This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The ring of perfect pp-permutation bimodules for blocks with cyclic defect groups111MR Subject Classification: 20C20, 19A22Keywords: pp-permutation modules; trivial source modules; blocks of group algebras; idempotents.

Robert Boltje
Department of Mathematics
University of California
Santa Cruz, CA 95064
U.S.A.
boltje@ucsc.edu
   Nariel Monteiro
Department of Mathematics
University of California
Santa Cruz, CA 95064
U.S.A.
namontei@ucsc.edu
Research was supported by the NSF grant No. 2213166
(August 7, 2024)
Abstract

Let BB be a block algebra of a group algebra FGFG of a finite group GG over a field FF of characteristic p>0p>0. This paper studies ring theoretic properties of the representation ring TΔ(B,B)T^{\Delta}(B,B) of perfect pp-permutation (B,B)(B,B)-bimodules and properties of the kk-algebra kTΔ(B,B)k\otimes_{\mathbb{Z}}T^{\Delta}(B,B), for a field kk. We show that if the Cartan matrix of BB has 11 as an elementary divisor then [B][B] is not primitive in TΔ(B,B)T^{\Delta}(B,B). If BB has cyclic defect groups we determine a primitive decomposition of [B][B] in TΔ(B,B)T^{\Delta}(B,B). Moreover, if kk is a field of characteristic different from pp and BB has cyclic defect groups of order pnp^{n} we describe kTΔ(B,B)k\otimes_{\mathbb{Z}}T^{\Delta}(B,B) explicitly as a direct product of a matrix algebra and nn group algebras.

1 Introduction

Throughout this paper FF denotes a field of characteristic p>0p>0 and GG denotes a finite group. We assume that FF contains a root of unity of order |G|p|G|_{p^{\prime}}, or equivalently, that FF is a splitting field for the group algebras FHFH of all subgroups HGH\leqslant G.

The trivial source ring T(FG)T(FG), or ring of pp-permutation FGFG-modules, plays a particular role in the modular representation theory of finite group (see Section 2 for precise definitions of T(FG)T(FG) and and related representation rings). In particular, if HH is another finite group, pp-permutation (FG,FH)(FG,FH)-bimodules that are projective on each side feature prominently in notions of equivalences between block algebras, as for instance splendid Rickard equivalence (see [12]), splendid Morita equivalence (see [10, Section 9.7]), pp-permutation equivalence (see [3], [8], [2]), functorial equivalence (see [5]), and related conjectures, as for instance Broué’s abelian defect group conjecture (see [6]) and Puig’s finiteness conjecture (see [10, Conjecture 6.2]). Its representation group is denoted by TΔ(FG,FH)T^{\Delta}(FG,FH). If G=HG=H, the group TΔ(FG,FG)T^{\Delta}(FG,FG) has a ring structure induced by taking tensor products of bimodules. The classes [Bi][B_{i}] of the block algebras B1,,BtB_{1},\ldots,B_{t} of FGFG, viewed as (FG,FG)(FG,FG)-bimodules, form a set of pairwise orthogonal idempotents in TΔ(FG,FG)T^{\Delta}(FG,FG) whose sum is equal to the identity [FG][FG] of TΔ(FG,FG)T^{\Delta}(FG,FG). In a conversation, more than a decade ago, Jacques Thévenaz raised the question if the (in general non-central) idempotents [Bi][B_{i}] are primitive in TΔ(FG,FG)T^{\Delta}(FG,FG), and if not, how they decompose further. This is equivalent to asking if and how the identity element [B][B] of the ring TΔ(B,B)T^{\Delta}(B,B) decomposes further into pairwise orthogonal idempotents.

In this paper we give partial answers to this questions. First note that TΔ(B,B)T^{\Delta}(B,B) contains the representation group Pr(B,B)Pr(B,B) of projective (B,B)(B,B)-bimodules as an ideal. The following theorem shows that in general [B][B] is not primitive in TΔ(B,B)T^{\Delta}(B,B). More precisely:


Theorem ALet BB be a block algebra of FGFG and let rr be the multiplicity of the elementary divisor 11 of the Cartan matrix of BB. Then there exists a set of rr pairwise orthogonal idempotents in Pr(B,B)Pr(B,B). Moreover, rr is maximal with this property.


Besides the ring TΔ(B,B)T^{\Delta}(B,B), also its finite-dimensional kk-algebra version kTΔ(B,B)kT^{\Delta}(B,B), for a field kk, is of interest. If kk has characteristic 0, it appears as the endomorphism algebra of a functor attached to BB in [5]. Its ideal kPr(B,B)kPr(B,B) has a particularly nice structure when the characteristic of kk is different from pp.


Theorem BLet BB be a block algebra of FGFG and kk a field of characteristic different from pp. Then the ideal kPr(B,B)kPr(B,B) of the kk-algebra kTΔ(B,B)kT^{\Delta}(B,B) has an identity element which is a central idempotent of kTΔ(B,B)kT^{\Delta}(B,B). Moreover, kPr(B,B)kPr(B,B) is isomorphic to Matl(k)\mathrm{Mat}_{l}(k) as kk-algebra, where ll is the number of isomorphism classes of simple BB-modules. In particular, kPr(B,B)kPr(B,B) is a block algebra of kTΔ(B,B)kT^{\Delta}(B,B).


If BB has cyclic defect groups, we obtain complete and explicit (see also Example 3.10) answers about idempotent decompositions in TΔ(B,B)T^{\Delta}(B,B) and the algebra structure of kTΔ(B,B)kT^{\Delta}(B,B) when the characteristic of kk is different from pp (see the proof of Theorem D in Section 8 for explicit formulas).


Theorem CLet BB be a block algebra of FGFG with cyclic defect groups and let ll be the number of isomorphism classes of simple BB-modules. Then there exist pairwise orthogonal primitive idempotents e1,,ele_{1},\ldots,e_{l} of TΔ(B,B)T^{\Delta}(B,B) whose sum equals 1TΔ(B,B)=[B]1_{T^{\Delta}(B,B)}=[B]. Moreover, the ring TΔ(B,B)/Pr(B,B)T^{\Delta}(B,B)/Pr(B,B) is commutative, its only idempotents are 0 and 11, and if f1,,frf_{1},\ldots,f_{r} are pairwise orthogonal idempotents of TΔ(B,B)T^{\Delta}(B,B) then rlr\leqslant l and at most one of the elements f1,,frf_{1},\ldots,f_{r} does not lie in Pr(B,B)Pr(B,B). Finally 0 and 11 are the only central idempotents in TΔ(B,B)T^{\Delta}(B,B).


Theorem DLet kk be a field of characteristic different from pp and let BB be a block algebra of FGFG with a cyclic defect group DD of order pnp^{n} and inertial quotient EE. Then, for i{0,,n}i\in\{0,\ldots,n\}, the ideal kTiΔ(B,B)k\otimes_{\mathbb{Z}}T^{\Delta}_{\leqslant i}(B,B) of kTΔ(B,B):=kTΔ(B,B)kT^{\Delta}(B,B):=k\otimes_{\mathbb{Z}}T^{\Delta}(B,B), spanned over kk by classes of indecomposable modules with vertex of order at most pip^{i}, has an identity element eie_{i}. Moreover, the elements e0,e1e0,e2e1,,enen1e_{0},e_{1}-e_{0},e_{2}-e_{1},\ldots,e_{n}-e_{n-1} form a set of pairwise orthogonal idempotents of Z(kTΔ(B,B))Z(k\otimes_{\mathbb{Z}}T^{\Delta}(B,B)) whose sum is the identity element ene_{n} of kTΔ(B,B)kT^{\Delta}(B,B). The kk-algebra kTΔ(B,B)e0kT^{\Delta}(B,B)e_{0} is isomorphism to Mat|E|(k)\mathrm{Mat}_{|E|}(k) and, for i{1,,n}i\in\{1,\ldots,n\}, the kk-algebra TΔ(B,B)(eiei1)T^{\Delta}(B,B)(e_{i}-e_{i-1}) is isomorphic to the group algebra k[Aut(Di)/πi(E)×Hom(E,F×)]k[\mathrm{Aut}(D_{i})/\pi_{i}(E)\times\mathrm{Hom}(E,F^{\times})], where DiD_{i} denotes the subgroup of DD of order pip^{i} and πi(E)\pi_{i}(E) is the subgroup of the abelian group Aut(Di)\mathrm{Aut}(D_{i}) of conjugation automorphisms with elements from EE. In particular, one has an isomorphism

kTΔ(B,B)Mat|E|(k)×i=1nk[Aut(Di)/πi(E)×Hom(E,F×)]kT^{\Delta}(B,B)\cong\mathrm{Mat}_{|E|}(k)\times\prod_{i=1}^{n}k[\mathrm{Aut}(D_{i})/\pi_{i}(E)\times\mathrm{Hom}(E,F^{\times})] (1)

of kk-algebras.

Further, for any field kk, independent of its characteristic, the kk-algebra kTΔ(B,B)kT^{\Delta}(B,B) is semisimple if and only if |Aut(D)||\mathrm{Aut}(D)| is invertible in kk.


If BB has a trivial defect group then TΔ(B,B)=Pr(B,B)T^{\Delta}(B,B)=Pr(B,B)\cong\mathbb{Z} as rings and Theorems A–D hold for trivial reasons.

The paper is arranged as follows. In Section 2 we introduce the trivial source ring T(FG)T(FG) and related rings associated to bimodules, in particular the ring TΔ(FG,FG)T^{\Delta}(FG,FG). In Section 3 we study idempotents in Pr(B,B)Pr(B,B) and prove Theorems A and B, see Theorem 3.6(b), Theorem 3.8 and Corollary 3.9. The rest of the paper is dedicated to proving Theorem C. In Section 4 we explicitly describe all indecomposable pp-permutation FGFG-modules in the case that GG has a normal Sylow pp-subgroup, see Theorem 4.1 which is of independent interest. Section 5 recalls the construction of an extended tensor product of bimodules and a theorem that describes tensor product of two induced bimodules via a Mackey formula, both due to Bouc. In the cyclic defect group case, the ring TΔ(B,B)T^{\Delta}(B,B) is isomorphic to the ring TΔ(F[DE],F[DE])T^{\Delta}(F[D\rtimes E],F[D\rtimes E]), where DD is a defect group of BB and EE the inertial quotient, see Theorem 8.1 which uses the existence of a splendid Rickard equivalence between BB and its Brauer correspondent due to Rouquier, and the structure theory of blocks with normal defect group due to Külshammer. Therefore, we explicitly determine the ring structure of TΔ(F[DE],F[DE])T^{\Delta}(F[D\rtimes E],F[D\rtimes E]) in Section 6, see Proposition 6.3. Section 7 gives two general results on idempotents that are used in Section 8 for the proofs of Theorem C and D.


Notation and Convention If AA and BB are sets, ABA\subseteq B indicates that AA is a subset of BB and ABA\subset B indicates that AA is a proper subset of BB.

Rings are not necessarily unital. The set of idempotents of a ring RR is denoted by idem(R)={eRe2=e}\mathrm{idem}(R)=\{e\in R\mid e^{2}=e\}. Thus, 0 is an idempotent of RR. Two idempotents e,ee,e^{\prime} of RR are called orthogonal if ee=ee=0ee^{\prime}=e^{\prime}e=0. An idempotent ee of RR is called primitive in RR if ee cannot be written as the sum of two non-zero orthogonal idempotents of RR. A decomposition of an idempotent ee of RR is a finite set {e1,,er}\{e_{1},\ldots,e_{r}\} of pairwise orthogonal idempotents of RR whose sum is equal to ee. If additionally each eie_{i}, i=1,,ri=1,\ldots,r, is primitive, we call {e1,,er}\{e_{1},\ldots,e_{r}\} e primitive decomposition of ee. The empty set is considered as a primitive decomposition of 0. For any ring RR, we denote the center of RR by Z(R)Z(R). If RR is unital, its unit group is denoted by R×R^{\times}.

For any positive integer ll, any i,j{1,,l}i,j\in\{1,\ldots,l\} and any unital ring RR, we denote by EijMatl(R)E_{ij}\in\mathrm{Mat}_{l}(R) the l×ll\times l-matrix with 11 as the (i,j)(i,j)-entry and zero everywhere else.

All modules are left modules unless otherwise stated. For any ring RR, we denote the category of finitely generated left RR-modules by R𝗆𝗈𝖽\hbox to0.0pt{\hss\phantom{|}}_{R}\mathsf{mod}.

For a subgroup HH of GG and gGg\in G we set Hg:=gHg1\,{}^{g}\!H:=gHg^{-1}. For any a commutative ring kk, we denote by kGkG or k[G]k[G] the group algebra of GG over kk. If MM is a left kHkH-module and gGg\in G then Mg\,{}^{g}\!M denotes the left k[Hg]k[\,{}^{g}\!H]-module with underlying kk-module MM, but with the action ghg1m=hmghg^{-1}\cdot m=hm for hHh\in H and mMgm\in\,{}^{g}\!M.


Acknowledgement Parts of this paper were established while we were visiting the University of Valencia, City University London, and the University of Manchester. We would like to express our gratitude for the hospitality experienced in these Mathematics Departments. The second author was supported by the National Science Foundation MPS-Ascend Postdoctoral Research Fellowship under Grant No. 2213166.

