This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Space Complexity of Generating Tent Codes

Naoaki Okada111Graduate School of Information Science and Electrical Engineering, Kyushu University    Shuji Kijima222Faculty of Data Science, Shiga University
Abstract

This paper is motivated by a question whether it is possible to calculate a chaotic sequence efficiently, e.g., is it possible to get the nn-th bit of a bit sequence generated by a chaotic map, such as β\beta-expansion, tent map and logistic map in o(n)\mathrm{o}(n) time/space? This paper gives an affirmative answer to the question about the space complexity of a tent map. We prove that a tent code of nn-bits with an initial condition uniformly at random is exactly generated in O(log2n)\mathrm{O}(\log^{2}n) space in expectation.

1 Introduction

A tent map fμ:[0,1][0,1]f_{\mu}\colon[0,1]\to[0,1] (or simply ff) is given by

f(x)={μx:x12,μ(1x):x12\displaystyle f(x)=\begin{cases}\mu x&:x\leq\frac{1}{2},\\ \mu(1-x)&:x\geq\frac{1}{2}\end{cases} (1)

where this paper is concerned with the case of 1<μ<21<\mu<2. As Figure 1 shows, it is a simple piecewise-linear map looking like a tent. Let xn=f(xn1)=fn(x)x_{n}=f(x_{n-1})=f^{n}(x) recursively for n=1,2,n=1,2,\ldots, where x0=xx_{0}=x for convenience. Clearly, x0,x1,x2,x_{0},x_{1},x_{2},\ldots is a deterministic sequence. Nevertheless, the deterministic sequence shows a complex behavior, as if “random,” when μ>1\mu>1. It is said chaotic [16]. For instance, fn(x)f^{n}(x) becomes quite different from fn(x)f^{n}(x^{\prime}) for xxx\neq x^{\prime} as nn increasing, even if |xx||x-x^{\prime}| is very small, and it is one of the most significant characters of a chaotic sequence known as the sensitivity to initial conditions — a chaotic sequence is “unpredictable” despite a deterministic process [15, 23, 31, 4].

This paper, from the viewpoint of theoretical computer science, is concerned with the computational complexity of a simple problem: Given μ\mu, xx and nn, decide whether fn(x)<1/2f^{n}(x)<1/2. Its time complexity might be one of the most interesting questions; e.g., is it possible to “predict” whether fn(x)<1/2f^{n}(x)<1/2 in time polynomial in logn\log n? Unfortunately, we in this paper cannot answer the question333 We think that the problem might be NP-hard using the arguments on the complexity of algebra and number theory in [6], but we could not find the fact. . Instead, this paper is concerned with the space complexity of the problem.

Refer to caption
(a) Tent map f(x)f(x)
Refer to caption
(b) The 33rd iterated tent map f3(x)f^{3}(x)
Figure 1: The tent map f(x)f(x) and the 33-rd iterated tent map f3(x)f^{3}(x).

1.1 Background and Contribution

Chaos.

Chaotic sequences show many interesting figures such as cobweb, strange attractor, bifurcation, etc. [15, 14, 18, 16, 11]. The chaos theory has been intensively developed in several context such as electrical engineering, information theory, statistical physics, neuroscience and computer science, with many applications, such as weather forecasting, traffic prediction, stock pricing, since the 1960s. For instance, a cellular automaton, including the life game, is a classical topic in computer science, and it is closely related to the “edge of chaos.” For another instance, the “sensitivity to initial conditions” are often regarded as unpredictability, and chaotic sequences are used in pseudo random number generator, cryptography, or heuristics for NP-hard problems including chaotic genetic algorithms.

From the viewpoint of theoretical computer science, the numerical issues of computing chaotic sequences have been intensively investigated in statistical physics, information theory and probability. In contrast, the computational complexity of computing a chaotic sequence seems not well developed. It may be a simple reason that it looks unlike a decision problem.

Tent map: 1-D, piecewise-linear and chaotic.

Interestingly, very simple maps show chaotic behavior. One of the most simplest maps are piece-wise linear maps, including the tent map and the β\beta-expansion (a.k.a. Bernoulli shift) which are 1-D maps and the baker’s map which is a 2-D map [15, 22, 19, 20, 23, 31, 4, 9, 21].

The tent map, as well as the β\beta-expansion, is known to be topologically conjugate to the logistic map which is a quadratic map cerebrated as a chaotic map. Chaotic behavior of the tent map, in terms of power spectra, band structure, critical behavior, are analyzed in e.g., [15, 23, 31, 4]. The tent map is also used for pseudo random generator or encryption e.g., [1, 2, 13]. It is also used for meta-heuristics for NP-hard problems [29, 7].

Our results and related works.

This paper is concerned with the problem related to deciding whether fn(x)<1/2f^{n}(x)<1/2 for the nn-th iterated tent map fnf^{n}. More precisely, we define the tent language n{0,1}n{\cal L}_{n}\subseteq\{0,1\}^{n} in Section 2, and consider a random generation of BnB\in{\cal L}_{n} according to a distribution 𝒟n{\cal D}_{n} corresponding to the “uniform initial condition” (see Section 2, for the precise definition). We give an algorithm in O(log2n)\mathrm{O}(\log^{2}n) expected space (Theorem 2.5), meaning that the average space complexity is exponentially improved compared with the naive computation according to (1).

Our strategy is as follows: we give a compact state-transit model for the tent language n{\cal L}_{n} in Section 3.4, design a random walk on the model to provide a desired distribution 𝒟n{\cal D}_{n} in Section 3.5, and then prove that the expected space complexity is O(log2n)\mathrm{O}(\log^{2}n) in Section 4. The idea of the compact model and the random walk is similar to [27, 28] for β\beta-expansion, while [27, 28] did not give any argument on the space complexity beyond a trivial upper bound. For the compact representation, we use the idea of the location of segments (which we call segment-type in this paper) developed by [17].

Our technique is related to the Markov partition, often appearing in entropy arguments [24, 26]. For some μ\mu, precisely when μ\mu is a solution of fn(1/2)=1/2f^{n}(1/2)=1/2 for an integer nn, our Markov chain is regarded as a version of Markov partition with a finite state. However, the number of states of our Markov chain is unbounded in general as nn\to\infty, and it is our main target.

For an earlier version of this manuscript, Masato Tsujii gave us a comment about the connection to the Markov extension. In 1979, Hofbauer [8] gave a representation of the kneading invariants for unimodal maps, which is known as the Markov extension and/or Hofbauer tower, and then discussed topological entropy. Hofbauer and Keller extensively developed the arguments in 1980s, see e.g., [5, 3]. In fact, some arguments of this manuscript, namely Sections  3.4, 3.5, and 4.3, are very similar to or essentially the same as the arguments of the Markov extension, cf. [5], whereas note that this manuscript is mainly concerned with the computational complexity. It is difficult to describe the idea of our main result, namely Algorithm 1 given in section 3.6 and Theorem 2.5, without describing those arguments, then Sections 3.4, 3.5 and 4.3 are left as it is. We also use some classical techniques of computational complexity, cf. [25, 12], for the purpose.

2 Tent Code and Main Theorem

This paper focusing on the case μ(1,2)\mu\in(1,2). We assume that μ\mu is rational in the main theorem (Theorem 2.5), to make the arguments clear on the Turing computation, but the assumption is not essential444 See Section 5 for real μ\mu. . Let fnf^{n} denote the nn-times iterated tent map, which is formally given by fn(x)=f(fn1(x))f^{n}(x)=f(f^{n-1}(x)) recursively with respect to nn. We remark, for the later argument in Section 3.4, that

fn(x)=fn1(f(x))\displaystyle f^{n}(x)=f^{n-1}(f(x)) (2)

also holds by the associative law of a function composition. It is easy to observe from the definition hat the iterated tent map is symmetric around 1/21/2, meaning that

fn(x)=fn(1x)\displaystyle f^{n}(x)=f^{n}(1-x) (3)

holds for any x(0,1)x\in(0,1).

We define a tent-encoding function γμn:[0,1){0,1}n\gamma^{n}_{\mu}\colon[0,1)\to\{0,1\}^{n} (or simply γn\gamma^{n}) as follows. For convenience, let xi=fi(x)x_{i}=f^{i}(x) for i=1,2,i=1,2,\ldots as given x[0,1)x\in[0,1). Then, the tent code γn(x)=b1bn\gamma^{n}(x)=b_{1}\cdots b_{n} for x[0,1)x\in[0,1) is a bit-sequence, where

b1\displaystyle b_{1} ={0:x<12,1:x12,\displaystyle=\begin{cases}0&:x<\frac{1}{2},\\ 1&:x\geq\frac{1}{2},\end{cases} (4)

and bib_{i} (i=2,3,,ni=2,3,\ldots,n) is recursively given by

bi+1\displaystyle b_{i+1} ={bi:xi<12,bi¯:xi>12,1:xi=12,\displaystyle=\begin{cases}b_{i}&:x_{i}<\frac{1}{2},\\ \overline{b_{i}}&:x_{i}>\frac{1}{2},\\ 1&:x_{i}=\frac{1}{2},\end{cases} (5)

where b¯\overline{b} denotes bit inversion of bb, i.e., 0¯=1\overline{0}=1 and 1¯=0\overline{1}=0. We remark that the definition (5) is rephrased by

bi+1\displaystyle b_{i+1} ={0:[bi=0][xi<12],1:[bi=0][xi12],1:[bi=1][xi12],0:[bi=1][xi>12].\displaystyle=\begin{cases}0&:[b_{i}=0]\wedge\left[x_{i}<\frac{1}{2}\right],\\ 1&:[b_{i}=0]\wedge\left[x_{i}\geq\frac{1}{2}\right],\\ 1&:[b_{i}=1]\wedge\left[x_{i}\leq\frac{1}{2}\right],\\ 0&:[b_{i}=1]\wedge\left[x_{i}>\frac{1}{2}\right].\end{cases} (6)
Proposition 2.1.

Suppose γμ(x)=b1b2\gamma_{\mu}^{\infty}(x)=b_{1}b_{2}\cdots for x[0,1)x\in[0,1). Then, (μ1)i=1biμi=x(\mu-1)\sum_{i=1}^{\infty}b_{i}\mu^{-i}=x.

See Section A for a proof of Proposition 2.1, proofs of Propositions 2.2, 2.3 and Lemma 2.4 below as well. The proofs are not difficult but lengthy. Thanks to this a little bit artificial definition (5), we obtain the following two more facts.

Proposition 2.2.

For any x,x[0,1)x,x^{\prime}\in[0,1),

xx\displaystyle x\leq x^{\prime} γμn(x)γμn(x)\displaystyle\Rightarrow\gamma_{\mu}^{n}(x)\preceq\gamma_{\mu}^{n}(x^{\prime})

hold where \preceq denotes the lexicographic order, that is bi=0b_{i_{*}}=0 and bi=1b^{\prime}_{i_{*}}=1 at i=min{j{1,2,}bjbj}i_{*}=\min\{j\in\{1,2,\ldots\}\mid b_{j}\neq b^{\prime}_{j}\} for γn(x)=b1b2bn\gamma^{n}(x)=b_{1}b_{2}\cdots b_{n} and γn(x)=b1b2bn\gamma^{n}(x^{\prime})=b^{\prime}_{1}b^{\prime}_{2}\cdots b^{\prime}_{n} unless γn(x)=γn(x)\gamma^{n}(x)=\gamma^{n}(x^{\prime}).

Proposition 2.3.

The nn-th iterated tent code is right continuous, i.e., γμn(x)=γμn(x+0)\gamma_{\mu}^{n}(x)=\gamma_{\mu}^{n}(x+0).

These two facts make the arguments simple. The following technical lemma is useful to prove Propositions 2.2 and 2.3, as well as the arguments in Sections 3 and 4.

Lemma 2.4.

Let x,x[0,1)x,x^{\prime}\in[0,1) satisfy x<xx<x^{\prime}. Let γ(x)=b1b2\gamma(x)=b_{1}b_{2}\cdots and γ(x)=b1b2\gamma(x^{\prime})=b^{\prime}_{1}b^{\prime}_{2}\cdots. If bi=bib_{i}=b^{\prime}_{i} hold for all i=1,,ni=1,\ldots,n then

{xn<xnif bn=bn=0xn>xnif bn=bn=1\displaystyle\begin{cases}x_{n}<x^{\prime}_{n}&\mbox{if $b_{n}=b^{\prime}_{n}=0$, }\\ x_{n}>x^{\prime}_{n}&\mbox{if $b_{n}=b^{\prime}_{n}=1$}\end{cases} (7)

holds.

Let n,μ{\cal L}_{n,\mu} (or simply n{\cal L}_{n}) denote the set of all nn-bits tent codes, i.e.,

n={γμn(x){0,1}n|x[0,1)}\displaystyle{\cal L}_{n}=\left\{\gamma_{\mu}^{n}(x)\in\{0,1\}^{n}\ \middle|\ x\in[0,1)\right\} (8)

and we call n{\cal L}_{n} tent language (by μ(1,2)\mu\in(1,2)). Note that n{0,1}n{\cal L}_{n}\subsetneq\{0,1\}^{n} for μ(1,2)\mu\in(1,2).

Let 𝒟n,μ{\cal D}_{n,\mu} (or simply 𝒟n{\cal D}_{n}) denote a probability distribution over n{\cal L}_{n} which follows γn(X)\gamma^{n}(X) for XX is uniformly distributed over [0,1)[0,1), i.e., 𝒟n{\cal D}_{n} represents the probability of appearing 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n} as given the initial condition xx uniformly at random. Our goal is to output 𝐁n{\bf B}\in{\cal L}_{n} according to 𝒟n{\cal D}_{n}. To be precise, this paper establishes the following theorem.

Theorem 2.5.

Let μ(1,2)\mu\in(1,2) be a rational given by an irreducible fraction μ=c/d\mu=c/d. Then, it is possible to generate BnB\in{\cal L}_{n} according to 𝒟n{\cal D}_{n} in O(lg2nlg3d/lg4μ)\mathrm{O}(\lg^{2}n\lg^{3}d/\lg^{4}\mu) space in expectation (as well as, with high probability).

To prove it, we will give an algorithm to generate 𝐁𝒟n{\bf B}\sim{\cal D}_{n} in Section 3, where 𝐁𝒟n{\bf B}\sim{\cal D}_{n} denotes that a random variable 𝐁{0,1}n{\bf B}\in\{0,1\}^{n} follows the distribution 𝒟n{\cal D}_{n} (thus, 𝐁n{\bf B}\in{\cal L}_{n} (at least probability 11)). Then, we will analyze the average space complexity in Section 4.

3 Algorithm for the Proof of Theorem of 2.5

The goal of this section is to design a space efficient algorithm to generate 𝐁𝒟n{\bf B}\sim{\cal D}_{n} (recall Theorem 2.5), and it will be presented as Algorithm 1 in Section 3.6. To design a space efficient algorithm, we need a compact representation for a recognition of a tent code. For the purpose, we have to develop notions and arguments, far from trivial, that is namely the notion of segment-type (in Section 3.2), transition diagram of segment-types (in Section 3.4), and transition probability to realize 𝒟n{\cal D}_{n} (in Section 3.5).

3.1 Compressing lemma—an intuition as an introduction

Refer to caption
(a) The 22nd iterated tent map f2(x)f^{2}(x)
Refer to caption
(b) The 33rd iterated tent map f3(x)f^{3}(x)
Figure 2: Lemma 3.1 implies that f3f^{3} consists of two f2f^{2}, compressed in 1/μ1/\mu in xx-axis direction and cut off at 1/21/2.

As Figure 1 shows, the nn-th iterated tent map looks complicated, consisting of exponentially many line segments, and it definitely causes the “sensitivity to initial conditions” of a tent map. Roughly speaking, we will prove that the line-segments of the nn-th iterated map are classified into at most 2n2n classes by the range (yy values) of line-segments (see Theorem 3.3 in Section 3.3, for detail). Before the precise argument, we briefly remark a key observation for an intuition of the argument.

Lemma 3.1 (Compressing lemma).

Let

f~(x)={f(x):x12,1f(x):x12\displaystyle\tilde{f}(x)=\begin{cases}f(x)&:x\leq\tfrac{1}{2},\\ 1-f(x)&:x\geq\tfrac{1}{2}\end{cases} (9)

then,

fn+1(x)\displaystyle f^{n+1}(x) =fn(f~(x))={fn(μx):x12,fn(1μ(1x)):x12\displaystyle=f^{n}(\tilde{f}(x))=\begin{cases}f^{n}(\mu x)&:x\leq\frac{1}{2},\\ f^{n}(1-\mu(1-x))&:x\geq\frac{1}{2}\end{cases} (10)

holds for x[0,1)x\in[0,1) and n=1,2,n=1,2,\ldots.

Proof.

It is trivial for x1/2x\leq 1/2 since f~(x)=f(x)\tilde{f}(x)=f(x). Suppose x1/2x\geq 1/2. Then,

f(f~(x))\displaystyle f(\tilde{f}(x)) =f(1f(x))\displaystyle=f(1-f(x))
=f(f(x))\displaystyle=f(f(x)) (since f(x)=f(1x))\displaystyle(\mbox{since $f(x)=f(1-x)$})
=f2(x)\displaystyle=f^{2}(x)

holds, and we obtain the claim for n=1n=1. Once we obtain f(f~(x))=f2(x)f(\tilde{f}(x))=f^{2}(x), the claim is trivial for n2n\geq 2. ∎

We remark for (10) that let x=1tx=1-t (t1/2t\leq 1/2) then f~(x)=1μ(1x)=1μ(1(1t))=1μt\tilde{f}(x)=1-\mu(1-x)=1-\mu(1-(1-t))=1-\mu t. Lemma 3.1 gives an intuition that fn+1f^{n+1} consists of two fnf^{n} compressed in 1/μ1/\mu in xx-axis direction and cut off at x=1/2x=1/2 (see Figure 2). This is a key observation that the line-segments are effectively classified by their projections on yy-axis. A precise argument follows.

3.2 Sections and segment-types

3.2.1 Sections

To begin with, we introduce a natural equivalent class over [0,1)[0,1) with respect to γn\gamma^{n}. Let

Sn(𝐛)=def{x[0,1)γn(x)=𝐛}\displaystyle S_{n}(\mathbf{b})\overset{\rm def}{=}\{x\in[0,1)\mid\gamma^{n}(x)=\mathbf{b}\} (11)

for a bit sequence 𝐛=b1bnn\mathbf{b}=b_{1}\cdots b_{n}\in{\cal L}_{n}, and we call it section (of 𝐛\mathbf{b}). For convenience, we define S(𝐛n)=S(\mathbf{b}_{n})=\emptyset if 𝐛nn\mathbf{b}_{n}\not\in{\cal L}_{n}. We also abuse Sn(x)S_{n}(x) for x[0,1)x\in[0,1) as Sn(γn(x))S_{n}(\gamma^{n}(x)), and call it section of xx. Let

𝒮n={Sn(𝐛)𝐛n}={Sn(x)x[0,1)}\displaystyle{\cal S}_{n}=\{S_{n}(\mathbf{b})\mid\mathbf{b}\in{\cal L}_{n}\}=\{S_{n}(x)\mid x\in[0,1)\} (12)

denote the whole set of sections provided by the nn-th iterated tent map. Since γn(x)\gamma^{n}(x) is uniquely defined for any x[0,1)x\in[0,1), it is not difficult to see that the set of sections is a partition of [0,1)[0,1), i.e., S𝒮nS=[0,1)\bigcup_{S\in{\cal S}_{n}}S=[0,1), and SS=S\cap S^{\prime}=\emptyset for SSS\neq S.

Due to the right continuity of γn\gamma^{n} (Proposition 2.3), every section is left-closed and right-open interval, i.e.,

S=[infS,supS)\displaystyle S=\left[\inf S,\sup S\right) (13)

for any S𝒮nS\in{\cal S}_{n}. We observe that every section is subdivided by an iteration of the tent map, meaning that

Sn(𝐛)=Sn+1(𝐛n0)Sn+1(𝐛n1)\displaystyle S_{n}(\mathbf{b})=S_{n+1}(\mathbf{b}_{n}0)\cup S_{n+1}(\mathbf{b}_{n}1) (14)

holds for any 𝐛=b1bnn\mathbf{b}=b_{1}\cdots b_{n}\in{\cal L}_{n}. As a consequence, we also observe that

𝐛nnb1=0S(𝐛n)=[0,1/2)and𝐛nnb1=1S(𝐛n)=[1/2,1)\displaystyle\bigcup_{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=0}S(\mathbf{b}_{n})=[0,1/2)\qquad\mbox{and}\qquad\bigcup_{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=1}S(\mathbf{b}_{n})=[1/2,1) (15)

hold.

3.2.2 Segment-types

Clearly, the size of 𝒮n{\cal S}_{n} is as large as exponential to nn. Interestingly, we will prove that 𝒮n{\cal S}_{n} is classified by their images into at most 2n2n types. Let

T(S)\displaystyle T(S) =def{fn(x)xS}\displaystyle\overset{\rm def}{=}\{f^{n}(x)\mid x\in S\} (16)

for S𝒮nS\in{\cal S}_{n}, where we call T(S)T(S) the segment-type of SS. We can observe every segment-type is a connected interval on [0,1)[0,1) since fnf^{n} is a piecewise linear function.We abuse T(𝐛)T(\mathbf{b}) for 𝐛n\mathbf{b}\in{\cal L}_{n} as T(Sn(𝐛))T(S_{n}(\mathbf{b})). For convenience, we also use Tn(x)T^{n}(x) for x[0,1)x\in[0,1) as T(γn(x))T(\gamma^{n}(x)) (=T(Sn(γn(x)))=T(S_{n}(\gamma^{n}(x)))). Let

𝒯n={T(𝐛)[0,1)𝐛n}\mathcal{T}_{n}=\{T(\mathbf{b})\subseteq[0,1)\mid\mathbf{b}\in{\cal L}_{n}\} (17)

denote the set of segment-types (of n{\cal L}_{n}). For instance,

𝒯1\displaystyle\mathcal{T}_{1} ={T(0),T(1)}\displaystyle=\{T(0),T(1)\}
={f(S1(0)),f(S1(1))}\displaystyle=\{f(S_{1}(0)),f(S_{1}(1))\}
={f([0,12)),f([12,1))}\displaystyle=\{f([0,\tfrac{1}{2})),f([\tfrac{1}{2},1))\}
={[0,μ2),(0,μ2]}\displaystyle=\{[0,\tfrac{\mu}{2}),(0,\tfrac{\mu}{2}]\} (18)

holds for n=1n=1. Then, Theorem 3.3, appearing later, claims |𝒯n|2n|\mathcal{T}_{n}|\leq 2n. Before stating the theorem, let us briefly illustrate the segment-types.

