This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Spatially Variant Fractional Laplacian

Andrea N. Ceretani Andrea N. Ceretani. Department of Mathematics of the Faculty of Exact and Natural Sciences, University of Buenos Aires, and Mathematics Research Institute “Luis A. Santaló” (IMAS), CONICET, Argentina. aceretani@dm.uba.ar  and  Carlos N. Rautenberg Carlos N. Rautenberg. Department of Mathematical Sciences and the Center for Mathematics and Artificial Intelligence (CMAI), George Mason University, Fairfax, VA 22030, USA. crautenb@gmu.edu
Abstract.

We introduce a definition of the fractional Laplacian (Δ)s()(-\Delta)^{s(\cdot)} with spatially variable order s:Ω[0,1]s:\Omega\to[0,1] and study the solvability of the associated Poisson problem on a bounded domain Ω\Omega. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga and Torrea; however the analytical tools and approaches developed here are new. For instance, in some cases we allow the variable order s()s(\cdot) to attain the values 0 and 11 leading to a framework on weighted Sobolev spaces with non-Muckenhoupt weights. Initially, and under minimal assumptions, the operator (Δ)s()(-\Delta)^{s(\cdot)} is identified as the Lagrange multiplier corresponding to an optimization problem; and its domain is determined as a quotient space of weighted Sobolev spaces. The well-posedness of the associated Poisson problem is then obtained for data in the dual of this quotient space. Subsequently, two trace regularity results are established, allowing to partially characterize functions in the aforementioned quotient space whenever a Poincaré type inequality is available. Precise examples are provided where such inequality holds, and in this case the domain of the operator (Δ)s()(-\Delta)^{s(\cdot)} is identified with a subset of a weighted Sobolev space with spatially variant smoothness s()s(\cdot). The latter further allows to prove the well-posedness of the Poisson problem assuming functional regularity of the data.

Key words and phrases:
fractional order Sobolev space, spatially varying exponent, trace theorem, fractional Laplacian with variable exponent, Hardy-type inequalities
2010 Mathematics Subject Classification:
35S15, 26A33, 65R20
CNR was partially supported by NSF grant 2012391. CNR was also been supported via the framework of MATHEON by the Einstein Foundation Berlin within the ECMath project SE15/SE19 and of the Excellence Cluster Math+ Berlin within project AA4-3 and the transition project OT6, and acknowledges the support of the DFG through the DFG-SPP 1962: Priority Programme “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization” within Project 11. ANC was partially supported by Air Force Office of Scientific Research under Award NO: FA9550-19-1-0036, by CONICET grant PIP 0032CO, and by ANPCyT grant PICT 2016-1022.
The authors are very grateful to Prof. Harbir Antil from George Mason University for the valuable discussions on the paper.

1. Introduction

The goal of this work is twofold: (i) introduce the spectral fractional Laplacian (Δ)s()(-\Delta)^{s(\cdot)} associated with a homogeneous Dirichlet condition on a bounded domain ΩN\Omega\subset\mathbb{R}^{N}, N1N\geq 1, in the case the fractional order s()s(\cdot) is spatially variable and possibly attains the values 0 and 11; (ii) study the well-posedness of the equation

(Δ)s()v=h in Ω,v=0 on Ω,\begin{split}(-\Delta)^{s(\cdot)}v&=h\quad\text{ in }\Omega,\\ v&=0\quad\text{ on }\partial\Omega,\end{split} (1.1)

for some classes of data hh, and where v=0v=0 is understood in an appropriate sense.

Motivated by the extension approach in N\mathbb{R}^{N} by Caffarelli and Silvestre [5], or in bounded domains by Stinga and Torrea [17], we define (Δ)s()(-\Delta)^{s(\cdot)} to be the Lagrange multiplier associated to a suitable variational problem defined in an extended domain, for measurable functions s()s(\cdot) with range contained in the interval [0,1][0,1]. For a general class of functions s()s(\cdot), the domain of (Δ)s()(-\Delta)^{s(\cdot)} can be identified with a quotient space 𝒳(Ω,w)\mathscr{X}(\Omega,w) involving weighted Sobolev spaces,

𝒳(Ω,w):=0,L1,2(𝒞,w)/01,2(𝒞,w),\mathscr{X}(\Omega,w):=\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)/\mathscr{L}_{0}^{1,2}(\mathcal{C},w), (1.2)

where 𝒞=Ω×(0,+)\mathcal{C}=\Omega\times(0,+\infty) is the open semi-infinite cylinder (the extended domain) with base Ω\Omega, and ww is a specific weight function. Roughly speaking, the spaces 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w) are composed of functions that vanish on the lateral boundary of 𝒞\mathcal{C}, and on the whole boundary (including the base Ω\Omega), respectively. Equation (1.1) is then solvable for every hh in the dual space of 𝒳(Ω,w)\mathscr{X}(\Omega,w). For a smaller class of s()s(\cdot), the domain can be identified as a subset of a weighted Lebesgue space L2(Ω,w~)L^{2}(\Omega,\tilde{w}) for some function w~\tilde{w}, and the equation (1.1) is solvable when the right hand side is in L2(Ω,w~)L^{2}(\Omega,\tilde{w}). For an even smaller class of functions s()s(\cdot), this result is further improved since the domain of (Δ)s()(-\Delta)^{s(\cdot)} is identified with a subset of a weighted Sobolev space of functions with spatially variable smoothness, related to s()s(\cdot).

The main application that has motivated this work, in addition to the natural theoretical interest, is the recent paper [2]. There, initial results on an extension approach in Hilbert spaces on an open cylinder with base Ω\Omega are given. However, the authors stopped short of defining (Δ)s()(-\Delta)^{s(\cdot)} due to the lack of a proper functional framework. The current paper aims to fill this gap. It is worth mentioning that none of the existing results in the literature are applicable to our case and new PDE and variational analysis tools are needed to study the current situation. For example, the extension approaches in [5, 17] assume s(0,1)s\in(0,1) to be a constant and avoid the extreme cases of 0 and 11. In this setting, the nonlocal problem (Δ)sv=h(-\Delta)^{s}v=h in Ω\Omega, where (Δ)s(-\Delta)^{s} is the ss-power of the realization of Δ-\Delta in L2(Ω)L^{2}(\Omega) with zero Dirichlet boundary conditions, can be equivalently formulated as a local one on a Sobolev space with a Muckenhoupt weight. On the other hand, our s()s(\cdot) is a function which is allowed to touch the extreme cases 0 and 1 and therefore, the associated weights do not fulfill the Muckenhoupt property [2, Proposition 1]. In particular, fundamental results of type “H=WH=W” or Poincaré inequalities are not known in our case, leading to a more complex functional analytic framework.

The literature concerning possible definitions of (Δ)s()(-\Delta)^{s(\cdot)} with non-constant ss is restricted to the stochastic processes and stochastic calculus approaches and considers always the unbounded case Ω=N\Omega=\mathbb{R}^{N}; see the monograph [3] and the references therein. By means of the Lévy-Khintchine representation formula, and the Fourier transform, the operator is determined to be of Lévy type. However, strong additional assumptions on s()s(\cdot) are required to show that the operator is associated to a Feller or a Markov process. To name a few, these include assuming that s()s(\cdot) is Lipschitz continuous and satisfies εs()1ε\varepsilon\leq s(\cdot)\leq 1-\varepsilon for some ε(0,1)\varepsilon\in(0,1); see [3, Example 3.5.9]. Neither of these restrictions are present in this work.

The paper is further motivated by several applications. The extension approach with spatially varying s()s(\cdot) has shown remarkable potential in image denoising: A rough choice of s()s(\cdot) performs better than an optimal selected regularization parameter in total variation approaches; see [2]. This is indeed a game changer, especially the variable s()s(\cdot) approach can enable one to replace the nonlinear (and degenerate) Euler-Lagrange equations in case of total variation by a linear one in the case of the variable fractional. The variable s()s(\cdot) approach can be also applied in geophysics: Models governed by a fractional Helmholtz equation (with constant fractional order) have shown good qualitative agreement with available magnetoteluric data, see [20]. Given the spatially long-range correlated heterogeneity of the medium, nonlocal models with spatially varying fractional order s()s(\cdot) appear as an atractive tool to further obtain quantitative agreement.

Outline. The notation and main assumptions we make, specially those for the variable exponent s()s(\cdot), are specified in Section 2. In Section 3 we provide a succinct idea of the approach that we follow to study the fractional Laplacian with spatially variable order, (Δ)s()(-\Delta)^{s(\cdot)}, which is motivated by well-known results for the usual spectral fractional Laplacian.

Our main results begin from Section 4, where we introduce a definition of (Δ)s()(-\Delta)^{s(\cdot)} on the quotient space 𝒳(Ω,w)\mathscr{X}(\Omega,w). Also in this section we prove the existence and uniqueness of a solution v𝒳(Ω,w)v\in\mathscr{X}(\Omega,w) to the associated Poisson problem (1.1) for every hh in the dual space of 𝒳(Ω,h)\mathscr{X}(\Omega,h). It is worth mentioning that the results in Section 4 require minimal conditions on the function s()s(\cdot), the weight ww, and the domain Ω\Omega. The results given in Section 4, however, do not provide conditions for solvability of the Poisson problem when the right hand side of the elliptic equation is a (regular) real valued function defined only on Ω\Omega.

In a second approach, we are able to better identify the domain of (Δ)s()(-\Delta)^{s(\cdot)} as a quotient space also, now on a Sobolev space 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) that consist of functions in W1,p(𝒞,w)W^{1,p}(\mathcal{C},w) that formally vanish on the lateral boundary of 𝒞\mathcal{C}. Differently from the construction given in Section 4, this second approach requires some extra conditions on both, s()s(\cdot) and Ω\Omega. These conditions are intimately related with the existence of Ω\Omega-trace results for functions in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w), as well as with the existence of a Poincaré inequality in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w); thus, we postpone the second construction until Section 7.

In Section 5, we first study the Ω\Omega-traces of functions in 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w), for 2p<2\leq p<\infty. In particular, we are able to characterize s()s(\cdot)-dependent integrability and differential regularity of restrictions of functions in 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) to Ω\Omega. Subsequently, we are able to prove the existence of a Poincaré inequality for 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) in Section 6, for a special class of non-constant s()s(\cdot) functions.

Our results finish in Section 7, where the details on the second definition of (Δ)s()(-\Delta)^{s(\cdot)} are given. Here, we identify the domain of (Δ)s()(-\Delta)^{s(\cdot)} with a subset of a weighted Lebesgue space L2(Ω,w~)L^{2}(\Omega,\tilde{w}) for some weight w~\tilde{w}, provided s()s(\cdot) vanishes only on a set of zero measure and a Poincaré inequality holds for functions in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w). Further, we improve this result for the case when Ω\Omega is the NN-dimensional unit square and s()s(\cdot) satisfies some extra conditions. In this latter case we identify the domain of (Δ)s()(-\Delta)^{s(\cdot)} with a subset of a Sobolev space of functions with variable smoothness on Ω\Omega. The paper closes with Section 8 that includes, in addition to conclusions, a number of open questions and future research directions.

More general elliptic operators of the form

(divA)s()v=h,(-\mathrm{div}A\nabla)^{s(\cdot)}v=h,

with spatially variable fractional order s()s(\cdot), can be defined by extending the ideas in this paper in a natural way.

2. Notation and main assumptions

We assume that ΩN\Omega\subset\mathbb{R}^{N}, N1N\geq 1, is a non-empty bounded open set with a Lipschitz boundary Ω\partial\Omega (except in Section 4, where no condition is imposed on the Ω\Omega boundary). We denote by 𝒞\mathcal{C} the open semi-infinite cylinder with base Ω\Omega, by L𝒞\partial_{L}\mathcal{C} the lateral boundary of 𝒞\mathcal{C}, and by 𝒞Ω\mathcal{C}_{\Omega} the cylinder 𝒞\mathcal{C} with the base Ω\Omega, that is,

𝒞=Ω×(0,),L𝒞=Ω×[0,),𝒞Ω=𝒞(Ω×{0}).\mathcal{C}=\Omega\times(0,\infty),\qquad\qquad\partial_{L}\mathcal{C}=\partial\Omega\times[0,\infty),\qquad\qquad\mathcal{C}_{\Omega}=\mathcal{C}\cup(\Omega\times\{0\}).

A generic point XX in N+1\mathbb{R}^{N+1} is denoted by (x,y)(x,y), where xNx\in\mathbb{R}^{N} and yy\in\mathbb{R}.

A function ρ\rho is said to be a weight if ρ\rho is positive and finite almost everywhere. For an open set UU, and a weight ρ\rho, we denote by Lp(U,ρ)L^{p}(U,\rho) the space of measurable functions u:Uu:U\to\mathbb{R} such

uLp(U,ρ):=(U|u(x)|pρ(x)dx)1/p<+.\|u\|_{L^{p}(U,\rho)}:=\left(\int_{U}|u(x)|^{p}\rho(x)\>\mathrm{d}x\right)^{1/p}<+\infty.

The space Lp(U,ρ)L^{p}(U,\rho) endowed with the norm Lp(U,ρ)\|\cdot\|_{L^{p}(U,\rho)} is a Banach space. Further, given p[2,+)p\in[2,+\infty) we say that a weight ρ\rho satisfies the BpB_{p} condition, and write ρBp\rho\in B_{p}, if ρ1/p1\rho^{-1/{p-1}} is locally integrable, that is,

ρBpρ1/(p1)Lloc1(U).\rho\in B_{p}\qquad\Leftrightarrow\qquad\rho^{-1/(p-1)}\in L^{1}_{\mathrm{loc}}(U).

For a weight ρBp\rho\in B_{p}, we define the weighted Sobolev space W1,p(U,ρ)W^{1,p}(U,\rho) as the subset of Lp(U,ρ)L^{p}(U,\rho) of functions uu with weak gradients u\nabla u such that |u|Lp(U,ρ)|\nabla u|\in L^{p}(U,\rho). Endowed with the norm

uW1,p(U,ρ):=(U|u(x)|pρ(x)dx+U|u(x)|pρ(x)dx)1/p<+,\|u\|_{W^{1,p}(U,\rho)}:=\left(\int_{U}|u(x)|^{p}\rho(x)\>\mathrm{d}x+\int_{U}|\nabla u(x)|^{p}\rho(x)\>\mathrm{d}x\right)^{1/p}<+\infty,

W1,p(U,ρ)W^{1,p}(U,\rho) is a Banach space; see [12]. Notice that BpB_{p} is a larger class of weights than the Muckenhoupt weights ApA_{p}. The latter is also used to define weighted Sobolev spaces; see [19]. Throughout the paper we assume p[2,)p\in[2,\infty) and denote the (Hölder) conjugate exponent of pp by pp^{\prime}.

The measurable function s():Ωs(\cdot):\Omega\to\mathbb{R}, which will characterize the spatially variable order of the fractional Laplacian, is assumed to satisfy:

  1. (H1)

    s(x)[0,1]s(x)\in[0,1] for almost all xΩx\in\Omega.

We use the notation s()s(\cdot) to emphasize the dependence of the function s:Ωs:\Omega\to\mathbb{R} on the spatial variable xΩx\in\Omega, and use ss to denote a constant in the interval (0,1)(0,1).

Throughout the paper we consider the function w:𝒞w:\mathcal{C}\to\mathbb{R} defined by

w(x,y)=Gs(x)y12s(x),w(x,y)=\mathrm{G}_{s}(x)y^{1-2s(x)},

and such that for a given s()s(\cdot), and pp, the function Gs:Ω\mathrm{G}_{s}:\Omega\to\mathbb{R} satisfies that

  1. (H2)

    GsBp\mathrm{G}_{s}\in B_{p}, and if s()=s(0,1)s(\cdot)=s\in(0,1) constant, then

    Gs(x)=22s1Γ(s)Γ(1s),\mathrm{G}_{s}(x)=\frac{2^{2s-1}\Gamma(s)}{\Gamma(1-s)},

    for all xΩx\in\Omega. Here Γ\Gamma is the standard Euler-Gamma function.

Assumptions (H1) and (H2) imply that wBpw\in B_{p}. However, it is known that (in general) ww is not expected to be of Muckenhoupt type, see [2, Proposition 1].

Given τ>0\tau>0, we denote by 𝒞τ\mathcal{C}^{\tau} the truncated cylinder 𝒞\mathcal{C} of height τ\tau, that is,

𝒞τ=Ω×(0,τ),\mathcal{C}^{\tau}=\Omega\times(0,\tau),

and define the sets L𝒞τ\partial_{L}\mathcal{C}^{\tau} and 𝒞Ωτ\mathcal{C}^{\tau}_{\Omega} accordingly. The restriction of the weight ww to 𝒞τ\mathcal{C}^{\tau} is also denoted by ww.

Example 2.1.

A possible choice for the function s()s(\cdot) is given by

s(x)=σmin(dist(x,),ε),s(x)=\sigma\min(\mathrm{dist}(x,\mathcal{B}),\varepsilon),

where 0<ε<10<\varepsilon<1, Ω\mathcal{B}\subset\Omega is a closed subset with zero-measure of N\mathbb{R}^{N} and dist(x,)=inf{|xy|:y}\mathrm{dist}(x,\mathcal{B})=\inf\{|x-y|:y\in\mathcal{B}\} and σ(0,1)\sigma\in(0,1). This type of functions are useful in image processing where the set \mathcal{B} is the approximated set of edges/discontinuities of a certain image that one tries to recover; see [2].

The two examples for Gs\mathrm{G}_{s} that are of relevance to us are defined by

Gs(1)(x)= 22s¯1Γ(s¯)Γ(1s¯)andGs(2)(x)= 22s(x)1Γ(s(x))Γ(1s(x)),\mathrm{G}^{(1)}_{s}(x)\,=\,2^{2\overline{s}-1}\frac{\Gamma(\overline{s})}{\Gamma(1-\overline{s})}\qquad\text{and}\qquad\mathrm{G}^{(2)}_{s}(x)\,=\,2^{2s(x)-1}\frac{\Gamma(s(x))}{\Gamma(1-s(x))}, (2.1)

where s¯=1|Ω|Ωs(x)dx\overline{s}=\displaystyle\frac{1}{|\Omega|}\int_{\Omega}s(x)\mathrm{d}x. It follows that (H2) is satisfied given that σ(0,1)\sigma\in(0,1).

3. The extended domain approach

This section is devoted to briefly review the well-known extension domain approach to define the spectral fractional Laplacian, see for instance [5, 17, 8]. Throughout this section, we assume that s(0,1)s\in(0,1) is constant.