2 The trivial source ring and its variants

We fix a finite group GG and a field FF of characteristic p>0p>0 such that FF is a splitting field of FHFH for all subgroups HGH\leqslant G. Recall that a pp-permutation FGFG-module is a finitely generated FGFG-module MM such that for every pp-subgroup PP of GG there exists a PP-stable FF-basis of MM, i.e., the restriction of MM to PP is a permutation FPFP-module. Equivalently, MM is isomorphic to a direct summand of a permutation FGFG-module. Further equivalently, every indecomposable direct summand of MM has the trivial module as source. Indecomposable pp-permutation modules are also called trivial source modules. Projective modules and permutation modules are examples of pp-permutation modules.

For any idempotent ee of Z(FG)Z(FG), we denote the free abelian group on the set of isomorphism classes [M][M] of indecomposable pp-permutation FGeFGe-modules MM by T(FGe)T(FGe). If MM is a (not necessarily indecomposable) pp-permutation FGeFGe-module and MM1MnM\cong M_{1}\oplus\cdots\oplus M_{n} with indecomposable FGFG-modules M1,,MnM_{1},\ldots,M_{n}, then we set [M]:=[M1]++[Mn]T(FGe)[M]:=[M_{1}]+\cdots+[M_{n}]\in T(FGe). By the Krull-Schmidt Theorem, the modules M1,,MnM_{1},\ldots,M_{n} are uniquely determined up to order and isomorphism. Thus, the classes [M][M] of indecomposable pp-permutation FGFG-modules form a finite \mathbb{Z}-basis of T(FGe)T(FGe). The abelian group T(FG)T(FG) (for e=1e=1) is a unital commutative ring with multiplication [M][M]:=[MFM][M]\cdot[M^{\prime}]:=[M\otimes_{F}M^{\prime}]. The identity element is the class [F][F] of the trivial FGFG-module FF. The span of the classes of indecomposable projective FGeFGe-modules in T(FGe)T(FGe) is denoted by Pr(FGe)Pr(FGe). Note that Pr(FG)Pr(FG) is an ideal of T(FG)T(FG).

Let also HH be a finite group. We always identify the FF-algebras F[G×H]F[G\times H] and FGFFHFG\otimes_{F}FH via (g,h)gh(g,h)\mapsto g\otimes h. If eZ(FG)e\in Z(FG) and fZ(FH)f\in Z(FH) are idempotents then efe\otimes f is an idempotent in Z(FGFFH)=Z(F[G×H])Z(FG\otimes_{F}FH)=Z(F[G\times H]). If MM is an (FG,FH)(FG,FH)-bimodule then MM can be regarded as left F[G×H]F[G\times H]-module via (g,h)m=gmh1(g,h)m=gmh^{-1}, and vice-versa. Under this identification, (FGe,FHf)(FGe,FHf)-bimodules can be viewed as F(G×H)(ef)F(G\times H)(e\otimes f^{*})-modules, where :FHFH-^{*}\colon FH\to FH is the FF-linear extension of hh1h\mapsto h^{-1}. We set T(FGe,FGf):=T(F[G×H](ef))T(FGe,FGf):=T(F[G\times H](e\otimes f^{*})). The subgroup TΔ(FGe,FHf)T^{\Delta}(FGe,FHf) is defined as the \mathbb{Z} span of the classes of indecomposable pp-permutation F[G×H](ef))F[G\times H](e\otimes f^{*}))-modules which have twisted diagonal vertices. These are subgroups of G×HG\times H of the form Δ(P,ϕ,Q):={(ϕ(y),y)yQ}\Delta(P,\phi,Q):=\{(\phi(y),y)\mid y\in Q\}, where PGP\leqslant G and QHQ\leqslant H are pp-subgroups and ϕ:QP\phi\colon Q\to P is an isomorphism. Equivalently MM is projective on either side when regarded as (FGe,FHf)(FGe,FHf)-bimodule. Bimodules which are projective on both sides are also called perfect. Further, we denote by Pr(FGe,FHf)Pr(FGe,FHf) the subgroup of TΔ(FGe,FHf)T^{\Delta}(FGe,FHf) spanned over \mathbb{Z} by the classes of projective indecomposable F[G×H](ef)F[G\times H](e\otimes f^{*})-modules.

If also KK is a finite group then the tensor product FH-\otimes_{FH}- induces a \mathbb{Z}-bilinear map H:T(FG,FH)×T(FH,FK)T(FG,FK)-\cdot_{H}-\colon T(FG,FH)\times T(FH,FK)\to T(FG,FK) such that TΔ(FG,FH)HTΔ(FH,FK)TΔ(FG,FK)T^{\Delta}(FG,FH)\cdot_{H}T^{\Delta}(FH,FK)\subseteq T^{\Delta}(FG,FK), see for instance Theorem 5.2. In particular, if G=H=KG=H=K and eZ(FG)e\in Z(FG) is an idempotent then T(FGe,FGe)T(FGe,FGe) is a unital ring with identity element [FGe][FGe]. We always view T(FGe,FGe)T(FGe,FGe) as a subring of T(FG,FG)T(FG,FG). But note that these two rings have different identity elements. By the above, TΔ(FGe,FGe)T^{\Delta}(FGe,FGe) is closed under multiplication and therefore forms a unital subring of T(FGe,FGe)T(FGe,FGe) with the same identity element, since [FGe]TΔ(FGe,FGe)[FGe]\in T^{\Delta}(FGe,FGe). In fact, FGeFGe is a direct summand of the permutation (FG,FG)(FG,FG)-bimodule FGFG and FGFG is Δ(G)\Delta(G)-projective as F[G×G]F[G\times G]-module, where Δ(G):={(g,g)gG}\Delta(G):=\{(g,g)\mid g\in G\}, since, after identifying GG and Δ(G)\Delta(G) via g(g,g)g\mapsto(g,g), one has an isomorphism FGIndΔ(G)G×G(F)FG\cong\mathrm{Ind}_{\Delta(G)}^{G\times G}(F) of F[G×G]F[G\times G]-modules. Moreover, Pr(FGe,FGe)Pr(FGe,FGe) is contained in TΔ(FGe,FGe)T^{\Delta}(FGe,FGe) and is an ideal of TΔ(FGe,FGe)T^{\Delta}(FGe,FGe).

Let nn be maximal such that there exists a perfect indecomposable pp-permutation F[G×G](ee)F[G\times G](e\otimes e^{*})-module with a vertex of order pnp^{n}. For i{0,,n}i\in\{0,\ldots,n\}, let TiΔ(FGe,FGe)T_{i}^{\Delta}(FGe,FGe) (resp. TiΔ(FGe,FGe)T_{\leqslant i}^{\Delta}(FGe,FGe)) denote the \mathbb{Z}-span of the standard basis elements [M][M] of TΔ(FGe,FGe)T^{\Delta}(FGe,FGe) where MM has a vertex of order pip^{i} (resp. at most pip^{i}). Then,

TΔ(FGe,FGe)=i=0nTiΔ(FGe,FGe)T^{\Delta}(FGe,FGe)=\bigoplus_{i=0}^{n}T_{i}^{\Delta}(FGe,FGe)

and, by Theorem 5.2, TiΔ(FGe,FGe)T_{\leqslant i}^{\Delta}(FGe,FGe) is an ideal of TΔ(FGe,FGe)T^{\Delta}(FGe,FGe). Note that T0Δ(FGe,FGe)=Pr(FGe,FGe)T^{\Delta}_{0}(FGe,FGe)=Pr(FGe,FGe).

A block idempotent of FGFG is a primitive idempotent of Z(FG)Z(FG). We denote by bl(FG)\mathrm{bl}(FG) the set of block idempotents bb of FGFG and by Bl(FG)\mathrm{Bl}(FG) the set of their corresponding block algebras B=FGbB=FGb. Thus, bl(FG)\mathrm{bl}(FG) is a primitive decomposition of 11 in Z(FG)Z(FG), FG=BBl(FG)BFG=\bigoplus_{B\in\mathrm{Bl}(FG)}B is a decomposition of FGFG into indecomposable F[G×G]F[G\times G]-modules, and {[B]BBl(FG)}\{[B]\mid B\in\mathrm{Bl}(FG)\} is a decomposition of 1=[FG]1=[FG] in TΔ(FG,FG)T^{\Delta}(FG,FG). In this paper we study if and how the idempotent [B][B] of TΔ(FG,FG)T^{\Delta}(FG,FG) decomposes further into pairwise orthogonal idempotents in TΔ(FG,FG)T^{\Delta}(FG,FG), or equivalently, in [B]GTΔ(FG,FG)G[B]=TΔ(B,B)[B]\cdot_{G}T^{\Delta}(FG,FG)\cdot_{G}[B]=T^{\Delta}(B,B).

3 Idempotents in Pr(B,B)Pr(B,B)

Let FF and GG be as in Section 2. Moreover, let eZ(FG)e\in Z(FG) be an idempotent and set B:=FGeB:=FGe. In this section we will describe maximal sets of pairwise orthogonal primitive idempotents in the ideal Pr(B,B)Pr(B,B) of TΔ(B,B)T^{\Delta}(B,B). As special case for e=1FGe=1_{FG} (resp. ebl(FG)e\in\mathrm{bl}(FG)) we obtain B=FGB=FG (resp. BBl(FG))B\in\mathrm{Bl}(FG)).

3.1 Notation

We start with an elementary construction for arbitrary rings. Given a ring RR and an element cc of RR, we define the ring RcR_{c} to have the same elements and addition as RR and multiplication defined by

acb=acb,a\cdot_{c}b=acb\,,

where the multiplication on the right is the multiplication in RR. Even if RR is unital, RcR_{c} in general is not. The following lemma is a straightforward verification, left to the reader.

3.2 Lemma

Let cc and dd be elements of a unital ring RR such that c=udvc=udv, where uu and vv are units of RR. Then, the map f:RcRdf\colon R_{c}\to R_{d}, rvrur\mapsto vru, is a ring isomorphism ring.

3.3

For the rest of this section we fix the following situation. Choose pairwise orthogonal primitive idempotents ϵ1,,ϵl\epsilon_{1},\ldots,\epsilon_{l} of BB. Then Pi:=FGϵiP_{i}:=FG\epsilon_{i}, i=1,,li=1,\ldots,l, is a complete list of pairwise non-isomorphic projective indecomposable BB-modules. Thus, l=l(B)l=l(B) is the number of isomorphism classes of simple BB-modules. Every projective indecomposable F[G×G](ee)F[G\times G](e\otimes e^{*})-module, when viewed as (FGe,FGe)(FGe,FGe)-bimodule, is of the form Pij:=FGϵiFϵjFGP_{ij}:=FG\epsilon_{i}\otimes_{F}\epsilon_{j}FG with i,j{1,,l}i,j\in\{1,\ldots,l\}. Moreover, they are pairwise non-isomorphic. Thus, their classes form a \mathbb{Z}-basis [Pij][P_{ij}] of Pr(FGe,FGe)Pr(FGe,FGe). Let C=(cij)Matl()C=(c_{ij})\in\mathrm{Mat}_{l}(\mathbb{Z}) denote the Cartan matrix of BB, i.e., cij=dimFϵiFGϵj=dimFϵiBϵjc_{ij}=\dim_{F}\epsilon_{i}FG\epsilon_{j}=\dim_{F}\epsilon_{i}B\epsilon_{j}.

3.4 Lemma

Let ϵ\epsilon be an idempotent of FGFG. Then, the right FGFG-module ϵFG\epsilon FG, when viewed as left FGFG-module by ga:=ag1g\cdot a:=ag^{-1} for aϵFGa\in\epsilon FG and gGg\in G, is isomorphic to the left FGFG-module FGϵFG\epsilon^{*}. In particular, with the above notation, one has PijFGϵiFFGϵjP_{ij}\cong FG\epsilon_{i}\otimes_{F}FG\epsilon_{j}^{*}, when PijP_{ij} is viewed as left F[G×G]F[G\times G]-module.

Proof.

The map :FGFG-^{*}\colon FG\to FG, gg1g\mapsto g^{-1}, restricts to an isomorphism ϵFGFGϵ\epsilon FG\to FG\epsilon^{*} of left FGFG-modules, where the domain is equipped with the left FGFG-module structure from the statement. ∎

3.5 Lemma

(a) With the above notation one has PijFGPrs=PiscjrP_{ij}\otimes_{FG}P_{rs}=P_{is}^{c_{jr}}, for all i,j,r,s{1.,l}i,j,r,s\in\{1.\ldots,l\}.

(b) The map [Pij]Eij[P_{ij}]\mapsto E_{ij}, for i,j{1,,l}i,j\in\{1,\ldots,l\}, defines a ring isomorphism between Pr(B,B)Pr(B,B) and Matl()C\mathrm{Mat}_{l}(\mathbb{Z})_{C}, where CC is the Cartan matrix of BB.

Proof.

(a) This follows from the following isomorphisms of (FG,FG)(FG,FG)-bimodules:

PijFGPrsFGϵi(ϵjFGFGFGϵr))ϵsFGPisdimFϵjFGϵr.P_{ij}\otimes_{FG}P_{rs}\cong FG\epsilon_{i}\otimes\bigl{(}\epsilon_{j}FG\otimes_{FG}FG\epsilon_{r})\bigr{)}\otimes\epsilon_{s}FG\cong P_{is}^{\dim_{F}\epsilon_{j}FG\epsilon_{r}}\,.

