\mathfrak{g}) is a subalgebra of Hom[[]](𝖸˙𝔤,Y𝔤)\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},Y_{\hbar}\mathfrak{g}) and Θχ\Theta_{\chi} is an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras.

Finally, as in Remarks 9.5 and 9.6, we set

𝖸˙χ𝔤~𝖸˙χ𝔤:=Θχ1(End[[]](𝖸˙χ𝔤))limn(𝖸˙χ𝔤𝖸˙χ𝔤/𝖸˙χ𝔤𝖸˙χ𝔤(n)),\displaystyle\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}:=\Theta^{-1}_{\chi}(\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}))\cong\varprojlim_{n}(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}/\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}),
Yχ𝔤~Yχ𝔤:=Θχ1(End[[]](Yχ𝔤)).\displaystyle Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}:=\Theta^{-1}_{\chi}(\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(Y_{\hbar}^{\chi}\mathfrak{g})).

9.3. Canonical tensors and universal R-matrices

By Proposition 9.3, we may introduce RR and RχR^{\chi} in Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}, for each choice of χ\chi, as the elements

R:=Θ1(𝟏𝖸˙𝔤)Y𝔤~𝖸˙𝔤 andRχ:=Θ1(𝟏𝖸˙χ𝔤)Yχ𝔤~𝖸˙χ𝔤.\displaystyle R:=\Theta^{-1}(\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}})\in Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\quad\text{ and}\quad R^{\chi}:=\Theta^{-1}(\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}})\in Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}.

That is, RR and RχR^{\chi} are the canonical elements associated to the Hopf pairing 𝖸˙𝔤×𝖸˙𝔤[[]]\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\times\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\to\mathbb{C}[\![\hbar]\!] and its restriction to 𝖸˙χ𝔤×𝖸˙χ𝔤\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\times\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}, respectively.

As 𝟏𝖸˙𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}} and 𝟏𝖸˙χ𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}} coincide with 𝟏Y𝔤\mathbf{1}_{Y_{\hbar}\mathfrak{g}} and 𝟏Yχ𝔤\mathbf{1}_{Y_{\hbar}^{\chi}\mathfrak{g}} under the identifications of Remark 9.6 and Section 9.2, respectively, RR (resp. RχR^{\chi}) is also the canonical element defined by the pairing between Y𝔤Y_{\hbar}\mathfrak{g} and its restricted dual Y𝔤Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} (resp. Yχ𝔤Y_{\hbar}^{\chi}\mathfrak{g} and Yχ𝔤Y_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}). In particular, we have

R(Y𝔤~Y𝔤)(𝖸˙𝔤~𝖸˙𝔤) and Rχ(Yχ𝔤~Yχ𝔤)(𝖸˙χ𝔤~𝖸˙χ𝔤).R\in(Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})\cap(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})\quad\text{ and }\quad R^{\chi}\in(Y_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star})\cap(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}).

It is worth pointing out that one can immediately deduce a number of properties that RR and RχR^{\chi} satisfy using only elementary properties of Θ\Theta. For instance:

  1. (R1)

    Applying (9.4) with γ=𝟏\gamma=\mathbf{1} while using that Θ(1f)=ιf\Theta(1\otimes f)=\iota\circ f recovers the characteristic identities

    (ιf)𝟏R=1f and (ιfχ)𝟏Rχ=1fχ(\iota\circ f)\otimes\mathbf{1}\cdot R=1\otimes f\quad\text{ and }\quad(\iota\circ f^{\chi})\otimes\mathbf{1}\cdot R^{\chi}=1\otimes f^{\chi}

    for all f𝖸˙𝔤f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and fχ𝖸˙χ𝔤f^{\chi}\in\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}.

  2. (R2)

    Taking φ=γ=ω\varphi=\gamma=\omega in (9.4) with y=𝟏𝖸˙𝔤y=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}} or 𝟏𝖸˙𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\mp}\mathfrak{g}} while using that 𝟏𝖸˙±𝔤=ω𝟏𝖸˙𝔤ω\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}}=\omega\circ\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\mp}\mathfrak{g}}\circ\omega gives rise to the identities

    R=(ωωt)R and R±=(ωωt)(R).R=(\omega\otimes\omega^{t})R\quad\text{ and }\quad R^{\pm}=(\omega\otimes\omega^{t})(R^{\mp}).
  3. (R3)

    Since 𝟏𝖸˙𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}} is a 𝔤\mathfrak{g}-invariant element of End[[]](𝖸˙𝔤)\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}) and Θ\Theta is a 𝔤\mathfrak{g}-module intertwiner, RR is a 𝔤\mathfrak{g}-invariant element 𝖸˙𝔤~𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}. Using the multiplication in D(Y𝔤)D(Y_{\hbar}\mathfrak{g}), this can be written as

    [x1+1x,R]=0x𝔤.[x\otimes 1+1\otimes x,R]=0\quad\forall\;x\in\mathfrak{g}.

    Similarly, R±R^{\pm} and R0R^{0} are both 𝔥\mathfrak{h}-invariant. {comment}

  4. (R4)

    Since 𝟏𝖸˙𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}} has convolution inverse given by the antipode SS, RR is an invertible element of 𝖸˙𝔤~𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} with inverse R1=Θ1(S)R^{-1}=\Theta^{-1}(S). Further, since S𝟏𝖸˙𝔤=S=𝟏𝖸˙𝔤SS\circ\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}=S=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}\circ S, the relation (9.4) of Remark LABEL:R:Theta-prop yields

    (S𝟏)(R)=R1=(𝟏(S)1)(R)(S\otimes\mathbf{1})(R)=R^{-1}=(\mathbf{1}\otimes(S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})^{-1})(R)

    where we recall StS^{t} satisfies St=(S)1=SD1|𝖸˙𝔤S^{t}=(S^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})^{-1}=S_{D}^{-1}|_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}}. Similarly, the relation (9.4) outputs

    (ε𝟏)(R)=1D(Y𝔤)=(𝟏ε)(R).(\varepsilon\otimes\mathbf{1})(R)=1_{D(Y_{\hbar}\mathfrak{g})}=(\mathbf{1}\otimes\varepsilon^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(R).

In addition, the standard quantum double arguments show that RR satisfies the quasitriangularity relations of (3) in Section 8.1 in suitable completions of tensor powers of D(Y𝔤)D(Y_{\hbar}\mathfrak{g}). For instance, the cabling identities Δ𝟏(R)=R13R23\Delta\otimes\mathbf{1}(R)=R_{13}R_{23} and 𝟏Δ(R)=R13R12\mathbf{1}\otimes\Delta^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(R)=R_{13}R_{12} are equivalent to the simple identities

𝟏𝖸˙𝔤(1)𝟏𝖸˙𝔤(2)=Δ and (ε𝟏𝖸˙𝔤)(𝟏𝖸˙𝔤ε)=(1 2)m\mathbf{1}^{(1)}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}\star\mathbf{1}^{(2)}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}=\Delta\quad\text{ and }\quad(\varepsilon\otimes\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}})\star(\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}\otimes\varepsilon)=(1\,2)\circ m

in the convolution algebras

(𝖸˙𝔤2)~𝖸˙𝔤:=Hom[[]](𝖸˙𝔤,𝖸˙𝔤2)\displaystyle(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\otimes 2})\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}:=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g},\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\otimes 2})
𝖸˙𝔤~(𝖸˙𝔤)2:=Hom[[]](𝖸˙𝔤2,𝖸˙𝔤)\displaystyle\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star})^{\otimes 2}:=\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\otimes 2},\dot{\mathsf{Y}}_{\hbar}\mathfrak{g})

respectively, where 𝟏𝖸˙𝔤(a):𝖸˙𝔤𝖸˙𝔤2\mathbf{1}^{(a)}_{\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\to\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}^{\otimes 2} is given by xx(a)x\mapsto x^{(a)}.