3.2.3 Brief remarks on segment-types to get it

Figure 1, illustrating the iterated tent map fnf^{n}, shows many “line-segments” provided by

{(x,fn(x))2xSn(𝐛n)}\displaystyle\left\{(x,f^{n}(x))\in\mathbb{R}^{2}\mid x\in S_{n}(\mathbf{b}_{n})\right\} (19)

for each 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}. It seems that the line-segments corresponds to 𝒮n{\cal S}_{n} (and hence n{\cal L}_{n}) one-to-one, by the figure. At this moment, we see from Lemma 2.4 that fnf^{n} is monotone increasing on Sn(𝐛n)S_{n}(\mathbf{b}_{n}) if bn=0b_{n}=0, otherwise, i.e., bn=1b_{n}=1, the map fnf^{n} is monotone decreasing. In fact, Theorem 3.3 appearing later implies the one-to-one correspondence between line-segments and n{\cal L}_{n}.

Anyway, a segment-type T(Sn(𝐛n))T(S_{n}(\mathbf{b}_{n})) provides another representation of a section Sn(𝐛n)S_{n}(\mathbf{b}_{n}), as well as the corresponding bit sequence 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}, through the line-segment. Interestingly, we observe the following connection between segment-types and the tent code, from Lemma 2.4 and Proposition 2.3.

Lemma 3.2.

Let 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n} and let I=T(𝐛n)I=T(\mathbf{b}_{n}). Let v=infIv=\inf I and let u=supIu=\sup I, for convenience. Then,

I={[v,u)if bn=0 (i.e., the line-segment is monotone increasing),(v,u]if bn=1 (i.e., the line-segment is monotone decreasing)\displaystyle I=\begin{cases}[v,u)&\mbox{if $b_{n}=0$ (i.e., the line-segment is monotone increasing),}\\ (v,u]&\mbox{if $b_{n}=1$ (i.e., the line-segment is monotone decreasing)}\end{cases} (20)

holds.

Proof.

We recall that every section is left-closed and right-open, i.e., S=[infS,supS)S=[\inf S,\sup S) by Proposition 2.3. We also remark that fnf^{n} is continuous since ff is continuous by (1).

Consider the case bn=0b_{n}=0. As we stated above, Lemma 2.4 implies that fnf^{n} is monotone increasing on S=Sn(𝐛n)S=S_{n}(\mathbf{b}_{n}) in the case. Thus, v=inffn(S)=fn(infS)v=\inf f^{n}(S)=f^{n}(\inf S) and u=supfn(S)=fn(supS)u=\sup f^{n}(S)=f^{n}(\sup S). Since S=[infS,supS)S=[\inf S,\sup S), we see vT(S)v\in T(S) and uT(S)u\not\in T(S). We obtain I=[v,u)I=[v,u) in the case.

The case bn=1b_{n}=1 is similar. By Lemma 2.4, fnf^{n} is monotone decreasing on S=Sn(𝐛n)S=S_{n}(\mathbf{b}_{n}) in the case. Thus, v=inffn(S)=fn(supS)v=\inf f^{n}(S)=f^{n}(\sup S) and u=supfn(S)=fn(infS)u=\sup f^{n}(S)=f^{n}(\inf S). Since S=[infS,supS)S=[\inf S,\sup S), we see vT(S)v\not\in T(S) and uT(S)u\in T(S). We obtain I=(v,u]I=(v,u] in the case. ∎

3.3 The number of segment-types

Concerning the set of segment-types we will establish the following theorem, which claims |𝒯n|2n|\mathcal{T}_{n}|\leq 2n.

Theorem 3.3.

Let μ(1,2)\mu\in(1,2). Let 𝐜i=γi(12)\mathbf{c}_{i}=\gamma^{i}(\frac{1}{2}), and let

Ii=T(𝐜i)andI¯i=T(𝐜¯i)\displaystyle I_{i}=T(\mathbf{c}_{i})\hskip 20.00003pt\mbox{and}\hskip 20.00003pt\overline{I}_{i}=T(\overline{\mathbf{c}}_{i}) (21)

for i=1,2,i=1,2,\ldots. Then,

𝒯n=i=1n{Ii,I¯i}\displaystyle\mathcal{T}_{n}=\bigcup_{i=1}^{n_{*}}\left\{I_{i},\overline{I}_{i}\right\} (22)

for n1n\geq 1, where n=min({i{1,2,,n1}Ii+1𝒯i}{n})n_{*}=\min(\{i\in\{1,2,\ldots,n-1\}\mid I_{i+1}\in\mathcal{T}_{i}\}\cup\{n\}).

3.3.1 Weak lemma

We here are concerned with the following weaker version, which is enough to claim |𝒯n|2n|\mathcal{T}_{n}|\leq 2n, to follow the main idea of the arguments in this section.

Lemma 3.4.

Let 𝐝i=min{𝐛iib1=1 where 𝐛i=b1bi}\mathbf{d}_{i}=\min\{\mathbf{b}_{i}\in{\cal L}_{i}\mid b_{1}=1\mbox{ where }\mathbf{b}_{i}=b_{1}\cdots b_{i}\}, and let 𝐝i=max{𝐛iib1=0 where 𝐛i=b1bi}\mathbf{d}^{\prime}_{i}=\max\{\mathbf{b}_{i}\in{\cal L}_{i}\mid b_{1}=0\mbox{ where }\mathbf{b}_{i}=b_{1}\cdots b_{i}\} where min\min and max\max are according to the lexicographic order. Then,

𝒯ni=1n{T(𝐝i),T(𝐝i)}\displaystyle\mathcal{T}_{n}\subseteq\bigcup_{i=1}^{n}\left\{T(\mathbf{d}_{i}),T(\mathbf{d}^{\prime}_{i})\right\} (23)

for n1n\geq 1. Furthermore, 𝒯n1𝒯n=\mathcal{T}_{n-1}\setminus\mathcal{T}_{n}=\emptyset.

To get Theorem 3.3 from Lemma 3.4, we further need to prove 𝐝i=𝐜i\mathbf{d}_{i}=\mathbf{c}_{i} and 𝐝i=𝐜i¯\mathbf{d}^{\prime}_{i}=\overline{\mathbf{c}_{i}} (Lemma 3.7), and the existence of nn_{*} (Lemma 3.11), which are not difficult but require somehow bothering arguments to prove.

Lemma 3.4 may intuitively and essentially follow from Lemma 3.1, considering the representation of a line-segment of fnf^{n} by a segment-type (see Section 3.2.3). For a proof of Lemma 3.4, we start by giving the following strange recursive relationship between sections (cf. Lemma 3.1, for an intuition).

Lemma 3.5.

f~(Sn(𝐛n))Sn1(b2bn)\tilde{f}(S_{n}(\mathbf{b}_{n}))\subseteq S_{n-1}(b_{2}\cdots b_{n}) holds for any 𝐛n=b1b2bnn\mathbf{b}_{n}=b_{1}b_{2}\cdots b_{n}\in{\cal L}_{n}. Furthermore, f~(Sn(𝐛n))Sn1(b2bn)\tilde{f}(S_{n}(\mathbf{b}_{n}))\neq S_{n-1}(b_{2}\cdots b_{n}) only when 𝐛n=𝐝n\mathbf{b}_{n}=\mathbf{d}_{n} or 𝐝n\mathbf{d}^{\prime}_{n}.

The former part of Lemma 3.5 comes from the following fact.

Lemma 3.6.

Let x[0,1)x\in[0,1) and let x~=f~(x)\tilde{x}=\tilde{f}(x). Suppose γn(x)=b1bn\gamma^{n}(x)=b_{1}\cdots b_{n}, and γn1(x~)=d1dn1\gamma^{n-1}(\tilde{x})=d_{1}\cdots d_{n-1}. Then, bi+1=dib_{i+1}=d_{i} for i=1,2,,n1i=1,2,\ldots,n-1.

Proof.

Let xi+1=fi+1(x)x_{i+1}=f^{i+1}(x) and x~i=fi(x~)=fi(f~(x))\tilde{x}_{i}=f^{i}(\tilde{x})=f^{i}(\tilde{f}(x)), then xi+1=x~ix_{i+1}=\tilde{x}_{i} holds for i=1,2,i=1,2,\ldots by Lemma 3.1. Recall (6) that bi+1b_{i+1} depends only on xix_{i} and bib_{i}, as well as did_{i} depends on x~i1\tilde{x}_{i-1} and di1d_{i-1}, for i=2,3,i=2,3,\ldots. Thus, it is enough to prove b2=d1b_{2}=d_{1}, then we inductively obtain the claim since xi+1=x~ix_{i+1}=\tilde{x}_{i}.

Firstly, we consider the case of x<1/2x<1/2. Notice that x1=x~=f(x)x_{1}=\tilde{x}=f(x), in the case. We consider two cases whether f(x)<1/2f(x)<1/2 or not. Suppose f(x)<1/2f(x)<1/2. Then, b2=0b_{2}=0 by (6), as well as d1=0d_{1}=0 by (4), and hence b2=d1b_{2}=d_{1}. Suppose f(x)1/2f(x)\geq 1/2. Then, b2=1b_{2}=1 by (6), as well as d1=1d_{1}=1 by (4), and hence b2=d1b_{2}=d_{1}.

Next, we consider the case x1/2x\geq 1/2. In the case, x1=f(x)x_{1}=f(x) and x~=1f(x)\tilde{x}=1-f(x). Notice that x1=1x~x_{1}=1-\tilde{x} holds. We consider two cases whether x1>1/2x_{1}>1/2 or not. Suppose x1>1/2x_{1}>1/2. Then, b2=0b_{2}=0 by (6) while d1=0d_{1}=0 by (4) since x~=1x1<1/2\tilde{x}=1-x_{1}<1/2. We obtain b2=d1b_{2}=d_{1}. Suppose x11/2x_{1}\leq 1/2. Then, b2=1b_{2}=1 by (6), while d1=1d_{1}=1 by (4), accordingly b2=d1b_{2}=d_{1}. We obtain the claim. ∎

Proof of Lemma 3.5.

The former part is almost trivial from Lemma 3.6: In fact, if xSn(𝐛n)x\in S_{n}(\mathbf{b}_{n}) then γn(x)=𝐛n\gamma^{n}(x)=\mathbf{b}_{n}. Lemma 3.6 implies γn1(f~(x))=b2bn\gamma^{n-1}(\tilde{f}(x))=b_{2}\cdots b_{n} meaning that f~(x)Sn1(b2bn)\tilde{f}(x)\in S_{n-1}(b_{2}\cdots b_{n}).

Now, we prove, for the latter part, that

f~(Sn(𝐛n))Sn1(b2bn)\displaystyle\tilde{f}(S_{n}(\mathbf{b}_{n}))\supseteq S_{n-1}(b_{2}\cdots b_{n}) (24)

unless 𝐛n=𝐝n\mathbf{b}_{n}=\mathbf{d}_{n} or 𝐝n\mathbf{d}^{\prime}_{n}. Firstly, we consider the case b1=0b_{1}=0. Suppose Sn1(b2bn)=[u,v)S_{n-1}(b_{2}\cdots b_{n})=[u,v) where u<vu<v. Let ySn1(b2bn)y\in S_{n-1}(b_{2}\cdots b_{n}), then we claim that yf~(Sn(𝐛n))y\in\tilde{f}(S_{n}(\mathbf{b}_{n})) if vμ2v\leq\frac{\mu}{2}. For the purpose, we calculate γn(yμ)\gamma^{n}(\frac{y}{\mu}). Clearly, b1=0b_{1}=0 since yμ<vμ12\frac{y}{\mu}<\frac{v}{\mu}\leq\frac{1}{2}. By lemma 3.6, b2bn=γn1(f~(yμ))=γn1(y)=b2bnb_{2}\cdots b_{n}=\gamma^{n-1}(\tilde{f}(\frac{y}{\mu}))=\gamma^{n-1}(y)=b_{2}\cdots b_{n} since ySn1(b2bn)y\in S_{n-1}(b_{2}\cdots b_{n}). Thus, we obtain γn(yμ)=𝐛n\gamma^{n}(\frac{y}{\mu})=\mathbf{b}_{n}, meaning that yμSn(𝐛n)\frac{y}{\mu}\in S_{n}(\mathbf{b}_{n}). Now it is easy to see yf~(Sn(𝐛n))y\in\tilde{f}(S_{n}(\mathbf{b}_{n})) since f~(yμ)=y\tilde{f}(\frac{y}{\mu})=y. Recall that the set of sections 𝒮n{\cal S}_{n} is a partition of [0,1)[0,1) for each nn, that the sections are allocated in [0,1) in lexicographic order by Proposition 2.2, and that f~(x)=μx\tilde{f}(x)=\mu x for x<12x<\frac{1}{2} is clearly order preserving. Thus, only Sn1(d2dn)=[u,v)S_{n-1}(d^{\prime}_{2}\cdots d^{\prime}_{n})=[u,v) may violate v<μ2v<\frac{\mu}{2}, where 𝐝n=max{d1dnnd1=0}\mathbf{d}^{\prime}_{n}=\max\{d^{\prime}_{1}\cdots d^{\prime}_{n}\in{\cal L}_{n}\mid d^{\prime}_{1}=0\}.

The case of b1=1b_{1}=1 is similar. Suppose Sn1(b2bn)=[u,v)S_{n-1}(b_{2}\cdots b_{n})=[u,v) where u<vu<v. Let ySn1(b2bn)y\in S_{n-1}(b_{2}\cdots b_{n}), then we claim that yf~(Sn(𝐛n))y\in\tilde{f}(S_{n}(\mathbf{b}_{n})) if u1μ2u\geq 1-\frac{\mu}{2}. For the purpose, we calculate γn(11yμ)\gamma^{n}(1-\frac{1-y}{\mu}), where we remark that 11yμ11uμ121-\frac{1-y}{\mu}\geq 1-\frac{1-u}{\mu}\geq\frac{1}{2} and f~(11yμ)=1f(11yμ)=1μ(1(11yμ))=y\tilde{f}(1-\frac{1-y}{\mu})=1-f(1-\frac{1-y}{\mu})=1-\mu(1-(1-\frac{1-y}{\mu}))=y. Clearly, b1=1b_{1}=1 since 11yμ121-\frac{1-y}{\mu}\geq\frac{1}{2}. By lemma 3.6, b2bn=γn1(f~(11yμ))=γn1(y)=b2bnb_{2}\cdots b_{n}=\gamma^{n-1}(\tilde{f}(1-\frac{1-y}{\mu}))=\gamma^{n-1}(y)=b_{2}\cdots b_{n} since ySn1(b2bn)y\in S_{n-1}(b_{2}\cdots b_{n}). Thus, we obtain γn(11yμ)=𝐛n\gamma^{n}(1-\frac{1-y}{\mu})=\mathbf{b}_{n}, meaning that 11yμSn(𝐛n)1-\frac{1-y}{\mu}\in S_{n}(\mathbf{b}_{n}). Now it is easy to see yf~(Sn(𝐛n))y\in\tilde{f}(S_{n}(\mathbf{b}_{n})) since f~(11yμ)=y\tilde{f}(1-\frac{1-y}{\mu})=y. Recall that the set of sections 𝒮n{\cal S}_{n} is a partition of [0,1)[0,1) for each nn, that the sections are allocated in [0,1) in lexicographic order by Proposition 2.2, and that f~(x)=1f(x)=1μ(1x)=μx+(1μ)\tilde{f}(x)=1-f(x)=1-\mu(1-x)=\mu x+(1-\mu) for x1/2x\geq 1/2 is clearly order preserving. Thus, only Sn1(d2dn)=[u,v)S_{n-1}(d_{2}\cdots d_{n})=[u,v) may violate u1μ2u\geq 1-\frac{\mu}{2}, where 𝐝n=min{d1dnnd1=1}\mathbf{d}_{n}=\min\{d_{1}\cdots d_{n}\in{\cal L}_{n}\mid d_{1}=1\}. ∎

Now, we are ready to prove Lemma 3.4.

Proof of Lemma 3.4.

The claim is trivial for n=1n=1 (recall (18)). We prove 𝒯n𝒯n1{T(𝐝n),T(𝐝n)}\mathcal{T}_{n}\subseteq\mathcal{T}_{n-1}\cup\{T(\mathbf{d}_{n}),T(\mathbf{d}^{\prime}_{n})\} for n2n\geq 2. For the purpose, we claim T(𝐛n)=T(b2bn)T(\mathbf{b}_{n})=T(b_{2}\cdots b_{n}) unless 𝐛n=𝐝n\mathbf{b}_{n}=\mathbf{d}_{n} or 𝐝n\mathbf{d}^{\prime}_{n}. In fact,

T(𝐛n)\displaystyle T(\mathbf{b}_{n}) ={fn(x)xSn(𝐛n)}\displaystyle=\{f^{n}(x)\mid x\in S_{n}(\mathbf{b}_{n})\} (by definition (16))\displaystyle(\mbox{by definition~{}\eqref{def:type}})
={fn1(f~(x))xSn(𝐛n)}\displaystyle=\{f^{n-1}(\tilde{f}(x))\mid x\in S_{n}(\mathbf{b}_{n})\} (by Lemma 3.1)\displaystyle(\mbox{by Lemma~{}\ref{lem:compress}})
={fn1(y)yf~(Sn(𝐛n))}\displaystyle=\{f^{n-1}(y)\mid y\in\tilde{f}(S_{n}(\mathbf{b}_{n}))\} (set y=f~(x))\displaystyle(\mbox{set $y=\tilde{f}(x)$})
={fn1(y)ySn(b2bn)}\displaystyle=\{f^{n-1}(y)\mid y\in S_{n}(b_{2}\cdots b_{n})\} (by Lemma 3.5, w/ 𝐛n𝐝n,𝐝n)\displaystyle(\mbox{by Lemma~{}\ref{lem:section-shift}, w/ $\mathbf{b}_{n}\neq\mathbf{d}_{n},\mathbf{d}^{\prime}_{n}$})
=T(b2bn)\displaystyle=T(b_{2}\cdots b_{n}) (by definition (16))\displaystyle(\mbox{by definition~{}\eqref{def:type}})

holds. Clearly, T(b2bn)𝒯n1T(b_{2}\cdots b_{n})\in\mathcal{T}_{n-1} by definition, and we inductively obtain the claim. ∎

3.3.2 Lemmas for 𝐜n=𝐝n\mathbf{c}_{n}=\mathbf{d}_{n} and 𝐜n¯=𝐝n\overline{\mathbf{c}_{n}}=\mathbf{d}^{\prime}_{n}

As a remaining part of the proof of Theorem 3.3, here we just refer to the following facts. See Section B.1 for a proof.

Lemma 3.7.

Let 𝐜n=γn(12)\mathbf{c}_{n}=\gamma^{n}(\frac{1}{2}). Then, 𝐜n=𝐝n\mathbf{c}_{n}=\mathbf{d}_{n} and 𝐜n¯=𝐝n\overline{\mathbf{c}_{n}}=\mathbf{d}^{\prime}_{n} hold, where 𝐝n=min{𝐛nnb1=1 where 𝐛n=b1bn}\mathbf{d}_{n}=\min\{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=1\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n}\} and 𝐝n=max{𝐛nnb1=0 where 𝐛n=b1bn}\mathbf{d}^{\prime}_{n}=\max\{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=0\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n}\}.

The former claim is trivial by Proposition 2.2 and (15). For a proof of the latter claim, we use the following fact, which intuitively seems obvious from Lemma 3.1.

Lemma 3.8.

γn(x)¯=γn(1x)\overline{\gamma^{n}(x)}=\gamma^{n}(1-x) unless x=minSn(x)x=\min S_{n}(x).

As a consequence of Lemma 3.8 with Lemma 3.2, we remark the following convenient observation.

Lemma 3.9.

If T(𝐛n)=[v,u)T(\mathbf{b}_{n})=[v,u) then T(𝐛n¯)=(v,u]T(\overline{\mathbf{b}_{n}})=(v,u], and vice versa.

See Section B.1 for proofs of Lemmas 3.7 and 3.8, which are not difficult but a bit lengthy.

3.4 Transitions over 𝒯n\mathcal{T}_{n} and Recognition of n{\cal L}_{n}

3.4.1 Transitions between segment-types

Recall (6) that bi+1b_{i+1} is determined by bib_{i} and fi(x)f^{i}(x) to compute γn(x)=b1bn\gamma^{n}(x)=b_{1}\cdots b_{n} for x[0,1)x\in[0,1). More precisely, Lemma 2.4 lets us know if bi=0b_{i}=0 then T(𝐛i)=[v,u)T(\mathbf{b}_{i})=[v,u), otherwise i.e., bi=1b_{i}=1 then T(𝐛i)=(v,u]T(\mathbf{b}_{i})=(v,u]. Here, we establish the following lemma, about the transitions over segment-types.

Lemma 3.10 (Transitions of segment-types).

Let x[0,1)x\in[0,1). (1) Suppose Tn(x)=[v,u)T^{n}(x)=[v,u) (v<uv<u). We consider three cases concerning the position of 12\tfrac{1}{2} relative to [v,u)[v,u).

  • Case 1-1:

    v<12<uv<\frac{1}{2}<u.

    • Case 1-1-1.

      If fn(x)<1/2f^{n}(x)<1/2 then Tn+1(x)=[f(v),f(12))T^{n+1}(x)=[f(v),f(\tfrac{1}{2})), and bn+1=0b_{n+1}=0.

    • Case 1-1-2.

      If fn(x)1/2f^{n}(x)\geq 1/2 then Tn+1(x)=(f(u),f(12)]T^{n+1}(x)=(f(u),f(\tfrac{1}{2})], and bn+1=1b_{n+1}=1.

  • Case 1-2:

    u12u\leq\frac{1}{2}. Then Tn+1(x)=[f(v),f(u))T^{n+1}(x)=[f(v),f(u)), and bn+1=0b_{n+1}=0.

  • Case 1-3:

    v12v\geq\frac{1}{2}. Then Tn+1(x)=(f(u),f(v)]T^{n+1}(x)=(f(u),f(v)], and bn+1=1b_{n+1}=1.

(2) Similarly, suppose Tn(x)=(v,u]T^{n}(x)=(v,u] (v<uv<u).

  • Case 2-1:

    v<12<uv<\frac{1}{2}<u.

    • Case 2-1-1.

      If fn(x)1/2f^{n}(x)\leq 1/2 then Tn+1(x)=(f(v),f(12)]T^{n+1}(x)=(f(v),f(\tfrac{1}{2})], and bn+1=1b_{n+1}=1.

    • Case 2-1-2.

      If fn(x)>1/2f^{n}(x)>1/2 then Tn+1(x)=[f(u),f(12))T^{n+1}(x)=[f(u),f(\tfrac{1}{2})), and bn+1=0b_{n+1}=0.

  • Case 2-2:

    u12u\leq\frac{1}{2}. Then Tn+1(x)=(f(v),f(u)]T^{n+1}(x)=(f(v),f(u)], and bn+1=1b_{n+1}=1.

  • Case 2-3:

    v12v\geq\frac{1}{2}. Then Tn+1(x)=[f(u),f(l))T^{n+1}(x)=[f(u),f(l)), and bn+1=0b_{n+1}=0.

