This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Spectrum of Units of Algebraic KK-theory

Shachar Carmeli and Kiran Luecke
Abstract

It is well known that the [0,1][0,1] and [0,2][0,2] Postnikov truncations of the units of the topological KK-theories 𝔤𝔩1KO\mathfrak{gl}_{1}\mathrm{KO} and 𝔤𝔩1KU\mathfrak{gl}_{1}\mathrm{KU}, respectively, are split, and that the splitting is provided by the (Z/2\mathbb{Z}/2-graded) line bundles. In this paper we give a similar splitting for the [0,1][0,1]-truncation of the units of algebraic KK-theory, considered as a sheaf on affine schemes. A crucial step is to produce the splitting for 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}). Along the way we also give a complete calculation of the connective spectrum of strict units of K(Z)K(\mathbb{Z}) and K(F)K(\mathbb{F}_{\ell}) for a prime \ell. Finally, we show that the units of algebraic KK-theory do not split as a presheaf. In fact we show they do not even split pointwise.

1 Introduction and outline

1.1 Background and motivation

For a commutative ring spectrum RR, one can associate a spectrum of units 𝔤𝔩1R\mathfrak{gl}_{1}R, which plays a role analogous to that of the group of units of a classical commutative ring. The homotopy groups of 𝔤𝔩1R\mathfrak{gl}_{1}R and RR are closely related—we have

π0𝔤𝔩1Rπ0R×andπi𝔤𝔩1RπiR for i>0.\pi_{0}\mathfrak{gl}_{1}R\simeq\pi_{0}R^{\times}\quad\text{and}\quad\pi_{i}\mathfrak{gl}_{1}R\simeq\pi_{i}R\text{ for }i>0.

However, the nature of the spectrum 𝔤𝔩1R\mathfrak{gl}_{1}R, which consist of not only the homotopy groups but also the kk-invariants gluing them together, is still a far from understood in general.

Algebraic KK-theory is a vast source of commutative ring spectra. For every classical commutative ring SS there is an associated commutative ring spectrum K(S)K(S), the KK-theory spectrum of SS. It is thus natural to consider the spectrum 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S).

For real and complex topological KK-theory, the spectra of units are well-understood (cf. eg. [2]). For a spectrum XX denote by X[a,b]X[a,b] (resp. X[a,)X[a,\infty)) the bb-th truncation of the aa-th connective cover of XX (resp. the aa-th connective cover of XX). Then the spectrum 𝔤𝔩1KU\mathfrak{gl}_{1}\mathrm{KU} decomposes as the direct sum

𝔤𝔩1KU𝔤𝔩1KU[0,2]𝔤𝔩1KU[3,),\mathfrak{gl}_{1}\mathrm{KU}\simeq\mathfrak{gl}_{1}\mathrm{KU}[0,2]\oplus\mathfrak{gl}_{1}\mathrm{KU}[3,\infty),

and there is a pp-completed isomorphism 𝔤𝔩1KU[3,)KU[3,)\mathfrak{gl}_{1}\mathrm{KU}[3,\infty)\simeq\mathrm{KU}[3,\infty). Similarly, for the real topological KK-theory spectrum KO\mathrm{KO} there is a splitting

𝔤𝔩1KO𝔤𝔩1KO[0,1]𝔤𝔩1KO[2,),\mathfrak{gl}_{1}\mathrm{KO}\simeq\mathfrak{gl}_{1}\mathrm{KO}[0,1]\oplus\mathfrak{gl}_{1}\mathrm{KO}[2,\infty),

and a pp-complete isomorphism 𝔤𝔩1KO[2,)KO[2,).\mathfrak{gl}_{1}\mathrm{KO}[2,\infty)\simeq\mathrm{KO}[2,\infty). Thus, knowing the additive structure of these ring spectra and their spectra of units in a small range of degrees gives all the information needed to determine their spectra of units as a whole, at least after completion at a prime.

1.2 Main results

The primary goal of this paper is to demonstrate that a similar phenomenon occurs also in the context of algebraic KK-theory. Namely, we show that this is the case for the Zariski sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K that assigns to each commutative ring SS the connective spectrum 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) (cf. Section 7).

Theorem A (7.2.4).

The Zariski sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K is split at 1. That is, in the category of Zariski sheaves of connective spectra on affine schemes there is an isomorphism

𝔤𝔩1K𝔤𝔩1K[0,1]𝔤𝔩1K[2,).\mathfrak{gl}_{1}K\simeq\mathfrak{gl}_{1}K[0,1]\oplus\mathfrak{gl}_{1}K[2,\infty).

Because Postnikov truncation of sheaves involves pointwise truncation and sheafification, this does not imply that 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) splits in a similar way for every ring SS. In fact, we show that such a splitting pointwise splitting does not exist.

Theorem B (8.0.4).

The sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K does not split pointwise. More precisely, for the ring S=R[x,y]/(x2+y21)S=\mathbb{R}[x,y]/(x^{2}+y^{2}-1) we have

𝔤𝔩1K(S)≄𝔤𝔩1K(S)[0,1]𝔤𝔩1K(S)[2,).\mathfrak{gl}_{1}K(S)\not{\simeq}\mathfrak{gl}_{1}K(S)[0,1]\oplus\mathfrak{gl}_{1}K(S)[2,\infty).

We prove A by reducing the problem to the splitting of 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}), in which case we also obtain information about the two summands.

Theorem C (4.3.3).

We have

𝔤𝔩1K(Z)𝔤𝔩1K(Z)[0,1]𝔤𝔩1K(Z)[2,),\mathfrak{gl}_{1}K(\mathbb{Z})\simeq\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]\oplus\mathfrak{gl}_{1}K(\mathbb{Z})[2,\infty),

where the first summand is isomorphic to the fiber of the map

Z/2Sq2Σ2Z/2\mathbb{Z}/2\xrightarrow{\mathrm{Sq}^{2}}\Sigma^{2}\mathbb{Z}/2

and after completion at a prime pp there is an isomorphism of spectra

𝔤𝔩1K(Z)p[2,)K(Z)p[2,).\mathfrak{gl}_{1}K(\mathbb{Z})_{p}[2,\infty)\simeq K(\mathbb{Z})_{p}[2,\infty).

Using the splitting of the sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K, we obtain similar splittings for individual rings SS, under some assumptions on their low KK-groups. For a commutative ring SS, let Pic(S)\mathrm{Pic}^{\heartsuit}(S) be the Picard group of the category of discrete SS-modules.

Theorem D (7.2.5).

Let SS be a ring for which ZPic(S)K0(S)\mathbb{Z}\oplus\mathrm{Pic}^{\heartsuit}(S)\xrightarrow{\sim}K_{0}(S) and S×K1(S)S^{\times}\xrightarrow{\sim}K_{1}(S). Then

𝔤𝔩1K(S)𝔤𝔩1K(S)[0,1]𝔤𝔩1K(S)[2,).\mathfrak{gl}_{1}K(S)\simeq\mathfrak{gl}_{1}K(S)[0,1]\oplus\mathfrak{gl}_{1}K(S)[2,\infty).

Closely related to the spectrum of units 𝔤𝔩1R\mathfrak{gl}_{1}R is the connective spectrum of strict units GmR:=homSpcn(Z,𝔤𝔩1R)\mathbb{G}_{m}R:=\hom_{\text{Sp}^{\mathrm{cn}}}(\mathbb{Z},\mathfrak{gl}_{1}R). In fact, we use knowledge of the strict units to establish splittings of 𝔤𝔩1R\mathfrak{gl}_{1}R in certain cases. We give a complete calculation of GmK(S)\mathbb{G}_{m}K(S) for S=ZS=\mathbb{Z} or a prime field F\mathbb{F}_{\ell}.

Theorem E (6.1.1, 6.2.1).

There are isomorphisms

GmK(Z)Z^Z/2Σ(Z/2),\mathbb{G}_{m}K(\mathbb{Z})\simeq\widehat{\mathbb{Z}}\oplus\mathbb{Z}/2\oplus\Sigma(\mathbb{Z}/2),
GmK(F)F×ΣF×.\mathbb{G}_{m}K(\mathbb{F}_{\ell})\simeq\mathbb{F}_{\ell}^{\times}\oplus\Sigma\mathbb{F}_{\ell}^{\times}.

1.3 Methods

Our method is to reduce the splitting of the Zariski sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K to the splitting of its global sections 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}). For this reduction we use the canonical map pic𝔤𝔩1K\mathrm{pic}\to\mathfrak{gl}_{1}K that sends an invertible module spectrum over SS to its KK-theory class. To illustrate our method in a simpler case than Z\mathbb{Z}, we simultaneously treat the prime fields F\mathbb{F}_{\ell}.

Then, we reduce questions about 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}) and 𝔤𝔩1K(F)\mathfrak{gl}_{1}K(\mathbb{F}_{\ell}) to questions about their T(1)T(1)-localizations (at an implicit prime pp). The main tool in this reduction is the Lichtenbaum-Quillen theorem for these rings, stating that their pp-completed KK-theory spectra diverge from the connective covers of their T(1)T(1)-localizations only in small degrees; for the rings in question the difference can be analyzed explicitly using knowledge of their low degree KK-groups.

Once we are in the T(1)T(1)-local setting, we have new tools to study units and strict units. Namely, the strict units are governed by the power operation θ\theta from [9], the spectrum of units 𝔤𝔩1R\mathfrak{gl}_{1}R is related to RR itself by the Rezk logarithm map log:𝔤𝔩1RR\log\colon\mathfrak{gl}_{1}R\to R [11] which is an isomorphism in large degrees, and these two operations are related by nontrivial formulas. We use these tools to access the homotopy type of 𝔤𝔩1R\mathfrak{gl}_{1}R and construct the desired splittings of their Postnikov towers.

One difficulty in passing from R:=K(S)R:=K(S) to LT(1)RL_{T(1)}R is that the Postnikov tower of the latter does not split. The reason is that π0LT(1)R\pi_{0}L_{T(1)}R, which in essentially all examples considered here is Zp\mathbb{Z}_{p}, has too many units. For this reason, we work with a variant of 𝔤𝔩1R\mathfrak{gl}_{1}R which manually omits the extra units formed by pp-completion or T(1)T(1)-localization (cf. 2.0.1).

1.4 Acknowledgements

We would like to thank John Rognes for many helpful conversations, especially for explaining the proof of 2.2.1. S.C. would like to thank the Azrieli Foundation for their support through an Early Career Faculty Fellowship.

2 Preliminaries for the splitting of 𝔤𝔩1R\mathfrak{gl}_{1}R

In this section we discuss some general reduction steps towards splitting the Postnikov tower of 𝔤𝔩1R\mathfrak{gl}_{1}R. As mentioned above, it will be convenient to work with the following variant of 𝔤𝔩1\mathfrak{gl}_{1}.

Definition 2.0.1.

For any commutative ring spectrum EE define 𝔤𝔩1±1E\mathfrak{gl}_{1}^{\pm 1}E to be the pullback

𝔤𝔩1±1E{\mathfrak{gl}_{1}^{\pm 1}E}𝔤𝔩1E{\mathfrak{gl}_{1}E}{±1}{\{\pm 1\}}π0𝔤𝔩1E{\pi_{0}\mathfrak{gl}_{1}E}

Note that for the rings SS under consideration, 𝔤𝔩1±1K(S)𝔤𝔩1K(S)\mathfrak{gl}_{1}^{\pm 1}K(S)\simeq\mathfrak{gl}_{1}K(S), so we alternatively wish to split the first layer of the Postnikov tower of 𝔤𝔩1±1K(S)\mathfrak{gl}_{1}^{\pm 1}K(S). From now on we shall consider splittings of the Postnikov tower of 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R for various commutative ring spectra RR. More precisely, we consider the following property for X=𝔤𝔩1±1RX=\mathfrak{gl}_{1}^{\pm 1}R.

Definition 2.0.2.

We say that a connective spectrum XX is split at mm if there is an isomorphism XX[0,m]X[m+1,)X\simeq X[0,m]\oplus X[m+1,\infty).

Thus, our main result can be now reformulated as saying that for R=K(Z)R=K(\mathbb{Z}) or R=K(F)R=K(\mathbb{F}_{\ell}), the spectrum 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R is split at 11.

2.1 pp-completion

In this section, we related the splittings of 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R to those of 𝔤𝔩1±1Rp\mathfrak{gl}_{1}^{\pm 1}R_{p} for various primes pp. First, we discuss the relationship between splittings of a spectrum XX and its pp-completions in general.

Lemma 2.1.1.

For a natural number mm, let XX be a spectrum concentrated in degrees [0,m][0,m] and YY be a spectrum concentrated in degrees [m+2,)[m+2,\infty). Then, the map

[X,Y]p[X,Yp][X,Y]\rightarrow\prod_{p}[X,Y_{p}]

is injective.