Our main goal in this section is to establish the remaining assertion of Theorem I from Section 1.2, which claims that RR can be identified with the universal RR-matrix of the Yangian. This interpretation allows for a precise framework for understanding the topological quasitriangular structure on D(Y𝔤)D(Y_{\hbar}\mathfrak{g}) alluded to above. To achieve this, we will need the next lemma, where Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is as in Proposition 7.1.

Lemma 9.7.

τwΦz\tau_{w}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} extends to an injective [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

τw~Φz:Y𝔤~Y𝔤(Y𝔤2[[w]])[[z1]].\tau_{w}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\hookrightarrow(Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![w]\!])[\![z^{-1}]\!].
Proof.

It is sufficient to show 𝟏Φz\mathbf{1}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} extends to an injective [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

𝟏~Φz:Y𝔤~Y𝔤Y𝔤2[[z1]].\mathbf{1}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\to Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!].

Since Φz(𝖸˙𝔤k)zkY𝔤^zzkY𝔤[[z1]]\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k})\subset z^{-k}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\subset z^{-k}Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!], 𝟏Φz\mathbf{1}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} induces a family of compatible algebra homomorphisms

(𝟏Φz)n:Y𝔤𝖸˙𝔤/𝖸˙𝔤𝖸˙𝔤(n)Y𝔤2[[z1]]/znY𝔤2[[z1]].(\mathbf{1}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})_{n}:Y_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}/\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(n)}\to Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!]/z^{-n}Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!].

Taking the projective limit gives the desired extension 𝟏~Φz\mathbf{1}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. We are left to verify that it is indeed injective, which is perhaps a bit subtle (given that Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is injective), but not difficult. As Y𝔤~𝖸˙𝔤Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} is separated with respect to the \hbar-adic topology and Y𝔤2[[z1]]Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![z^{-1}]\!] is torsion free, this can be done by verifying that the semiclassical limit of 𝟏~Φz\mathbf{1}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is injective. This is the linear map

U(𝔱+)~𝖲(𝔱+)nzn(U(𝔱+)U(𝔱+)^z)U(𝔱+)2[[z1]]U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}\to\prod_{n\in\mathbb{N}}z^{-n}(U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\widehat{U(\mathfrak{t}_{\scriptscriptstyle{+}})}_{z})\subset U(\mathfrak{t}_{\scriptscriptstyle{+}})^{\otimes 2}[\![z^{-1}]\!]

which is 𝟏Φ¯z:U(𝔱+)~𝖲(𝔱+)nzn(U(𝔱+)U(𝔱+)^z)\mathbf{1}\otimes\bar{\Phi}_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:U(\mathfrak{t}_{\scriptscriptstyle{+}})\,\widetilde{\otimes}\,\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}){\vphantom{)}}^{\star}_{-n}\to z^{-n}(U(\mathfrak{t}_{\scriptscriptstyle{+}})\otimes_{\mathbb{C}}\widehat{U(\mathfrak{t}_{\scriptscriptstyle{+}})}_{z}) on the nn-th component of the direct product, where Φ¯z\bar{\Phi}_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is the semiclassical limit of Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} and U(𝔱+)^z=nU(𝔱+)nzn\widehat{U(\mathfrak{t}_{\scriptscriptstyle{+}})}_{z}=\prod_{n\in\mathbb{N}}U(\mathfrak{t}_{\scriptscriptstyle{+}})_{n}z^{-n}. The desired result now follows from the fact that Φ¯z\bar{\Phi}_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} is injective, wich can be seen as a consequence of the equality 𝓋Φz=Φıˇ\mathscr{Ev}\circ\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}=\Phi\circ\check{\imath} and that, by [WDYhg]*Thm. 6.2 and the proof of Lemma 7.4, both Φ\Phi and ıˇ\check{\imath} have injective semiclassical limits. ∎

To recover the desired result as stated in (2) of Theorem I, we now translate some of the above constructions and results from D(Y𝔤)D(Y_{\hbar}\mathfrak{g}) to DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} using the isomorphism Υ\Upsilon from Theorem 8.5 or, equivalently, the Hopf algebra embeddings ı\imath and ıˇ\check{\imath} from Theorem 7.5. Let us set

Y𝔤˙Y𝔤:=limn(ı(Y𝔤)ıˇ(Y𝔤)/ı(Y𝔤)ıˇ(Y𝔤(n))).Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}:=\varprojlim_{n}\left(\imath(Y_{\hbar}\mathfrak{g})\otimes\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})/\imath(Y_{\hbar}\mathfrak{g})\otimes\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}_{\scriptscriptstyle{(n)}})\right).

This definition is such that isomorphism

ııˇ:Y𝔤Y𝔤ı(Y𝔤)ıˇ(Y𝔤)DY𝔤DY𝔤\imath\otimes\check{\imath}:Y_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\imath(Y_{\hbar}\mathfrak{g})\otimes\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\subset\mathrm{D}Y_{\hbar}\mathfrak{g}\otimes\mathrm{D}Y_{\hbar}\mathfrak{g}

extends to an isomorphism of [[]]\mathbb{C}[\![\hbar]\!]-algebras

ı˙ıˇ:Y𝔤~Y𝔤Y𝔤˙Y𝔤.\imath\,\dot{\otimes}\,\check{\imath}:Y_{\hbar}\mathfrak{g}\,\widetilde{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Armed with these preliminaries, we may now introduce the universal RR-matrix of the Yangian double DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} as the element

𝓡:=(ı˙ıˇ)(R)(Y𝔤˙Y𝔤)(𝖸˙𝔤˙Y𝔤)Y𝔤˙Y𝔤,{\boldsymbol{\EuScript{R}}}:=(\imath\,\dot{\otimes}\,\check{\imath})(R)\in(Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\cap(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\subset Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where, for each choice of AA and BB, A˙BA\dot{\otimes}B denotes the image of A~BA\widetilde{\otimes}B under ı˙ıˇ\imath\,\dot{\otimes}\,\check{\imath}. Similarly, we define the DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} analogues of R±R^{\pm} and R0R^{0} by setting

𝓡±:=(ı˙ıˇ)(R±)Y±𝔤˙𝖸˙±𝔤 and 𝓡0:=(ı˙ıˇ)(R0)Y0𝔤˙𝖸˙0𝔤.{\boldsymbol{\EuScript{R}}}^{\pm}:=(\imath\,\dot{\otimes}\,\check{\imath})(R^{\pm})\in Y_{\hbar}^{\pm\!}\mathfrak{g}\,\dot{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\pm\!}\mathfrak{g}{\vphantom{)}}^{\star}\quad\text{ and }\quad{\boldsymbol{\EuScript{R}}}^{0}:=(\imath\,\dot{\otimes}\,\check{\imath})(R^{0})\in Y_{\hbar}^{0}\mathfrak{g}\,\dot{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}.

