This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The spectra of Laplace operators on covering simplicial complexes

Yi-Zheng Fan Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China fanyz@ahu.edu.cn Yi-Min Song Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China songym@stu.ahu.edu.cn  and  Yi Wang Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China wangy@ahu.edu.cn
Abstract.

In this paper, by the representation theory of symmetric group, we give a decomposition of the Laplace operator (in matrix form) of a covering simplicial complex into the direct sum of some matrices, including the Laplace operator of the underlying simplicial complex. So, the spectrum of a covering simplicial complex can be expressed into a union of the spectrum of the underlying simplicial complex and the spectra of some other matrices, which implies a result of Horak and Jost. In particular, we show that the spectrum of a 22-fold covering simplicial complex is the union the that of the underlying simplicial complex and that of an incidence-signed simplicial complex, which is an analog of Bilu and Linial’s result on graphs. Finally we show that the dimension of the cohomology group of a covering simplicial complex is greater than or equal to that of the underlying simplicial complex.

Key words and phrases:
Simplicial complex, signed complex, covering, Laplace operator, hypergraph
2000 Mathematics Subject Classification:
55U05, 05E45, 47J10, 05C65
*The corresponding author. This work was supported by National Natural Science Foundation of China (Grant Nos. 12331012, 12171002).

1. Introduction

The study of graph Laplacians has a long and prolific history. It first appeared in a paper by Kirchhoff [18], where he analysed electrical networks and stated the celebrated matrix tree theorem. In the early 1970s Fiedler [13] established a relation between the second smallest eigenvalue and the connectivity of a graph. Since then there has been a number of papers on the Laplacian spectra of graphs; see [26]. The normalized graph Laplacian was introduced by Bottema [4] who studied a transition probability operator on graphs; also see [10] for more introduction.

The graph Laplacian was generalized to simplicial complexes (simply called complex) by Eckmann [9], who proved the discrete version of the Hodge theorem, which can be formulated as

ker(δiδi+δi1δi1)=H~i(K,),\text{ker}(\delta_{i}^{*}\delta_{i}+\delta_{i-1}\delta_{i-1}^{*})=\tilde{H}_{i}(K,\mathbb{R}),

where Li=δiδi+δi1δi1L_{i}=\delta_{i}^{*}\delta_{i}+\delta_{i-1}\delta_{i-1}^{*} is the higher order combinatorial Laplacian. There have already been several attempts towards the normalization of the combinatorial Laplace operator; see Chung [11], Taszus [31], Lu and Peng [24], Garland [15]. Horak and Jost developed a general framework for Laplace operators defined in terms of the combinatorial structure of a complex, including the combinatorial Laplacian and the normalized Laplacian.

The graph covering (also called lift) has been introduced and studied in many literatures [25, 28, 2] from the viewpoint of topological or complex. It was generalized to hypergraph covering in [7, 22, 29] in different versions. The complex covering was introduced by Rotman [28], which was adopted by Gustavson [17] to study the Laplacian spectrum. As remarked by Horak and Jost [20], there exist counterexamples to the Universal Lifting Theorem for discrete covering maps from [28] (Theorem 2.1), and the spectral inclusion theorem from [17] (Theorem 4.4). Horak and Jost [20] introduced the notion of strong covering to fix the problems; see Section 3.

By the representation theory of symmetric group, the characteristic polynomial of the adjacency matrix of a covering graph was formulated in a product of the characteristic polynomials of some matrices [27, 12], which implies that the spectrum of the adjacency matrix (simply called the adjacency spectrum) of a covering graph contains that of its underlying graph. In particular, if a graph G¯\bar{G} is a 22-fold covering (or 22-lift) of a graph GG, then the adjacency spectrum of G¯\bar{G} is a multi-set union of that of GG and that of a signed graph GsG_{s} with GG as underlying graph, which was proved by Bilu and Linial [3] by eigenvector approach. (Note it can also be shown by the sign representation of symmetric group 𝕊2\mathbb{S}_{2}). Li and Hou [23] applied the above idea to formulate the characteristic polynomials of the Laplacian matrix or normalized Laplacian matrix of a covering graph.

Under the strong covering of complex, Horak and Jost [20] proved that the inclusion relation between the spectrum of a covering complex and that of its underlying complex; see Corollary 4.3. What we are interested in is the remaining eigenvalues of the covering complex except the eigenvalues of the underlying complex. In this paper, by the representation theory of symmetric group, we will give a decomposition of the Laplace operator (in matrix form) of a covering complex into the direct sum of some matrices, including the Laplace operator of the underlying complex. So, the spectrum of a covering complex can be expressed into a union of the spectrum of the underlying complex and the spectra of some other matrices, which implies a result of Horak and Jost [21]. In particular, we show that the spectrum of a 22-fold covering complex is the union the that of the underlying complex and that of an incidence-signed complex, which is an analog of Bilu and Linial’s result on graphs. Finally we show that the dimension of the homology group of a covering complex is greater than or equal to that of the underlying complex.

2. Preliminaries

2.1. Simplical complex and Laplace operator

Let VV be a finite set. An abstract simplicial complex (simply called a complex) KK over VV is a collection of the subsets of VV which is closed under inclusion. An ii-face or an ii-simplex of KK is an element of KK with cardinality i+1i+1. The dimension of an ii-face is ii, and the dimension of KK is the maximum dimension of all faces of KK. The faces which are maximum under inclusion are called facets. We say KK is pure if all facets have the same dimension. So, a complex can be considered as a hypergraph with facets as the edges of the hypergraph, and a pure complex will correspond to a uniform hypergraph, where a hypergraph is called uniform if all edges have the same size.

We assume that K\emptyset\in K, called the empty simplex with dimension 1-1. Let Si(K)S_{i}(K) be the set of all ii-faces of 𝒦\mathcal{K}, where S1:={}S_{-1}:=\{\emptyset\}. The pp-skeleton of KK, written K(p)K^{(p)}, is the set of all simplices of KK of dimension less than or equal to pp. So, K(1)\{}K^{(1)}\backslash\{\emptyset\} is the usual graph, where the 0-faces are usually called vertices denoted by V(K)V(K), and 11-faces are called the edges. We say KK is connected if the graph K(1)\{}K^{(1)}\backslash\{\emptyset\} is connected.

We say a face FF is oriented if we assign an ordering of its vertices and write it as [F][F]. Two ordering of the vertices of FF are said to determine the same orientation if there is an even permutation transforming one ordering into the other. If the permutation is odd, then the orientation are opposite. The ii-chain group of KK over \mathbb{R}, denoted by Ci(K,)C_{i}(K,\mathbb{R}), is the vector space over \mathbb{R} generated by all oriented ii-faces of KK modulo the relation [F1]+[F2]=0[F_{1}]+[F_{2}]=0, where [F1][F_{1}] and [F2][F_{2}] are two different orientations of a same face. The cochain group Ci(K,)C^{i}(K,\mathbb{R}) is defined to be the dual of Ci(K,)C_{i}(K,\mathbb{R}), i.e. Ci(K,)=Hom(Ci(K,),)C^{i}(K,\mathbb{R})=\text{Hom}(C_{i}(K,\mathbb{R}),\mathbb{R}), which are generated by the dual basis consisting of [F][F]^{*} for all FSi(K)F\in S_{i}(K), where

[F]([F])=1,[F]([F])=0 for FF.[F]^{*}([F])=1,[F]^{*}([F^{\prime}])=0\text{~{}for~{}}F^{\prime}\neq F.

The functions [F][F]^{*} are called the elementary cochains. Note that C1(K,)=C_{-1}(K,\mathbb{R})=\mathbb{R}\emptyset, identified with \mathbb{R}, and C1(K,)=C^{-1}(K,\mathbb{R})=\mathbb{R}\emptyset^{*}, also can be identified with \mathbb{R}, where \emptyset^{*} is the identify function on the empty simplex.

For each integer i=0,1,,dimKi=0,1,\ldots,\text{dim}K, The boundary map i:Ci(K,)Ci1(K,)\partial_{i}:C_{i}(K,\mathbb{R})\to C_{i-1}(K,\mathbb{R}) is defined to be

i([v0,,vi])=j=0i(1)j[v0,,v^j,,vi],\partial_{i}([v_{0},\ldots,v_{i}])=\sum_{j=0}^{i}(-1)^{j}[v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}],

for each oriented ii-face [v0,,vi][v_{0},\ldots,v_{i}] of KK, where v^j\hat{v}_{j} denotes the vertex vjv_{j} has been omitted. In particular, 0[v]=\partial_{0}[v]=\emptyset for vS0(K)v\in S_{0}(K). We will have the augmented chain complex of KK:

Ci+1(K,)i+1Ci(K,)iCi1(K,)C1(K,)0,\cdots\longrightarrow C_{i+1}(K,\mathbb{R})\stackrel{{\scriptstyle\partial_{i+1}}}{{\longrightarrow}}C_{i}(K,\mathbb{R})\stackrel{{\scriptstyle\partial_{i}}}{{\longrightarrow}}C_{i-1}(K,\mathbb{R})\rightarrow\cdots\longrightarrow C_{-1}(K,\mathbb{R})\to 0,

satisfying ii+1=0\partial_{i}\circ\partial_{i+1}=0.

Here, by abuse of notation, we use F¯\partial\bar{F} to denote the set of all ii-faces in the boundary of F¯\bar{F} when F¯Si+1(K)\bar{F}\in S_{i+1}(K). If [F¯]:=[v0,,vi][\bar{F}]:=[v_{0},\ldots,v_{i}] and [Fj]:=[v0,,v^j,,vi][F_{j}]:=[v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}], then we define sgn([Fj],[F¯]]=(1)j\operatorname{sgn}([F_{j}],\partial[\bar{F}]]=(-1)^{j}, namely, the sign of [Fj][F_{j}] appeared in [F¯]\partial[\bar{F}], and sgn([F],[F¯]]=0\operatorname{sgn}([F],\partial[\bar{F}]]=0 if FF¯F\notin\partial\bar{F}.

The coboundary map δi1:Ci1(K,)Ci(K,)\delta_{i-1}:C^{i-1}(K,\mathbb{R})\to C^{i}(K,\mathbb{R}) is the conjugate of i\partial_{i} such that δi1f=fi.\delta_{i-1}f=f\partial_{i}. So

(δif)([v0,,vi])=j=0i(1)jf([v0,,v^j,,vi]).(\delta_{i}f)([v_{0},\ldots,v_{i}])=\sum_{j=0}^{i}(-1)^{j}f([v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}]).

Similarly, we have the augmented cochain complex of KK:

Ci+1(K,)δiCi(K,)δi1Ci1(K,)C1(K,)0,\cdots\longleftarrow C^{i+1}(K,\mathbb{R})\stackrel{{\scriptstyle\delta_{i}}}{{\longleftarrow}}C^{i}(K,\mathbb{R})\stackrel{{\scriptstyle\delta_{i-1}}}{{\longleftarrow}}C^{i-1}(K,\mathbb{R})\longleftarrow\cdots{\longleftarrow}C^{-1}(K,\mathbb{R})\longleftarrow 0,

satisfying δiδi1=0\delta_{i}\circ\delta_{i-1}=0. The ii-th reduced cohomology group for every i0i\geq 0 is defined to be

H~i(K,)=kerδi/im δi1.\tilde{H}^{i}(K,\mathbb{R})=\ker\delta_{i}/\text{im~{}}\delta_{i-1}.

By introducing inner products in Ci(K,)C^{i}(K,\mathbb{R}) and Ci+1(K,)C^{i+1}(K,\mathbb{R}) respectively, we have the adjoint δi:Ci+1(K,)Ci(K,)\delta^{*}_{i}:C^{i+1}(K,\mathbb{R})\to C^{i}(K,\mathbb{R}) of δi\delta_{i}, which is defined by

(δif1,f2)Ci+1=(f1,δif2)Ci(\delta_{i}f_{1},f_{2})_{C^{i+1}}=(f_{1},\delta^{*}_{i}f_{2})_{C^{i}}

for all f1Ci(K,),f2Ci+1(K,)f_{1}\in C^{i}(K,\mathbb{R}),f_{2}\in C^{i+1}(K,\mathbb{R}).

Definition 2.1.

[21] The following three operators are defined on Ci(K,)C^{i}(K,\mathbb{R}).

(1) The ii-dimensional combinatorial up Laplace operator or simply the ii-up Laplace operator:

iup(K):=δiδi.\mathcal{L}_{i}^{up}(K):=\delta_{i}^{*}\delta_{i}.

(2) The ii-dimensional combinatorial down Laplace operator or the ii-down Laplace operator:

idown(K):=δi1δi1.\mathcal{L}_{i}^{down}(K):=\delta_{i-1}\delta_{i-1}^{*}.