Proof.

Let FF be the cofiber of the map YpYpY\to\prod_{p}Y_{p}. By the long exact sequence associated with the fiber sequence

Map(X,F)Map(X,Y)pMap(X,Yp)\mathrm{Map}(X,F)\rightarrow\mathrm{Map}(X,Y)\rightarrow\prod_{p}\mathrm{Map}(X,Y_{p})

it would suffice to show that π0Map(X,F)=0\pi_{0}\mathrm{Map}(X,F)=0. By the arithmetic fracture square of YY, we see that FF is a rational spectrum, and since both YY and pYp\prod_{p}Y_{p} are concentrated in degrees [m+2,)[m+2,\infty), FF is concentrated in degrees [m+1,)[m+1,\infty). Since there are no non-trivial maps between rational spectra concentrated in disjoint homotopical degrees, we deduce that [X,F]=0[X,F]=0 and the result follows. ∎

By a simple instance of obstruction theory, this allows us to relate the splittability of XX and of its pp-completions.

Corollary 2.1.2.

Let XX be a connective spectrum with finitely generated homotopy groups. Then XX splits at mm if and only if XpX_{p} splits at mm for all primes pp.

Proof.

First, if XX splits then XX[0,m]X[m+1,)X\simeq X[0,m]\oplus X[m+1,\infty). Taking pp completion commutes with the truncations of XX since XX has finitely generated homotopy. Hence, by pp-completing the splitting above we obtain a splitting

XpXp[0,m]Xp[m+1,)X_{p}\simeq X_{p}[0,m]\oplus X_{p}[m+1,\infty)

as desired.

Conversely, note that XX splits if and only if the edge map α:X[0,m]ΣX[m+1,)\alpha\colon X[0,m]\to\Sigma X[m+1,\infty) of the cofiber sequence

X[m+1,)XX[0,m]X[m+1,\infty)\rightarrow X\rightarrow X[0,m]

is null homotopic. By 2.1.1, this is equivalent to the vanishing of each of the compositions

X[0,m]𝛼ΣX[m+1,)ΣX[m+1,)pΣXp[m+1,).X[0,m]\xrightarrow{\alpha}\Sigma X[m+1,\infty)\rightarrow\Sigma X[m+1,\infty)_{p}\simeq\Sigma X_{p}[m+1,\infty).

The above composition fits as the diagonal dashed arrow in the commutative square

X[0,m]\textstyle{X[0,m]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}ΣX[m+1,)\textstyle{\Sigma X[m+1,\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Xp[0,m]\textstyle{X_{p}[0,m]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αp\scriptstyle{\alpha_{p}}ΣXp[m+1,)\textstyle{\Sigma X_{p}[m+1,\infty)}

in which the vertical maps are induced from the pp-completion XXpX\to X_{p}. By our assumption that XpX_{p} is split at mm, the bottom horizontal map labeled αp\alpha_{p} is 0, and hence also the diagonal dashed arrow, yielding the result. ∎

We turn to discuss splittings of 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R for a commutative ring spectrum RR.

Lemma 2.1.3.

Let RR be a commutative ring spectrum with finitely generated homotopy groups. Then, for every prime pp the pp-completion map RRpR\to R_{p} induces an isomorphism

(𝔤𝔩1±1R)p(𝔤𝔩1±1Rp)p.(\mathfrak{gl}_{1}^{\pm 1}R)_{p}\simeq(\mathfrak{gl}_{1}^{\pm 1}R_{p})_{p}.
Proof.

Note that since 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R has finitely generated homotopy groups, πi𝔤𝔩1±1Rπi(𝔤𝔩1±1R)p\pi_{i}\mathfrak{gl}_{1}^{\pm 1}R\to\pi_{i}(\mathfrak{gl}_{1}^{\pm 1}R)_{p} is a (classical) pp-completion. In fact, since 𝔤𝔩1±1Rp\mathfrak{gl}_{1}^{\pm 1}R_{p} has finitely generated π0\pi_{0} and pp-complete connected cover, the same hold for it. It would therefore suffices to show that the map πi𝔤𝔩1±1Rπi(𝔤𝔩1±1Rp)\pi_{i}\mathfrak{gl}_{1}^{\pm 1}R\to\pi_{i}(\mathfrak{gl}_{1}^{\pm 1}R_{p}) induces an isomorphism on (classical) pp-completions. For i=0i=0 this map is already an isomorphism by definition (both groups are {±1}\{\pm 1\}), and for i>0i>0 this map can be identified with the map πiRπiRp\pi_{i}R\to\pi_{i}R_{p}, which is a pp-completion since RR has finitely generated homotopy groups. ∎

We are ready to reduce the splitting of 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R to that of the spectra 𝔤𝔩1±1Rp\mathfrak{gl}_{1}^{\pm 1}R_{p}.

Corollary 2.1.4.

Let RR be a commutative ring spectrum with finitely genetated homotopy groups and let m1m\geq 1. If 𝔤𝔩1±1Rp\mathfrak{gl}_{1}^{\pm 1}R_{p} splits at mm for every prime pp, the 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R splits at mm.

Proof.

By the “if” direction of 2.1.2, it would suffice to show that (𝔤𝔩1±1R)p(\mathfrak{gl}_{1}^{\pm 1}R)_{p} splits at mm for every prime pp. By 2.1.3, this spectrum is isomorphic to (𝔤𝔩1±1Rp)p(\mathfrak{gl}_{1}^{\pm 1}R_{p})_{p}. By the ”only if’ direction of 2.1.2, this follows from the assumption that 𝔤𝔩1±1Rp\mathfrak{gl}_{1}^{\pm 1}R_{p} splits at mm. ∎

2.2 T(1)T(1)-localization

In this section we use Lichtenbaum-Quillen type results to reduce the calculation of 𝔤𝔩1K(S)p\mathfrak{gl}_{1}K(S)_{p} to that of 𝔤𝔩1LT(1)K(S)\mathfrak{gl}_{1}L_{T(1)}K(S) for the rings SS under consideration. As usual, we denote by LT(1)XL_{T(1)}X the localization of the spectrum XX at the Bousfield class of T(1)=S/pk[v11]T(1)=\mathbb{S}/p^{k}[v_{1}^{-1}] and leave the prime pp implicit111Note that this is the same as the K(1)K(1)-localization, and we use the T(1)T(1)-localization mostly for notation reasons.. The canonical map XLT(1)XX\to L_{T(1)}X factors through the pp-completion; in fact LT(1)XLT(1)XpL_{T(1)}X\to L_{T(1)}X_{p} is an equivalence. The localization functor is symmetric monoidal, so if RR is a commutative ring spectrum, the localization map is one of commutative ring spectra. We shall need the following fact, which is a special case of the Lichtenbaum-Quillen conjecture.

Proposition 2.2.1.

([16], [12], [8], [7], [14], [10], [6]) For S=Z[1/p]S=\mathbb{Z}[1/p] or F\mathbb{F}_{\ell} with p\ell\neq p, the map

K(S)pLT(1)K(S)K(S)_{p}\rightarrow L_{T(1)}K(S)

induces an isomorphism

K(S)pLT(1)K(S)[0,)K(S)_{p}\simeq L_{T(1)}K(S)[0,\infty)
Proof.

For the case of K(F)K(\mathbb{F}_{\ell}) and pp\neq\ell this essentially follows from Quillen’s calculation in [10], but see Theorem 5 of [6] and the discussion preceding it.

Now we turn to K(Z[1/p])K(\mathbb{Z}[1/p]). We learned this argument from John Rognes. Dwyer and Mitchell ([8] 1.4, cf. also [7] 8.8) show, using the work of Thomason [14], that the Lichtenbaum-Quillen conjecture implies that K(Z[1/p])LT(1)K(Z[1/p])K(\mathbb{Z}[1/p])\rightarrow L_{T(1)}K(\mathbb{Z}[1/p]) is an equivalence on 1-connected covers. Since Voevodsky proved the Lichtenbaum-Quillen conjecture in [16], it remains to consider π0\pi_{0}. This follows from a calculation in etale cohomology (cf. [12] Section 2).

Note that for p=2p=2 the desired result can also be deduced from the fiber square

K(Z[1/2])2ku2hψ3ko2ku2.\leavevmode\hbox to107.6pt{\vbox to69.39pt{\pgfpicture\makeatletter\hbox{\hskip 53.79765pt\lower-34.69391pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-53.79765pt}{-34.69391pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 30.46942pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.16388pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${K(\mathbb{Z}[1/2])_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 30.46942pt\hfil&\hfil\hskip 35.32822pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.0227pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${ku_{2}^{h\psi^{3}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.32825pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 10.88957pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.58403pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${ko_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 10.88957pt\hfil&\hfil\hskip 35.32822pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.0227pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${ku_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.32825pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{7.34119pt}{26.0342pt}\pgfsys@lineto{30.5412pt}{26.0342pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.74118pt}{26.0342pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.32823pt}{17.17448pt}\pgfsys@lineto{-23.32823pt}{-0.0256pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-23.32823pt}{-0.22559pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{42.4694pt}{17.87004pt}\pgfsys@lineto{42.4694pt}{-0.0256pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{42.4694pt}{-0.22559pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.23866pt}{-8.7297pt}\pgfsys@lineto{30.5412pt}{-8.7297pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.74118pt}{-8.7297pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

From this, we can relate the spectrum of units of K(S)K(S) and its T(1)T(1)-localization.

Lemma 2.2.2.

For R=K(F)R=K(\mathbb{F}_{\ell}) or R=K(Z)R=K(\mathbb{Z}), we have the following:

  1. 1.

    For a prime p\ell\neq p:

    𝔤𝔩1K(F)p𝔤𝔩1LT(1)K(F).\mathfrak{gl}_{1}K(\mathbb{F}_{\ell})_{p}\simeq\mathfrak{gl}_{1}L_{T(1)}K(\mathbb{F}_{\ell}).
  2. 2.

    There is a cofiber sequence

    Zp𝔤𝔩1K(Z)p𝔤𝔩1LT(1)K(Z).\mathbb{Z}_{p}\rightarrow\mathfrak{gl}_{1}K(\mathbb{Z})_{p}\rightarrow\mathfrak{gl}_{1}L_{T(1)}K(\mathbb{Z}).
Proof.

For (1)(1), this follows from 2.2.1 and the fact that 𝔤𝔩1\mathfrak{gl}_{1} depends only on the connective cover of a commutative ring spectrum.

For (2)(2), again by 2.2.1 we can identify the map K(Z)pLT(1)K(Z)K(\mathbb{Z})_{p}\rightarrow L_{T(1)}K(\mathbb{Z}) with the map

K(Z)pK(Z[1/p])p.K(\mathbb{Z})_{p}\rightarrow K(\mathbb{Z}[1/p])_{p}.

Taking pp-completion from the localization sequence

K(Z)K(Z[1/p])ΣK(Fp)K(\mathbb{Z})\rightarrow K(\mathbb{Z}[1/p])\rightarrow\Sigma K(\mathbb{F}_{p})

and using that by Quillen’s computation K(Fp)pZpK(\mathbb{F}_{p})_{p}\simeq\mathbb{Z}_{p} we get the map K(Z)pK(Z[1/p])pK(\mathbb{Z})_{p}\to K(\mathbb{Z}[1/p])_{p} induces an isomorphism on πi\pi_{i} for i1i\neq 1 and an injection on π1\pi_{1} with cokernel Zp\mathbb{Z}_{p}. Hence, the same holds for the map 𝔤𝔩1K(Z)p𝔤𝔩1K(Z[1/p])p\mathfrak{gl}_{1}K(\mathbb{Z})_{p}\to\mathfrak{gl}_{1}K(\mathbb{Z}[1/p])_{p} and the result follows. ∎

2.3 The homotopy type of 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1]

We shall now determine the homotopy type of the 11-truncation of 𝔤𝔩1R\mathfrak{gl}_{1}R for the (pp-complete) ring spectra RR under consideration. This calculation will be useful later in the construction of sections for the map 𝔤𝔩1R𝔤𝔩1R[0,1]\mathfrak{gl}_{1}R\to\mathfrak{gl}_{1}R[0,1].

Remark 2.3.1.

Recall that a connective, 1-truncated spectrum XX is determined by the data of π0X,π1X\pi_{0}X,\pi_{1}X and the multiplication by the Hopf element ηπ1S\eta\in\pi_{1}\mathbb{S}, i.e. the map

η:π0X/2π1X\eta\cdot\colon\pi_{0}X/2\rightarrow\pi_{1}X

More precisely, one recovers XX from this data as the fiber of the composition

π0Xπ0X/2Sq2Σ2π0X/2𝜂Σ2π1X.\pi_{0}X\twoheadrightarrow\pi_{0}X/2\xrightarrow{\mathrm{Sq}^{2}}\Sigma^{2}\pi_{0}X/2\xrightarrow{\eta}\Sigma^{2}\pi_{1}X.