By Theorem 4.6 and Lemma 7.4, Φz\Phi_{z} satisfies Φzı=τz\Phi_{z}\circ\imath=\tau_{z} and Φzıˇ=Φz\Phi_{z}\circ\check{\imath}=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. Lemma 9.7 therefore implies that the restriction of ΦwΦz\Phi_{w}\otimes\Phi_{z} to ı(Y𝔤)ıˇ(Y𝔤)DY𝔤2\imath(Y_{\hbar}\mathfrak{g})\otimes\check{\imath}(Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\subset\mathrm{D}Y_{\hbar}\mathfrak{g}^{\otimes 2} extends to an injective [[]]\mathbb{C}[\![\hbar]\!]-algebra homomorphism

Φw˙Φz:Y𝔤˙Y𝔤Y𝔤2[[w]][[z1]].\Phi_{w}\,\dot{\otimes}\,\Phi_{z}:Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}\hookrightarrow Y_{\hbar}\mathfrak{g}^{\otimes 2}[\![w]\!][\![z^{-1}]\!].

Indeed, we may set Φw˙Φz:=(τw~Φz)(ı˙ıˇ)1\Phi_{w}\,\dot{\otimes}\,\Phi_{z}:=(\tau_{w}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})\circ(\imath\,\dot{\otimes}\,\check{\imath})^{-1}. With this homomorphism at our disposal, we are now in a position to state and prove the last main result outlined in Section 1.2.

Theorem 9.8.

The following identities hold in Y(𝔤)2[w][[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[w][\![z^{-1}]\!]:

(Φw˙Φz)(𝓡)=(wz),\displaystyle(\Phi_{w}\,\dot{\otimes}\,\Phi_{z})({\boldsymbol{\EuScript{R}}})=\mathcal{R}(w-z),
(Φw˙Φz)(𝓡±)=±(wz),(Φw˙Φz)(𝓡0)=0(wz).\displaystyle(\Phi_{w}\,\dot{\otimes}\,\Phi_{z})({\boldsymbol{\EuScript{R}}}^{\pm})=\mathcal{R}^{\pm}(w-z),\quad(\Phi_{w}\,\dot{\otimes}\,\Phi_{z})({\boldsymbol{\EuScript{R}}}^{0})=\mathcal{R}^{0}(w-z).

Consequently 𝓡{\boldsymbol{\EuScript{R}}} admits the factorization 𝓡=𝓡+𝓡0𝓡{\boldsymbol{\EuScript{R}}}={\boldsymbol{\EuScript{R}}}^{+}\!\cdot\!{\boldsymbol{\EuScript{R}}}^{0}\!\cdot\!{\boldsymbol{\EuScript{R}}}^{-} in Y𝔤˙Y𝔤Y_{\hbar}\mathfrak{g}\,\dot{\otimes}\,Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}.

Proof.

By Theorems 4.1 and 6.7 of [GTLW19] and Theorem 3.9 above, (z)\mathcal{R}(z) and χ(z)\mathcal{R}^{\chi}(z) satisfy (τw𝟏)(z)=(w+z)(\tau_{w}\otimes\mathbf{1})\mathcal{R}(z)=\mathcal{R}(w+z) and (τw𝟏)χ(z)=χ(w+z)(\tau_{w}\otimes\mathbf{1})\mathcal{R}^{\chi}(z)=\mathcal{R}^{\chi}(w+z) in Y(𝔤)2[w][[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[w][\![z^{-1}]\!], for each choice of the symbol χ\chi. Therefore, to prove the first assertion of the theorem it is sufficient to establish the equalities

(𝟏~Φz)(R)=(z) and (𝟏~Φz)(Rχ)=χ(z)(\mathbf{1}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(R)=\mathcal{R}(-z)\quad\text{ and }\quad(\mathbf{1}\,\widetilde{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(R^{\chi})=\mathcal{R}^{\chi}(-z)

in (𝖸˙𝔤Y𝔤)[[z1]](\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g})[\![z^{-1}]\!] and (𝖸˙χ𝔤Yχ𝔤)[[z1]](\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\otimes Y_{\hbar}^{{\scriptscriptstyle{\shortminus}}\chi}\mathfrak{g})[\![z^{-1}]\!], respectively. These relations will hold provided their images under the evaluations

f𝟏:(𝖸˙𝔤Y𝔤)[[z1]]Y𝔤[[z1]]\displaystyle f\otimes\mathbf{1}:(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\otimes Y_{\hbar}\mathfrak{g})[\![z^{-1}]\!]\to Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!]
fχ𝟏:(𝖸˙χ𝔤Yχ𝔤)[[z1]]Yχ𝔤[[z1]]\displaystyle f^{\chi}\otimes\mathbf{1}:(\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}\otimes Y_{\hbar}^{{\scriptscriptstyle{\shortminus}}\chi}\mathfrak{g})[\![z^{-1}]\!]\to Y_{\hbar}^{{\scriptscriptstyle{\shortminus}}\chi}\mathfrak{g}[\![z^{-1}]\!]

are satisfied in Y𝔤[[z1]]Y_{\hbar}\mathfrak{g}[\![z^{-1}]\!] for each f𝖸˙𝔤f\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star} and fχ𝖸˙χ𝔤f^{\chi}\in\dot{\mathsf{Y}}_{\hbar}^{\chi}\mathfrak{g}{\vphantom{)}}^{\star}, respectively. This follows from the definition of Φz\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, (R1) and Corollary 7.7, which collectively output the relations

(fΦz)(R)=Φz(f)=(f𝟏)(z),\displaystyle(f\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(R)=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=(f\otimes\mathbf{1})\mathcal{R}(-z),
(fχΦz)(R)=Φz(f)=(fχ𝟏)χ(z).\displaystyle(f^{\chi}\otimes\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}})(R)=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}(f)=(f^{\chi}\otimes\mathbf{1})\mathcal{R}^{\chi}(-z).

This completes the proof of the first statement of the Theorem. The second assertion now follows immediately from the decomposition (z)=+(z)0(z)(z)\mathcal{R}(z)=\mathcal{R}^{+}(z)\mathcal{R}^{0}(z)\mathcal{R}^{-}(z) (see Theorem 3.9) and the injectivity of Φw˙Φz\Phi_{w}\,\dot{\otimes}\,\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}. ∎

Remark 9.9.