(3) The ii-dimensional combinatorial Laplace operator or the ii-Laplace operator:

i(K)=iup(K)+idown(K)=δiδi+δi1δi1.\mathcal{L}_{i}(K)=\mathcal{L}_{i}^{up}(K)+\mathcal{L}_{i}^{down}(K)=\delta^{*}_{i}\delta_{i}+\delta_{i-1}\delta^{*}_{i-1}.

Horak and Jost [20, 21] suggested to define an inner product on Ci(K,)C^{i}(K,\mathbb{R}) such that the elementary cochains are orthogonal to each other, which is equivalent to define a weight function on all faces of KK:

w:i=1dimKSi(L)+.w:\bigcup_{i=-1}^{\text{dim}K}S_{i}(L)\to\mathbb{R}^{+}.

Then

(f,g)Ci=FSi(K)w(F)f([F])g([f]).(f,g)_{C^{i}}=\sum_{F\in S_{i}(K)}w(F)f([F])g([f]).

In this paper, the weight is implicit from the context for the Laplace operator. If w1w\equiv 1 on all faces, then the underlying Laplacian is the combinatorial Laplace operator, denoted by Li(K)L_{i}(K), as discussed in [8, 14]. If the weights of all facets are equal to 11, and ww satisfies the normalizing condition:

w(F)=F¯Si+1(K):FF¯w(F¯),w(F)=\sum_{\bar{F}\in S_{i+1}(K):F\in\partial\bar{F}}w(\bar{F}),

for every FSi(K)F\in S_{i}(K) which is not a facet of KK, then ww determines the normalized Laplace operator, denoted by Δi(K)\Delta_{i}(K), as analyzed in [21].

Horak and Jost [20, 21] give explicit formulas for iup\mathcal{L}_{i}^{up} and idown\mathcal{L}_{i}^{down}. Here we consider the matrix forms of the above operators. Let DiD_{i} be the matrix of δi:CiCi+1\delta_{i}:C^{i}\to C^{i+1} under the basis consisting of elementary cochains. We have

(Di)[F¯],[F]=sgn([F],[F¯]).(D_{i})_{[\bar{F}]^{*},[F]^{*}}=\operatorname{sgn}([F],\partial[\bar{F}]).

Let WiW_{i} be the diagonal matrix consisting of the weight on Si(K)S_{i}(K). The matrix DiD_{i}^{*} of δi\delta_{i}^{*} satisfies

(Di)[F],[F¯]=w(F¯)w(F)sgn([F],[F¯]).(D_{i}^{*})_{[F]^{*},[\bar{F}]^{*}}=\frac{w(\bar{F})}{w(F)}\operatorname{sgn}([F],\partial[\bar{F}]).

So

Di=Wi1DiWi+1,D_{i}^{*}=W_{i}^{-1}D_{i}^{\top}W_{i+1},

where WiW_{i} and Wi+1W_{i+1} are diagonal matrices such that (Wi)[F],[F]=w(F)(W_{i}){[F]^{*},[F]^{*}}=w(F) and (Wi+1)[F¯],[F¯]=w(F¯)(W_{i+1})_{[\bar{F}]^{*},[\bar{F}]^{*}}=w(\bar{F}). Hence

(2.1) iup(K)=Wi1DiWi+1Di,idown(K)=Di1Wi11Di1Wi.\mathcal{L}_{i}^{up}(K)=W_{i}^{-1}D_{i}^{\top}W_{i+1}D_{i},~{}\mathcal{L}_{i}^{down}(K)=D_{i-1}W_{i-1}^{-1}D_{i-1}^{\top}W_{i}.

2.2. Incidence-weighted and incidence-signed complex

Let KK be a complex, and let F,F¯KF,\bar{F}\in K. If FF¯F\in\partial\bar{F}, then (F,F¯)(F,\bar{F}) is an incidence of KK. We will introduce the weights of incidences of KK, which is different from the weights of faces for the definition of Laplace operators. We first consider a simple case: the weights of incidences are from {1,1}\{-1,1\}.

Definition 2.2.

The incidence-signed complex is a pair (K,s)(K,s), where KK is a complex, and s:K×K{1,0,1}s:K\times K\to\{-1,0,1\} such that s(F,F¯){1,1}s(F,\bar{F})\in\{-1,1\} if FF¯F\in\partial\bar{F}, and s(F,F¯)=0s(F,\bar{F})=0 otherwise.

The signed boundary map is:Ci(K,)Ci1(K,)\partial_{i}^{s}:C_{i}(K,\mathbb{R})\to C_{i-1}(K,\mathbb{R}) is defined to be

is[v0,,vi]=j=0i(1)j[v0,,v^j,,vi]s({v0,,v^j,,vi},{v0,,vi}).\partial_{i}^{s}[v_{0},\ldots,v_{i}]=\sum_{j=0}^{i}(-1)^{j}[v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}]s(\{v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}\},\{v_{0},\ldots,v_{i}\}).

The signed co-boundary map δis:Ci(K,)Ci+1(K,)\delta^{s}_{i}:C^{i}(K,\mathbb{R})\to C^{i+1}(K,\mathbb{R}) is the conjugate of i+1s\partial_{i+1}^{s}, namely, for all fCif\in C^{i},

δisf=fi+1s.\delta^{s}_{i}f=f\partial_{i+1}^{s}.

The signed adjoint (δis):Ci+1(K,)Ci(K,)(\delta_{i}^{s})^{*}:C^{i+1}(K,\mathbb{R})\to C^{i}(K,\mathbb{R}) is the adjoint of δis\delta_{i}^{s} satisfying

(δisf1,f2)Ci+1=(f1,(δis)f2)Ci(\delta_{i}^{s}f_{1},f_{2})_{C^{i+1}}=(f_{1},(\delta^{s}_{i})^{*}f_{2})_{C^{i}}

for all f1Ci,f2Ci+1f_{1}\in C^{i},f_{2}\in C^{i+1}.

Definition 2.3.

Let (K,s)(K,s) be a signed complex.

(1) The ii-up Laplace operator of (K,s)(K,s) is defined to be iup(K,s)=(δis)δis\mathcal{L}_{i}^{up}(K,s)=(\delta_{i}^{s})^{*}\delta_{i}^{s}.

(2) The ii-down Laplace operator of (K,s)(K,s) is defined to be idown(K,s)=δi1s(δi1s)\mathcal{L}_{i}^{down}(K,s)=\delta_{i-1}^{s}(\delta_{i-1}^{s})^{*}.

(3) The ii-Laplace operator of (K,s)(K,s) is defined to be (K,s)=iup(K,s)+idown(K,s)\mathcal{L}(K,s)=\mathcal{L}_{i}^{up}(K,s)+\mathcal{L}_{i}^{down}(K,s).

Let DisD_{i}^{s} be the matrix of δis:CiCi+1\delta_{i}^{s}:C^{i}\to C^{i+1} under the basis consisting of elementary cochains. Then

(Dis)[F¯],[F]=sgn([F],[F¯])s(F,F¯).(D_{i}^{s})_{[\bar{F}]^{*},[F]^{*}}=\operatorname{sgn}([F],\partial[\bar{F}])s(F,\bar{F}).

The matrix (Dis)(D_{i}^{s})^{*} of (δis)(\delta_{i}^{s})^{*} satisfies

((Dis))[F],[F¯]=w(F¯)w(F)sgn([F],[F¯])s(F,F¯),((D_{i}^{s})^{*})_{[F]^{*},[\bar{F}]^{*}}=\frac{w(\bar{F})}{w(F)}\operatorname{sgn}([F],\partial[\bar{F}])s(F,\bar{F}),

where ww is a weight function on the faces of KK. So

(Dis)=Wi1(Dis)Wi+1.(D_{i}^{s})^{*}=W_{i}^{-1}(D_{i}^{s})^{\top}W_{i+1}.

Hence the matrix of iup(K,s)\mathcal{L}_{i}^{up}(K,s) is

(2.2) iup(K,s)=Wi1(Dis)Wi+1Dis,\mathcal{L}_{i}^{up}(K,s)=W_{i}^{-1}(D_{i}^{s})^{\top}W_{i+1}D_{i}^{s},

and the matrix of idown(K,s)\mathcal{L}_{i}^{down}(K,s) is

idown(K,s)=Di1sWi11(Di1s)Wi.\mathcal{L}_{i}^{down}(K,s)=D^{s}_{i-1}W_{i-1}^{-1}(D^{s}_{i-1})^{\top}W_{i}.

If s1s\equiv 1, then iup(K,s)=iup(K)\mathcal{L}_{i}^{up}(K,s)=\mathcal{L}_{i}^{up}(K) and idown(K,s)=idown(K).\mathcal{L}_{i}^{down}(K,s)=\mathcal{L}_{i}^{down}(K). From this point of view, the signed complex (K,s)(K,s) is a generalization of the usual complex. If s(F,F¯)=sgn([F],[F¯])s(F,\bar{F})=\operatorname{sgn}([F],\partial[\bar{F}]) for all pairs (F,F¯)(F,\bar{F}) with FF¯F\in\partial\bar{F}, then Dis=|Dis|D_{i}^{s}=|D_{i}^{s}|, which is a nonnegative matrix, where |A|:=[|aij|]|A|:=[|a_{ij}|] if A=[aij]A=[a_{ij}]. In this case, iup(K,s)=|iup(K,s)|=|iup(K)|\mathcal{L}_{i}^{up}(K,s)=|\mathcal{L}_{i}^{up}(K,s)|=|\mathcal{L}_{i}^{up}(K)|, and idown(K,s)=|idown(K,s)|=|idown(K)|\mathcal{L}_{i}^{down}(K,s)=|\mathcal{L}_{i}^{down}(K,s)|=|\mathcal{L}_{i}^{down}(K)|.

Let |Di||D_{i}| be the ii-th incidence matrix of KK with rows indexed by Si+1(K)S_{i+1}(K) and columns indexed by Si(K)S_{i}(K), which is defined to be |Di|F¯,F=1|D_{i}|_{\bar{F},F}=1 if FF¯F\in\partial\bar{F}, and |Di|F¯,F=0|D_{i}|_{\bar{F},F}=0 otherwise. Then

|iup(K)|=Wi1|Di|Wi+1|Di|.|\mathcal{L}_{i}^{up}(K)|=W_{i}^{-1}|D_{i}|^{\top}W_{i+1}|D_{i}|.

We call |iup(K)||\mathcal{L}_{i}^{up}(K)| the ii-up signless Laplace operator of KK, denoted by 𝒬iup(K)\mathcal{Q}_{i}^{up}(K). Similarly, we have

|idown(K)|=|Di1|Wi11|Di1|Wi,|\mathcal{L}_{i}^{down}(K)|=|D_{i-1}|W_{i-1}^{-1}|D_{i-1}|^{\top}W_{i},

which is called the ii-down signless Laplace operator of KK, denoted by 𝒬idown(K)\mathcal{Q}_{i}^{down}(K).

Note that, if taking W0W_{0} and W1W_{1} both be identity matrix, then 𝒬0up(K)\mathcal{Q}_{0}^{up}(K) is called the signless Laplacian of a graph or the 11-skeleton of KK [19], which is studied in [6] for the nonbipartiteness of a graph, and surveyed in [5].

In general, let the underlying field of the chain group and the cochain group of KK be the complex field \mathbb{C}. We take the weight of each incidence of KK from :=\{0}\mathbb{C}^{*}:=\mathbb{C}\backslash\{0\}

Definition 2.4.

The incidence-weighted complex is a pair (K,ω)(K,\omega), where KK is a simpicial complex, and ω:K×K\omega:K\times K\to\mathbb{C} such that s(F,F¯)s(F,\bar{F})\in\mathbb{C}^{*} if FF¯F\in\partial\bar{F}, and s(F,F¯)=0s(F,\bar{F})=0 otherwise.

By a similar discussion, the weighted boundary map iω:Ci(K,)Ci1(K,)\partial_{i}^{\omega}:C_{i}(K,\mathbb{C})\to C_{i-1}(K,\mathbb{C}) is defined to be

iω[v0,,vi]=j=0i(1)j[v0,,v^j,,vi]ω({v0,,v^j,,vi},{v0,,vi}).\partial_{i}^{\omega}[v_{0},\ldots,v_{i}]=\sum_{j=0}^{i}(-1)^{j}[v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}]\omega(\{v_{0},\ldots,\hat{v}_{j},\ldots,v_{i}\},\{v_{0},\ldots,v_{i}\}).