In particular, XX splits as a sum Xπ0XΣπ1XX\simeq\pi_{0}X\oplus\Sigma\pi_{1}X if and only if η\eta acts by 0 on π0X\pi_{0}X.

Returning to the determination of 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1], first we note that the case of an odd prime pp is easy.

Lemma 2.3.2.

Let RR be a pp-local commutative ring spectrum for an odd prime pp. Then

𝔤𝔩1±1R[0,1]Z/2Σπ1R.\mathfrak{gl}_{1}^{\pm 1}R[0,1]\simeq\mathbb{Z}/2\oplus\Sigma\pi_{1}R.
Proof.

By definition π0𝔤𝔩1±1RZ/2\pi_{0}\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathbb{Z}/2 and π1𝔤𝔩1±1Rπ1𝔤𝔩1Rπ1R\pi_{1}\mathfrak{gl}_{1}^{\pm 1}R\simeq\pi_{1}\mathfrak{gl}_{1}R\simeq\pi_{1}R. Since π1R\pi_{1}R is pp-local and hence has no 22-torsion, the map η:π0𝔤𝔩1±1Rπ1𝔤𝔩1±1R\eta\colon\pi_{0}\mathfrak{gl}_{1}^{\pm 1}R\to\pi_{1}\mathfrak{gl}_{1}^{\pm 1}R is the zero map and we obtain the desired splitting by 2.3.1. ∎

We turn to the more interesting case of p=2p=2.

Lemma 2.3.3.

For a prime 2\ell\neq 2, the spectrum 𝔤𝔩1±1(K(F)2)[0,1]𝔤𝔩1±1LT(1)K(F)[0,1]\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{F}_{\ell})_{2})[0,1]\simeq\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{F}_{\ell})[0,1] is the fiber of the map

Z/2Sq2Σ2Z/211Σ2(F)2×.\mathbb{Z}/2\xrightarrow{Sq^{2}}\Sigma^{2}\mathbb{Z}/2\xrightarrow{1\mapsto-1}\Sigma^{2}(\mathbb{F}_{\ell})^{\times}_{2}.
Proof.

Since π1K(F)F×\pi_{1}K(\mathbb{F}_{\ell})\simeq\mathbb{F}_{\ell}^{\times} and π0K(F)Z\pi_{0}K(\mathbb{F}_{\ell})\simeq\mathbb{Z}, we see that 𝔤𝔩1±1K(F)2\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{F}_{\ell})_{2} has the correct homotopy groups. By 2.3.1, it remains to show that the map

η:π0𝔤𝔩1±1(K(F)2)π1𝔤𝔩1±1(K(F)2)\eta\colon\pi_{0}\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{F}_{\ell})_{2})\to\pi_{1}\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{F}_{\ell})_{2})

sends the non-trivial element of the group π0𝔤𝔩1±1(K(F)2)Z/2\pi_{0}\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{F}_{\ell})_{2})\simeq\mathbb{Z}/2 to the element 1π1𝔤𝔩1±1K(F)2(F×)2-1\in\pi_{1}\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{F}_{\ell})_{2}\simeq(\mathbb{F}_{\ell}^{\times})_{2}.

Now, there is a canonical map of spectra

pic(F)𝔤𝔩1±1K(F)𝔤𝔩1±1K(F)2\mathrm{pic}(\mathbb{F}_{\ell})\to\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{F}_{\ell})\to\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{F}_{\ell})_{2}

which is given on π0\pi_{0} and π1\pi_{1} by the reduction mod 22 and 22-completion maps respectively:

ZZ/2andF×(F×)2.\mathbb{Z}\twoheadrightarrow\mathbb{Z}/2\quad\text{and}\quad\mathbb{F}_{\ell}^{\times}\twoheadrightarrow(\mathbb{F}_{\ell}^{\times})_{2}.

Hence, it would suffice to show that the map η:π0pic(F)π1pic(F)\eta\colon\pi_{0}\mathrm{pic}(\mathbb{F}_{\ell})\to\pi_{1}\mathrm{pic}(\mathbb{F}_{\ell}) sends the generator ΣFpic(F)\Sigma\mathbb{F}_{\ell}\in\mathrm{pic}(\mathbb{F}_{\ell}) to the element 1π1pic(F)F×-1\in\pi_{1}\mathrm{pic}(\mathbb{F}_{\ell})\simeq\mathbb{F}_{\ell}^{\times}. This follows from the facts that on the Picard spectrum of a ring SS we have ηL=dim(L)\eta\cdot L=\dim(L) (see, e.g., [5, Proposition 3.20]) and that dim(ΣS)=1S×\dim(\Sigma S)=-1\in S^{\times}.

We turn to the case R=K(Z)R=K(\mathbb{Z}).

Lemma 2.3.4.

The spectrum 𝔤𝔩1±1K(Z)[0,1]𝔤𝔩1±1K(Z)2[0,1]\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})[0,1]\simeq\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{2}[0,1] is the fiber of Sq2:Z/2Σ2Z/2Sq^{2}:\mathbb{Z}/2\rightarrow\Sigma^{2}\mathbb{Z}/2.

Proof.

Since π1K(Z)Z/2\pi_{1}K(\mathbb{Z})\simeq\mathbb{Z}/2, by 2.3.1 it suffices to show that the map η:π0𝔤𝔩1±1K(Z)π1𝔤𝔩1±1K(Z)\eta\colon\pi_{0}\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})\to\pi_{1}\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z}) is the non-zero map. Here, as in the case of F\mathbb{F}_{\ell}, one can use the map pic(Z)𝔤𝔩1±1K(Z)\mathrm{pic}(\mathbb{Z})\to\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z}). Indeed, this map is given on π0\pi_{0} and π1\pi_{1} by the maps ZZ/2\mathbb{Z}\twoheadrightarrow\mathbb{Z}/2 and Z/2Z/2\mathbb{Z}/2\simeq\mathbb{Z}/2 respectively, so it is enough to show that η\eta takes the generator of π0pic(Z)\pi_{0}\mathrm{pic}(\mathbb{Z}) to a non-zero class. This follows as above from the fact that

ηΣZ=1π1pic(Z).\eta\cdot\Sigma\mathbb{Z}=-1\in\pi_{1}\mathrm{pic}(\mathbb{Z}).

Passing from the 22-completion to the T(1)T(1)-localization introduces an extra summand to 𝔤𝔩1±1\mathfrak{gl}_{1}^{\pm 1}.

Lemma 2.3.5.

At the prime p=2p=2, we have

𝔤𝔩1±1LT(1)K(Z)[0,1]ΣZ2𝔤𝔩1±1K(Z)[0,1]\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z})[0,1]\simeq\Sigma\mathbb{Z}_{2}\oplus\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})[0,1]
Proof.

Recall that LT(1)K(Z)[0,)K(Z[1/2])2L_{T(1)}K(\mathbb{Z})[0,\infty)\simeq K(\mathbb{Z}[1/2])_{2}. It follows from 2.2.2 that we have a cofiber sequence

𝔤𝔩1±1K(Z)𝔤𝔩1±1LT(1)K(Z)ΣZ2.\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})\rightarrow\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z})\rightarrow\Sigma\mathbb{Z}_{2}.

Since the map π1LT(1)K(Z)π1ΣZ2=Z2\pi_{1}L_{T(1)}K(\mathbb{Z})\rightarrow\pi_{1}\Sigma\mathbb{Z}_{2}=\mathbb{Z}_{2} can be identified with the 22-completion of the 22-adic valuation map Z[1/2]×Z\mathbb{Z}[1/2]^{\times}\to\mathbb{Z} it is in particular a surjection. Hence, the above sequence induces a cofiber sequence

𝔤𝔩1±1K(Z)[0,1]𝔤𝔩1±1LT(1)K(Z)[0,1]ΣZ2\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})[0,1]\rightarrow\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z})[0,1]\rightarrow\Sigma\mathbb{Z}_{2}

bewtween the 11-truncations. The resulting boundary map ΣZ2Σ𝔤𝔩1±1K(Z)[0,1]\Sigma\mathbb{Z}_{2}\to\Sigma\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})[0,1] is trivial on π1\pi_{1} and hence lifts to a map of spectra

ΣZ2Σ2π1𝔤𝔩1±1K(Z)Σ2Z/2.\Sigma\mathbb{Z}_{2}\rightarrow\Sigma^{2}\pi_{1}\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})\simeq\Sigma^{2}\mathbb{Z}/2.

Since π0MapSp(ΣZ2,Σ2Z/2)=0\pi_{0}\mathrm{Map}_{\text{Sp}}(\Sigma\mathbb{Z}_{2},\Sigma^{2}\mathbb{Z}/2)=0 the boundary map must vanish and the sequence splits.

2.4 Splitting 𝔰𝔩1R\mathfrak{sl}_{1}R

One can further simplifty 𝔤𝔩1R\mathfrak{gl}_{1}R by removing its π0\pi_{0} completely. The resulting spectrum is 𝔰𝔩1R:=𝔤𝔩1R[1,)\mathfrak{sl}_{1}R:=\mathfrak{gl}_{1}R[1,\infty). Splitting the bottom homotopy group from 𝔰𝔩1R\mathfrak{sl}_{1}R is strictly easier in general than splitting 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1] from 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R. Indeed, a splitting

𝔤𝔩1±1R𝔤𝔩1±1R[0,1]𝔤𝔩1±1R[2,)\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathfrak{gl}_{1}^{\pm 1}R[0,1]\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty)

induces, by taking connected covers, a splitting

𝔰𝔩1RΣπ1𝔰𝔩1R𝔤𝔩1±1R[2,).\mathfrak{sl}_{1}R\simeq\Sigma\pi_{1}\mathfrak{sl}_{1}R\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty).

While the converse does not hold in general, splitting 𝔰𝔩1R\mathfrak{sl}_{1}R is an important step towards splitting 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R, so we show the existence of such splittings for our ring spectra of interest first.

Lemma 2.4.1.

Let RR be a ring such that the truncation map 𝔰𝔩1R𝔰𝔩1R[0,1]Σπ1𝔤𝔩1R\mathfrak{sl}_{1}R\rightarrow\mathfrak{sl}_{1}R[0,1]\simeq\Sigma\pi_{1}\mathfrak{gl}_{1}R is split. Then π1𝔤𝔩1R\pi_{1}\mathfrak{gl}_{1}R is a subgroup of π1GmR\pi_{1}\mathbb{G}_{m}R via a map π1𝔤𝔩1R=[ΣZ,Σπ1𝔤𝔩1R][ΣZ,𝔰𝔩1R].\pi_{1}\mathfrak{gl}_{1}R=[\Sigma\mathbb{Z},\Sigma\pi_{1}\mathfrak{gl}_{1}R]\rightarrow[\Sigma\mathbb{Z},\mathfrak{sl}_{1}R].

Proof.

This is immediate. The desired map is induced by any choice of splitting Σπ1𝔤𝔩1R=𝔰𝔩1R[0,1]𝔰𝔩1R\Sigma\pi_{1}\mathfrak{gl}_{1}R=\mathfrak{sl}_{1}R[0,1]\rightarrow\mathfrak{sl}_{1}R. ∎

Lemma 2.4.2.

Let SS be a ring for which π1K(S)S×\pi_{1}K(S)\simeq S^{\times} (e.g., a local ring). Then, there is a splitting of 𝔰𝔩1K(S)\mathfrak{sl}_{1}K(S) as

𝔰𝔩1K(S)Σ(S×)𝔰𝔩1K(S)[2,).\mathfrak{sl}_{1}K(S)\simeq\Sigma(S^{\times})\oplus\mathfrak{sl}_{1}K(S)[2,\infty).

If, moreover, K(S)K(S) has finitely generated homotopy groups, we get a corresponding factorization

𝔰𝔩1K(S)pΣ(S×)p𝔰𝔩1K(S)p[2,).\mathfrak{sl}_{1}K(S)_{p}\simeq\Sigma(S^{\times})_{p}\oplus\mathfrak{sl}_{1}K(S)_{p}[2,\infty).
Proof.