(b) This follows immediately from (a). ∎

Recall that the Smith normal form of the Cartan matrix CC is a diagonal matrix D=diag(d1,,dl)D=\mathrm{diag}(d_{1},\ldots,d_{l}) with pp-powers d1,,dld_{1},\ldots,d_{l} satisfying d1|d2|dld_{1}|d_{2}\cdots|d_{l}, see Lemma 6.31 in [11, Chapter 3]. The numbers d1,,dld_{1},\ldots,d_{l} are the invariant factors and at the same time the elementary divisors of CC.

3.6 Theorem

(a) There exists a ring isomorphism Pr(B,B)Matl()DPr(B,B)\cong\mathrm{Mat}_{l}(\mathbb{Z})_{D}, where DMatl()D\in\mathrm{Mat}_{l}(\mathbb{Z}) is the diagonal matrix whose diagonal entries d1,,dld_{1},\ldots,d_{l} are the elementary divisor of CC in ascending size.

(b) Let rr be the multiplicity of 1 as elementary divisor of the Cartan matrix of BB. Then there exists a set of rr pairwise orthogonal primitive idempotents of Pr(B,B)Pr(B,B). Moreover, any set of pairwise orthogonal primitive idempotents in Pr(B,B)Pr(B,B) has cardinality at most rr.

Proof.

Since there exist U,VGLl()U,V\in\mathrm{GL}_{l}(\mathbb{Z}) with D=UCVD=UCV, Part (a) follows from Lemma 3.2 and 3.5.

By Part (a), it suffices to show the statement in (b) for the ring Matl()D\mathrm{Mat}_{l}(\mathbb{Z})_{D} instead of Pr(B,B)Pr(B,B). First note that, by elementary matrix computations, the rr elements {E11,,Err}\{E_{11},\ldots,E_{rr}\} form a set of rr pairwise orthogonal idempotents of Matl()D\mathrm{Mat}_{l}(\mathbb{Z})_{D}. They are also primitive, since EiiDMatl()DDEii=di2EiiE_{ii}\cdot_{D}\mathrm{Mat}_{l}(\mathbb{Z})_{D}\cdot_{D}E_{ii}=\mathbb{Z}d_{i}^{2}E_{ii}\cong\mathbb{Z} is indecomposable as abelian group.

Next suppose that E1,,EsE_{1},\ldots,E_{s} are pairwise orthogonal idempotents of Matl()D\mathrm{Mat}_{l}(\mathbb{Z})_{D}, set E=E1++EsE=E_{1}+\ldots+E_{s}, and consider the subgroup M:=EnM:=E\cdot\mathbb{Z}^{n} of n\mathbb{Z}^{n}. Since EDE=EEDE=E, we obtain EDM=MED\cdot M=M. This implies that, also after reduction modulo pp, the map E¯D¯:M¯M¯\bar{E}\bar{D}\colon\bar{M}\to\bar{M}, m¯E¯D¯m¯\bar{m}\mapsto\bar{E}\bar{D}\bar{m}, is surjective. Thus, rkM=dim𝔽pM¯rk𝔽pD¯=r\mathrm{rk}_{\mathbb{Z}}M=\dim_{\mathbb{F}_{p}}\bar{M}\leqslant\mathrm{rk}_{\mathbb{F}_{p}}\bar{D}=r. On the other hand, we claim that srkMs\leqslant\mathrm{rk}_{\mathbb{Z}}M which then implies srs\leqslant r as desired. For i=1,,si=1,\ldots,s, consider the non-zero subgroup Mi:=Ein=(EDEi)n=E((DEi)n)MM_{i}:=E_{i}\cdot\mathbb{Z}^{n}=(E\cdot_{D}E_{i})\cdot\mathbb{Z}^{n}=E\cdot((DE_{i})\cdot\mathbb{Z}^{n})\subseteq M. It suffices to show that the sum of these subgroups of MM is a direct sum. Let x1,,xsnx_{1},\ldots,x_{s}\in\mathbb{Z}^{n} with E1x1++Esxs=0E_{1}\cdot x_{1}+\cdots+E_{s}\cdot x_{s}=0. Then, for any i=1,si=1\ldots,s, multiplication with the matrix EiDE_{i}D yields 0=EiDEixi=Eixi0=E_{i}DE_{i}\cdot x_{i}=E_{i}\cdot x_{i} and we are done. ∎

3.7 Remark

One can explicitly determine a maximal set of pairwise orthogonal primitive idempotents of Pr(B,B)Pr(B,B) by following the proof of Theorem 3.6. In fact, with the notation of the proof, one can apply the inverses of the isomorphism Pr(B,B)Matl()CMatl()DPr(B,B)\cong\mathrm{Mat}_{l}(\mathbb{Z})_{C}\cong\mathrm{Mat}_{l}(\mathbb{Z})_{D} to the elements E11,,ErrMatl()DE_{11},\ldots,E_{rr}\in\mathrm{Mat}_{l}(\mathbb{Z})_{D}.

The situation for the ring kPr(B,B):=kPr(B,B)kPr(B,B):=k\otimes_{\mathbb{Z}}Pr(B,B) and over base fields of characteristic different from pp is much simpler.

3.8 Theorem

Suppose that kk is a field of characteristic different from pp. There exists a multiplicative kk-linear isomorphism kPr(B,B)Matl(k)kPr(B,B)\to\mathrm{Mat}_{l}(k). In particular, kPr(B,B)kPr(B,B) is a kk-algebra isomorphic to Matl(k)\mathrm{Mat}_{l}(k), any primitive decomposition of 1kPr(B,B)1_{kPr(B,B)} has cardinality l=l(B)l=l(B), and any two primitive idempotents of kPr(B,B)kPr(B,B) are conjugate by a unit of kPr(B,B)kPr(B,B). More explicitly, one has 1kPr(B,B)=i,j=1ncij[Pij]1_{kPr(B,B)}=\sum_{i,j=1}^{n}c^{\prime}_{ij}[P_{ij}], where (cij)=C1Matl(k)(c^{\prime}_{ij})=C^{-1}\in\mathrm{Mat}_{l}(k), and the elements ϵi:=j=1lcij[Pij]\epsilon_{i}:=\sum_{j=1}^{l}c^{\prime}_{ij}[P_{ij}], i=1,,li=1,\ldots,l, form a primitive decomposition of 1Pr(B,B)1_{\mathbb{Q}Pr(B,B)}.

Proof.

By Lemma 3.5, mapping the kk-basis elements [Pij][P_{ij}] to EijE_{ij} induces a kk-linear isomorphism kPr(B,B)Matl(k)CkPr(B,B)\to\mathrm{Mat}_{l}(k)_{C}. Since det(C)\det(C) is a power of pp, CC is invertible in Matl(k)\mathrm{Mat}_{l}(k). Thus, Lemma 3.2 with u:=Cu:=C and v:=Ilv:=I_{l}, the identity matrix, yields an isomorphism Matl(k)CMatl(k)Il=Matl(k)\mathrm{Mat}_{l}(k)_{C}\to\mathrm{Mat}_{l}(k)_{I_{l}}=\mathrm{Mat}_{l}(k). Following the explicit isomorphisms establishes the formula for the identity element of kPr(B,B)kPr(B,B) and the primitive decomposition of the identity element corresponding to the primitive idempotents EiiE_{ii}, i=1,,li=1,\ldots,l, of Matl(k)\mathrm{Mat}_{l}(k). The remaining statements follow from well-known properties of Matl(k)\mathrm{Mat}_{l}(k). ∎

3.9 Corollary

If kk is a field of characteristic different from pp then the identity element of kPr(B,B)kPr(B,B) is a central idempotent of kTΔ(B,B):=kTΔ(B,B)kT^{\Delta}(B,B):=k\otimes T^{\Delta}(B,B). Moreover, Pr(B,B)Pr(B,B) has an identity element if and only every block algebra direct summand of BB has defect 0.

Proof.

We may assume that kk has at least three elements by passing to an extension field. Then, by [9, Theorem 1.13.7], the units in kTΔ(B,B)kT^{\Delta}(B,B) generate kTΔ(B,B)kT^{\Delta}(B,B) as a kk-vector space. Thus, we only need to show that 1kPr(B,B)1_{kPr(B,B)} is fixed under conjugation by any unit of kTΔ(B,B)kT^{\Delta}(B,B). Since kPr(B,B)kPr(B,B) is an ideal in kTΔ(B,B)kT^{\Delta}(B,B), conjugation by a unit induces by a ring automorphism of kPr(B,B)kPr(B,B), and therefore must preserve its identity element.

Pr(B,B)Pr(B,B) has an identity element if and only if 1Pr(B,B)Pr(B,B)1_{\mathbb{Q}\Pr(B,B)}\in Pr(B,B). Since the elements [Pij][P_{ij}] form a \mathbb{Z}-basis of Pr(B,B)Pr(B,B) and by the explicit formula for 1Pr(B,B)1_{\mathbb{Q}Pr(B,B)} in Theorem 3.8, one has 1Pr(B,B)Pr(B,B)1_{\mathbb{Q}Pr(B,B)}\in Pr(B,B) if and only if det(C){1,1}\det(C)\in\{-1,1\}. This happens if and only if all the elementary divisors of CC are equal to one. Since the Cartan matrix of a block with defect group DD has at least one elementary divisor |D||D|, see Theorem 6.35 in [11, Chapter 3], the latter is equivalent to BB being a direct sum of block algebras of FGFG of defect 0. ∎

3.10 Example

In this example we assume that bb is a block idempotent with Cartan matrix

C=Il+mEl=(m+1mmmm+1mmmm+1),C=I_{l}+mE_{l}=\begin{pmatrix}m+1&m&\cdots&m\\ m&m+1&\ddots&\vdots\\ \vdots&\ddots&\ddots&m\\ m&\cdots&m&m+1\end{pmatrix}\,, (2)

where m1m\geqslant 1, IlMatl()I_{l}\in\mathrm{Mat}_{l}(\mathbb{Z}) is the identity matrix, and ElMatl()E_{l}\in\mathrm{Mat}_{l}(\mathbb{Z}) is the matrix all of whose entries are equal to 11. This happens for instance when B=FGbB=FGb has a cyclic and normal defect group, see [1, Theorem 17.2]. In this case BB is a Brauer tree algebra whose Brauer tree is a star with exceptional vertex of multiplicity mm in the center. We will examine this case further in Section 6.

We compute the Smith normal form of CC. First subtracting the ll-th row from all the other rows, then subtracting mm times the ii-th row from the ll-th row, for i=1,,l1i=1,\ldots,l-1, and finally adding the the ii-th column to the ll-th column for i=1,,l1i=1,\ldots,l-1, results in the diagonal matrix diag(1,,1,ml+1)\mathrm{diag}(1,\ldots,1,ml+1), which therefore is the Smith normal form of CC. Furthermore, if DD denotes a defect group of BB, by Theorem 6.35 in [11, Chapter 3], the largest elementary divisor of CC is |D||D|. This implies that |D|=ml+1|D|=ml+1.

Following Remark 3.7 by computing the matrices U,VGLl()U,V\in\mathrm{GL}_{l}(\mathbb{Z}) with D=UCVD=UCV which result from the above elementary row and column operations, we obtain that the elements ϵi:=[Pii][Pli]\epsilon_{i}:=[P_{ii}]-[P_{li}], i=1,,l1i=1,\ldots,l-1, form a maximal set of pairwise orthogonal primitive idempotents of Pr(B,B)Pr(B,B). This can also be checked directly using Lemma 3.5, once one has found these elements.

Now let kk be a field of characteristic different from pp. One quickly verifies that C1=Ilm|D|ElMatl(k)C^{-1}=I_{l}-\frac{m}{|D|}E_{l}\in\mathrm{Mat}_{l}(k). Thus, by Theorem 3.8, one has

1kPr(B,B)=i=1l[Pii]m|D|i,j=1l[Pij].1_{kPr(B,B)}=\sum_{i=1}^{l}[P_{ii}]-\frac{m}{|D|}\sum_{i,j=1}^{l}[P_{ij}]\,.

and obtains a primitive decomposition {ϵ1,,ϵl}\{\epsilon_{1},\ldots,\epsilon_{l}\} of 1kPr(B,B)1_{kPr(B,B)} by computing

ϵl=1kPr(B,B)(ϵ1++ϵl1)=i=1l[Pli]m|D|i,j=1l[Pij].\epsilon_{l}=1_{kPr(B,B)}-(\epsilon_{1}+\cdots+\epsilon_{l-1})=\sum_{i=1}^{l}[P_{li}]-\frac{m}{|D|}\sum_{i,j=1}^{l}[P_{ij}]\,.

4 Trivial source modules for groups with normal Sylow pp-subgroup

4.1 Theorem

Let GG be a finite group with a normal Sylow pp-subgroup PP, let QPQ\leqslant P, set H:=NG(Q)H:=N_{G}(Q), and let CC be a complement of the normal Sylow pp-subgroup NP(Q)N_{P}(Q) of HH. Further, let SS be a simple FCFC-module and view it as a simple F(QC)F(QC)-module via the canonical isomorphism CQC/QC\cong QC/Q. Then MS:=IndQCG(S)M_{S}:=\mathrm{Ind}_{QC}^{G}(S) is an indecomposable pp-permutation FGFG-module with vertex QQ. Moreover, the map SMSS\mapsto M_{S} induces a bijection between the set of isomorphism classes of simple FCFC-modules and the set of isomorphism classes of indecomposable pp-permutation FGFG-modules with vertex QQ.