We remark that Lemma 3.10 is rephrased by

Tn+1(x)\displaystyle T^{n+1}(x) ={{[f(v),f(12)):fn(x)<1/2(f(u),f(12)]:fn(x)1/2:v<12<u[f(v),f(u)):u12(f(u),f(v)]:v12\displaystyle=\begin{cases}\begin{cases}[f(v),f(\tfrac{1}{2}))&:f^{n}(x)<1/2\\ (f(u),f(\tfrac{1}{2})]&:f^{n}(x)\geq 1/2\end{cases}&:v<\tfrac{1}{2}<u\\ [f(v),f(u))&:u\leq\tfrac{1}{2}\\ (f(u),f(v)]&:v\geq\tfrac{1}{2}\end{cases} if Tn(x)=[v,u)T^{n}(x)=[v,u), (25)
Tn+1(x)\displaystyle T^{n+1}(x) ={{(f(v),f(12)]:fn(x)1/2[f(u),f(12)):fn(x)>1/2:v<12<u(f(v),f(u)]:u12[f(u),f(v)):l12\displaystyle=\begin{cases}\begin{cases}(f(v),f(\tfrac{1}{2})]&:f^{n}(x)\leq 1/2\\ [f(u),f(\tfrac{1}{2}))&:f^{n}(x)>1/2\end{cases}&:v<\tfrac{1}{2}<u\\ (f(v),f(u)]&:u\leq\tfrac{1}{2}\\ [f(u),f(v))&:l\geq\tfrac{1}{2}\end{cases} if Tn(x)=(v,u]T^{n}(x)=(v,u]. (26)
Sketch of proof.

The proof idea is similar to Lemma 3.2. We here prove Case 1-1. Other cases are similar (see Section B.2 for the complete proof).

To begin with, we recall three facts. i) The segment-type is defined by Tn(x)={fn(x)xSn(𝐛n)}T^{n}(x)=\{f^{n}(x)\mid x\in S_{n}(\mathbf{b}_{n})\} by (16). ii) Sn(𝐛n)=Sn+1(𝐛n0)Sn+1(𝐛n1)S_{n}(\mathbf{b}_{n})=S_{n+1}(\mathbf{b}_{n}0)\cup S_{n+1}(\mathbf{b}_{n}1) by (14). Particularly, infSn(𝐛n)=infSn+1(𝐛n0)\inf S_{n}(\mathbf{b}_{n})=\inf S_{n+1}(\mathbf{b}_{n}0) and supSn(𝐛n)=supSn+1(𝐛n1)\sup S_{n}(\mathbf{b}_{n})=\sup S_{n+1}(\mathbf{b}_{n}1) by Proposition 2.2. iii) bn+1b_{n+1} depends on bnb_{n} and xnx_{n} by (6).

Suppose Tn(x)=[v,u)T^{n}(x)=[v,u) (v<uv<u), and l<12<ul<\frac{1}{2}<u (Case 1-1). Notice that fnf^{n} is monotone increasing in Sn(x)S_{n}(x) by Lemma 3.2. Let xSn(x)x^{*}\in S_{n}(x) satisfy fn(x)(=xn)=12f^{n}(x^{*})(=x^{*}_{n})=\frac{1}{2}. Clearly, Sn(𝐛n)S_{n}(\mathbf{b}_{n}) is divided into Sn+1(𝐛n0)S_{n+1}(\mathbf{b}_{n}0) and Sn+1(𝐛n1)S_{n+1}(\mathbf{b}_{n}1) at xx^{*}, i.e., Sn(𝐛n)=[infSn+1(𝐛n0),x)[x,Sn+1(𝐛n1))S_{n}(\mathbf{b}_{n})=[\inf S_{n+1}(\mathbf{b}_{n}0),x^{*})\cup[x^{*},S_{n+1}(\mathbf{b}_{n}1)).

If fn(x)<1/2f^{n}(x)<1/2 then xn[l,12)x_{n}\in[l,\frac{1}{2}). Thus, fn+1(x)=f(xn)=μxnf^{n+1}(x)=f(x_{n})=\mu x_{n}. Accordingly, fn+1(infSn+1(x))=f(fn(infSn(x)))=f(l)=μlf(xn)<μ12=f(12)=f(xn)=fn+1(x)f^{n+1}(\inf S_{n+1}(x))=f(f^{n}(\inf S_{n}(x)))=f(l)=\mu l\leq f(x_{n})<\mu\frac{1}{2}=f(\frac{1}{2})=f(x^{*}_{n})=f^{n+1}(x^{*}) since lxn<12l\leq x_{n}<\frac{1}{2} (cf. the proof of Lemma 3.2). We obtain Tn+1(x)=[f(l),f(12))T^{n+1}(x)=[f(l),f(\tfrac{1}{2})). bn+1=0b_{n+1}=0 is clear by Lemma 3.2.

If fn(x)1/2f^{n}(x)\geq 1/2 then xn[12,u)x_{n}\in[\frac{1}{2},u). Thus, fn+1(x)=f(xn)=μ(1xn)f^{n+1}(x)=f(x_{n})=\mu(1-x_{n}). Accordingly, f(12)=μ(112)f(xn)>μ(1u)=f(u)f(\frac{1}{2})=\mu(1-\frac{1}{2})\geq f(x_{n})>\mu(1-u)=f(u) since 12xn<u\frac{1}{2}\leq x_{n}<u. We obtain Tn+1(x)=(f(u),f(12)]T^{n+1}(x)=(f(u),f(\tfrac{1}{2})]. ∎

Eqs. (25) and (26), which just rephrase Lemma 3.10, show a transition rule over segment-types, where the next single bit of a tent code makes a transition, and vice versa; Let Tn(x)=JT^{n}(x)=J and Tn+1(x)=JT^{n+1}(x)=J^{\prime}. If JJ satisfies the cases of 1-2, 1-3, 2-2 or 2-3, then bn+1b_{n+1} and JJ^{\prime} is uniquely determined, while JJ^{\prime} and bn+1b_{n+1} depends on each other in the cases of 1-1 or 2-1. For convenience, let δ(J,b)=J\delta(J,b)=J^{\prime} denote that if Tn(x)=JT^{n}(x)=J and bn+1=bb_{n+1}=b then Tn+1(x)=JT^{n+1}(x)=J^{\prime}, according to (25) and (26). Notice that Lemma 3.4 implies that Ti(x)=Tj(x)=JT^{i}(x)=T^{j}(x^{\prime})=J may hold even for iji\neq j; for a typical instance, T(𝐛n)=T(b2bn)T(\mathbf{b}_{n})=T(b_{2}\cdots b_{n}) holds as used in the proof of Lemma 3.4. Then, we observe the following fact.

Lemma 3.11.

Suppose T(𝐜n+1)𝒯nT(\mathbf{c}_{n+1})\in\mathcal{T}_{n}, where 𝐜n+1=γn+1(12)\mathbf{c}_{n+1}=\gamma^{n+1}(\tfrac{1}{2}). Then, T(𝐜n+1¯)𝒯nT(\overline{\mathbf{c}_{n+1}})\in\mathcal{T}_{n}, too. Furthermore, 𝒯n=𝒯n\mathcal{T}_{n^{\prime}}=\mathcal{T}_{n} for any nn^{\prime} satisfying nnn^{\prime}\geq n.

Lemma 3.11 might be intuitively obvious from Lemmas 3.1 and 3.4. We prove it using Lemma 3.10.

Proof.

The former claim is easy from Lemma 3.8. Suppose T(𝐜n+1)=T(𝐛k)T(\mathbf{c}_{n+1})=T(\mathbf{b}_{k}) for a 𝐛kk\mathbf{b}_{k}\in{\cal L}_{k} (knk\leq n). Then, Lemma 3.8 implies that T(𝐛k¯)kT(\overline{\mathbf{b}_{k}})\in{\cal L}_{k}, and then T(𝐜n+1¯)=T(𝐛k¯)T(\overline{\mathbf{c}_{n+1}})=T(\overline{\mathbf{b}_{k}}) holds by Lemma 3.1.

We prove the latter claim using Lemma 3.10. By Lemmas 3.4 and 3.7, we know any T(𝐛n+1)𝒯nT(\mathbf{b}_{n+1})\in\mathcal{T}_{n} unless 𝐛n+1=𝐜n+1\mathbf{b}_{n+1}=\mathbf{c}_{n+1} or 𝐜n+1¯\overline{\mathbf{c}_{n+1}}. By the hypothesis and the former claim, T(𝐜n+1)T(\mathbf{c}_{n+1}) and T(𝐜n+1¯)𝒯nT(\overline{\mathbf{c}_{n+1}})\in\mathcal{T}_{n}. Thus, we obtain T(𝐛n+1)𝒯nT(\mathbf{b}_{n+1})\in\mathcal{T}_{n} for any 𝐛n+1n+1\mathbf{b}_{n+1}\in{\cal L}_{n+1}. In other words, δ(J,b)𝒯n\delta(J,b)\in\mathcal{T}_{n} holds for any J𝒯nJ\in\mathcal{T}_{n} by Lemma 3.10. Inductively, we obtain 𝒯n𝒯n\mathcal{T}_{n^{\prime}}\subseteq\mathcal{T}_{n} for any nn^{\prime} satisfying nnn^{\prime}\geq n. The proof of Lemmas 3.4 implies that 𝒯n𝒯n\mathcal{T}_{n^{\prime}}\supseteq\mathcal{T}_{n}. ∎

Now, Theorem 3.3 is clear by Lemmas 3.4, 3.7 and 3.11.

q0q_{0}startI1I_{1}I2I_{2}I3I_{3}\cdotsInI_{n}I¯1\overline{I}_{1}I¯2\overline{I}_{2}I¯3\overline{I}_{3}\cdotsI¯n\overline{I}_{n}1001101100
Figure 3: Transition diagram for n{\cal L}_{n}.

3.4.2 Recognition of a tent language

Lemma 3.10 provides a natural finite state machine555 Precisely, we need a “counter” for the length nn of the string, while notice that our main goal is not to design an automaton for n{\cal L}_{n}. Our main target Theorem 2.5 assumes a probabilistic Turing machine, where obviously we can count the length nn of a sequence in O(logn)\mathrm{O}(\log n) space. to recognize/generate n{\cal L}_{n}. We define the set of states by Qn={q0}{}𝒯nQ_{n}=\{q_{0}\}\cup\{\emptyset\}\cup\mathcal{T}_{n}, where q0q_{0} is the initial state, and \emptyset denotes the unique reject state. Recall 𝒯n=i=1n{Ii,I¯i}\mathcal{T}_{n}=\bigcup_{i=1}^{n_{*}}\{I_{i},\overline{I}_{i}\} where Ii=γi(12)I_{i}=\gamma^{i}(\tfrac{1}{2}) and I¯i=γi(12)¯\overline{I}_{i}=\overline{\gamma^{i}(\tfrac{1}{2})} by Theorem 3.3. We let δ:Qn1×{0,1}Qn\delta\colon Q_{n-1}\times\{0,1\}\to Q_{n} denote the state transition function, which is defined by

δ(J,b)=J\displaystyle\delta(J,b)=J^{\prime} (27)

according to (25) and (26) as far as JJ and bb are consistent. Let δ(q0,1)=I1\delta(q_{0},1)=I_{1} and δ(q0,0)=I¯1\delta(q_{0},0)=\overline{I}_{1}. For convenience, we define δ(J,b)=\delta(J,b)=\emptyset if the pair JJ and bb contradicts to (26), precisely

{J=(v,u] and v12(cf. Case 1-3)J=[v,u) and u12(cf. Case 2-2)J=[v,u) and u12(cf. Case 1-2)J=(v,u] and v12(cf. Case 2-3)\displaystyle\begin{cases}\mbox{$J=(v,u]$ and $v\geq\frac{1}{2}$}&\mbox{(cf. Case 1-3)}\\ \mbox{$J=[v,u)$ and $u\leq\frac{1}{2}$}&\mbox{(cf. Case 2-2)}\\ \mbox{$J=[v,u)$ and $u\leq\frac{1}{2}$}&\mbox{(cf. Case 1-2)}\\ \mbox{$J=(v,u]$ and $v\geq\frac{1}{2}$}&\mbox{(cf. Case 2-3)}\end{cases} (28)

are the cases, where v=infJv=\inf J and u=supJu=\sup J.

Now it is not difficult to see from Lemma 3.10 that we can trace a path starting from q0q_{0} according to δ\delta provided by 𝐛n=b1bn{0,1}n\mathbf{b}_{n}=b_{1}\cdots b_{n}\in\{0,1\}^{n} if, and only if, 𝐛n\mathbf{b}\in{\cal L}_{n}. For the latter argument, we let (Qn,δ)(Q_{n},\delta) denote the state transition diagram (directed graph with labeled arcs; see Figure 3), where QnQ_{n} denote the set of states (vertices) and δ:Qn1Qn\delta\colon Q_{n-1}\to Q_{n} denote the set of transitions (arcs) labeled by {0,1}\{0,1\}. For convenience, let N(J)={δ(J,0),δ(J,1)}{}N(J)=\{\delta(J,0),\delta(J,1)\}\setminus\{\emptyset\} denotes the outneighbers of JJ on the diagram (Qn,δ)(Q_{n},\delta). Then, we note that

|N(J)|={2:in a case of 1-1 or 1-2 of Lemma 3.101:otherwise\displaystyle|N(J)|=\begin{cases}2&:\mbox{in a case of 1-1 or 1-2 of Lemma~{}\ref{lem:transition}}\\ 1&:\mbox{otherwise}\end{cases} (29)

holds for any J𝒯n1J\in\mathcal{T}_{n-1}, clearly |N(q0)|=2|N(q_{0})|=2, and |N(In)|=|N(I¯n)|=0|N(I_{n})|=|N(\overline{I}_{n})|=0 on (Qn,δ)(Q_{n},\delta) by definition.

The following lemma is a strait-forward consequence of Lemma 3.10.

Lemma 3.12.

n{\cal L}_{n} is bijective to the set of paths666 A path may use an arc twice or more (i.e., a path may not be simple). starting from q0q_{0} on (Qn{},δ)(Q_{n}\setminus\{\emptyset\},\delta).

3.5 Draw from 𝒟n{\cal D}_{n} by a Markov chain on QnQ_{n}

Let XX be a real-valued random variable drawn from [0,1)[0,1) uniformly at random. Let 𝐁n+1=B1Bn+1=γn+1(X){\bf B}_{n+1}=B_{1}\cdots B_{n+1}=\gamma^{n+1}(X). We here are concerned with the conditional probability

Pr[Bn+1=bγn(X)=𝐛n]\displaystyle\Pr[B_{n+1}=b\mid\gamma^{n}(X)=\mathbf{b}_{n}] (30)

for 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n} and b=0,1b=0,1. It is easy to see that

(30)=|Sn+1(𝐛nb)||Sn(𝐛n)|=|Sn+1(𝐛nb)||Sn+1(𝐛n0)|+|Sn+1(𝐛n1)|\displaystyle\eqref{eq:cond_prob}=\frac{|S_{n+1}(\mathbf{b}_{n}b)|}{|S_{n}(\mathbf{b}_{n})|}=\frac{|S_{n+1}(\mathbf{b}_{n}b)|}{|S_{n+1}(\mathbf{b}_{n}0)|+|S_{n+1}(\mathbf{b}_{n}1)|} (31)

holds for b=0,1b=0,1 by (14). Since a tent map ff is a piecewise linear function, the following lemma seems intuitively and essentially trivial by Lemma 3.10. See Section B.3 for a proof.

Lemma 3.13.

Let 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}. Then,

Pr[Bn+1=bγn(X)=𝐛n]=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|\displaystyle\Pr[B_{n+1}=b\mid\gamma^{n}(X)=\mathbf{b}_{n}]=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|}

holds for b{0,1}b\in\{0,1\}, where let |T(𝐛nb)|=0|T(\mathbf{b}_{n}b)|=0 if 𝐛nbn+1\mathbf{b}_{n}b\not\in{\cal L}_{n+1}.

We define a transition probability p:Qn×Qn0p\colon Q_{n}\times Q_{n}\to\mathbb{R}_{\geq 0} as follows. Let

p(q0,I1)\displaystyle p(q_{0},I_{1}) =p(q0,I¯1)=12.\displaystyle=p(q_{0},\overline{I}_{1})=\frac{1}{2}. (32)

For J𝒯n1J\in\mathcal{T}_{n-1}, let

p(J,δ(J,0))\displaystyle p(J,\delta(J,0)) =|δ(J,0)||δ(J,0)|+|δ(J,1)|,\displaystyle=\frac{|\delta(J,0)|}{|\delta(J,0)|+|\delta(J,1)|}, p(J,δ(J,1))\displaystyle p(J,\delta(J,1)) =|δ(J,1)||δ(J,0)|+|δ(J,1)|\displaystyle=\frac{|\delta(J,1)|}{|\delta(J,0)|+|\delta(J,1)|} (33)

and p(J,J)=0p(J,J^{\prime})=0 for any JJ^{\prime} which is neither δ(J,0)\delta(J,0) nor δ(J,1)\delta(J,1).

In fact, |δ(J,0)|+|δ(J,1)|=μ|J||\delta(J,0)|+|\delta(J,1)|=\mu|J| holds (see Lemma B.8), and the transition probability (33) is rephrased by

p(J,J)=|J|μ|J|\displaystyle p(J,J^{\prime})=\frac{|J^{\prime}|}{\mu|J|} (34)

for any J𝒯nJ\in\mathcal{T}_{n} and J=δ(J,b)J^{\prime}=\delta(J,b) (b{0,1}b\in\{0,1\}).

Let Z0,Z1,,ZnZ_{0},Z_{1},\ldots,Z_{n} be a Markov chain on QnQ_{n} according to (32) and (33) where Z0=q0Z_{0}=q_{0}. Let Bi{0,1}B^{\prime}_{i}\in\{0,1\} for i=1,2,,ni=1,2,\ldots,n be given by

Bi={0:Zi=δ(Zi1,0)1:Zi=δ(Zi1,1).B^{\prime}_{i}=\begin{cases}0&:Z_{i}=\delta(Z_{i-1},0)\\ 1&:Z_{i}=\delta(Z_{i-1},1).\end{cases} (35)
Theorem 3.14.

The random bit sequence 𝐁n=B1Bn{\bf B}^{\prime}_{n}=B^{\prime}_{1}\cdots B^{\prime}_{n} given by (35) follows 𝒟n{\cal D}_{n}.

Proof.

Let 𝐁n=B1Bn=γn(X){\bf B}_{n}=B_{1}\cdots B_{n}=\gamma^{n}(X) where XX is drawn from [0,1)[0,1) uniformly at random, i.e., 𝐁n{\bf B}_{n} follows 𝒟n{\cal D}_{n}. Then,

Pr[𝐁n=𝐛n]\displaystyle\Pr[{\bf B}^{\prime}_{n}=\mathbf{b}_{n}] =Pr[B1=b1]i=1n1Pr[Bi+1=bi+1𝐁i=𝐛i]\displaystyle=\Pr[B^{\prime}_{1}=b_{1}]\prod_{i=1}^{n-1}\Pr[B^{\prime}_{i+1}=b_{i+1}\mid{\bf B}^{\prime}_{i}=\mathbf{b}_{i}]
=12i=1n1|T(𝐛ibi+1)||T(𝐛i0)|+|T(𝐛i1)|\displaystyle=\frac{1}{2}\prod_{i=1}^{n-1}\frac{|T(\mathbf{b}_{i}b_{i+1})|}{|T(\mathbf{b}_{i}0)|+|T(\mathbf{b}_{i}1)|} (by (32) and (33))\displaystyle(\mbox{by \eqref{eq:transition-prob1} and \eqref{eq:transition-prob}})
=Pr[B1=b1]i=1n1Pr[Bi+1=bi+1𝐁i=𝐛i]\displaystyle=\Pr[B_{1}=b_{1}]\prod_{i=1}^{n-1}\Pr[B_{i+1}=b_{i+1}\mid{\bf B}_{i}=\mathbf{b}_{i}] (by Lemma 3.13)\displaystyle(\mbox{by Lemma~{}\ref{lem:cond-prob}})
=Pr[𝐁n=𝐛n]\displaystyle=\Pr[{\bf B}_{n}=\mathbf{b}_{n}]

holds for any 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}. We obtain the claim. ∎

Algorithm 1 Random generation of a tent code for a rational μ=c/d(1,2)\mu=c/d\in(1,2)
0:  a positive integer nn
0:  a bit sequence B1Bn𝒟nB_{1}\cdots B_{n}\sim{\cal D}_{n}
1:  rational v[1]0v[-1]\leftarrow 0, rational u[1]0u[-1]\leftarrow 0 /* ==\emptyset */
2:  v[0]0v[0]\leftarrow 0, u[0]1u[0]\leftarrow 1, bit c[0]0c[0]\leftarrow 0, int δ[0,0]1\delta[0,0]\leftarrow 1, δ[0,1]1\delta[0,1]\leftarrow 1 /* =q0=q_{0} */
3:  v[1]0v[1]\leftarrow 0, u[1]f(12)u[1]\leftarrow f(\frac{1}{2}), c[1]1c[1]\leftarrow 1, δ[1,0]2\delta[1,0]\leftarrow 2, δ[1,1]1\delta[1,1]\leftarrow 1 /* =I1=I_{1} */
4:  int k1k\leftarrow 1, int l0l\leftarrow 0, bit b1b\leftarrow 1
5:  for i=1i=1 to nn do
6:     if b=c[l]b=c[l] then /* Zi=IlZ_{i}=I_{l} */
7:        bit B0B\leftarrow 0 w.p. u[l]v[l]μ(u[l]v[l])\frac{u[l^{\prime}]-v[l^{\prime}]}{\mu(u[l]-v[l])} where l=δ[l,0]l^{\prime}=\delta[l,0], otherwise B1B\leftarrow 1
8:        lδ[l,B]l\leftarrow\delta[l,B]
9:     else /* Zi=I¯lZ_{i}=\overline{I}_{l} */
10:        bit B1B\leftarrow 1 w.p. u[l]v[l]μ(u[l]v[l])\frac{u[l^{\prime}]-v[l^{\prime}]}{\mu(u[l]-v[l])} where l=δ[l,0]l^{\prime}=\delta[l,0], otherwise B0B\leftarrow 0
11:        lδ[l,B¯]l\leftarrow\delta[l,\overline{B}]
12:     end if
13:     return  BB /* as BiB_{i} */
14:     bBb\leftarrow B
15:     if l=kl=k then /* “deferred update” (ll. 15–27) */
16:        if v[k]<12<u[k]v[k]<\frac{1}{2}<u[k] then
17:           δ[k,0]k+1\delta[k,0]\leftarrow k+1, v[k+1]f(v[k])v[k+1]\leftarrow f(v[k]), u[k+1]f(12)u[k+1]\leftarrow f(\tfrac{1}{2}), c[k+1]0c[k+1]\leftarrow 0 /* 777 In fact, we need “δ[k,0]k\delta[k,0]\leftarrow k^{\prime} such that v[k]=f(u[k])v[k^{\prime}]=f(u[k]) and u[k]=f(12)u[k^{\prime}]=f(\tfrac{1}{2})” after line 17, similar to line 16 (see Theorem 3.3), while it seems useless for rational μ\mu (c.f., [27, 28]). To avoid the bothering description, we here omit the operation. Lines 20 and 23 as well. */
18:           δ[k,1]k\delta[k,1]\leftarrow k^{\prime} such that v[k]=f(u[k])v[k^{\prime}]=f(u[k]) and u[k]=f(12)u[k^{\prime}]=f(\tfrac{1}{2})
19:        else if u[k]12u[k]\leq\frac{1}{2} then
20:           δ[k,c[k]]k+1\delta[k,c[k]]\leftarrow k+1, v[k+1]f(v[k])v[k+1]\leftarrow f(v[k]), u[k+1]f(u[k])u[k+1]\leftarrow f(u[k]), c[k+1]c[k]c[k+1]\leftarrow c[k]
21:           δ[k,c[k]¯]1\delta[k,\overline{c[k]}]\leftarrow-1
22:        else /* i.e., v[k]12v[k]\geq\frac{1}{2} */
23:           δ[k,c[k]¯]k+1\delta[k,\overline{c[k]}]\leftarrow k+1, v[k+1]f(u[k])v[k+1]\leftarrow f(u[k]), u[k+1]f(v[k])u[k+1]\leftarrow f(v[k]), c[k+1]c[k]¯c[k+1]\leftarrow\overline{c[k]}
24:           δ[k,c[k]]1\delta[k,c[k]]\leftarrow-1
25:        end if
26:        kk+1k\leftarrow k+1
27:     end if
28:  end for

3.6 Summary—The algorithm

3.6.1 Algorithm

Now, we give Algorithm 1 for Theorem 2.5, by summarizing the arguments of Section 3. Basically, the algorithm traces the Markov chain Z0,,ZnZ_{0},\ldots,Z_{n} and outputs B1,,BnB_{1},\ldots,B_{n} by ll and bb respectively, according to the transition probability given in Section 3.5.