In the closely related setting of [KT96], a formal version (i.e., suppressing convergence issues) of the factorization 𝓡=𝓡+𝓡0𝓡{\boldsymbol{\EuScript{R}}}={\boldsymbol{\EuScript{R}}}^{+}\!\cdot\!{\boldsymbol{\EuScript{R}}}^{0}\!\cdot\!{\boldsymbol{\EuScript{R}}}^{-} from Theorem 9.8 was established in [KT96]*Prop. 5.1 by proving directly that the Hopf pairing between the Yangian and its dual splits with respect to the underlying triangular decompositions; see Theorem 3.1 therein.

Remark 9.10.

Since Φz\Phi_{z} intertwines the Chevalley involutions of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} and Y𝔤Y_{\hbar}\mathfrak{g}, it follows from Part (2) of Proposition 7.1 and the relation Φzıˇ=Φz\Phi_{z}\circ\check{\imath}=\Phi_{z}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}} of Lemma 7.4 that ıˇ\check{\imath} satisfies ωıˇ=ıˇωt\omega\circ\check{\imath}=\check{\imath}\circ\omega^{t}. Consequently, the property (R2) translates to

𝓡=(ωω)(𝓡) and 𝓡±=(ωω)(𝓡).{\boldsymbol{\EuScript{R}}}=(\omega\otimes\omega)({\boldsymbol{\EuScript{R}}})\quad\text{ and }\quad{\boldsymbol{\EuScript{R}}}^{\pm}=(\omega\otimes\omega)({\boldsymbol{\EuScript{R}}}^{\mp}).

Hence, by Theorem 9.8, (z)\mathcal{R}(z) and its components ±(z)\mathcal{R}^{\pm}(z) satisfy the relations

(z)=(ωω)((z)) and ±(z)=(ωω)((z)).\mathcal{R}(z)=(\omega\otimes\omega)(\mathcal{R}(z))\quad\text{ and }\quad\mathcal{R}^{\pm}(z)=(\omega\otimes\omega)(\mathcal{R}^{\mp}(z)).

In particular, this observation recovers the first identity of Corollary 3.11.

One can now interpret the quasitriangularity relations for DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} in terms of the relations of Theorem 3.9. Namely, setting v=wzv=w-z, we see that the cabling identities of 𝓡{\boldsymbol{\EuScript{R}}} correspond to the relations

Δ𝟏((v))\displaystyle\Delta\otimes\mathbf{1}(\mathcal{R}(v)) =13(v)23(v)\displaystyle=\mathcal{R}_{13}(v)\mathcal{R}_{23}(v)
𝟏Δ((v))\displaystyle\mathbf{1}\otimes\Delta(\mathcal{R}(v)) =13(v)12(v)\displaystyle=\mathcal{R}_{13}(v)\mathcal{R}_{12}(v)

in Y(𝔤)3[w][[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 3}[w][\![z^{-1}]\!], which are satisfied by Theorem 3.9. In more detail, these are obtained heuristically by applying ΦuΦwΦz\Phi_{u}\otimes\Phi_{w}\otimes\Phi_{z} and ΦwΦyΦz\Phi_{w}\otimes\Phi_{y}\otimes\Phi_{z} to

(Δ˙𝟏)(𝓡)=𝓡13𝓡23 and (𝟏Δ˙)(𝓡)=𝓡13𝓡12,(\dot{\Delta}\otimes\mathbf{1})({\boldsymbol{\EuScript{R}}})={\boldsymbol{\EuScript{R}}}_{13}{\boldsymbol{\EuScript{R}}}_{23}\quad\text{ and }\quad(\mathbf{1}\otimes\dot{\Delta})({\boldsymbol{\EuScript{R}}})={\boldsymbol{\EuScript{R}}}_{13}{\boldsymbol{\EuScript{R}}}_{12},

respectively, where Δ˙\dot{\Delta} is the coproduct on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}, and then evaluating uwu\mapsto w and yzy\mapsto z while using (ΦuΦz)Δ˙|u=z=Δ˙Φz(\Phi_{u}\otimes\Phi_{z})\circ\dot{\Delta}|_{u=z}=\dot{\Delta}\circ\Phi_{z}. Similarly, applying ΦwΦz\Phi_{w}\otimes\Phi_{z} to the intertwiner equation Δop(x)=𝓡Δ(x)𝓡1{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)={\boldsymbol{\EuScript{R}}}\,\Delta(x){\boldsymbol{\EuScript{R}}}^{-1} for xY(𝔤)x\in Y_{\hbar}(\mathfrak{g}) leads to the identity

τv𝟏Δop(τz(x))=(v)τv𝟏Δ(τz(x))(v)1\tau_{v}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(\tau_{z}(x))=\mathcal{R}(v)\cdot\tau_{v}\otimes\mathbf{1}\circ\Delta(\tau_{z}(x))\cdot\mathcal{R}(v)^{-1}

in Y(𝔤)2[w][z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[w][z;z^{-1}]\!], which is satisfied by Theorem 3.9. We caution, however, that the situation here is more subtle for general xDY𝔤x\in\mathrm{D}Y_{\hbar}\mathfrak{g}.

9.4. Remarks

The identifications established in Theorem 9.8 provide a rigorous framework for understanding the motivating remarks given in [GTLW19]*§1.6. We now give a few comments related to this point.

First, we note that the diagonal factor 0(z)\mathcal{R}^{0}(z) of (z)\mathcal{R}(z) was explicitly obtained in [GTLW19]*§6.6 by computing the common asymptotic expansion of the two GL(V1V2)\mathrm{GL}(V_{1}\otimes V_{2})-valued meromorphic abelian RR-matrices constructed in [GTL3]*§5, where V1,V2V_{1},V_{2} are an arbitrary pair of finite-dimensional representations of the Yangian. As explained in [GTL3]*§5.2, their construction was motivated by the heuristic formula for 𝓡0{\boldsymbol{\EuScript{R}}}^{0} given in [KT96]*Thm. 5.2. Theorem 9.8 makes this relation precise, and shows that the explicit formula for 0(z)\mathcal{R}^{0}(z) obtained in [GTLW19], and recalled in Section 3.6, does indeed compute the canonical element defined by the pairing on 𝖸˙0𝔤×𝖸˙0𝔤\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}\times\dot{\mathsf{Y}}_{\hbar}^{0}\mathfrak{g}{\vphantom{)}}^{\star}.