Proof.

The theorem will follow from the following two claims together with the Green correspondence.

Claim 1: If SS is a simple FCFC-module then US:=IndQCH(S)U_{S}:=\mathrm{Ind}_{QC}^{H}(S) is an indecomposable pp-permutation FHFH-module with vertex QQ, and SUSS\mapsto U_{S} induces a bijection between the set of isomorphism classes of simple FCFC-modules and the set of isomorphism classes of indecomposable pp-permutation FHFH-modules with vertex QQ.

Claim 2: If SS is a simple FCFC-module then IndHG(US)\mathrm{Ind}_{H}^{G}(U_{S}) is indecomposable.

To prove Claim 1, note that we have canonical isomorphisms CQC/QH/NP(Q)C\cong QC/Q\cong H/N_{P}(Q). Therefore, the simple FHFH-modules and the simple F(QC)F(QC)-modules can be identified with the simple FCFC-modules, and it suffices to show that the module IndQC/QH/Q(S)\mathrm{Ind}_{QC/Q}^{H/Q}(S) is a projective cover of the simple F(H/Q)F(H/Q)-module SS. To see this, let SS and TT be simple FCFC-modules and consider

HomF(H/Q)(IndQC/QH/Q(S),T)HomF(QC/Q)(S,ResQC/QH/Q(T))=HomF(QC/Q)(S,T).\mathrm{Hom}_{F(H/Q)}(\mathrm{Ind}_{QC/Q}^{H/Q}(S),T)\cong\mathrm{Hom}_{F(QC/Q)}(S,\mathrm{Res}^{H/Q}_{QC/Q}(T))=\mathrm{Hom}_{F(QC/Q)}(S,T)\,.

If STS\cong T then the latter is isomorphic to FF and if S≇TS\not\cong T then it is isomorphic to {0}\{0\}. This shows that the radical quotient of IndQC/QH/Q(S)\mathrm{Ind}_{QC/Q}^{H/Q}(S) is isomorphic to SS. Moreover, IndQC/QH/Q(S)\mathrm{Ind}_{QC/Q}^{H/Q}(S) is projective as QC/QQC/Q-module, since SS is projective as QC/QQC/Q-module. This proves Claim 1.

To prove Claim 2, restrict IndHG(US)=IndQCG(S)\mathrm{Ind}_{H}^{G}(U_{S})=\mathrm{Ind}_{QC}^{G}(S) to PP and apply Mackey’s decomposition formula to obtain

ResPG(MS)=g[G/PC]IndPQgPResPQgQg(Sg)g[G/PC]IndQgP(FdimF(S)).\mathrm{Res}^{G}_{P}(M_{S})=\bigoplus_{g\in[G/PC]}\mathrm{Ind}_{P\cap\,{}^{g}\!Q}^{P}\mathrm{Res}^{\,{}^{g}\!Q}_{P\cap\,{}^{g}\!Q}(\,{}^{g}\!S)\cong\bigoplus_{g\in[G/PC]}\mathrm{Ind}_{\,{}^{g}\!Q}^{P}(F^{\dim_{F}(S)})\,. (3)

The latter expression is a direct sum of indecomposable FPFP-modules with vertices of order |Q||Q|. On the other hand, by the Green correspondence, MSM_{S} decomposes into one indecomposable direct summand with vertex QQ and possibly others with vertex of order smaller than |Q||Q|. But such other summands can’t exist, since every indecomposable direct summand of ResPG(MS)\mathrm{Res}^{G}_{P}(M_{S}) has vertices of order |Q||Q|. This proves Claim 2 and the proof of the theorem is complete. ∎

5 Direct product groups and tensor products of bimodules

In this section, we recall a construction and a theorem due to Bouc, see [4]. Throughout this section, GG, HH and KK denote finite groups and RR denotes a commutative ring.

For a subgroup XG×HX\leqslant G\times H, we set

k1(X):={gG(g,1)X}andk2(X):={hH(1,h)X}.k_{1}(X):=\{g\in G\mid(g,1)\in X\}\quad\text{and}\quad k_{2}(X):=\{h\in H\mid(1,h)\in X\}\,.

These are subgroups of GG and HH, respectively, and normal subgroups of the images p1(X)p_{1}(X) and p2(X)p_{2}(X) under the projection maps p1:G×HGp_{1}\colon G\times H\to G and p2:G×HHp_{2}\colon G\times H\to H, respectively. For subgroups XG×HX\leqslant G\times H and YH×KY\leqslant H\times K we set

XY:={(g,k)G×KhH:(g,h)X and (h,k)Y}.X*Y:=\{(g,k)\in G\times K\mid\exists h\in H\colon(g,h)\in X\text{ and }(h,k)\in Y\}\,.

This is a subgroup of G×KG\times K. An element hHh\in H as above is called a connecting element for (g,k)XY(g,k)\in X*Y. We also set k(X,Y):=k2(X)k1(Y)Hk(X,Y):=k_{2}(X)\cap k_{1}(Y)\leqslant H. If MM is a left RXRX-module and NN is a left RYRY-module then MM can be considered as a right k(X,Y)k(X,Y)-module via mh:=(1,h1)mmh:=(1,h^{-1})m for mMm\in M and hk(X,Y)h\in k(X,Y) and NN can be considered as left k(X,Y)k(X,Y)-module via hn:=(h,1)nhn:=(h,1)n for hk(X,Y)h\in k(X,Y) and nNn\in N. The resulting RR-module MRk(X,Y)NM\otimes_{Rk(X,Y)}N has the structure of an R[XY]R[X*Y]-module via

(g,k)(mn):=(g,h)m(h,k)n,(g,k)(m\otimes n):=(g,h)m\otimes(h,k)n\,,

for (g,k)XY(g,k)\in X*Y, where hHh\in H is a connecting element for (g,k)XY(g,k)\in X*Y. The expression on the right hand side of the above definition does not depend on the choice of hh, since hh is unique up to left multiplication with elements in k(X,Y)k(X,Y). Just for the purpose of this paper, we denote this R[XY]R[X*Y] module by MNM*N, suppressing the dependence on XX and YY. For more properties of the functor :RX𝗆𝗈𝖽×RY𝗆𝗈𝖽R[XY]𝗆𝗈𝖽-*-\colon\hbox to0.0pt{\hss\phantom{|}}_{RX}\mathsf{mod}\times\hbox to0.0pt{\hss\phantom{|}}_{RY}\mathsf{mod}\to\hbox to0.0pt{\hss\phantom{|}}_{R[X*Y]}\mathsf{mod}, see [2, Section 6].

In the sequel we will use the following useful properties of the construction (X,Y)XY(X,Y)\mapsto X*Y, whose elementary proof is left to the reader. Recall that for subgroups PGP\leqslant G and QHQ\leqslant H and for an isomorphism α:QP\alpha\colon Q\to P we set Δ(P,α,Q):={(α(x),x)xQ}\Delta(P,\alpha,Q):=\{(\alpha(x),x)\mid x\in Q\}. We call groups of this type twisted diagonal subgroups of G×HG\times H.

5.1 Lemma

(a) For any XG×HX\leqslant G\times H, YH×KY\leqslant H\times K, gGg\in G, hHh\in H and kKk\in K one has X(g,k)Y=X(g,h)Y(h,k)\,{}^{(g,k)}\!X*Y=\,{}^{(g,h)}\!X*\,{}^{(h,k)}\!Y.

(b) For a twisted diagonal subgroup Δ(P,α,Q)\Delta(P,\alpha,Q) of G×HG\times H and (g,h)G×H(g,h)\in G\times H, one has Δ(g,h)(P,α,Q)=Δ(Pg,cgαch1,Qh)\,{}^{(g,h)}\!\Delta(P,\alpha,Q)=\Delta(\,{}^{g}\!P,c_{g}\circ\alpha\circ c_{h}^{-1},\,{}^{h}\!Q).

(c) For twisted diagonal subgroups Δ(P,α,Q)\Delta(P,\alpha,Q) of G×HG\times H and Δ(R,β,S)\Delta(R,\beta,S) of H×KH\times K, one has

Δ(P,α,Q)Δ(R,β,S)=Δ(α(QR),α|QRβ|β1(QR),β1(QR)).\Delta(P,\alpha,Q)*\Delta(R,\beta,S)=\Delta\Bigl{(}\alpha(Q\cap R),\alpha|_{Q\cap R}\circ\beta|_{\beta^{-1}(Q\cap R)},\beta^{-1}(Q\cap R)\Bigr{)}\,.

In the following theorem, see [4], we interpret any (RG,RH)(RG,RH)-module MM also as left R[G×H]R[G\times H]-module and vice-versa via (g,h)m=gmh1(g,h)m=gmh^{-1}, for gGg\in G, hHh\in H, and mMm\in M.

5.2 Theorem (Bouc)

Let XG×HX\leqslant G\times H and YH×KY\leqslant H\times K, and let MM be an RXRX-module and NN an RYRY-module. Then, one has an isomorphism

IndXG×H(M)RHIndYH×K(N)t[p2(X)\H/p1(Y)]IndXY(t,1)G×K(MN(t,1))\mathrm{Ind}_{X}^{G\times H}(M)\otimes_{RH}\mathrm{Ind}_{Y}^{H\times K}(N)\cong\bigoplus_{t\in[p_{2}(X)\backslash H/p_{1}(Y)]}\mathrm{Ind}_{X*\,{}^{(t,1)}\!Y}^{G\times K}(M*\,{}^{(t,1)}\!N)

of R[G×K]R[G\times K]-modules, where [p2(X)\H/p1(Y)][p_{2}(X)\backslash H/p_{1}(Y)] denotes a set of representatives of the (p2(X),p1(Y))(p_{2}(X),p_{1}(Y))-double cosets in HH.

We point out that if one replaces in the above theorem a representative tt by another representative of the same double coset then the resulting summands are isomorphic as R[G×K]R[G\times K]-modules.

6 The case G=DEG=D\rtimes E with DD cyclic and EAut(D)E\leqslant\mathrm{Aut}(D)

In this section we fix the following situation: Assume that G=DEG=D\rtimes E, were DD is a cyclic group of order pnp^{n} for n1n\geqslant 1 and EAut(D)E\leqslant\mathrm{Aut}(D) is a pp^{\prime}-subgroup. Since Aut(D)\mathrm{Aut}(D) is cyclic for odd pp and since |Aut(D)|=pn1(p1)|\mathrm{Aut}(D)|=p^{n-1}(p-1) this implies that EE is a cyclic group of order dividing p1p-1 and that EE is trivial if p=2p=2. We will write DiD_{i} for the subgroup of DD of order pip^{i}, for i=0,,ni=0,\ldots,n. Since CG(D)=DC_{G}(D)=D, 1FG1_{FG} is primitive in Z(FG)Z(FG) and FGFG is a block algebra (see Theorem 2.8 in [11, Chapter 5] and recall that 1FD1_{FD} is primitive in Z(FD)=FDZ(FD)=FD, since DD is a pp-group). Note that the Cartan matrix of FGFG is of the form (2) with m=|D|1|E|m=\frac{|D|-1}{|E|}, see [1, Theorem 17.2].

We focus for the rest of this section on TΔ(FG,FG)T^{\Delta}(FG,FG). We write elements of DED\rtimes E as xρx\rho with xDx\in D and ρE\rho\in E with multiplication given by (xρ)(yσ)=xρ(y)ρσ(x\rho)(y\sigma)=x\rho(y)\rho\sigma. The twisted diagonal pp-subgroups of G×GG\times G are of the form Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}), with i{0,,n}i\in\{0,\ldots,n\} and αAut(Di)\alpha\in\mathrm{Aut}(D_{i}). We set E^:=Hom(E,F×)\hat{E}:=\mathrm{Hom}(E,F^{\times}) and note that, up to isomorphism, the simple FGFG-modules are given by FλF_{\lambda}, λE^\lambda\in\hat{E}, where Fλ=FF_{\lambda}=F as FF-vector space and xρa:=λ(ρ)ax\rho\cdot a:=\lambda(\rho)a for xρGx\rho\in G and aFλa\in F_{\lambda}. By abuse of notation we also view FλF_{\lambda} via restriction as a simple FEFE-module.

Let i{1,,n}i\in\{1,\ldots,n\}. Since the canonical homomorphism (/pn)×(/pi)×(\mathbb{Z}/p^{n}\mathbb{Z})^{\times}\to(\mathbb{Z}/p^{i}\mathbb{Z})^{\times} is surjective, also the restriction map πi:Aut(D)Aut(Di)\pi_{i}\colon\mathrm{Aut}(D)\mapsto\mathrm{Aut}(D_{i}), αα|Di\alpha\mapsto\alpha|_{D_{i}}, is surjective. Since |Aut(D)|=pn1(p1)|\mathrm{Aut}(D)|=p^{n-1}(p-1) and |Aut(Di)|=pi1(p1)|\mathrm{Aut}(D_{i})|=p^{i-1}(p-1), we have |ker(π)|=pni|\ker(\pi)|=p^{n-i}. Since EAut(D)E\leqslant\mathrm{Aut}(D) is a pp^{\prime}-subgroup, πi|E:EAut(Di)\pi_{i}|_{E}\colon E\to\mathrm{Aut}(D_{i}) is injective. This implies that for any ρE\rho\in E and any xDx\in D with ρ(x)=x\rho(x)=x, one has x=1x=1 or ρ=1\rho=1. In other words, EE acts Frobeniusly on DD.