In the algorithm, v[k]v[k] and u[k]u[k] respectively denote infIk\inf I_{k} and supIk\sup I_{k} for k=1,2,k=1,2,\ldots. For descriptive purposes, v[0]v[0] and u[0]u[0] corresponds to q0q_{0}, and v[1]v[-1] and u[1]u[-1] corresponds to the reject state \emptyset in QnQ_{n}. The single bit c[k]c[k] denotes ckc_{k} for 𝐜n=c1cn=γn(12)\mathbf{c}_{n}=c_{1}\cdots c_{n}=\gamma^{n}(\frac{1}{2}) (recall Theorem 3.3). The pair ll and bb represent Zi=IlZ_{i}=I_{l} if b=c[l]b=c[l] (see line 6), otherwise, i.e., b¯=c[l]\overline{b}=c[l], Zi=I¯lZ_{i}=\overline{I}_{l} (see line 9), at the ii-th iteration (for i=1,ni=1,\ldots n). To avoid the bothering notation, we define the level of J𝒯nJ\in\mathcal{T}_{n} by

L(J)=k\displaystyle L(J)=k (36)

if J=IkJ=I_{k} or Ik¯\overline{I_{k}}, where recall Ik=T(𝐜k)I_{k}=T(\mathbf{c}_{k}) and Ik¯=T(𝐜k¯)\overline{I_{k}}=T(\overline{\mathbf{c}_{k}}) for 𝐜k=γk(1/2)\mathbf{c}_{k}=\gamma^{k}(1/2) (see Theorem 3.3). Then, δ(l,b)=l\delta(l,b)=l^{\prime} represents the transition δ(J,b)=J\delta(J,b)=J^{\prime} given by (27) in Section 3.4 (see also (25) and (26)) where L(J)=lL(J)=l and L(J)=lL(J^{\prime})=l^{\prime}.

Lines 6–14 correspond to a transition from ZiZ_{i} to Zi+1Z_{i+1}. Algorithm 1 outputs every bit BiB_{i} every iteration at line 7, to avoid storing all B1BnB_{1}\cdots B_{n} that consumes nn-bits of space. To attain the O(polylogn)\mathrm{O}(\mathrm{poly}\log n) space for Theorem 2.5, we use the deferred update strategy; we calculate v[k]v[k] and u[k]u[k] representing IkI_{k} on demand, in lines 15–27 according to (25) and (26). By a standard argument of the space complexity of basic arithmetic operations, see e.g., [12], rationals v[k]v[k] and u[k]u[k] requires O(klogd)\mathrm{O}(k\log d) bits for each k=1,2,k=1,2,\ldots, where the rational μ(1,2)\mu\in(1,2) is given by an irreducible fraction c/dc/d.

Then, we look at the space complexity of the algorithm. Rationals v[k]v[k^{\prime}] and u[k]u[k^{\prime}] (k=1,0,1,2,,kk^{\prime}=-1,0,1,2,\ldots,k) consume at most O(k2logd)\mathrm{O}(k^{2}\log d) bits in total, where kk denotes its value in the end of iterations of Algorithm 1. Integers δ[k,0]\delta[k^{\prime},0] and δ[k,1]\delta[k^{\prime},1] (k=0,1,2,,kk^{\prime}=0,1,2,\ldots,k) consume at most O(klogk)\mathrm{O}(k\log k) bits in total. Bits c[k]c[k^{\prime}] (k=0,1,2,,kk^{\prime}=0,1,2,\ldots,k) consume at most O(k)\mathrm{O}(k) bits in total. Integers kk, ll use O(logk)\mathrm{O}(\log k) bits, and bb uses a single bit. The value of kk becomes nn in the worst case, while we will prove in Section 4 that kk is O(lognlogd)\mathrm{O}(\log n\log d) in expectation, as well as with high probability.

4 Average Space Complexity

Then, this section analyzes the average space complexity of Algorithm 1, and proves Theorem 2.5. As we stated in Section 3.6, our goal of the section is essentially to prove that the maximum value of kk of Algorithm 1 in the nn iterations is O(logn)\mathrm{O}(\log n) with high probability, and in expectation. More precisely, let Z0,,ZnZ_{0},\ldots,Z_{n} be a Markov chain on segment-types with Z0=q0Z_{0}=q_{0} given in Section 3.5. Let

K=min{k>0L(Zi)=k}\displaystyle K=\min\{k\in\mathbb{Z}_{>0}\mid L(Z_{i})=k\} (37)

be a random variable, where L(Zi)=kL(Z_{i})=k denotes Zi=IkZ_{i}=I_{k} or I¯k\overline{I}_{k} (recall (36) as well as Theorem 3.3). Note that KnK\leq n, that is a trivial upper bound. We want E[K]=O(logn)\mathrm{E}[K]=\mathrm{O}(\log n). The following fact is the key for the purpose.

Lemma 4.1.

Suppose for μ(1,2)\mu\in(1,2) that fμi(12)12f_{\mu}^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Then,

δ(In,b)\displaystyle\delta(I_{n},b) {In+1}{I¯k+11kn2}{}\displaystyle\in\left\{I_{n+1}\right\}\cup\left\{\overline{I}_{k+1}\mid 1\leq k\leq\tfrac{n}{2}\right\}\cup\{\emptyset\} (38)
δ(I¯n,b)\displaystyle\delta(\overline{I}_{n},b) {I¯n+1}{Ik+11kn2}{}\displaystyle\in\left\{\overline{I}_{n+1}\right\}\cup\left\{I_{k+1}\mid 1\leq k\leq\tfrac{n}{2}\right\}\cup\{\emptyset\} (39)

hold for b=0,1b=0,1.

We will prove Lemma 4.1 in Section 4.3. Roughly speaking, Lemma 4.1 implies that the level L(Zi)L(Z_{i}) increases by one, or decreases into (almost) a half by a step of the Markov chain. Thus, the issue is the ratio of the transition. A precise argument follows.

4.1 Proof of Theorem 2.5

In fact, we will prove E[K2]=O(log2nlog2d)\mathrm{E}[K^{2}]=\mathrm{O}(\log^{2}n\log^{2}d) in Lemma 4.3, since what we really want for Theorem 2.5 is the expected space complexity, instead of E[K]\mathrm{E}[K] itself. Formally, the following lemma claims that the description of the Markov chain on QkQ_{k} requires O(k2logd)\mathrm{O}(k^{2}\log d) space (see also Section 3.6).

Lemma 4.2.

Let μ(1,2)\mu\in(1,2) be rational given by an irreducible fraction μ=c/d\mu=c/d. For any k>0k\in\mathbb{Z}_{>0}, the Markov chain on QkQ_{k} is represented by O(k2lgd)\mathrm{O}(k^{2}\lg{d}) bits.

Proof.

As we stated in Section 3.6, we can describe a segment-type by two numbers representing the interval (v[k]v[k] and u[k]u[k] in Algorithm 1), and a single bit to identify IkI_{k} or I¯k\overline{I}_{k} (c[k]c[k], there), by Lemma 3.9. We will prove Lemma 4.12 which claims that IkI_{k} (I¯k\overline{I}_{k} as well) is either [fi(12),fj(12))[f^{i}(\frac{1}{2}),f^{j}(\frac{1}{2})) or (fi(12),fj(12)](f^{i}(\frac{1}{2}),f^{j}(\frac{1}{2})] with iki\leq k and jkj\leq k. For any ii, there exists cic_{i}\in\mathbb{Z} satisfies fi(12)=ci2dif^{i}(\frac{1}{2})=\frac{c_{i}}{2d^{i}} and 0ci2di0\leq c_{i}\leq 2d^{i} since 0fi(12)10\leq f^{i}(\frac{1}{2})\leq 1. Thus, every segment-type J𝒯kJ\in\mathcal{T}_{k} requires at most 4(klog2d+1)+14(k\log_{2}d+1)+1 bits. Since QkQ_{k} contains 2k2k segment-types with at most 4k4k arcs, the Markov chain on QkQ_{k} is represented by O(k2logd)\mathrm{O}(k^{2}\log{d}) bits. ∎

Notice that E[K2logd]=logdE[K2]\mathrm{E}[K^{2}\log d]=\log d\,\mathrm{E}[K^{2}] holds. We prove E[K2]=O(log2nlog2d)\mathrm{E}[K^{2}]=\mathrm{O}(\log^{2}{n}\log^{2}{d}) for the Markov chain, which generates a random bit sequence B1Bn𝒟nB_{1}\cdots B_{n}\sim{\cal D}_{n}.

Lemma 4.3.

Let μ(1,2)\mu\in(1,2) be rational given by an irreducible fraction μ=c/d\mu=c/d. Suppose888 This assumption may be redundant by the assumption of μ\mu rational. It needs for Lemma 4.1. for μ(1,2)\mu\in(1,2) that fμi(12)12f_{\mu}^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Then, E[K2]=O(logμ2nlogμ2d)=O(lg2nlg2d/lg4μ)\mathrm{E}[K^{2}]=\mathrm{O}(\log_{\mu}^{2}{n}\log_{\mu}^{2}{d})=\mathrm{O}(\lg^{2}n\lg^{2}d/\lg^{4}\mu).

It is not essential that Lemma 4.3 assumes μ\mu rational, which just follows that of Theorem 2.5 for an argument about Turing comparability. We will establish a similar (but a bit weaker) Proposition 5.1 for any real μ(0,1)\mu\in(0,1) in Section 5. Before the proof of Lemma 4.3, we prove Theorem 2.5 by Lemmas 4.2 and 4.3.

Proof of Theorem 2.5.

Algorithm 1 provides a random bit sequence B1Bn𝒟nB_{1}\cdots B_{n}\sim{\cal D}_{n}, by Theorem 3.14. Lemma 4.2 implies that its space complexity is O(K2lgd)\mathrm{O}(K^{2}\lg{d}). Lemma 4.3 implies

E[O(K2lgd)]\displaystyle\mathrm{E}[\mathrm{O}(K^{2}\lg{d})] =O(E[K2]lgd)\displaystyle=\mathrm{O}(\mathrm{E}[K^{2}]\lg{d})
=O(lg2nlg3d/lg4μ)\displaystyle=\mathrm{O}(\lg^{2}{n}\lg^{3}{d}/\lg^{4}\mu)

and we obtain the claim. ∎

We remark that the space complexity is clearly O(1)\mathrm{O}(1) to nn if there exists a constant nn_{*} for μ(1,2)\mu\in(1,2) such that |𝒯n,μ|2n|\mathcal{T}_{n,\mu}|\leq 2n_{*} holds for any nnn\geq n_{*}, meaning that |Qn|=|𝒯n|+2|Q_{n}|=|\mathcal{T}_{n}|+2 is constant to nn (recall Theorem 3.3). In the case999 It seems not the case for any rational μ\mu, though we do not prove it here (cf. [27, 28])., we can prove the following fact (cf. the hypothesis of Lemma 4.1 caused by Lemma 4.3). See Section 4.3 for a proof of Proposition 4.4.

Proposition 4.4.

Let μ(1,2)\mu\in(1,2). If there exists nn (n=1,2,n=1,2,\ldots) such that fμn(12)=12f_{\mu}^{n}(\frac{1}{2})=\frac{1}{2} holds then |𝒯n|2n|\mathcal{T}_{n^{\prime}}|\leq 2n holds for any nnn^{\prime}\geq n.

The rest of Section 4 proves Lemmas 4.3 and 4.1 in Sections 4.2 and 4.3, respectively.

4.2 Proof of Lemma  4.3

The proof strategy of Lemma 4.3 is as follows. Our key fact Lemma 4.1 implies that a chain must follow the path Il,Il+1,,I2lI_{l},I_{l+1},\ldots,I_{2l} (or I¯l,I¯l+1,,I¯2l\overline{I}_{l},\overline{I}_{l+1},\ldots,\overline{I}_{2l}) to reach level 2l2l and the probability is |I2l|μl|Il|\frac{|I_{2l}|}{\mu^{l}|I_{l}|} (Lemma 4.6). We then prove that there exists l=O(lognlogd)l=\mathrm{O}(\log n\log d) such that |I2l|μl|Il|n3\frac{|I_{2l}|}{\mu^{l}|I_{l}|}\leq n^{-3} (Lemma 4.7), which provides Pr[K2l]n2\Pr[K\geq 2l]\leq n^{-2} (Lemma 4.9). Lemma 4.3 is easy from Lemma 4.9.

We observe the following fact from Lemma 4.1.

Observation 4.5.

If ZtZ_{t} visits I2jI_{2j} (resp. I¯2j\overline{I}_{2j}) for the first time then Zti=I2jiZ_{t-i}=I_{2j-i} (resp. Zti=I¯2jiZ_{t-i}=\overline{I}_{2j-i}) for i=1,2,,ji=1,2,\ldots,j.

Proof.

By Lemma 4.1, all in-edges to IkI_{k} (resp. I¯k\overline{I}_{k}) for any k=j+1,,2jk=j+1,\dots,2j come from Ik1I_{k-1} (resp. I¯k1\overline{I}_{k-1}), or a node of level 2j2j or greater. Since ZtZ_{t} has not visited any level greater than 2j2j by the hypothesis and the above argument again, we obtain the claim. ∎

By Observation 4.5, if a Markov chain Z1,Z2,Z_{1},Z_{2},\ldots visits level 2l2l for the first time at time tt then L(Ztl)L(Z_{t-l}) must be ll. The next lemma gives an upper bound of the probability from level ll to 2l2l.

Lemma 4.6.

Pr[L(Zt)=2lL(Ztl)=l]=|I2l|μl|Il|\Pr[L(Z_{t})=2l\mid L(Z_{t-l})=l]=\frac{|I_{2l}|}{\mu^{l}|I_{l}|}.

Proof.

By Observation 4.5, the path from IlI_{l} to I2lI_{2l} is unique and

Pr[Zt=I2lZtl=Il]\displaystyle\Pr[Z_{t}=I_{2l}\mid Z_{t-l}=I_{l}] =i=l2l1p(Ii,Ii+1)\displaystyle=\prod_{i=l}^{2l-1}p(I_{i},I_{i+1})
=i=l2l1|Ii+1|μ|Ii|\displaystyle=\prod_{i=l}^{2l-1}\frac{|I_{i+1}|}{\mu|I_{i}|} (by (34))\displaystyle(\mbox{by \eqref{eq:transition-prob2}})
=|I2l|μl|Il|\displaystyle=\frac{|I_{2l}|}{\mu^{l}|I_{l}|} (40)

holds. We remark that |Ii|=|I¯i||I_{i}|=|\overline{I}_{i}| holds for any ii, meaning that p(Ii,Ii+1)=p(I¯i,I¯i+1)p(I_{i},I_{i+1})=p(\overline{I}_{i},\overline{I}_{i+1}), and hence Pr[Zt=I¯2lZtl=I¯l]=|I2l|μl|Il|\Pr[Z_{t}=\overline{I}_{2l}\mid Z_{t-l}=\overline{I}_{l}]=\frac{|I_{2l}|}{\mu^{l}|I_{l}|}. ∎

The following lemma is the first mission of the proof of Lemma 4.3.

Lemma 4.7.

Let μ(1,2)\mu\in(1,2) be rational given by an irreducible fraction μ=c/d\mu=c/d. Suppose for μ(1,2)\mu\in(1,2) that fμi(12)12f_{\mu}^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Then, there exists ll such that l8logμdlogμnl\leq 8\lceil{\log_{\mu}d}\rceil\lceil{\log_{\mu}n}\rceil and

|I2l|μl|Il|n3\frac{|I_{2l}|}{\mu^{l}|I_{l}|}\leq n^{-3} (41)

holds.

To prove Lemma 4.7, we remark the following fact.

Lemma 4.8.

Let μ(1,2)\mu\in(1,2) be rational given by an irreducible fraction μ=c/d\mu=c/d. Then, |Ik|12dk|I_{k}|\geq\frac{1}{2d^{k}} for any k2k\geq 2.

Proof.

We will prove Lemma 4.12 in Section 4.3, which claims that IkI_{k} is either [fi(12),fj(12))\left[f^{i}(\frac{1}{2}),f^{j}(\frac{1}{2})\right) or (fi(12),fj(12)]\left(f^{i}(\frac{1}{2}),f^{j}(\frac{1}{2})\right] where iki\leq k and jkj\leq k. We can denote fi(12)f^{i}(\frac{1}{2}) as ci2di\frac{c_{i}}{2d^{i}} (ci>0c_{i}\in\mathbb{Z}_{>0}) for any ii. Therefore,

|Ik|=|fi(12)fj(12)|=|ci2dicj2dj|=|cidkicjdkj2dk||I_{k}|=\left|f^{i}(\tfrac{1}{2})-f^{j}(\tfrac{1}{2})\right|=\left|\frac{c_{i}}{2d^{i}}-\frac{c_{j}}{2d^{j}}\right|=\left|\frac{c_{i}d^{k-i}-c_{j}d^{k-j}}{2d^{k}}\right| (42)

holds. Clearly, cidkicjdkjc_{i}d^{k-i}-c_{j}d^{k-j} is an integer, and it is not 0 since |Ik|0|I_{k}|\neq 0. Thus, we obtain |Ik|12dk|I_{k}|\geq\frac{1}{2d^{k}}. ∎

Then, we prove Lemma 4.7.

Proof of Lemma 4.7.

For convenience, let li=2ilogμnl_{i}=2^{i}\lceil{\log_{\mu}n}\rceil for i=1,2,i=1,2,\ldots. Assume for a contradiction that (41) never hold for any l1,l2,,lkl_{1},l_{2},\ldots,l_{k}, where k=max{4,log2logμd+2}k=\max\{4,\lceil{\log_{2}\log_{\mu}d}\rceil+2\} for convenience. In other words,

|Ili+1|>n3μli|Ili||I_{l_{i+1}}|>n^{-3}\mu^{l_{i}}|I_{l_{i}}| (43)

holds every i=1,2,,ki=1,2,\ldots,k. Thus, we inductively obtain that

|Ilk+1|\displaystyle|I_{l_{k+1}}| >n3μlk|Ilk|\displaystyle>n^{-3}\mu^{l_{k}}|I_{l_{k}}|
>n6μlkμlk1|Ilk1|\displaystyle>n^{-6}\mu^{l_{k}}\mu^{l_{k-1}}|I_{l_{k-1}}|
>\displaystyle>\dots
>n3kμlkμlk1μl1|Il1|\displaystyle>n^{-3k}\mu^{l_{k}}\mu^{l_{k-1}}\dots\mu^{l_{1}}|I_{l_{1}}| (44)

holds. By the definition of lil_{i},

μli=μ2ilogμnμ2ilogμn=n2i\mu^{l_{i}}=\mu^{2^{i}\lceil{\log_{\mu}n}\rceil}\geq\mu^{2^{i}\log_{\mu}n}=n^{2^{i}} (45)

holds. Lemma 4.8 implies that

|Il1|12dl1=12d2logμn12d4logμn=12n4logμd\displaystyle|I_{l_{1}}|\geq\frac{1}{2d^{l_{1}}}=\frac{1}{2}d^{-2\lceil{\log_{\mu}n}\rceil}\geq\frac{1}{2}d^{-4\log_{\mu}n}=\frac{1}{2}n^{-4\log_{\mu}d} (46)

holds. Then, (44), (45) and (46) imply

|Ilk+1|\displaystyle|I_{l_{k+1}}| >n3kn2k+2k1++2112n4logμd\displaystyle>n^{-3k}\cdotp n^{2^{k}+2^{k-1}+\dots+2^{1}}\cdotp\frac{1}{2}n^{-4\log_{\mu}d} (47)

holds. By taking the logn\log_{n} of the both sides of (47), we see that

logn|Ilk+1|\displaystyle\log_{n}{|I_{l_{k+1}}|} >3k+2k+12logn24logμd\displaystyle>-3k+2^{k+1}-2-\log_{n}2-4\log_{\mu}d
=(2k4logμd)+(2k3k2logn2)\displaystyle=(2^{k}-4\log_{\mu}d)+(2^{k}-3k-2-\log_{n}2) (48)

holds. Since klog2logμd+2k\geq\lceil{\log_{2}\log_{\mu}d}\rceil+2 by definition, it is not difficult to see that

2k4logμd\displaystyle 2^{k}-4\log_{\mu}d 22+log2(logμd)4logμd\displaystyle\geq 2^{2+\log_{2}(\log_{\mu}d)}-4\log_{\mu}d
=4logμd4logμd\displaystyle=4\log_{\mu}d-4\log_{\mu}d
=0\displaystyle=0 (49)

holds. Since k4k\geq 4 by definition, it is also not difficult to observe that

2k3k2logn2 24342logn2= 2logn2> 0\displaystyle 2^{k}-3k-2-\log_{n}2\ \geq\ 2^{4}-3\cdot 4-2-\log_{n}2\ =\ 2-\log_{n}2\ >\ 0 (50)

holds. Equations (48), (49) and (50) imply that logn|Ilk+1|>0\log_{n}{|I_{l_{k+1}}|}>0, meaning that |Ilk+1|>1|I_{l_{k+1}}|>1. At the same time, notice that any segment-type TypeType satisfies Type[0,1]Type\subseteq[0,1], meaning that |Ilk+1|1|I_{l_{k+1}}|\leq 1. Contradiction. Thus, we obtain (41) for at least one of l1,l2,,lkl_{1},l_{2},\ldots,l_{k}.