We denote by {λn}\{\lambda_{n}\} the sequence of eigenvalues of the Laplace operator supplemented with a Dirichlet boundary condition, and consider an orthonormal basis {φn}\{\varphi_{n}\} of L2(Ω)L^{2}(\Omega) of associated eigenfunctions. The spectral fractional Laplacian is defined by

(Δ)sv=n=1λnsbnφnwherebn=Ωvφndx,(-\Delta)^{s}v=\displaystyle\sum_{n=1}^{\infty}\lambda_{n}^{s}b_{n}\varphi_{n}\qquad\text{where}\quad b_{n}=\int_{\Omega}v\varphi_{n}\,\mathrm{d}x, (3.1)

on the space

H={v=n=1bnφnL2(Ω):vH2=n=1λnsbn2<}.H=\left\{v=\displaystyle\sum_{n=1}^{\infty}b_{n}\varphi_{n}\in L^{2}(\Omega):\|v\|^{2}_{H}=\displaystyle\sum_{n=1}^{\infty}\lambda_{n}^{s}b_{n}^{2}<\infty\right\}.

For extensions of (3.1) to non-homogeneous boundary conditions, we refer to [1]. It is worth mentioning that H=0s(Ω)H=\mathbb{H}^{s}_{0}(\Omega) if s(0,12) or s(12,1)s\in\left(0,\frac{1}{2}\right)\text{ or }s\in\left(\frac{1}{2},1\right) and H=00s(Ω)H=\mathbb{H}^{s}_{00}(\Omega) for s=12s=\frac{1}{2}. Here, 0s(Ω)\mathbb{H}_{0}^{s}(\Omega) is the closure in s(Ω)\mathbb{H}^{s}(\Omega) of the space of infinitely continuous differentiable functions with compact support in Ω\Omega, and 00s(Ω)\mathbb{H}^{s}_{00}(\Omega) is the Lions-Magenes space [18]. Moreover, s(Ω)\mathbb{H}^{s}(\Omega) is the fractional Sobolev space of order ss,

s(Ω)={vL2(Ω):ΩΩ|v(x)v(y)|2|xy|N+2sdxdy<},\mathbb{H}^{s}(\Omega)=\left\{v\in L^{2}(\Omega):\int_{\Omega}\int_{\Omega}\frac{|v(x)-v(y)|^{2}}{|x-y|^{N+2s}}\,\mathrm{d}x\,\mathrm{d}y<\infty\right\},

endowed with the norm

vs(Ω)=(Ω|v|2dx+ΩΩ|v(x)v(y)|2|xy|N+2sdxdy)1/2.\|v\|_{\mathbb{H}^{s}(\Omega)}=\left(\int_{\Omega}|v|^{2}\,\mathrm{d}x+\int_{\Omega}\int_{\Omega}\frac{|v(x)-v(y)|^{2}}{|x-y|^{N+2s}}\,\mathrm{d}x\,\mathrm{d}y\right)^{1/2}.

The extension approach introduced by Caffarelli and Silvestre [6], see [17, 7] for the case of bounded domains, establishes that if hHh\in H^{\prime} (dual space of HH) then the unique solution to the elliptic equation

(Δ)sv=h in Ω,v=0 on Ω,\begin{split}(-\Delta)^{s}v&=h\quad\text{ in }\Omega,\\ v&=0\quad\text{ on }\partial\Omega,\end{split}

is given by v=trΩuv=\mathrm{tr}_{\Omega}\>\,u, where uH0,L1(𝒞,y12s)u\in H^{1}_{0,L}(\mathcal{C},y^{1-2s}) satisfies

h,trΩψH,H=22s1Γ(s)Γ(1s)𝒞y12suψdX,ψH0,L1(𝒞,y12s),{\langle h,\mathrm{tr}_{\Omega}\>\psi\rangle_{H^{\prime},H}}=\frac{2^{2s-1}\Gamma(s)}{\Gamma(1-s)}\int_{\mathcal{C}}y^{1-2s}\nabla u\cdot\nabla\psi\,\>\mathrm{d}X,\qquad\qquad\forall\,\psi\in H^{1}_{0,L}(\mathcal{C},y^{1-2s}), (3.2)

see [7, Lemma 2.2]. Here, ,H,H\langle\cdot,\cdot\rangle_{H^{\prime},H} denotes the dual pairing between HH^{\prime} and HH. Moreover, trΩ\mathrm{tr}_{\Omega}\> is the Ω\Omega-trace operator for functions in the space

H0,L1(𝒞,y12s)={uH1(𝒞,y12s):u=0 on L𝒞 in the trace sense}.H^{1}_{0,L}(\mathcal{C},y^{1-2s})=\left\{u\in H^{1}(\mathcal{C},y^{1-2s}):u=0\text{ on }\partial_{L}\mathcal{C}\text{ in the trace sense}\right\}.

More precisely,

trΩ:H0,L1(𝒞,y12s)0s(Ω),\mathrm{tr}_{\Omega}\>:\,H^{1}_{0,L}(\mathcal{C},y^{1-2s})\to\mathbb{H}_{0}^{s}(\Omega),

is the unique bounded linear operator that satisfies trΩu=u(,0)\mathrm{tr}_{\Omega}\>u=u(\,\cdot\,,0) for every uC(𝒞¯)u\in C^{\infty}(\bar{\mathcal{C}}) that vanishes on L𝒞\partial_{L}\mathcal{C}; which is also onto over HH, that is

trΩH0,L1(𝒞,w)=H,\mathrm{tr}_{\Omega}\>H^{1}_{0,L}(\mathcal{C},w)=H, (3.3)

see [7, Proposition 2.1].

Additionally, since the minimization problem

minimize12𝒞y12s|u|2dXoverH0,L1(𝒞,y12s),subjecttotrΩu=v,\begin{split}&\mathrm{minimize}\quad\frac{1}{2}\displaystyle\int_{\mathcal{C}}y^{1-2s}\,|\nabla u|^{2}\,\mathrm{d}X\quad\mathrm{over}\quad H^{1}_{0,L}(\mathcal{C},y^{1-2s}),\\ &\mathrm{subject\>\>to}\quad\mathrm{tr}_{\Omega}\>u=v,\end{split} (3.4)

admits a unique solution uH0,L1(𝒞,y12s)u\in H^{1}_{0,L}(\mathcal{C},y^{1-2s}) for any vtrΩH0,L1(𝒞,w)v\in\mathrm{tr}_{\Omega}\>H^{1}_{0,L}(\mathcal{C},w), the harmonic extension operator

𝒮:trΩH0,L1(𝒞,y12s)H0,L1(𝒞,y12s),v𝒮(v)=u,\mathcal{S}:\mathrm{tr}_{\Omega}\>H^{1}_{0,L}(\mathcal{C},y^{1-2s})\to H^{1}_{0,L}(\mathcal{C},y^{1-2s}),\qquad v\mapsto\mathcal{S}(v)=u,

where uu is the solution to problem (3.4), is well-defined, linear, and bounded. Then one finds that the spectral fractional Laplacian given by (3.1) satisfies

(Δ)sv,trΩψH,H=22s1Γ(s)Γ(1s)𝒞y12s𝒮(v)ψdX,{\langle(-\Delta)^{s}v,\mathrm{tr}_{\Omega}\>\psi\rangle_{H^{\prime},H}}=\frac{2^{2s-1}\Gamma(s)}{\Gamma(1-s)}\int_{\mathcal{C}}y^{1-2s}\nabla\mathcal{S}(v)\cdot\nabla\psi\,\>\mathrm{d}X, (3.5)

for all ψH0,L1(𝒞,y12s)\psi\in H^{1}_{0,L}(\mathcal{C},y^{1-2s}) and all vHv\in H, which provides an equivalent definition for (Δ)s(-\Delta)^{s}. This second approach is our starting point to study the fractional Laplacian with spatially variable order: We identify a space of traces on which we can define the fractional Laplacian (Δ)s()(-\Delta)^{s(\cdot)} by a formula analogous to (3.5).

4. Abstract definition and solution to (Δ)s()v=h(-\Delta)^{s(\cdot)}v=h

We consider in this section an abstract derivation of the spatially variable fractional Laplacian (Δ)s()(-\Delta)^{s(\cdot)}. The advantage of this initial approach is that it requires minimal assumptions, namely (H1) and (H2), which are primarily sufficient conditions to have wBpw\in B_{p}; this leads to an appropriate definition of the associated weighted Sobolev spaces. Also, it is worth noticing that the arguments in this section do not require any assumption on the regularity of the Ω\Omega boundary Ω\partial\Omega. This path starts with the proper derivation of the trace space for the weighted Sobolev spaces in study. For this matter, we consider the space

L1,2(𝒞,w)={u:𝒞 measurable : uL2(𝒞,w)},L^{1,2}(\mathcal{C},w)=\{u:\mathcal{C}\to\mathbb{R}\text{ measurable : }\nabla u\in L^{2}(\mathcal{C},w)\},

and endow it with the semi-norm

uL1,2(𝒞,w):=uL2(𝒞,w).\|u\|_{L^{1,2}(\mathcal{C},w)}:=\|\nabla u\|_{L^{2}(\mathcal{C},w)}.

Note that uuL1,2(𝒞,w)u\mapsto\|u\|_{L^{1,2}(\mathcal{C},w)} is a norm on the subset of C1C^{1} functions in L1,2(𝒞,w)L^{1,2}(\mathcal{C},w) that vanish at 𝒞\partial\mathcal{C} or L𝒞\partial_{L}\mathcal{C}. Subsequently, we define 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w) as the completion in L1,2(𝒞,w)L^{1,2}(\mathcal{C},w) of the infinitely differentiable functions in L1,2(𝒞,w)L^{1,2}(\mathcal{C},w) with compact support in 𝒞Ω\mathcal{C}_{\Omega} and 𝒞\mathcal{C}, respectively, that is:

0,L1,2(𝒞,w):=\displaystyle\mathscr{L}^{1,2}_{0,L}(\mathcal{C},w):=\, completion of Cc(𝒞Ω)L1,2(𝒞,w) for L1,2(𝒞,w),\displaystyle\>\text{completion of }\>{C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap L^{1,2}(\mathcal{C},w)}\>\text{ for }\>\|\cdot\|_{L^{1,2}(\mathcal{C},w)},
01,2(𝒞,w):=\displaystyle\mathscr{L}^{1,2}_{0}(\mathcal{C},w):=\, completion of Cc(𝒞)L1,2(𝒞,w) for L1,2(𝒞,w),\displaystyle\>\text{completion of }\>{C^{\infty}_{c}(\mathcal{C})\cap L^{1,2}(\mathcal{C},w)}\>\text{ for }\>\|\cdot\|_{L^{1,2}(\mathcal{C},w)},

where

Cc(𝒞Ω)={uC(𝒞¯):supp(u)L𝒞=}.C^{\infty}_{c}(\mathcal{C}_{\Omega})=\{u\in C^{\infty}(\bar{\mathcal{C}}):\mathrm{supp}(u)\cap\partial_{L}\mathcal{C}=\emptyset\}. (4.1)

The only portion of the boundary where functions in Cc(𝒞Ω)C^{\infty}_{c}(\mathcal{C}_{\Omega}) do not necessarily vanish is the Ω\Omega cap. A few words are in order concerning 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w). Note that Cc(𝒞Ω)L1,2(𝒞,w)C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap L^{1,2}(\mathcal{C},w) and Cc(𝒞)L1,2(𝒞,w)C^{\infty}_{c}(\mathcal{C})\cap L^{1,2}(\mathcal{C},w) are both pre-Hilbert spaces when endowed with the inner product

(u1,u2)L1,2(𝒞,w)=𝒞wu1u2dX.(u_{1},u_{2})_{{}_{L^{1,2}(\mathcal{C},w)}}=\int_{\mathcal{C}}w\>\nabla u_{1}\cdot\nabla u_{2}\>\mathrm{d}X.

It follows then that their completion, 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w), are Hilbert spaces; in particular for z1,z20,L1,2(𝒞,w)z_{1},z_{2}\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) there exist Cauchy sequences {z1n}\{z_{1}^{n}\} and {z2n}\{z_{2}^{n}\} in Cc(𝒞Ω)L1,2(𝒞,w)C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap L^{1,2}(\mathcal{C},w) such that

(z1,z2)0,L1,2(𝒞,w):=limn𝒞wz1nz2ndX.(z_{1},z_{2})_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}:=\lim_{n\to\infty}\int_{\mathcal{C}}w\>\nabla z_{1}^{n}\cdot\nabla z^{n}_{2}\>\mathrm{d}X.

If there is no risk of confusion, and in order to simplify notation, occasionally we simply write

(z1,z2)0,L1,2(𝒞,w)=𝒞wz1z2dX,(z_{1},z_{2})_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}=\int_{\mathcal{C}}w\>\nabla z_{1}\cdot\nabla z_{2}\>\mathrm{d}X,

and analogously we treat 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w).

Given that Cc(𝒞)L1,2(𝒞,w)Cc(𝒞Ω)L1,2(𝒞,w)C^{\infty}_{c}(\mathcal{C})\cap L^{1,2}(\mathcal{C},w)\subset C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap L^{1,2}(\mathcal{C},w), then we observe that 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w) is a closed subspace of 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w). Thus, we can define an abstract space of traces on Ω\Omega of functions in 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) as the quotient space

𝒳(Ω,w):=0,L1,2(𝒞,w)/01,2(𝒞,w).\mathscr{X}(\Omega,w):=\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)/\mathscr{L}_{0}^{1,2}(\mathcal{C},w).

We then define

TrΩu:=[u],\mathrm{Tr}_{\Omega}\,u:=[u],

i.e., the abstract trace on Ω\Omega of a function u0,L1,2(𝒞,w)u\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) is identified with the equivalence class [u][u] that contains uu. The space 𝒳(Ω,w)\mathscr{X}(\Omega,w) is then endowed with the usual norm

TrΩu𝒳(Ω,w)=[u]𝒳(Ω,w):=\displaystyle\|\mathrm{Tr}_{\Omega}\,u\|_{\mathscr{X}(\Omega,w)}=\|[u]\|_{\mathscr{X}(\Omega,w)}:=\, inf{uz0,L1,2(𝒞,w)):z01,2(𝒞,w)}.\displaystyle\inf\{\|u-z\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w))}:z\in\mathscr{L}_{0}^{1,2}(\mathcal{C},w)\}.

Note that

TrΩ:0,L1,2(𝒞,w)𝒳(Ω,w),\mathrm{Tr}_{\Omega}\,:\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{X}(\Omega,w), (4.2)

is a linear and bounded operator, and that 𝒳(Ω,w)\mathscr{X}(\Omega,w) is a Hilbert space, given that 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{L}_{0}^{1,2}(\mathcal{C},w) are also Hilbert spaces. We denote its inner product as (,)𝒳(\cdot,\cdot)_{\mathscr{X}}. Further notice that, by definition, TrΩ0,L1,2(𝒞,w)=𝒳(Ω,w)\mathrm{Tr}_{\Omega}\,\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)=\mathscr{X}(\Omega,w). Unless it is not clear from the context, we denote the class [v]𝒳(Ω,w)[v]\in\mathscr{X}(\Omega,w) simply by vv. The following result establishes the existence of the harmonic extension operator.

Theorem 4.1.

Let v𝒳(Ω,w)v\in\mathscr{X}(\Omega,w) and μ>0\mu>0. The minimization problem:

minimizeJμ(u,v)over0,L1,2(𝒞,w),\mathrm{minimize}\quad J_{\mu}(u,v)\quad\mathrm{over}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), (μ,v\mathbb{P}_{\mu,v})

for

Jμ(u,v):=12u0,L1,2(𝒞,w)2+μ2TrΩuv𝒳(Ω,w)2,J_{\mu}(u,v):=\frac{1}{2}\|u\|^{2}_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}+\frac{\mu}{2}\|\mathrm{Tr}_{\Omega}\,u-v\|_{\mathscr{X}(\Omega,w)}^{2},

admits a unique solution uμ0,L1,2(𝒞,w)u_{\mu}\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) that, as μ\mu\to\infty, converges strongly to the unique solution to

minimizeJ(u)over0,L1,2(𝒞,w),subjecttoTrΩu=v,\begin{split}&\mathrm{minimize}\quad J(u)\quad\mathrm{over}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),\\ &\mathrm{subject\>\>to}\quad\mathrm{Tr}_{\Omega}\,u=v,\end{split} (v\mathbb{P}_{v})

for

J(u):=12u0,L1,2(𝒞,w)2.J(u):=\frac{1}{2}\|u\|^{2}_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}.
Proof.

The existence of a solution {uμ}\{u_{\mu}\} to (μ,v\mathbb{P}_{\mu,v}) follows from arguments of the direct methods for calculus of variations: The functional uJμ(u,v)u\mapsto J_{\mu}(u,v) is non-negative, coercive, and weakly lower semicontinuous; for the latter part note that 0,L1,2(𝒞,w)wTrΩw𝒳(Ω,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)\ni w\mapsto\|\mathrm{Tr}_{\Omega}\,w\|_{\mathscr{X}(\Omega,w)} is also weakly lower semicontinuous. Uniqueness follows from the strict convexity of uJμ(u,v)u\mapsto J_{\mu}(u,v).