We will have the δiω\delta_{i}^{\omega}, the conjugate of iω\partial_{i}^{\omega}, and (δiω)(\delta_{i}^{\omega})^{*}, the adjoint of δiω\delta_{i}^{\omega}. Note that the inner product over \mathbb{C} is defined as

(f,g)Ci=FSi(K)w(F)f([F])g([f])¯,(f,g)_{C^{i}}=\sum_{F\in S_{i}(K)}w(F)f([F])\overline{g([f])},

where, ww is a weight function on the faces of KK, α¯\overline{\alpha} denotes the conjugate of a complex number α\alpha.

Definition 2.5.

Let (K,ω)(K,\omega) be weighted simplical complex.

(1) The ii-up Laplace operator of (K,ω)(K,\omega) is defined to be iup(K,ω)=(δiω)δiω\mathcal{L}_{i}^{up}(K,\omega)=(\delta_{i}^{\omega})^{*}\delta_{i}^{\omega}.

(2) The ii-down Laplace operator of (K,ω)(K,\omega) is idown(K,ω)=δi1ω(δi1ω)\mathcal{L}_{i}^{down}(K,\omega)=\delta_{i-1}^{\omega}(\delta_{i-1}^{\omega})^{*}.

(3) The ii-Laplace operator of (K,ω)(K,\omega) is i(K,ω)=iup(K,ω)+idown(K,ω)\mathcal{L}_{i}(K,\omega)=\mathcal{L}_{i}^{up}(K,\omega)+\mathcal{L}_{i}^{down}(K,\omega).

The matrix DiωD_{i}^{\omega} of δiω\delta_{i}^{\omega} is

(Diω)[F¯],[F]=sgn([F],[F¯])ω(F,F¯).(D_{i}^{\omega})_{[\bar{F}]^{*},[F]^{*}}=\operatorname{sgn}([F],\partial[\bar{F}])\omega(F,\bar{F}).

The matrix (Diω)(D_{i}^{\omega})^{*} of (δiω)(\delta_{i}^{\omega})^{*} satisfies

((Diω))[F],[F¯]=w(F¯)w(F)sgn([F],[F¯])ω(F,F¯)¯.((D_{i}^{\omega})^{*})_{[F]^{*},[\bar{F}]^{*}}=\frac{w(\bar{F})}{w(F)}\operatorname{sgn}([F],\partial[\bar{F}])\overline{\omega(F,\bar{F})}.

Hence the matrix of iup(K,ω)\mathcal{L}_{i}^{up}(K,\omega) is

(2.3) iup(K,ω)=Wi1(Diω)Wi+1Diω,\mathcal{L}_{i}^{up}(K,\omega)=W_{i}^{-1}(D_{i}^{\omega})^{\star}W_{i+1}D_{i}^{\omega},

and the matrix of idown(K,s)\mathcal{L}_{i}^{down}(K,s) is

idown(K,ω)=Di1ωWi11(Di1ω)Wi,\mathcal{L}_{i}^{down}(K,\omega)=D^{\omega}_{i-1}W_{i-1}^{-1}(D^{\omega}_{i-1})^{\star}W_{i},

where DD^{\star} denotes the conjugate transpose of a complex matrix DD to avoid the confusion of * used for the adjoint operator.

3. Covering complexes

Definition 3.1.

Let K,LK,L be two complexes. A simplical map from KK to LL is a map ϕ:V(K)V(L)\phi:V(K)\to V(L) if whenever {v0,,vk}K\{v_{0},\ldots,v_{k}\}\in K, then {f(v0),,f(vk)}L\{f(v_{0}),\ldots,f(v_{k})\}\in L. We often use the notation ϕ:KL\phi:K\to L.

Definition 3.2.

[28] Let K,LK,L be complexes. A pair (K,ϕ)(K,\phi) is called a covering complex of LL if the following conditions hold.

(1) KK is a connected complex;

(2) ϕ:KL\phi:K\to L is a simplicial map;

(3) for each GLG\in L, ϕ1(G)\phi^{-1}(G) is a union of pairwise disjoint simplices, namely, ϕ1(G)=iFi\phi^{-1}(G)=\cup_{i}F_{i} such that ϕ|Fi:FiG\phi|_{F_{i}}:F_{i}\to G is a bijection for each ii.

In Definition 3.2, the map ϕ\phi is called a covering map, KK is called a covering complex of LL, and LL is called the underlying complex of the covering. By definition, ϕ(F)Si(L)\phi(F)\in S_{i}(L) for every FSi(K)F\in S_{i}(K). As noted by Horak and Jost [20], the covering complexes are an inaccurate discretization of covering spaces (continuous setting), since it does not contain a discrete analogue of the homeomorphic neighborhood requirement of covering topological spaces. They provide the definition of a strong covering, which accurately discretizes the notion of covering from the continuous setting.

Definition 3.3.

[21] A covering map ϕ:KL\phi:K\to L is a strong covering if for every GSi(L)G\in S_{i}(L) which is face of G¯Si+1(L)\bar{G}\in S_{i+1}(L), then for each Fϕ1(G)F\in\phi^{-1}(G), there exists F¯Si+1(K)\bar{F}\in S_{i+1}(K) such that FF¯F\in\partial\bar{F} and ϕ(F¯)=G¯\phi(\bar{F})=\bar{G}.

Lemma 3.4.

Let ϕ:KL\phi:K\to L be a strong covering. Then for every GSi(L)G\in S_{i}(L) and every Fϕ1(G)F\in\phi^{-1}(G), there exists a bijection also denoted by ϕ\phi such that

ϕ:{F¯Si+1(K):FF¯}{G¯Si+1(L):GG¯},F¯ϕ(F¯).\phi:\{\bar{F}\in S_{i+1}(K):F\in\partial\bar{F}\}\to\{\bar{G}\in S_{i+1}(L):G\in\partial\bar{G}\},\bar{F}\mapsto\phi(\bar{F}).
Proof.

Surely ϕ\phi is a map as G=ϕ(F)ϕ(F¯)G=\phi(F)\subset\phi(\bar{F}) or Gϕ(F¯)G\in\partial\phi(\bar{F}). Also ϕ\phi is an injective map; otherwise, if ϕ(F¯)=ϕ(F¯):=G¯\phi(\bar{F})=\phi(\bar{F}^{\prime}):=\bar{G}, then ϕ1(G¯)\phi^{-1}(\bar{G}) would contain F¯\bar{F} and F¯\bar{F}^{\prime} with F¯F¯=F\bar{F}\cap\bar{F}^{\prime}=F, a contradiction to Definition 3.2 (3). Finally ϕ\phi is a surjective map by Definition 3.3. ∎

Lemma 3.5.

[21] Let ϕ:KL\phi:K\to L be a strong covering. There exists a constant k+k\in\mathbb{Z}^{+} such that for each GSi(L)G\in S_{i}(L) and each i=0,1,,dimKi=0,1,\ldots,\text{dim}K,

|{FSi(K):Fϕ1(G)}|=k.|\{F\in S_{i}(K):F\in\phi^{-1}(G)\}|=k.

The quantity kk in Lemma 3.5 is called the degree of the covering, and KK is called a kk-fold covering of LL in this case.

Now we return to the graph coverings. Let GG be a simple graph. The vertex set of GG is denoted by V(G)V(G) and edge set is denoted by E(G)E(G). The neighborhood of a vertex vV(G)v\in V(G) is denoted and defined by NG(v)={u:{u,v}E(G)}N_{G}(v)=\{u:\{u,v\}\in E(G)\}.

Definition 3.6.

Let G¯\bar{G} and GG be simple graphs, where GG is connected. A surjective map ϕ:V(G¯)V(G)\phi:V(\bar{G})\to V(G) is called a covering map if

(1) ϕ\phi is a homomorphism, namely ϕ(e)E(G)\phi(e)\in E(G) for each eE(G¯)e\in E(\bar{G}),

(2) for each vertex vV(G)v\in V(G) and each vertex v¯ϕ1(v)\bar{v}\in\phi^{-1}(v), ϕ|NG¯(v¯):NG¯(v¯)NG(v)\phi|_{N_{\bar{G}}(\bar{v})}:N_{\bar{G}}(\bar{v})\to N_{G}(v) is a bijection.

The above definition could be found in [1, 30]. The covering of a graph was is exactly the strong covering of the 11-skeleton of a complex if we require G¯\bar{G} is connected. Gross and Tucker [16] established a relationship between kk-fold coverings and derived graphs. We need some preparation. Let DD be digraph possibly with multiple arcs, and let 𝕊k\mathbb{S}_{k} be the symmetric group on the set [k][k]. Let ψ:E(D)𝕊k\psi:E(D)\to\mathbb{S}_{k} which assigns a permutation to each arc of DD. The pair (D,ψ)(D,\psi) is called a permutation voltage digraph. A derived digraph DψD^{\psi} associated with (D,ψ)(D,\psi) is a digraph with vertex set V(D)×[k]V(D)\times[k] such that ((u,i),(v,j))((u,i),(v,j)) is an arc of DψD^{\psi} if and only if (u,v)E(D)(u,v)\in E(D) and i=ψ(u,v)(j)i=\psi(u,v)(j). For a simple graph GG, let G\overleftrightarrow{G} denote the symmetric digraph obtained from GG by replacing each edge {u,v}\{u,v\} by two arcs with opposite directions, written as e=(u,v)e=(u,v) and e1:=(v,u)e^{-1}:=(v,u) respectively. Let ψ:E(G)𝕊k\psi:E(\overleftrightarrow{G})\to\mathbb{S}_{k} be a permutation assignment of G\overleftrightarrow{G} which holds that ψ(e)1=ψ(e1)\psi(e)^{-1}=\psi(e^{-1}) for each arc ee of G\overleftrightarrow{G}. The derived digraph Gψ\overleftrightarrow{G}^{\psi}, simply written as GψG^{\psi}, has symmetric arcs by definition, and is considered as a simple graph.

Lemma 3.7.

[16] Let GG be a connected graph and let G¯\bar{G} be a kk-cover of GG. Then there exists an assignment ψ\psi of permutations in 𝕊k\mathbb{S}_{k} on GG such that GψG^{\psi} is isomorphic to G¯\bar{G}.

Remark 3.8.

In Lemma 3.7, if η:V(Gψ)V(G¯)\eta:V(G^{\psi})\to V(\bar{G}) is the isomorphism, ϕ:V(G¯)V(G)\phi:V(\bar{G})\to V(G) is the covering map, and p:V(Gψ)V(G)p:V(G^{\psi})\to V(G) is the natural projection such that p(v,i)=vp(v,i)=v for all i[k]i\in[k], then from the proof of the Lemma 3.7 (see [16, Theorem 2]),

ϕη=p,\phi\eta=p,

or equivalently, for all vV(G)v\in V(G) and i[k]i\in[k],

ϕη(v,i)=v.\phi\eta(v,i)=v.

Let KK be a complex. The ii-incidence graph Bi(K)B_{i}(K) is a bipartite graph with vertex set Si(K)Si+1(K)S_{i}(K)\cup S_{i+1}(K) such that {F,F¯}\{F,\bar{F}\} is an edge if and only if FF¯F\in\partial\bar{F}.

Lemma 3.9.

Let ϕ:KL\phi:K\to L be a kk-fold covering. Then ϕ\phi induces a kk-fold covering from Bi(K)B_{i}(K) to Bi(L)B_{i}(L), and there exists a ψ:E(Bi(L))𝕊k\psi:E(B_{i}(L))\to\mathbb{S}_{k} such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K) by a map which sends Si(L)×[k]S_{i}(L)\times[k] to Si(K)S_{i}(K), Si+1(L)×[k]S_{i+1}(L)\times[k] to Si+1(K)S_{i+1}(K)

Proof.

By the definition of strong covering, ϕ\phi maps Si(K)S_{i}(K) to Si(L)S_{i}(L), and Si+1(K)S_{i+1}(K) to Si+1(L)S_{i+1}(L). So ϕ\phi induces a surjective kk to 11 map (also denoted by ϕ\phi) from the vertex set of Bi(K)B_{i}(K) to that of Bi(L)B_{i}(L). If FF¯F\in\partial\bar{F}, then ϕ(F)ϕ(F¯)\phi(F)\in\partial\phi(\bar{F}). So ϕ\phi maps edges of Bi(K)B_{i}(K) to those of Bi(L)B_{i}(L). By Lemma 3.4, for each GSi(L)G\in S_{i}(L) and Fϕ1(G)F\in\phi^{-1}(G), ϕ|NBi(K)(F):NBi(K)(F)NBi(L)(G)\phi|_{N_{B_{i}(K)}(F)}:N_{B_{i}(K)}(F)\to N_{B_{i}(L)}(G) is bijective. For each G¯Si+1(L)\bar{G}\in S_{i+1}(L) and F¯ϕ1(G¯)\bar{F}\in\phi^{-1}(\bar{G}), noting that NBi(K)(F¯)=F¯N_{B_{i}(K)}(\bar{F})=\partial\bar{F} and NBi(L)(G¯)=G¯N_{B_{i}(L)}(\bar{G})=\partial\bar{G}, ϕ|NBi(K)(F¯):NBi(K)(F¯)NBi(L)(G¯)\phi|_{N_{B_{i}(K)}(\bar{F})}:N_{B_{i}(K)}(\bar{F})\to N_{B_{i}(L)}(\bar{G}) is also bijective, as ϕ|F¯:F¯G¯\phi|_{\bar{F}}:\bar{F}\to\bar{G} is bijective. So ϕ\phi induces a kk-fold covering from Bi(K)B_{i}(K) to Bi(L)B_{i}(L).