Finally, we check the size of lkl_{k}:

lk\displaystyle l_{k} =2klogμn2max{4,log2logμd+2}logμn2max{4,log2logμd+3}logμn\displaystyle=2^{k}\lceil{\log_{\mu}n}\rceil\leq 2^{\max\{4,\lceil{\log_{2}\log_{\mu}d}\rceil+2\}}\lceil{\log_{\mu}n}\rceil\leq 2^{\max\{4,\log_{2}\log_{\mu}d+3\}}\lceil{\log_{\mu}n}\rceil
=max{16,8logμd}logμn=8max{2,logμd}logμn8logμdlogμn\displaystyle=\max\{16,8\log_{\mu}d\}\lceil{\log_{\mu}n}\rceil=8\max\{2,\log_{\mu}d\}\lceil{\log_{\mu}n}\rceil\leq 8\lceil{\log_{\mu}d}\rceil\lceil{\log_{\mu}n}\rceil

where the last equality follows logμd>1\log_{\mu}d>1 since μ<2\mu<2 and d2d\geq 2. We obtain a desired ll. ∎

By Lemmas 4.6 and 4.7, we obtain the following fact.

Lemma 4.9.

Let l=8logμdlogμnl_{*}=8\lceil{\log_{\mu}d}\rceil\lceil{\log_{\mu}n}\rceil for convenience. Then

Pr[K2l]n2\displaystyle\Pr[K\geq 2l_{*}]\leq n^{-2}

holds.

Proof.

For μ=c/d\mu=c/d and nn, Lemma 4.7 implies that there exists ll such that lll\leq l_{*} and

|I2l|μl|Il|n3\displaystyle\frac{|I_{2l}|}{\mu^{l}|I_{l}|}\leq n^{-3} (51)

holds. Let AtA_{t} (t=1,,nt=1,\ldots,n) denote the event that ZtZ_{t} reaches the level 2l2l for the first time. It is easy to see that

Pr[K2l]=Pr[t=0nAt]\displaystyle\Pr[K\geq 2l]=\Pr\left[\bigvee_{t=0}^{n}A_{t}\right] (52)

holds101010Precisely, t=0nAt=t=2lnAt\bigvee_{t=0}^{n}A_{t}=\bigvee_{t=2l_{*}}^{n}A_{t} holds, but we do not use the fact here. by the definition of AtA_{t}. We also remark that the event AtA_{t} implies not only Zt=2lZ_{t}=2l but also L(Ztl)=lL(Z_{t-l})=l by Observation 4.5. It means that

Pr[At]\displaystyle\Pr[A_{t}] Pr[[L(Zt)=2l][L(Ztl)=l]]\displaystyle\leq\Pr[[L(Z_{t})=2l]\wedge[L(Z_{t-l})=l]]
=Pr[L(Zt)=2lL(Ztl)=l]Pr[L(Ztl)=l]\displaystyle=\Pr[L(Z_{t})=2l\mid L(Z_{t-l})=l]\Pr[L(Z_{t-l})=l]
Pr[L(Zt)=2lL(Ztl)=l]\displaystyle\leq\Pr[L(Z_{t})=2l\mid L(Z_{t-l})=l] (53)

holds. Then,

Pr[K2l]\displaystyle\Pr[K\geq 2l] =Pr[t=0nAt]\displaystyle=\Pr\left[\bigvee_{t=0}^{n}A_{t}\right] (by (52))\displaystyle(\mbox{by \eqref{eq:l*2}})
t=0nPr[At]\displaystyle\leq\sum_{t=0}^{n}\Pr\left[A_{t}\right] (union bound)\displaystyle(\mbox{union bound})
nPr[L(Zt)=2lL(Ztl)=l]\displaystyle\leq n\Pr[L(Z_{t})=2l\mid L(Z_{t-l})=l] (by (53))\displaystyle(\mbox{by \eqref{eq:l*3}})
n|I2l|μl|Il|\displaystyle\leq n\frac{|I_{2l}|}{\mu^{l}|I_{l}|} (by Lemma 4.6)\displaystyle(\mbox{by Lemma~{}\ref{lem:go_back}})
n2\displaystyle\leq n^{-2} (by (51))\displaystyle(\mbox{by \eqref{eq:l*1}})

holds. We remark that Pr[K2l]Pr[K2l]\Pr[K\geq 2l_{*}]\leq\Pr[K\geq 2l] is trivial since l<ll<l_{*}. ∎

We are ready to prove Lemma 4.3.

Proof of Lemma 4.3.

Let l=8logμdlogμnl_{*}=8\lceil{\log_{\mu}d}\rceil\lceil{\log_{\mu}n}\rceil for convenience. Then

E[K2]\displaystyle\mathrm{E}[K^{2}] =k=1nk2Pr[K=k]\displaystyle=\sum_{k=1}^{n}k^{2}\Pr[K=k]
=k=12l1k2Pr[K=k]+k=2lnk2Pr[K=k]\displaystyle=\sum_{k=1}^{2l_{*}-1}k^{2}\Pr[K=k]+\sum_{k=2l_{*}}^{n}k^{2}\Pr[K=k]
(2l1)2Pr[K2l1]+n2Pr[K2l]\displaystyle\leq(2l_{*}-1)^{2}\Pr[K\leq 2l_{*}-1]+n^{2}\Pr[K\geq 2l_{*}]
(2l1)2+n2Pr[K2l]\displaystyle\leq(2l_{*}-1)^{2}+n^{2}\Pr[K\geq 2l_{*}]
(2l1)2+1\displaystyle\leq(2l_{*}-1)^{2}+1 (by Lemma 4.9)\displaystyle(\mbox{by Lemma~{}\ref{lem:l*}})
=(16logμdlogμn1)2+1\displaystyle=(16\lceil{\log_{\mu}d}\rceil\lceil{\log_{\mu}n}\rceil-1)^{2}+1

holds. Now the claim is easy. ∎

4.3 Proofs of Lemmas 4.1 and 4.4

This section proves Lemmas 4.1 and 4.4.

Lemma 4.10 (Lemma 4.1).

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Then,

δ(In,b)\displaystyle\delta(I_{n},b) {In+1}{I¯k+11kn2}{}\displaystyle\in\left\{I_{n+1}\right\}\cup\left\{\overline{I}_{k+1}\mid 1\leq k\leq\tfrac{n}{2}\right\}\cup\{\emptyset\} (38)
δ(I¯n,b)\displaystyle\delta(\overline{I}_{n},b) {I¯n+1}{Ik+11kn2}{}\displaystyle\in\left\{\overline{I}_{n+1}\right\}\cup\left\{I_{k+1}\mid 1\leq k\leq\tfrac{n}{2}\right\}\cup\{\emptyset\} (39)

hold for b=0,1b=0,1.

To begin with, we give two remarks. One is that we know In+1=δ(In,0)I_{n+1}=\delta(I_{n},0) if |N(In)|=2|N(I_{n})|=2, otherwise δ(In,cn+1)=In+1\delta(I_{n},c_{n+1})=I_{n+1} and δ(In,cn+1¯)=\delta(I_{n},\overline{c_{n+1}})=\emptyset, by Lemma 3.10. The other is that L(δ(In,b))=L(δ(I¯n,b¯))L(\delta(I_{n},b))=L(\delta(\overline{I}_{n},\overline{b})) holds since T(𝐛n)=T(𝐛n¯)T(\mathbf{b}_{n})=T(\overline{\mathbf{b}_{n}}) holds for any 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n} by Lemma 3.9. Thus we only need to prove the following lemma as a proof of Lemma 4.1

Lemma 4.11.

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. If |N(In)|=2|N(I_{n})|=2 holds for nn (n2n\geq 2) then

δ(In,1)\displaystyle\delta(I_{n},1) {I¯k+11kn2}\displaystyle\in\left\{\overline{I}_{k+1}\mid 1\leq k\leq\frac{n}{2}\right\} (54)

holds.

We will prove Lemma 4.11. For the purpose, we define

θμ(n)=defmin{i{1,2,,n}|N(Ini)|=2}\theta_{\mu}(n)\overset{\rm def}{=}\min\left\{i\in\{1,2,\dots,n\}\mid|N(I_{n-i})|=2\right\} (55)

for n=2,3,n=2,3,\ldots, where we also use θ(n)\theta(n) as θμ(n)\theta_{\mu}(n) without a confusion. Notice that θ(2)=1\theta(2)=1 for any μ(1,2)\mu\in(1,2) since |N(I1)|=|{[0,μ2),(0,μ2]}|=2|N(I_{1})|=|\{[0,\frac{\mu}{2}),(0,\frac{\mu}{2}]\}|=2. We also remark a recursion

θ(n+1)={1:|N(In)|=2,θ(n)+1:|N(In)|=1\theta(n+1)=\begin{cases}1&:|N(I_{n})|=2,\\ \theta(n)+1&:|N(I_{n})|=1\end{cases} (56)

holds by the definition. Then, we give a refinement of Lemma 3.10 (see also Theorem 3.3).

Lemma 4.12.

For any n2n\geq 2,

In={[fn(12),fθ(n)(12))if cn=0,(fθ(n)(12),fn(12)]otherwiseI_{n}=\begin{cases}[f^{n}(\frac{1}{2}),f^{\theta(n)}(\frac{1}{2}))&\mbox{if $c_{n}=0$,}\\ (f^{\theta(n)}(\frac{1}{2}),f^{n}(\frac{1}{2})]&\mbox{otherwise}\end{cases} (57)

holds where recall In=T(𝐜n)I_{n}=T(\mathbf{c}_{n}).

We remark that

I¯n={(fn(12),fθ(n)(12)]if cn=0,[fθ(n)(12),fn(12))otherwise\overline{I}_{n}=\begin{cases}(f^{n}(\frac{1}{2}),f^{\theta(n)}(\frac{1}{2})]&\mbox{if $c_{n}=0$,}\\ [f^{\theta(n)}(\frac{1}{2}),f^{n}(\frac{1}{2}))&\mbox{otherwise}\end{cases} (58)

holds by Lemmas 4.12 and 3.8, where recall I¯n=T(𝐜n¯)\overline{I}_{n}=T(\overline{\mathbf{c}_{n}}).

Proof of Lemma 4.12.

The proof is an induction on nn. For n=2n=2, notice that 𝐜2=γ2(12)=10\mathbf{c}_{2}=\gamma^{2}(\frac{1}{2})=10 for any μ(1,2)\mu\in(1,2). Then,

I2=T(10)\displaystyle I_{2}=T(10) =[f2(12),f(12)),\displaystyle=[f^{2}(\tfrac{1}{2}),f(\tfrac{1}{2})),

which implies (57) for n=2n=2, where we remark that θ(2)=1\theta(2)=1 (see (55)).

Inductively assuming (57) holds for nn, we prove it for n+1n+1. We consider the cases cn=0c_{n}=0 or 11. Firstly, we are concerned with the case of cn=0c_{n}=0. In the case, T(𝐜n)=[fn(12),fθ(n)(12))T(\mathbf{c}_{n})=[f^{n}(\frac{1}{2}),f^{\theta(n)}(\frac{1}{2})) by the inductive assumption. We consider the following three cases.

  • Case 1-1.

    Suppose that fn(12)<12<fθ(n)(12)f^{n}(\frac{1}{2})<\frac{1}{2}<f^{\theta(n)}(\frac{1}{2}). Then, |N(In)|=2|N(I_{n})|=2. Recall that 𝐜n+1=min{𝐛n+1nb1=1 where 𝐛n=b1bn+1}\mathbf{c}_{n+1}=\min\{\mathbf{b}_{n+1}\in{\cal L}_{n}\mid b_{1}=1\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n+1}\} by Lemma 3.7, thus cn+1c_{n+1} must be 0. Recall Case 1-1-1 in Lemma 3.10, then

    T(𝐜n+1)=T(𝐜n0)=[fn+1(12),f1(12))=[fn+1(12),fθ(n+1)(12))T(\mathbf{c}_{n+1})=T(\mathbf{c}_{n}0)=[f^{n+1}(\tfrac{1}{2}),f^{1}(\tfrac{1}{2}))=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n+1)}(\tfrac{1}{2}))

    holds where we used θ(n+1)=1\theta(n+1)=1 by (56). We obtain the claim in the case.

  • Case 1-2.

    Suppose that fθ(n)(12)12f^{\theta(n)}(\frac{1}{2})\leq\frac{1}{2}. Then, |N(In)|=1|N(I_{n})|=1. Recall Case 1-2 of Lemma 3.10, then

    T(𝐜n+1)=[fn+1(12),fθ(n)+1(12))=[fn+1(12),fθ(n+1)(12))T(\mathbf{c}_{n+1})=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n)+1}(\tfrac{1}{2}))=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n+1)}(\tfrac{1}{2}))

    holds where we used θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 by (56). We obtain the claim in the case.

  • Case 1-3.

    Suppose that fn(12)12f^{n}(\frac{1}{2})\geq\frac{1}{2}. Then, |N(In)|=1|N(I_{n})|=1. Recall Case 1-3 of Lemma 3.10, then

    T(𝐜n+1)=(fθ(n)+1(12),fn+1(12)]=(fθ(n+1)(12),fn+1(12)]T(\mathbf{c}_{n+1})=(f^{\theta(n)+1}(\tfrac{1}{2}),f^{n+1}(\tfrac{1}{2})]=(f^{\theta(n+1)}(\tfrac{1}{2}),f^{n+1}(\tfrac{1}{2})]

    holds where we used θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 by (56). We obtain the claim in the case.

Next, suppose cn=1c_{n}=1. Then T(𝐜n)=(fθ(n)(12),fn(12)]T(\mathbf{c}_{n})=(f^{\theta(n)}(\frac{1}{2}),f^{n}(\frac{1}{2})].

  • Case 2-1.

    Suppose that fθ(n)(12)<12<fn(12)f^{\theta(n)}(\frac{1}{2})<\frac{1}{2}<f^{n}(\frac{1}{2}). Then, |N(In)|=2|N(I_{n})|=2. Recall that 𝐜n+1=min{𝐛n+1nb1=1 where 𝐛n=b1bn+1}\mathbf{c}_{n+1}=\min\{\mathbf{b}_{n+1}\in{\cal L}_{n}\mid b_{1}=1\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n+1}\} by Lemma 3.7, thus cn+1c_{n+1} must be 0. Recall Case 2-1-2 of Lemma 3.10, then

    T(𝐜n+1)=T(𝐜n0)=[fn+1(12),f1(12))=[fn+1(12),fθ(n+1)(12))T(\mathbf{c}_{n+1})=T(\mathbf{c}_{n}0)=[f^{n+1}(\tfrac{1}{2}),f^{1}(\tfrac{1}{2}))=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n+1)}(\tfrac{1}{2}))

    holds where we used θ(n+1)=1\theta(n+1)=1 by (56). We obtain the claim in the case.

  • Case 2-2.

    Suppose that fn(12)12f^{n}(\frac{1}{2})\leq\frac{1}{2}. Then, |N(In)|=1|N(I_{n})|=1. Recall Case 2-2 of Lemma 3.10, then

    T(𝐛n+1)=T(𝐛nbn)=(fθ(n)+1(12),fn+1(12)]=(fθ(n+1)(12),fn+1(12)]T(\mathbf{b}_{n+1})=T(\mathbf{b}_{n}b_{n})=(f^{\theta(n)+1}(\tfrac{1}{2}),f^{n+1}(\tfrac{1}{2})]=(f^{\theta(n+1)}(\tfrac{1}{2}),f^{n+1}(\tfrac{1}{2})]

    holds where we used θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 by (56). We obtain the claim in the case.

  • Case 2-3.

    Suppose that fθ(n)(12)12f^{\theta(n)}(\frac{1}{2})\geq\frac{1}{2}. Then, |N(In)|=1|N(I_{n})|=1. Recall Case 2-3 of Lemma 3.10, then

    T(𝐛n+1)=T(𝐛nbn¯)=[fn+1(12),fθ(n)+1(12))=[fn+1(12),fθ(n+1)(12))T(\mathbf{b}_{n+1})=T(\mathbf{b}_{n}\overline{b_{n}})=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n)+1}(\tfrac{1}{2}))=[f^{n+1}(\tfrac{1}{2}),f^{\theta(n+1)}(\tfrac{1}{2}))

    holds where we used θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 by (56). We obtain the claim in the case.

Then, we obtain (57). ∎

Then, we sequentially prove three technical lemmas, Lemmas 4.134.15.

Lemma 4.13.

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Then, cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} holds.

Proof.

The proof is an induction on nn. Notice that γ2(12)=10\gamma^{2}(\frac{1}{2})=10, meaning that c1=1c_{1}=1 and c2=0c_{2}=0. Recall θ(2)=1\theta(2)=1. Thus, c2=0c_{2}=0 and cθ(2)=c1=1c_{\theta(2)}=c_{1}=1, and we obtain the claim cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} for n=2n=2.

Inductively assuming cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} holds for nn, we prove cn+1=cθ(n+1)¯c_{n+1}=\overline{c_{\theta(n+1)}}. Recall

In={[fn(12),fθ(n)(12))if cn=0,(fθ(n)(12),fn(12)]otherwiseI_{n}=\begin{cases}[f^{n}(\frac{1}{2}),f^{\theta(n)}(\frac{1}{2}))&\mbox{if $c_{n}=0$,}\\ (f^{\theta(n)}(\frac{1}{2}),f^{n}(\frac{1}{2})]&\mbox{otherwise}\end{cases} (57)

by Lemma 4.12. We consider three cases.

  • Case 1.

    Suppose fn(12)<12<fθ(n)(12)f^{n}(\frac{1}{2})<\frac{1}{2}<f^{\theta(n)}(\frac{1}{2}) or fθ(n)(12)<12<fn(12)f^{\theta(n)}(\frac{1}{2})<\frac{1}{2}<f^{n}(\frac{1}{2}). Note that |N(In)|=2|N(I_{n})|=2 in the case, and hence cn+1=0c_{n+1}=0 (cf. proof of Lemma 4.12). On the other hand, cθ(n+1)=c1=1c_{\theta(n+1)}=c_{1}=1 since θ(n+1)=1\theta(n+1)=1 when |N(In)|=2|N(I_{n})|=2 by definition (56). We obtain the claim cn+1=cθ(n+1)¯c_{n+1}=\overline{c_{\theta(n+1)}} in the case.

  • Case 2.

    Suppose fn(12)<12f^{n}(\frac{1}{2})<\frac{1}{2} and fθ(n)(12)<12f^{\theta(n)}(\frac{1}{2})<\frac{1}{2}. They respectively imply cn=cn+1c_{n}=c_{n+1} and cθ(n)=cθ(n)+1c_{\theta(n)}=c_{\theta(n)+1} by definition (5). Note that |N(In)|=1|N(I_{n})|=1 in the case, by (57). Thus θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 by definition (56), meaning that cθ(n)+1c_{\theta(n)+1} is exactly cθ(n+1)c_{\theta(n+1)} itself. The inductive assumption cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} implies the claim cn+1=cθ(n+1)¯c_{n+1}=\overline{c_{\theta(n+1)}} in the case.

  • Case 3.

    Suppose fn(12)12f^{n}(\frac{1}{2})\geq\frac{1}{2} and fθ(n)(12)12f^{\theta(n)}(\frac{1}{2})\geq\frac{1}{2}. They respectively imply cn=cn+1¯c_{n}=\overline{c_{n+1}} and cθ(n)=cθ(n)+1¯c_{\theta(n)}=\overline{c_{\theta(n)+1}} by definition (5). Note that |N(In)|=1|N(I_{n})|=1 in the case, and hence θ(n+1)=θ(n)+1\theta(n+1)=\theta(n)+1 holds. The inductive assumption cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} implies the claim cn+1=cθ(n+1)¯c_{n+1}=\overline{c_{\theta(n+1)}} in the case.

Lemma 4.14.

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. If |N(In)|=2|N(I_{n})|=2 for nn (n2n\geq 2) then cθ(n)+1=0c_{\theta(n)+1}=0.

Proof.

We consider two cases cn=0c_{n}=0 or 11. Firstly, suppose cn=0c_{n}=0. Then, In=[fn(12),fθ(n)(12))I_{n}=[f^{n}(\frac{1}{2}),f^{\theta(n)}(\frac{1}{2})) by (57). The hypothesis |N(In)|=2|N(I_{n})|=2 implies fn(12)<12<fθ(n)(12)f^{n}(\frac{1}{2})<\frac{1}{2}<f^{\theta(n)}(\frac{1}{2}) (recall Case 1-1 in Lemma 3.10). The former inequality implies cn+1=cnc_{n+1}=c_{n} while the latter inequality implies cθ(n)+1=cθ(n)¯c_{\theta(n)+1}=\overline{c_{\theta(n)}} by definition (5). Since cn=cθ(n)¯c_{n}=\overline{c_{\theta(n)}} by Lemma 4.13, we obtain cn+1=cθ(n)+1=0c_{n+1}=c_{\theta(n)+1}=0 in the case of cn=0c_{n}=0.

Secondly, suppose cn=1c_{n}=1. Then, In=(fθ(n)(12),fn(12)]I_{n}=(f^{\theta(n)}(\frac{1}{2}),f^{n}(\frac{1}{2})] by (57). The hypothesis |N(In)|=2|N(I_{n})|=2 implies fθ(n)(12)<12<fn(12)f^{\theta(n)}(\frac{1}{2})<\frac{1}{2}<f^{n}(\frac{1}{2}) (recall Case 2-1 in Lemma 3.10). The former inequality implies cθ(n)+1=cθ(n)c_{\theta(n)+1}=c_{\theta(n)} while the latter inequality implies cn+1=cn¯c_{n+1}=\overline{c_{n}} by definition (5). Since cn¯=cθ(n)\overline{c_{n}}=c_{\theta(n)} by Lemma 4.13, we obtain cn+1=cθ(n)+1=0c_{n+1}=c_{\theta(n)+1}=0 in the case of cn=1c_{n}=1. ∎

Lemma 4.15.

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. Suppose nn (n2n\geq 2) satisfies |N(In)|=2|N(I_{n})|=2. Then, the following (i) and (ii) hold:

  • (i)

    θ(θ(n)+1)=1\theta(\theta(n)+1)=1.

  • (ii)

    δ(In,1)=I¯θ(n)+1\delta(I_{n},1)=\overline{I}_{\theta(n)+1}.

Proof.