Since v𝒳(Ω,w)v\in\mathscr{X}(\Omega,w), there exists u~0,L1,2(𝒞,w)\tilde{u}\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) such that v=[u~]=TrΩu~v=[\tilde{u}]=\mathrm{Tr}_{\Omega}\,\tilde{u}. Thus, given that uμu_{\mu} is a minimizer of Jμ(,v)J_{\mu}(\cdot,v),

Jμ(uμ,v)Jμ(u~,v)=J(u~),J_{\mu}(u_{\mu},v)\leq J_{\mu}(\tilde{u},v)=J(\tilde{u}), (4.3)

for every μ>0\mu>0. Then, by basic theory for penalty functions (see [13, Lemma 1 in Chapter 10]) we have that

limμμ2TrΩuμv𝒳(Ω,w)2=0.\lim_{\mu\to\infty}\frac{\mu}{2}\|\mathrm{Tr}_{\Omega}\,u_{\mu}-v\|_{\mathscr{X}(\Omega,w)}^{2}=0. (4.4)

Thus, by (4.3) we have that the sequence {uμ}\{u_{\mu}\} is bounded in 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), so it admits a weakly convergent subsequence, say

uμuin0,L1,2(𝒞,w).u_{\mu^{\prime}}\rightharpoonup u\qquad\text{in}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w). (4.5)

Further, by (4.4) we observe that TrΩu=v\mathrm{Tr}_{\Omega}\,u=v. Next we show that J(uμ)J(u)J(u_{\mu})\rightarrow J(u) with uu being the minimizer to (v\mathbb{P}_{v}). By weak lower semicontinuity of JJ and (4.4), we observe:

J(u)\displaystyle J(u) lim¯μJ(uμ)lim¯μJ(uμ)=lim¯μJμ(uμ,v)lim¯μJμ(u,v)=J(u),\displaystyle\leq\varliminf_{\mu^{\prime}\to\infty}J(u_{\mu^{\prime}})\leq\varlimsup_{\mu^{\prime}\to\infty}J(u_{\mu^{\prime}})=\varlimsup_{\mu^{\prime}\to\infty}J_{\mu^{\prime}}(u_{\mu^{\prime}},v)\leq\varlimsup_{\mu^{\prime}\to\infty}J_{\mu^{\prime}}(u,v)=J(u),

that is J(uμ)J(u)J(u_{\mu^{\prime}})\to J(u). The fact that uu is a minimizer to (v\mathbb{P}_{v}) follows by selecting an arbitrary u~\tilde{u} such that TrΩu~=v\mathrm{Tr}_{\Omega}\,\tilde{u}=v, then the previous to last inequality above yield

J(u)\displaystyle J(u) lim¯μJμ(u~,v)=J(u~),\displaystyle\leq\varlimsup_{\mu^{\prime}\to\infty}J_{\mu^{\prime}}(\tilde{u},v)=J(\tilde{u}),

i.e., uu is a minimizer. Further, by strict convexity, minimizers to (v\mathbb{P}_{v}) are unique, so that the entire sequence {uμ}\{u_{\mu}\} satisfies

uμuin0,L1,2(𝒞,w),u_{\mu}\rightharpoonup u\qquad\text{in}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), (4.6)

and also J(uμ)J(u)J(u_{\mu})\to J(u). Using (4.4), this limit is equivalent to

limμuμ0,L1,2(𝒞,w)=u0,L1,2(𝒞,w),\lim_{\mu\to\infty}\|u_{\mu}\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}=\|u\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)},

which together with (4.6) implies that

uμuin0,L1,2(𝒞,w),u_{\mu}\to u\qquad\text{in}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), (4.7)

see [4, Proposition 3.32]. ∎

Theorem 4.1 ensures the existence of the abstract weighted harmonic extension operator

S:TrΩ0,L1,2(𝒞,w)0,L1,2(𝒞,w),vS(v)=u.S:\mathrm{Tr}_{\Omega}\,\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),\qquad v\mapsto S(v)=u.

where uu is the solution to (v\mathbb{P}_{v}). In addition, the map SS is linear and bounded: Linearity follows directly from the examination of the first order conditions. For boundedness, consider (4.3) with uzu-z instead of u~\tilde{u}, where uu solves (v\mathbb{P}_{v}) and z01,2(𝒞,w)z\in\mathscr{L}_{0}^{1,2}(\mathcal{C},w), to obtain Jμ(uμ,v)J(uz)J_{\mu}(u_{\mu},v)\leq J(u-z). Then, by taking the limit as μ\mu\to\infty we observe

S(v)0,L1,2(𝒞,w)=u0,L1,2(𝒞,w)uz0,L1,2(𝒞,w).\|S(v)\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}=\|u\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}\leq\|u-z\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}.

Then, by considering the infimum over all z01,2(𝒞,w)z\in\mathscr{L}_{0}^{1,2}(\mathcal{C},w), we obtain

S(v)0,L1,2(𝒞,w)v𝒳(Ω,w).\|S(v)\|_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}\leq\|v\|_{\mathscr{X}(\Omega,w)}.

The well-posedness of the map SS allows us to establish a definition for the fractional Laplacian with spatially variable order.

Definition 4.2.

Let 𝒳(Ω,w)\mathscr{X}(\Omega,w)^{\prime} be the dual space of 𝒳(Ω,w)\mathscr{X}(\Omega,w). The operator

(Δ)s():𝒳(Ω,w)𝒳(Ω,w),(-\Delta)^{s(\cdot)}:\mathscr{X}(\Omega,w)\to\mathscr{X}(\Omega,w)^{\prime},

is determined as follows: for v𝒳(Ω,w)v\in\mathscr{X}(\Omega,w), then (Δ)s()v𝒳(Ω,w)(-\Delta)^{s(\cdot)}v\in\mathscr{X}(\Omega,w)^{\prime} is defined by

(Δ)s()v,TrΩψ𝒳,𝒳=(S(v),ψ)0,L1,2(𝒞,w),ψ0,L1,2(𝒞,w).\langle(-\Delta)^{s(\cdot)}v,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}=(S(v),\psi)_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)},\qquad\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w). (4.8)
Remark 4.3.

The relation of the above definition with the classical spectral fractional Laplacian (3.5) is straightforward in light of the abuse of notation disclosed at the beginning of the chapter; in which case we can write

(Δ)s()v,TrΩψ𝒳,𝒳=𝒞wS(v)ψdX,ψ0,L1,2(𝒞,w).\langle(-\Delta)^{s(\cdot)}v,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}=\displaystyle\int_{\mathcal{C}}w\,\nabla S(v)\cdot\nabla\psi\,\mathrm{d}X,\qquad\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w).

Furthermore, by a formal integration-by-parts formula and using the fact that S(v)S(v) is weighted harmonic, we obtain that (Δ)s()(-\Delta)^{s(\cdot)} is equal to the generalized Neumann trace of S(v)S(v) when restricted to Ω×{0}\Omega\times\{0\}. Then, as for the cassical case with constant order ss, (Δ)s()(-\Delta)^{s(\cdot)} can be understood as a Dirichlet-to-Neumann map.

Remark 4.4.

In view of Theorem 4.1, the expression in (4.8) is equivalent to

(Δ)s()v,TrΩψ𝒳,𝒳=limμμ(TrΩuμv,TrΩψ)𝒳,ψ0,L1,2(𝒞,w),\langle(-\Delta)^{s(\cdot)}v,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}=\lim_{\mu\to\infty}\mu(\mathrm{Tr}_{\Omega}\,u_{\mu}-v,\mathrm{Tr}_{\Omega}\,\psi)_{\mathscr{X}},\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),

where uμu_{\mu} is the unique solution to (μ,v\mathbb{P}_{\mu,v}).

The operator (Δ)s():𝒳(Ω,w)𝒳(Ω,w)(-\Delta)^{s(\cdot)}:\mathscr{X}(\Omega,w)\to\mathscr{X}(\Omega,w)^{\prime} is well-defined as we see next, and it can be seen as the Lagrange multiplier associated to the harmonic extension problem.

Proposition 4.5.

For each v𝒳(Ω,w)v\in\mathscr{X}(\Omega,w), there exists a unique λ=λ(v)𝒳(Ω,w)\lambda=\lambda(v)\in\mathscr{X}(\Omega,w)^{\prime} such that

λ,TrΩψ𝒳,𝒳=(S(v),ψ)0,L1,2(𝒞,w),ψ0,L1,2(𝒞,w).\langle\lambda,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}=(S(v),\psi)_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)},\qquad\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w).
Proof.

Initially, note that S(v)S(v) is the solution to (v\mathbb{P}_{v}). For convenience, we write the constraint in (v\mathbb{P}_{v}) as G(u)=0G(u)=0, where G:0,L1,2(𝒞,w)𝒳(Ω,w)G:\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{X}(\Omega,w) is defined by G(u)=TrΩuvG(u)=\mathrm{Tr}_{\Omega}\,u-v. Since the operator TrΩ\mathrm{Tr}_{\Omega}\, is linear and bounded, also it is GG, and hence G(u)h=TrΩhG^{\prime}(u)h=\mathrm{Tr}_{\Omega}\,h. Thus, G(u):0,L1,2(𝒞,w)𝒳(Ω,w)G^{\prime}(u):\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{X}(\Omega,w) is linear, bounded, and surjective. Therefore, there exists a unique Lagrange multiplier λ𝒳(Ω,w)\lambda\in\mathscr{X}(\Omega,w)^{\prime} such that

J(S(v))ψ=λG(S(v))ψ,ψ0,L1,2(𝒞,w),J^{\prime}(S(v))\psi=\lambda\circ G^{\prime}(S(v))\psi,\qquad\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),

which proves the statement. ∎

In view of Remark 4.3, we can also interpret λ\lambda as the Neumann trace of the extension onto Ω×{0}\Omega\times\{0\}.

Remark 4.6.

It follows that (Δ)s():𝒳(Ω,w)𝒳(Ω,w)(-\Delta)^{s(\cdot)}:\mathscr{X}(\Omega,w)\to\mathscr{X}(\Omega,w)^{\prime} is a bounded linear operator given that SS is linear and bounded.

We are now able to determine existence of solutions to the Poisson problem with spatially variant Laplacian.

Theorem 4.7.

Let h𝒳(Ω,w)h\in\mathscr{X}(\Omega,w)^{\prime}. The equation

(Δ)s()v=h,(-\Delta)^{s(\cdot)}v=h, (4.9)

admits a unique solution in 𝒳(Ω,w)\mathscr{X}(\Omega,w) that is given by v=TrΩuv=\mathrm{Tr}_{\Omega}\,\,u, where uu solves

minimize𝒥(u)over0,L1,2(𝒞,w),\displaystyle\mathrm{minimize}\quad\mathcal{J}(u)\quad\mathrm{over}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), (4.10)

for

𝒥(u):=12u0,L1,2(𝒞,w)2h,TrΩu𝒳,𝒳.\mathcal{J}(u):=\frac{1}{2}\|u\|^{2}_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}-\langle h,\mathrm{Tr}_{\Omega}\,u\rangle_{\mathscr{X}^{\prime},\mathscr{X}}.
Proof.

Since TrΩ\mathrm{Tr}_{\Omega}\, is linear and bounded, we have that

uh,TrΩu𝒳,𝒳,u\mapsto\langle h,\mathrm{Tr}_{\Omega}\,u\rangle_{\mathscr{X}^{\prime},\mathscr{X}},

is a linear functional over 0,L1,2(𝒞,w)\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w). Then, there exists a solution to the problem (4.10) and the solution is unique due to strict convexity of 𝒥\mathcal{J}.

Note that via necessary and sufficient conditions of optimality for (4.10), the unique solution uu satisfies:

(u,ψ)0,L1,2(𝒞,w)=h,TrΩψ𝒳,𝒳,ψ0,L1,2(𝒞,w),(u,\psi)_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}=\langle h,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}},\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w), (4.11)

and then uu is identical to its harmonic extension, i.e., u=S(TrΩu)u=S(\mathrm{Tr}_{\Omega}\,u). To see the latter, we consider ψCc(𝒞)0,L1,2(𝒞,w)\psi\in C_{c}^{\infty}(\mathcal{C})\cap\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) in (4.11) and observe that by density

(u,ψ)0,L1,2(𝒞,w)=0,ψ01,2(𝒞,w),(u,\psi)_{\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)}=0,\qquad\forall\,\psi\in\mathscr{L}_{0}^{1,2}(\mathcal{C},w), (4.12)

where we have used the fact that the functions in Cc(𝒞)C_{c}^{\infty}(\mathcal{C}) vanish on Ω×{0}\Omega\times\{0\}. Moreover, we also (trivially) have TrΩS(TrΩu)=TrΩu\mathrm{Tr}_{\Omega}\,S(\mathrm{Tr}_{\Omega}\,u)=\mathrm{Tr}_{\Omega}\,u so that uu satisfies first order optimality conditions for (v\mathbb{P}_{v}) for v=TrΩuv=\mathrm{Tr}_{\Omega}\,u. Hence, by convexity (uniqueness) u=S(TrΩu)u=S(\mathrm{Tr}_{\Omega}\,u). Also, by definition of the operator (Δ)s()(-\Delta)^{s(\cdot)} and (4.11), we have

(Δ)s()TrΩu,TrΩψ𝒳,𝒳=(S(TrΩu),ψ)01,2(𝒞,w)=h,TrΩψ𝒳,𝒳,\langle(-\Delta)^{s(\cdot)}\mathrm{Tr}_{\Omega}\,u,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}=(S(\mathrm{Tr}_{\Omega}\,u),\psi)_{\mathscr{L}_{0}^{1,2}(\mathcal{C},w)}=\langle h,\mathrm{Tr}_{\Omega}\,\psi\rangle_{\mathscr{X}^{\prime},\mathscr{X}}, (4.13)

for all ψ0,L1,2(𝒞,w)\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w) and hence TrΩu\mathrm{Tr}_{\Omega}\,u solves (4.9).

To prove uniqueness, consider a solution vv to (4.9) with h=0h=0 and notice that

(S(v),ψ)01,2(𝒞,w)=0,ψ0,L1,2(𝒞,w).(S(v),\psi)_{\mathscr{L}_{0}^{1,2}(\mathcal{C},w)}=0,\qquad\forall\,\psi\in\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w).

Then, S(v)S(v) satisfies first order optimality conditions for

minimize12u01,2(𝒞,w)2over0,L1,2(𝒞,w),\mathrm{minimize}\quad\frac{1}{2}\|u\|^{2}_{\mathscr{L}_{0}^{1,2}(\mathcal{C},w)}\quad\mathrm{over}\quad\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),

whose unique minimizer is the zero function. Then, by convexity, S(v)=0S(v)=0, so that v=TrΩS(v)v=\mathrm{Tr}_{\Omega}\,S(v) and hence v=0v=0. ∎

Remark 4.8 (Truncated cylinder 𝒞τ\mathcal{C}^{\tau}).

It is worth mentioning that exactly the same construction with 𝒞\mathcal{C} replaced by the truncated cylinder 𝒞τ\mathcal{C}^{\tau}, τ>0\tau>0, leads to a definition of (Δ)s()(-\Delta)^{s(\cdot)} by means of an extension problem on 𝒞τ\mathcal{C}^{\tau}, as well as to the existence and uniqueness of solution to the associated Poisson problem. We care about 𝒞τ\mathcal{C}^{\tau} because it makes the problem tractable from an implementation point of view [2, 15].

A few words are in order concerning Theorem 4.7; although it provides a solvability result for the elliptic problem, it does not establish existence of solutions based on maps defined on Ω\Omega. That is, we would like to address the question: Under what conditions on h:Ωh:\Omega\to\mathbb{R}, does the equation (Δ)s()v=h(-\Delta)^{s(\cdot)}v=h admit a solution? This question is answered in Section 7 and it is intimately related to the following trace results.

5. Trace theorems

In this section we identify a trace operator that properly relates values of maps on a Sobolev space in 𝒞\mathcal{C} to their values at Ω\Omega. For this matter, in addition to (H1) and (H2), we assume that the measurable function s()s(\cdot) satisfies:

  1. (H3)

    The set of points on which s()s(\cdot) is zero has measure zero, i.e., |A0|=0|A_{0}|=0 where

    A0:={xΩ:s(x)=0}.A_{0}:=\{x\in\Omega:s(x)=0\}.

We define 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) to be the closure in W1,p(𝒞,w)W^{1,p}(\mathcal{C},w) of the infinitely differentiable functions in W1,p(𝒞,w)W^{1,p}(\mathcal{C},w) with compact support in 𝒞Ω\mathcal{C}_{\Omega}, that is,

0,L1,p(𝒞,w)=Cc(𝒞Ω)W1,p(𝒞,w)¯W1,p(𝒞,w),\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)=\overline{C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap W^{1,p}(\mathcal{C},w)}^{W^{1,p}(\mathcal{C},w)},

where Cc(𝒞Ω)C^{\infty}_{c}(\mathcal{C}_{\Omega}) is given in (4.1). Then, formally speaking, 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) is the set of functions in W1,p(𝒞,w)W^{1,p}(\mathcal{C},w) that vanish on L𝒞\partial_{L}\mathcal{C}. We now prove the regularity of restrictions of functions in 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) on the Ω\Omega boundary.

Theorem 5.1 (Trace theorem).

Provided that (H1), (H2), and (H3) hold true, there exists a unique bounded linear operator

trΩ:0,L1,p(𝒞,w)Lp(Ω,w~),\mathrm{tr}_{\Omega}\>\,:\,\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\to L^{p}(\Omega,\tilde{w}),

that satisfies trΩu=u(,0)\mathrm{tr}_{\Omega}\>u=u(\,\cdot\,,0) for all u0,L1,p(𝒞,w)Cc(𝒞Ω)u\in\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\cap C^{\infty}_{c}(\mathcal{C}_{\Omega}), where the weight w~:Ω\tilde{w}:\Omega\to\mathbb{R} is defined by

w~(x)=Gs(x)(p2+2s(x))p.\tilde{w}(x)=\mathrm{G}_{s}(x)(p-2+2s(x))^{p}.

The same statement is true if we replace 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) by the space 0,L1,p(𝒞τ,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C}^{\tau},w), for every τ>0\tau>0.

Proof.

For the sake of brevity, we define δ():=12s()\delta(\cdot):=1-2s(\cdot) so that

w~(x)=Gs(x)(p1δ(x))p.\tilde{w}(x)=\mathrm{G}_{s}(x)(p-1-\delta(x))^{p}.

Let u0,L1,p(𝒞,w)Cc(𝒞Ω)u\in\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\cap C_{c}^{\infty}(\mathcal{C}_{\Omega}) and (x,y)𝒞¯(x,y)\in\bar{\mathcal{C}} be such that s(x)0s(x)\neq 0 and Gs(x)0\mathrm{G}_{s}(x)\neq 0. Initially, we write

u(x,0)=u(x,y)01yDN+1u(x,ty)dt,u(x,0)=u(x,y)-\int_{0}^{1}yD_{N+1}u(x,ty)\>\mathrm{d}t, (5.1)

where DN+1uD_{N+1}u is the partial derivative of uu with respect to the (N+1)(N+1) coordinate.

Let σ(0,1)\sigma\in(0,1). Multiplying (5.1) by w(x,y)1/pw(x,y)^{1/p} and then integrating from 0 to σ\sigma with respect to yy, we find:

|u(x,0)|0σw(x,y)1/pdyI1+I2,\begin{split}|u(x,0)|\int_{0}^{\sigma}w(x,y)^{1/p}\mathrm{d}y\leq\,&I_{1}+I_{2},\end{split}

where:

I1:=\displaystyle I_{1}:=\, 0σ|u(x,y)|w(x,y)1/pdy,\displaystyle\int_{0}^{\sigma}|u(x,y)|w(x,y)^{1/p}\>\mathrm{d}y,
I2:=\displaystyle I_{2}:=\, 010σy|DN+1u(x,ty)|w(x,y)1/pdydt.\displaystyle\int_{0}^{1}\int_{0}^{\sigma}y|D_{N+1}u(x,ty)|w(x,y)^{1/p}\>\mathrm{d}y\>\mathrm{d}t.