The following Lemma provides some group theoretic properties of G×GG\times G that will be needed later.

6.1 Lemma

Let i,j{0,,n}i,j\in\{0,\ldots,n\}, αAut(Di)\alpha\in\mathrm{Aut}(D_{i}), βAut(Dj)\beta\in\mathrm{Aut}(D_{j}), and gGg\in G. Further, set k:=min{i,j}k:=\min\{i,j\}, l:=max{i,j}l:=\max\{i,j\}.

(a) The pp-subgroups Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}) and Δ(Dj,β,Dj)\Delta(D_{j},\beta,D_{j}) are G×GG\times G-conjugate if and only if i=ji=j and there exists ρE\rho\in E with α=βρ|Di\alpha=\beta\circ\rho|_{D_{i}}.

(b) Suppose that i1i\geqslant 1. Then one has NG×G(Δ(Di,α,Di))=(D×D)Δ(E)N_{G\times G}(\Delta(D_{i},\alpha,D_{i}))=(D\times D)\Delta(E). In particular, Δ(DiE,α~,DiE)=Δ(Di,α,Di)Δ(E)\Delta(D_{i}E,\tilde{\alpha},D_{i}E)=\Delta(D_{i},\alpha,D_{i})\Delta(E) is a subgroup of G×GG\times G, where α~(xρ):=α(x)ρ\tilde{\alpha}(x\rho):=\alpha(x)\rho for xDix\in D_{i} and ρE\rho\in E, and α~\tilde{\alpha} is an automorphism of DiED_{i}E.

(c) Suppose that (i,j)(0,0)(i,j)\neq(0,0) and gDlEg\notin D_{l}E. Then DiE(DjE)g=DkD_{i}E\cap\,{}^{g}\!(D_{j}E)=D_{k}. Moreover, |DiEgDjE|=pl|E|2|D_{i}EgD_{j}E|=p^{l}|E|^{2} and the number of nontrivial double cosets in DiE\G/DjED_{i}E\backslash G/D_{j}E is equal to (pnl1)/|E|(p^{n-l}-1)/|E|.

Proof.

(a) Using the formula in Lemma 5.1(b), that D×DD\times D centralizes Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}) and that Aut(Di)\mathrm{Aut}(D_{i}) is abelian, we immediately obtain the result.

(b) D×DD\times D centralizes Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}) and since Aut(Di)\mathrm{Aut}(D_{i}) is abelian, a quick computation shows that Δ(E)\Delta(E) normalizes Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}). This shows one inclusion of the statement. Conversely, by Part(a) and since the restriction map πi:EAut(Di)\pi_{i}\colon E\to\mathrm{Aut}(D_{i}) is injective, the G×GG\times G-conjugacy class of Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}) has at least |E||E| elements. Since (D×D)Δ(E)(D\times D)\Delta(E) has index |E||E| in G×GG\times G, the result follows.

(c) We may assume without loss of generality that iji\leqslant j by noting that DiE(DjE)g=DkD_{i}E\cap\,{}^{g}\!(D_{j}E)=D_{k} if and only if (DiE)g1DjE=Dk\,{}^{g^{-1}}\!(D_{i}E)\cap D_{j}E=D_{k} and by noting that taking inverses induces a bijection between DiEgDjED_{i}EgD_{j}E and DjEg1DiED_{j}Eg^{-1}D_{i}E and between DiE\G/DjED_{i}E\backslash G/D_{j}E and DjE\G/DiED_{j}E\backslash G/D_{i}E fixing the trivial double coset DiEDjE=DiDjE=DlED_{i}ED_{j}E=D_{i}D_{j}E=D_{l}E.

To prove the first statement, write g=zρg=z\rho with zDz\in D and ρE\rho\in E. Since (DjE)g=DjEg=DjEz\,{}^{g}\!(D_{j}E)=D_{j}\cdot\,{}^{g}\!E=D_{j}\,{}^{z}\!E, we may also assume that g=zDg=z\in D, but zDjz\notin D_{j}. Then, clearly DiDiEDjEzD_{i}\leqslant D_{i}E\cap D_{j}\,{}^{z}\!E. Conversely consider an element xρ=yσzDiEDjEzx\rho=y\,{}^{z}\!\sigma\in D_{i}E\cap D_{j}\,{}^{z}\!E with xDix\in D_{i}, yDjy\in D_{j} and ρ,σE\rho,\sigma\in E. Since yσz=yzσ(z1)σy\,{}^{z}\!\sigma=yz\sigma(z^{-1})\sigma we obtain x=yzσ(z1)x=yz\sigma(z^{-1}) and ρ=σ\rho=\sigma. Since σ|D1Aut(D1)\sigma|_{D_{1}}\in\mathrm{Aut}(D_{1}), σ(z)=zr\sigma(z)=z^{r} for some rr\in\mathbb{Z} with prp\nmid r. Thus, we obtain x=yz1rx=yz^{1-r}. Since xy1Djxy^{-1}\in D_{j} but zDjz\notin D_{j}, we obtain r1modpr\equiv 1\mod p and therefore σ|D1=idD1\sigma|_{D_{1}}=\mathrm{id}_{D_{1}}. The injectivity of the restriction map π1:EAut(D1)\pi_{1}\colon E\to\mathrm{Aut}(D_{1}) now implies ρ=σ=1\rho=\sigma=1 and xρ=xDix\rho=x\in D_{i} as claimed.

For the second statement let gGg\in G with gDiEDjE=DiDjE=DjEg\notin D_{i}ED_{j}E=D_{i}D_{j}E=D_{j}E. Then, using the first statement, we obtain

|DiEgDjE|=|DiE(DjE)g|=|DiE||DjE||DiE(DjE)g|=|DiE||DjE||Di|=pj|E|2.|D_{i}EgD_{j}E|=|D_{i}E\,{}^{g}\!(D_{j}E)|=\frac{|D_{i}E|\cdot|D_{j}E|}{|D_{i}E\cap\,{}^{g}\!(D_{j}E)|}=\frac{|D_{i}E|\cdot|D_{j}E|}{|D_{i}|}=p^{j}|E|^{2}\,.

Therefore the pn|E|pj|E|p^{n}|E|-p^{j}|E| elements in GDjEG\smallsetminus D_{j}E partition into the non-trivial (DiE,DjE)(D_{i}E,D_{j}E)-double cosets of constant size pj|E|2p^{j}|E|^{2} and the second statement follows, since i=ki=k and j=lj=l. ∎

The following two propositions provide a \mathbb{Z}-basis of TΔ(FG,FG)T^{\Delta}(FG,FG) and a formula for the product of any two basis elements. By Theorem 4.1, for λE^\lambda\in\hat{E}, the FGFG-module Pλ:=IndEG(Fλ)P_{\lambda}:=\mathrm{Ind}_{E}^{G}(F_{\lambda}) is the projective cover of the simple FGFG-module FλF_{\lambda}. Thus, setting Pλ,μ:=PλFPμ1IndE×EG×G(FλFμ1)P_{\lambda,\mu}:=P_{\lambda}\otimes_{F}P_{\mu^{-1}}\cong\mathrm{Ind}_{E\times E}^{G\times G}(F_{\lambda}\otimes F_{\mu^{-1}}), for λ,μE^\lambda,\mu\in\hat{E}, is consistent with the notation introduced in 3.3.

6.2 Proposition

(a) The projective indecomposable F[G×G]F[G\times G]-modules are of the form Pλ,μP_{\lambda,\mu} for λ,μE^\lambda,\mu\in\hat{E}. Moreover, Pλ,μPλ,μP_{\lambda,\mu}\cong P_{\lambda^{\prime},\mu^{\prime}} if and only if λ=λ\lambda=\lambda^{\prime} and μ=μ\mu=\mu^{\prime}.

(b) Let i{1,,n}i\in\{1,\ldots,n\}, αAut(Di)\alpha\in\mathrm{Aut}(D_{i}) and λE^\lambda\in\hat{E}. Then Mi,α,λ:=IndΔ(DiE,α~,DiE)G×G(Fλ)M_{i,\alpha,\lambda}:=\mathrm{Ind}_{\Delta(D_{i}E,\tilde{\alpha},D_{i}E)}^{G\times G}(F_{\lambda}) is an indecomposable F[G×G]F[G\times G]-module with vertex Δ(Di,α,Di)\Delta(D_{i},\alpha,D_{i}), where by abuse of notation we view FλF_{\lambda} as FΔ(DiE,α~,DiE)F\Delta(D_{i}E,\tilde{\alpha},D_{i}E)-module via the isomorphism EΔ(DiE,α~,DiE)/Δ(Di,α,Di)E\cong\Delta(D_{i}E,\tilde{\alpha},D_{i}E)/\Delta(D_{i},\alpha,D_{i}), ρ(ρ,ρ)Δ(Di,α,Di)\rho\mapsto(\rho,\rho)\Delta(D_{i},\alpha,D_{i}). Moreover, every indecomposable non-projective F[G×G]F[G\times G]-module with twisted diagonal vertex is of this form, and Mi,α,μMj,β,λM_{i,\alpha,\mu}\cong M_{j,\beta,\lambda} if and only if i=ji=j, α=βρ|Di\alpha=\beta\circ\rho|_{D_{i}} for some ρE\rho\in E, and λ=μ\lambda=\mu.

Proof.

Part (a) is immediate and Part (b) follows from Theorem 4.1 together with Lemma 6.1(b) and noting that Δ(E)\Delta(E) is a complement of D×D=ND×D(Δ(Di,α,Di))D\times D=N_{D\times D}(\Delta(D_{i},\alpha,D_{i})) in NG×G(Δ(Di,α,Di))=(D×D)Δ(E)N_{G\times G}(\Delta(D_{i},\alpha,D_{i}))=(D\times D)\Delta(E). ∎

6.3 Proposition

Let λ,μ,λ,μE^\lambda,\mu,\lambda^{\prime},\mu^{\prime}\in\hat{E}, i,j{1,,n}i,j\in\{1,\ldots,n\}, αAut(Di)\alpha\in\mathrm{Aut}(D_{i}), and βAut(Dj)\beta\in\mathrm{Aut}(D_{j}). Then the standard basis elements of TΔ(FG,FG)T^{\Delta}(FG,FG) satisfy the following multiplication rules:

[Pλ,μ]G[Pλ,μ]=\displaystyle[P_{\lambda,\mu}]\cdot_{G}[P_{\lambda^{\prime},\mu^{\prime}}]= {(m+1)[Pλ,μ]if μ=λ,m[Pλ,μ]if μλ,\displaystyle\,\begin{cases}(m+1)[P_{\lambda,\mu^{\prime}}]&\text{if $\mu=\lambda^{\prime}$,}\\ m[P_{\lambda,\mu^{\prime}}]&\text{if $\mu\not=\lambda^{\prime}$,}\end{cases}
[Pλ,μ]G[Mj,β,μ]=\displaystyle[P_{\lambda,\mu}]\cdot_{G}[M_{j,\beta,\mu^{\prime}}]= [Pλ,μμ1]+νE^pnj1|E|[Pλ,ν],\displaystyle\,[P_{\lambda,\mu{\mu^{\prime}}^{-1}}]\,+\,\sum_{\nu\in\hat{E}}\frac{p^{n-j}-1}{|E|}[P_{\lambda,\nu}]\,,
[Mi,α,λ]G[Pλ,μ]=\displaystyle[M_{i,\alpha,\lambda}]\cdot_{G}[P_{\lambda^{\prime},\mu^{\prime}}]= [Pλλ,μ]+νE^pni1|E|[Pν,μ],\displaystyle\,[P_{\lambda\lambda^{\prime},\mu^{\prime}}]\,+\,\sum_{\nu\in\hat{E}}\frac{p^{n-i}-1}{|E|}[P_{\nu,\mu^{\prime}}]\,,
[Mi,α,λ]G[Mj,β,μ]=\displaystyle[M_{i,\alpha,\lambda}]\cdot_{G}[M_{j,\beta,\mu}]= [Mk,α|Dkβ|Dk,λμ]+νE^pnl1|E|[Mk,α|Dkβ|Dk,ν],\displaystyle\,[M_{k,\alpha|_{D_{k}}\circ\beta|_{D_{k}},\lambda\mu}]\,+\,\sum_{\nu\in\hat{E}}\frac{p^{n-l}-1}{|E|}[M_{k,\alpha|_{D_{k}}\circ\beta|_{D_{k}},\nu}]\,,

where m=(|D|1)/|E|m=(|D|-1)/|E|, k=min{i,j}k=\min\{i,j\}, and l=max{i,j}l=\max\{i,j\}. Moreover, [Mn,id,1][M_{n,\mathrm{id},1}] is the identity element of TΔ(FG,FG)T^{\Delta}(FG,FG).

Proof.

The first equation follows from Lemma 3.5(a).