The result after pp-completion follows immediately from the first claim by taking pp-completions from the decomposition. The map pic(S)𝔤𝔩1K(S)\mathrm{pic}(S)\rightarrow\mathfrak{gl}_{1}K(S) restricts to a map

ΣS×pic(S)[1,)𝔤𝔩1K(S)[1,)𝔰𝔩1K(S)\Sigma S^{\times}\simeq\mathrm{pic}(S)[1,\infty)\rightarrow\mathfrak{gl}_{1}K(S)[1,\infty)\simeq\mathfrak{sl}_{1}K(S)

which is a section of the 11-truncation map and hence induces the desired splitting. ∎

3 Strict units and the logarithmic fiber

3.1 Preliminaries

The main advantages of a T(1)T(1)-local ring spectrum in studying its units are the logarithm map and the power operation θ\theta. The first is a morphism of spectra

log:𝔤𝔩1RR,\log\colon\mathfrak{gl}_{1}R\rightarrow R,

defined by Rezk using the Bousfield-Kuhn functor ([11]).

Definition 3.1.1.

For a T(1)T(1)-local ring spectrum RR, we let FlogR\mathrm{F}_{\log}{R} be the fiber of the map log:𝔤𝔩1RR\log\colon\mathfrak{gl}_{1}R\to R.

Closely related to the logarithm is the power operation θ\theta, which defines a map θ:ΩRΩR\theta\colon\Omega^{\infty}R\to\Omega^{\infty}R. When restricted to the units, it precisely cuts out the space of strict units via the fiber sequence (of spaces!)

ΩGm(R)Ω𝔤𝔩1R𝜃ΩR.\Omega^{\infty}\mathbb{G}_{m}(R)\rightarrow\Omega^{\infty}\mathfrak{gl}_{1}R\xrightarrow{\theta}\Omega^{\infty}R.

The main calculations of this section are based on a comparison between the long exact sequences associated to log\log and θ\theta. We will a few key lemmas.

Lemma 3.1.2.

Let RR be a T(1)T(1)-local ring. Then

hom(Z,FlogR)GmR.\hom(\mathbb{Z},\mathrm{F}_{\log}R)\simeq\mathbb{G}_{m}R.
Proof.

Since RR is T(1)T(1)-local, we have hom(Z,R)=0\hom(\mathbb{Z},R)=0. Hence, the result follows by applying hom(Z,)\hom(\mathbb{Z},-) to the fiber sequence

FlogR𝔤𝔩1RlogR.\mathrm{F}_{\log}R\rightarrow\mathfrak{gl}_{1}R\xrightarrow{\log}R.

Lemma 3.1.3.

Let RR be a T(1)T(1)-local ring. Then Flog(R)\mathrm{F}_{\log}(R) is 2-truncated.

Proof.

For an L1L_{1}-local commutative ring spectrum RR, let FahrR\mathrm{F}_{\text{ahr}}{R} be the fiber of the L1L_{1}-localization map 𝔤𝔩1RL1𝔤𝔩1R\mathfrak{gl}_{1}R\to L_{1}\mathfrak{gl}_{1}R. By [1, Theorem 4.11], Fahr(R)\mathrm{F}_{\text{ahr}}(R) is 11-truncated. Consider the commutative diagram where the rows are fiber sequences

FahrR𝔤𝔩1RL1𝔤𝔩1RFlogR𝔤𝔩1RLT(1)𝔤𝔩1RR.\leavevmode\hbox to171.65pt{\vbox to69.97pt{\pgfpicture\makeatletter\hbox{\hskip 85.82314pt\lower-34.98613pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-85.82314pt}{-34.98613pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 15.45674pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.1512pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathrm{F}_{\text{ahr}}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 15.45674pt\hfil&\hfil\hskip 37.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 13.42952pt\hfil&\hfil\hskip 42.23227pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.92676pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{1}\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.2323pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 14.98228pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.67674pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathrm{F}_{\log}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.98228pt\hfil&\hfil\hskip 37.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 13.42952pt\hfil&\hfil\hskip 56.93687pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.63136pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{T(1)}\mathfrak{gl}_{1}R\simeq R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 32.9369pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-54.70966pt}{26.88199pt}\pgfsys@lineto{-31.50964pt}{26.88199pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.30966pt}{26.88199pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-70.3664pt}{18.57785pt}\pgfsys@lineto{-70.3664pt}{1.26662pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-70.3664pt}{1.06664pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-3.85065pt}{26.88199pt}\pgfsys@lineto{34.05397pt}{26.88199pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.25395pt}{26.88199pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-17.48016pt}{18.57784pt}\pgfsys@lineto{-17.48016pt}{1.37775pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-17.48016pt}{1.17776pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{52.88623pt}{18.57784pt}\pgfsys@lineto{52.88623pt}{1.37773pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{52.88623pt}{1.17775pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-55.18411pt}{-7.32637pt}\pgfsys@lineto{-31.50964pt}{-7.32637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.30966pt}{-7.32637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-3.85065pt}{-7.32637pt}\pgfsys@lineto{19.34937pt}{-7.32637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.54935pt}{-7.32637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The right vertical arrow is the top row of the chromatic fracture square, so its fiber agrees with that of the bottom row of the chromatic fracture square which is a rational spectrum. Call this fiber QQ. Note also that the fiber of the map FahrRFlogR\mathrm{F}_{\text{ahr}}R\to\mathrm{F}_{\log}R agrees with ΩQ\Omega Q.

Since FahrR\mathrm{F}_{\text{ahr}}R is 1-truncated, the homotopy groups of FlogR\mathrm{F}_{\log}R in degrees 3\geq 3 agree with those of ΩQ\Omega Q, which are rational. But on the other hand, the homotopy groups of FlogR\mathrm{F}_{\log}R sit in an long exact sequnce with the homotopy groups of 𝔤𝔩1R\mathfrak{gl}_{1}R and RR, which in degrees 3\geq 3 are the homotopy groups of a T(1)T(1)-local ring, and hence derived pp-complete. Hence, these groups vanish and FlogR\mathrm{F}_{\log}R is 2-truncated. ∎

Remark 3.1.4.

It is possible for FlogR\mathrm{F}_{\log}R to have nontrivial π2\pi_{2}. Indeed, exactly that happens in the case of R=KUpR=KU_{p}.

Lemma 3.1.5.

For any T(1)T(1)-local ring RR, GmR\mathbb{G}_{m}R is 22-truncated and π2GmR\pi_{2}\mathbb{G}_{m}R is torsion free.

Proof.

First, ΩGmRhom(Z,Ω𝔤𝔩1R)\Omega\mathbb{G}_{m}R\simeq\hom(\mathbb{Z},\Omega\mathfrak{gl}_{1}R) is pp-complete since Ω𝔤𝔩1R\Omega\mathfrak{gl}_{1}R is. Let μp(R):=hom(Z/p,𝔤𝔩1R)\mu_{p}(R):=\hom(\mathbb{Z}/p,\mathfrak{gl}_{1}R). Hence, by the long exact sequence of homotopy groups associated with the fiber sequence

μpRGmR𝑝GmR,\mu_{p}R\rightarrow\mathbb{G}_{m}R\xrightarrow{p}\mathbb{G}_{m}R,

the claim is equivalent to the fact that μp(R)\mu_{p}(R) is 11-truncated, which follows from the vanishing of the T(1)T(1)-local suspension spectrum of B2Z/pB^{2}\mathbb{Z}/p (see, e.g., [5, Proposition 4.1]). We can also argue using the logarithmic fiber: the truncatedness claim follows immediately from 3.1.2 and 3.1.3. Consider the fracture square for L1𝔤𝔩1RL_{1}\mathfrak{gl}_{1}R.

L1𝔤𝔩1RLT(1)𝔤𝔩1RRL0𝔤𝔩1RL0LT(1)𝔤𝔩1R.\leavevmode\hbox to126.34pt{\vbox to71.53pt{\pgfpicture\makeatletter\hbox{\hskip 63.16919pt\lower-35.76392pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-63.16919pt}{-35.76392pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.2323pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.92676pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{1}\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.2323pt\hfil&\hfil\hskip 56.93687pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.63136pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{T(1)}\mathfrak{gl}_{1}R\simeq R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 32.9369pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 18.2323pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.92676pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{0}\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.2323pt\hfil&\hfil\hskip 51.23798pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.93246pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${L_{0}L_{T(1)}\mathfrak{gl}_{1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 27.238pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.5046pt}{27.65976pt}\pgfsys@lineto{-3.30458pt}{27.65976pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.1046pt}{27.65976pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-44.93689pt}{19.3556pt}\pgfsys@lineto{-44.93689pt}{0.59996pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-44.93689pt}{0.39998pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{30.23228pt}{17.80005pt}\pgfsys@lineto{30.23228pt}{0.59995pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{30.23228pt}{0.39996pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.5046pt}{-8.10416pt}\pgfsys@lineto{2.39432pt}{-8.10416pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.5943pt}{-8.10416pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Let QQ be the fiber of bottom row. Since there are no maps from Z\mathbb{Z} to a T(1)T(1)-local spectrum, we find that Map(Z,L1𝔤𝔩1R)=Map(Z,Q)=Q\mathrm{Map}(\mathbb{Z},L_{1}\mathfrak{gl}_{1}R)=\mathrm{Map}(\mathbb{Z},Q)=Q and is therefore rational. As mentioned before, the fiber Fahr\mathrm{F}_{\text{ahr}} of 𝔤𝔩1RL1𝔤𝔩1R\mathfrak{gl}_{1}R\rightarrow L_{1}\mathfrak{gl}_{1}R 1-truncated. Therefore the fiber sequence

Map(Z,Fahr)GmRMap(Z,L1𝔤𝔩1R)\mathrm{Map}(\mathbb{Z},\mathrm{F}_{\text{ahr}})\rightarrow\mathbb{G}_{m}R\rightarrow\mathrm{Map}(\mathbb{Z},L_{1}\mathfrak{gl}_{1}R)

shows that π2GmR\pi_{2}\mathbb{G}_{m}R must inject into a rational group, so it is torsion free. ∎

Lemma 3.1.6.

Let RR be a T(1)T(1)-local ring. Suppose that θ1:π1Rπ1R\theta_{1}\colon\pi_{1}R\to\pi_{1}R (at the basepoint 1R1\in R) is zero. Then the map log1:π1Rπ1R\log_{1}\colon\pi_{1}R\to\pi_{1}R is also zero.

Proof.

The general formula for the relationship between log and θ\theta in degree 0 (i.e. between log0\log_{0} and θ0\theta_{0}) is Theorem 1.9 of [11]. In loc. sit. just below, there is a simplified formula: if ϵ2=0\epsilon^{2}=0 then log0(1+ϵ)=ϵθ0(ϵ)\log_{0}(1+\epsilon)=\epsilon-\theta_{0}(\epsilon).

Let xx be an element in π1R\pi_{1}R. Write α\alpha for the square zero suspension class in R1(S1)R^{1}(S^{1}). Note that R(S1)R^{*}(S^{1}) is a free πR\pi_{*}R-module on 11 and α\alpha. For z=z11+zααR(S1)z=z_{1}1+z_{\alpha}\alpha\in R^{*}(S^{1}) write α,z:=zα\langle\alpha,z\rangle:=z_{\alpha} and 1,z:=z1\langle 1,z\rangle:=z_{1} for the coefficients in πR\pi_{*}R. Then

θ1(x)=1,θ0(1+xα),\theta_{1}(x)=\langle 1,\theta_{0}(1+x\alpha)\rangle,
log1(x)=1,log0(1+xα).\log_{1}(x)=\langle 1,\log_{0}(1+x\alpha)\rangle.

Since α2=0\alpha^{2}=0 we may apply Rezk’s simplified logarithm formula to deduce that

log1(x)=1,log0(1+xα)=1,xαθ0(xα).\log_{1}(x)=\langle 1,\log_{0}(1+x\alpha)\rangle=\langle 1,x\alpha-\theta_{0}(x\alpha)\rangle.

On the other hand θ0\theta_{0} is a δ\delta-structure222It satisfies the equations required to make xxp+pθ0(x)x\mapsto x^{p}+p\theta_{0}(x) a ring map. ([11] 1.8) so that θ0(1+ϵ)=θ0(ϵ)ϵ\theta_{0}(1+\epsilon)=\theta_{0}(\epsilon)-\epsilon whenever ϵ2=0\epsilon^{2}=0. Hence

1,xαθ0(xα)=1,θ0(1+xα).\langle 1,x\alpha-\theta_{0}(x\alpha)\rangle=\langle 1,-\theta_{0}(1+x\alpha)\rangle.

Stringing these together gives

log1(x)=θ1(x).\log_{1}(x)=-\theta_{1}(x).

3.2 Main results

The main results of this section are the calculations of strict units: 3.3.1, 3.4.1, 3.4.3 and the homotopy groups of the logarthmic fiber: 3.3.2, 3.4.2, 3.4.4.