By Lemma 3.7, there exists a ψ:E(Bi(L))𝕊k\psi:E(B_{i}(L))\to\mathbb{S}_{k} such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K). Let η:Bi(L)ψBi(K)\eta:B_{i}(L)^{\psi}\to B_{i}(K) be the isomorphism. For any (F,i)Si(L)×[k](F,i)\in S_{i}(L)\times[k], η(F,i)Si(K)\eta(F,i)\in S_{i}(K); otherwise, if η(F,i)Si+1(K)\eta(F,i)\in S_{i+1}(K), and then ϕη(F,i)Si+1(L)\phi\eta(F,i)\in S_{i+1}(L), a contradiction to Remark 3.8 as ϕη(F,i)=p(F,i)=FSi(L)\phi\eta(F,i)=p(F,i)=F\in S_{i}(L). So η\eta sends Si(L)×[k]S_{i}(L)\times[k] to Si(K)S_{i}(K), and Si+1(L)×[k]S_{i+1}(L)\times[k] to Si+1(K)S_{i+1}(K) by a similar discussion. ∎

Example 3.10.

Let K,LK,L be the complexes in Fig. 3.1, where each triangle represents a 22-simplex. It is easy to see KK is a 22-fold covering of LL.

Refer to caption
Figure 3.1. A complex LL and its 22-fold covering KK

The 11-incidence graph B1(L)B_{1}(L) and B1(K)B_{1}(K) are listed in Fig. 3.2 and Fig. 3.3 respectively, where an edge {a,b}\{a,b\} is simply written as abab, and an face {a,b,c}\{a,b,c\} is written as abcabc.

Refer to caption
Figure 3.2. The 11-incidence graph B1(L)B_{1}(L)
Refer to caption
Figure 3.3. The 11-incidence graph B1(K)B_{1}(K)

Define a permutation assignment ψ:E(B1(L))𝕊2\psi:E(B_{1}(L))\to\mathbb{S}_{2} such that ψ(12,612)=(12)\psi(12,612)=(12) (see the blue edge in Fig. 3.2) and ϕ(F,F¯)=1\phi(F,\bar{F})=1 for all other incidences (F,F¯)(F,\bar{F}) with FF¯F\in\partial\bar{F}. Then the derived graph B1(L)ψB_{1}(L)^{\psi} is listed in Fig. 3.4, where a vertex abcabc or abab drawn with hollow circle represents the vertex (abc,1)(abc,1) or (ab,1)(ab,1), and a vertex defdef or dede drawn with solid circle represents the vertex (def,2)(def,2) or (de,2)(de,2). It is easily seen there exists an isomorphism η:B1(L)ψB1(K)\eta:B_{1}(L)^{\psi}\to B_{1}(K) which sends S1(L)×{1,2}S_{1}(L)\times\{1,2\} to S1(K)S_{1}(K) and S2(L)×{1,2}S_{2}(L)\times\{1,2\} to S2(K)S_{2}(K).

Refer to caption
Figure 3.4. The derived graph B1(L)ψB_{1}(L)^{\psi}

4. The spectrum of covering complex

Let ϕ:KL\phi:K\to L be a kk-fold covering. Let F,F¯KF,\bar{F}\in K with FF¯F\in\partial\bar{F} and G=ϕ(F),G¯=ϕ(F¯)G=\phi(F),\bar{G}=\phi(\bar{F}). By Formula (3.5) in [21],

(4.1) sgn([G],[G¯])=sgn([F],[F¯])sgn([F],[G])sgn([F¯],[G¯]),\operatorname{sgn}([G],\partial[\bar{G}])=\operatorname{sgn}([F],\partial[\bar{F}])\operatorname{sgn}([F],[G])\operatorname{sgn}([\bar{F}],[\bar{G}]),

where, if [F]=[v0,,vi][F]=[v_{0},\ldots,v_{i}], then sgn([F],[G])=1\operatorname{sgn}([F],[G])=1 if [ϕ(v0),,ϕ(vi)][\phi(v_{0}),\ldots,\phi(v_{i})] is positively oriented, and sgn([F],[G])=1\operatorname{sgn}([F],[G])=-1 otherwise.

By Lemma 3.9, Bi(K)B_{i}(K) is a kk-fold covering of Bi(L)B_{i}(L), and there exists a permutation assignment ψ\psi on Bi(L)B_{i}(L) such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K) via a map η\eta by sending Si(L)×[k]S_{i}(L)\times[k] to Si(K)S_{i}(K) and Si+1(L)×[k]S_{i+1}(L)\times[k] to Si+1(K)S_{i+1}(K).

Recall that iup(K)=Wi(K)1Di(K)Wi+1(K)Di(K)\mathcal{L}_{i}^{up}(K)=W_{i}(K)^{-1}D_{i}(K)^{\top}W_{i+1}(K)D_{i}(K), where

Di(K)[F¯],[F]=sgn([F],[F¯]),Wi(K)[F],[F]=w(F),Wi+1(K)[F¯],[F¯]=w(F¯),D_{i}(K)_{[\bar{F}]^{*},[F]^{*}}=\operatorname{sgn}([F],\partial[\bar{F}]),W_{i}(K)_{[F]^{*},[F]^{*}}=w(F),W_{i+1}(K)_{[\bar{F}]^{*},[\bar{F}]^{*}}=w(\bar{F}),

for FSi(K)F\in S_{i}(K) and F¯Si+1(K)\bar{F}\in S_{i+1}(K). By the isomorphism η\eta, let η1(F¯)=(G¯,i)\eta^{-1}(\bar{F})=(\bar{G},i) and η1(F)=(G,j)\eta^{-1}(F)=(G,j). We now use (G,j)(G,j) and (G¯,i)(\bar{G},i) to label the rows or columns of Di(K),Wi(K)D_{i}(K),W_{i}(K) and Wi+1(K)W_{i+1}(K) corresponding to [F][F]^{*} and [F¯][\bar{F}]^{*} respectively, that is,

(4.2) Di(K)(G¯,i),(G,j)=sgn([η(G,j)],[η(G¯,i)]),Wi(K)(G,j),(G,j)=w(η(G,j)),Wi+1(K)(G¯,i),(G¯,i)=w(η(G¯,i)).\begin{split}&D_{i}(K)_{(\bar{G},i),(G,j)}=\operatorname{sgn}([\eta(G,j)],\partial[\eta(\bar{G},i)]),\\ &W_{i}(K)_{(G,j),(G,j)}=w(\eta(G,j)),W_{i+1}(K)_{(\bar{G},i),(\bar{G},i)}=w(\eta(\bar{G},i)).\end{split}

Note that η(G,j)η(G¯,i)\eta(G,j)\in\partial\eta(\bar{G},i), or equivalently {η(G,j),η(G¯,i)}E(Bi(K))\{\eta(G,j),\eta(\bar{G},i)\}\in E(B_{i}(K)) if and only if {(G,j),(G¯,i)}E(Bi(L)ψ)\{(G,j),(\bar{G},i)\}\in E(B_{i}(L)^{\psi}), or equivalently GG¯G\in\partial\bar{G} and j=ψ(G,G¯)ij=\psi(G,\bar{G})i by the definition of derived graph.

As ϕη=p\phi\eta=p by Remark 3.8,

ϕη(G¯,i)=p(G¯,i)=G¯,ϕη(G,j)=p(G,j)=G.\phi\eta(\bar{G},i)=p(\bar{G},i)=\bar{G},~{}\phi\eta({G},j)=p({G},j)=G.

So, by Eq. (4.1), we have

(4.3) sgn([η(G,j)],[η(G¯,i)])=sgn([ϕη(G,j)],[ϕη(G¯,i)])sgn([η(G,j)],[ϕη(G,j)])sgn([η(G¯,i)],[ϕη(G¯,i)])=sgn([G],[G¯])sgn([η(G,j)],[G])sgn([η(G¯,i)],[G¯]).\begin{split}\operatorname{sgn}([\eta(G,j)],\partial[\eta(\bar{G},i)])&=\operatorname{sgn}([\phi\eta(G,j)],\partial[\phi\eta(\bar{G},i)])\operatorname{sgn}([\eta(G,j)],[\phi\eta(G,j)])\operatorname{sgn}([\eta(\bar{G},i)],[\phi\eta(\bar{G},i)])\\ &=\operatorname{sgn}([G],\partial[\bar{G}])\operatorname{sgn}([\eta(G,j)],[G])\operatorname{sgn}([\eta(\bar{G},i)],[\bar{G}]).\end{split}

Let Λi+1(L)η\Lambda_{i+1}(L)^{\eta} be the diagonal matrix with rows indexed by Si+1(L)×[k]S_{i+1}(L)\times[k] such that

(4.4) Λi+1(L)(G¯,i),(G¯,i)η=sgn([η(G¯,i)],[G¯]),\Lambda_{i+1}(L)^{\eta}_{(\bar{G},i),(\bar{G},i)}=\operatorname{sgn}([\eta(\bar{G},i)],[\bar{G}]),

and Λi(L)η\Lambda_{i}(L)^{\eta} the diagonal matrix with rows indexed by Si(L)×[k]S_{i}(L)\times[k] such that

(4.5) Λi(L)(G,i),(G,i)η=sgn([η(G,i)],[G]).\Lambda_{i}(L)^{\eta}_{(G,i),(G,i)}=\operatorname{sgn}([\eta(G,i)],[G]).

Let Di(L)ψD_{i}(L)^{\psi} be the matrix with rows indexed by Si+1(L)×[k]S_{i+1}(L)\times[k] and columns indexed by Si(L)×[k]S_{i}(L)\times[k] such that

(4.6) Di(L)(G¯,i),(G,j)ψ={sgn([G],[G¯]),if GG¯,i=ψ(G¯,G)j,0,else.D_{i}(L)^{\psi}_{(\bar{G},i),(G,j)}=\left\{\begin{array}[]{ll}\operatorname{sgn}([G],\partial[\bar{G}]),&\mbox{if~{}}G\in\partial\bar{G},i=\psi(\bar{G},G)j,\\ 0,&\mbox{else}.\end{array}\right.

So by (4.2) and (4.3), we have

(4.7) Di(K)=Λi+1(L)ηDi(L)ψΛi(L)η.D_{i}(K)=\Lambda_{i+1}(L)^{\eta}D_{i}(L)^{\psi}\Lambda_{i}(L)^{\eta}.

We summarize the above the discussions into the following result.

Lemma 4.1.

Let ϕ:KL\phi:K\to L be a kk-fold covering map, and let ψ:E(Bi(L)𝕊k\psi:E(B_{i}(L)\to\mathbb{S}_{k} be the permutation assignment such that η:Bi(L)ψBi(K)\eta:B_{i}(L)^{\psi}\to B_{i}(K) is an isomorphism. Then

Di(K)=Λi+1(L)ηDi(L)ψΛi(L)η,D_{i}(K)=\Lambda_{i+1}(L)^{\eta}D_{i}(L)^{\psi}\Lambda_{i}(L)^{\eta},

where Λi+1(L)η\Lambda_{i+1}(L)^{\eta}, Λi(L)η\Lambda_{i}(L)^{\eta} and Di(L)ψD_{i}(L)^{\psi} are defined in (4.4), (4.5) and (4.6), respectively.

Next we will give a decomposition of Di(L)ψD_{i}(L)^{\psi}, where ψ:E(Bi(L))𝕊k\psi:E(B_{i}(L))\to\mathbb{S}_{k}. Let

(4.8) Ψi=ψ(G,G¯):GSi(L),G¯Si+1(L),GG¯,\Psi_{i}=\langle\psi(G,\bar{G}):G\in S_{i}(L),\bar{G}\in S_{i+1}(L),G\in\partial\bar{G}\rangle,

the subgroup of 𝕊k\mathbb{S}_{k} generalized by the permutations assignment by ψ\psi. For each gΨig\in\Psi_{i}, define Dig(L)=(DG¯,Gg)D^{g}_{i}(L)=(D^{g}_{\bar{G},G}) such that

(4.9) DG¯,Gg={sgn([G],[G¯]),if GG¯,ψ(G,G¯)=g,0,else.D^{g}_{\bar{G},G}=\left\{\begin{array}[]{ll}\operatorname{sgn}([G],\partial[\bar{G}]),&\mbox{if~{}}G\in\partial\bar{G},\psi(G,\bar{G})=g,\\ 0,&\mbox{else}.\end{array}\right.