Now, we notice that 0σw(x,y)1/pdy=Gs(x)0σyδ(x)/pdy\int_{0}^{\sigma}w(x,y)^{1/p}\mathrm{d}y=\mathrm{G}_{s}(x)\int_{0}^{\sigma}y^{\delta(x)/p}\mathrm{d}y and that

0σyδ(x)/pdy0σy1/pdy=p1+pσ1+pp>0,\begin{split}\int_{0}^{\sigma}y^{\delta(x)/p}\mathrm{d}y\geq\int_{0}^{\sigma}y^{1/p}\,\mathrm{d}y=\frac{p}{1+p}\sigma^{\frac{1+p}{p}}>0,\end{split}

since σ(0,1)\sigma\in(0,1) and δ(x)1\delta(x)\leq 1. Thus,

|u(x,0)|Gs(x)1/pp+1pσ(1+p)/p(I1+I2).|u(x,0)|\mathrm{G}_{s}(x)^{1/p}\leq\frac{p+1}{p\,\sigma^{(1+p)/p}}(I_{1}+I_{2}).

Multiplying the last expression by (p1δ(x))(p-1-\delta(x)), we obtain:

|u(x,0)|w~(x)1/pp+1pσ(1+p)/p(p1δ(x))(I1+I2).|u(x,0)|\tilde{w}(x)^{1/p}\leq\frac{p+1}{p\,\sigma^{(1+p)/p}}(p-1-\delta(x))(I_{1}+I_{2}). (5.2)

Next, we shall estimate I1I_{1} and I2I_{2}. A direct use of the Hölder’s inequality yields:

I1σ1/p(0σ|u(x,y)|pw(x,y)dy)1/p.\displaystyle I_{1}\leq\sigma^{1/p^{\prime}}\left(\int_{0}^{\sigma}|u(x,y)|^{p}w(x,y)\>\mathrm{d}y\right)^{1/p}.

We now estimate I2I_{2} in several steps. With the change of variables y=zt1y=zt^{-1} in the inner integral of I2I_{2}, we obtain:

I2\displaystyle I_{2}\leq\, σ010tσ|DN+1u(x,z)|w(x,z)1/pt1δ(x)/pdzdt.\displaystyle\sigma\int_{0}^{1}\int_{0}^{t\sigma}|D_{N+1}u(x,z)|w(x,z)^{1/p}t^{-1-\delta(x)/p}\>\mathrm{d}z\>\mathrm{d}t. (5.3)

By adding and substracting (1+δ(x))/pp(1+\delta(x))/pp^{\prime} in the exponent of tt, we rewrite the r.h.s. of (5.3) as

σ01t1+δ(x)pp0tσF(x,z)t1pp+(1p)δ(x)ppdzdt,\displaystyle\sigma\int_{0}^{1}t^{-\frac{1+\delta(x)}{pp^{\prime}}}\int_{0}^{t\sigma}F(x,z)\,t^{\frac{1-pp^{\prime}+(1-p^{\prime})\delta(x)}{pp^{\prime}}}\>\mathrm{d}z\>\mathrm{d}t,

where F(x,z)=|DN+1u(x,z)|w(x,z)1/pF(x,z)=|D_{N+1}u(x,z)|w(x,z)^{1/p}. Then, by the Hölder’s inequality, we find:

I2σ(01t1+δ(x)pdt)1/p(01(0σtF(x,z)t1pp+(1p)δ(x)ppdz)pdt)1/p=σ(pp1δ(x))1/p(01(0σtF(x,z)t1pp+(1p)δ(x)ppdz)pdt)1/p.\begin{split}I_{2}\leq\,&\sigma\left(\int_{0}^{1}t^{-\frac{1+\delta(x)}{p}}\,\mathrm{d}t\right)^{1/p^{\prime}}\left(\int_{0}^{1}\left(\int_{0}^{\sigma t}F(x,z)\,t^{\frac{1-pp^{\prime}+(1-p^{\prime})\delta(x)}{pp^{\prime}}}\,\mathrm{d}z\right)^{p}\,\mathrm{d}t\right)^{1/p}\\ =\,&\sigma\left(\frac{p}{p-1-\delta(x)}\right)^{1/p^{\prime}}\left(\int_{0}^{1}\left(\int_{0}^{\sigma t}F(x,z)\,t^{\frac{1-pp^{\prime}+(1-p^{\prime})\delta(x)}{pp^{\prime}}}\,\mathrm{d}z\right)^{p}\,\mathrm{d}t\right)^{1/p}.\end{split}

Applying the Hölder’s inequality on the integral with respect to zz, we obtain:

I2σ(pp1δ(x))1/p(01(σt)p/p0σtF(x,z)pt1pp+(1p)δ(x)pdzdt)1/pσ(pp1δ(x))1/p(01(σt)p/p0σF(x,z)pt1pp+(1p)δ(x)pdzdt)1/p=σ1+p/p(pp1δ(x))1/p(01t1+δ(x)p𝑑t)1/p(0σF(x,z)pdz)1/p.\begin{split}I_{2}\leq&\sigma\left(\frac{p}{p-1-\delta(x)}\right)^{1/p^{\prime}}\left(\int_{0}^{1}(\sigma t)^{p/p^{\prime}}\int_{0}^{\sigma t}F(x,z)^{p}\,t^{\frac{1-pp^{\prime}+(1-p^{\prime})\delta(x)}{p^{\prime}}}\,\mathrm{d}z\,\mathrm{d}t\right)^{1/p}\\ \leq\,&\sigma\left(\frac{p}{p-1-\delta(x)}\right)^{1/p^{\prime}}\left(\int_{0}^{1}(\sigma t)^{p/p^{\prime}}\int_{0}^{\sigma}F(x,z)^{p}\,t^{\frac{1-pp^{\prime}+(1-p^{\prime})\delta(x)}{p^{\prime}}}\,\mathrm{d}z\,\mathrm{d}t\right)^{1/p}\\ =\,&\sigma^{1+p/p^{\prime}}\left(\frac{p}{p-1-\delta(x)}\right)^{1/p^{\prime}}\left(\int_{0}^{1}t^{-\frac{1+\delta(x)}{p}}\,dt\right)^{1/p}\left(\int_{0}^{\sigma}F(x,z)^{p}\,\mathrm{d}z\right)^{1/p}.\end{split}

Finally, we have:

I2pσ1+p/pp1δ(x)(0σ|DN+1u(x,z)|pw(x,z)dz)1/p.I_{2}\leq\,\frac{p\,\sigma^{1+p/p^{\prime}}}{p-1-\delta(x)}\left(\int_{0}^{\sigma}|D_{N+1}u(x,z)|^{p}w(x,z)\,\mathrm{d}z\right)^{1/p}.

Using the above estimations for I1I_{1} and I2I_{2} in (5.2), and observing that p1δ(x)pp-1-\delta(x)\leq p, we obtain:

|u(x,0)|w~(x)1/p(p+1)σ2/p(0σ|u(x,y)|pw(x,y)dy)1/p+(p+1)σp11/p(0σ|DN+1u(x,z)|pw(x,z)dz)1/p,\begin{split}|u(x,0)|\tilde{w}(x)^{1/p}\leq\,&(p+1)\sigma^{-2/p}\left(\int_{0}^{\sigma}|u(x,y)|^{p}w(x,y)\>\mathrm{d}y\right)^{1/p}\\ +&(p+1)\sigma^{p-1-1/p}\left(\int_{0}^{\sigma}|D_{N+1}u(x,z)|^{p}w(x,z)\,\mathrm{d}z\right)^{1/p},\end{split}

from which we have:

|u(x,0)|w~(x)1/p(p+1)σ2/p(0σ(|u(x,y)|p+|DN+1u(x,y)|p)w(x,y)dy)1/p,|u(x,0)|\tilde{w}(x)^{1/p}\leq\,(p+1)\sigma^{-2/p^{\prime}}\left(\int_{0}^{\sigma}\left(|u(x,y)|^{p}+|D_{N+1}u(x,y)|^{p}\right)w(x,y)\,\mathrm{d}y\right)^{1/p}, (5.4)

since σp11/pσ2/p\sigma^{p-1-1/p}\leq\sigma^{-2/p}.

Raising inequality (5.4) to the pp power and then integrating over Ω\Omega, we find:

Ω|u(x,0)|pw~(x)dx\displaystyle\int_{\Omega}|u(x,0)|^{p}\tilde{w}(x)\,\>\mathrm{d}x\leq\, (p+1)pσ2p/p(uLp(𝒞,w)p+uLp(𝒞,w)p).\displaystyle(p+1)^{p}\sigma^{-2p/p^{\prime}}\left(\|u\|^{p}_{L^{p}(\mathcal{C},w)}+\|\nabla u\|^{p}_{L^{p}(\mathcal{C},w)}\right).

Therefore, u(,0)Lp(Ω,w~)u(\,\cdot\,,0)\in L^{p}(\Omega,\tilde{w}) and

u(,0)Lp(Ω,w~)C(p,σ)uW1,p(𝒞,w),\displaystyle\|u(\,\cdot\,,0)\|_{L^{p}(\Omega,\tilde{w})}\leq C(p,\sigma)\|u\|_{W^{1,p}(\mathcal{C},w)},

where C(p,σ)=(p+1)σ2/pC(p,\sigma)=(p+1)\sigma^{-2/p^{\prime}}. Notice that σ\sigma is an arbitrary, but fixed, number in (0,1)(0,1), so that in this case we can fix C(p,σ)C(p,\sigma) to depend only on pp. The operator trΩ\mathrm{tr}_{\Omega}\> is the unique bounded linear extension of the mapping u(x,y)u(x,0)u(x,y)\mapsto u(x,0) to 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w).

Let us finally see that the same trace result holds true when we replace 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) by 0,L1,p(𝒞τ,wτ)\mathscr{H}_{0,L}^{1,p}(\mathcal{C}^{\tau},w^{\tau}), where τ>0\tau>0. If τ1\tau\geq 1, it follows from (5.4) that

|u(x,0)|w~(x)1/p(p+1)σ2/p(0τ(|u(x,y)|p+|DN+1u(x,y)|p)w(x,y)dy)1/p,|u(x,0)|\tilde{w}(x)^{1/p}\leq\,(p+1)\sigma^{-2/p^{\prime}}\left(\int_{0}^{\tau}\left(|u(x,y)|^{p}+|D_{N+1}u(x,y)|^{p}\right)w(x,y)\,\mathrm{d}y\right)^{1/p},

from which, exactly as before, we find

u(,0)Lp(Ω,w~)C(p,σ)uW1,p(𝒞τ,wτ).\displaystyle\|u(\,\cdot\,,0)\|_{L^{p}(\Omega,\tilde{w})}\leq C(p,\sigma)\|u\|_{W^{1,p}(\mathcal{C}^{\tau},w^{\tau})}. (5.5)

If, on the contrary, 0<τ<10<\tau<1, then we select σ=τ\sigma=\tau in (5.4) and obtain (5.5) in the same way. The trace operator is now obtained as before. ∎

Remark 5.2.

If s()=s(0,1)s(\cdot)=s\in(0,1) is constant, then both w~\tilde{w} and Gs\mathrm{G}_{s} are also constants. Hence, Lp(Ω,w~)=Lp(Ω)L^{p}(\Omega,\tilde{w})=L^{p}(\Omega) and 0,L1,p(𝒞,w)=0,L1,p(𝒞,y12s)\mathscr{H}^{1,p}_{0,L}(\mathcal{C},w)=\mathscr{H}^{1,p}_{0,L}(\mathcal{C},y^{1-2s}), so it follows from Theorem 5.1 that

trΩ:0,L1,p(𝒞,y12s)Lp(Ω).\mathrm{tr}_{\Omega}\>:\mathscr{H}^{1,p}_{0,L}(\mathcal{C},y^{1-2s})\to L^{p}(\Omega).

This is in accordance to the classical case, see [14, Theorem 3.2]. If, additionally, p=2p=2, then we observe that trΩ\mathrm{tr}_{\Omega}\> and the trace operator given in [7] (see also Section 3) coincide for functions in Cc(𝒞Ω)C_{c}^{\infty}(\mathcal{C}_{\Omega}). From this, we find that trΩ\mathrm{tr}_{\Omega}\> is just given by the restriction to 0,L1,2(𝒞,y12s)H0,L1(𝒞,y12s)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s})\subset H_{0,L}^{1}(\mathcal{C},y^{1-2s}) of the map in [7]. However, a deeper result is true; see Theorem 7.3.

In Theorem 5.1, we have characterized the integrability of functions in the trace space of 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w). We aim now to identify the “smoothness” of functions in this trace space. This is a more complicated task since we aim at determining a space with a spatially variable smoothness associated to the function s()s(\cdot).

For simplicity, from now on we assume that Ω\Omega is the NN-dimensional unit square QN=(0,1)N\mathrm{Q}_{N}=(0,1)^{N}. The forthcoming analysis requires one final assumption on the functions s()s(\cdot) and Gs\mathrm{G}_{s}:

  1. (H4)

    For almost every xj,z(0,1),ji,x_{j},z\in(0,1),\,j\neq i, and i=1,,Ni=1,\ldots,N, it holds true that

    01(Gs(x)|xiz|12s(x))1pdxi<,\int_{0}^{1}\left(\mathrm{G}_{s}(x)|x_{i}-z|^{1-2s(x)}\right)^{1-p^{\prime}}\>\mathrm{d}x_{i}<\infty,

    where x=(x1,,xn)x=(x_{1},\ldots,x_{n}).

Assumption (H4) enables us to use a Hardy-type inequality (see Lemma 5.8 below) for two specially chosen weights, which is a key ingredient to prove the subsequent improvement of the trace result in Theorem 5.9.

Example 5.3.

Let Ω=Q1\Omega=\mathrm{Q}_{1}, p=2p=2, and Gs=Gs(1)\mathrm{G}_{s}=\mathrm{G}_{s}^{(1)} constant; see (2.1) in Example 2.1. Suppose that s()s(\cdot) satisfies:

s(x)m|xx0|qif|xx0|R,s(x)>μ>0if|xx0|>R,s(x)\geq m|x-x_{0}|^{q}\quad\text{if}\quad|x-x_{0}|\leq R,\qquad s(x)>\mu>0\quad\text{if}\quad|x-x_{0}|>R, (5.6)

for some q,R(0,1)q,R\in(0,1), m,μ>0m,\mu>0, and x0(R,1R)x_{0}\in(R,1-R). Notice that the only point where ss is allowed to be zero is x0x_{0}. For this particular setting, although wAp(𝒞)w\notin A_{p}(\mathcal{C}), i.e., ww is not a Muckenhoupt weight (see [2]), we find that (H4) holds true as we see next.

To simplify the notation below, we write δ():=12s()\delta(\cdot):=1-2s(\cdot). Since δ(x)(1p)=δ(x)>1\delta(x)(1-p^{\prime})=-\delta(x)>-1 for all xx0x\neq x_{0}, we have:

01|xz|δ(x)dz=x2s(x)+(1x)2s(x)2s(x),xx0.\begin{split}\int_{0}^{1}|x-z|^{-\delta(x)}\,\mathrm{d}z=\,&\,\frac{x^{2s(x)}+(1-x)^{2s(x)}}{2s(x)},\qquad\forall\,x\neq x_{0}.\end{split}

Then,

01(01|xz|δ(x)dz)dx011s(x)dx.\begin{split}\int_{0}^{1}\left(\int_{0}^{1}|x-z|^{-\delta(x)}\,\mathrm{d}z\right)\mathrm{d}x\leq\,&\int_{0}^{1}\frac{1}{s(x)}\,\mathrm{d}x.\end{split}

We now observe that, by (5.6), we have:

011s(x)dx=0x0Rdxs(x)+x0Rx0+Rdxs(x)+x0+R1dxs(x)2μ(12R)+1mx0Rx0+R|xx0|qdx<.\begin{split}\int_{0}^{1}\frac{1}{s(x)}\,\mathrm{d}x=\,&\int_{0}^{x_{0}-R}\frac{\mathrm{d}x}{s(x)}+\int_{x_{0}-R}^{x_{0}+R}\frac{\mathrm{d}x}{s(x)}+\int_{x_{0}+R}^{1}\frac{\mathrm{d}x}{s(x)}\\ \leq\,&\,\frac{2}{\mu}(1-2R)+\frac{1}{m}\int_{x_{0}-R}^{x_{0}+R}|x-x_{0}|^{-q}\,\mathrm{d}x<\infty.\end{split}

Hence,

01(01|xz|δ(x)dz)dx<.\begin{split}\int_{0}^{1}\left(\int_{0}^{1}|x-z|^{-\delta(x)}\,\mathrm{d}z\right)\,\mathrm{d}x<\infty.\end{split}

Therefore, by Tonelli’s Theorem, we have that (x,z)|xz|δ(x)(x,z)\mapsto|x-z|^{-\delta(x)} belongs to L1(Q2)L^{1}(\mathrm{Q}_{2}), which in turn implies that

01|xz|δ(x)dx<,\int_{0}^{1}|x-z|^{-\delta(x)}\,\mathrm{d}x<\infty,

for almost all z(0,1)z\in(0,1), by Fubini’s Theorem.

Minor changes in the above arguments yield the same conclusion for functions ss with a finite number of zeros and a local behavior as (5.6) around each of them.

Next, in Definition 5.4 we present a Sobolev space of functions where smoothness is spatially dependent and related to s()s(\cdot). First, we introduce the required notation.

For i=1,,Ni=1,\ldots,N, let φi,ψi:QN+1\varphi_{i},\psi_{i}:\mathrm{Q}_{N+1}\to\mathbb{R} be given by

φi(x,τ)=\displaystyle\varphi_{i}(x,\tau)=\, Φi(x,τ)1p(min{xi,τ}max{xi,τ}Φi(xti,τ)1pdt)p,\displaystyle\Phi_{i}(x,\tau)^{1-p^{\prime}}\left(\int_{\min\{x_{i},\tau\}}^{\max\{x_{i},\tau\}}\Phi_{i}(x_{t^{\prime}}^{i},\tau)^{1-p^{\prime}}\,\>\mathrm{d}t^{\prime}\right)^{-p},
ψi(x,τ)=\displaystyle\psi_{i}(x,\tau)=\, Φi(x,τ)1p(min{xi,τ}max{xi,τ}Φi(x,τ)1pdτ)p,\displaystyle\Phi_{i}(x,\tau)^{1-p^{\prime}}\left(\int_{\min\{x_{i},\tau\}}^{\max\{x_{i},\tau\}}\Phi_{i}(x,\tau^{\prime})^{1-p^{\prime}}\,\>\mathrm{d}\tau^{\prime}\right)^{-p},

where

Φi(x,τ)=Gs(x)|xiτ|12s(x),\Phi_{i}(x,\tau)=\mathrm{G}_{s}(x)|x_{i}-\tau|^{1-2s(x)},

and the notation xaix_{a}^{i} for a(0,1)a\in(0,1) means that the iith-coordinate of x=(x1,,xN)QNx=(x_{1},\ldots,x_{N})\in\mathrm{Q}_{N} is replaced by aa, that is:

xai=(x1,,xi1,a,xi+1,,xN).x_{a}^{i}=(x_{1},\ldots,x_{i-1},a,x_{i+1},\ldots,x_{N}).
Definition 5.4.