We summarize them in the following table for the reader’s convenience. The symbols \ltimes appearing in the third column are extension problems that will be resolved in a later section.

Ring R GmLT(1)R[0,)\mathbb{G}_{m}L_{T(1)}R[0,\infty) π0,1FlogR\pi_{0,1}\mathrm{F}_{\log}R
K(F),pK(\mathbb{F}_{\ell}),\quad\ell\neq p odd Fp×(F×)pΣ(F×)p\mathbb{F}_{p}^{\times}\oplus(\mathbb{F}_{\ell}^{\times})_{p}\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p} Fp××(F×)p,(F×)p\mathbb{F}_{p}^{\times}\times(\mathbb{F}_{\ell}^{\times})_{p},\ (\mathbb{F}_{\ell}^{\times})_{p}
K(F),p=2K(\mathbb{F}_{\ell}),\quad\ell\neq p=2 (F×)2Σ(F×)2(\mathbb{F}_{\ell}^{\times})_{2}\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{2} Z/2(F×)2,(F×)2\mathbb{Z}/2\ltimes(\mathbb{F}_{\ell}^{\times})_{2},\ (\mathbb{F}_{\ell}^{\times})_{2}
K(Z),p>2K(\mathbb{Z}),\quad p>2 ZpFp×ΣZp\mathbb{Z}_{p}\oplus\mathbb{F}_{p}^{\times}\Sigma\mathbb{Z}_{p} Zp×Fp×,Zp\mathbb{Z}_{p}\times\mathbb{F}_{p}^{\times},\mathbb{Z}_{p}
K(Z),p=2K(\mathbb{Z}),\quad p=2 Z2Z/2ΣZ2ΣZ/2\mathbb{Z}_{2}\oplus\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{2}\oplus\Sigma\mathbb{Z}/2 Z2×A\mathbb{Z}_{2}\times AZ2×Z/2\mathbb{Z}_{2}\times\mathbb{Z}/2

3.3 Strict units in LT(1)K(F)L_{T(1)}K(\mathbb{F}_{\ell}), pp\neq\ell

In this section we assume our two primes pp and \ell are not equal333If they are, note that LT(1)K(F)L_{T(1)}K(\mathbb{F}_{\ell}) is zero..

The key facts about R:=LT(1)K(F)R:=L_{T(1)}K(\mathbb{F}_{\ell}) are

  1. 1.

    the splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. Section 2.4), and

  2. 2.

    π0,1,2R\pi_{0,1,2}R are Zp,(F×)p,0\mathbb{Z}_{p},(\mathbb{F}_{\ell}^{\times})_{p},0 and π3R\pi_{3}R is torsion (cf. [10]).

Now we simply plug the key facts into the computational tools: the θ\theta LES becomes

π3GmRπ3Rπ3Rπ2GmR00π1GmR(F×)p(F×)pπ0GmRZp×Zpθ3θ2θ1θ0.\leavevmode\hbox to144.28pt{\vbox to88.94pt{\pgfpicture\makeatletter\hbox{\hskip 72.13959pt\lower-43.14041pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-72.13959pt}{-43.14041pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.78043pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 38.67957pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.37405pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.6796pt\hfil&\hfil\hskip 38.67957pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.37405pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.6796pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-34.37874pt}{35.14738pt}\pgfsys@lineto{-8.88988pt}{35.14738pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.6899pt}{35.14738pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.69157pt}{35.14738pt}\pgfsys@lineto{44.46928pt}{35.14738pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.66927pt}{35.14738pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{38.78903pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-34.37874pt}{14.69023pt}\pgfsys@lineto{-3.30467pt}{14.69023pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.10469pt}{14.69023pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{11.10637pt}{14.69023pt}\pgfsys@lineto{50.05449pt}{14.69023pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{50.25447pt}{14.69023pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{18.33188pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-34.37874pt}{-7.40025pt}\pgfsys@lineto{-11.17873pt}{-7.40025pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.97874pt}{-7.40025pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.98042pt}{-7.40025pt}\pgfsys@lineto{42.18044pt}{-7.40025pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.38042pt}{-7.40025pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{-3.7586pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-34.37874pt}{-30.1863pt}\pgfsys@lineto{-5.98425pt}{-30.1863pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.78427pt}{-30.1863pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{13.78595pt}{-30.1863pt}\pgfsys@lineto{47.37491pt}{-30.1863pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.57489pt}{-30.1863pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{-26.54465pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

We see immediately that π1GmR\pi_{1}\mathbb{G}_{m}R is a subgroup of (F×)p(\mathbb{F}_{\ell}^{\times})_{p}. But from the splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. 2.4.2), π1GmR\pi_{1}\mathbb{G}_{m}R contains π1𝔤𝔩1R\pi_{1}\mathfrak{gl}_{1}R as a subgroup and must therefore be equal to it. That forces θ1\theta_{1} to be zero. Note that444In degree 0, θ\theta is the unique delta structure on Zp\mathbb{Z}_{p}, whose kernel (among units) are the units Fp×\mathbb{F}_{p}^{\times} the kernel (i.e. preimage of 0) of the function θ0\theta_{0} is Fp×\mathbb{F}_{p}^{\times}. We record the consequences as a lemma for reference purposes.

Lemma 3.3.1.

Let R=LT(1)K(F)R=L_{T(1)}K(\mathbb{F}_{\ell}). For all pp\neq\ell, π1GmR(F×)p\pi_{1}\mathbb{G}_{m}R\simeq(\mathbb{F}_{\ell}^{\times})_{p} and there is a split short exact sequence

0(F×)pπ0GmRFp×0.0\rightarrow(\mathbb{F}_{\ell}^{\times})_{p}\rightarrow\pi_{0}\mathbb{G}_{m}R\rightarrow\mathbb{F}_{p}^{\times}\rightarrow 0.
Proof.

The statement about π1\pi_{1} and the short exact sequence have been established in the discussion leading up to the lemma. It is split since for odd pp the torsion in the base is invertible in the fiber and for p=2p=2 the base is trivial. ∎

Now we turn to the logarithmic fiber, again with R:=LT(1)K(F)R:=L_{T(1)}K(\mathbb{F}_{\ell}). Since FlogR\mathrm{F}_{\log}R is 22-truncated and hom(Z,FlogR)GmR\hom(\mathbb{Z},\mathrm{F}_{\log}R)\simeq\mathbb{G}_{m}R (3.1.2), the top non-vanishing homotopy group of FlogR\mathrm{F}_{\log}R agrees with that of GmR\mathbb{G}_{m}R. Hence,

π2FlogR=0andπ1FlogRπ1GmR=(F×)p.\pi_{2}\mathrm{F}_{\log}R=0\quad\text{and}\quad\pi_{1}\mathrm{F}_{\log}R\simeq\pi_{1}\mathbb{G}_{m}R=(\mathbb{F}_{\ell}^{\times})_{p}.

Now consider the long exact sequence‘ associated with the log fiber sequence:

000π1FlogR=(F×)p(F×)p(F×)pπ0FlogRZp×Zplog2log1log0,\leavevmode\hbox to179.26pt{\vbox to68.03pt{\pgfpicture\makeatletter\hbox{\hskip 89.63225pt\lower-32.45128pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-89.63225pt}{-32.45128pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 36.27309pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.96754pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathrm{F}_{\log}R=(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 36.27309pt\hfil&\hfil\hskip 38.67957pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.37405pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.6796pt\hfil&\hfil\hskip 38.67957pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.37405pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.6796pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 19.23242pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.92688pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathrm{F}_{\log}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.23242pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-46.35362pt}{24.84714pt}\pgfsys@lineto{14.18799pt}{24.84714pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.38797pt}{24.84714pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{28.59903pt}{24.84714pt}\pgfsys@lineto{67.54715pt}{24.84714pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{67.74713pt}{24.84714pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.80086pt}{28.561pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.88608pt}{4.5611pt}\pgfsys@lineto{6.31393pt}{4.5611pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.51392pt}{4.5611pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{36.47308pt}{4.5611pt}\pgfsys@lineto{59.6731pt}{4.5611pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{59.87308pt}{4.5611pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.80086pt}{8.27496pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-33.92674pt}{-18.75827pt}\pgfsys@lineto{11.5084pt}{-18.75827pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.70839pt}{-18.75827pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.27861pt}{-18.75827pt}\pgfsys@lineto{64.86757pt}{-18.75827pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.06755pt}{-18.75827pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.80086pt}{-15.0444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

We have deduced that θ1=0\theta_{1}=0 above 3.3.1, so by 3.1.6 we find that log1=0\log_{1}=0 as well. Now log0\log_{0} is the pre-composition of the pp-adic logarithm with the xp1x^{p-1} map, so its kernel is tor(Zp×)(\mathbb{Z}_{p}^{\times}). Again, we collect the consequences in a lemma.

Lemma 3.3.2.

For all pp\neq\ell and R:=LT(1)K(F)R:=L_{T(1)}K(\mathbb{F}_{\ell}), we have that π2FlogR=0\pi_{2}\mathrm{F}_{\log}R=0, π1FlogR(F×)p\pi_{1}\mathrm{F}_{\log}R\simeq(\mathbb{F}_{\ell}^{\times})_{p}, and there is a short exact sequence

0(F×)pπ0FlogRtor(Zp×)0.0\rightarrow(\mathbb{F}_{\ell}^{\times})_{p}\rightarrow\pi_{0}\mathrm{F}_{\log}R\rightarrow\text{tor}(\mathbb{Z}_{p}^{\times})\rightarrow 0.

When pp is odd the sequence is split.

The fact that it also splits at p=2p=2\neq\ell will follow from the integral case by functoriality (cf. 3.4.5).

3.4 Strict units in LT(1)K(Z)L_{T(1)}K(\mathbb{Z})

We turn to calculate the strict units and logarithmic fibers of the T(1)T(1)-local KK-theory of Z\mathbb{Z}.

3.4.1 The case p>2p>2

The key facts about R:=LT(1)K(Z)R:=L_{T(1)}K(\mathbb{Z}) are

  1. 1.

    The identification LT(1)K(Z)K(Z[1/p])pL_{T(1)}K(\mathbb{Z})\simeq K(\mathbb{Z}[1/p])_{p}.

  2. 2.

    The corresponding splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. Section 2.4),

  3. 3.

    π0R=Zp\pi_{0}R=\mathbb{Z}_{p}, π1R=Zp\pi_{1}R=\mathbb{Z}_{p}, and π2R=0\pi_{2}R=0, and π3R\pi_{3}R is torsion (in fact it’s zero for p>3p>3)(cf. [3], bottom of page 7 and top half of page 10. See also [4] 2012.07951 middle of page 4).

The θ\theta LES becomes

π3GmRπ3Rπ3Rπ2GmR00π1GmRZpZpπ0GmRZp×Zpθ3θ2θ1θ0.\leavevmode\hbox to135.12pt{\vbox to87.1pt{\pgfpicture\makeatletter\hbox{\hskip 67.56189pt\lower-42.22096pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-67.56189pt}{-42.22096pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.78043pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.80104pt}{34.22794pt}\pgfsys@lineto{-6.60103pt}{34.22794pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.40105pt}{34.22794pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.98042pt}{34.22794pt}\pgfsys@lineto{42.18044pt}{34.22794pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.38042pt}{34.22794pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{37.86958pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.80104pt}{13.77078pt}\pgfsys@lineto{-1.01582pt}{13.77078pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.81584pt}{13.77078pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{13.39522pt}{13.77078pt}\pgfsys@lineto{47.76564pt}{13.77078pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.96562pt}{13.77078pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{17.41243pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.80104pt}{-6.68637pt}\pgfsys@lineto{-3.6954pt}{-6.68637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.49542pt}{-6.68637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.0748pt}{-6.68637pt}\pgfsys@lineto{45.08606pt}{-6.68637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.28604pt}{-6.68637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{-3.04472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.80104pt}{-29.26685pt}\pgfsys@lineto{-3.6954pt}{-29.26685pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.49542pt}{-29.26685pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{16.0748pt}{-29.26685pt}\pgfsys@lineto{45.08606pt}{-29.26685pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.28604pt}{-29.26685pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.13736pt}{-25.6252pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Since π3R\pi_{3}R is torsion, so is π2GmR\pi_{2}\mathbb{G}_{m}R. By 3.1.5 we deduce that π2GmR=0\pi_{2}\mathbb{G}_{m}R=0. From the splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. 2.4.2) we find that π1GmR\pi_{1}\mathbb{G}_{m}R contains π1𝔤𝔩1RZp\pi_{1}\mathfrak{gl}_{1}R\simeq\mathbb{Z}_{p} as a subgroup, and must therefore be equal to it. It follows that θ1=0\theta_{1}=0. Since again the kernel of θ0\theta_{0} is Fp×\mathbb{F}_{p}^{\times}, we deduce that

π0GmR=Zp×Fp×.\pi_{0}\mathbb{G}_{m}R=\mathbb{Z}_{p}\times\mathbb{F}_{p}^{\times}.