Then

(4.10) Di(L)=gΨDig(L).D_{i}(L)=\sum_{g\in\Psi}D_{i}^{g}(L).

The permutation representation ϱ\varrho of Ψ\Psi maps each gΨg\in\Psi to a permutation matrix, namely

ϱ:ΨGLk(),gPg=(pijg),\varrho:\Psi\to GL_{k}(\mathbb{C}),g\mapsto P^{g}=(p_{ij}^{g}),

where pijg=1p_{ij}^{g}=1 if i=g(j)i=g(j) and pijg=0p_{ij}^{g}=0 else. So

(4.11) Di(L)ψ=gΨiDig(L)Pg.D_{i}(L)^{\psi}=\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\otimes P^{g}.

By the representation of symmetric group, let

ϱ=ϱ1ϱ2ρt\varrho=\varrho_{1}\oplus\varrho_{2}\oplus\cdots\oplus\rho_{t}

be the decomposition of ϱ\varrho into the sum of irreducible sub-representation, where ϱ1=1\varrho_{1}=1 is the identity representation of degree one. So, there exists an invertible matrix TT such that for all gΨg\in\Psi,

(4.12) T1PgT=I1ϱ2(g)ρt(g),T^{-1}P^{g}T=I_{1}\oplus\varrho_{2}(g)\oplus\cdots\oplus\rho_{t}(g),

where I1I_{1} is the identity matrix of order 11 corresponding to ϱ1\varrho_{1}, and ϱ2(g),,ϱt(g)\varrho_{2}(g),\ldots,\varrho_{t}(g) are the matrices corresponding to ϱ2,,ϱt\varrho_{2},\ldots,\varrho_{t} of ϱ\varrho respectively.

Theorem 4.2.

Let ϕ:KL\phi:K\to L be a kk-fold covering map, and let ψ:E(Bi(L)𝕊k\psi:E(B_{i}(L)\to\mathbb{S}_{k} be the permutation assignment such that η:Bi(L)ψBi(K)\eta:B_{i}(L)^{\psi}\to B_{i}(K) is an isomorphism. Let Ψi\Psi_{i} be the group defined in (4.8) whose permutation representation ϱ\varrho has a decomposition (4.12) for some invertible matrix TT. Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FKF\in K. Then

(IT)1Λi(L)ηiup(K)(Λi(L)η)1(IT)=iup(L)j=2t(gΨi(Wi(L)1(Dig(L)))ϱj(g1))(gΨi(Wi+1(L)Dig(L))ϱj(g)),(I\otimes T)^{-1}\Lambda_{i}(L)^{\eta}\mathcal{L}_{i}^{up}(K)(\Lambda_{i}(L)^{\eta})^{-1}(I\otimes T)\\ =\mathcal{L}_{i}^{up}(L)\oplus\oplus_{j=2}^{t}\left(\sum_{g\in\Psi_{i}}(W_{i}(L)^{-1}(D_{i}^{g}(L))^{\top})\otimes\varrho_{j}(g^{-1})\right)\left(\sum_{g\in\Psi_{i}}(W_{i+1}(L)D_{i}^{g}(L))\otimes\varrho_{j}(g)\right),

where Λi(L)η\Lambda_{i}(L)^{\eta} is defined in (4.5).

Proof.

By (4.2) and Lemma 4.1,

iu(K)\displaystyle\mathcal{L}^{u}_{i}(K) =Wi(K)1Di(K)Wi+1(K)Di(K)\displaystyle=W_{i}(K)^{-1}D_{i}(K)^{\top}W_{i+1}(K)D_{i}(K)
=Wi(K)1(Λi(L)η)(Di(L)ψ)(Λi+1(L)η)Wi+1(K)Λi+1(L)ηDi(L)ψΛi(L)η.\displaystyle=W_{i}(K)^{-1}(\Lambda_{i}(L)^{\eta})^{\top}(D_{i}(L)^{\psi})^{\top}(\Lambda_{i+1}(L)^{\eta})^{\top}W_{i+1}(K)\Lambda_{i+1}(L)^{\eta}D_{i}(L)^{\psi}\Lambda_{i}(L)^{\eta}.

So, Λi(L)ηiup(K)(Λi(L)η)1\Lambda_{i}(L)^{\eta}\mathcal{L}^{up}_{i}(K)(\Lambda_{i}(L)^{\eta})^{-1} has the following form:

~iup(K):=Λi(L)ηWi(K)1(Λi(L)ψ)(Di(L)ψ)(Λi+1(L)η)Wi+1(K)Λi+1(L)ηDi(L)η.\tilde{\mathcal{L}}^{up}_{i}(K):=\Lambda_{i}(L)^{\eta}W_{i}(K)^{-1}(\Lambda_{i}(L)^{\psi})^{\top}(D_{i}(L)^{\psi})^{\top}(\Lambda_{i+1}(L)^{\eta})^{\top}W_{i+1}(K)\Lambda_{i+1}(L)^{\eta}D_{i}(L)^{\eta}.

As Λi(L)η\Lambda_{i}(L)^{\eta} and Λi+1(L)η\Lambda_{i+1}(L)^{\eta} are both signature matrices,

~iup(K)=Wi(K)1(Di(L)ψ)Wi+1(K)Di(L)ψ.\tilde{\mathcal{L}}_{i}^{up}(K)=W_{i}(K)^{-1}(D_{i}(L)^{\psi})^{\top}W_{i+1}(K)D_{i}(L)^{\psi}.

By (4.2), the assumption on weight and Remark 3.8,

Wi(K)(G,i),(G,i)=w(η(G,i))=w(ϕη(G,i))=w(G),W_{i}(K)_{(G,i),(G,i)}=w(\eta(G,i))=w(\phi\eta(G,i))=w(G),

and similarly Wi+1(K)(G¯,i),(G¯,i)=w(G¯)W_{i+1}(K)_{(\bar{G},i),(\bar{G},i)}=w(\bar{G}). So

(4.13) Wi(K)=Wi(L)Ik,Wi+1(K)=Wi+1(L)Ik.W_{i}(K)=W_{i}(L)\otimes I_{k},~{}W_{i+1}(K)=W_{i+1}(L)\otimes I_{k}.

So, by Eq. (4.13) and Eq. (4.11),

~iup(K)\displaystyle\tilde{\mathcal{L}}_{i}^{up}(K) =(Wi(L)1Ik)(gΨiDig(L)Pg)(Wi+1(L)Ik)(gΨiDig(L)Pg)\displaystyle=(W_{i}(L)^{-1}\otimes I_{k})\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)^{\top}\otimes P_{g}^{\top}\right)(W_{i+1}(L)\otimes I_{k})\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\otimes P_{g}\right)
=g,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))((Pg)Pg).\displaystyle=\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)\otimes\left((P^{g})^{\top}P^{g^{\prime}}\right).

By (4.12), noting that (Pg)=Pg1(P^{g})^{\top}=P^{g^{-1}}, we have

(IT)1~up(K)(IT)\displaystyle(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T) =g,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))(T1(Pg)PgT)\displaystyle=\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)\otimes\left(T^{-1}(P^{g})^{\top}P^{g^{\prime}}T\right)
=g,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))(I1j=2tϱi(g1)ϱi(g))\displaystyle=\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)\otimes\left(I_{1}\oplus\oplus_{j=2}^{t}\varrho_{i}(g^{-1})\varrho_{i}(g^{\prime})\right)
=g,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))\displaystyle=\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)
g,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))(j=2tϱj(g1)ϱj(g))\displaystyle~{}~{}~{}\oplus\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)\otimes\left(\oplus_{j=2}^{t}\varrho_{j}(g^{-1})\varrho_{j}(g^{\prime})\right)
=Wi(L)1(gΨiDig(L))Wi+1(L)(gΨDig(L))\displaystyle=W_{i}(L)^{-1}\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\right)^{\top}W_{i+1}(L)\left(\sum_{g\in\Psi}D_{i}^{g}(L)\right)
j=2tg,gΨi(Wi(L)1Dig(L)Wi+1(L)Dig(L))ϱj(g1)ϱj(g).\displaystyle~{}~{}~{}\oplus\oplus_{j=2}^{t}\sum_{g,g^{\prime}\in\Psi_{i}}\left(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}W_{i+1}(L)D_{i}^{g^{\prime}}(L)\right)\otimes\varrho_{j}(g^{-1})\varrho_{j}(g^{\prime}).

By Eq. (4.10), we have

(4.14) (IT)1~up(K)(IT)=Wi(L)1Di(L)Wi+1(L)Di(L)j=2t(gΨi(Wi(L)1Dig(L))ϱj(g1))(gΨi(Wi+1(L)Dig(L))ϱj(g))=iup()j=2t(gΨi(Wi(L)1Dig(L))ϱj(g1))(gΨi(Wi+1(L)Dig(L))ϱj(g)).\begin{split}(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T)&=W_{i}(L)^{-1}D_{i}(L)^{\top}W_{i+1}(L)D_{i}(L)\\ &~{}~{}~{}\oplus\oplus_{j=2}^{t}\left(\sum_{g\in\Psi_{i}}(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top})\otimes\varrho_{j}(g^{-1})\right)\!\!\!\left(\sum_{g\in\Psi_{i}}(W_{i+1}(L)D_{i}^{g}(L))\otimes\varrho_{j}(g)\right)\\ &=\mathcal{L}_{i}^{up}(\mathcal{L})\oplus\oplus_{j=2}^{t}\!\left(\sum_{g\in\Psi_{i}}(W_{i}(L)^{-1}D_{i}^{g}(L)^{\top})\otimes\varrho_{j}(g^{-1})\right)\!\!\!\left(\sum_{g\in\Psi_{i}}(W_{i+1}(L)D_{i}^{g}(L))\otimes\varrho_{j}(g)\!\right).\end{split}

The result follows. ∎

Corollary 4.3.

[21] Let ϕ:KL\phi:K\to L be a kk-fold covering map. Then

 SpecLiup(L) SpecLiup(K), SpecΔiup(L) SpecΔiup(K).\text{~{}Spec}L_{i}^{up}(L)\subset\text{~{}Spec}L_{i}^{up}(K),~{}\text{~{}Spec}\Delta_{i}^{up}(L)\subset\text{~{}Spec}\Delta_{i}^{up}(K).
Proof.

For the combinatorial Laplace operators Liup(L)L_{i}^{up}(L) and Liup(K)L_{i}^{up}(K), w(F)=wL(ϕ(F))=1w(F)=w_{L}(\phi(F))=1 for each FKF\in K. For the normalized Laplace operators Δiup(L)\Delta_{i}^{up}(L) and Δiup(K)\Delta_{i}^{up}(K), by Lemma 3.4, for each FKF\in K, if FF is a facet, so is ϕ(F)\phi(F), and w(F)=w(ϕ(F))=1w(F)=w(\phi(F))=1; otherwise, we still have w(F)=w(ϕ(F))w(F)=w(\phi(F)) by induction. So the result follows by Theorem 4.2. ∎

Theorem 4.4.

Let ϕ:KL\phi:K\to L be a 22-fold covering map. Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FSi(K)Si+1(K)F\in S_{i}(K)\cup S_{i+1}(K). Then

 Speciup(K))= Speciup(L) Speciup(L,s),\text{~{}Spec}\mathcal{L}_{i}^{up}(K))=\text{~{}Spec}\mathcal{L}_{i}^{up}(L)\cup\text{~{}Spec}\mathcal{L}_{i}^{up}(L,s),

where s(F,F¯)=sgnψ(F,F¯)s(F,\bar{F})=\operatorname{sgn}\psi(F,\bar{F}) for (F,F¯)Si(L)×Si+1(L)(F,\bar{F})\in S_{i}(L)\times S_{i+1}(L) such that FF¯F\in\partial\bar{F}, and ψ:E(Bi(L))𝕊2\psi:E(B_{i}(L))\to\mathbb{S}_{2} such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K).

Proof.

By Lemma 3.9, there exists a permutation assignment ψ:E(Bi(L))𝕊2\psi:E(B_{i}(L))\to\mathbb{S}_{2} such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K). Let Ψi\Psi_{i} be defined as in (4.8). As KK is connected, so is Bi(K)B_{i}(K) or Bi(L)ψB_{i}(L)^{\psi}. If Ψi=1\Psi_{i}=1, by definition Bi(L)ψB_{i}(L)^{\psi} is a union of two disjoint copies of Bi(L)B_{i}(L), a contradiction. So, Ψ=𝕊2\Psi=\mathbb{S}_{2}.