The space 𝕎s(),p(QN,w~,w1,,wN)\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}) is defined by

𝕎s(),p(QN,w~,w1,,wN)={vLp(QN,w~):Ai(v)< for all i=1,,N},\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})=\left\{v\in L^{p}(\mathrm{Q}_{N},\tilde{w}):A_{i}(v)<\infty\text{ for all }i=1,\ldots,N\right\}, (5.7)

with the norm

v𝕎s(),p(QN,w~,w1,,wN)=(vLp(QN,w~)p+i=1NAi(v))1/p,\|v\|_{\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})}=\left(\|v\|^{p}_{L^{p}(\mathrm{Q}_{N},\tilde{w})}+\sum_{i=1}^{N}A_{i}(v)\right)^{1/p}, (5.8)

where

Ai(v)=0101(N1)-fold(0101wi(xti,τ)|v(xti)v(xτi)|pdτdt)dx1dxi1dxi+1dxN,A_{i}(v)=\underbrace{\int_{0}^{1}\ldots\int_{0}^{1}}_{(N-1)\text{-fold}}\left(\int_{0}^{1}\int_{0}^{1}w_{i}(x_{t}^{i},\tau)|v(x_{t}^{i})-v(x_{\tau}^{i})|^{p}\>\mathrm{d}\tau\>\mathrm{d}t\right)\>\mathrm{d}x_{1}\ldots\>\mathrm{d}x_{i-1}\,\>\mathrm{d}x_{i+1}\ldots\>\mathrm{d}x_{N},

and

wi=min{φi,ψi}fori=1,,N.w_{i}=\min\{\varphi_{i},\psi_{i}\}\quad\text{for}\quad i=1,\ldots,N.

In order to address that s()s(\cdot) controls locally the differential regularity of elements in 𝕎s(),p(QN,w~,w1,,wN)\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}), consider the following. For s(0,1)s\in(0,1), let Ws,p(QN)W^{s,p}(Q_{N}) be the fractional Sobolev space of order ss, that is,

Ws,p(QN)={vL2(QN):QNQN|v(x)v(y)|p|xy|N+psdxdy<},W^{s,p}(Q_{N})=\left\{v\in L^{2}(Q_{N}):\int_{Q_{N}}\int_{Q_{N}}\frac{|v(x)-v(y)|^{p}}{|x-y|^{N+ps}}\,\mathrm{d}x\,\mathrm{d}y<\infty\right\},

equipped with the norm

vWs,p(QN)=(vLp(QN)p+QNQN|v(x)v(y)|p|xy|N+psdxdy)1/p.\|v\|_{W^{s,p}(Q_{N})}=\left(\|v\|_{L^{p}(Q_{N})}^{p}+\int_{Q_{N}}\int_{Q_{N}}\frac{|v(x)-v(y)|^{p}}{|x-y|^{N+ps}}\,\mathrm{d}x\,\mathrm{d}y\right)^{1/p}.

If p=2p=2, we have s(QN)=Ws,2(QN)\mathbb{H}^{s}(Q_{N})=W^{s,2}(Q_{N}). Then, note the following lemma that can be found in [14] (see also [11]).

Lemma 5.5.

Let 1<ε<p1-1<\varepsilon<p-1. There exists a positive constant cc such that

vW11+εp,p(QN)pc(vLp(QN)p+i=1N𝒜i(v)),\|v\|_{W^{1-\frac{1+\varepsilon}{p},p}(\mathrm{Q}_{N})}^{p}\leq c\,\left(\|v\|_{L^{p}(\mathrm{Q}_{N})}^{p}+\sum_{i=1}^{N}\mathcal{A}_{i}(v)\right),

for every vLp(QN)v\in L^{p}(\mathrm{Q}_{N}) that satisfies 𝒜i(v)<\mathcal{A}_{i}(v)<\infty for all i=1,,Ni=1,\ldots,N, where

𝒜i(v):=0101(N1)-fold(0101|v(xti)v(xτi)|p|tτ|pεdτdt)dx1dxi1dxi+1dxN.\mathcal{A}_{i}(v):=\underbrace{\int_{0}^{1}\ldots\int_{0}^{1}}_{(N-1)\text{-fold}}\left(\int_{0}^{1}\int_{0}^{1}\frac{|v(x_{t}^{i})-v(x_{\tau}^{i})|^{p}}{|t-\tau|^{p-\varepsilon}}\>\mathrm{d}\tau\>\mathrm{d}t\right)\>\mathrm{d}x_{1}\ldots\>\mathrm{d}x_{i-1}\,\>\mathrm{d}x_{i+1}\ldots\>\mathrm{d}x_{N}.

We now can show the relation between 𝕎s(),p(QN,w~,w1,,wN)\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}) and the classical Sobolev spaces.

Theorem 5.6.

If s()=s(0,1)s(\cdot)=s\in(0,1) constant, then

𝕎s(),p(QN,w~,w1,,wN)W12(1s)p,p(QN).\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})\hookrightarrow W^{1-\frac{2(1-s)}{p},p}(\mathrm{Q}_{N}).
Proof.

Let δ:=12s\delta:=1-2s and consider t,τ(0,1)t,\tau\in(0,1). Since δ(1p)>1\delta(1-p^{\prime})>-1, we have:

min{t,τ}max{t,τ}|tτ|δ(1p)dt=min{t,τ}max{t,τ}|tτ|δ(1p)dτ=\displaystyle\int_{\min\{t,\tau\}}^{\max\{t,\tau\}}|t^{\prime}-\tau|^{\delta(1-p^{\prime})}\,\>\mathrm{d}t^{\prime}=\int_{\min\{t,\tau\}}^{\max\{t,\tau\}}|t-\tau^{\prime}|^{\delta(1-p^{\prime})}\,\>\mathrm{d}\tau^{\prime}=\, |tτ|1+δ(1p)1+δ(1p).\displaystyle\frac{|t-\tau|^{1+\delta(1-p^{\prime})}}{1+\delta(1-p^{\prime})}.

Then, a direct calculation yields:

φi(x,τ)=ψi(x,τ)=\displaystyle\varphi_{i}(x,\tau)=\psi_{i}(x,\tau)=\, Gs(1+δ(1p))p|xiτ|pδ,\displaystyle\frac{\mathrm{G}_{s}(1+\delta(1-p^{\prime}))^{p}}{|x_{i}-\tau|^{p-\delta}},

for all (x,τ)QN+1(x,\tau)\in\mathrm{Q}_{N+1} since Gs\mathrm{G}_{s} is constant by assumption (H2). Therefore,

Ai(v)=C(p,s)0101(N1)-fold(0101|v(xti)v(xτi)|p|tτ|pδdτdt)dx1dxi1dxi+1dxN,A_{i}(v)=C(p,s)\underbrace{\int_{0}^{1}\ldots\int_{0}^{1}}_{(N-1)\text{-fold}}\left(\int_{0}^{1}\int_{0}^{1}\frac{|v(x_{t}^{i})-v(x_{\tau}^{i})|^{p}}{|t-\tau|^{p-\delta}}\>\mathrm{d}\tau\>\mathrm{d}t\right)\>\mathrm{d}x_{1}\ldots\>\mathrm{d}x_{i-1}\,\>\mathrm{d}x_{i+1}\ldots\>\mathrm{d}x_{N},

where C(p,s)=Gs(1+δ(1p))pC(p,s)=\mathrm{G}_{s}(1+\delta(1-p^{\prime}))^{p}. In addition, we notice that L1(QN,w~)=L1(QN)L^{1}(\mathrm{Q}_{N},\tilde{w})=L^{1}(\mathrm{Q}_{N}) since w~\tilde{w} is constant. Now the conclusion follows from Lemma 5.5 with ε=δ\varepsilon=\delta. ∎

Remark 5.7.

In light of the previous result, it seems that a more appropriate notation for 𝕎s(),p(QN,w~,w1,,wN)\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}) would be 𝕎12(1s())p,p(QN,w~,w1,,wN)\mathbb{W}^{1-\frac{2(1-s(\cdot))}{p},p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}). We avoid this for the sake of brevity.

The following lemma is a key tool for the improvement of the result in Theorem 5.1. The proof can be found in [16, Sect. 2.6].

Lemma 5.8 (Weighted Hardy-type inequality).

Let ρ\rho be a weight function defined in the interval (a,b)(a,b). If

abρ(t)1pdt<,\int_{a}^{b}\rho(t)^{1-p^{\prime}}\>\mathrm{d}t<\infty,

then

abρ^(t)|f(t)|pdtCH(p)abρ(t)|f(t)|pdt,x(a,b),\int_{a}^{b}\hat{\rho}(t)|f(t)|^{p}\>\mathrm{d}t\leq C_{H}(p)\int_{a}^{b}\rho(t)|f^{\prime}(t)|^{p}\>\mathrm{d}t,\qquad\qquad\forall\,x\in(a,b), (5.9)

for all absolutely continuous functions ff in (a,b)(a,b) that satisfy limta+f(t)=0\lim_{t\to a^{+}}f(t)=0, where

ρ^(t)=ρ(t)1p(atρ(ξ)1pdξ)p,\hat{\rho}(t)=\rho(t)^{1-p^{\prime}}\left(\int_{a}^{t}\rho(\xi)^{1-p^{\prime}}\>\mathrm{d}\xi\right)^{-p},

and CH(p)=pp/(p1)p1C_{H}(p)=p^{p}/(p-1)^{p-1}.

Now we are in shape to prove the improvement of Theorem 5.1.

Theorem 5.9 (Improved trace theorem).

Provided that (H1) to (H4) hold true, there exists a unique bounded linear operator

trQN:0,L1,p(𝒞,w)𝕎s(),p(QN,w~,w1,,wN),\mathrm{tr}_{\mathrm{Q}_{N}}\,:\,\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\to\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}),

that satisfies trQNu=u(,0)\mathrm{tr}_{\mathrm{Q}_{N}}u=u(\,\cdot\,,0) for all u0,L1,p(𝒞,w)Cc(𝒞QN)u\in\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\cap C^{\infty}_{c}(\mathcal{C}_{\mathrm{Q}_{N}}).

The same statement is true if we replace 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) by the space 0,L1,p(𝒞τ,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C}^{\tau},w), for every τ1\tau\geq 1.

Proof.

For the sake of simplicity, we give the proof only for N=1N=1; with the natural changes, the proof adapts straightforward to the case N2N\geq 2.

Let u0,L1,p(𝒞,w)Cc(𝒞Q1)u\in\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)\cap C^{\infty}_{c}(\mathcal{C}_{\mathrm{Q}_{1}}). Initially, we write:

A1(u(,0))=\displaystyle A_{1}(u(\,\cdot\,,0))=\, I1+I2,\displaystyle I_{1}+I_{2}, (5.10)

where:

I1:=\displaystyle I_{1}:=\, 010tw1(t,τ)|u(t,0)u(τ,0)|pdτdt,\displaystyle\int_{0}^{1}\int_{0}^{t}w_{1}(t,\tau)|u(t,0)-u(\tau,0)|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t,
I2:=\displaystyle I_{2}:=\, 01t1w1(t,τ)|u(t,0)u(τ,0)|pdτdt,\displaystyle\int_{0}^{1}\int_{t}^{1}w_{1}(t,\tau)|u(t,0)-u(\tau,0)|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t,

where w1=min{φ1,ψ1}w_{1}=\min\{\varphi_{1},\psi_{1}\} as in Definition 5.4. Next, we shall estimate I1I_{1} and I2I_{2} separately. For this, we introduce the auxiliary function v:Q2v:\mathrm{Q}_{2}\to\mathbb{R} given by

v(t,τ)=u(t,max{t,τ}min{t,τ}).v(t,\tau)=u(t,\max\{t,\tau\}-\min\{t,\tau\}).

We have:

I1=\displaystyle I_{1}=\, 010tw1(t,τ)|v(t,t)v(τ,τ)|pdτdt\displaystyle\int_{0}^{1}\int_{0}^{t}w_{1}(t,\tau)|v(t,t)-v(\tau,\tau)|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t
=\displaystyle=\, 010tw1(t,τ)|τtD1v(t,τ)dt+τtD2v(t,τ)dτ|pdτdt\displaystyle\int_{0}^{1}\int_{0}^{t}w_{1}(t,\tau)\left|\int_{\tau}^{t}D_{1}v(t^{\prime},\tau)\,\>\mathrm{d}t^{\prime}+\int_{\tau}^{t}D_{2}v(t,\tau^{\prime})\,\>\mathrm{d}\tau^{\prime}\right|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t
\displaystyle\leq\, 2p1010tw1(t,τ)|τtD1v(t,τ)dt|pdτdt\displaystyle 2^{p-1}\int_{0}^{1}\int_{0}^{t}w_{1}(t,\tau)\left|\int_{\tau}^{t}D_{1}v(t^{\prime},\tau)\,\>\mathrm{d}t^{\prime}\right|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t
+2p1010tw1(t,τ)|τtD2v(t,τ)dτ|pdτdt,\displaystyle+2^{p-1}\int_{0}^{1}\int_{0}^{t}w_{1}(t,\tau)\left|\int_{\tau}^{t}D_{2}v(t,\tau^{\prime})\,\>\mathrm{d}\tau^{\prime}\right|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t,

where D1vD_{1}v and D2vD_{2}v denote the partial derivative of vv with respect to the first and second coordinates, respectively.

Interchanging the order of integration in the first term of the right hand side of the above inequality, and introducing the change of variable τ~=τ\tilde{\tau}=-\tau in the second one, we find:

I1\displaystyle I_{1}\leq\, 2p101τ1w1(t,τ)|f1(t,τ)|pdtdτ+2p101t0w1(t,τ~)|f2(t,τ~)|pdτ~dt,\displaystyle 2^{p-1}\int_{0}^{1}\int_{\tau}^{1}w_{1}(t,\tau)|f_{1}(t,\tau)|^{p}\,\>\mathrm{d}t\,\>\mathrm{d}\tau+2^{p-1}\int_{0}^{1}\int_{-t}^{0}w_{1}(t,-\tilde{\tau})|f_{2}(t,\tilde{\tau})|^{p}\,\>\mathrm{d}\tilde{\tau}\,\>\mathrm{d}t, (5.11)

where:

f1(t,τ)=τtD1v(t,τ)dt,\displaystyle f_{1}(t,\tau)=\,\int_{\tau}^{t}D_{1}v(t^{\prime},\tau)\,\>\mathrm{d}t^{\prime}, and f2(t,τ~)=tτ~D2v(t,τ)dτ.\displaystyle f_{2}(t,\tilde{\tau})=\,\int_{t}^{-\tilde{\tau}}D_{2}v(t,\tau^{\prime})\,\>\mathrm{d}\tau^{\prime}.

The function f1(,τ)f_{1}(\,\cdot\,,\tau) is absolutely continuous in (τ,1)(\tau,1) and satisfies limtτ+f1(t,τ)=0\lim_{t\to\tau^{+}}f_{1}(t,\tau)=0 for almost all τ(0,1)\tau\in(0,1). Additionally, by definition we observe that

φ1(t,τ)=Φ1(t,τ)1p(τtΦ1(t,τ)1pdt)p,tτ,\displaystyle\varphi_{1}(t,\tau)=\Phi_{1}(t,\tau)^{1-p^{\prime}}\left(\int_{\tau}^{t}\Phi_{1}(t^{\prime},\tau)^{1-p^{\prime}}\,\>\mathrm{d}t^{\prime}\right)^{-p},\qquad\qquad\forall\,t\geq\tau,

for almost all τ(0,1)\tau\in(0,1). Then, by Lemma 5.8, we have:

τ1φ1(t,τ)|f1(t,τ)|pdtCH(p)τ1Φ1(t,τ)|D1v(t,τ)|pdt,\int_{\tau}^{1}\varphi_{1}(t,\tau)|f_{1}(t,\tau)|^{p}\,\>\mathrm{d}t\leq C_{H}(p)\int_{\tau}^{1}\Phi_{1}(t,\tau)\left|D_{1}v(t,\tau)\right|^{p}\,\>\mathrm{d}t, (5.12)

for almost all τ(0,1)\tau\in(0,1).

Similarly, the function f2(t,)f_{2}(t,\,\cdot\,) is absolutely continuous in (t,0)(-t,0) and satisfies limτ~t+f2(t,τ~)=0\lim_{\tilde{\tau}\to-t^{+}}f_{2}(t,\tilde{\tau})=0 for almost all t(0,1)t\in(0,1). Since

ψ1(t,τ~)=\displaystyle\psi_{1}(t,-\tilde{\tau})=\, Φ1(t,τ~)1p(tτ~Φ1(t,τ~)1pdτ~)p,τ~t,\displaystyle\Phi_{1}(t,-\tilde{\tau})^{1-p^{\prime}}\left(\int_{-t}^{\tilde{\tau}}\Phi_{1}(t,-\tilde{\tau}^{\prime})^{1-p^{\prime}}\,\>\mathrm{d}\tilde{\tau}^{\prime}\right)^{-p},\qquad\forall\,\tilde{\tau}\geq-t,

for almost all t(0,1)t\in(0,1), it follows by Lemma 5.8 that

t0ψ1(t,τ~)|f2(t,τ~)|pdτ~CH(p)t0Φ1(t,τ~)|D2v(t,τ~)|pdτ~,\int_{-t}^{0}\psi_{1}(t,-\tilde{\tau})|f_{2}(t,\tilde{\tau})|^{p}\,\>\mathrm{d}\tilde{\tau}\leq C_{H}(p)\int_{-t}^{0}\Phi_{1}(t,-\tilde{\tau})\left|D_{2}v(t,-\tilde{\tau})\right|^{p}\,\>\mathrm{d}\tilde{\tau}, (5.13)

for almost all t(0,1)t\in(0,1).