As usual we collect these results in a lemma.

Lemma 3.4.1.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) and p>2p>2. Then π1GmRZp\pi_{1}\mathbb{G}_{m}R\simeq\mathbb{Z}_{p} and π0GmRZp×Fp×\pi_{0}\mathbb{G}_{m}R\simeq\mathbb{Z}_{p}\times\mathbb{F}_{p}^{\times}.

Now we turn to the logarithmic fiber. Again, 3.1.2 immediately tells us that π2FlogR=0\pi_{2}\mathrm{F}_{\log}R=0 and π1FlogR=π1GmR=Zp\pi_{1}\mathrm{F}_{\log}R=\pi_{1}\mathbb{G}_{m}R=\mathbb{Z}_{p}. Now consider the log LES (cf. 3.1.3)

π3FlogR=0π3Rπ3Rπ2FlogR=000π1FlogR=ZpZpZpπ0FlogRZp×Zplog3log2log1log0.\leavevmode\hbox to156.94pt{\vbox to91.11pt{\pgfpicture\makeatletter\hbox{\hskip 78.47124pt\lower-44.18874pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-78.47124pt}{-44.18874pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 28.39905pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.0935pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}\mathrm{F}_{\log}R=0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 28.39905pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 28.39905pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.0935pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}\mathrm{F}_{\log}R=0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.39905pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 29.68977pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.38423pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathrm{F}_{\log}R=\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 29.68977pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 19.23242pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.92688pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathrm{F}_{\log}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.23242pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-20.18242pt}{36.19571pt}\pgfsys@lineto{4.30832pt}{36.19571pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.5083pt}{36.19571pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{29.88977pt}{36.19571pt}\pgfsys@lineto{53.08978pt}{36.19571pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{53.28976pt}{36.19571pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.21754pt}{39.90958pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-20.18242pt}{14.50967pt}\pgfsys@lineto{9.89352pt}{14.50967pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.0935pt}{14.50967pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{24.30457pt}{14.50967pt}\pgfsys@lineto{58.67499pt}{14.50967pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{58.87497pt}{14.50967pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.21754pt}{18.22354pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-18.8917pt}{-7.17636pt}\pgfsys@lineto{7.21394pt}{-7.17636pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.41393pt}{-7.17636pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{26.98415pt}{-7.17636pt}\pgfsys@lineto{55.9954pt}{-7.17636pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.19539pt}{-7.17636pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.21754pt}{-3.4625pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.34904pt}{-30.49573pt}\pgfsys@lineto{7.21394pt}{-30.49573pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.41393pt}{-30.49573pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{26.98415pt}{-30.49573pt}\pgfsys@lineto{55.9954pt}{-30.49573pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.19539pt}{-30.49573pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.21754pt}{-26.78186pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

We have deduced that θ1=0\theta_{1}=0 above, so by 3.1.6 we find that log1=0\log_{1}=0 as well. So π0FlogR\pi_{0}\mathrm{F}_{\log}R is an extension of the kernel, Fp×\mathbb{F}_{p}^{\times}, of the degree zero logarithm by Zp\mathbb{Z}_{p}. So we immediately get the following lemma.

Lemma 3.4.2.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) and p>2p>2. Then

π2FlogR=0,π1FlogRZpandπ0FlogRZp×Fp×.\pi_{2}\mathrm{F}_{\log}R=0,\ \pi_{1}\mathrm{F}_{\log}R\simeq\mathbb{Z}_{p}\ \text{and}\ \pi_{0}\mathrm{F}_{\log}R\simeq\mathbb{Z}_{p}\times\mathbb{F}_{p}^{\times}.

3.4.2 The case p=2p=2

The key facts about R:=LT(1)K(Z)R:=L_{T(1)}K(\mathbb{Z}) are

  1. 1.

    the splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. Section 2.4),

  2. 2.

    π0R=Z2\pi_{0}R=\mathbb{Z}_{2}, π1R=Z2×Z/2\pi_{1}R=\mathbb{Z}_{2}\times\mathbb{Z}/2, and π2,3R\pi_{2,3}R are finitely generated and torsion555This follows from eg. the presentation of RR as the T(1)T(1)-localization of the bullback K(F3)kukoK(\mathbb{F}_{3})\rightarrow\mathrm{ku}\leftarrow\mathrm{ko}.

The θ\theta LES becomes

π3GmR=0π3Rπ3Rπ2GmRπ2Rπ2Rπ1GmRZ2×Z/2Z2×Z/2π0GmRZ2×Z2θ3θ2θ1θ0.\leavevmode\hbox to196.88pt{\vbox to87.49pt{\pgfpicture\makeatletter\hbox{\hskip 98.44144pt\lower-42.4121pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-98.44144pt}{-42.4121pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 27.94705pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.64151pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}\mathbb{G}_{m}R=0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 27.94705pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 47.24718pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.94167pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.24721pt\hfil&\hfil\hskip 47.24718pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.94167pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.24721pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 18.78043pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.47488pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathbb{G}_{m}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.78043pt\hfil&\hfil\hskip 33.47635pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17084pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.47638pt\hfil&\hfil\hskip 33.47635pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17084pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.47638pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-42.34734pt}{34.41907pt}\pgfsys@lineto{-8.29086pt}{34.41907pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.09088pt}{34.41907pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{17.29059pt}{34.41907pt}\pgfsys@lineto{62.20352pt}{34.41907pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{62.4035pt}{34.41907pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.30399pt}{38.06071pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.51396pt}{13.96191pt}\pgfsys@lineto{-8.29086pt}{13.96191pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.09088pt}{13.96191pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{17.29059pt}{13.96191pt}\pgfsys@lineto{62.20352pt}{13.96191pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{62.4035pt}{13.96191pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.30399pt}{17.60356pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.51396pt}{-7.16193pt}\pgfsys@lineto{-19.14732pt}{-7.16193pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.94734pt}{-7.16193pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{28.14705pt}{-7.16193pt}\pgfsys@lineto{51.34706pt}{-7.16193pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.54704pt}{-7.16193pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.30399pt}{-3.52028pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.51396pt}{-29.94797pt}\pgfsys@lineto{-5.3765pt}{-29.94797pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17651pt}{-29.94797pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{14.37622pt}{-29.94797pt}\pgfsys@lineto{65.11789pt}{-29.94797pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.31787pt}{-29.94797pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.30399pt}{-26.30632pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

As usual, this forces π2GmR\pi_{2}\mathbb{G}_{m}R to be torsion, and hecne zero by 3.1.5. So θ2\theta_{2} is an isomorphism, as it is an injection of finitely generated Z2\mathbb{Z}_{2}-modules. From the splitting of 𝔰𝔩1R\mathfrak{sl}_{1}R (cf. 2.4.2) we find that π1Gm\pi_{1}\mathbb{G}_{m} contains π1𝔤𝔩1R\pi_{1}\mathfrak{gl}_{1}R as a subgroup, and must therefore be equal to it. We deduce that θ1=0\theta_{1}=0 and π0GmR=Z2×Z/2\pi_{0}\mathbb{G}_{m}R=\mathbb{Z}_{2}\times\mathbb{Z}/2 (note that at p=2p=2, θ0\theta_{0} is injective). As usual we collect some facts in a lemma for reference.

Lemma 3.4.3.

Let R:=LT(1)K(Z)R:=L_{T(1)}K(\mathbb{Z}) and p=2p=2. Then

π1GmRπ0GmRZ2×Z/2.\pi_{1}\mathbb{G}_{m}R\simeq\pi_{0}\mathbb{G}_{m}R\simeq\mathbb{Z}_{2}\times\mathbb{Z}/2.

Now we turn to the logarithmic fiber FlogR\mathrm{F}_{\log}R. Again, 3.1.2 immediately implies that π2FlogR=0\pi_{2}\mathrm{F}_{\log}R=0 and π1FlogR=π1GmR=Z2×Z/2\pi_{1}\mathrm{F}_{\log}R=\pi_{1}\mathbb{G}_{m}R=\mathbb{Z}_{2}\times\mathbb{Z}/2. Now consider the log LES:

π3FlogR=0π3Rπ3Rπ2FlogR=0π2Rπ2Rπ1FlogR=Z×Z/2Z2×Z/2Z2×Z/2π0FlogRZ2×Zplog3log2log1log0.\leavevmode\hbox to225.09pt{\vbox to91.78pt{\pgfpicture\makeatletter\hbox{\hskip 112.54623pt\lower-44.52208pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-112.54623pt}{-44.52208pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 28.39905pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.0935pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}\mathrm{F}_{\log}R=0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 28.39905pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{3}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 28.39905pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.0935pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}\mathrm{F}_{\log}R=0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.39905pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil&\hfil\hskip 36.39072pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.0852pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{2}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.39075pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 42.05185pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.7463pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathrm{F}_{\log}R=\mathbb{Z}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 42.05185pt\hfil&\hfil\hskip 47.24718pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.94167pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.24721pt\hfil&\hfil\hskip 47.24718pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.94167pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.24721pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 19.23242pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.92688pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathrm{F}_{\log}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.23242pt\hfil&\hfil\hskip 33.47635pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17084pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.47638pt\hfil&\hfil\hskip 33.48509pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.17958pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.48512pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.89534pt}{36.52905pt}\pgfsys@lineto{5.81393pt}{36.52905pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.01392pt}{36.52905pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.39539pt}{36.52905pt}\pgfsys@lineto{76.30832pt}{36.52905pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.5083pt}{36.52905pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{48.57962pt}{40.24292pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{3}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.89534pt}{14.84302pt}\pgfsys@lineto{5.81393pt}{14.84302pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.01392pt}{14.84302pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.39539pt}{14.84302pt}\pgfsys@lineto{76.30832pt}{14.84302pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.5083pt}{14.84302pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{48.57962pt}{18.55688pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-28.24254pt}{-7.5097pt}\pgfsys@lineto{-5.04253pt}{-7.5097pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.84254pt}{-7.5097pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{42.25185pt}{-7.5097pt}\pgfsys@lineto{65.45186pt}{-7.5097pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.65184pt}{-7.5097pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{48.57962pt}{-3.79584pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.06197pt}{-30.82907pt}\pgfsys@lineto{8.7283pt}{-30.82907pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.92828pt}{-30.82907pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{28.48102pt}{-30.82907pt}\pgfsys@lineto{79.21394pt}{-30.82907pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{79.41393pt}{-30.82907pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{48.57524pt}{-27.1152pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\log_{0}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Again, θ1=0\theta_{1}=0 and 3.1.6 force log1=0\log_{1}=0, and so π0FlogR\pi_{0}\mathrm{F}_{\log}R is an extension of Z/2\mathbb{Z}/2 (the kernel of the degree 0 logarithm) by Z2×Z/2\mathbb{Z}_{2}\times\mathbb{Z}/2. We deduce the following:

Lemma 3.4.4.

Let R:=LT(1)K(Z)R:=L_{T(1)}K(\mathbb{Z}) and p=2p=2. Then

π2FlogR=0,π1FlogR=Z2×Z/2,andπ0FlogR=Z2×A,\pi_{2}\mathrm{F}_{\log}R=0,\ \pi_{1}\mathrm{F}_{\log}R=\mathbb{Z}_{2}\times\mathbb{Z}/2,\ \text{and}\ \pi_{0}\mathrm{F}_{\log}R=\mathbb{Z}_{2}\times A,

where AA is either Z/2\mathbb{Z}/2, Z/22,\mathbb{Z}/2^{2}, or Z/4\mathbb{Z}/4.

Remark 3.4.5.

We will eventually resolve the extension problem and show that AZ/22A\simeq\mathbb{Z}/2^{2} (cf. 4.2.4).

4 The connective homotopy type of the logarithmic fiber

The main results of this section are calculations of the connective cover of the logarithmic fibers: 4.1.1, 4.1.4, 4.2.1, 4.2.5, as well as splittings of the integral units of LT(1)K(Z)L_{T(1)}K(\mathbb{Z}): 4.2.2, 4.2.6, and the splitting of the integral units of K(Z)pK(\mathbb{Z})_{p}: 4.3.3.