As a preliminary step, we claim that the hypothesis |N(In)|=2|N(I_{n})|=2 implies

T(𝐜n1)=(fθ(n)+1(12),f(12)]T(\mathbf{c}_{n}1)=(f^{\theta(n)+1}(\tfrac{1}{2}),f(\tfrac{1}{2})] (59)

holds. Note that δ(In,0)=In+1\delta(I_{n},0)=I_{n+1}, which we have proved in Cases 1-1 and 2-1 in Lemma 4.12. The proof of (59) is similar to them. We consider the cases cn=0c_{n}=0 or 11. In case of cn=0c_{n}=0, T(𝐜n)=[fn(12),fθ(n)(12))T(\mathbf{c}_{n})=[f^{n}(\tfrac{1}{2}),f^{\theta(n)}(\tfrac{1}{2})) by Lemma 4.12. Recall Case 1-1-2 in Lemma 3.10, then

T(𝐜n1)=(fθ(n)+1(12),f1(12)]T(\mathbf{c}_{n}1)=(f^{\theta(n)+1}(\tfrac{1}{2}),f^{1}(\tfrac{1}{2})]

holds. In case of cn=1c_{n}=1, T(𝐜n)=(fθ(n)(12),fn(12)]T(\mathbf{c}_{n})=(f^{\theta(n)}(\tfrac{1}{2}),f^{n}(\tfrac{1}{2})] by Lemma 4.12. Recall Case 2-1-1 in Lemma 3.10, then

T(𝐜n1)=(fθ(n)+1(12),f1(12)]T(\mathbf{c}_{n}1)=(f^{\theta(n)+1}(\tfrac{1}{2}),f^{1}(\tfrac{1}{2})]

holds. Thus we obtain (59).

Now we prove claim (i). Notice that T(𝐜n1)𝒯(n)T(\mathbf{c}_{n}1)\in\mathcal{T}(n) by Theorem 3.3. It implies that there exists k{1,2,n}k\in\{1,2\ldots,n\} such that T(𝐜n1){Ik,I¯k}T(\mathbf{c}_{n}1)\in\{I_{k},\overline{I}_{k}\} holds. The proof consists of three steps. Firstly, we claim that k1k\neq 1. In fact, I¯1=[0,f(12))\overline{I}_{1}=[0,f(\frac{1}{2})) and I1=(0,f(12)]I_{1}=(0,f(\frac{1}{2})], accordingly T(𝐜n1)=(fθ(n)+1(1/2),f(1/2)]T(\mathbf{c}_{n}1)=(f^{\theta(n)+1}(1/2),f(1/2)] cannot be one of them. Secondly, we claim θ(k)=1\theta(k)=1. Notice that one end of the T(𝐜n1)T(\mathbf{c}_{n}1) is f(12)f(\tfrac{1}{2}) by (59). By Lemma 4.12, both ends of IkI_{k} are fk(12)f^{k}(\tfrac{1}{2}) and fθ(k)(12)f^{\theta(k)}(\tfrac{1}{2}), I¯k\overline{I}_{k} as well. The hypothesis requires fk(12)f(12)f^{k}(\frac{1}{2})\neq f(\frac{1}{2}) since k1k\neq 1 as we proved above. Thus, fθ(k)(12)=f(12)f^{\theta(k)}(\frac{1}{2})=f(\frac{1}{2}) must hold, where the hypothesis again implies θ(k)=1\theta(k)=1. Thirdly, we claim k=θ(n)+1k=\theta(n)+1. Now we know one end of T(𝐜n1)T(\mathbf{c}_{n}1) is f(12)=fθ(k)(12)f(\tfrac{1}{2})=f^{\theta(k)}(\frac{1}{2}). Thus the other end must satisfy fθ(n)+1(12)=fk(12)f^{\theta(n)+1}(\frac{1}{2})=f^{k}(\frac{1}{2}). The hypothesis allows only k=θ(n)+1k=\theta(n)+1. Now we got θ(k)=1\theta(k)=1 and k=θ(n)+1k=\theta(n)+1, which implies (i).

We prove (ii). Note that cθ(n)+1=0c_{\theta(n)+1}=0 since |N(In)|=2|N(I_{n})|=2, by Lemma 4.14. Thus, cθ(n)+1¯=1\overline{c_{\theta(n)+1}}=1. Then,

I¯θ(n)+1\displaystyle\overline{I}_{\theta(n)+1} =T(𝐜θ(n)+1¯)\displaystyle=T(\overline{\mathbf{c}_{\theta(n)+1}}) (by definition (21))\displaystyle(\mbox{by definition \eqref{def:typei}})
=T(𝐜θ(n)¯ 1)\displaystyle=T(\overline{\mathbf{c}_{\theta(n)}}\,1) (since cθ(n)+1¯=1)\displaystyle(\mbox{since $\overline{c_{\theta(n)+1}}=1$})
=(fθ(n)+1(12),fθ(θ(n)+1)(12)]\displaystyle=(f^{\theta(n)+1}(\tfrac{1}{2}),f^{\theta(\theta(n)+1)}(\tfrac{1}{2})] (by (58))\displaystyle(\mbox{by \eqref{eq:elements_of_type_b_2}})
=(fθ(n)+1(12),f(12)]\displaystyle=(f^{\theta(n)+1}(\tfrac{1}{2}),f(\tfrac{1}{2})] (since θ(θ(n)+1)=1, by (i))\displaystyle(\mbox{since $\theta(\theta(n)+1)=1$, by (i)})
=T(𝐜n1)\displaystyle=T(\mathbf{c}_{n}1) (by (59))\displaystyle(\mbox{by \eqref{eq:back_transition_4}})
=δ(In,1)\displaystyle=\delta(I_{n},1) (recall In=T(𝐜n))\displaystyle(\mbox{recall $I_{n}=T(\mathbf{c}_{n})$})

holds, and we obtain the claim. ∎

As a consequence of Lemma 4.15, we obtain the following lemma.

Lemma 4.16.

Suppose for μ(1,2)\mu\in(1,2) that fi(12)12f^{i}(\frac{1}{2})\neq\frac{1}{2} holds for any i=1,,n1i=1,\dots,n-1. If |N(In)|=2|N(I_{n})|=2 holds for nn (n2n\geq 2) then θ(n)n2\theta(n)\leq\frac{n}{2}.

Proof.

The hypothesis |N(In)|=2|N(I_{n})|=2 implies θ(θ(n)+1)=1\theta(\theta(n)+1)=1 by Lemma 4.15. It implies |N(Iθ(n))|=2|N(I_{\theta(n)})|=2 by the recurrence relation (56). Notice that |N(Ink)|=1|N(I_{n-k})|=1 holds for k=1,2,,θ(n)k=1,2,\ldots,\theta(n) by definition of θ(n)\theta(n). Thus, θ(n)<nθ(n)+1\theta(n)<n-\theta(n)+1 must hold. Since θ(n)\theta(n) and nn are integer, we obtain θ(n)n2\theta(n)\leq\frac{n}{2}. ∎

Now, Lemma 4.11 is easy.

Proof of Lemma 4.11.

By the hypotheses,

δ(In,1)\displaystyle\delta(I_{n},1) =I¯θ(n)+1\displaystyle=\overline{I}_{\theta(n)+1} (by Lemma 4.15)\displaystyle(\mbox{by Lemma~{}\ref{lemm:back_transition}})
{I¯k+11kn2}\displaystyle\in\left\{\overline{I}_{k+1}\mid 1\leq k\leq\tfrac{n}{2}\right\} (by Lemma 4.16)\displaystyle(\mbox{by Lemma~{}\ref{lemm:back_half}})

holds. ∎

Finally, we prove Proposition 4.4, here.

Proposition 4.17 (Proposition 4.4).

Let μ(1,2)\mu\in(1,2). If there exists nn (n=1,2,n=1,2,\ldots) such that fμn(12)=12f_{\mu}^{n}(\frac{1}{2})=\frac{1}{2} holds then |𝒯n|2n|\mathcal{T}_{n^{\prime}}|\leq 2n holds for any nnn^{\prime}\geq n.

Proof.

Suppose fn(12)=12f^{n}(\frac{1}{2})=\frac{1}{2}. Let 𝐜n+1=c1cn+1=γn+1(12)\mathbf{c}_{n+1}=c_{1}\cdots c_{n+1}=\gamma^{n+1}(\tfrac{1}{2}). Firstly, we claim f~(Sn+1(𝐜n+1))=S(c2cn+1)\tilde{f}(S_{n+1}(\mathbf{c}_{n+1}))=S(c_{2}\cdots c_{n+1}). Let Sn+1(𝐜n+1)=[12,u)S_{n+1}(\mathbf{c}_{n+1})=[\frac{1}{2},u) according to Lemma 3.7. We know f~(Sn+1(𝐜n+1))=[f~(12),f~(u))Sn(c2cn+1)\tilde{f}(S_{n+1}(\mathbf{c}_{n+1}))=[\tilde{f}(\frac{1}{2}),\tilde{f}(u))\subseteq S_{n}(c_{2}\cdots c_{n+1}) by Lemma 3.5. Assume for a contradiction, let xS(c2cn+1)[f~(12),f~(u))x\in S(c_{2}\cdots c_{n+1})\setminus[\tilde{f}(\frac{1}{2}),\tilde{f}(u)). Let x=f~(12)x^{\prime}=\tilde{f}(\frac{1}{2}) and let x′′(f~(12),f~(u))x^{\prime\prime}\in(\tilde{f}(\frac{1}{2}),\tilde{f}(u)), then x<x<x′′x<x^{\prime}<x^{\prime\prime} hold. We claim both xnxnx^{\prime}_{n}\geq x_{n} and xnxn′′x^{\prime}_{n}\geq x^{\prime\prime}_{n} hold for xn=fn(x)x_{n}=f^{n}(x), xn=fn(x)x^{\prime}_{n}=f^{n}(x^{\prime}) and xn′′=fn(x′′)x^{\prime\prime}_{n}=f^{n}(x^{\prime\prime}). In fact, xn=fn(x)=fn(f~(12))=fn+1(x)=f(fn(12))=f(12)x^{\prime}_{n}=f^{n}(x^{\prime})=f^{n}(\tilde{f}(\frac{1}{2}))=f^{n+1}(x)=f(f^{n}(\frac{1}{2}))=f(\frac{1}{2}) holds. By definition (1), f(12)f(y)f(\frac{1}{2})\geq f(y) for any y[0,1]y\in[0,1]. Thus, we obtain xnxnx^{\prime}_{n}\geq x_{n} and xnxn′′x^{\prime}_{n}\geq x^{\prime\prime}_{n}. This contradicts to Lemma 2.4, claiming either xn<xn<xn′′x_{n}<x^{\prime}_{n}<x^{\prime\prime}_{n} or xn>xn>xn′′x_{n}>x^{\prime}_{n}>x^{\prime\prime}_{n}. We obtain f~(Sn+1(𝐜n+1))=Sn(c2cn+1)\tilde{f}(S_{n+1}(\mathbf{c}_{n+1}))=S_{n}(c_{2}\cdots c_{n+1}).

Now, it is easy to see T(𝐜n+1)=fn+1(Sn+1(𝐜n+1))=fn(f~(Sn+1(𝐜n+1)))=fn(Sn(c2cn+1))=T(c2cn+1)T(\mathbf{c}_{n+1})=f^{n+1}(S_{n+1}(\mathbf{c}_{n+1}))=f^{n}(\tilde{f}(S_{n+1}(\mathbf{c}_{n+1})))=f^{n}(S_{n}(c_{2}\cdots c_{n+1}))=T(c_{2}\cdots c_{n+1}). We obtain the claim by Lemma 3.11. ∎

5 Analysis for Real μ\mu

We assumed μ\mu rational in Section 4.1, to avoid some bothering arguments on Turing computability of real numbers, but it is not essential. This section shows that KK is O(lognloglogn)\mathrm{O}(\log n\log\log n) with high probability, in expectation as well, even for real μ\mu. To be precise, we prove the following proposition.

Proposition 5.1.

Let μ(1,2)\mu\in(1,2) be an arbitrary real, and let c1c\geq 1 be a constant. For convenience, let l=max{8clogμnlog2logμn,2logμμ12}l_{*}=\max\{8c\log_{\mu}n\log_{2}\log_{\mu}n,-2\log_{\mu}\frac{\mu-1}{2}\}.111111 Notice that 2logμμ12>0-2\log_{\mu}\frac{\mu-1}{2}>0 for μ(1,2)\mu\in(1,2), where its value is asymptotic to \infty as μ1+0\mu\to 1+0. The term is negligible if μ10\mu-1\gg 0, e.g., 2logμμ1210-2\log_{\mu}\frac{\mu-1}{2}\leq 10 if μ2\mu\geq\sqrt{2}. Then,

Pr[K2l]n(c1)\displaystyle\Pr[K\geq 2l_{*}]\leq n^{-(c-1)}

holds.

Remark that it is possible to establish polylogn\mathrm{poly}\log n average space complexity even for some real μ\mu from Proposition 5.1, using some standard (but bothering) arguments on computations with real numbers, e.g., symbolic treatment of 2\sqrt{2}, e{\rm e}, π\pi, etc. Here, we just prove Proposition 5.1, and omit the arguments on polylogn\mathrm{poly}\log n average space for real μ\mu.

The proof of Proposition 5.1 is similar to Lemma 4.9, but we have to prove the following lemma without the assumption of μ\mu being rational, in contrast to Lemma 4.7.

Lemma 5.2.

Let μ(1,2)\mu\in(1,2) be an arbitrary real, and let c1c\geq 1 be a constant. For convenience, let l=max{8clogμnlog2logμn,2logμμ12}l_{*}=\max\{8c\log_{\mu}n\log_{2}\log_{\mu}n,-2\log_{\mu}\frac{\mu-1}{2}\}. Then, there exists ll such that lll\leq l_{*} and

|I2l|μl|Il|nc\frac{|I_{2l}|}{\mu^{l}|I_{l}|}\leq n^{-c} (60)

hold.

Proof.

For convenience, let li=2il_{i}=2^{i} for i=1,2,i=1,2,\ldots. Assume for a contradiction that (60) never hold for any l1,l2,,lkl_{1},l_{2},\ldots,l_{k}, where let

lkmax{4clogμnlog2logμn,logμμ12}(=l2)\displaystyle l_{k}\geq\max\left\{4c\log_{\mu}n\log_{2}\log_{\mu}n,-\log_{\mu}\frac{\mu-1}{2}\right\}\quad\left(=\tfrac{l_{*}}{2}\right) (61)

hold. Notice that such lkl_{k} exists at most ll_{*}. In other words,

|Ili+1|>ncμli|Ili||I_{l_{i+1}}|>n^{-c}\mu^{l_{i}}|I_{l_{i}}| (62)

holds every i=1,2,,ki=1,2,\ldots,k. Thus, we inductively obtain that

|Ilk+1|\displaystyle|I_{l_{k+1}}| >ncμlk|Ilk|\displaystyle>n^{-c}\mu^{l_{k}}|I_{l_{k}}|
>ncμlkμlk1|Ilk1|\displaystyle>n^{-c}\mu^{l_{k}}\mu^{l_{k-1}}|I_{l_{k-1}}|
>\displaystyle>\dots
>nckμlkμlk1μl1|Il1|\displaystyle>n^{-ck}\mu^{l_{k}}\mu^{l_{k-1}}\dots\mu^{l_{1}}|I_{l_{1}}| (63)

holds. Note that

|Il1|=|I2|=μ2μ(1μ2)=μμ12> 0\displaystyle|I_{l_{1}}|\ =\ |I_{2}|\ =\ \frac{\mu}{2}-\mu\left(1-\frac{\mu}{2}\right)\ =\ \mu\frac{\mu-1}{2}\ >\ 0 (64)

holds. Then, (63) and (64) imply

|Ilk+1|\displaystyle|I_{l_{k+1}}| >nckμ2k+2k1++21μμ12\displaystyle>n^{-ck}\cdotp\mu^{2^{k}+2^{k-1}+\dots+2^{1}}\cdotp\mu\frac{\mu-1}{2} (65)

holds. By taking the logμ\log_{\mu} of the both sides of (65), we see that

logμ|Ilk+1|\displaystyle\log_{\mu}{|I_{l_{k+1}}|} >cklogμn+2k+11+logμμ12\displaystyle>-ck\log_{\mu}n+2^{k+1}-1+\log_{\mu}\frac{\mu-1}{2}
=(2kcklogμn1)+(2k+logμμ12)\displaystyle=(2^{k}-ck\log_{\mu}n-1)+\left(2^{k}+\log_{\mu}\frac{\mu-1}{2}\right) (66)

holds. Notice that f(x)=2xax1f(x)=2^{x}-ax-1 (a>0a>0) is monotone increasing for x1+log2ax\geq 1+\log_{2}a. Since lk=2k4clogμnlog2logμnl_{k}=2^{k}\geq 4c\log_{\mu}n\log_{2}\log_{\mu}n,

2kcklogμn1\displaystyle 2^{k}-ck\log_{\mu}n-1 4clogμnlog2logμnclog2(4clogμnlog2logμn)logμn1\displaystyle\geq 4c\log_{\mu}n\log_{2}\log_{\mu}n-c\log_{2}(4c\log_{\mu}n\log_{2}\log_{\mu}n)\log_{\mu}n-1
=clogμn(4(log2logμn)log2(4clogμnlog2logμn))1\displaystyle=c\log_{\mu}n(4(\log_{2}\log_{\mu}n)-\log_{2}(4c\log_{\mu}n\log_{2}\log_{\mu}n))-1
=clogμn(4(log2logμn)log24clog2logμnlog2log2logμn))1\displaystyle=c\log_{\mu}n(4(\log_{2}\log_{\mu}n)-\log_{2}4c-\log_{2}\log_{\mu}n-\log_{2}\log_{2}\log_{\mu}n))-1
=clogμn(3(log2logμn)log24clog2log2logμn))1\displaystyle=c\log_{\mu}n(3(\log_{2}\log_{\mu}n)-\log_{2}4c-\log_{2}\log_{2}\log_{\mu}n))-1 (67)

holds. It is not difficult to see that

log2logμnlog24c>0and\displaystyle\log_{2}\log_{\mu}n-\log_{2}4c>0\qquad\qquad\mbox{and}
log2logμnlog2log2logμn>0\displaystyle\log_{2}\log_{\mu}n-\log_{2}\log_{2}\log_{\mu}n>0

hold for sufficiently large nn, and hence

(67)\displaystyle\eqref{eq:shortqs_1-r} clogμnlog2logμn1\displaystyle\geq c\log_{\mu}n\log_{2}\log_{\mu}n-1
0\displaystyle\geq 0 (68)

holds for sufficiently large nn.

Since 2klogμμ122^{k}\geq-\log_{\mu}\frac{\mu-1}{2} by definition, it is also not difficult to observe that

2k+logμμ12logμμ12+logμμ12= 0\displaystyle 2^{k}+\log_{\mu}\frac{\mu-1}{2}\ \geq\ -\log_{\mu}\frac{\mu-1}{2}+\log_{\mu}\frac{\mu-1}{2}\ =\ 0 (69)

holds. Equations (66), (68) and (69) imply that logn|Ilk+1|>0\log_{n}{|I_{l_{k+1}}|}>0, meaning that |Ilk+1|>1|I_{l_{k+1}}|>1. At the same time, notice that any segment-type JJ satisfies J[0,1]J\subseteq[0,1], meaning that |Ilk+1|1|I_{l_{k+1}}|\leq 1. Contradiction. ∎

Now, the rest of the proof of Proposition 5.1 is essentially the same as Lemma 4.9.

Proof of Proposition 5.1.

Lemma 5.2 implies that there exists ll such that lll\leq l_{*} and

|I2l|μl|Il|nc\displaystyle\frac{|I_{2l}|}{\mu^{l}|I_{l}|}\leq n^{-c} (70)

holds. Let AtA_{t} (t=1,,nt=1,\ldots,n) denote the event that ZtZ_{t} reaches the level 2l2l for the first time. Then,

Pr[K2l]\displaystyle\Pr[K\geq 2l] =Pr[t=0nAt]\displaystyle=\Pr\left[\bigvee_{t=0}^{n}A_{t}\right]
t=0nPr[At]\displaystyle\leq\sum_{t=0}^{n}\Pr\left[A_{t}\right]
nPr[L(Zt)=2lL(Ztl)=l]\displaystyle\leq n\Pr[L(Z_{t})=2l\mid L(Z_{t-l})=l]
n|I2l|μl|Il|\displaystyle\leq n\frac{|I_{2l}|}{\mu^{l}|I_{l}|}
n(c1)\displaystyle\leq n^{-(c-1)} (by (70))\displaystyle(\mbox{by \eqref{eq:l*1-r}})

holds. We remark that Pr[K2l]Pr[K2l]\Pr[K\geq 2l_{*}]\leq\Pr[K\geq 2l] is trivial since l<ll<l_{*}. ∎

Corollary 5.3.

Let μ(1,2)\mu\in(1,2) be an arbitrary real. Let l=max{16logμnlog2logμn,2logμμ12}l^{\prime}_{*}=\max\{16\log_{\mu}n\log_{2}\log_{\mu}n,-2\log_{\mu}\frac{\mu-1}{2}\}, for convenience. Then, E[K]2l\mathrm{E}[K]\leq 2l^{\prime}_{*}.

Proof.

Proposition 5.1 with c=2c=2 implies

Pr[K2l]n1\displaystyle\Pr[K\geq 2l^{\prime}_{*}]\leq n^{-1} (71)

holds. Then

E[K]\displaystyle\mathrm{E}[K] =k=1nkPr[K=k]\displaystyle=\sum_{k=1}^{n}k\Pr[K=k]
=k=12l1kPr[K=k]+k=2lnkPr[K=k]\displaystyle=\sum_{k=1}^{2l^{\prime}_{*}-1}k\Pr[K=k]+\sum_{k=2l^{\prime}_{*}}^{n}k\Pr[K=k]
(2l1)Pr[K2l1]+nPr[K2l]\displaystyle\leq(2l^{\prime}_{*}-1)\Pr[K\leq 2l^{\prime}_{*}-1]+n\Pr[K\geq 2l^{\prime}_{*}]
(2l1)+nPr[K2l]\displaystyle\leq(2l^{\prime}_{*}-1)+n\Pr[K\geq 2l^{\prime}_{*}]
(2l1)+1\displaystyle\leq(2l^{\prime}_{*}-1)+1 (by (71))\displaystyle(\mbox{by \eqref{eq:exp-real1}})
=2l\displaystyle=2l^{\prime}_{*}

holds. ∎

6 Concluding Remark

This paper showed that B𝒟nB\sim{\cal D}_{n} is realized in O(log2n)\mathrm{O}(\log^{2}n) space, in average (Theorem 2.5). An extension to the smoothed analysis, beyond average, is a near future work. Another future work is an extension to the baker’s map, which is a chaotic map of piecewise but 2-dimensional. For the purpose, we need an appropriately extended notion of the segment-type. Another future work is an extension to the logistic map, which is a chaotic map of 1-dimensional but quadratic. Some techniques of random number transformation may be available for it. The time complexity is another interesting topic to decide bn{0,1}b_{n}\in\{0,1\} as given a rational x=p/qx=p/q for a fixed μ\mu\in\mathbb{Q}. Is it possible to compute in time polynomial in the input size logp+logq+logn\log p+\log q+\log n? It might be NP-hard, but we could not find a result.