To prove the second equation we use Theorem 5.2 and obtain

IndE×EG×G\displaystyle\mathrm{Ind}_{E\times E}^{G\times G} (FλFFμ1)FGIndΔ(DjE,β~,DjE)G×G(Fμ)\displaystyle(F_{\lambda}\otimes_{F}F_{\mu^{-1}})\otimes_{FG}\mathrm{Ind}_{\Delta(D_{j}E,\tilde{\beta},D_{j}E)}^{G\times G}(F_{\mu^{\prime}})\cong
t[E\G/DjE]Ind(E×E)Δ(t,1)(DjE,β~,DjE)G×G((FλFFμ1)Fμ(t,1))\displaystyle\bigoplus_{t\in[E\backslash G/D_{j}E]}\mathrm{Ind}_{(E\times E)\,*\,{}^{(t,1)}\!\Delta(D_{j}E,\tilde{\beta},D_{j}E)}^{G\times G}\bigl{(}(F_{\lambda}\otimes_{F}F_{\mu^{-1}})*\,{}^{(t,1)}\!F_{\mu^{\prime}}\bigr{)}

For the trivial double coset EDjE=DjEED_{j}E=D_{j}E, we choose the representative t=1t=1. A quick computation shows that (E×E)Δ(DjE,β~,DjE)=E×E(E\times E)*\Delta(D_{j}E,\tilde{\beta},D_{j}E)=E\times E. Moreover, (ρ,σ)E×E(\rho,\sigma)\in E\times E, with connecting element σ\sigma, acts on (FλFFμ1)FFμ(F_{\lambda}\otimes_{F}F_{\mu^{-1}})\otimes_{F}F_{\mu^{\prime}} by multiplication with λ(ρ)μ1(σ)μ(σ)\lambda(\rho)\mu^{-1}(\sigma)\mu^{\prime}(\sigma). Thus, (FλFFμ1)FμFλFFμ1μ(F_{\lambda}\otimes_{F}F_{\mu^{-1}})*F_{\mu^{\prime}}\cong F_{\lambda}\otimes_{F}F_{\mu^{-1}\mu^{\prime}} as F[E×E]F[E\times E]-modules. Therefore, the trivial double coset contributes the summand Pλ,μμ1P_{\lambda,\mu{\mu^{\prime}}^{-1}}. We may choose the nontrival double coset representatives as elements tDt\in D, with tDit\notin D_{i}. Lemma 6.1(c) implies that (E×E)Δ(t,1)(DjE,β~,DjE)=E×{1}(E\times E)*\,{}^{(t,1)}\!\Delta(D_{j}E,\tilde{\beta},D_{j}E)=E\times\{1\}, since EDjtE={1}E\cap\,{}^{t}\!D_{j}E=\{1\}. Moreover, (ρ,1)E×{1}(\rho,1)\in E\times\{1\}, with connecting element 11, acts on (FλFFμ1)FFμ(t,1)(F_{\lambda}\otimes_{F}F_{\mu^{-1}})\otimes_{F}\,{}^{(t,1)}\!F_{\mu^{\prime}} via multiplication with λ(ρ)\lambda(\rho). Thus, (FλFFμ1)Fμ(t,1)FλFF(F_{\lambda}\otimes_{F}F_{\mu^{-1}})*\,{}^{(t,1)}\!F_{\mu^{\prime}}\cong F_{\lambda}\otimes_{F}F as F[E×{1}]F[E\times\{1\}]-modules. Induction to E×EE\times E results in the F[E×E]F[E\times E]-module νE^FλFFν\bigoplus_{\nu\in\hat{E}}F_{\lambda}\otimes_{F}F_{\nu}, and further induction to G×GG\times G yields νE^Pλ,ν\bigoplus_{\nu\in\hat{E}}P_{\lambda,\nu}, which is independent of tt. Since there are precisely (pnj1)/|E|(p^{n-j}-1)/|E| nontrivial double cosets, see Lemma 6.1(c), the result follows.

The third equation is proved in a similar way as the second.

For the fourth equation, Theorem 5.2 yields

Mi,α,λFGMj,β,μ\displaystyle M_{i,\alpha,\lambda}\otimes_{FG}M_{j,\beta,\mu}\cong IndΔ(DiE,α~,DiE)G×G(Fλ)FGIndΔ(DjE,β~,DjE)G×G(Fμ)\displaystyle\ \mathrm{Ind}_{\Delta(D_{i}E,\tilde{\alpha},D_{i}E)}^{G\times G}(F_{\lambda})\otimes_{FG}\mathrm{Ind}_{\Delta(D_{j}E,\tilde{\beta},D_{j}E)}^{G\times G}(F_{\mu})
\displaystyle\cong t[DiE\G/DjE]IndΔ(DiE,α~,DiE)Δ(t,1)(DjE,β~,DjE)G×G(FλFμ(t,1)).\displaystyle\bigoplus_{t\in[D_{i}E\backslash G/D_{j}E]}\mathrm{Ind}_{\Delta(D_{i}E,\tilde{\alpha},D_{i}E)\,*\,{}^{(t,1)}\!\Delta(D_{j}E,\tilde{\beta},D_{j}E)}^{G\times G}(F_{\lambda}*\,{}^{(t,1)}\!F_{\mu})\,.

For the trivial double coset in DiE\G/DjED_{i}E\backslash G/D_{j}E we choose the representative t=1t=1. By Lemma 5.1(c), we have Δ(DiE,α~,DiE)Δ(DjE,β~,DjE)=Δ(DkE,α~|DkEβ~|DkE,DkE)\Delta(D_{i}E,\tilde{\alpha},D_{i}E)*\Delta(D_{j}E,\tilde{\beta},D_{j}E)=\Delta(D_{k}E,\tilde{\alpha}|_{D_{k}E}\circ\tilde{\beta}|_{D_{k}E},D_{k}E). Moreover, the element (α(β(x))ρ,xρ)Δ(DkE,α~|DkEβ~|DkE,DkE)(\alpha(\beta(x))\rho,x\rho)\in\Delta(D_{k}E,\tilde{\alpha}|_{D_{k}E}\circ\tilde{\beta}|_{D_{k}E},D_{k}E), with connecting element β(x)ρ\beta(x)\rho, acts on FλFμ=FλFFμF_{\lambda}*F_{\mu}=F_{\lambda}\otimes_{F}F_{\mu} by multiplication with λ(ρ)μ(ρ)\lambda(\rho)\mu(\rho). Thus, FλFμFλμF_{\lambda}*F_{\mu}\cong F_{\lambda\mu} as FΔ(DkE,,α~|DkEβ~|DkE,DkE)F\Delta(D_{k}E,,\tilde{\alpha}|_{D_{k}E}\circ\tilde{\beta}|_{D_{k}E},D_{k}E)-modules and the trivial double coset contributes the direct summand Mk,α|Dkβ|Dk,λμM_{k,\alpha|_{D_{k}}\circ\beta|_{D_{k}},\lambda\mu}. We may choose the nontrivial double coset representatives as elements tDt\in D with tDlt\notin D_{l}. Lemma 6.1(f) implies Δ(DiE,α~,DiE)Δ(t,1)(DjE,β~,DjE)=Δ(Dk,α|DkβDk,Dk)\Delta(D_{i}E,\tilde{\alpha},D_{i}E)*\,{}^{(t,1)}\!\Delta(D_{j}E,\tilde{\beta},D_{j}E)=\Delta(D_{k},\alpha|_{D_{k}}\circ\beta_{D_{k}},D_{k}). Moreover, the element (α(β(x)),x)Δ(Dk,α|DkβDk,Dk)(\alpha(\beta(x)),x)\in\Delta(D_{k},\alpha|_{D_{k}}\circ\beta_{D_{k}},D_{k}), with connecting element β(x)\beta(x), acts on FλFμ(t,1)=FλFFμ(t,1)F_{\lambda}*\,{}^{(t,1)}\!F_{\mu}=F_{\lambda}\otimes_{F}\,{}^{(t,1)}\!F_{\mu} by multiplication with 11, i.e., as the identity. Thus, FλFμ(t,1)F_{\lambda}*\,{}^{(t,1)}\!F_{\mu} is the trivial FΔ(Dk,α|Dkβ|Dk,Dk)F\Delta(D_{k},\alpha|_{D_{k}}\circ\beta|_{D_{k}},D_{k})-module and induction to Δ(DkE,α~|DkEβ~|DkE,DkE)\Delta(D_{k}E,\tilde{\alpha}|_{D_{k}E}\circ\tilde{\beta}|_{D_{k}E},D_{k}E) yields νE^Fν\bigoplus_{\nu\in\hat{E}}F_{\nu}. Further induction to G×GG\times G yields νE^Mk,α|Dkβ|Dk,ν\bigoplus_{\nu\in\hat{E}}M_{k,\alpha|_{D_{k}}\circ\beta|_{D_{k}},\nu}, independent of tt. Since there are precisely (pnl1)/|E|(p^{n-l}-1)/|E| nontrivial double cosets in DiE\G/DjED_{i}E\backslash G/D_{j}E, see Lemma 6.1(c), the result follows.

For the proof of the last statement, note that Mn,id,1=IndΔ(G)G×G(F)FGM_{n,\mathrm{id},1}=\mathrm{Ind}_{\Delta(G)}^{G\times G}(F)\cong FG as (FG,FG)(FG,FG)-bimodules, or alternatively use the multiplication formulas. ∎

Recall the definition of TiΔ(FG,FG)T_{i}^{\Delta}(FG,FG) from Section 2. The following corollary follows immediately from Proposition 6.3.

6.4 Corollary

For i{0,,n}i\in\{0,\ldots,n\}, the subgroup TiΔ(FH,FH)T^{\Delta}_{i}(FH,FH) of TΔ(FH,FH)T^{\Delta}(FH,FH) is multiplicatively closed and the ring TΔ(B,B)/Pr(B,B)T^{\Delta}(B,B)/Pr(B,B) is commutative. More precisely, the following hold:

(a) [Pλ,μ]Eλ,μ[P_{\lambda,\mu}]\mapsto E_{\lambda,\mu} defines a ring isomorphism Pr(FH,FH)Mat|E|()CPr(FH,FH)\cong\mathrm{Mat}_{|E|}(\mathbb{Z})_{C}, where CC is the matrix in (2) with m=(|D|1)/|E|m=(|D|-1)/|E| and l=|E|l=|E|;

(b) The map [Mn,α,λ](αE,λ)[M_{n,\alpha,\lambda}]\mapsto(\alpha E,\lambda) induces a ring isomorphism TnΔ(FG,FG)[Aut(D)/E×E^]T^{\Delta}_{n}(FG,FG)\cong\mathbb{Z}[\mathrm{Aut}(D)/E\times\hat{E}];

(c) For i{1,,n1}i\in\{1,\ldots,n-1\}, the map [Mi,α,λ](απi(E),λ)[M_{i,\alpha,\lambda}]\mapsto(\alpha\pi_{i}(E),\lambda) induces a ring isomorphism TiΔ(FG,FG)[Aut(Di)/πi(E)×E^]ciT^{\Delta}_{i}(FG,FG)\cong\mathbb{Z}[\mathrm{Aut}(D_{i})/\pi_{i}(E)\times\hat{E}]_{c_{i}}, where ci=(1,1)+miλE^(1,λ)c_{i}=(1,1)+m_{i}\sum_{\lambda\in\hat{E}}(1,\lambda) with mi=(pni1)/|E|m_{i}=(p^{n-i}-1)/|E|;

Before we take the general study of idempotents in TΔ(B,B)T^{\Delta}(B,B) further, we will establish two general ring-theoretic results.

7 Two ring theoretic lemmas

In this section, we prove two ring-theoretic lemmas that will be used in the proofs of Theorem C and D in Section 8.

Note that if RR is a unitary Noetherian ring, then every idempotent ee of RR has a primitive decomposition.

7.1 Lemma

Let RR be a unital Noetherian ring, let n0n\geqslant 0, and suppose that I0I1InRI_{0}\subseteq I_{1}\subseteq\ldots\subseteq I_{n}\subset R is a chain of ideals of RR such that idem(R/In)={0,1}\mathrm{idem}(R/I_{n})=\{0,1\} and idem(Ik/Ik1)={0}\mathrm{idem}(I_{k}/I_{k-1})=\{0\} for all k=1,,nk=1,\ldots,n.

(a) For any two nonzero orthogonal idempotents e,ee,e^{\prime} of RR one has eI0e\in I_{0} or eI0e^{\prime}\in I_{0}. In particular, idem(R/I0)={0,1}\mathrm{idem}(R/I_{0})=\{0,1\}.

(b) If {e1,,er}idem(I0)\{e_{1},\ldots,e_{r}\}\subseteq\mathrm{idem}(I_{0}) is a maximal set of pairwise orthogonal primitive idempotents of I0I_{0} then {e1,,er,1(e1++er)}\{e_{1},\ldots,e_{r},1-(e_{1}+\cdots+e_{r})\} is a primitive decomposition of 1R1_{R} in RR.

Proof.

Induction on nn. Assume first that n=0n=0 and let e,eidem(R)e,e^{\prime}\in\mathrm{idem}(R) be non-zero and orthogonal. Then e+I0e+I_{0} and e+I0e^{\prime}+I_{0} are orthogonal in idem(R/I0)={0,1}\mathrm{idem}(R/I_{0})=\{0,1\}. Therefore, eI0e\in I_{0} or eI0e^{\prime}\in I_{0}, establishing (a). To see (b), it suffices to show that the idempotent 1e1-e is primitive in RR, where e:=e1++ere:=e_{1}+\cdots+e_{r}. So suppose that 1e=f1+f21-e=f_{1}+f_{2} with orthogonal non-zero idempotents f1,f2f_{1},f_{2} of RR. By (a), f1f_{1} or f2f_{2} is in I0I_{0}. By symmetry we may assume that f1I0f_{1}\in I_{0}. Let ff be an element of a primitive decomposition of f1f_{1} in RR. With f1f_{1} also ff is in I0I_{0} and orthogonal to ee. Thus, e1,,er,fe_{1},\ldots,e_{r},f are primitive pairwise orthogonal idempotents of I0I_{0}, contradicting the maximality of {e1,,er}\{e_{1},\ldots,e_{r}\}.