Next, we emphasize that the factor 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm} (equivalently, ±(z)\mathcal{R}^{\pm}(z)) now admits two distinct characterizations. On the one hand, it is uniquely determined by the recurrence relations (3.23) which were at the heart of [GTLW19]*Thm. 4.1. On the other hand, it arises as the canonical element defined by the pairing on 𝖸˙±𝔤×𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}\times\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}, and can thus be realized explicitly by computing the dual set to any fixed homogeneous basis of the \mathbb{N}-graded torsion free []\mathbb{C}[\hbar]-module 𝖸˙±(𝔤)\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}). In more detail, if 𝖡k±𝖸˙±(𝔤)k\mathsf{B}^{\pm}_{k}\subset\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{k} is a lift of any basis of the finite-dimensional kk-th component 𝖲k(𝔱+±)\mathsf{S}_{k}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm}) of 𝖲(𝔱+±)𝖸˙±(𝔤)/𝖸˙±(𝔤)\mathsf{S}(\hbar\mathfrak{t}_{\scriptscriptstyle{+}}^{\pm})\cong\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})/\hbar\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g}) (see Section 5.3), then 𝖡±=k𝖡k±\mathsf{B}^{\pm}=\bigcup_{k}\mathsf{B}^{\pm}_{k} is a basis of 𝖸˙(𝔤)\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}) and

𝓡±=x𝖡±ı(x)ıˇ(fx)Y𝔤˙Y𝔤,{\boldsymbol{\EuScript{R}}}^{\pm}=\sum_{x\in\mathsf{B}^{\pm}}\imath(x)\otimes\check{\imath}(f_{x})\in Y_{\hbar}\mathfrak{g}\,\dot{\otimes}Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}},

where {fx}x𝖡±𝖸˙±𝔤\{f_{x}\}_{x\in\mathsf{B}^{\pm}}\subset\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} is the dual set to 𝖡±\mathsf{B}^{\pm}, uniquely determined by fx(y)=δxyf_{x}(y)=\delta_{xy} for all x,y𝖡±x,y\in\mathsf{B}^{\pm}. Here we note if xx is of degree kk, then it follows automatically that fx𝖸˙𝔤kHom[]k(𝖸˙(𝔤),[])f_{x}\in\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-k}\cong\mathrm{Hom}_{\mathbb{C}[\hbar]}^{-k}(\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g}),\mathbb{C}[\hbar]). This implies that the right-hand side of the above expression defines a unique element in Y𝔤˙Y𝔤Y_{\hbar}\mathfrak{g}\,\dot{\otimes}Y_{\hbar}\mathfrak{g}^{\smash{\scalebox{0.7}[1.4]{\rotatebox{90.0}{{\T1\guilsinglleft}}}}}, which coincides with 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm} as its image under Θ±(ı˙ıˇ)1\Theta_{\pm}\circ(\imath\,\dot{\otimes}\,\check{\imath})^{-1} is 𝟏𝖸˙±𝔤\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}}; see (9.5) and Section 9.3.

In the special case where 𝔤=𝔰𝔩2\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{2}, there are two closed-form expressions for 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm} (equivalently, ±(z)\mathcal{R}^{\pm}(z)) which have arisen from these two separate viewpoints; see [KT96]*Thm. 5.1 and [GTLW19]*Thm. 5.5. For 𝔤\mathfrak{g} of arbitrary rank, no such expressions are known, though an infinite-product formula for 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm} was conjectured in [KT96]*(5.43), motivated by the earlier works [KT91, KT93, KT94, KST95].

{comment}

To conclude this discussion, we wish to point out that, nevertheless, there is a good amount of concrete information known about the paring between 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g} and 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}^{-\!}\mathfrak{g}{\vphantom{)}}^{\star} which can be expressed in terms of the generators of DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}.

Proposition 9.11.

Let (ra)a=1nn(r_{a})_{a=1}^{n}\in\mathbb{N}^{n} and (sb)b=1nm(s_{b})_{b=1}^{n}\in\mathbb{N}^{m} be finite sequences of non-negative integers, and let i1,,in,j1,,jm𝐈i_{1},\ldots,i_{n},j_{1},\ldots,j_{m}\in\mathbf{I}. Then, we have

nxi1,r1\displaystyle\langle\hbar^{n}x_{i_{1},r_{1}}^{-}\cdots xin,rn,xj1,s11+xjm,sm1+\displaystyle x_{i_{n},r_{n}}^{-},x_{j_{1},-s_{1}-1}^{+}\cdots x_{j_{m},-s_{m}-1}^{+}\rangle
=\displaystyle= δn,m(1)nπSna=1nδiπ(a),jauπ(a)sarπ(a)+1c<dπ(c)>π(d)ϑπ(c),π(d)d𝒖\displaystyle\delta_{n,m}(-1)^{n}\sum_{\pi\in S_{n}}\oint\prod_{a=1}^{n}\frac{\delta_{i_{\pi(a)},j_{a}}}{u_{\pi(a)}^{s_{a}-r_{\pi(a)}+1}}\prod_{\begin{subarray}{c}c<d\\ \pi(c)>\pi(d)\end{subarray}}\vartheta_{\pi(c),\pi(d)}\,d\boldsymbol{u}

where, for any 1a,bn1\leq a,b\leq n, ϑa,b=ϑa,b(ua,ub)\vartheta_{a,b}=\vartheta_{a,b}(u_{a},u_{b}) is given by

ϑa,b(ua,ub)=uaubdia,ibuaub+dia,ib[ub,][[ua1]]\vartheta_{a,b}(u_{a},u_{b})=\frac{u_{a}-u_{b}-\hbar d_{i_{a},i_{b}}}{u_{a}-u_{b}+\hbar d_{i_{a},i_{b}}}\in\mathbb{Q}[u_{b},\hbar][\![u_{a}^{-1}]\!]

9.5. On the blocks of 𝓡±{\boldsymbol{\EuScript{R}}}^{\pm}

To conclude, we wish to highlight that the dual bases approach discussed in the previous subsection provides a natural interpretation of some of the basic properties of ±(z)\mathcal{R}^{\pm}(z) discovered in [GTLW19].

Given βQ\beta\in Q, let πβ:DY𝔤DY𝔤β\pi_{\beta}:\mathrm{D}Y_{\hbar}\mathfrak{g}\to\mathrm{D}Y_{\hbar}\mathfrak{g}_{\beta} denote the [[]]\mathbb{C}[\![\hbar]\!]-linear projection associated to the topological QQ-grading on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g} defined in Section 4.2, and let π˙β:𝖸˙𝔤𝖸˙𝔤β\dot{\pi}_{\beta}:\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}\twoheadrightarrow\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}_{\beta} denote its restriction to 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}. Consider the element

π˙β𝟏𝖸˙±𝔤=𝟏𝖸˙±𝔤π˙βEnd[[]](𝖸˙𝔤),\dot{\pi}_{\beta}\circ\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}}=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}}\circ\dot{\pi}_{\beta}\in\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}),

where we view End[[]](𝖸˙±𝔤)End[[]](𝖸˙𝔤)\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g})\subset\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}), as in Section 9.2. Note that under the identification provided by the natural inclusion

End[[]](𝖸˙±𝔤β)Hom[[]](𝖸˙±𝔤,Y±𝔤),φφπ˙β,\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}_{\beta})\hookrightarrow\mathrm{Hom}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g},Y_{\hbar}^{\pm\!}\mathfrak{g}),\quad\varphi\mapsto\varphi\circ\dot{\pi}_{\beta},

it coincides with the identity transformation of End[[]](𝖸˙±𝔤β)\mathrm{End}_{\mathbb{C}[\![\hbar]\!]}(\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}_{\beta}). For each βQ+\beta\in Q_{+}, we may therefore define Rβ±:=Θ1(𝟏β±)R_{\beta}^{\pm}:=\Theta^{-1}(\mathbf{1}_{\beta}^{\pm}), where 𝟏β±=𝟏𝖸˙±𝔤±β\mathbf{1}_{\beta}^{\pm}=\mathbf{1}_{\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}_{\pm\beta}}. By (9.4) and the reasoning used in (R2) of Section 9.3, we have