We summarize them in the following table for the reader’s convenience. Write

Z/2Sq2Σ(F×)2:=Fib(Z/2Sq2Σ2Z/211Σ2(F)2×),\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma(\mathbb{F}_{\ell}^{\times})_{2}:=\mathrm{Fib}(\mathbb{Z}/2\xrightarrow{Sq^{2}}\Sigma^{2}\mathbb{Z}/2\xrightarrow{1\mapsto-1}\Sigma^{2}(\mathbb{F}_{\ell})^{\times}_{2}),
Z/2Sq2ΣZ/2:=Fib(Z/2Sq2Σ2Z/2).\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma\mathbb{Z}/2:=\mathrm{Fib}(\mathbb{Z}/2\xrightarrow{Sq^{2}}\Sigma^{2}\mathbb{Z}/2).
Ring R FlogR[0,)\mathrm{F}_{\log}R[0,\infty) 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1]
K(F),pK(\mathbb{F}_{\ell}),\quad p odd Fp×(F×)pΣ(F×)p\mathbb{F}_{p}^{\times}\oplus(\mathbb{F}_{\ell}^{\times})_{p}\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p} Z/2Σ(F×)p\mathbb{Z}/2\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p}
K(F),p=2K(\mathbb{F}_{\ell}),\quad p=2 (F×)2𝔤𝔩1±1R[0,1](\mathbb{F}_{\ell}^{\times})_{2}\oplus\mathfrak{gl}_{1}^{\pm 1}R[0,1] Z/2Sq2Σ(F×)2\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma(\mathbb{F}_{\ell}^{\times})_{2}
K(Z),p>2K(\mathbb{Z}),\quad p>2 ZpFp×ΣZp\mathbb{Z}_{p}\oplus\mathbb{F}_{p}^{\times}\oplus\Sigma\mathbb{Z}_{p} Z/2ΣZp\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{p}
K(Z),p=2K(\mathbb{Z}),\quad p=2 Z2Z/2Z/2Sq2ΣZ/2ΣZ2\mathbb{Z}_{2}\oplus\mathbb{Z}/2\oplus\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{2} Z/2Sq2ΣZ/2ΣZ2\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{2}

4.1 For R=K(F)pR=K(\mathbb{F}_{\ell})_{p}

When pp\neq\ell we have already calculated the homotopy groups of the logarithmic fiber (3.3.2). For odd pp we can immediately describe the connective homotopy type since there is no possibility of a kk-invariant.

Lemma 4.1.1.

Let R=K(F)pR=K(\mathbb{F}_{\ell})_{p} with p>2\ell\neq p>2. Then the connective cover of the logarithmic fiber is

FlogR[0,)(F×)pFp×Σ(F×)p.\mathrm{F}_{\log}R[0,\infty)\simeq(\mathbb{F}_{\ell}^{\times})_{p}\oplus\mathbb{F}_{p}^{\times}\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p}.
Proof.

The homotopy groups of FlogR[0,)\mathrm{F}_{\log}R[0,\infty) are computed in 3.3.2. Since this spectrum is 11-truncated and pp-local for an odd prime pp, it splits to a direct sum according to its homotopy groups. ∎

We also immediately get a splitting of the integral units, and this time we can include the case =p\ell=p.

Lemma 4.1.2.

Let R=K(F)pR=K(\mathbb{F}_{\ell})_{p} with p>2p>2. Then

𝔤𝔩1±1RZ/2Σ(F×)p𝔤𝔩1±1R[2,).\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathbb{Z}/2\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p}\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty).
Proof.

By 2.3.2 we have 𝔤𝔩1±1R[0,1]Z/2Σ(F×)p\mathfrak{gl}_{1}^{\pm 1}R[0,1]\simeq\mathbb{Z}/2\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p}. Hence, it remains to show that the kk-invariant

Z/2Σ(F×)pΣ𝔤𝔩1±1R[2,)\mathbb{Z}/2\oplus\Sigma(\mathbb{F}_{\ell}^{\times})_{p}\to\Sigma\mathfrak{gl}_{1}^{\pm 1}R[2,\infty)

is trivial. The Σ(F×)p\Sigma(\mathbb{F}_{\ell}^{\times})_{p}-component of this map vanishes by the splitting of 𝔰𝔩1\mathfrak{sl}_{1} (Section 2.4), and the Z/2\mathbb{Z}/2-component vanishes since Σ𝔤𝔩1±1R[2,)\Sigma\mathfrak{gl}_{1}^{\pm 1}R[2,\infty) is pp-local and hence receives no maps from Z/2\mathbb{Z}/2.

When p=2p=2 we had an unresolved extension problem in π0FlogR=(F×)2Z/2\pi_{0}\mathrm{F}_{\log}R=(\mathbb{F}_{\ell}^{\times})_{2}\rtimes\mathbb{Z}/2 (where here again the symbol \rtimes stands for an unspecified extension of the two groups). Note that because π0GmR=(F×)2\pi_{0}\mathbb{G}_{m}R=(\mathbb{F}_{\ell}^{\times})_{2} is half the size of π0FlogR\pi_{0}\mathrm{F}_{\log}R (cf. 3.3.1), there must be a kk-invariant connecting π0\pi_{0} and π1\pi_{1} of FlogR\mathrm{F}_{\log}R. In other words, multiplication by η\eta must be non-trivial on the homotopy of this spectrum. But we can say more.

Lemma 4.1.3.

Let R=K(F)2R=K(\mathbb{F}_{\ell})_{2} with >2\ell>2. Then 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R splits at 11 if and only if the surjection of groups π0FlogR=(F×)2Z/2Z/2\pi_{0}\mathrm{F}_{\log}R=(\mathbb{F}_{\ell}^{\times})_{2}\rtimes\mathbb{Z}/2\rightarrow\mathbb{Z}/2 is split.

Proof.

First, the map FlogR[0,)𝔤𝔩1R\mathrm{F}_{\log}R[0,\infty)\rightarrow\mathfrak{gl}_{1}R factors through 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R as is evident from the log LES. Then, consider the following diagram, in which the upper vertical maps are the inclusions of the connected covers:

Σ(F×)2𝔤𝔩1±1[1,)Σ(F×)2FlogR[0,)𝔤𝔩1±1R𝔤𝔩1±1R[0,1](F×)2Z/2Z/2Z/2.\leavevmode\hbox to197.04pt{\vbox to109.96pt{\pgfpicture\makeatletter\hbox{\hskip 98.52118pt\lower-54.97807pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-98.52118pt}{-54.97807pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.28195pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.97641pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma(\mathbb{F}_{\ell}^{\times})_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.28195pt\hfil&\hfil\hskip 46.64998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.34447pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}[1,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 22.65001pt\hfil&\hfil\hskip 42.28192pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.97641pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma(\mathbb{F}_{\ell}^{\times})_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.28195pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 28.03786pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.73232pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathrm{F}_{\log}R[0,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.03786pt\hfil&\hfil\hskip 37.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 13.42952pt\hfil&\hfil\hskip 47.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}R[0,1]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.42952pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 28.44168pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.13614pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${(\mathbb{F}_{\ell}^{\times})_{2}\rtimes\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.44168pt\hfil&\hfil\hskip 38.18744pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.88193pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.18747pt\hfil&\hfil\hskip 38.18744pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.88193pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.18747pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.59755pt}{45.06949pt}\pgfsys@lineto{-18.23781pt}{45.06949pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.03783pt}{45.06949pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-70.0795pt}{36.20978pt}\pgfsys@lineto{-70.0795pt}{17.7608pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-70.0795pt}{17.56082pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{27.86217pt}{45.06949pt}\pgfsys@lineto{56.20975pt}{45.06949pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.40973pt}{45.06949pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{5.01216pt}{36.20978pt}\pgfsys@lineto{5.01216pt}{19.00969pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{5.01216pt}{18.80971pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{75.09166pt}{36.20978pt}\pgfsys@lineto{75.09166pt}{19.00967pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{75.09166pt}{18.8097pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.84164pt}{8.50113pt}\pgfsys@lineto{-9.01732pt}{8.50113pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.81734pt}{8.50113pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-70.0795pt}{-0.8919pt}\pgfsys@lineto{-70.0795pt}{-18.092pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-70.0795pt}{-18.29198pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.64168pt}{8.50113pt}\pgfsys@lineto{51.06218pt}{8.50113pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.26216pt}{8.50113pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{5.01216pt}{0.19698pt}\pgfsys@lineto{5.01216pt}{-19.05864pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{5.01216pt}{-19.25862pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{75.09166pt}{-0.35858pt}\pgfsys@lineto{75.09166pt}{-19.05864pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{75.09166pt}{-19.25862pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.43782pt}{-28.31831pt}\pgfsys@lineto{-9.77527pt}{-28.31831pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.57529pt}{-28.31831pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.39963pt}{-28.31831pt}\pgfsys@lineto{60.30423pt}{-28.31831pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.50421pt}{-28.31831pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Since the composition of the top row in an equivalence and the columns are fiber sequences, the outer square of the bottom rectangle is a pullback square. Hence, a section of the bottom horizontal composition provides a section of the map FlogR𝔤𝔩1±1R[0,1]\mathrm{F}_{\log}R\to\mathfrak{gl}_{1}^{\pm 1}R[0,1], which then can be composed with the map FlogR𝔤𝔩1±1R\mathrm{F}_{\log}R\to\mathfrak{gl}_{1}^{\pm 1}R to provide the desired section of the 11-truncation map 𝔤𝔩1±1R𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R\to\mathfrak{gl}_{1}^{\pm 1}R[0,1].

Conversely, suppose the truncation map is split. Then since the induces inclusion of 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1] into 𝔤𝔩1R\mathfrak{gl}_{1}R is null after T(1)T(1)-localization, it must factors through FlogR\mathrm{F}_{\log}R by its universal property as a fiber. This gives a section 𝔤𝔩1±1R[0,1]FlogR[0,)\mathfrak{gl}_{1}^{\pm 1}R[0,1]\to\mathrm{F}_{\log}R[0,\infty) which gives on π0\pi_{0} the desired splitting of the bottom row.

By functoriality of the log LES for ring maps, the π0\pi_{0}-splitting hypothesis in 4.1.3 is implied by the π0\pi_{0}-splitting hypothesis of 4.2.3, which is proved in 4.2.4. So assuming these later results for the moment we get the following lemma.

Lemma 4.1.4.

Let R=K(F)2R=K(\mathbb{F}_{\ell})_{2} with p=2\ell\neq p=2. Then connective cover of the logarithmic fiber is

FlogR[0,)(F×)2𝔤𝔩1±1R[0,1].\mathrm{F}_{\log}R[0,\infty)\simeq(\mathbb{F}_{\ell}^{\times})_{2}\oplus\mathfrak{gl}_{1}^{\pm 1}R[0,1].

Note that the homotopy type of the second summand is determined in Section Section 2.3.We a also get a statement about the splitting of 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R, this time with pp and \ell unrestricted

Lemma 4.1.5.

Let R=K(F)pR=K(\mathbb{F}_{\ell})_{p}. Then

𝔤𝔩1±1R𝔤𝔩1±1R[0,1]𝔤𝔩1±1R[2,).\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathfrak{gl}_{1}^{\pm 1}R[0,1]\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty).
Proof.

We have just proved it for 2=p\ell\neq 2=p. We have proved it for p>2p>2 in 4.1.2. When =2=p\ell=2=p, R=Z2R=\mathbb{Z}_{2} and the result is trivially true. ∎

4.2 For R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z})

We have already calculated the connective homotopy groups of FlogR\mathrm{F}_{\log}R. As in the case of K(F)K(\mathbb{F}_{\ell}), when p>2p>2 there is no possibility of a kk-invariant.

Lemma 4.2.1.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) with p>2p>2. Then the connective cover of the logarithmic fiber FlogR\mathrm{F}_{\log}R is

FlogR[0,)Fp×ZpΣZp.\mathrm{F}_{\log}R[0,\infty)\simeq\mathbb{F}_{p}^{\times}\oplus\mathbb{Z}_{p}\oplus\Sigma\mathbb{Z}_{p}.

Similarly 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R is automatically split.

Lemma 4.2.2.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) with p>2p>2. Then

𝔤𝔩1±1RZ/2ΣZp𝔤𝔩1±1R[2,).\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{p}\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty).

At p=2p=2 we have an extension problem to solve (cf. 3.4.5).

Lemma 4.2.3.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) with p=2p=2. The truncation map 𝔤𝔩1±1R𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R\rightarrow\mathfrak{gl}_{1}^{\pm 1}R[0,1] is split if and only if the group map AZ/2A\rightarrow\mathbb{Z}/2 is split.

Proof.