Now suppose that n>0n>0 and consider the chain of ideals In/In1R/In1I_{n}/I_{n-1}\subset R/I_{n-1} of R/In1R/I_{n-1} which satisfies the hypothesis of the lemma for the base case. Since the empty set is a maximal set of pairwise orthogonal primitive idempotents of In/In1I_{n}/I_{n-1}, we obtain that 1R1_{R} is primitive in RR, i.e., idem(R/In1)={0,1}\mathrm{idem}(R/I_{n-1})=\{0,1\}. Therefore, also the shorter chain I0I1In1RI_{0}\subseteq I_{1}\subseteq\cdots\subseteq I_{n-1}\subset R satisfies the hypothesis of the lemma and the result follows by induction. ∎

In the proof of the next lemma we will need the following result. Recall the definition of RcR_{c} in 3.1.

7.2 Theorem

(Coleman, [7]) Let GG be a finite group and RR an integral domain in which no prime divisor of |G||G| is invertible. Then idem(R[G])={0,1}\mathrm{idem}(R[G])=\{0,1\}.

7.3 Lemma

Let Γ\Gamma and XX be finite groups, RR a commutative ring, mRm\in R, and c:=(1,1)+mxX(1,x)R[Γ×X]c:=(1,1)+m\sum_{x\in X}(1,x)\in R[\Gamma\times X].

(a) Suppose that RR is an integral domain such that no prime divisor of |Γ×X||\Gamma\times X| is invertible in RR and 1+m|X|R×{0}1+m|X|\notin R^{\times}\cup\{0\}. Then idem(R[Γ×X]c)={0}\mathrm{idem}(R[\Gamma\times X]_{c})=\{0\}.

(b) Suppose that 1+m|X|1+m|X| is invertible in RR. Then d:=(1,1)m(1+m|X|)1xX(1,x)R[Γ×X]d:=(1,1)-m(1+m|X|)^{-1}\sum_{x\in X}(1,x)\in R[\Gamma\times X] is an inverse of cc in R[Γ×X]R[\Gamma\times X]. In particular, dd is an identity element of R[Γ×X]cR[\Gamma\times X]_{c}.

Proof.

(a) It is straightforward to check that the RR-linear extensions of the maps Γ×XR[Γ×{1}]\Gamma\times X\to R[\Gamma\times\{1\}], (γ,x)(1+|X|m)(γ,1)(\gamma,x)\mapsto(1+|X|m)(\gamma,1) and (γ,x)(γ,1)(\gamma,x)\mapsto(\gamma,1) define RR-linear ring homomorphism ϵ:R[Γ×X]cR[Γ×{1}]\epsilon^{\prime}\colon R[\Gamma\times X]_{c}\to R[\Gamma\times\{1\}] and ϵ:R[Γ×X]R[Γ×{1}]\epsilon\colon R[\Gamma\times X]\to R[\Gamma\times\{1\}], respectively. It is also straightforward to check that

acb=ab+mϵ(a)ϵ(b)sfor all a,bR[Γ×X], where s:=xX(1,x).a\cdot_{c}b=a\cdot b+m\epsilon(a)\cdot\epsilon(b)\cdot s\quad\text{for all $a,b\in R[\Gamma\times X]$, where $s:=\sum_{x\in X}(1,x)$.} (4)

In fact, since both sides are RR-bilinear in aa and bb, it suffices to check this for the standard RR-basis elements. Let ee be an idempotent of R[Γ×X]cR[\Gamma\times X]_{c}. Then ϵ(e)\epsilon^{\prime}(e) is an idempotent in ϵ(R[Γ×X]c)=(1+m|X|)R[Γ×{1}]\epsilon^{\prime}(R[\Gamma\times X]_{c})=(1+m|X|)R[\Gamma\times\{1\}]. By Theorem 7.2, idem(R[Γ])={0,1}\mathrm{idem}(R[\Gamma])=\{0,1\}. Since (1+m|X|)(1+m|X|) is not a unit in RR, this implies that ϵ(e)=0\epsilon^{\prime}(e)=0. Since R[Γ×{1}]R[\Gamma\times\{1\}] is RR-torsionfree and 1+m|X]01+m|X]\neq 0 we also obtain ϵ(e)=0\epsilon(e)=0. Equation (4) now implies that e=ece=ee+mϵ(e)ϵ(e)s=eee=e\cdot_{c}e=e\cdot e+m\epsilon(e)\cdot\epsilon(e)\cdot s=e\cdot e is an idempotent also in the ring R[Γ×X]R[\Gamma\times X]. Again by Theorem 7.2, this implies that e{0,1}e\in\{0,1\}. Since ϵ(e)=0\epsilon(e)=0, this implies that e1e\neq 1 and the proof is complete.

(b) This is a straightforward computation. ∎

8 Proofs of Theorem C and D

Throughout this section we assume that BB is a block algebra of FGFG with cyclic defect group DD of order pn>1p^{n}>1. If DD is trivial then TΔ(B,B)=Pr(B,B)T^{\Delta}(B,B)=Pr(B,B)\cong\mathbb{Z} and Theorems C and D hold trivially. We choose a maximal BB-Brauer pair (D,e)(D,e) and set E:=NG(D,e)/CG(D)E:=N_{G}(D,e)/C_{G}(D). Then, via the conjugation action of NG(D,e)N_{G}(D,e) on DD, the group EE can be considered as a subgroup of Aut(D)\mathrm{Aut}(D). It is known that EE is a pp^{\prime}-group, see [10, Theorem 6.7.6(v)]. We adopt all the notation introduced at the beginning of Section 6, except, that in this section we set H:=DEH:=D\rtimes E.

Many questions concerning blocks with cyclic defect groups reduce to the group HH. This also holds for the ring structure of TΔ(B,B)T^{\Delta}(B,B).

8.1 Theorem

There exists a ring isomorphism TΔ(B,B)TΔ(FH,FH)T^{\Delta}(B,B)\cong T^{\Delta}(FH,FH) that restricts to an isomorphism TiΔ(B,B)TiΔ(FH,FH)T^{\Delta}_{\leqslant i}(B,B)\cong T^{\Delta}_{\leqslant i}(FH,FH) for all i{0,,n}i\in\{0,\ldots,n\}.

Proof.

By [13], there exists a splendid Rickard equivalence between the block BB and its Brauer correspondent block B1Bl(FNG(D))B_{1}\in\mathrm{Bl}(FN_{G}(D)). By [3, Theorem 1.5] this implies the existence of a pp-permutation equivalence γTΔ(B,B1)\gamma\in T^{\Delta}(B,B_{1}). It is straightforward to verify that the map γGGγ:TΔ(B,B)TΔ(B1,B1)\gamma^{\circ}\cdot_{G}-\cdot_{G}\gamma\colon T^{\Delta}(B,B)\to T^{\Delta}(B_{1},B_{1}) is a ring isomorphism.

Furthermore, if i(F[NG(D)])Di\in(F[N_{G}(D)])^{D} is a source idempotent of B1B_{1}, then iB1iiB_{1}i is isomorphic to FHFH as interior DD-algebra, see [9, Theorem 6.14.1]. Note that the 22-cocycle appearing there is trivial, since EE is cyclic. One can consider iB1iB_{1} as (FH,B1)(FH,B_{1})-bimodule and it induces a Morita equivalence between B1B_{1} and FHFH. Moreover, viewed after restriction as F[D×NG(D)]F[D\times N_{G}(D)]-module, iB1iB_{1} is a direct summand of the permutation module FNG(D)FN_{G}(D). This implies that the (F[H×NG(D)])(F[H\times N_{G}(D)])-module iB1iB_{1} is a pp-permutation module. It follows that one obtains a ring isomorphism TΔ(B1,B1)TΔ(FH,FH)T^{\Delta}(B_{1},B_{1})\cong T^{\Delta}(FH,FH) as in the previous paragraph.

Theorem 5.2 implies that the above bijections map TiΔ(B,B)T^{\Delta}_{\leqslant i}(B,B) to TiΔ(FH,FH)T^{\Delta}_{\leqslant i}(FH,FH) and vice-versa. ∎

Proof.

of Theorem C. By Theorem 8.1 it suffices to prove the statement in the case that G=H=DEG=H=D\rtimes E as introduced at the beginning of the section. In this case we consider the chain of ideals

{0}T0Δ(FG,FG)T1Δ(FG,FG)Tn1Δ(FG,FG)TnΔ(FG,FG)=TΔ(FG,FG).\{0\}\subset T_{0}^{\Delta}(FG,FG)\subset T_{\leqslant 1}^{\Delta}(FG,FG)\subset\cdots\subset T_{\leqslant n-1}^{\Delta}(FG,FG)\subset T_{\leqslant n}^{\Delta}(FG,FG)=T^{\Delta}(FG,FG)\,.

By Corollary 6.4, the ring TΔ(FG,FG)/Pr(FG,FG)T^{\Delta}(FG,FG)/Pr(FG,FG) is abelian. By Example 3.10, the multiplicity of 11 as elementary divisor of the Cartan matrix of FGFG is equal to l1=|E|1l-1=|E|-1. Therefore, using Theorem 3.6(b) and Lemma 7.1, for the remaining statements of Theorem C, it suffices to show that

(i) idem(TΔ(FG,FG)/TΔ(FG,FG)n1)={0,1}\mathrm{idem}\bigl{(}T^{\Delta}(FG,FG)/T^{\Delta}(FG,FG)_{\leqslant n-1}\bigr{)}=\{0,1\} and

(ii) idem(TΔ(FG,FG)i/TΔ(FG,FG)i1)={0}\mathrm{idem}\bigl{(}T^{\Delta}(FG,FG)_{\leqslant i}/T^{\Delta}(FG,FG)_{\leqslant i-1}\bigr{)}=\{0\} for all i{1,,n1}i\in\{1,\ldots,n-1\}.

But (i) follows immediately from Corollary 6.4(b) and Theorem 7.2, and (ii) follows immediately from Corollary 6.4(c) and Lemma 7.3(a). ∎

Proof.

of Theorem D. Again, by Theorem 8.1 it suffices to prove Theorem D in the case that G=H=DEG=H=D\rtimes E and from now on we assume this. Furthermore we assume that the characteristic of kk is not pp.

Claim 1: For each i{0,,n}i\in\{0,\ldots,n\}, kTiΔ(FG,FG)kT^{\Delta}_{i}(FG,FG) has an identity element eie_{i}. We define

e0:=λE^[Pλ,λ]m|D|λ,μE^[Pλ,μ].e_{0}:=\sum_{\lambda\in\hat{E}}[P_{\lambda,\lambda}]-\frac{m}{|D|}\sum_{\lambda,\mu\in\hat{E}}[P_{\lambda,\mu}]\,.

Then, by Example 3.10, e0e_{0} is an identity element of kT0Δ(FG,FG)=kPr(FG,FG)kT_{0}^{\Delta}(FG,FG)=kPr(FG,FG). Further, for i{1,,n}i\in\{1,\ldots,n\}, we set

mi:=(pni1)/|E|,mi:=mi(1+mi|E|)1=mi/pnikand\displaystyle m_{i}:=(p^{n-i}-1)/|E|\,,\ m^{\prime}_{i}:=-m_{i}(1+m_{i}|E|)^{-1}=-m_{i}/p^{n-i}\in k\quad\text{and}
ci:=[Mi,id,1]+miλE^[Mi,id,λ],ei:=[Mi,id,1]+miλE^[Mi,id,λ]kTiΔ(FG,FG).\displaystyle c_{i}:=[M_{i,\mathrm{id},1}]+m_{i}\sum_{\lambda\in\hat{E}}[M_{i,\mathrm{id},\lambda}]\,,\ e_{i}:=[M_{i,\mathrm{id},1}]+m^{\prime}_{i}\sum_{\lambda\in\hat{E}}[M_{i,\mathrm{id},\lambda}]\in kT_{i}^{\Delta}(FG,FG)\,.

Note that mn=mn=0m_{n}=m^{\prime}_{n}=0. Using the isomorphisms in Corollary 6.4(b) and (c) together with Lemma 7.3(b), we see that eie_{i} is an identity element of kTiΔ(FG,FG)kT_{i}^{\Delta}(FG,FG). Claim 1 is now established.