Then, since w1=min{φ1,ψ1}w_{1}=\min\{\varphi_{1},\psi_{1}\}, the estimation (5.11) in conjunction with (5.12) and (5.13) yields:

I1\displaystyle I_{1}\leq\, CH(p) 2p101τ1Φ1(t,τ)|D1v(t,τ)|pdtdτ\displaystyle C_{H}(p)\,2^{p-1}\int_{0}^{1}\int_{\tau}^{1}\Phi_{1}(t,\tau)\left|D_{1}v(t,\tau)\right|^{p}\>\mathrm{d}t\,\>\mathrm{d}\tau
+CH(p) 2p101t0Φ1(t,τ~)|D2v(t,τ~)|pdτ~dt.\displaystyle+C_{H}(p)\,2^{p-1}\int_{0}^{1}\int_{-t}^{0}\Phi_{1}(t,-\tilde{\tau})\left|D_{2}v(t,-\tilde{\tau})\right|^{p}\>\mathrm{d}\tilde{\tau}\,\>\mathrm{d}t.

Interchanging the order of integration in the first term of the r.h.s., and making the change of variable τ=τ~\tau=-\tilde{\tau} in the second one, we obtain:

I1\displaystyle I_{1}\leq\, CH(p) 2p1010tΦ1(t,τ)(|D1v(t,τ)|p+|D2v(t,τ)|p)dτdt.\displaystyle C_{H}(p)\,2^{p-1}\int_{0}^{1}\int_{0}^{t}\Phi_{1}(t,\tau)\left(\,\left|D_{1}v(t,\tau)\right|^{p}+\left|D_{2}v(t,\tau)\right|^{p}\,\right)\>\mathrm{d}\tau\,\>\mathrm{d}t. (5.14)

Since the function vv is given by v(t,τ)=u(t,tτ)v(t,\tau)=u(t,t-\tau) for t>τt>\tau, we have:

D1v(t,τ)=\displaystyle D_{1}v(t,\tau)=\, D1u(t,tτ)+D2u(t,tτ),\displaystyle D_{1}u(t,t-\tau)+D_{2}u(t,t-\tau),
D2v(t,τ)=\displaystyle D_{2}v(t,\tau)=\, D2u(t,tτ).\displaystyle-D_{2}u(t,t-\tau).

Then,

|D1v(t,τ)|p+|D2v(t,τ)|p\displaystyle\left|D_{1}v(t,\tau)\right|^{p}+\left|D_{2}v(t,\tau)\right|^{p}\leq\, (|D1u(t,tτ)|+|D2u(t,tτ)|)p+|D2u(t,tτ)|p\displaystyle\left(\,\left|D_{1}u(t,t-\tau)\right|+\left|D_{2}u(t,t-\tau)\right|\,\right)^{p}+\left|D_{2}u(t,t-\tau)\right|^{p}
\displaystyle\leq\, (2p1+1)(|D1u(t,tτ)|p+|D2u(t,tτ)|p)\displaystyle(2^{p-1}+1)\left(\,\left|D_{1}u(t,t-\tau)\right|^{p}+\left|D_{2}u(t,t-\tau)\right|^{p}\,\right)
\displaystyle\leq\, 2p/2(2p1+1)|u(t,tτ)|p.\displaystyle 2^{p/2}(2^{p-1}+1)|\nabla u(t,t-\tau)|^{p}.

Using this estimation in (5.14) and then making the change of variable y=tτy=t-\tau in the inner integral, we find:

I1\displaystyle I_{1}\leq\, CH(p) 2p12p/2(2p1+1)010tΦ1(t,τ)|u(t,tτ)|pdτdt\displaystyle C_{H}(p)\,2^{p-1}2^{p/2}(2^{p-1}+1)\int_{0}^{1}\int_{0}^{t}\Phi_{1}(t,\tau)|\nabla u(t,t-\tau)|^{p}\>\mathrm{d}\tau\,\>\mathrm{d}t
=\displaystyle=\, CH(p) 2p12p/2(2p1+1)010tΦ1(t,ty)|u(t,y)|pdydt.\displaystyle C_{H}(p)\,2^{p-1}2^{p/2}(2^{p-1}+1)\int_{0}^{1}\int_{0}^{t}\Phi_{1}(t,t-y)|\nabla u(t,y)|^{p}\>\mathrm{d}y\,\>\mathrm{d}t.

Hence,

I1\displaystyle I_{1}\leq\, CH(p) 2p12p/2(2p1+1)0101w(t,y)|u(t,y)|pdydt.\displaystyle C_{H}(p)\,2^{p-1}2^{p/2}(2^{p-1}+1)\int_{0}^{1}\int_{0}^{1}w(t,y)|\nabla u(t,y)|^{p}\>\mathrm{d}y\,\>\mathrm{d}t. (5.15)

To estimate I2I_{2}, we first write:

I2=\displaystyle I_{2}=\, 01t1w1(t,τ)|v(t,t)v(τ,τ)|pdτdt\displaystyle\int_{0}^{1}\int_{t}^{1}w_{1}(t,\tau)|v(t,t)-v(\tau,\tau)|^{p}\,\>\mathrm{d}\tau\,\>\mathrm{d}t
=\displaystyle=\, 010τw1(t,τ)|v(t,t)v(τ,τ)|pdtdτ,\displaystyle\int_{0}^{1}\int_{0}^{\tau}w_{1}(t,\tau)|v(t,t)-v(\tau,\tau)|^{p}\,\>\mathrm{d}t\,\>\mathrm{d}\tau,

and notice that, in general, I2I1I_{2}\neq I_{1} since w1(t,τ)w1(τ,t)w_{1}(t,\tau)\neq w_{1}(\tau,t) for s()s(\cdot) not constant. However, similarly as we obtained (5.15), we identify the same bound for I2I_{2}:

I2\displaystyle I_{2}\leq\, CH(p) 2p12p/2(2p1+1)0101w(t,y)|u(t,y)|pdydt.\displaystyle C_{H}(p)\,2^{p-1}2^{p/2}(2^{p-1}+1)\int_{0}^{1}\int_{0}^{1}w(t,y)|\nabla u(t,y)|^{p}\>\mathrm{d}y\,\>\mathrm{d}t. (5.16)

Using (5.15) and (5.16) in (5.10), we obtain:

A1(u(,0))\displaystyle A_{1}(u(\,\cdot\,,0))\leq\, CH(p) 2p 2p/2(2p1+1)uLp(𝒞,w)p,\displaystyle C_{H}(p)\,2^{p}\,2^{p/2}(2^{p-1}+1)\|\nabla u\|_{L^{p}(\mathcal{C},w)}^{p},

hence,

A1(u(,0))\displaystyle A_{1}(u(\,\cdot\,,0))\leq\, CH(p) 2p 2p/2(2p1+1)uW1,p(𝒞,w)p.\displaystyle C_{H}(p)\,2^{p}\,2^{p/2}(2^{p-1}+1)\|u\|_{W^{1,p}(\mathcal{C},w)}^{p}.

In addition, we know by the Theorem 5.1 that:

u(,0)Lp(Q1,w~)p(1+p)pσ2p/puW1,p(𝒞,w)p,\|u(\,\cdot\,,0)\|_{L^{p}(\mathrm{Q}_{1},\tilde{w})}^{p}\leq(1+p)^{p}\sigma^{-2p/p^{\prime}}\|u\|_{W^{1,p}(\mathcal{C},w)}^{p},

where σ\sigma is some arbitrary, but fixed, number in (0,1)(0,1).

Therefore, u(,0)𝕎s(),p(Q1,w~,w1)u(\,\cdot\,,0)\in\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{1},\tilde{w},w_{1}) and

u(,0)𝕎s(),p(Q1,w~,w1)C(p,σ)uW1,p(𝒞,w),\|u(\,\cdot\,,0)\|_{\mathbb{W}^{s(\cdot),p}(\mathrm{Q}_{1},\tilde{w},w_{1})}\leq C(p,\sigma)\|u\|_{W^{1,p}(\mathcal{C},w)},

where C(p,σ)=(CH(p) 2p 2p/2(2p1+1)+(1+p)pσ2p/p)1/pC(p,\sigma)=(C_{H}(p)\,2^{p}\,2^{p/2}(2^{p-1}+1)+(1+p)^{p}\sigma^{-2p/p^{\prime}})^{1/p}.

The operator trQ1\mathrm{tr}_{\mathrm{Q}_{1}} is the unique bounded linear extension of the map uu(,0)u\mapsto u(\,\cdot\,,0) to 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w).

The proof when 0,L1,p(𝒞,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w) is replaced by 0,L1,p(𝒞τ,w)\mathscr{H}_{0,L}^{1,p}(\mathcal{C}^{\tau},w) where τ1\tau\geq 1 is identical. ∎

Remark 5.10 (Surjectivity of trace operator).

Although the previous result represents an improvement on the Ω\Omega-trace characterization for functions in 0,L1,p(𝒞,w)\mathscr{H}^{1,p}_{0,L}(\mathcal{C},w), nothing can be said about the surjectivity of the trace operator trΩ:0,L1,p(𝒞,w)𝕎s(),p(QN,w,w1,,wN)\mathrm{tr}_{\Omega}\>:\mathscr{H}^{1,p}_{0,L}(\mathcal{C},w)\to\mathbb{W}^{s(\cdot),p}(Q_{N},w,w_{1},\ldots,w_{N}) for s()s(\cdot) non-constant.

Remark 5.11.

If s()=s(0,1)s(\cdot)=s\in(0,1) is constant, then it follows by Theorem 5.6 that 𝕎s,2(QN,w~,w1,,wN)W12(1s)p,p(QN)\mathbb{W}^{s,2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})\hookrightarrow W^{1-\frac{2(1-s)}{p},p}(\mathrm{Q}_{N}). Hence, the trace result in Theorem 5.1 is again in accordance to the classical case, see [14, Theorem 2.8] (see also Remark 5.2). Moreover, if p=2p=2 and s(0,1/2)s\in(0,1/2), we observe that

𝕎s,2(QN,w~,w1,,wN)H,\mathbb{W}^{s,2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})\hookrightarrow H, (5.17)

since s(QN)=0s(QN)=H\mathbb{H}^{s}(\mathrm{Q}_{N})=\mathbb{H}_{0}^{s}(\mathrm{Q}_{N})=H, so in this case we further partially recover the trace result in [7, Lemma 2.2] given that 0,L1,p(𝒞,y12s)H0,L1(𝒞,y12s)\mathscr{H}^{1,p}_{0,L}(\mathcal{C},y^{1-2s})\subset H^{1}_{0,L}(\mathcal{C},y^{1-2s}).

6. Cases where the Poincaré inequality holds

We address now in this section cases and conditions on s()s(\cdot) not constant that are sufficient for the Poincaré inequality to hold true. Two results are given, one in the entire cylinder and one in the truncated cylinder; see Theorem 6.1 and Theorem 6.3 respectively. From now on until the end of the section, we assume that Gs=Gs(1)\mathrm{G}_{s}=\mathrm{G}_{s}^{(1)} constant, see (2.1) in Example 2.1; and s()s(\cdot) is given by

s()=i=1Msi𝟙Ωi(),s(\cdot)=\sum_{i=1}^{M}s_{i}\mathds{1}_{\Omega_{i}}(\cdot), (6.1)

where si(0,1)s_{i}\in(0,1) for i=1,,Mi=1,\ldots,M and {Ωi:i=1,,M}\{\Omega_{i}:i=1,\ldots,M\} is a finite collection of non-empty open subsets of Ω\Omega that satisfies i=1MΩ¯i=Ω¯\bigcup_{i=1}^{M}\bar{\Omega}_{i}=\bar{\Omega}. In other words, we assume that s()s(\cdot) is a step function in Ω\Omega with range contained in the interval (0,1)(0,1). Our first example is given by the next theorem which basically states that the Poincaré inequality holds provided that all pieces Ωi\Omega_{i} of the partition of Ω\Omega touch the boundary Ω\partial\Omega.

Theorem 6.1.

Assume that Gs=Gs(1)\mathrm{G}_{s}=\mathrm{G}_{s}^{(1)} constant and s()s(\cdot) is given by (6.1). If

|ΩiΩ|>0,i=1,,M,|\partial{\Omega}_{i}\cap\partial{\Omega}|>0,\quad\qquad\forall\,i=1,\ldots,M, (6.2)

then there exists a positive constant CP(p,Ω1,,ΩM)C_{P}(p,\Omega_{1},\ldots,\Omega_{M}) that satisfies

uLp(𝒞,w)CP(p,Ω1,,ΩM)uLp(𝒞,w),\|u\|_{L^{p}(\mathcal{C},w)}\leq C_{P}(p,\Omega_{1},\ldots,\Omega_{M})\|\nabla u\|_{L^{p}(\mathcal{C},w)}, (6.3)

for all u0,L1,p(𝒞,w)u\in\mathscr{H}^{1,p}_{0,L}(\mathcal{C},w).

Proof.

The proof is quite direct, thanks to the existence of a Poincaré inequality for functions in C(Ωi)C^{\infty}(\Omega_{i}) that vanish on a subset of non-zero measure of Ωi\partial\Omega_{i}: Let uCc(𝒞Ω)W1,p(𝒞,w)u\in C_{c}^{\infty}(\mathcal{C}_{\Omega})\cap W^{1,p}(\mathcal{C},w) and i{1,,M}i\in\{1,\ldots,M\}. For every y>0y>0, the function u(,y)u(\,\cdot\,,y) belongs to C(Ωi)C^{\infty}(\Omega_{i}) and vanishes on a portion with non-zero measure of Ωi\partial\Omega_{i}, by (6.2). Then, by the Poincaré inequality, we have

Ωi|u(x,y)|pdxciΩi|xu(x,y)|pdx,\int_{\Omega_{i}}|u(x,y)|^{p}\,\mathrm{d}x\leq c_{i}\int_{\Omega_{i}}|\nabla_{x}u(x,y)|^{p}\,\mathrm{d}x, (6.4)

where cic_{i} is a positive constant that depends only on Ωi\Omega_{i} and pp, and xu\nabla_{x}u is the gradient of uu with respect to the first NN coordinates. Multiplying (6.4) by y12siy^{1-2s_{i}}, then integrating for y(0,)y\in(0,\infty), and finally adding up for i=1,,Mi=1,\ldots,M, we obtain

𝒞y12s(x)|u(x,y)|pdXc𝒞y12s(x)|xu(x,y)|pdX,\int_{\mathcal{C}}y^{1-2s(x)}|u(x,y)|^{p}\,\mathrm{d}X\leq c\int_{\mathcal{C}}y^{1-2s(x)}|\nabla_{x}u(x,y)|^{p}\,\mathrm{d}X,

where c=c1++cMc=c_{1}+\ldots+c_{M}. Since |xu|p|u|p|\nabla_{x}u|^{p}\leq|\nabla u|^{p} in 𝒞\mathcal{C} and Gs\mathrm{G}_{s} is constant, we get

𝒞w(x,y)|u(x,y)|pdXc𝒞w(x,y)|u(x,y)|pdX,\int_{\mathcal{C}}w(x,y)|u(x,y)|^{p}\,\mathrm{d}X\leq c\int_{\mathcal{C}}w(x,y)|\nabla u(x,y)|^{p}\,\mathrm{d}X,

for all uCc(𝒞Ω)W1,p(𝒞,w)u\in C_{c}^{\infty}(\mathcal{C}_{\Omega})\cap W^{1,p}(\mathcal{C},w). Now (6.3) follows by density. ∎

Next we prove that the truncated domain allows a much more amenable result than the one in the complete cylinder 𝒞\mathcal{C}. In particular, we prove that (6.1) is a sufficient condition for the Poincaré inequality to hold; the result is given in next Theorem 6.3. The proof requires the following auxiliary lemma, see [10, Theorem 5.2] for its proof.

Lemma 6.2 (Classical Hardy inequality).

Let ε>p1\varepsilon>p-1 and let ff be a differentiable function almost everywhere in (0,)(0,\infty) that satisfies limtf(t)=0\lim_{t\to\infty}f(t)=0. If

0tε|f(t)|pdt<,\int_{0}^{\infty}t^{\varepsilon}|f^{\prime}(t)|^{p}\,\>\mathrm{d}t<\infty,

then

0tεp|f(t)|pdtCH(p,ε)0tε|f(t)|pdt<,\int_{0}^{\infty}t^{\varepsilon-p}|f(t)|^{p}\,\>\mathrm{d}t\leq C_{H}(p,\varepsilon)\int_{0}^{\infty}t^{\varepsilon}|f^{\prime}(t)|^{p}\,\>\mathrm{d}t<\infty,

where CH(p,ε)=pp/(εp+1)pC_{H}(p,\varepsilon)=p^{p}/(\varepsilon-p+1)^{p}.

We are now in a position to present the final result in this section.

Theorem 6.3.

Assume that Gs=Gs(1)\mathrm{G}_{s}=\mathrm{G}_{s}^{(1)} constant and s()s(\cdot) is given by (6.1). For every τ>0\tau>0 there exists a positive constant CP(τ,p,Ω1,,ΩM)C_{P}(\tau,p,\Omega_{1},\ldots,\Omega_{M}) that satisfies

uLp(𝒞τ,w)CP(τ,p,Ω1,,ΩM)uLp(𝒞τ,w),\|u\|_{L^{p}(\mathcal{C}^{\tau},w)}\leq C_{P}(\tau,p,\Omega_{1},\ldots,\Omega_{M})\|\nabla u\|_{L^{p}(\mathcal{C}^{\tau},w)}, (6.5)

for all u0,L1,p(𝒞τ,w)u\in\mathscr{H}^{1,p}_{0,L}(\mathcal{C}^{\tau},w).

Proof.

Let τ>0\tau>0 and uCc(𝒞Ωτ)W1,p(𝒞τ,w)u\in C_{c}^{\infty}(\mathcal{C}_{\Omega}^{\tau})\cap W^{1,p}(\mathcal{C}^{\tau},w). Initially, we write:

𝒞τy12s(x)|u(x,y)|pdX=i=1MIi,\displaystyle\int_{\mathcal{C}^{\tau}}y^{1-2s(x)}|u(x,y)|^{p}\,\>\mathrm{d}X=\sum_{i=1}^{M}I_{i}, (6.6)

where

Ii:=\displaystyle I_{i}:=\, 0τy12siΩi|u(x,y)|pdxdy.\displaystyle\int_{0}^{\tau}y^{1-2s_{i}}\int_{\Omega_{i}}|u(x,y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y.

We denote by cc a positive constant that may depend only on pp and the partition {Ωi:i=1,,M}\{\Omega_{i}:i=1,\ldots,M\}, whose numerical value may be different from one line to another.