It is known 𝕊2\mathbb{S}_{2} has two irreducible representations, namely there exists an invertible matrix TT such that for each g𝕊2g\in\mathbb{S}_{2},

T1PgT=I1sgng,T^{-1}P^{g}T=I_{1}\oplus\operatorname{sgn}g,

where sgng\operatorname{sgn}g is called the sign representation. So, by Eq. (4.14), noting that sgng1=sgng\operatorname{sgn}g^{-1}=\operatorname{sgn}g,

(IT)1~up(K)(IT)=iu(L)Wi(L)1(gΨiDig(L)sgng)Wi+1(L)(gΨiDig(L)sgng).(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T)=\mathcal{L}_{i}^{u}(L)\oplus W_{i}(L)^{-1}\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\operatorname{sgn}g\right)^{\top}W_{i+1}(L)\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\operatorname{sgn}g\right).

If we define a incidence-signed complex (L,s)(L,s) such that s(F,F¯)=sgnψ(F,F¯)s(F,\bar{F})=\operatorname{sgn}\psi(F,\bar{F}) for FF¯F\in\partial\bar{F}, then the matrix of δis\delta_{i}^{s} on (L,s)(L,s) is

Dis(L)=gΨiDig(L)sgng.D_{i}^{s}(L)=\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\operatorname{sgn}g.

So, by Eq. (2.2),

(IT)1~up(K)(IT)=iup(L)Wi(L)1(Dis(L))Wi+1(L)Dis(L)=iup(L)iup(L,s).(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T)=\mathcal{L}_{i}^{up}(L)\oplus W_{i}(L)^{-1}(D_{i}^{s}(L))^{\top}W_{i+1}(L)D_{i}^{s}(L)=\mathcal{L}_{i}^{up}(L)\oplus\mathcal{L}_{i}^{up}(L,s).

The result follows. ∎

Example 4.5.

Let K,LK,L be the complexes in Fig. 3.1. The spectrum of L1up(L)L_{1}^{up}(L) is

 SpecL1up(L)={5,4(2),2(2),1,0(6)},\text{~{}Spec}L_{1}^{up}(L)=\{5,4^{(2)},2^{(2)},1,0^{(6)}\},

and the spectrum of L1up(K)L_{1}^{up}(K) is

 SpecL1up(K)={5,4(2),3(2),2(2),1,(3+3)(2),(33)(2),0(12)},\text{~{}Spec}L_{1}^{up}(K)=\{5,4^{(2)},3^{(2)},2^{(2)},1,(3+\sqrt{3})^{(2)},(3-\sqrt{3})^{(2)},0^{(12)}\},

where λ(m)\lambda^{(m)} means λ\lambda as an eigenvalue with multiplicity mm.

By Example 3.10, letting ψ:E(B1(L))𝕊2\psi:E(B_{1}(L))\to\mathbb{S}_{2} such that ψ(12,612)=(12)\psi(12,612)=(12) and ϕ(F,F¯)=1\phi(F,\bar{F})=1 for all other incidences (F,F¯)(F,\bar{F}) with FF¯F\in\partial\bar{F}, then B1(L)ψB_{1}(L)^{\psi} is isomorphic to B1(K)B_{1}(K). Define a incidence-signed complex (L,s)(L,s) such that s(F,F¯)=sgnψ(F,F¯)s(F,\bar{F})=\operatorname{sgn}\psi(F,\bar{F}) for each incidence (F,F¯)(F,\bar{F}) with FF¯F\in\partial\bar{F}. So we have s(12,612)=1s(12,612)=-1 and s(F,F¯)=1s(F,\bar{F})=1 for other incidences (F,F¯)(F,\bar{F}). The matrix D1sD_{1}^{s} of δ1s\delta_{1}^{s} on (L,s)(L,s) is obtained from the matrix D1D_{1} of δ1\delta_{1} on LL only by replacing the ([612],[12])([612],[12])-entry 11 by 1-1. The spectrum of L1up(L,s)L_{1}^{up}(L,s) is

 SpecL1up(L,s)={3(2),(3+3)(2),(33)(2),0(6)}.\text{~{}Spec}L_{1}^{up}(L,s)=\{3^{(2)},(3+\sqrt{3})^{(2)},(3-\sqrt{3})^{(2)},0^{(6)}\}.

So,

 SpecL1up(K)= SpecL1up(L) SpecL1up(L,s).\text{~{}Spec}L_{1}^{up}(K)=\text{~{}Spec}L_{1}^{up}(L)\cup\text{~{}Spec}L_{1}^{up}(L,s).

Finally, we consider the case when Ψi\Psi_{i} defined in (4.8) is an Abelian group.

Theorem 4.6.

Let ϕ:KL\phi:K\to L be a kk-fold covering map, and let ψ:E(Bi(L)𝕊k\psi:E(B_{i}(L)\to\mathbb{S}_{k} be the permutation assignment such that Bi(L)ψB_{i}(L)^{\psi} is isomorphic to Bi(K)B_{i}(K). Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FSi(K)Si+1(K)F\in S_{i}(K)\cup S_{i+1}(K). Let Ψi\Psi_{i} be the group defined in (4.8) which is an Abelian group. Then Ψi\Psi_{i} has exactly kk elements with the decomposition of irreducible sub-representations of degree one:

(4.15) ϱ=I1ϱ2ϱk,\varrho=I_{1}\oplus\varrho_{2}\oplus\cdots\oplus\varrho_{k},

and

 Speciup(K))= Speciup(L)j=2k Speciup(L,ϱj),\text{~{}Spec}\mathcal{L}_{i}^{up}(K))=\text{~{}Spec}\mathcal{L}_{i}^{up}(L)\cup\cup_{j=2}^{k}\text{~{}Spec}\mathcal{L}_{i}^{up}(L,\varrho_{j}),

where ϱj(F,F¯)=ϱj(ψ(F,F¯)\varrho_{j}(F,\bar{F})=\varrho_{j}(\psi(F,\bar{F}) for (F,F¯)Si(L)×Si+1(L)(F,\bar{F})\in S_{i}(L)\times S_{i+1}(L) such that FF¯F\in\partial\bar{F}.

Proof.

As KK is connected, so is Bi(K)B_{i}(K) or Bi(L)ψB_{i}(L)^{\psi}. By Theorem 3.4 of [29], Ψi\Psi_{i} is transitive on [k][k] by the permutation action. If there exists gΨig\in\Psi_{i} and j[k]j\in[k] such that g(j)=jg(j)=j, then for any [k]\ell\in[k], as Ψi\Psi_{i} is transitive, =h(j)\ell=h(j) for some hΨih\in\Psi_{i}. As Ψi\Psi_{i} is Abelian,

g()=gh(j)=hg(j)=h(j)=,g(\ell)=gh(j)=hg(j)=h(j)=\ell,

which implies that g=1g=1. So, Ψi\Psi_{i} faithfully acts on [k][k]. By the orbit-stabilizer lemma, Ψi\Psi_{i} has the order of kk. As the irreducible representations of an Abelian group all have degree one, we get the decomposition (4.15) immediately. Also, there exists an invertible matrix TT such that

T1PgT=I1ϱ2(g)ϱt(g).T^{-1}P_{g}T=I_{1}\oplus\varrho_{2}(g)\oplus\cdots\oplus\varrho_{t}(g).

By (4.14), noting that ϱj\varrho_{j} are all of degree one, we have

(IT)1~up(K)(IT)\displaystyle(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T) =iup()j=2k(gΨiWi(L)1Dig(L)ϱj(g1))(gΨiWi+1(L)Dig(L)ϱj(g))\displaystyle=\mathcal{L}_{i}^{up}(\mathcal{L})\oplus\oplus_{j=2}^{k}\left(\sum_{g\in\Psi_{i}}W_{i}(L)^{-1}D_{i}^{g}(L)^{\top}\varrho_{j}(g^{-1})\right)\left(\sum_{g\in\Psi_{i}}W_{i+1}(L)D_{i}^{g}(L)\varrho_{j}(g)\right)
=iup()j=2tWi(L)1(gΨiDig(L)ϱj(g)¯)Wi+1(L)(gΨiDig(L)ϱj(g))\displaystyle=\mathcal{L}_{i}^{up}(\mathcal{L})\oplus\oplus_{j=2}^{t}W_{i}(L)^{-1}\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)^{\top}\overline{\varrho_{j}(g)}\right)W_{i+1}(L)\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\varrho_{j}(g)\right)
=iup()j=2tWi(L)1(gΨiDig(L)ϱj(g))Wi+1(L)(gΨiDig(L)ϱj(g)).\displaystyle=\mathcal{L}_{i}^{up}(\mathcal{L})\oplus\oplus_{j=2}^{t}W_{i}(L)^{-1}\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\varrho_{j}(g)\right)^{\star}W_{i+1}(L)\left(\sum_{g\in\Psi_{i}}D_{i}^{g}(L)\varrho_{j}(g)\right).

Let Dϱj(L)=gΨDig(L)ϱj(g)D^{\varrho_{j}}(L)=\sum_{g\in\Psi}D_{i}^{g}(L)\varrho_{j}(g) for j=2,,kj=2,\ldots,k. Then Dϱj(L)D^{\varrho_{j}}(L) is exactly the matrix DiϱjD_{i}^{\varrho_{j}} of δiϱj\delta_{i}^{\varrho_{j}} on the incidence-weighted complex (L,ϱj)(L,\varrho_{j}). By Eq. (2.3), we have

(IT)1~up(K)(IT)=iu()j=2tiup(L,ϱj).(I\otimes T)^{-1}\tilde{\mathcal{L}}^{up}(K)(I\otimes T)=\mathcal{L}_{i}^{u}(\mathcal{L})\oplus\oplus_{j=2}^{t}\mathcal{L}_{i}^{up}(L,\varrho_{j}).

The result now follows. ∎

A special case in Theorem 4.6 is Ψ=g\Psi=\langle g\rangle, where g=(a1a2ak)g=(a_{1}a_{2}\ldots a_{k}) is a cycle in 𝕊k\mathbb{S}_{k}. In this case, the irreducible representations of Ψ\Psi are easily obtained, namely, ϱj(g)=ei2πjk\varrho_{j}(g)=e^{\textbf{i}\frac{2\pi j}{k}} for j=0,1,,k1j=0,1,\ldots,k-1, where i=1\textbf{i}=\sqrt{-1}.

By a similar discussion, we get the result on the ii-down Laplace operator of the covering complex. Let ϕ:KL\phi:K\to L be a kk-fold covering. By Lemma 3.9, Bi1(K)B_{i-1}(K) is a kk-fold covering of Bi1(L)B_{i-1}(L), and there exists a permutation assignment ψ\psi on Bi1(L)B_{i-1}(L) such that Bi1(L)ψB_{i-1}(L)^{\psi} is isomorphic to Bi1(K)B_{i-1}(K) via a map η\eta by sending Si1(L)×[k]S_{i-1}(L)\times[k] to Si1(K)S_{i-1}(K) and Si(L)×[k]S_{i}(L)\times[k] to Si(K)S_{i}(K). Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FSi1(K)Si(K)F\in S_{i-1}(K)\cup S_{i}(K). Let

(4.16) Ψi1=ψ(G,G¯):GSi1(L),G¯Si(L),GG¯,\Psi_{i-1}=\langle\psi(G,\bar{G}):G\in S_{i-1}(L),\bar{G}\in S_{i}(L),G\in\partial\bar{G}\rangle,

whose permutation representation ϱ\varrho has a decomposition

ϱ=1ϱ2ϱt.\varrho=1\oplus\varrho_{2}\oplus\cdots\oplus\varrho_{t}.

For each gΨi1g\in\Psi_{i-1}, define Di1g(L)=(DG¯,Gg)D^{g}_{i-1}(L)=(D^{g}_{\bar{G},G}) as in (4.9). Then there exists an invertible matrix TT such that

(4.17) (IT)1(Λi(L)η)1idown(K)Λi(L)η(IT)=idown(L)j=2t(gΨ(Di1g(L)Wi1(L)1)ϱj(g))(gΨ(Di1g(L)Wi(L))ϱj(g1)),\begin{split}&(I\otimes T)^{-1}(\Lambda_{i}(L)^{\eta})^{-1}\mathcal{L}_{i}^{down}(K)\Lambda_{i}(L)^{\eta}(I\otimes T)\\ &=\mathcal{L}_{i}^{down}(L)\oplus\oplus_{j=2}^{t}\left(\sum_{g\in\Psi}(D_{i-1}^{g}(L)W_{i-1}(L)^{-1})\otimes\varrho_{j}(g)\right)\left(\sum_{g\in\Psi}(D_{i-1}^{g}(L)^{\top}W_{i}(L))\otimes\varrho_{j}(g^{-1})\right),\end{split}

where Λi(L)η\Lambda_{i}(L)^{\eta} is defined as in (4.5).