Claim 2: For any i{0,,n}i\in\{0,\ldots,n\}, the idempotent eie_{i} is central in TΔ(FG,FG)T^{\Delta}(FG,FG). To see that e0e_{0} is central, it suffices to show [Mi,α,λ]e0=e0[Mi,α,λ][M_{i,\alpha,\lambda}]\cdot e_{0}=e_{0}\cdot[M_{i,\alpha,\lambda}] for any i{1,,n}i\in\{1,\ldots,n\}, αAut(Di)\alpha\in\mathrm{Aut}(D_{i}), and λE^\lambda\in\hat{E}. We compute both sides, using Proposition 6.3, and observe that they coincide:

[Mi,α,λ]e0\displaystyle[M_{i,\alpha,\lambda}]\cdot e_{0} =μE^[Mi,α,λ][Pμ,μ]m|D|μ,νE^[Mi,α,λ][Pμ,ν]\displaystyle=\sum_{\mu\in\hat{E}}[M_{i,\alpha,\lambda}]\cdot[P_{\mu,\mu}]-\frac{m}{|D|}\sum_{\mu,\nu\in\hat{E}}[M_{i,\alpha,\lambda}]\cdot[P_{\mu,\nu}]
=μE^([Pλμ,μ]+miνE^[Pν,μ])m|D|μ,νE^([Pλμ,ν]+miνE^[Pν,ν])\displaystyle=\sum_{\mu\in\hat{E}}\Bigl{(}[P_{\lambda\mu,\mu}]+m_{i}\sum_{\nu\in\hat{E}}[P_{\nu,\mu}]\Bigr{)}-\frac{m}{|D|}\sum_{\mu,\nu\in\hat{E}}\Bigl{(}[P_{\lambda\mu,\nu}]+m_{i}\sum_{\nu^{\prime}\in\hat{E}}[P_{\nu^{\prime},\nu}]\Bigr{)}
=μE^[Pλμ,μ]+(mim|D|mmi|E||D|)μ,νE^[Pμ,ν]\displaystyle=\sum_{\mu\in\hat{E}}[P_{\lambda\mu,\mu}]+\Bigl{(}m_{i}-\frac{m}{|D|}-\frac{mm_{i}|E|}{|D|}\Bigr{)}\sum_{\mu,\nu\in\hat{E}}[P_{\mu,\nu}]

and

e0[Mi,α,λ]\displaystyle e_{0}\cdot[M_{i,\alpha,\lambda}] =μE^[Pμ,μ][Mi,α,λ]m|D|μ,ν[Pμ,ν][Mi,α,λ]\displaystyle=\sum_{\mu\in\hat{E}}[P_{\mu,\mu}]\cdot[M_{i,\alpha,\lambda}]-\frac{m}{|D|}\sum_{\mu,\nu}[P_{\mu,\nu}]\cdot[M_{i,\alpha,\lambda}]
=μE^([Pμ,μλ1]+miνE^[Pμ,ν])m|D|μ,νE^([Pμ,νλ1]+miνE^[Pμ,ν])\displaystyle=\sum_{\mu\in\hat{E}}\Bigl{(}[P_{\mu,\mu\lambda^{-1}}]+m_{i}\sum_{\nu\in\hat{E}}[P_{\mu,\nu}]\Bigr{)}-\frac{m}{|D|}\sum_{\mu,\nu\in\hat{E}}\Bigl{(}[P_{\mu,\nu\lambda^{-1}}]+m_{i}\sum_{\nu^{\prime}\in\hat{E}}[P_{\mu,\nu^{\prime}}]\Bigr{)}
=μE^[Pμ,μλ1]+(mim|D|mmi|E||D|)μ,νE^[Pμ,ν].\displaystyle=\sum_{\mu\in\hat{E}}[P_{\mu,\mu\lambda^{-1}}]+\Bigl{(}m_{i}-\frac{m}{|D|}-\frac{mm_{i}|E|}{|D|}\Bigr{)}\sum_{\mu,\nu\in\hat{E}}[P_{\mu,\nu}]\,.

Now let i{1,,n}i\in\{1,\ldots,n\}. Since any two elements in i=1nTiΔ(FG,FG)\bigoplus_{i=1}^{n}T_{i}^{\Delta}(FG,FG) commute by the fourth equation in Proposition 6.3, it suffices to show that [Pλ,μ]ei=ei[Pλ,μ][P_{\lambda,\mu}]\cdot e_{i}=e_{i}\cdot[P_{\lambda,\mu}] for all λ,μE^\lambda,\mu\in\hat{E}. Again, a straightforward computation using Proposition 6.3 yields

[Pλ,μ]ei=[Pλ,μ]+(mimipnimi2|E|pni)νE^[Pλ,ν][P_{\lambda,\mu}]\cdot e_{i}=[P_{\lambda,\mu}]+\Bigl{(}m_{i}-\frac{m_{i}}{p^{n-i}}-\frac{m_{i}^{2}|E|}{p^{n-i}}\Bigr{)}\sum_{\nu\in\hat{E}}[P_{\lambda,\nu}]

and

ei[Pλμ]=[Pλ,μ]+(mimipnimi2|E|pni)νE^[Pν,μ].e_{i}\cdot[P_{\lambda\mu}]=[P_{\lambda,\mu}]+\Bigl{(}m_{i}-\frac{m_{i}}{p^{n-i}}-\frac{m_{i}^{2}|E|}{p^{n-i}}\Bigr{)}\sum_{\nu\in\hat{E}}[P_{\nu,\mu}]\,.

But a quick computation shows that

mimipnimi2|E|pni=0m_{i}-\frac{m_{i}}{p^{n-i}}-\frac{m_{i}^{2}|E|}{p^{n-i}}=0 (5)

so that we obtain

[Pλ,μ]ei=[Pλ,μ]=ei[Pλμ].[P_{\lambda,\mu}]\cdot e_{i}=[P_{\lambda,\mu}]=e_{i}\cdot[P_{\lambda\mu}]\,. (6)

Claim 3: For all iji\leqslant j in {0,,n}\{0,\ldots,n\} one has eiej=eie_{i}e_{j}=e_{i}. If i=0i=0 this follows from e02=e0e_{0}^{2}=e_{0} if j=0j=0 and from Equation (6). If 1ij1\leqslant i\leqslant j, another straightforward computation using Proposition 6.3 yields

eiej\displaystyle e_{i}\cdot e_{j} =([Mi,id,1]+miλE^[Mi,id,λ])([Mj,id,1]+miμE^[Mj,id,μ])\displaystyle=\Bigl{(}[M_{i,\mathrm{id},1}]+m^{\prime}_{i}\sum_{\lambda\in\hat{E}}[M_{i,\mathrm{id},\lambda}]\Bigr{)}\cdot\Bigl{(}[M_{j,\mathrm{id},1}]+m^{\prime}_{i}\sum_{\mu\in\hat{E}}[M_{j,\mathrm{id},\mu}]\Bigr{)}
=[Mi,id,1]+(mj+mi+mimj|E|+mj+mjmj|E|+mimj|E|+mimjmj|E|2)νE^[Mi,id,ν].\displaystyle=[M_{i,\mathrm{id},1}]+\Bigl{(}m_{j}+m^{\prime}_{i}+m^{\prime}_{i}m_{j}|E|+m^{\prime}_{j}+m^{\prime}_{j}m_{j}|E|+m^{\prime}_{i}m^{\prime}_{j}|E|+m^{\prime}_{i}m^{\prime}_{j}m_{j}|E|^{2}\Bigr{)}\sum_{\nu\in\hat{E}}[M_{i,\mathrm{id},\nu}]\,.

Using Equation (5) for jj instead of ii, we obtain mj+mj+mjmj|E|=0m_{j}+m^{\prime}_{j}+m_{j}m^{\prime}_{j}|E|=0, which implies that the expression inside the parentheses is equal to mim^{\prime}_{i}. Thus, eiej=eie_{i}\cdot e_{j}=e_{i} as claimed.

Claims 1, 2, and 3 imply now that e0,e1e0,,enen1e_{0},e_{1}-e_{0},\ldots,e_{n}-e_{n-1} are pairwise orthogonal central idempotents of kTΔ(FG,FG)kT^{\Delta}(FG,FG) whose sum is equal to 1kTΔ(FG,FG)=en1_{kT^{\Delta}(FG,FG)}=e_{n}.

We already know that kTΔ(FG,FG)e0=kPr(FG,FG)Mat|E|(k)kT^{\Delta}(FG,FG)e_{0}=kPr(FG,FG)\cong\mathrm{Mat}_{|E|}(k) from Theorem 3.8. Our next goal is

Claim 4: For i{1,,n}i\in\{1,\ldots,n\}, the kk-algebra kTΔ(FG,FG)(eiei1)kT^{\Delta}(FG,FG)(e_{i}-e_{i-1}) is isomorphic to k[Aut(Di)/πi(E)×E^]k[\mathrm{Aut}(D_{i})/\pi_{i}(E)\times\hat{E}]. It suffices to show that the kk-linear and multiplicative map

kTiΔ(FG,FG)kTΔ(FG,FG)(eiei1),aa(eiei1),kT_{i}^{\Delta}(FG,FG)\to kT^{\Delta}(FG,FG)(e_{i}-e_{i-1})\,,\quad a\mapsto a(e_{i}-e_{i-1})\,, (7)

is an isomorphism, since kTiΔ(FG,FG)kT_{i}^{\Delta}(FG,FG) is isomorphic to k[Aut(Di)/πi(E)×E^]k[\mathrm{Aut}(D_{i})/\pi_{i}(E)\times\hat{E}] by Corollary 6.4(b),(c) and Lemma 7.3(b), using that (1+mi|E|)=pni(1+m_{i}|E|)=p^{n-i} is invertible in kk. Using Proposition 6.3 and that eie_{i} is an identity element of kTiΔ(FG,FG)kT^{\Delta}_{i}(FG,FG), we obtain, for any αAut(Di)\alpha\in\mathrm{Aut}(D_{i}) and any λE^\lambda\in\hat{E}, that [Mi,α,λ](eiei1)[Mi,α,λ]+kTi1Δ(FG,FG)[M_{i,\alpha,\lambda}]\cdot(e_{i}-e_{i-1})\in[M_{i,\alpha,\lambda}]+kT^{\Delta}_{i-1}(FG,FG). Therefore the map in (7) followed up by the projection onto kTiΔ(FG,FG)kT^{\Delta}_{i}(FG,FG) is the identity map, so that the map in (7) is injective. But then we have

dimkTΔ(FG,FG)\displaystyle\dim_{k}T^{\Delta}(FG,FG) =i=0ndimkTiΔ(FG,FG)\displaystyle=\sum_{i=0}^{n}\dim_{k}T_{i}^{\Delta}(FG,FG)
dimkkTΔ(FG,FG)e0+i=1ndimkkTΔ(FG,FG)(eiei1)=dimkkTΔ(FG,FG),\displaystyle\leqslant\dim_{k}kT^{\Delta}(FG,FG)e_{0}+\sum_{i=1}^{n}\dim_{k}kT^{\Delta}(FG,FG)(e_{i}-e_{i-1})=\dim_{k}kT^{\Delta}(FG,FG),

since e0,e1e0,,enen1e_{0},e_{1}-e_{0},\ldots,e_{n}-e_{n-1} are pairwise orthogonal idempotents whose sum is 11. Therefore equality must hold for each of the summands above. This implies that the map in (7) is also surjective and Claim 4 is proved.

Finally, we prove the last statement in Theorem D for an arbitrary field kk. By (1) and Maschke’s theorem, the statement holds in the case that kk has characteristic different from pp. So assume that kk has characteristic pp. Since kTΔ(FG,FG)/kTn1Δ(FG,FG)kT^{\Delta}(FG,FG)/kT_{\leqslant n-1}^{\Delta}(FG,FG) is isomorphic to k[Aut(D)/E×E^]k[\mathrm{Aut}(D)/E\times\hat{E}] by Corollary 6.4(b), and since pp divides |Aut(D)/E||\mathrm{Aut}(D)/E|, the algebra kTΔ(FG,FG)kT^{\Delta}(FG,FG) has a factor algebra that is not semisimple. Therefore, kTΔ(FG,FG)kT^{\Delta}(FG,FG) is not semisimple and the proof of Theorem D is complete. ∎

References

  • [1] J. L. Alperin. Local representation theory, volume 11 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups.
  • [2] Robert Boltje and Philipp Perepelitsky. pp-permutation equivalences between blocks of group algebras, 2020. arXiv 2007.09253.
  • [3] Robert Boltje and Bangteng Xu. On pp-permutation equivalences: between Rickard equivalences and isotypies. Trans. Amer. Math. Soc., 360(10):5067–5087, 2008.
  • [4] Serge Bouc. Bisets as categories and tensor product of induced bimodules. Appl. Categ. Structures, 18(5):517–521, 2010.
  • [5] Serge Bouc and Deniz Yı lmaz. Diagonal pp-permutation functors, semisimplicity, and functorial equivalence of blocks. Adv. Math., 411:Paper No. 108799, 54, 2022.
  • [6] Michel Broué. Isométries parfaites, types de blocs, catégories dérivées. Astérisque, (181-182):61–92, 1990.
  • [7] D. B. Coleman. Idempotents in group rings. Proc. Amer. Math. Soc., 17:962, 1966.
  • [8] Markus Linckelmann. Trivial source bimodule rings for blocks and pp-permutation equivalences. Trans. Amer. Math. Soc., 361(3):1279–1316, 2009.
  • [9] Markus Linckelmann. The block theory of finite group algebras. Vol. I, volume 91 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2018.
  • [10] Markus Linckelmann. The block theory of finite group algebras. Vol. II, volume 92 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2018.
  • [11] Hirosi Nagao and Yukio Tsushima. Representations of finite groups. Academic Press, Inc., Boston, MA, 1989. Translated from the Japanese.
  • [12] Jeremy Rickard. Splendid equivalences: derived categories and permutation modules. Proc. London Math. Soc. (3), 72(2):331–358, 1996.
  • [13] Raphaël Rouquier. The derived category of blocks with cyclic defect groups. In Derived equivalences for group rings, volume 1685 of Lecture Notes in Math., pages 199–220. Springer, Berlin, 1998.