(9.6) Rβ±=(π˙±β𝟏)(R±)=(𝟏π˙±βt)(R±) and Rβ±=(ωωt)(Rβ),R_{\beta}^{\pm}=(\dot{\pi}_{\pm\beta}\otimes\mathbf{1})(R^{\pm})=(\mathbf{1}\otimes\dot{\pi}_{\pm\beta}^{t})(R^{\pm})\quad\text{ and }\quad R_{\beta}^{\pm}=(\omega\otimes\omega^{t})(R_{\beta}^{\mp}),

where we note that, for each αQ\alpha\in Q, π˙αt\dot{\pi}_{\alpha}^{t} is just the projection 𝖸˙𝔤𝖸˙𝔤α\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}\twoheadrightarrow\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}_{-\alpha} associated to the topological QQ-grading on 𝖸˙𝔤\dot{\mathsf{Y}}_{\hbar}\mathfrak{g}{\vphantom{)}}^{\star}; see Corollary 6.5. In the topological tensor product 𝖸˙±𝔤~𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}, we have the equality R±=βQ+Rβ±R^{\pm}=\sum_{\beta\in Q_{+}}R_{\beta}^{\pm}.

For the sake of the below discussion, it is worth pointing out that the convergence of the infinite sum βQ+Rβ±\sum_{\beta\in Q_{+}}R_{\beta}^{\pm} is also clear from the point of view of dual bases. Indeed, by Corollary 5.6 we have 𝖸˙±(𝔤)±βν(β)Y±(𝔤)±β\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta}\subset\hbar^{\nu(\beta)}Y_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta}, where we recall that ν(β)\nu(\beta)\in\mathbb{N} is defined by (3.22). Hence, any homogeneous element in 𝖸˙±(𝔤)±β\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta} with respect to the underlying \mathbb{N}-grading belongs to 𝖸˙(𝔤)ν(β)+\dot{\mathsf{Y}}_{\hbar}(\mathfrak{g})_{\nu(\beta)+\ell} for some \ell\in\mathbb{N}. It follows that the dual set to any homogeneous basis of the \mathbb{N}-graded []\mathbb{C}[\hbar]-module 𝖸˙±(𝔤)±β\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{\pm\beta} belongs to

kν(β)𝖸˙±𝔤k𝖸˙±𝔤(ν(β)),\bigoplus_{k\geq\nu(\beta)}\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}_{-k}\subset\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}_{\scriptscriptstyle(\nu(\beta))},

where the space on the right-hand side is the closure of the [[]]\mathbb{C}[\![\hbar]\!]-module generated by the left-hand side; see Section 9.2. This implies the convergence of βQ+Rβ±\sum_{\beta\in Q_{+}}R_{\beta}^{\pm} in 𝖸˙±𝔤~𝖸˙±𝔤\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star} while establishing that Rβ±ν(β)Y±𝔤~𝖸˙±𝔤R_{\beta}^{\pm}\in\hbar^{\nu(\beta)}Y_{\hbar}^{\pm\!}\mathfrak{g}\,\widetilde{\otimes}\,\dot{\mathsf{Y}}_{\hbar}^{\pm}\mathfrak{g}{\vphantom{)}}^{\star}. Next, following the procedure from Section 9.3, let us set

𝓡β±:=(ı˙ıˇ)(Rβ±)βQ+.{\boldsymbol{\EuScript{R}}}_{\beta}^{\pm}:=(\imath\,\dot{\otimes}\,\check{\imath})(R_{\beta}^{\pm})\quad\forall\;\beta\in Q_{+}.

The relations of (9.6) then translate to

𝓡β±=(π±β𝟏)(𝓡±)=(𝟏πβ)(𝓡±) and 𝓡β±=(ωω)(𝓡β),{\boldsymbol{\EuScript{R}}}_{\beta}^{\pm}=(\pi_{\pm\beta}\otimes\mathbf{1})({\boldsymbol{\EuScript{R}}}^{\pm})=(\mathbf{1}\otimes\pi_{\mp\beta})({\boldsymbol{\EuScript{R}}}^{\pm})\quad\text{ and }\quad{\boldsymbol{\EuScript{R}}}_{\beta}^{\pm}=(\omega\otimes\omega)({\boldsymbol{\EuScript{R}}}_{\beta}^{\mp}),

where ω\omega is the Chevalley involution on DY𝔤\mathrm{D}Y_{\hbar}\mathfrak{g}; see Section 4.2. Now recall that β(z)\mathcal{R}_{\beta}^{-}(z) is the Y(𝔤)βY(𝔤)βY_{\hbar}(\mathfrak{g})_{-\beta}\otimes Y_{\hbar}(\mathfrak{g})_{\beta} component of (z)\mathcal{R}^{-}(z), characterized by the recurrence relation (3.23). The Y(𝔤)βY(𝔤)βY_{\hbar}(\mathfrak{g})_{\beta}\otimes Y_{\hbar}(\mathfrak{g})_{-\beta} block of +(z)\mathcal{R}^{+}(z) is then

+β(z)=(ωω)β(z)βQ+\mathcal{R}^{+}_{\beta}(z)=(\omega\otimes\omega)\mathcal{R}^{-}_{\beta}(z)\quad\forall\;\beta\in Q_{+}

and we have the following corollary of Theorem 9.8.

Corollary 9.12.

For each βQ+\beta\in Q_{+}, the element 𝓡β±{\boldsymbol{\EuScript{R}}}_{\beta}^{\pm} satisfies

(Φw˙Φz)(𝓡β±)(/z)ν(β)Y(𝔤)2[w][[z1]](\Phi_{w}\,\dot{\otimes}\,\Phi_{z})({\boldsymbol{\EuScript{R}}}_{\beta}^{\pm})\in(\hbar/z)^{\nu(\beta)}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[w][\![z^{-1}]\!]

in addition to the relation (Φw˙Φz)(𝓡β±)=±β(wz)(\Phi_{w}\,\dot{\otimes}\,\Phi_{z})({\boldsymbol{\EuScript{R}}}_{\beta}^{\pm})=\mathcal{R}^{\pm}_{\beta}(w-z).