Theorem 4.7.

Let ϕ:KL\phi:K\to L be a kk-fold covering map. Then

 SpecLidown(L) SpecLidown(K), SpecΔidown(L) SpecΔidown(K).\text{~{}Spec}L_{i}^{down}(L)\subset\text{~{}Spec}L_{i}^{down}(K),~{}\text{~{}Spec}\Delta_{i}^{down}(L)\subset\text{~{}Spec}\Delta_{i}^{down}(K).
Theorem 4.8.

Let ϕ:KL\phi:K\to L be a 22-fold covering map. Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FSi1(K)Si(K)F\in S_{i-1}(K)\cup S_{i}(K). Then

 Specidown(K))= Specidown(L) Specidown(L,s),\text{~{}Spec}\mathcal{L}_{i}^{down}(K))=\text{~{}Spec}\mathcal{L}_{i}^{down}(L)\cup\text{~{}Spec}\mathcal{L}_{i}^{down}(L,s),

where s(F,F¯)=sgnψ(F,F¯)s(F,\bar{F})=\operatorname{sgn}\psi(F,\bar{F}) for (F,F¯)Si1(L)×Si(L)(F,\bar{F})\in S_{i-1}(L)\times S_{i}(L) such that FF¯F\in\partial\bar{F}, and ψ:E(Bi1(L))𝕊2\psi:E(B_{i-1}(L))\to\mathbb{S}_{2} such that Bi1(L)ψB_{i-1}(L)^{\psi} is isomorphic to Bi1(K)B_{i-1}(K).

Theorem 4.9.

Let ϕ:KL\phi:K\to L be a kk-fold covering map, let Ψ\Psi be the group defined in (4.16) which is an Abelian group. Suppose that wK(F)=wL(ϕ(F))w_{K}(F)=w_{L}(\phi(F)) for all FSi(K)Si+1(K)F\in S_{i}(K)\cup S_{i+1}(K). Then

 Specidown(K))= Specidown(L)j=2k Specidown(L,ϱj),\text{~{}Spec}\mathcal{L}_{i}^{down}(K))=\text{~{}Spec}\mathcal{L}_{i}^{down}(L)\cup\cup_{j=2}^{k}\text{~{}Spec}\mathcal{L}_{i}^{down}(L,\varrho_{j}),

where the permutation representation of Ψ\Psi has a decomposition ϱ=I1ϱ2ϱk\varrho=I_{1}\oplus\varrho_{2}\oplus\cdots\oplus\varrho_{k}, and ϱj(F,F¯)=ϱj(ψ(F,F¯)\varrho_{j}(F,\bar{F})=\varrho_{j}(\psi(F,\bar{F}) for (F,F¯)Si1(L)×Si(L)(F,\bar{F})\in S_{i-1}(L)\times S_{i}(L) such that FF¯F\in\partial\bar{F}.

5. Cohomology group of covering complex

As proved by Eckmann [9] (also see [21]), the ii-th reduced cohomology group of a complex KK is equal to the kernel of the ii-Laplace operator i(K)\mathcal{L}_{i}(K), namely. H~i(K,)=keri(K).\tilde{H}_{i}(K,\mathbb{R})=\text{ker}\mathcal{L}_{i}(K). In this section, we will investigate the relation between the homology group of a complex LL and that of its covering complex KK.

Lemma 5.1.

Let ϕ:KL\phi:K\to L be a kk-fold covering map. Suppose that w(F¯)w(F)=w(ϕ(F¯))w(ϕ(F))\frac{w(\bar{F})}{w(F)}=\frac{w(\phi(\bar{F}))}{w(\phi(F))} for each pair (F,F¯)Si(K)×Si+1(K)(F,\bar{F})\in S_{i}(K)\times S_{i+1}(K) such that FF¯F\in\partial\bar{F}. Let fCi(L,)f\in C^{i}(L,\mathbb{R}) and f¯Ci(K,)\bar{f}\in C^{i}(K,\mathbb{R}) be such that for each FSi(K)F\in S_{i}(K)

(5.1) f¯([F])=f([ϕ(F))])sgn([F],[ϕ(F)]).\bar{f}([F])=f([\phi(F))])\operatorname{sgn}([F],[\phi(F)]).

Then the following results hold.

(1)(1) If fkeriup(L)f\in\text{ker}\mathcal{L}^{up}_{i}(L), then f¯keriup(K)\bar{f}\in\text{ker}\mathcal{L}^{up}_{i}(K).

(2)(2) If fkeridown(L)f\in\text{ker}\mathcal{L}^{down}_{i}(L), then f¯keridown(K)\bar{f}\in\text{ker}\mathcal{L}^{down}_{i}(K).

Proof.

(1) By the formula of the ii-up Laplace operator [21], if fkeriup(L)f\in\text{ker}\mathcal{L}^{up}_{i}(L), then for each GSi(L)G\in S_{i}(L),

(5.2) (iup(L)f)([G])=G¯Si+1(L):GG¯w(G¯)w(G)f([G])+GSi(L):GG,G,GG¯w(G¯)w(G)sgn([G],[G¯])sgn([G],[G¯])f[G]=0.(\mathcal{L}_{i}^{up}(L)f)([G])=\!\!\!\sum_{\bar{G}\in S_{i+1}(L):\atop G\in\partial\bar{G}}\!\!\frac{w(\bar{G})}{w(G)}f([G])+\!\!\!\!\!\!\!\!\!\sum_{G^{\prime}\in S_{i}(L):\atop G^{\prime}\neq G,G,G^{\prime}\in\partial\bar{G}}\!\!\!\!\!\frac{w(\bar{G})}{w(G)}\operatorname{sgn}([G],\partial[\bar{G}])\operatorname{sgn}([G^{\prime}],\partial[\bar{G}])f[G^{\prime}]=0.

By Lemma 3.4, for every GSi(L)G\in S_{i}(L) and each Fϕ1(G)Si(K)F\in\phi^{-1}(G)\subseteq S_{i}(K), there is a bijection also denoted by ϕ\phi:

ϕ:{F¯Si+1(K):FF¯}{G¯Si+1(L):GG¯},F¯ϕ(F¯).\phi:\{\bar{F}\in S_{i+1}(K):F\in\partial\bar{F}\}\to\{\bar{G}\in S_{i+1}(L):G\in\partial\bar{G}\},\bar{F}\mapsto\phi(\bar{F}).

Similarly, there is a bijection:

ϕ:{FSi(K):FF,FFSi+1(K)}{GSi(L):GG,GGSi+1(L)},Fϕ(F).\phi:\{F^{\prime}\in S_{i}(K):F^{\prime}\neq F,F\cup F^{\prime}\in S_{i+1}(K)\}\to\{G^{\prime}\in S_{i}(L):G^{\prime}\neq G,G\cup G^{\prime}\in S_{i+1}(L)\},F^{\prime}\mapsto\phi(F^{\prime}).

So, by the assumption on weight and the notations G=ϕ(F)G=\phi(F), G:=ϕ(F)G^{\prime}:=\phi(F^{\prime}) and G¯:=ϕ(F¯)\bar{G}:=\phi(\bar{F}),

(iup(K)f¯)([F])\displaystyle(\mathcal{L}_{i}^{up}(K)\bar{f})([F]) =F¯Si+1(K):FF¯w(F¯)w(F)f¯([F])+FSi(K):FF,F,FF¯w(F¯)w(F)sgn([F],[F¯])sgn([F],[F¯])f¯([F])\displaystyle=\sum_{\bar{F}\in S_{i+1}(K):\atop F\in\partial\bar{F}}\frac{w(\bar{F})}{w(F)}\bar{f}([F])+\sum_{F^{\prime}\in S_{i}(K):\atop F^{\prime}\neq F,F,F^{\prime}\in\partial\bar{F}}\frac{w(\bar{F})}{w(F)}\operatorname{sgn}([F],\partial[\bar{F}])\operatorname{sgn}([F^{\prime}],\partial[\bar{F}])\bar{f}([F^{\prime}])
=F¯Si+1(K):FF¯w(ϕ(F¯))w(ϕ(F))f([ϕ(F)])sgn([F],[ϕ(F)])\displaystyle=\sum_{\bar{F}\in S_{i+1}(K):\atop F\in\partial\bar{F}}\frac{w(\phi(\bar{F}))}{w(\phi(F))}f([\phi(F)])\operatorname{sgn}([F],[\phi(F)])
+FSi(K):FF,F,FF¯w(ϕ(F¯))w(ϕ(F))sgn([F],[F¯])sgn([F],[F¯])f([ϕ(F)])sgn([F],[ϕ(F)])\displaystyle~{}~{}~{}+\sum_{F^{\prime}\in S_{i}(K):\atop F^{\prime}\neq F,F,F^{\prime}\in\partial\bar{F}}\frac{w(\phi(\bar{F}))}{w(\phi(F))}\operatorname{sgn}([F],\partial[\bar{F}])\operatorname{sgn}([F^{\prime}],\partial[\bar{F}])f([\phi(F^{\prime})])\operatorname{sgn}([F^{\prime}],[\phi(F^{\prime})])
=G¯Si+1(L):GG¯w(G¯)w(G)f([G])sgn([F],[G])\displaystyle=\sum_{\bar{G}\in S_{i+1}(L):\atop G\in\partial\bar{G}}\frac{w(\bar{G})}{w(G)}f([G])\operatorname{sgn}([F],[G])
+GSi(L):GG,G,GG¯w(G¯)w(G)sgn([F],[F¯])sgn([F],[F¯])f([G])sgn([F],[G])\displaystyle~{}~{}~{}+\sum_{G^{\prime}\in S_{i}(L):G^{\prime}\neq G,\atop G,G^{\prime}\in\partial\bar{G}}\frac{w(\bar{G})}{w(G)}\operatorname{sgn}([F],\partial[\bar{F}])\operatorname{sgn}([F^{\prime}],\partial[\bar{F}])f([G^{\prime}])\operatorname{sgn}([F^{\prime}],[G^{\prime}])
=sgn([F],[G])(G¯Si+1(L):GG¯w(G¯)w(G)f([G])+GSi(L):GG,G,GG¯w(G¯)w(G)sgn([G],[G¯])sgn([G],[G¯])f([G]))\displaystyle=\operatorname{sgn}([F],[G])\left(\!\!\sum_{\bar{G}\in S_{i+1}(L):\atop G\in\partial\bar{G}}\frac{w(\bar{G})}{w(G)}f([G])+\!\!\!\!\!\!\!\!\sum_{G^{\prime}\in S_{i}(L):G^{\prime}\neq G,\atop G,G^{\prime}\in\partial\bar{G}}\!\!\!\!\frac{w(\bar{G})}{w(G)}\operatorname{sgn}([G],\partial[\bar{G}])\operatorname{sgn}([G^{\prime}],\partial[\bar{G}])f([G^{\prime}])\right)
=(iup(L)f)([G])=0,\displaystyle=(\mathcal{L}_{i}^{up}(L)f)([G])=0,

where the last equality follows from (5.2) and the second last equality follows from the signature relation (4.1). So f¯keriup(K)\bar{f}\in\text{ker}\mathcal{L}_{i}^{up}(K).

(2) If fkeridown(L)f\in\text{ker}\mathcal{L}^{down}_{i}(L), then for each GSi(L)G\in S_{i}(L),

(idown(L)f([G])=HSi1(L):HGw(G)w(H)f([G])+GSi(L):GG=HSi1(L)w(G)w(E)sgn([H],[G])sgn([H],[G])f([G])=0.(\mathcal{L}^{down}_{i}(L)f([G])=\!\!\!\!\!\sum_{H\in S_{i-1}(L):\atop H\in\partial G}\!\!\!\frac{w(G)}{w(H)}f([G])+\!\!\!\!\!\!\!\!\!\!\!\!\!\sum_{G^{\prime}\in S_{i}(L):\atop G\cap G^{\prime}=H\in S_{i-1}(L)}\!\!\!\!\!\!\!\!\!\!\!\!\!\frac{w(G^{\prime})}{w(E)}\operatorname{sgn}([H],\partial[G])\operatorname{sgn}([H],\partial[G^{\prime}])f([G^{\prime}])=0.

For every GSi(L)G\in S_{i}(L) and each Fϕ1(G)Si(K)F\in\phi^{-1}(G)\subseteq S_{i}(K), As ϕ|F:FG\phi|_{F}:F\to G is bijection, there is a bijection

ϕ:{ESi1(K):EF}{HSi1(L):HG},Eϕ(E).\phi:\{E\in S_{i-1}(K):E\in\partial F\}\to\{H\in S_{i-1}(L):H\in\partial G\},E\mapsto\phi(E).