Acknowledgement

The authors are grateful to Masato Tsujii for the invaluable comments, particularly about the Markov extension. The authors would like to thank Yutaka Jitsumatsu, Katsutoshi Shinohara and Yusaku Tomita for the invaluable discussions, that inspire this work. The authors are deeply grateful to Jun’ichi Takeuchi for his kind support. This work is partly supported by JSPS KAKENHI Grant Numbers JP21H03396.

References

  • [1] T. Addabbo, M. Alioto, A. Fort, S. Rocchi and V. Vignoli, The digital tent map: Performance analysis and optimized design as a low-complexity source of pseudorandom bits. IEEE Transactions on Instrumentation and Measurement, 55:5 (2006), 1451–1458.
  • [2] M. Alawida, J. S. Teh, D. P. Oyinloye, W. H. Alshoura, M. Ahmad and R. S. Alkhawaldeh, A New Hash Function Based on Chaotic Maps and Deterministic Finite State Automata, in IEEE Access, vol. 8, pp. 113163-113174, 2020,
  • [3] H. Bruin, Combinatorics of the kneading map, International Journal of Bifurcation and Chaos, 05:05 (1995), 1339–1349.
  • [4] M.  Crampin and B. Heal, On the chaotic behaviour of the tent map Teaching Mathematics and its Applications: An International Journal of the IMA, 13:2 (1994), 83–89.
  • [5] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, 1991.
  • [6] M. R. Garey and D. S.  Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1979.
  • [7] G. Gharooni-fard, A. Khademzade, F. Moein-darbari, Evaluating the performance of one-dimensional chaotic maps in the network-on-chip mapping problem, IEICE Electronics Express, 6:12 (2009), 811–817. Algorithms and certificates for Boolean CSP refutation: smoothed is no harder than random
  • [8] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel Journal of Mathematics, 34:3 (1979), 213–237.
  • [9] E. Hopf, Ergodentheorie, Springer Verlag, Berlin, 1937.
  • [10] A. Kanso, H. Yahyaoui and M. Almulla, Keyed hash function based on chaotic map, Information Sciences, 186 (2012), 249–264.
  • [11] T. Kohda, Signal processing using chaotic dynamics, IEICE ESS Fundamentals Review, 2:4 (2008), 16–36, in Japanese.
  • [12] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer-Verlag, 2018.
  • [13] C. Li, G. Luo, K, Qin, C. Li, An image encryption scheme based on chaotic tent map, Nonlinear. Dyn., 87 (2017), 127–133.
  • [14] T.Y. Li and J.A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985–995.
  • [15] E.N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20:2 (1963), 130–141.
  • [16] E. Lorenz, The Essence of Chaos, University of Washington Press, 1993.
  • [17] T. Makino, Y. Iwata, K. Shinohara, Y. Jitsumatsu, M. Hotta, H. San and K. Aihara, Rigorous estimates of quantization error for a/d converters based on beta-map, Nonlinear Theory and Its Applications, IEICE, 6:1 (2015), 99–111.
  • [18] R. May, Simple mathematical models with very complicated dynamics. Nature, 261 (1976), 459–467.
  • [19] W. Parry, On the β\beta-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11 (1960), 401–416.
  • [20] W. Parry, Representations for real numbers, Acta Math.Acad. Sci.Hung., 15 (1964), 95–105.
  • [21] G. Radons, G. C. Hartmann, H. H. Diebner, O. E. Rossler, Staircase baker’s map generates flaring-type time series, Discrete Dynamics in Nature and Society, 5 (2000), 107–120.
  • [22] A. Rényi, Representations for real numbers and their ergodic properties, Acta Mathematica Hungarica, 8:3-4 (1957), 477–493.
  • [23] H. Shigematsu, H. Mori, T. Yoshida and H. Okamoto, Analytic study of power spectra of the tent maps near band-splitting transitions, J. Stat. Phys., 30 (1983), 649–679.
  • [24] Y.G. Sinai, Construction of Markov partitions, Funct. Anal. Its Appl., 2 (1968), 245–253.
  • [25] M. Sipser, Introduction to the Theory of Computation, 3rd ed., Cengage Learning, 2012.
  • [26] H. Teramoto and T. Komatsuzaki, How does a choice of Markov partition affect the resultant symbolic dynamics?, Chaos, 20 (2010), 037113.
  • [27] Y. Tomita, Randomized β\beta-expansion, Master’s thesis, Kyushu University, 2018, in Japanese.
  • [28] Y. Tomita and S. Kijima, Randomized β\beta-expansion, IEICE General Conference 2018, Tokyo, DS–1–3, in Japanese.
  • [29] J. Xiao, J. Xu, Z. Chen, K. Zhang and L. Pan, A hybrid quantum chaotic swarm evolutionary algorithm for DNA encoding, Computers & Mathematics with Applications, 57:11–12 (2009), 1949–1958.
  • [30] H. Yang, K.-W. Wong, X. Liao, Y. Wang and D. Yang, One-way hash function construction based on chaotic map network, Chaos, Solitons & Fractals, 41:5 (2009), 2566–2574.
  • [31] T. Yoshida, H. Mori and H. Shigematsu, Analytic study of chaos of the tent map: Band structures, power spectra, and critical behaviors. J. Stat. Phys., 31 (1983), 279–308.

Appendix A Proofs Remaining from Section 2

Proposition A.1 (Proposition 2.1).

Suppose γ(x)=b1b2\gamma^{\infty}(x)=b_{1}b_{2}\cdots for x[0,1)x\in[0,1). Then, (μ1)i=1biμi=x(\mu-1)\sum_{i=1}^{\infty}b_{i}\mu^{-i}=x.

Proof.

Let

ai=bibi1a_{i}=b_{i}\oplus b_{i-1} (72)

for i1i\geq 1, where b0=0b_{0}=0 for convenience. By (6), ai=0a_{i}=0 if and only if xi<1/2x_{i}<1/2. Then, (1) implies

xi=(1)aiμxi1+μaix_{i}=(-1)^{a_{i}}\mu x_{i-1}+\mu a_{i} (73)

holds for any ii. Recursively applying (73), we see

xn=(1)i=1naiμnx0+(1)i=2naiμna1+(1)i=3naiμn1a2++(1)0μ1anx_{n}=(-1)^{\bigoplus_{i=1}^{n}a_{i}}\mu^{n}x_{0}+(-1)^{\bigoplus_{i=2}^{n}a_{i}}\mu^{n}a_{1}+(-1)^{\bigoplus_{i=3}^{n}a_{i}}\mu^{n-1}a_{2}+\dots+(-1)^{0}\mu^{1}a_{n}

holds for any nn. By Eq. (72),

xn=(1)bnμnx0+(1)bnb1μn(b10)+(1)bnb2μn1(b2b1)++(1)bnbnμ1(bnbn1).x_{n}=(-1)^{b_{n}}\mu^{n}x_{0}+(-1)^{b_{n}\oplus b_{1}}\mu^{n}(b_{1}\oplus 0)+(-1)^{b_{n}\oplus b_{2}}\mu^{n-1}(b_{2}\oplus b_{1})+\dots+(-1)^{b_{n}\oplus b_{n}}\mu^{1}(b_{n}\oplus b_{n-1}).

Multiplying (1)bnμn(-1)^{b_{n}}\mu^{-n} in both sides,

(1)bnμnxn\displaystyle(-1)^{b_{n}}\mu^{-n}x_{n} =x0+(1)b1(b10)+(1)b2μ1(b2b1)++(1)bnμ(n1)(bnbn1)\displaystyle=x_{0}+(-1)^{b_{1}}(b_{1}\oplus 0)+(-1)^{b_{2}}\mu^{-1}(b_{2}\oplus b_{1})+\dots+(-1)^{b_{n}}\mu^{-(n-1)}(b_{n}\oplus b_{n-1})
=x0b1μ1(b2b1)+μ(n1)(bnbn1)\displaystyle=x_{0}-b_{1}-\mu^{-1}(b_{2}-b_{1})+\dots-\mu^{-(n-1)}(b_{n}-b_{n-1})
=x0(μ1)(μ1b1+μ2b2+μnbn)\displaystyle=x_{0}-(\mu-1)(\mu^{-1}b_{1}+\mu^{-2}b_{2}+\cdots\mu^{-n}b_{n})
=x(μ1)i=1nbiμi.\displaystyle=x-(\mu-1)\sum_{i=1}^{n}b_{i}\mu^{-i}.

Notice that xn[0,1)x_{n}\in[0,1) holds for any nn and μ\mu. Thus,

|x(μ1)i=1nbiμi|μn\left|x-(\mu-1)\sum_{i=1}^{n}b_{i}\mu^{-i}\right|\leq\mu^{-n} (74)

holds for any nn. Clearly μn0\mu^{-n}\to 0 asymptotic to nn\to\infty. We obtain the claim. ∎

As a preliminary step of Propositions 2.2 and 2.3, we prove Lemma 2.4 first.

Lemma A.2 (Lemma 2.4).

Let x,x[0,1)x,x^{\prime}\in[0,1) satisfy x<xx<x^{\prime}. Let γ(x)=b1b2\gamma(x)=b_{1}b_{2}\cdots and γ(x)=b1b2\gamma(x^{\prime})=b^{\prime}_{1}b^{\prime}_{2}\cdots. If bi=bib_{i}=b^{\prime}_{i} hold for all i=1,,ni=1,\ldots,n then

{xn<xnif bn=bn=0xn>xnif bn=bn=1\displaystyle\begin{cases}x_{n}<x^{\prime}_{n}&\mbox{if $b_{n}=b^{\prime}_{n}=0$, }\\ x_{n}>x^{\prime}_{n}&\mbox{if $b_{n}=b^{\prime}_{n}=1$}\end{cases} (7)

holds.

Proof.

We prove it by an induction on i=1,2,,ni=1,2,\ldots,n. Consider the case of i=1i=1. By (4), b1=b1=0b_{1}=b^{\prime}_{1}=0 only when x,x<1/2x,x^{\prime}<1/2, accordingly x1=μx<μx=x1x_{1}=\mu x<\mu x^{\prime}=x^{\prime}_{1} holds by (1). Similarly, if b1=b1=1b_{1}=b^{\prime}_{1}=1 then x,x1/2x,x^{\prime}\geq 1/2 by (4), accordingly x1=μ(1x)μ(1x)=x1x_{1}=\mu(1-x)\geq\mu(1-x^{\prime})=x^{\prime}_{1} holds by (1). We obtain (7) for i=1i=1.

Inductively assuming (7) for ii (n1\leq n-1), we prove it for i+1i+1. According to (6), we consider four cases.

  • Case 1.

    Suppose bi=bi=0b_{i}=b^{\prime}_{i}=0 and bi+1=bi+1=0b_{i+1}=b^{\prime}_{i+1}=0. Then, xi<xi<12x_{i}<x^{\prime}_{i}<\frac{1}{2} by (7) and (6). Therefore, xi+1=μxi<μxi=xi+1x_{i+1}=\mu x_{i}<\mu x^{\prime}_{i}=x^{\prime}_{i+1} by (1).

  • Case 2.

    Suppose bi=bi=0b_{i}=b^{\prime}_{i}=0 and bi+1=bi+1=1b_{i+1}=b^{\prime}_{i+1}=1. Then, 12xi<xi\frac{1}{2}\leq x_{i}<x^{\prime}_{i}. Therefore, xi+1=μ(1xi)>μ(1xi)=xi+1x_{i+1}=\mu(1-x_{i})>\mu(1-x^{\prime}_{i})=x^{\prime}_{i+1}.

  • Case 3.

    Suppose bi=bi=1b_{i}=b^{\prime}_{i}=1 and bi+1=bi+1=1b_{i+1}=b^{\prime}_{i+1}=1. Then, xi<xi12x^{\prime}_{i}<x_{i}\leq\frac{1}{2}. Therefore, xi+1=μxi>μxi=xi+1x_{i+1}=\mu x_{i}>\mu x^{\prime}_{i}=x^{\prime}_{i+1}.

  • Case 4.

    Suppose bi=bi=1b_{i}=b^{\prime}_{i}=1 and bi+1=bi+1=0b_{i+1}=b^{\prime}_{i+1}=0. Then, 12<xi<xi\frac{1}{2}<x^{\prime}_{i}<x_{i}. Therefore, xi+1=μ(1xi)<μ(1xi)=xi+1x_{i+1}=\mu(1-x_{i})<\mu(1-x^{\prime}_{i})=x^{\prime}_{i+1}.

In each case we obtain (7). ∎

Proposition A.3 (Proposition 2.2).

For any x,x[0,1)x,x^{\prime}\in[0,1),

xx\displaystyle x\leq x^{\prime} γμn(x)γμn(x)\displaystyle\Rightarrow\gamma_{\mu}^{n}(x)\preceq\gamma_{\mu}^{n}(x^{\prime})

hold where \preceq denotes the lexicographic order, that is bi=0b_{i_{*}}=0 and bi=1b^{\prime}_{i_{*}}=1 at i=min{j{1,2,}bjbj}i_{*}=\min\{j\in\{1,2,\ldots\}\mid b_{j}\neq b^{\prime}_{j}\} for γn(x)=b1b2bn\gamma^{n}(x)=b_{1}b_{2}\cdots b_{n} and γn(x)=b1b2bn\gamma^{n}(x^{\prime})=b^{\prime}_{1}b^{\prime}_{2}\cdots b^{\prime}_{n} unless γn(x)=γn(x)\gamma^{n}(x)=\gamma^{n}(x^{\prime}).

Proof.

The claim is trivial for x=xx=x^{\prime}. Suppose x<xx<x^{\prime}, and let i=min{j{1,2,}bjbj}i_{*}=\min\{j\in\{1,2,\ldots\}\mid b_{j}\neq b^{\prime}_{j}\}, where let i=n+1i_{*}=n+1 if γn(x)=γn(x)\gamma^{n}(x)=\gamma^{n}(x^{\prime}), for convenience. By Lemma 2.4, we know

{xi1<xi1if bi1=bi1=0xi1>xi1if bi1=bi1=1\displaystyle\begin{cases}x_{i_{*}-1}<x^{\prime}_{i_{*}-1}&\mbox{if $b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=0$, }\\ x_{i_{*}-1}>x^{\prime}_{i_{*}-1}&\mbox{if $b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=1$}\end{cases} (75)

holds. Then, we confirm γn(x)γn(x)\gamma^{n}(x)\preceq\gamma^{n}(x^{\prime}). Consider two cases. Firstly, suppose bi1=bi1=0b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=0. The hypothesis bibib_{i_{*}}\neq b^{\prime}_{i_{*}} requires xi1<1/2xi1x_{i_{*}-1}<1/2\leq x^{\prime}_{i_{*}-1}. Then, we obtain bi=0b_{i_{*}}=0 and bi=1b^{\prime}_{i_{*}}=1 by (6), in the case. Next, suppose bi1=bi1=1b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=1. The hypothesis bibib_{i_{*}}\neq b^{\prime}_{i_{*}} requires xi1>1/2xi1x_{i_{*}-1}>1/2\geq x^{\prime}_{i_{*}-1}. Then, we obtain bi=0b_{i_{*}}=0 and bi=1b^{\prime}_{i_{*}}=1 by (6), in the case. In both cases, we obtain γn(x)γn(x)\gamma^{n}(x)\preceq\gamma^{n}(x^{\prime}). ∎

Proposition A.4 (Proposition 2.3).

The nn-th iterated tent code is right continuous, i.e., γμn(x)=γμn(x+0)\gamma_{\mu}^{n}(x)=\gamma_{\mu}^{n}(x+0).

Proof.

The proof is similar to Proposition 2.2. To begin with, we remark that if γn(x)γn(x)\gamma^{n}(x)\prec\gamma^{n}(x^{\prime}) then x<xx<x^{\prime}, by a contraposition of Proposition 2.2. Assume for contradiction that γn(x)γn(x+0)\gamma^{n}(x)\prec\gamma^{n}(x+0) holds. Let γn(x)=b1b2bn\gamma^{n}(x)=b_{1}b_{2}\cdots b_{n} and γn(x)=b1b2bn\gamma^{n}(x^{\prime})=b^{\prime}_{1}b^{\prime}_{2}\cdots b^{\prime}_{n} where x=x+ϵnx^{\prime}=x+\epsilon_{n} and 0<ϵnμn0<\epsilon_{n}\ll\mu^{-n}, and let i=min{j{1,2,n}bjbj}i_{*}=\min\{j\in\{1,2,\ldots n\}\mid b_{j}\neq b^{\prime}_{j}\}. Recall (7), then we consider two cases.

  • Case 1.

    Suppose bi1=bi1=0b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=0. The hypothesis bnbnb_{n}\neq b^{\prime}_{n} requires xi1<1/2xi1x_{i_{*}-1}<1/2\leq x^{\prime}_{i_{*}-1} due to (6). Let ϵnμn(12xi1)\epsilon_{n}\ll\mu^{-n}(\frac{1}{2}-x_{i_{*}-1}), then xi1<1/2x^{\prime}_{i_{*}-1}<1/2 holds (recall (74) in the proof of Proposition 2.1). Contradiction.

  • Case 2.

    Suppose bi1=bi1=1b_{i_{*}-1}=b^{\prime}_{i_{*}-1}=1. The hypothesis bnbnb_{n}\neq b^{\prime}_{n} requires xi1>1/2xi1x_{i_{*}-1}>1/2\geq x^{\prime}_{i_{*}-1} due to (6). Let ϵnμn(xi112)\epsilon_{n}\ll\mu^{-n}(x_{i_{*}-1}-\frac{1}{2}), then xi1>1/2x^{\prime}_{i_{*}-1}>1/2 holds. Contradiction.

We obtain the claim. ∎

Appendix B Proofs Remaining from Section 3

B.1 Proofs of Lemmas 3.7 and 3.8

Lemma B.1 (Lemma 3.7).

Let 𝐜n=γn(12)\mathbf{c}_{n}=\gamma^{n}(\frac{1}{2}). Then, 𝐜n=𝐝n\mathbf{c}_{n}=\mathbf{d}_{n} and 𝐜n¯=𝐝n\overline{\mathbf{c}_{n}}=\mathbf{d}^{\prime}_{n} hold, where 𝐝n=min{𝐛nnb1=1 where 𝐛n=b1bn}\mathbf{d}_{n}=\min\{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=1\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n}\} and 𝐝n=max{𝐛nnb1=0 where 𝐛n=b1bn}\mathbf{d}^{\prime}_{n}=\max\{\mathbf{b}_{n}\in{\cal L}_{n}\mid b_{1}=0\mbox{ where }\mathbf{b}_{n}=b_{1}\cdots b_{n}\},

The former claim is trivial by Proposition 2.2 and (15). The latter claim comes from the following fact.

Lemma B.2 (Lemma 3.8).

γn(x)¯=γn(1x)\overline{\gamma^{n}(x)}=\gamma^{n}(1-x) unless x=minSn(x)x=\min S_{n}(x).

Proof.

Without loss of generality, we may assume that x1/2x\geq 1/2. The claim is trivial for n=1n=1 since γ(x)=1\gamma(x)=1 and γ(1x)=0\gamma(1-x)=0 by (4) unless x=1/2x=1/2. Notice that S1(1/2)=[1/2,1)S_{1}(1/2)=[1/2,1), meaning that 1/2=minS1(1/2)1/2=\min S_{1}(1/2).

Inductively assuming the claim holds for n1n-1, we prove it for n2n\geq 2. For convenience, let γn(x)=b1bn\gamma^{n}(x)=b_{1}\cdots b_{n} and let γn(1x)=b1bn\gamma^{n}(1-x)=b^{\prime}_{1}\cdots b^{\prime}_{n}. Then, bi¯=bi\overline{b_{i}}=b^{\prime}_{i} holds for in1i\leq n-1 by the inductive assumption, and it is enough to prove bn¯=bn\overline{b_{n}}=b^{\prime}_{n}. Recall that bnb_{n} (resp. bnb^{\prime}_{n}) is determined by fn1(x)f^{n-1}(x) and bn1b_{n-1} (resp., fn1(1x)f^{n-1}(1-x) and bn1b^{\prime}_{n-1}) by (5). We also remark that f(x)=f(1x)f(x)=f(1-x) by (1), and then fn1(x)=fn1(1x)f^{n-1}(x)=f^{n-1}(1-x) inductively. By the inductive assumption, bn1¯=bn1\overline{b_{n-1}}=b^{\prime}_{n-1} holds, which implies with (5) that bn¯=bn\overline{b_{n}}=b^{\prime}_{n} unless fn1(x)=fn1(1x)=1/2f^{n-1}(x)=f^{n-1}(1-x)=1/2. We obtain γn(x)¯=γn(1x)\overline{\gamma^{n}(x)}=\gamma^{n}(1-x) in the case.

To finalize the proof, we need two more facts. If fn1(x)=1/2f^{n-1}(x)=1/2 then x=minSn(x)x=\min S_{n}(x) holds, by Lemma B.3 just below. The second one is that (14) implies that if x=minSn1(x)x=\min S_{n-1}(x) then x=minSn(x)x=\min S_{n}(x) holds, which guarantees the induction hypothesis that xminSn1(x)x\neq\min S_{n-1}(x) holds for any xminSn(x)x\neq\min S_{n}(x). Now, we obtain the lemma. ∎

Lemma B.3.

If fn(x)=1/2f^{n}(x)=1/2 then x=minSn+1(x)x=\min S_{n+1}(x) for x[0,1)x\in[0,1) and n=1,2,n=1,2,\ldots.

Proof.

It feels almost trivial by the definition of bib_{i} (cf. (5)) and the right continuity of Sn(x)S_{n}(x) (cf. Proposition 2.3), but we directly prove it using Lemma 2.4.

If x=minSn(x)x=\min S_{n}(x) then x=minSn+1(x)x=\min S_{n+1}(x) by (14). Suppose xminSn(x)x\neq\min S_{n}(x) and fn(x)=1/2f^{n}(x)=1/2. Then, we prove γn+1(x)γn+1(x0)\gamma^{n+1}(x)\neq\gamma^{n+1}(x-0). Let γn+1(x)=b1bn+1\gamma^{n+1}(x)=b_{1}\cdots b_{n+1} and γn+1(x0)=b1,,bn+1\gamma^{n+1}(x-0)=b^{\prime}_{1},\ldots,b^{\prime}_{n+1}. Notice that bi=bib_{i}=b^{\prime}_{i} for i=1,,ni=1,\ldots,n since xminSn(x)x\neq\min S_{n}(x) (i.e., xintSn(x)x\in{\rm int}S_{n}(x)). By Lemma 2.4,

{fn(x0)<fn(x)if bn=bn=0fn(x0)>fn(x)if bn=bn=1\displaystyle\begin{cases}f^{n}(x-0)<f^{n}(x)&\mbox{if $b_{n}=b^{\prime}_{n}=0$, }\\ f^{n}(x-0)>f^{n}(x)&\mbox{if $b_{n}=b^{\prime}_{n}=1$}\end{cases} (76)

holds. In each case, the assumption fn(x)=1/2f^{n}(x)=1/2 implies bn+1=1b_{n+1}=1 and bn+1=0b_{n+1}=0 according to (5). Now the claim is clear. ∎

Proof of Lemma 3.7.