Let i{1,,M}i\in\{1,\ldots,M\}. We define

u¯i(y)=1|Ωi|Ωiu(x,y)dx,\bar{u}_{i}(y)=\frac{1}{|\Omega_{i}|}\int_{\Omega_{i}}u(x,y)\,\>\mathrm{d}x,

and observe that

Iic(Ii1+Ii2),\displaystyle I_{i}\leq c\,(I_{i1}+I_{i2}), (6.7)

where

Ii1:=\displaystyle I_{i1}:=\, 0τy12siΩi|u(x,y)u¯i(y)|pdxdy,\displaystyle\int_{0}^{\tau}y^{1-2s_{i}}\int_{\Omega_{i}}|u(x,y)-\bar{u}_{i}(y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y,
Ii2:=\displaystyle I_{i2}:=\, 0τy12siΩi|u¯i(y)|pdxdy=|Ωi|0τy12si|u¯i(y)|pdy.\displaystyle\int_{0}^{\tau}y^{1-2s_{i}}\int_{\Omega_{i}}|\bar{u}_{i}(y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y=|\Omega_{i}|\int_{0}^{\tau}y^{1-2s_{i}}|\bar{u}_{i}(y)|^{p}\,\>\mathrm{d}y.

For each fixed y(0,τ)y\in(0,\tau), the function u(,y)u(\,\cdot\,,y) belongs to C(Ωi)C^{\infty}(\Omega_{i}). Thus, by the Poincaré-Wirtinger’s inequality, we obtain:

Ωi|u(x,y)u¯i(y)|p𝑑xcΩi|xu(x,y)|pdx.\displaystyle\int_{\Omega_{i}}|u(x,y)-\bar{u}_{i}(y)|^{p}\,dx\leq c\,\int_{\Omega_{i}}|\nabla_{x}u(x,y)|^{p}\,\>\mathrm{d}x.

From this, similarly as in the proof of Theorem 6.1, we find:

Ii1\displaystyle I_{i1}\leq\, c0τΩiy12si|u(x,y)|pdxdy.\displaystyle c\int_{0}^{\tau}\int_{\Omega_{i}}y^{1-2s_{i}}|\nabla u(x,y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y. (6.8)

Let u¯ext\bar{u}_{ext} be the extension by zero of u¯\bar{u} to [0,)[0,\infty). Notice that u¯ext\bar{u}_{ext} is differentiable almost everywhere in (0,)(0,\infty) since u(x,)C([0,τ])u(x,\,\cdot\,)\in C^{\infty}([0,\tau]) for all xΩix\in\Omega_{i}, and, trivially, u¯ext\bar{u}_{ext} satisfies limyu¯ext(y)=0\lim_{y\to\infty}\bar{u}_{ext}(y)=0. Also, observe that

0y1+p2si|u¯ext(y)|pdy=0τy1+p2si|u¯(y)|pdyc0τy1+p2sidy<,\displaystyle\int_{0}^{\infty}y^{1+p-2s_{i}}|\bar{u}^{\prime}_{ext}(y)|^{p}\,\>\mathrm{d}y=\int_{0}^{\tau}y^{1+p-2s_{i}}|\bar{u}^{\prime}(y)|^{p}\,\>\mathrm{d}y\leq c\int_{0}^{\tau}y^{1+p-2s_{i}}\,\>\mathrm{d}y<\infty,

since 1+p2si>11+p-2s_{i}>-1 and u¯\bar{u}^{\prime} is bounded in [0,τ][0,\tau].

Then, by the classical Hardy inequality in Lemma 6.2 with ε=1+p2si\varepsilon=1+p-2s_{i}, we have:

Ii2=|Ωi|0yεp|u¯ext(y)|p𝑑yc|Ωi|0yε|u¯ext(y)|pdy.I_{i2}=|\Omega_{i}|\int_{0}^{\infty}y^{\varepsilon-p}|\bar{u}_{ext}(y)|^{p}\,dy\leq c\,|\Omega_{i}|\int_{0}^{\infty}y^{\varepsilon}|\bar{u}^{\prime}_{ext}(y)|^{p}\,\>\mathrm{d}y. (6.9)

We now observe that:

0yε|u¯ext(y)|pdy=\displaystyle\int_{0}^{\infty}y^{\varepsilon}|\bar{u}^{\prime}_{ext}(y)|^{p}\>\mathrm{d}y=\, 1|Ωi|p0τyε|ΩiDN+1u(x,y)𝑑x|pdy\displaystyle\frac{1}{|\Omega_{i}|^{p}}\int_{0}^{\tau}y^{\varepsilon}\left|\int_{\Omega_{i}}D_{N+1}u(x,y)\,dx\right|^{p}\>\mathrm{d}y
\displaystyle\leq\, 1|Ωi|p0τyε(Ωi|u(x,y)|𝑑x)pdy,\displaystyle\frac{1}{|\Omega_{i}|^{p}}\int_{0}^{\tau}y^{\varepsilon}\left(\int_{\Omega_{i}}|\nabla u(x,y)|\,dx\right)^{p}\>\mathrm{d}y,

where DN+1uD_{N+1}u is the partial derivative of uu with respect to the (N+1)(N+1) coordinate. Then, by the Hölder’s inequality on the inner integral, we have:

0yε|u¯ext(y)|pdy\displaystyle\int_{0}^{\infty}y^{\varepsilon}|\bar{u}^{\prime}_{ext}(y)|^{p}\>\mathrm{d}y\leq\, 1|Ωi|0τyεΩi|v(x,y)|pdxdy.\displaystyle\frac{1}{|\Omega_{i}|}\int_{0}^{\tau}y^{\varepsilon}\int_{\Omega_{i}}|\nabla v(x,y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y.

With this estimation in (6.9), we find:

Ii2\displaystyle I_{i2}\leq\, cτp0τΩiy12si|u(x,y)|pdxdy.\displaystyle c\,\tau^{p}\int_{0}^{\tau}\int_{\Omega_{i}}y^{1-2s_{i}}|\nabla u(x,y)|^{p}\,\mathrm{d}x\,\mathrm{d}y. (6.10)

Finally, using (6.8) and (6.10) in (6.7), we obtain:

Iicτp0τΩiy12si|u(x,y)|pdxdy,I_{i}\leq c\,\tau^{p}\int_{0}^{\tau}\int_{\Omega_{i}}y^{1-2s_{i}}|\nabla u(x,y)|^{p}\,\>\mathrm{d}x\,\>\mathrm{d}y,

and hence, by (6.6) and since Gs\mathrm{G}_{s} is constant, we have:

𝒞τw(x,y)|u(x,y)|pdXcτp𝒞τw(x,y)|u(x,y)|pdX,\int_{\mathcal{C}^{\tau}}w(x,y)|u(x,y)|^{p}\,\>\mathrm{d}X\leq c\,\tau^{p}\int_{\mathcal{C}^{\tau}}w(x,y)|\nabla u(x,y)|^{p}\,\>\mathrm{d}X,

for all uCc(𝒞Ωτ)W1,p(𝒞τ,w)u\in C_{c}^{\infty}(\mathcal{C}^{\tau}_{\Omega})\cap W^{1,p}(\mathcal{C}^{\tau},w). Then we obtain (6.5) by density. ∎

7. Second definition and solution to (Δ)s()v=h(-\Delta)^{s(\cdot)}v=h

We are now in a position to give a new definition for the operator (Δ)s()(-\Delta)^{s(\cdot)}, and to solve the associated Poisson problem for right hand sides defined on Ω\Omega. The arguments below are very similar to those developed in Section 4 but now we assume some extra conditions on the function s()s(\cdot) and the domain Ω\Omega, which enable a better characterization of the domain of (Δ)s()(-\Delta)^{s(\cdot)}. We present the ideas for the semi-infinite cylinder 𝒞\mathcal{C}, but the same arguments are valid for a truncated one 𝒞τ\mathcal{C}^{\tau}.

From now on, we assume that the functions s()s(\cdot) and Gs\mathrm{G}_{s} satisfy hypotheses (H1), (H2), and (H3). Further, we assume that the Poincaré inequality holds true, that is there exists C>0C>0 such that

uL2(𝒞,w)CuL2(𝒞,w),u0,L1,p(𝒞,w).\|u\|_{L^{2}(\mathcal{C},w)}\leq C\|\nabla u\|_{L^{2}(\mathcal{C},w)},\qquad\forall\,u\in\mathscr{H}^{1,p}_{0,L}(\mathcal{C},w).

For example, this is satisfied under the assumptions of Theorem 6.1 (see Theorem 6.3 for the case of a truncated cylinder). In particular, this implies that

0,L1,2(𝒞,w)=0,L1,2(𝒞,w),\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)=\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w),

algebraically and topologically. We endow 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) with the norm v0,L1,p(𝒞,w):=vL2(𝒞,w)\|v\|_{\mathscr{H}_{0,L}^{1,p}(\mathcal{C},w)}:=\|\nabla v\|_{L^{2}(\mathcal{C},w)}. Under the hypotheses assumed, we have established in Theorem 5.1 an Ω\Omega-trace operator

trΩ:0,L1,2(𝒞,w)L2(Ω,w~),\mathrm{tr}_{\Omega}\>:\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)\to L^{2}(\Omega,\tilde{w}), (7.1)

and proved it is bounded, linear, and such that trΩu=u(,0)\mathrm{tr}_{\Omega}\>u=u(\,\cdot\,,0) for all uW1,p(𝒞,w)Cc(𝒞Ω)u\in W^{1,p}(\mathcal{C},w)\cap C^{\infty}_{c}(\mathcal{C}_{\Omega}). Note that this operator is not, however, surjective. Subsequently, consider

𝒲01,2(𝒞,w):={u0,L1,2(𝒞,w):trΩu=0},\mathscr{W}_{0}^{1,2}(\mathcal{C},w):=\{u\in\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w):\mathrm{tr}_{\Omega}\>u=0\},

which is a closed subspace of 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w). Hence, a space of abstract traces on Ω\Omega of functions in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) can be defined as the quotient space

𝒴(Ω,w):=0,L1,2(𝒞,w)/𝒲01,2(𝒞,w).\mathscr{Y}(\Omega,w):=\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)/\mathscr{W}_{0}^{1,2}(\mathcal{C},w).
Remark 7.1.

Due to the absence of density results of the type “H=WH=W” for non-Muckenhoupt weights, we are not in a position to assure that the spaces 𝒳(Ω,w)\mathscr{X}(\Omega,w) and 𝒴(Ω,w)\mathscr{Y}(\Omega,w) are actually the same.

Immediately from here, via the isomorphism theorems, we can argue that there is an isomorphism

φ:𝒴(Ω,w)trΩ0,L1,2(𝒞,w).\varphi:\mathscr{Y}(\Omega,w)\xrightarrow{\sim}\mathrm{tr}_{\Omega}\>\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w). (7.2)

Moreover, one can simply consider φ\varphi to be given by [u]trΩu[u]\mapsto\mathrm{tr}_{\Omega}\>u. However, in order to identify 𝒴(Ω,w)\mathscr{Y}(\Omega,w) with a subset of functions defined on Ω\Omega, we need further information related with the structure of the function space trΩ0,L1,2(𝒞,w)\mathrm{tr}_{\Omega}\>\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w).

Analogously as in Section 4, we define

TRΩ:0,L1,2(𝒞,w)𝒴(Ω,w),\mathrm{TR}_{\Omega}\,:\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{Y}(\Omega,w), (7.3)

as TRΩu:=[u]\mathrm{TR}_{\Omega}\,u:=[u], and observe that TRΩ\mathrm{TR}_{\Omega}\, is surjective by definition. In this setting we identify the abstract Ω\Omega-trace of u0,L1,2(𝒞,w)u\in\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) with the equivalence class [u][u] that contains uu. The space 𝒴(Ω,w)\mathscr{Y}(\Omega,w) is then endowed with the usual quotient norm

TRΩu𝒴(Ω,w)=[u]𝒴(Ω,w):=\displaystyle\|\mathrm{TR}_{\Omega}\,u\|_{\mathscr{Y}(\Omega,w)}=\|[u]\|_{\mathscr{Y}(\Omega,w)}:=\, inf{uz0,L1,2(𝒞,w)):z𝒲01,2(𝒞,w))}.\displaystyle\inf\{\|u-z\|_{\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w))}:z\in\mathscr{W}_{0}^{1,2}(\mathcal{C},w))\}.

As before, we have TRΩ0,L1,2(𝒞,w)=𝒴(Ω,w)\mathrm{TR}_{\Omega}\,\mathscr{L}_{0,L}^{1,2}(\mathcal{C},w)=\mathscr{Y}(\Omega,w). Note that 𝒴(Ω,w)\mathscr{Y}(\Omega,w) is a Hilbert space, given that 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) and 01,2(𝒞,w)\mathscr{H}_{0}^{1,2}(\mathcal{C},w) are also Hilbert spaces.

Identically as in Theorem 4.1, we argue the existence of the weighted harmonic extension operator

S:TRΩ0,L1,2(𝒞,w)0,L1,2(𝒞,w),vS(v)=u.S:\mathrm{TR}_{\Omega}\,\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)\to\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w),\qquad v\mapsto S(v)=u.

where uu is the solution to

minimizeJ(u)over0,L1,2(𝒞,w),subjecttoTRΩu=v,\begin{split}&\mathrm{minimize}\quad J(u)\quad\mathrm{over}\quad\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w),\\ &\mathrm{subject\>\>to}\quad\mathrm{TR}_{\Omega}\,u=v,\end{split}

for

J(u):=12u0,L1,2(𝒞,w)2=12𝒞w|u|2dX.J(u):=\frac{1}{2}\|u\|^{2}_{\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)}=\frac{1}{2}\int_{\mathcal{C}}w|\nabla u|^{2}\>\mathrm{d}X.

The well-posedness of the map SS allows us to establish a definition for the fractional Laplacian with spatially variable order.

Definition 7.2.

Let 𝒴(Ω,w)\mathscr{Y}(\Omega,w)^{\prime} be the dual space of 𝒴(Ω,w)\mathscr{Y}(\Omega,w). The operator

(Δ)s():𝒴(Ω,w)𝒴(Ω,w),(-\Delta)^{s(\cdot)}:\mathscr{Y}(\Omega,w)\to\mathscr{Y}(\Omega,w)^{\prime},

is determined as follows: for v𝒴(Ω,w)v\in\mathscr{Y}(\Omega,w), then (Δ)s()v𝒴(Ω,w)(-\Delta)^{s(\cdot)}v\in\mathscr{Y}(\Omega,w)^{\prime} is defined by

(Δ)s()v,TRΩψ𝒴,𝒴=𝒞wS(v)ψdX,ψ0,L1,2(𝒞,w).\langle(-\Delta)^{s(\cdot)}v,\mathrm{TR}_{\Omega}\,\psi\rangle_{\mathscr{Y}^{\prime},\mathscr{Y}}=\displaystyle\int_{\mathcal{C}}w\,\nabla S(v)\cdot\nabla\psi\,\mathrm{d}X,\qquad\qquad\psi\in\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w).

Since Proposition 4.5 holds true with the usual changes, the operator is then well-defined and Theorem 4.7 is also proven mutatis mutandis: For a h𝒴(Ω,w)h\in\mathscr{Y}(\Omega,w)^{\prime}, the equation

(Δ)s()v=hin Ω,(-\Delta)^{s(\cdot)}v=h\quad\mbox{in }\Omega, (7.4)

admits a unique solution v𝒴(Ω,w)v\in\mathscr{Y}(\Omega,w) that is given by v=TRΩuv=\mathrm{TR}_{\Omega}\,\,u, where uu solves

minimize𝒥(u)over0,L1,2(𝒞,w),\displaystyle\mathrm{minimize}\quad\mathcal{J}(u)\quad\mathrm{over}\quad\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w), (7.5)

for

𝒥(u):=12𝒞w|u|2dXh,TrΩu𝒴,𝒴.\mathcal{J}(u):=\frac{1}{2}\displaystyle\int_{\mathcal{C}}w\,|\nabla u|^{2}\,\mathrm{d}X-\langle h,\mathrm{Tr}_{\Omega}\,u\rangle_{\mathscr{Y}^{\prime},\mathscr{Y}}.

Although this approach seems equivalent to the one in Section 4, in this setting we have a more detailed representation of the elements 𝒴(Ω,w)\mathscr{Y}(\Omega,w). In fact, within this approach, there exists an injection

I:𝒴(Ω,w)L2(Ω,w~),uI([u])=trΩu,I:\mathscr{Y}(\Omega,w)\to L^{2}(\Omega,\tilde{w}),\qquad u\mapsto I([u])=\mathrm{tr}_{\Omega}\>u,

which is linear and bounded. Linearity follows directly, and boundedness follows given that for arbitrary z𝒲01,2(𝒞,w)z\in\mathscr{W}_{0}^{1,2}(\mathcal{C},w),

I([u])L2(Ω,w~)=trΩuL2(Ω,w~)=trΩ(uz)L2(Ω,w~)Cuz0,L1,2(𝒞,w),\|I([u])\|_{L^{2}(\Omega,\tilde{w})}=\|\mathrm{tr}_{\Omega}\>u\|_{L^{2}(\Omega,\tilde{w})}=\|\mathrm{tr}_{\Omega}\>(u-z)\|_{L^{2}(\Omega,\tilde{w})}\leq C\|u-z\|_{\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)},

where we have used the linearity of trΩ\mathrm{tr}_{\Omega}\> and that trΩz=0\mathrm{tr}_{\Omega}\>z=0, and then

I([u])L2(Ω,w~)Cinfy𝒲01,2(𝒞,w)uz0,L1,2(𝒞,w)=C[u]𝒴(Ω,w).\|I([u])\|_{L^{2}(\Omega,\tilde{w})}\leq C\inf_{y\in\mathscr{W}_{0}^{1,2}(\mathcal{C},w)}\|u-z\|_{\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)}=C\|[u]\|_{\mathscr{Y}(\Omega,w)}.

In order to see that II is an injection, suppose that I([u])=0I([u])=0, then trΩu=0\mathrm{tr}_{\Omega}\>u=0 so that u𝒲01,2(𝒞,w)u\in\mathscr{W}_{0}^{1,2}(\mathcal{C},w), and the class 𝒲01,2(𝒞,w)\mathscr{W}_{0}^{1,2}(\mathcal{C},w) is the zero element of 𝒴(Ω,w)\mathscr{Y}(\Omega,w). This identification allows us to consider II to be the identity, and identify the continuous embedding

𝒴(Ω,w)L2(Ω,w~).\mathscr{Y}(\Omega,w)\hookrightarrow L^{2}(\Omega,\tilde{w}).

For a schematic relationship between the trace operators trΩ\mathrm{tr}_{\Omega}\>, TrΩ\mathrm{Tr}_{\Omega}\,, the isomorphism φ\varphi and the embedding II, see Figure 1. An amenable consequence of this identification is given in Theorem 7.4, however in first place we address the reduction to case where s()=s(0,1)s(\cdot)=s\in(0,1), a constant, where we obtain that HH is recovered as the domain of (Δ)s(-\Delta)^{s}.