Of course, the second assertion is immediate from Theorem 9.8 as Φw\Phi_{w} is the identity on 𝔤\mathfrak{g} and thus satisfies παΦw=Φwπα|Y𝔤\pi_{\alpha}\circ\Phi_{w}=\Phi_{w}\circ{\pi_{\alpha}}|_{Y_{\hbar}\mathfrak{g}} for all αQ\alpha\in Q. The first statement then follows from the properties of (z)\mathcal{R}^{-}(z) established in [GTLW19] and recalled in Section 3.6. However, we wish to point out that this assertion is a natural consequence of the above discussion on dual bases. Indeed, we have seen that any homogeneous basis of 𝖸˙±(𝔤)β\dot{\mathsf{Y}}_{\hbar}^{\pm}(\mathfrak{g})_{\beta} lies in ν(β)Y(𝔤)\hbar^{\nu(\beta)}Y_{\hbar}(\mathfrak{g}), and that the image of its dual set under ıˇ\check{\imath} is contained in kν(β)DY𝔤k\bigoplus_{k\geq\nu(\beta)}\mathrm{D}Y_{\hbar}\mathfrak{g}_{-k}. As Φz\Phi_{z} is graded, we have

Φz(DY𝔤k)zkY𝔤^zzν(β)Y(𝔤)[[z1]]kν(β),\Phi_{z}(\mathrm{D}Y_{\hbar}\mathfrak{g}_{-k})\subset z^{-k}\widehat{Y_{\hbar}\mathfrak{g}}_{z}\subset z^{-\nu(\beta)}Y_{\hbar}(\mathfrak{g})[\![z^{-1}]\!]\quad\forall\;k\geq\nu(\beta),

which yields the first statement of the corollary.

Appendix A Homogenization of the RR-matrix

In this appendix, we show that the results of [GTLW19]*§7.4 imply Theorem 3.9, as promised in Remark 3.10. Let Y(𝔤)Y(\mathfrak{g}) denote the Yangian defined over \mathbb{C} with \hbar specialized to 11:

Y(𝔤):=Y(𝔤)/(1)Y(𝔤).Y(\mathfrak{g}):=Y_{\hbar}(\mathfrak{g})/(\hbar-1)Y_{\hbar}(\mathfrak{g}).

Slightly abusing notation, we shall denote the images of xir±x_{ir}^{\pm} and hirh_{ir} again by xir±x_{ir}^{\pm} and hirh_{ir}, respectively. The graded Hopf algebra structure on Y(𝔤)Y_{\hbar}(\mathfrak{g}) induces on Y(𝔤)Y(\mathfrak{g}) the structure of an \mathbb{N}-filtered Hopf algebra over the complex numbers with filtration 𝔽\mathds{F}_{\bullet} defined by letting 𝔽k\mathds{F}_{k} denote the image of nkY(𝔤)k\bigoplus_{n\leq k}Y_{\hbar}(\mathfrak{g})_{k}. The Yangian Y(𝔤)Y(\mathfrak{g}) is then a filtered deformation of the graded Hopf algebra U(𝔱+)U(\mathfrak{t}_{\scriptscriptstyle{+}}):

gr𝔽Y(𝔤)U(𝔱+).\mathrm{gr}_{\mathds{F}}Y(\mathfrak{g})\cong U(\mathfrak{t}_{\scriptscriptstyle{+}}).

One can recover Y(𝔤)Y_{\hbar}(\mathfrak{g}) from Y(𝔤)Y(\mathfrak{g}) using the Rees algebra formalism; see [GRWEquiv]*Prop. 2.2 and [GRWvrep]*Thm. 6.10, for example. In more detail, there is an isomorphism of \mathbb{N}-graded Hopf algebras

φ:Y(𝔤)𝖱(Y(𝔤))=kk𝔽k(Y(𝔤))Y(𝔤)[]\displaystyle\upvarphi_{\hbar}:Y_{\hbar}(\mathfrak{g})\xrightarrow{\,\smash{\raisebox{-2.15277pt}{$\scriptstyle\sim$}}\,}\mathsf{R}_{\hbar}(Y(\mathfrak{g}))=\bigoplus_{k\in\mathbb{N}}\hbar^{k}\mathds{F}_{k}(Y(\mathfrak{g}))\subset Y(\mathfrak{g})[\hbar]
xir±rxir±,hirrhiri𝐈,r.\displaystyle x_{ir}^{\pm}\mapsto\hbar^{r}x_{ir}^{\pm},\quad h_{ir}\mapsto\hbar^{r}h_{ir}\quad\forall\;i\in\mathbf{I},\,r\in\mathbb{N}.

Here the Hopf algebra structure on 𝖱(Y(𝔤))\mathsf{R}_{\hbar}(Y(\mathfrak{g})) is obtained by extending that of Y(𝔤)Y(\mathfrak{g}) by []\mathbb{C}[\hbar]-linearity, and we note that 𝖱(Y(𝔤)Y(𝔤))𝖱(Y(𝔤))[]𝖱(Y(𝔤))\mathsf{R}_{\hbar}(Y(\mathfrak{g})\otimes_{\mathbb{C}}Y(\mathfrak{g}))\cong\mathsf{R}_{\hbar}(Y(\mathfrak{g}))\otimes_{\mathbb{C}[\hbar]}\mathsf{R}_{\hbar}(Y(\mathfrak{g})).

In [GTLW19], the universal RR-matrix (z)\mathds{R}(z) of the Yangian Y(𝔤)Y(\mathfrak{g}) is constructed as a product

(z)=+(z)0(z)(z)1+z1Y(𝔤)2[[z1]],\mathds{R}(z)=\mathds{R}^{+}(z)\,\mathds{R}^{0}(z)\,\mathds{R}^{-}(z)\in 1+z^{-1}Y(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!],

where +(z)=21(z)1\mathds{R}^{+}(z)=\mathds{R}^{-}_{21}(-z)^{-1} and the factors (z)\mathds{R}^{-}(z) and 0(z)\mathds{R}^{0}(z) are as in Sections 4.1 and 6.6 of [GTLW19], respectively. In particular, ±(z)1\mathds{R}^{\pm}(z)-1, 0(z)1\mathds{R}^{0}(z)-1 and (z)1\mathds{R}(z)-1 lay in the subspace

z1n𝔽n(Y(𝔤)2)znY(𝔤)2[[z1]]z^{-1}\prod_{n\in\mathbb{N}}\mathds{F}_{n}(Y(\mathfrak{g})^{\otimes 2})z^{-n}\subset Y(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!]

and hence ±(z/)\mathds{R}^{\pm}(z/\hbar), 0(z/)\mathds{R}^{0}(z/\hbar) and (z/)\mathds{R}(z/\hbar) are elements of 𝖱(Y(𝔤))2[[z1]]\mathsf{R}_{\hbar}(Y(\mathfrak{g}))^{\otimes 2}[\![z^{-1}]\!]. The definitions of ±(z)\mathcal{R}^{\pm}(z), 0(z)\mathcal{R}^{0}(z) and (z)\mathcal{R}(z) given in Section 3.6 are such that one has the equalities

(A.1) φ2(±(z))=±(z/),φ2(0(z))=0(z/),φ2((z))=(z/).\begin{gathered}\upvarphi_{\hbar}^{\otimes 2}(\mathcal{R}^{\pm}(z))=\mathds{R}^{\pm}(z/\hbar),\quad\upvarphi_{\hbar}^{\otimes 2}(\mathcal{R}^{0}(z))=\mathds{R}^{0}(z/\hbar),\\ \upvarphi_{\hbar}^{\otimes 2}(\mathcal{R}(z))=\mathds{R}(z/\hbar).\end{gathered}

Using this fact and the results of [GTLW19], we can recover the below proposition, which is a restatement of Theorem 3.9.