By Lemma 3.4, there is a bijection

ϕ:{FSi(K):FFSi1(K)}{GSi(L):GGSi1(L)},Fϕ(F).\phi:\{F^{\prime}\in S_{i}(K):F\cap F^{\prime}\in S_{i-1}(K)\}\to\{G^{\prime}\in S_{i}(L):G\cap G^{\prime}\in S_{i-1}(L)\},F^{\prime}\mapsto\phi(F^{\prime}).

So, by the assumption on weight and the notations G=ϕ(F)G=\phi(F), G:=ϕ(F)G^{\prime}:=\phi(F^{\prime}) and H:=ϕ(E)H:=\phi(E),

(idown(K)f¯)([F])\displaystyle(\mathcal{L}_{i}^{down}(K)\bar{f})([F]) =ESi1(K):EFw(F)w(E)f¯([F])+FSi(K):FF=ESi1(K)w(F)w(E)sgn([E],[F)sgn([E],[F])f¯([F])\displaystyle=\sum_{E\in S_{i-1}(K):\atop E\in\partial F}\frac{w(F)}{w(E)}\bar{f}([F])+\sum_{F^{\prime}\in S_{i}(K):\atop F\cap F^{\prime}=E\in S_{i-1}(K)}\frac{w(F^{\prime})}{w(E)}\operatorname{sgn}([E],\partial[F)\operatorname{sgn}([E],\partial[F^{\prime}])\bar{f}([F^{\prime}])
=ESi1(K):EFw(ϕ(F))w(ϕ(E))f([ϕ(F)])sgn([F],[ϕ(F)])\displaystyle=\sum_{E\in S_{i-1}(K):\atop E\in\partial F}\frac{w(\phi(F))}{w(\phi(E))}f([\phi(F)])\operatorname{sgn}([F],[\phi(F)])
+FSi(K):FF=ESi1(K)w(ϕ(F))w(ϕ(E))sgn([E],[F])sgn([E],[F])f([ϕ(F)])sgn([F],[ϕ(F)])\displaystyle+\sum_{F^{\prime}\in S_{i}(K):\atop F\cap F^{\prime}=E\in S_{i-1}(K)}\frac{w(\phi(F^{\prime}))}{w(\phi(E))}\operatorname{sgn}([E],\partial[F])\operatorname{sgn}([E],\partial[F^{\prime}])f([\phi(F^{\prime})])\operatorname{sgn}([F^{\prime}],[\phi(F^{\prime})])
=HSi1(L):HGw(G)w(H)f([G])sgn([F],[G])\displaystyle=\sum_{H\in S_{i-1}(L):\atop H\in\partial G}\frac{w(G)}{w(H)}f([G])\operatorname{sgn}([F],[G])
+GSi(L):GG=HSi1(L)w(G)w(E)sgn([E],[F])sgn([E],[F])f([G])sgn([F],[G])\displaystyle~{}~{}~{}+\sum_{G^{\prime}\in S_{i}(L):\atop G\cap G^{\prime}=H\in S_{i-1}(L)}\frac{w(G^{\prime})}{w(E)}\operatorname{sgn}([E],\partial[F])\operatorname{sgn}([E],\partial[F^{\prime}])f([G^{\prime}])\operatorname{sgn}([F^{\prime}],[G^{\prime}])
=sgn([F],[G])(HSi1(L):HGw(G)w(H)f([G])+GSi(L):GG=HSi1(L)w(G)w(E)sgn([H],[G)sgn([H],[G])f([G]))\displaystyle=\operatorname{sgn}([F],[G])\left(\!\!\sum_{H\in S_{i-1}(L):\atop H\in\partial G}\!\!\frac{w(G)}{w(H)}f([G])+\!\!\!\!\!\!\!\!\!\!\!\!\!\!\sum_{G^{\prime}\in S_{i}(L):\atop G\cap G^{\prime}=H\in S_{i-1}(L)}\!\!\!\!\!\!\!\!\!\!\!\!\frac{w(G^{\prime})}{w(E)}\operatorname{sgn}([H],\partial[G)\operatorname{sgn}([H],\partial[G^{\prime}])f([G^{\prime}])\!\!\right)
=(idown(L)f([G])=0,\displaystyle=(\mathcal{L}^{down}_{i}(L)f([G])=0,

where the second last equality follows from (4.1). So f¯keridown(K)\bar{f}\in\text{ker}\mathcal{L}_{i}^{down}(K). ∎

Theorem 5.2.

Let KK be a covering complex of a complex LL. Then

dimH~i(K,)dimH~i(L,).\text{dim}\tilde{H}_{i}(K,\mathbb{R})\geq\text{dim}\tilde{H}_{i}(L,\mathbb{R}).
Proof.

By Eckmann’s result, it suffices to prove the keri(L)\ker\mathcal{L}_{i}(L) can be embedded into keri(K)\text{ker}\mathcal{L}_{i}(K) as subspace. By Theorem 2.2 of [21], keri(L)=keriup(L)keridown(L)\ker\mathcal{L}_{i}(L)=\ker\mathcal{L}_{i}^{up}(L)\cap\ker\mathcal{L}_{i}^{down}(L). Suppose that ϕ:KL\phi:K\to L is a covering map. We choose weights on K,LK,L such that w(F¯)w(F)=w(ϕ(F¯))w(ϕ(F))\frac{w(\bar{F})}{w(F)}=\frac{w(\phi(\bar{F}))}{w(\phi(F))} for each pair (F,F¯)(F,\bar{F}) such that FF¯F\in\partial\bar{F}. This can easily be done by using combinatorial Laplace operator or normalized Laplace operator. By Lemma 5.1, for each fkeriup(L)keridown(L)=keri(L)f\in\ker\mathcal{L}_{i}^{up}(L)\cap\ker\mathcal{L}_{i}^{down}(L)=\ker\mathcal{L}_{i}(L), letting f¯\bar{f} be defined as in (5.1). then f¯keriup(K)keridown(K)=keri(K)\bar{f}\in\ker\mathcal{L}_{i}^{up}(K)\cap\ker\mathcal{L}_{i}^{down}(K)=\ker\mathcal{L}_{i}(K).

Let V={f¯:fkeri(L)}V=\{\bar{f}:f\in\ker\mathcal{L}_{i}(L)\}. We will show that VV is subspace of keri(K)\ker\mathcal{L}_{i}(K) with the same dimension as keri(L)\ker\mathcal{L}_{i}(L). Let f1,,ftf_{1},\ldots,f_{t} be a basis of keri(L)\ker\mathcal{L}_{i}(L). Let λ1,,λt\lambda_{1},\ldots,\lambda_{t}\in\mathbb{R} be such that

λ1f¯1++λtf¯t=0.\lambda_{1}\bar{f}_{1}+\cdots+\lambda_{t}\bar{f}_{t}=0.

For each GSi(L)G\in S_{i}(L), choosing an Fϕ1(G)F\in\phi^{-1}(G), we have

(5.3) λ1(f¯1)([F])++λt(f¯t)([F])=λ1f1([G])sgn([F],[G])++λtft([G])sgn([F],[G])=sgn([F],[G])(λ1f1([G])++λtft([G]))=0.\begin{split}\lambda_{1}(\bar{f}_{1})([F])+\cdots+\lambda_{t}(\bar{f}_{t})([F])&=\lambda_{1}f_{1}([G])\operatorname{sgn}([F],[G])+\cdots+\lambda_{t}f_{t}([G])\operatorname{sgn}([F],[G])\\ &=\operatorname{sgn}([F],[G])\left(\lambda_{1}f_{1}([G])+\cdots+\lambda_{t}f_{t}([G])\right)\\ &=0.\end{split}

So we have

λ1f1++λtft=0\lambda_{1}f_{1}+\cdots+\lambda_{t}f_{t}=0

which implies that λ1==λt=0\lambda_{1}=\cdots=\lambda_{t}=0 as f1,,ftf_{1},\ldots,f_{t} are linearly independent. So f¯1,,f¯t\bar{f}_{1},\ldots,\bar{f}_{t} is a basis of VV. The result follows. ∎

Example 5.3.

Let K,LK,L be the complexes in Fig. 3.1. The ii-th betti number of KK is defined be the dimension of H~i(K)\tilde{H}_{i}(K), denoted by βi(K)\beta_{i}(K). It is easy to see

β0(K)=β0(L)=0,β1(K)=β1(L)=1,β2(K)=β2(L)=0.\beta_{0}(K)=\beta_{0}(L)=0,\beta_{1}(K)=\beta_{1}(L)=1,\beta_{2}(K)=\beta_{2}(L)=0.

Let G,G¯G,\bar{G} be the graphs in Fig. 5.1. It is seen that G¯\bar{G} is a 22-fold covering of GG, and

β0(G)=β0(G¯)=0,β1(G)=2<β(G¯)=3.\beta_{0}(G)=\beta_{0}(\bar{G})=0,\beta_{1}(G)=2<\beta(\bar{G})=3.

So it will be interesting to characterize the equality case of the inequality in Theorem 5.2.

Refer to caption
Figure 5.1. A graph GG and its 22-fold covering G¯\bar{G}

References

  • [1] A. Amit, N. Linial, Random graph coverings I: General theory and graph connectivity, Combinatorica, 22(1): 1–18, 2002.
  • [2] Biggs, Algebraic Graph Theory, Cambridge Univ. Press, London, 1974.
  • [3] Y. Bilu, N. Linial, Lifts, discrepancy and nearly optimal spectral gap, Combinatorica, 26(5): 495–519, 2006
  • [4] O. Bottema, Über die Irrfahrt in einem Straßennetz, Math. Z., 39: 137–145, 1935.
  • [5] D. Cvetković, P Rowlinson, S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl., 423: 155–171, 2007.
  • [6] M. Desai, V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory, 18: 181–194, 1994.
  • [7] W. Dörfler, Double covers of hypergraphs and their properties, Ars Combinatoria, 6: 293-313, 1978.
  • [8] A. M. Duval, V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc., 354(11): 4313–4344, 2002.
  • [9] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv., 17 (1): 240–255, 1944.
  • [10] F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, 1997.
  • [11] F. Chung, The Laplacian of a hypergraph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 21–36, 1993.
  • [12] R. Q. Feng, J. H. Kwak, J. Lee, Characteristic polynomials of graph coverings, Bull. Aust. Math. Soc., 69: 133–136, 2004.
  • [13] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (2): 298–305, 1973.
  • [14] J. Friedman, Computing betti numbers via combinatorial Laplacians, Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 386–391, 1996
  • [15] H. Garland, pp-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math., 97: 375–423, 1973.
  • [16] J. L. Gross, T. W. Tucker, Generating all graph covering by permutation voltage assignments, Discrete Math., 18: 273-283, 1977.
  • [17] R. Gustavson, Laplacians of covering complexes, Rose Hulman Undegrad. Math. J., 12(1):1–18, 2011.
  • [18] G. Kirchhoff, Uber die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem., 72: 497–508, 1847.
  • [19] W. Haemers, E. Spence, Enumeration of cospectral graphs, Europ. J. Combin., 25: 199–211, 2004.
  • [20] D. Horak, J. Jost, Interlacing inequalities for eigenvalues of discrete Laplace operators, Ann. Global Anal. Geom., 43: 177–207, 2013.
  • [21] D. Horak, J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. in Math., 244: 303–336, 2013.
  • [22] D. Li, Y. Hou, Hypergraph coverings and their zeta functions, Electronic J. Combin., 25: #P4.59, 2018.
  • [23] D. Li, Y. Hou, Laplacian of a graph covering and its applications, Bull. Malays. Math. Sci. Soc., 42: 2569–2583, 2019.
  • [24] L. Lu, X. Peng, High-ordered random walks and generalized Laplacians on hypergraphs, Proc. Algorithms and Models for the Web-Graph, 2011.
  • [25] W. Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1967
  • [26] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197/198: 143-176, 1994.
  • [27] H. Mizuno, I. Sato, Characteristic polynomials of some graph coverings, Discrete Math., 142: 295–298, 1995.
  • [28] J. J. Rotman, Covering complexes with application to algebra, Rocky Mountain J. Math., 3: 641–674, 1973.
  • [29] Y.-M. Song, Y.-Z. Fan, Y. Wang, M.-Y. Tian, J.-C. Wan, The spectral property of hypergraph covering, Discrete Math., 347, 113830, 2024.
  • [30] H. M. Stark, A. A. Terras, Zeta functions of finite graphs and coverings, Adv. in Math., 121: 124-165, 1996.
  • [31] C. Taszus, Higher order Laplace Beltrami spectra of networks, Master’s Thesis, Friedrich Schiller Universität Jena, 2010.