The former claim 𝐜n=𝐝n\mathbf{c}_{n}=\mathbf{d}_{n} is trivial since 1/2Sn(𝐝n)1/2\in S_{n}(\mathbf{d}_{n}) by (15). The latter claim 𝐜n¯=𝐝n\overline{\mathbf{c}_{n}}=\mathbf{d}^{\prime}_{n} is also easy from Lemma 3.8 since 1/2Sn(𝐝n)1/2\in S_{n}(\mathbf{d}_{n}) and and the right continuity of a section (cf. Proposition 2.3). ∎

B.2 Proof of Lemma 3.10

Lemma B.4 (Lemma 3.10).

Let x[0,1)x\in[0,1). (1) Suppose Tn(x)=[v,u)T^{n}(x)=[v,u) (v<uv<u). We consider three cases concerning the position of 12\tfrac{1}{2} relative to [v,u)[v,u).

  • Case 1-1:

    v<12<uv<\frac{1}{2}<u.

    • Case 1-1-1.

      If fn(x)<1/2f^{n}(x)<1/2 then Tn+1(x)=[f(v),f(12))T^{n+1}(x)=[f(v),f(\tfrac{1}{2})), and bn+1=0b_{n+1}=0.

    • Case 1-1-2.

      If fn(x)1/2f^{n}(x)\geq 1/2 then Tn+1(x)=(f(u),f(12)]T^{n+1}(x)=(f(u),f(\tfrac{1}{2})], and bn+1=1b_{n+1}=1.

  • Case 1-2:

    u12u\leq\frac{1}{2}. Then Tn+1(x)=[f(v),f(u))T^{n+1}(x)=[f(v),f(u)), and bn+1=0b_{n+1}=0.

  • Case 1-3:

    v12v\geq\frac{1}{2}. Then Tn+1(x)=(f(u),f(v)]T^{n+1}(x)=(f(u),f(v)], and bn+1=1b_{n+1}=1.

(2) Similarly, suppose Tn(x)=(v,u]T^{n}(x)=(v,u] (v<uv<u).

  • Case 2-1:

    v<12<uv<\frac{1}{2}<u.

    • Case 2-1-1.

      If fn(x)1/2f^{n}(x)\leq 1/2 then Tn+1(x)=(f(v),f(12)]T^{n+1}(x)=(f(v),f(\tfrac{1}{2})], and bn+1=1b_{n+1}=1.

    • Case 2-1-2.

      If fn(x)>1/2f^{n}(x)>1/2 then Tn+1(x)=[f(u),f(12))T^{n+1}(x)=[f(u),f(\tfrac{1}{2})), and bn+1=0b_{n+1}=0.

  • Case 2-2:

    u12u\leq\frac{1}{2}. Then Tn+1(x)=(f(v),f(u)]T^{n+1}(x)=(f(v),f(u)], and bn+1=1b_{n+1}=1.

  • Case 2-3:

    v12v\geq\frac{1}{2}. Then Tn+1(x)=[f(u),f(v))T^{n+1}(x)=[f(u),f(v)), and bn+1=0b_{n+1}=0.

Proof.

To begin with, we recall three facts. i) The segment-type is defined by Tn(x)={fn(x)xSn(𝐛n)}T^{n}(x)=\{f^{n}(x)\mid x\in S_{n}(\mathbf{b}_{n})\} by (16). ii) Sn(𝐛n)=Sn+1(𝐛n0)Sn+1(𝐛n1)S_{n}(\mathbf{b}_{n})=S_{n+1}(\mathbf{b}_{n}0)\cup S_{n+1}(\mathbf{b}_{n}1) by (14). Particularly, infSn(𝐛n)=infSn+1(𝐛n0)\inf S_{n}(\mathbf{b}_{n})=\inf S_{n+1}(\mathbf{b}_{n}0) and supSn(𝐛n)=supSn+1(𝐛n1)\sup S_{n}(\mathbf{b}_{n})=\sup S_{n+1}(\mathbf{b}_{n}1) by Proposition 2.2. iii) bn+1b_{n+1} depends on bnb_{n} and xnx_{n} by (6). The following proof is based on the idea similar to Lemma 3.2.

(1) Suppose Tn(x)=[v,u)T^{n}(x)=[v,u) (v<uv<u), i.e., fnf^{n} is monotone increasing in Sn(x)S_{n}(x) by Lemma 3.2.

  • Case 1-1:

    v<12<uv<\frac{1}{2}<u. Let xSn(x)x^{*}\in S_{n}(x) satisfy fn(x)(=xn)=12f^{n}(x^{*})(=x^{*}_{n})=\frac{1}{2}. Clearly, Sn(𝐛n)S_{n}(\mathbf{b}_{n}) is divided into Sn+1(𝐛n0)S_{n+1}(\mathbf{b}_{n}0) and Sn+1(𝐛n1)S_{n+1}(\mathbf{b}_{n}1) at xx^{*}, i.e., Sn(𝐛n)=[infSn+1(𝐛n0),x)[x,Sn+1(𝐛n1))S_{n}(\mathbf{b}_{n})=[\inf S_{n+1}(\mathbf{b}_{n}0),x^{*})\cup[x^{*},S_{n+1}(\mathbf{b}_{n}1)).

    • Case 1-1-1.

      If fn(x)<1/2f^{n}(x)<1/2 then xn[v,12)x_{n}\in[v,\frac{1}{2}). Thus, fn+1(x)=f(xn)=μxnf^{n+1}(x)=f(x_{n})=\mu x_{n}. Accordingly, fn+1(infSn+1(x))=f(fn(infSn(x)))=f(v)=μvf(xn)<μ12=f(12)=f(xn)=fn+1(x)f^{n+1}(\inf S_{n+1}(x))=f(f^{n}(\inf S_{n}(x)))=f(v)=\mu v\leq f(x_{n})<\mu\frac{1}{2}=f(\frac{1}{2})=f(x^{*}_{n})=f^{n+1}(x^{*}) since vxn<12v\leq x_{n}<\frac{1}{2} (cf. the proof of Lemma 3.2). We obtain Tn+1(x)=[f(v),f(12))T^{n+1}(x)=[f(v),f(\tfrac{1}{2})). bn+1=0b_{n+1}=0 is clear by Lemma 3.2.

    • Case 1-1-2.

      If fn(x)1/2f^{n}(x)\geq 1/2 then xn[12,u)x_{n}\in[\frac{1}{2},u). Thus, fn+1(x)=f(xn)=μ(1xn)f^{n+1}(x)=f(x_{n})=\mu(1-x_{n}). Accordingly, f(12)=μ(112)f(xn)>μ(1u)=f(u)f(\frac{1}{2})=\mu(1-\frac{1}{2})\geq f(x_{n})>\mu(1-u)=f(u) since 12xn<u\frac{1}{2}\leq x_{n}<u. We obtain Tn+1(x)=(f(u),f(12)]T^{n+1}(x)=(f(u),f(\tfrac{1}{2})].

  • Case 1-2:

    u12u\leq\frac{1}{2}. Then, xn<12x_{n}<\frac{1}{2}. Thus, fn+1(x)=f(xn)=μxnf^{n+1}(x)=f(x_{n})=\mu x_{n}. Accordingly, f(v)=μvf(xn)<μu=f(u)f(v)=\mu v\leq f(x_{n})<\mu u=f(u) since vxn<uv\leq x_{n}<u. We obtain Tn+1(x)=[f(v),f(u))T^{n+1}(x)=[f(v),f(u)).

  • Case 1-3:

    v12v\geq\frac{1}{2}. Then, xn12x_{n}\geq\frac{1}{2}. Thus, fn+1(x)=f(xn)=μ(1xn)f^{n+1}(x)=f(x_{n})=\mu(1-x_{n}). Accordingly, f(v)=μ(1v)f(xn)>μ(1u)=f(u)f(v)=\mu(1-v)\geq f(x_{n})>\mu(1-u)=f(u) since vxn<uv\leq x_{n}<u. We obtain Tn+1(x)=(f(u),f(v)]T^{n+1}(x)=(f(u),f(v)].

(2) Suppose Tn(x)=(v,u]T^{n}(x)=(v,u] (v<uv<u), i.e., fnf^{n} is monotone decreasing.

  • Case 2-1:

    v<12<uv<\frac{1}{2}<u.

    • Case 2-1-1.

      If fn(x)1/2f^{n}(x)\leq 1/2 then xn(l,12]x_{n}\in(l,\frac{1}{2}]. Thus, fn+1(x)=f(xn)=μxnf^{n+1}(x)=f(x_{n})=\mu x_{n}. Accordingly, f(v)=μv<f(xn)μ12=f(12)f(v)=\mu v<f(x_{n})\leq\mu\frac{1}{2}=f(\frac{1}{2}) since vxn<12v\leq x_{n}<\frac{1}{2}. We obtain Tn+1(x)=(f(v),f(12)]T^{n+1}(x)=(f(v),f(\tfrac{1}{2})].

    • Case 2-1-2.

      If fn(x)>1/2f^{n}(x)>1/2 then xn(12,u]x_{n}\in(\frac{1}{2},u]. Thus, fn+1(x)=f(xn)=μ(1xn)f^{n+1}(x)=f(x_{n})=\mu(1-x_{n}). Accordingly, f(12)=μ(112)f(xn)>μ(1u)=f(u)f(\frac{1}{2})=\mu(1-\frac{1}{2})\geq f(x_{n})>\mu(1-u)=f(u) since 12<xnu\frac{1}{2}<x_{n}\leq u. We obtain Tn+1(x)=[f(u),f(12))T^{n+1}(x)=[f(u),f(\tfrac{1}{2})).

  • Case 2-2:

    u12u\leq\frac{1}{2}. Then, xn12x_{n}\leq\frac{1}{2}. Thus, fn+1(x)=f(xn)=μxnf^{n+1}(x)=f(x_{n})=\mu x_{n}. Accordingly, f(v)=μv<f(xn)μu=f(u)f(v)=\mu v<f(x_{n})\leq\mu u=f(u) since v<xnuv<x_{n}\leq u. We obtain Tn+1(x)=(f(v),f(u)]T^{n+1}(x)=(f(v),f(u)].

  • Case 2-3:

    v12v\geq\frac{1}{2}. Then, xn>12x_{n}>\frac{1}{2}. Thus, fn+1(x)=f(xn)=μ(1xn)f^{n+1}(x)=f(x_{n})=\mu(1-x_{n}). Accordingly, f(v)=μ(1v)f(xn)>μ(1u)=f(u)f(v)=\mu(1-v)\geq f(x_{n})>\mu(1-u)=f(u) since v<xnuv<x_{n}\leq u. We obtain Tn+1(x)=[f(u),f(v))T^{n+1}(x)=[f(u),f(v)).

B.3 Proof of Lemma 3.13

Lemma B.5 (Lemma 3.13).

Let XX be a real-valued random variable drawn from [0,1)[0,1) uniformly at random. Let 𝐁n+1=B1Bn+1=γn+1(X){\bf B}_{n+1}=B_{1}\cdots B_{n+1}=\gamma^{n+1}(X). Let 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}. Then,

Pr[Bn+1=bγn(X)=𝐛n]=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|\displaystyle\Pr[B_{n+1}=b\mid\gamma^{n}(X)=\mathbf{b}_{n}]=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|}

holds for b{0,1}b\in\{0,1\}, where let |T(𝐛nb)|=0|T(\mathbf{b}_{n}b)|=0 if 𝐛nbn+1\mathbf{b}_{n}b\not\in{\cal L}_{n+1}.

As a preliminary step, we prove the following lemma which proves that fnf^{n} is a piecewise linear function, which is almost trivial but we have not proven yet.

Lemma B.6.

fn(X)f^{n}(X) is uniformly distributed over Tn(X)T^{n}(X).

Proof.

The proof is an induction on nn. We start with n=1n=1. Notice that Pr[X[0,12)]=Pr[X[12,1)]=12\Pr[X\in[0,\frac{1}{2})]=\Pr[X\in[\frac{1}{2},1)]=\frac{1}{2}. We consider two cases whether X<12X<\frac{1}{2} or not. If X<12X<\frac{1}{2} then f(X)=μXf(X)=\mu X. Thus,

Pr[f(X)<kX[0,12)]=Pr[μX<kX[0,12)]=kμ12=kμ2\displaystyle\Pr\left[f(X)<k\mid X\in[0,\tfrac{1}{2})\right]=\Pr\left[\mu X<k\mid X\in[0,\tfrac{1}{2})\right]=\frac{\frac{k}{\mu}}{\frac{1}{2}}=\frac{k}{\frac{\mu}{2}}

holds for any k[0,μ2)=T(X)k\in[0,\frac{\mu}{2})=T(X), which implies the claim in the case. Similarly, if X12X\geq\frac{1}{2} then f(X)=μ(1X)f(X)=\mu(1-X). Then, Pr[f(X)<kX[12,1)]=Pr[μ(1X)<k1X(0,12]]=kμ12=kμ2\Pr\left[f(X)<k\mid X\in[\frac{1}{2},1)\right]=\Pr\left[\mu(1-X)<k\mid 1-X\in(0,\frac{1}{2}]\right]=\frac{\frac{k}{\mu}}{\frac{1}{2}}=\frac{k}{\frac{\mu}{2}} holds for any k[0,μ2)=T(X)k\in[0,\frac{\mu}{2})=T(X), which implies the claim for n=1n=1.

Inductively assuming the claim for nn, we prove it for n+1n+1. We here prove Case 1-1 in Lemma 3.10, but other cases are similar. Suppose Tn(X)=[v,u)T^{n}(X)=[v,u) and 12(v,u)\frac{1}{2}\in(v,u). Let Xn=fn(X)X_{n}=f^{n}(X) for convenience. If Xn<12X_{n}<\frac{1}{2} then f(Xn)=μXnf(X_{n})=\mu X_{n}. Then,

Pr[fn+1(X)<kXn[v,12)]=Pr[f(Xn)<kXn[v,12)]=Pr[μXn<kXn[v,12)]\displaystyle\Pr\left[f^{n+1}(X)<k\mid X_{n}\in[v,\tfrac{1}{2})\right]=\Pr\left[f(X_{n})<k\mid X_{n}\in[v,\tfrac{1}{2})\right]=\Pr\left[\mu X_{n}<k\mid X_{n}\in[v,\tfrac{1}{2})\right]
=Pr[Xn<kμXn[v,12)]=|[v,kμ)||[v,12)|=|[μv,k)||[μv,μ2)|=|[f(v),k)||[f(v),f(12))|\displaystyle\hskip 20.00003pt=\Pr\left[X_{n}<\tfrac{k}{\mu}\mid X_{n}\in[v,\tfrac{1}{2})\right]=\frac{|[v,\frac{k}{\mu})|}{\left|[v,\tfrac{1}{2})\right|}=\frac{|[\mu v,k)|}{\left|[\mu v,\tfrac{\mu}{2})\right|}=\frac{|[f(v),k)|}{\left|[f(v),f(\tfrac{1}{2}))\right|}

holds for k[f(v),f(12))k\in[f(v),f(\frac{1}{2})), where [f(v),f(12))=Tn+1(X)[f(v),f(\frac{1}{2}))=T^{n+1}(X) holds by the argument similar to the proof of Case 1-1-1 in Lemma 3.10. Thus, fn+1(X)f^{n+1}(X) is uniformly distributed over Tn+1(X)T^{n+1}(X).

If Xn12X_{n}\geq\frac{1}{2} then f(Xn)=μ(1Xn)f(X_{n})=\mu(1-X_{n}). Then,

Pr[fn+1(X)<kXn[12,u)]=Pr[f(Xn)<kXn[12,u)]\displaystyle\Pr\left[f^{n+1}(X)<k\mid X_{n}\in[\tfrac{1}{2},u)\right]=\Pr\left[f(X_{n})<k\mid X_{n}\in[\tfrac{1}{2},u)\right]
=Pr[μ(1Xn)<k1Xn(1u,12]]=Pr[1Xn<kμ1Xn(1u,12]]\displaystyle\hskip 20.00003pt=\Pr\left[\mu(1-X_{n})<k\mid 1-X_{n}\in(1-u,\tfrac{1}{2}]\right]=\Pr\left[1-X_{n}<\tfrac{k}{\mu}\mid 1-X_{n}\in(1-u,\tfrac{1}{2}]\right]
=|(1u,kμ]||(1u,12]|=|(μ(1u),k]||(μ(1u),μ2]|=|(f(u),k]||(f(u),f(12)]|\displaystyle\hskip 20.00003pt=\frac{|(1-u,\frac{k}{\mu}]|}{\left|(1-u,\tfrac{1}{2}]\right|}=\frac{|(\mu(1-u),k]|}{\left|(\mu(1-u),\tfrac{\mu}{2}]\right|}=\frac{|(f(u),k]|}{\left|(f(u),f(\tfrac{1}{2})]\right|}

holds for k(f(u),f(12)]=Tn+1(X)k\in(f(u),f(\frac{1}{2})]=T^{n+1}(X). We obtain Case 1-1. It is not difficult to see that other cases are similar. ∎

Next, we prove the following lemma.

Lemma B.7.

Let 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}. Then,

|Sn+1(𝐛nb)||Sn(𝐛n)|=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|\displaystyle\frac{|S_{n+1}(\mathbf{b}_{n}b)|}{|S_{n}(\mathbf{b}_{n})|}=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|}

holds for b=0,1b=0,1.

Proof.

It is trivial if Sn+1(𝐛n0)=S_{n+1}(\mathbf{b}_{n}0)=\emptyset or Sn+1(𝐛n1)=S_{n+1}(\mathbf{b}_{n}1)=\emptyset, corresponding to Cases 1-2, 1-3, 2-2, 2-3 in Lemma 3.10. Consider Case 1-1 (Case 2-1 is similar). Let T(𝐛n)=[v,u)T(\mathbf{b}_{n})=[v,u), and let xSn(𝐛n)x^{*}\in S_{n}(\mathbf{b}_{n}) satisfy fn(x)(=xn)=12f^{n}(x^{*})(=x^{*}_{n})=\frac{1}{2}.

Firstly we remark

|Sn+1(𝐛n0)||Sn+1(𝐛n0)|+|Sn+1(𝐛n1)|=Pr[X<xXSn(𝐛n)]\displaystyle\frac{|S_{n+1}(\mathbf{b}_{n}0)|}{|S_{n+1}(\mathbf{b}_{n}0)|+|S_{n+1}(\mathbf{b}_{n}1)|}=\Pr[X<x^{*}\mid X\in S_{n}(\mathbf{b}_{n})] (77)

holds since XX is uniformly distributed over [0,1)[0,1).

Next, we claim that

Pr[Xn<fn(x)XnT(𝐛n)]=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|\displaystyle\Pr[X_{n}<f^{n}(x^{*})\mid X_{n}\in T(\mathbf{b}_{n})]=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|} (78)

holds similarly from Lemma B.6. In fact,

l.h.s. of (78)=Pr[Xn<fn(x)XnT(𝐛n)]=|[v,x)||[v,u)|=xvuv\displaystyle\mbox{l.h.s.\ of \eqref{eq:cond-prob-type2}}=\Pr[X_{n}<f^{n}(x^{*})\mid X_{n}\in T(\mathbf{b}_{n})]=\frac{|[v,x^{*})|}{|[v,u)|}=\frac{x^{*}-v}{u-v}

holds by Lemma B.6. For the right hand side, we see that

|T(𝐛n0)|\displaystyle|T(\mathbf{b}_{n}0)| =f(12)f(v)=μ(12v)\displaystyle=f(\tfrac{1}{2})-f(v)=\mu(\tfrac{1}{2}-v) (79)
|T(𝐛n1)|\displaystyle|T(\mathbf{b}_{n}1)| =f(u)f(12)=μ(112)μ(1u)=μ(u12)\displaystyle=f(u)-f(\tfrac{1}{2})=\mu(1-\tfrac{1}{2})-\mu(1-u)=\mu(u-\tfrac{1}{2}) (80)

holds. Thus

r.h.s. of (78)=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|=μ(12v)μ(12v)+μ(u12)=xvuv\displaystyle\mbox{r.h.s.\ of \eqref{eq:cond-prob-type2}}=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|}=\frac{\mu(\tfrac{1}{2}-v)}{\mu(\tfrac{1}{2}-v)+\mu(u-\tfrac{1}{2})}=\frac{x^{*}-v}{u-v}

holds. We obtain (78).

Finally, we observe

(77)\displaystyle\eqref{eq:cond-prob-type1} =Pr[X<xXSn(𝐛n)]\displaystyle=\Pr[X<x^{*}\mid X\in S_{n}(\mathbf{b}_{n})]
=Pr[X<xXnT(𝐛n)]\displaystyle=\Pr[X<x^{*}\mid X_{n}\in T(\mathbf{b}_{n})] (since xSn(𝐛n) iff xnT(𝐛n))\displaystyle(\mbox{since $x\in S_{n}(\mathbf{b}_{n})$ iff $x_{n}\in T(\mathbf{b}_{n})$})
=Pr[Xn<fn(x)XnT(𝐛n)]\displaystyle=\Pr[X_{n}<f^{n}(x^{*})\mid X_{n}\in T(\mathbf{b}_{n})] (since x<x iff xn<fn(x))\displaystyle(\mbox{since $x<x^{*}$ iff $x_{n}<f^{n}(x^{*})$})
=(78)\displaystyle=\eqref{eq:cond-prob-type2}

and we obtain the claim in the case. Case 2-1 is similar. ∎

Proof of Lemma 3.13.

Recall (31), then

Pr[Bn+1=bγn(X)=𝐛n]=|Sn+1(𝐛nb)||Sn+1(𝐛n)|\displaystyle\Pr[B_{n+1}=b\mid\gamma^{n}(X)=\mathbf{b}_{n}]=\frac{|S_{n+1}(\mathbf{b}_{n}b)|}{|S_{n+1}(\mathbf{b}_{n})|}

is trivial for b=0,1b=0,1. By Lemma B.7,

|Sn+1(𝐛nb)||Sn+1(𝐛n)|=|T(𝐛nb)||T(𝐛n0)|+|T(𝐛n1)|\displaystyle\frac{|S_{n+1}(\mathbf{b}_{n}b)|}{|S_{n+1}(\mathbf{b}_{n})|}=\frac{|T(\mathbf{b}_{n}b)|}{|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|}

holds for b=0,1b=0,1. Now the claim is clear. ∎

Lemma B.8.
|T(𝐛n0)|+|T(𝐛n1)|=μ|T(𝐛n)|\displaystyle|T(\mathbf{b}_{n}0)|+|T(\mathbf{b}_{n}1)|=\mu|T(\mathbf{b}_{n})| (81)

holds for any 𝐛nn\mathbf{b}_{n}\in{\cal L}_{n}

Proof.

Immediate from (79) and (80). ∎