0,L1,2(𝒞,w){\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)}trΩ0,L1,2(𝒞,w){\mathrm{tr}_{\Omega}\>\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)}𝒴(Ω,w){\mathscr{Y}(\Omega,w)}{L2(Ω,w~), if (H1)-(H3)𝕎s(),2(QN,w~,w1,,wN), if (H1)-(H4){\begin{cases}L^{2}(\Omega,\tilde{w}),\qquad\text{ if \ref{H1}-\ref{H3}}\\ \mathbb{W}^{s(\cdot),2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}),\text{ if \ref{H1}-\ref{H5}}\\ \end{cases}}TRΩ\mathrm{TR}_{\Omega}\,trΩ\mathrm{tr}_{\Omega}\>φ\varphi\simeqII\bigcap
Figure 1. Diagram relating the operators trΩ,TRΩ\mathrm{tr}_{\Omega}\>,\mathrm{TR}_{\Omega}\,, the isomorphism φ\varphi, and the operator II.
Theorem 7.3.

Let s()=s(0,1)s(\cdot)=s\in(0,1) be constant and suppose that functions in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) satisfy a Poincaré inequality, then

trΩ0,L1,2(𝒞,w)=H,\mathrm{tr}_{\Omega}\>\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)=H,

and therefore,

𝒴(Ω,w)H.\mathscr{Y}(\Omega,w)\simeq H.
Proof.

Given that s()=s(0,1)s(\cdot)=s\in(0,1) is constant, we have that G\mathrm{G} is constant, and hence 0,L1,2(𝒞,w)=0,L1,2(𝒞,y12s)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w)=\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s}). Additionally, by Remark 5.2, we have that trΩ0,L1,2(𝒞,y12s)H\mathrm{tr}_{\Omega}\>\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s})\subset H. Then, there is only left to prove that for each vHv\in H there exists a sequence {un}\{u_{n}\} in Cc(𝒞Ω)W1,2(𝒞,y12s)C^{\infty}_{c}(\mathcal{C}_{\Omega})\cap W^{1,2}(\mathcal{C},y^{1-2s}) convergent in the sense of W1,2(𝒞,y12s)W^{1,2}(\mathcal{C},y^{1-2s}) to a u0,L1,2(𝒞,y12s)u\in\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s}), and such that trΩu=v\mathrm{tr}_{\Omega}\>u=v. We divide the proof into four steps for the sake of clarity.

Step 1: Let vHv\in H be arbitrary. Since H=0s(Ω)H=\mathbb{H}_{0}^{s}(\Omega) for s(0,1/2)s\in(0,1/2) or s(1/2,1)s\in(1/2,1), and H=00s(Ω)H=\mathbb{H}_{00}^{s}(\Omega) for s=1/2s=1/2, it follows that Cc(Ω)C_{c}^{\infty}(\Omega) is dense in HH. Then, there exists a sequence {vk}\{v_{k}\} in Cc(Ω)C_{c}^{\infty}(\Omega) such that

vkv in H,v_{k}\to v\qquad\text{ in }H,

as kk\to\infty. We denote v=n=1bnφnv=\sum_{n=1}^{\infty}b_{n}\varphi_{n} and vk=n=1bnkφnv_{k}=\sum_{n=1}^{\infty}b^{k}_{n}\varphi_{n} to their spectral decomposition where bnkbnb^{k}_{n}\to b_{n} as kk\to\infty. Further, define u,uk:𝒞u,u_{k}:\mathcal{C}\to\mathbb{R} by

u(x,y)=n=1bnφn(x)gn(y)anduk(x,y)=n=1bnkφn(x)gn(y),u(x,y)=\sum_{n=1}^{\infty}b_{n}\varphi_{n}(x)g_{n}(y)\quad\text{and}\quad u_{k}(x,y)=\sum_{n=1}^{\infty}b^{k}_{n}\varphi_{n}(x)g_{n}(y),

where each gng_{n} satisfies the Bessel equation:

gn′′+12sygnλkgn\displaystyle g_{n}^{\prime\prime}+\frac{1-2s}{y}g_{n}^{\prime}-\lambda_{k}g_{n} =0 in (0,+),\displaystyle=0\qquad\text{ in }\quad(0,+\infty),
gn(0)\displaystyle g_{n}(0) =1,\displaystyle=1,
gn(+)\displaystyle g_{n}(+\infty) =0.\displaystyle=0.

Since the Poincaré inequality is valid for functions in W1,2(𝒞,y12s)W^{1,2}(\mathcal{C},y^{1-2s}), by the construction of the proof in [7, Proposition 2.1], we have that u,unW1,2(𝒞,y12s)u,u_{n}\in W^{1,2}(\mathcal{C},y^{1-2s}), and

0Ωy12s|u(x,y)uk(x,y)|2dxdy=cN,sk=1+(bnbnk)2μns=cN,svvkH2,\int_{0}^{\infty}\int_{\Omega}y^{1-2s}|\nabla u(x,y)-\nabla u_{k}(x,y)|^{2}\>\mathrm{d}x\>\mathrm{d}y=c_{N,s}\sum_{k=1}^{+\infty}(b_{n}-b_{n}^{k})^{2}\mu_{n}^{s}=c_{N,s}\|v-v_{k}\|^{2}_{H},

and thus

uku in W1,2(𝒞,y12s),u_{k}\to u\qquad\text{ in }W^{1,2}(\mathcal{C},y^{1-2s}), (7.6)

as kk\to\infty. Note that since vkv_{k} has compact support, the support of uku_{k} is uniformly away from L𝒞\partial_{L}\mathcal{C}.

Step 2: For τ1\tau\geq 1 and 0<σ<10<\sigma<1, we consider a smooth non-increasing function ητ:+[0,1]\eta_{\tau}:\mathbb{R}^{+}\to[0,1] such that:

ητ(y)=1if0<y<τσ,ητ(y)=0ify>τ,\eta_{\tau}(y)=1\quad\text{if}\quad 0<y<\tau-\sigma,\qquad\qquad\eta_{\tau}(y)=0\quad\text{if}\quad y>\tau,

and notice that the function uk,τ(x,y):=ητ(y)uk(x,y)u_{k,\tau}(x,y):=\eta_{\tau}(y)u_{k}(x,y) belongs to W1,2(𝒞,y12s)W^{1,2}(\mathcal{C},y^{1-2s}). By direct calculation we have that

uk,τun in W1,2(𝒞,y12s),u_{k,\tau}\to u_{n}\qquad\text{ in }W^{1,2}(\mathcal{C},y^{1-2s}), (7.7)

as τ\tau\to\infty.

Step 3: For 0<ε10<\varepsilon\ll 1 and τ>τ+ε\tau^{\prime}>\tau+\varepsilon, we consider the shifted cylinder

𝒞ετ:={(x,yε):(x,y)𝒞τ},\mathcal{C}_{\varepsilon}^{\tau^{\prime}}:=\{(x,y-\varepsilon):(x,y)\in\mathcal{C}^{\tau^{\prime}}\},

and the weighted space W1,2(𝒞ϵτ,ρ)W^{1,2}(\mathcal{C}_{\epsilon}^{\tau^{\prime}},\rho), where

ρ(x,y)={y12sif0<y<τε,(y)12sifε<y<0.\rho(x,y)=\left\{\begin{array}[]{ccl}y^{1-2s}&\text{if}&\,\,\,\,0<y<\tau^{\prime}-\varepsilon,\\ (-y)^{1-2s}&\text{if}&-\varepsilon<y<0.\end{array}\right.

Further, let u^k,τW1,2(𝒞ετ,ρ)\hat{u}_{k,\tau}\in W^{1,2}(\mathcal{C}_{\varepsilon}^{\tau^{\prime}},\rho) defined by reflection as

u^k,τ(x,y)={uk,τ(x,y)if0<y<τε,uk,τ(x,y)ifε<y0,\hat{u}_{k,\tau}(x,y)=\left\{\begin{array}[]{ccl}u_{k,\tau}(x,y)&\text{if}&\,\,\,\,0<y<\tau^{\prime}-\varepsilon,\\ u_{k,\tau}(x,-y)&\text{if}&-\varepsilon<y\leq 0,\end{array}\right.

and note that ρA2(𝒞ετ)\rho\in A_{2}(\mathcal{C}_{\varepsilon}^{\tau^{\prime}}), i.e.,

supB𝒞ετ(1|B|BρdX)(1|B|Bρ1dX)<+,\sup_{B\subset\mathcal{C}_{\varepsilon}^{\tau^{\prime}}}\left(\frac{1}{|B|}\int_{B}\rho\>\mathrm{d}X\right)\left(\frac{1}{|B|}\int_{B}\rho^{-1}\>\mathrm{d}X\right)<+\infty,

for all squares BCετB\subset C^{\tau^{\prime}}_{\varepsilon}.

Let LrL_{r} be the usual mollifier operator, i.e.,

(Lrf)(x)=1rN+1N+1ω(xzr)f(z)dz,(L_{r}f)(x)=\frac{1}{r^{N+1}}\int_{\mathbb{R}^{N+1}}\omega\left(\frac{x-z}{r}\right)f(z)\>\mathrm{d}z,

where ω:N+1[0,+)\omega:\mathbb{R}^{N+1}\to[0,+\infty) belongs to C(N+1)C^{\infty}(\mathbb{R}^{N+1}), suppωB(0,1)¯\mathrm{supp}\,\omega\subset\overline{B(0,1)}, and N+1ω=1\int_{\mathbb{R}^{N+1}}\omega=1. Since ρA2(𝒞ετ)\rho\in A_{2}(\mathcal{C}_{\varepsilon}^{\tau^{\prime}}) and since 𝒞ετ\mathcal{C}_{\varepsilon}^{\tau^{\prime}} is bounded and with Lipschitz boundary, it follows that for fW1,2(𝒞ετ,ρ)f\in W^{1,2}(\mathcal{C}_{\varepsilon}^{\tau^{\prime}},\rho),

Lrff in W1,2(D,y12s),L_{r}f\to f\qquad\text{ in }\quad W^{1,2}(D,y^{1-2s}),

for any D𝒞ετD\subset\subset\mathcal{C}_{\varepsilon}^{\tau^{\prime}}; see [9]. Given that the support of uk,τu_{k,\tau} is uniformly away from L𝒞\partial_{L}\mathcal{C}, and that uk,τ=0u_{k,\tau}=0 if τ<y\tau<y, it follows that

Lru^k,τuk,τ in W1,2(𝒞,y12s),L_{r}\hat{u}_{k,\tau}\to u_{k,\tau}\qquad\text{ in }\quad W^{1,2}(\mathcal{C},y^{1-2s}), (7.8)

as rr\to\infty. Note in addition, that for sufficiently large r>0r>0, we have

Lru^k,τCc(𝒞Ω)0,L1,2(𝒞,y12s).L_{r}\hat{u}_{k,\tau}\in C_{c}^{\infty}(\mathcal{C}_{\Omega})\subset\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s}).

Step 4: In view of (7.6), (7.7), and (7.8), by appropriately selecting a sequence {(ri,ki,τi)}i=1\{(r_{i},k_{i},\tau_{i})\}_{i=1}^{\infty}, we observe

u~i:=Lriu^ki,τiu in W1,2(𝒞,y12s),\tilde{u}_{i}:=L_{r_{i}}\hat{u}_{{k_{i}},{\tau_{i}}}\to u\qquad\text{ in }\quad W^{1,2}(\mathcal{C},y^{1-2s}),

as ii\to\infty, so that u0,L1,2(𝒞,y12s)u\in\mathscr{H}_{0,L}^{1,2}(\mathcal{C},y^{1-2s}). In particular,

trΩu~iv in L2(Ω),\mathrm{tr}_{\Omega}\>\tilde{u}_{i}\to v\qquad\text{ in }L^{2}(\Omega),

and v=trΩuv=\mathrm{tr}_{\Omega}\>u; the result is then proven. ∎

Next we can establish the well-posedness of the elliptic equation of interest.

Theorem 7.4.

Assume that (H1), (H2), and (H3) holds true, and functions in 0,L1,2(𝒞,w)\mathscr{H}_{0,L}^{1,2}(\mathcal{C},w) satisfy a Poincaré inequality. For every hL2(Ω,w~)h\in L^{2}(\Omega,\tilde{w}), the equation

(Δ)s()v=h,(-\Delta)^{s(\cdot)}v=h, (7.9)

admits a unique solution v𝒴(Ω,w)L2(Ω,w~)v\in\mathscr{Y}(\Omega,w)\subset L^{2}(\Omega,\tilde{w}).

Proof.

The conclusion follows from the existence and uniqueness of solution to the same problem with right hand side in 𝒴(Ω,w)\mathscr{Y}(\Omega,w) since we identify L2(Ω,w~)L2(Ω,w~)L^{2}(\Omega,\tilde{w})^{\prime}\simeq L^{2}(\Omega,\tilde{w}), so that L2(Ω,w~)𝒴(Ω,w)L^{2}(\Omega,\tilde{w})\subset\mathscr{Y}(\Omega,w) by means of I:L2(Ω,w~)𝒴(Ω,w)I^{\prime}:L^{2}(\Omega,\tilde{w})\to\mathscr{Y}(\Omega,w)^{\prime}. ∎

The result above can be refined in terms of regularity if in addition we observe (H4), and consider Ω=QN\Omega=Q_{N}. In this case, the injection II is given as

I:𝒴(QN,w)𝕎s(),2(QN,w~,w1,,wN),I:\mathscr{Y}(Q_{N},w)\to\mathbb{W}^{s(\cdot),2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}),

leading to our last theorem, whose proof is obtained as for Theorem 7.4.

Theorem 7.5.

In addition to the hypotheses of Theorem 7.4, consider Ω=QN\Omega=\mathrm{Q}_{N} and assume that (H4) holds true. Then, for every

h𝕎s(),2(QN,w~,w1,,wN),h\in\mathbb{W}^{s(\cdot),2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N})^{\prime},

the equation (7.9) admits a unique solution

v𝒴(Ω,w)𝕎s,2(QN,w~,w1,,wN).v\in\mathscr{Y}(\Omega,w)\subset\mathbb{W}^{s,2}(\mathrm{Q}_{N},\tilde{w},w_{1},\ldots,w_{N}).

The problem in the truncated cylinder 𝒞τ\mathcal{C}^{\tau} is treated identically, and Theorem 7.4 and Theorem 7.5 still hold true under the obvious changes.

8. Conclusions and open questions

This paper continues the program initiated in [2] and provides a rigorous definition of the variable order fractional Laplacian. The proposed theoretical framework enables solutions to Poisson equation on bounded Lipschitz domains Ω\Omega. The techniques introduced in the paper are new and none of the existing works applies to our setting. However, the existing setting, where s()s(\cdot) is a constant, can be recovered from our proofs as a special case.

The following are open questions and topics for future research:

  • The study of Δs()-\Delta^{s(\cdot)} as regularizer in optimization problem, i.e.,

    minuJ(u)+γR(u)withR(u)=(Δ)s()u,u𝒴,𝒴,\min_{u}J(u)+\gamma R(u)\qquad\text{with}\quad R(u)=\langle(-\Delta)^{s(\cdot)}u,u\rangle_{\mathscr{Y}^{\prime},\mathscr{Y}},

    and the optimal selection of s()s(\cdot) in a bilevel framework.

  • The extension to more general settings of the Poincaré inequality type result presented in Section 6.

  • The surjectivity of the new trace operator is still open (cf. Remark 5.10).

  • We have introduced Sobolev spaces with s()s(\cdot)-dependent weights for the extension problem and s()s(\cdot)-dependent differentiability for the space on Ω\Omega. New approaches need to be established to prove additional regularity of solutions to (Δ)s()u=h(-\Delta)^{s(\cdot)}u=h in these Sobolev spaces.

  • Extensions to parabolic, semilinear and obstacle type problems are of interest.

  • The authors in [2] proposed a numerical method for the truncated problem. But the numerical analysis of this problem is completely open. Also, convergence of the truncated solution to the full solution is of interest as well.

  • Optimal control problems with variable order PDEs as constraints.

References

  • [1] Harbir Antil, Johannes Pfefferer, and Sergejs Rogovs. Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization. Commun. Math. Sci., 16(5):1395–1426, 2018.
  • [2] Harbir Antil and Carlos N. Rautenberg. Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications. SIAM Journal on Mathematical Analysis, 51(3):2479–2503, 2019.
  • [3] David Applebaum. Lévy processes and stochastic calculus. 2009.
  • [4] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, 2011.
  • [5] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional Laplacian. Communications in Partial Differential Equations, 32(7-9):1245–1260, 2007.
  • [6] Luis A. Caffarelli, Sandro Salsa, and Luis Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Inventiones Mathematicae, 171(2):425–461, 2007.
  • [7] Antonio Capella, Juan Dávila, Louis Dupaigne, and Yannick Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Communications in Partial Differential Equations, 36(8):1353–1384, 2011.
  • [8] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
  • [9] Vladimir Gol’dshtein and Alexander Ukhlov. Weighted sobolev spaces and embedding theorems. Transactions of the American Mathematical Society, 361(7):3829–3850, 2009.
  • [10] Alois Kufner. Weighted Sobolev Spaces. Teubner-Texte zur, 1980.
  • [11] Alois Kufner, Oldřich John, and Svatopluk Fučík. Function spaces. Academia, 1977.
  • [12] Alois Kufner and Bohumír Opic. How to define reasonably weighted sobolev spaces. Commentationes Mathematicae Universitatis Carolinae, 25(3):537–554, 1984.
  • [13] David G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.
  • [14] Ales̆ Nekvinda. Characterization of traces of the weighted Sobolev space W1,p(ω,dMϵ){W}^{1,p}(\omega,d^{\epsilon}_{M}) on M{M}. Czechoslovak Mathematical Journal, 43(4):695–711, 1993.
  • [15] Ricardo H. Nochetto, Enrique Otarola, and Abner J. Salgado. A PDE approach to fractional diffusion in general domains: A priori error analysis. Found. Comput. Math., 15(3):733–791, 2015.
  • [16] Bohumír Opic and Alois Kufner. Hardy-type inequalities, volume 219. Longman Scientific and Technical, 1990.
  • [17] Pablo Raúl Stinga and José Luis Torrea. Extension problem and Harnack’s inequality for some fractional operators. Communications in Partial Differential Equations, 35(11):2092–2122, 2010.
  • [18] Luc Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007.
  • [19] Bengt O Turesson. Nonlinear potential theory and weighted Sobolev spaces, volume 1736. Springer Science & Business Media, 2000.
  • [20] Chester Weiss, Bart van Bloemen Waanders, and Harbir Antil. Fractional operators applied to geophysical electromagnetics. Geophysical Journal International, 220(2):1242–1259, 2020.