Proposition A.1.

(z)\mathcal{R}(z) is the unique formal series in 1+z1Y(𝔤)2[[z1]]1+z^{-1}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] satisfying the intertwiner equation

τz𝟏Δop(x)=(z)τz𝟏Δ(x)(z)1xY(𝔤)\tau_{z}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}(x)=\mathcal{R}(z)\cdot\tau_{z}\otimes\mathbf{1}\circ\Delta(x)\cdot\mathcal{R}(z)^{-1}\quad\forall\;x\in Y_{\hbar}(\mathfrak{g})

in Y(𝔤)2[z;z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 2}[z;z^{-1}]\!], in addition to the cabling identities

Δ𝟏((z))\displaystyle\Delta\otimes\mathbf{1}(\mathcal{R}(z)) =13(z)23(z)\displaystyle=\mathcal{R}_{13}(z)\mathcal{R}_{23}(z)
𝟏Δ((z))\displaystyle\mathbf{1}\otimes\Delta(\mathcal{R}(z)) =13(z)12(z)\displaystyle=\mathcal{R}_{13}(z)\mathcal{R}_{12}(z)

in Y(𝔤)3[[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 3}[\![z^{-1}]\!]. Moreover, (z)\mathcal{R}(z) satisfies the properties (1)–(3) of Theorem 3.9.

Proof.

That (z)\mathcal{R}(z) satisfies the properties (1)–(3) of Theorem 3.9 follows from (A.1) and the corresponding properties of (z)\mathds{R}(z) established in (3)–(5) of [GTLW19]*Thm. 7.4. Similarly, that (z)\mathcal{R}(z) satisfies the cabling identities in Y(𝔤)3[[z1]]Y_{\hbar}(\mathfrak{g})^{\otimes 3}[\![z^{-1}]\!] follows from the equality φ2((z))=(z/)\upvarphi_{\hbar}^{\otimes 2}(\mathcal{R}(z))=\mathds{R}(z/\hbar) and Theorem 7.4 (2) of [GTLW19], which asserts that (z)\mathds{R}(z) satisfies the cabling identities in Y(𝔤)3[[z1]]Y(\mathfrak{g})^{\otimes 3}[\![z^{-1}]\!]. As for the intertwiner equation, upon applying the isomorphism φ2\upvarphi_{\hbar}^{\otimes 2} we deduce that it will hold provided (z)\mathds{R}(z) satisfies

τzφ𝟏ΔopY(𝔤)(x)=(z/)τzφ𝟏ΔY(𝔤)(x)(z/)1x𝖱(Y(𝔤))\tau_{z}^{\upvarphi}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}_{Y(\mathfrak{g})}(x)=\mathds{R}(z/\hbar)\cdot\tau_{z}^{\upvarphi}\otimes\mathbf{1}\circ\Delta_{Y(\mathfrak{g})}(x)\cdot\mathds{R}(z/\hbar)^{-1}\quad\forall\;x\in\mathsf{R}_{\hbar}(Y(\mathfrak{g}))

in 𝖱(Y(𝔤))2[z;z1]](Y(𝔤)2)[][z;z1]]\mathsf{R}_{\hbar}(Y(\mathfrak{g}))^{\otimes 2}[z;z^{-1}]\!]\subset(Y(\mathfrak{g})^{\otimes 2})[\hbar][z;z^{-1}]\!], where τzφ=φτzφ1\tau_{z}^{\upvarphi}=\upvarphi_{\hbar}\circ\tau_{z}\circ\upvarphi_{\hbar}^{-1}. Since τzφ\tau_{z}^{\upvarphi} is determined by

τzφ(xi±(u/))=xi±((uz)/),τzφ(hi(u/))=hi((uz)/)i𝐈\tau_{z}^{\upvarphi}(x_{i}^{\pm}(u/\hbar))=x_{i}^{\pm}((u-z)/\hbar),\quad\tau_{z}^{\upvarphi}(h_{i}(u/\hbar))=h_{i}((u-z)/\hbar)\quad\forall\;i\in\mathbf{I}

the above equality will hold provided that, for each xY(𝔤)x\in Y(\mathfrak{g}), and ζ×\zeta\in\mathbb{C}^{\times}, one has

(A.2) τ̊z/ζ𝟏ΔopY(𝔤)(x)=(z/ζ)τ̊z/ζ𝟏ΔY(𝔤)(x)(z/ζ)1,\mathring{\tau}_{z/\zeta}\otimes\mathbf{1}\circ{\Delta}{\vphantom{)}}^{\!\scriptscriptstyle{\mathrm{op}}}_{Y(\mathfrak{g})}(x)=\mathds{R}(z/\zeta)\cdot\mathring{\tau}_{z/\zeta}\otimes\mathbf{1}\circ\Delta_{Y(\mathfrak{g})}(x)\cdot\mathds{R}(z/\zeta)^{-1},

where τ̊z:Y(𝔤)Y(𝔤)[z]\mathring{\tau}_{z}:Y(\mathfrak{g})\to Y(\mathfrak{g})[z] is obtained by specializing the algebra homomorphism τz\tau_{z} defined in (3.13). This equality is immediate from Part (1) of [GTLW19]*Thm. 7.4.

As for the uniqueness assertion; the argument given in Appendix B of [GTLW19] translates naturally to the formal setting. Alternatively, one can see this as consequence of the uniqueness of (z)\mathds{R}(z) itself, as proven therein. Indeed, if (z)1+z1Y(𝔤)2[[z1]]\mathscr{R}(z)\in 1+z^{-1}Y_{\hbar}(\mathfrak{g})^{\otimes 2}[\![z^{-1}]\!] is another solution of the intertwiner equation satisfying the cabling identitites, then to see that (z)=(z)\mathscr{R}(z)=\mathcal{R}(z), it suffices to show that 𝕏(z)|=ζ=(z/ζ)\mathds{X}(z)|_{\hbar=\zeta}=\mathds{R}(z/\zeta) for each ζ×\zeta\in\mathbb{C}^{\times}, where

𝕏(z):=φ2((z))Y(𝔤)[][[z1]].\mathds{X}(z):=\upvarphi^{\otimes 2}_{\hbar}(\mathscr{R}(z))\in Y(\mathfrak{g})[\hbar][\![z^{-1}]\!].

This follows from the fact that 𝕏(z)|=ζ\mathds{X}(z)|_{\hbar=\zeta} and (z/ζ)\mathds{R}(z/\zeta) both satisfy the cabling identities in Y(𝔤)3[[z1]]Y(\mathfrak{g})^{\otimes 3}[\![z^{-1}]\!] and the intertwiner equation (A.2), and so coincide by the uniqueness of (z)\mathds{R}(z), as established in Appendix B of [GTLW19]. ∎

References