The proof is similar to that of 4.1.3. The map FlogR[0,)𝔤𝔩1R\mathrm{F}_{\log}R[0,\infty)\rightarrow\mathfrak{gl}_{1}R factors through 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R and we arrive at the following diagram

Σ(Z2×Z/2)𝔤𝔩1±1[1,)Σ(Z2×Z/2)FlogR[0,)𝔤𝔩1±1R𝔤𝔩1±1R[0,1]Z2×AZ/2Z/2.\leavevmode\hbox to216.29pt{\vbox to108.99pt{\pgfpicture\makeatletter\hbox{\hskip 108.14442pt\lower-54.49475pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-108.14442pt}{-54.49475pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 30.74722pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.44168pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma(\mathbb{Z}_{2}\times\mathbb{Z}/2)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 30.74722pt\hfil&\hfil\hskip 46.64998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.34447pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}[1,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 22.65001pt\hfil&\hfil\hskip 54.7472pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.44168pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma(\mathbb{Z}_{2}\times\mathbb{Z}/2)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 30.74722pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 28.03786pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.73232pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathrm{F}_{\log}R[0,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.03786pt\hfil&\hfil\hskip 37.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 13.42952pt\hfil&\hfil\hskip 47.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}R[0,1]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.42952pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 18.22636pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.92082pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times A}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 18.22636pt\hfil&\hfil\hskip 38.18744pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.88193pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.18747pt\hfil&\hfil\hskip 38.18744pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.88193pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.18747pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-46.44998pt}{44.58617pt}\pgfsys@lineto{-23.24997pt}{44.58617pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.04999pt}{44.58617pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-77.3972pt}{35.72646pt}\pgfsys@lineto{-77.3972pt}{17.27748pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-77.3972pt}{17.0775pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{22.85pt}{44.58617pt}\pgfsys@lineto{46.05002pt}{44.58617pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{46.25pt}{44.58617pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{0.0pt}{35.72646pt}\pgfsys@lineto{0.0pt}{18.52637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{0.0pt}{18.32639pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{77.3972pt}{35.72646pt}\pgfsys@lineto{77.3972pt}{18.52635pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{77.3972pt}{18.32637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-49.15935pt}{8.0178pt}\pgfsys@lineto{-14.02948pt}{8.0178pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.8295pt}{8.0178pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-77.3972pt}{-1.37523pt}\pgfsys@lineto{-77.3972pt}{-19.242pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-77.3972pt}{-19.44199pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{13.62952pt}{8.0178pt}\pgfsys@lineto{53.36772pt}{8.0178pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{53.5677pt}{8.0178pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{0.0pt}{-0.28635pt}\pgfsys@lineto{0.0pt}{-18.57532pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{0.0pt}{-18.7753pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{77.3972pt}{-0.8419pt}\pgfsys@lineto{77.3972pt}{-18.57532pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{77.3972pt}{-18.7753pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-58.97084pt}{-27.83499pt}\pgfsys@lineto{-14.78743pt}{-27.83499pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.58745pt}{-27.83499pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{14.38747pt}{-27.83499pt}\pgfsys@lineto{62.60977pt}{-27.83499pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{62.80975pt}{-27.83499pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

in which the columns are fiber sequences. The upper composition is an equivalence, so the bottom rectangle is a pullback square. Hence, a section of the composition on the bottom row provides a section of FlogR𝔤𝔩1±1R[0,1]\mathrm{F}_{\log}R\to\mathfrak{gl}_{1}^{\pm 1}R[0,1], and hence of the truncation map 𝔤𝔩1±1R𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R\to\mathfrak{gl}_{1}^{\pm 1}R[0,1].

Conversely, since there are no non-zero maps from 𝔤𝔩1±1R[0,1]\mathfrak{gl}_{1}^{\pm 1}R[0,1] to RR, a section of the map 𝔤𝔩1±1R[0,1]𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R[0,1]\to\mathfrak{gl}_{1}^{\pm 1}R gives in particular a map 𝔤𝔩1±1R[0,1]FlogR[0,)\mathfrak{gl}_{1}^{\pm 1}R[0,1]\to\mathrm{F}_{\log}R[0,\infty) which provides a section of the bottom composition. Such a section s:Z/2Z2×As\colon\mathbb{Z}/2\to\mathbb{Z}_{2}\times A must have trivial Z2\mathbb{Z}_{2}-component and hence land in AA.

Recall that the group AA is one of Z/2,Z/4\mathbb{Z}/2,\mathbb{Z}/4, or Z/2×Z/2\mathbb{Z}/2\times\mathbb{Z}/2. We will show now that the last option is the one that occures, and in particular that the map to Z/2\mathbb{Z}/2 from 4.2.3 indeed splits.

Lemma 4.2.4.

AZ/2×Z/2A\simeq\mathbb{Z}/2\times\mathbb{Z}/2.

Proof.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) and consider the map RLT(1)KO=KO2R\rightarrow L_{T(1)}KO=KO_{2}. That induces the following commutative diagram:

Z2ΣZ2B=FlogR[0,)𝔤𝔩1±1RRFlogKO2[0,)𝔤𝔩1±1KO2KO2.\leavevmode\hbox to238.25pt{\vbox to56.3pt{\pgfpicture\makeatletter\hbox{\hskip 119.1256pt\lower-28.20149pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-119.1256pt}{-28.10165pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 61.31177pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-57.00623pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\oplus\Sigma\mathbb{Z}_{2}\oplus B=\mathrm{F}_{\log}R[0,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 61.31177pt\hfil&\hfil\hskip 37.42949pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.12398pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 13.42952pt\hfil&\hfil\hskip 32.14058pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.83507pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.14061pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 34.15971pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.85417pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathrm{F}_{\log}KO_{2}[0,\infty)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 34.15971pt\hfil&\hfil\hskip 43.55135pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.24583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}^{\pm 1}KO_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.55138pt\hfil&\hfil\hskip 38.26245pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.95694pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${KO_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 14.26248pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{3.69794pt}{11.50003pt}\pgfsys@lineto{33.0198pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.21979pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-57.81383pt}{2.107pt}\pgfsys@lineto{-57.81383pt}{-16.34198pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-57.81383pt}{-16.54196pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{60.6788pt}{11.50003pt}\pgfsys@lineto{96.12254pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{96.32253pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{47.04929pt}{3.19588pt}\pgfsys@lineto{47.04929pt}{-15.0931pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{47.04929pt}{-15.29308pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{104.86311pt}{5.14032pt}\pgfsys@lineto{104.86311pt}{-17.00867pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{104.86311pt}{-17.20865pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.45412pt}{-25.60165pt}\pgfsys@lineto{26.89795pt}{-25.60165pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.09793pt}{-25.60165pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{66.80066pt}{-25.60165pt}\pgfsys@lineto{90.00067pt}{-25.60165pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{90.20065pt}{-25.60165pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

We know that FlogKO2=𝔤𝔩1±1K(Z)Z/2\mathrm{F}_{\log}KO_{2}=\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})\oplus\mathbb{Z}/2. On the other hand the left vertical map is an injection in degrees 0 and 1, and is therefore an equivalence when restricted to BB. Indeed degree 1 is clear, e.g. from the splitting of 𝔰𝔩1\mathfrak{sl}_{1}. For π0\pi_{0}, there is a comparison of short exact sequences

π1LT(1)K(Z)=Z2×Z/2Z2×AZ/2=π0𝔤𝔩1±1LT(1)K(Z)π1KO2=Z/2Z/2×Z/2Z/2=π0𝔤𝔩1±1KO2.\leavevmode\hbox to317.55pt{\vbox to56.24pt{\pgfpicture\makeatletter\hbox{\hskip 158.77681pt\lower-28.16815pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-158.77681pt}{-28.06831pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 54.04471pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-49.73917pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}L_{T(1)}K(\mathbb{Z})=\mathbb{Z}_{2}\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 54.04471pt\hfil&\hfil\hskip 42.22633pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.92082pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}_{2}\times A}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.22636pt\hfil&\hfil\hskip 75.6627pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-47.3572pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2=\pi_{0}\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 51.66273pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 32.28345pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.9779pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}KO_{2}=\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 32.28345pt\hfil&\hfil\hskip 53.06937pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.76385pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2\times\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 29.0694pt\hfil&\hfil\hskip 64.35004pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.04453pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}/2=\pi_{0}\mathfrak{gl}_{1}^{\pm 1}KO_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 40.35007pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-50.4874pt}{12.00003pt}\pgfsys@lineto{-16.44435pt}{12.00003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.24437pt}{12.00003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-104.7321pt}{2.14032pt}\pgfsys@lineto{-104.7321pt}{-16.30864pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-104.7321pt}{-16.50862pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{20.80833pt}{12.00003pt}\pgfsys@lineto{54.85138pt}{12.00003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.05136pt}{12.00003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{2.38197pt}{3.83588pt}\pgfsys@lineto{2.38197pt}{-16.30864pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{2.38197pt}{-16.50862pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{107.11407pt}{2.14032pt}\pgfsys@lineto{107.11407pt}{-15.05977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{107.11407pt}{-15.25975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-72.24866pt}{-25.56831pt}\pgfsys@lineto{-27.28738pt}{-25.56831pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.0874pt}{-25.56831pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.65137pt}{-25.56831pt}\pgfsys@lineto{66.16405pt}{-25.56831pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{66.36403pt}{-25.56831pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The right vertical map is an isomorphism, and the left vertical map is the projection onto Z/2\mathbb{Z}/2, so the middle map is a isomorphism AZ/2×Z/2A\rightarrow\mathbb{Z}/2\times\mathbb{Z}/2.

Combining 4.2.3 and 4.2.4 we get the following two results.

Lemma 4.2.5.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) with p=2p=2. Then the connective cover of the logarithmic fiber FlogR\mathrm{F}_{\log}R is

FlogR[0,)Z2Z/2𝔤𝔩1±1R[0,1].\mathrm{F}_{\log}R[0,\infty)\simeq\mathbb{Z}_{2}\oplus\mathbb{Z}/2\oplus\mathfrak{gl}_{1}^{\pm 1}R[0,1].

From this, we deduce the splitting of 𝔤𝔩1±1LT(1)K(Z)\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z}):

Corollary 4.2.6.

Let R=LT(1)K(Z)R=L_{T(1)}K(\mathbb{Z}) with p=2p=2. Then 𝔤𝔩1±1R\mathfrak{gl}_{1}^{\pm 1}R splits at 11, so that we have (cf. Table 4)

𝔤𝔩1±1RZ/2Sq2ΣZ/2ΣZ2𝔤𝔩1±1R[2,).\mathfrak{gl}_{1}^{\pm 1}R\simeq\mathbb{Z}/2\ltimes_{\mathrm{Sq}^{2}}\Sigma\mathbb{Z}/2\oplus\Sigma\mathbb{Z}_{2}\oplus\mathfrak{gl}_{1}^{\pm 1}R[2,\infty).
Proof.

This follows from the combination of 4.2.3 and 4.2.4. ∎

4.3 For R=K(Z)pR=K(\mathbb{Z})_{p}

Lemma 4.3.1.

For all pp, the fiber sequence (cf. 2.2.2)

Zp𝔤𝔩1±1(K(Z)p)𝔤𝔩1±1(K(Z[1/p])p).\mathbb{Z}_{p}\rightarrow\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{Z})_{p})\rightarrow\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{Z}[1/p])_{p}).

is split (ie. the first map is null).

Proof.

By 4.2.2 and 4.2.6 𝔤𝔩1±1LT(1)K(Z)\mathfrak{gl}_{1}^{\pm 1}L_{T(1)}K(\mathbb{Z}) contains ΣZp\Sigma\mathbb{Z}_{p} as a summand. The second map of the above fiber sequence induces an equivalence onto the complementary summand. ∎

Remark 4.3.2.

Note that there is also a fiber sequence

ZpK(Z)pK(Z[1/p])\mathbb{Z}_{p}\rightarrow K(\mathbb{Z})_{p}\rightarrow K(\mathbb{Z}[1/p])

but first map is not null.

This immediately implies the desired splitting for 𝔤𝔩1±1K(Z)p\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{p}.

Corollary 4.3.3.

For every prime pp the truncation map

𝔤𝔩1±1K(Z)p𝔤𝔩1±1K(Z)p[0,1]\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{p}\rightarrow\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{p}[0,1]

is split. When p>2p>2, 𝔤𝔩1±1K(Z)p[0,1]Z/2\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{p}[0,1]\simeq\mathbb{Z}/2 and when p=2p=2, 𝔤𝔩1±1K(Z)2[0,1]𝔤𝔩1±1K(Z)[0,1]\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})_{2}[0,1]\simeq\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z})[0,1].

5 The homotopy type of the units of K(S)K(S)

5.1 Splitting the bottom piece of 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S)

Theorem 5.1.1.

The spectra 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}) and 𝔤𝔩1K(F)\mathfrak{gl}_{1}K(\mathbb{F}_{\ell}) are both split at 11. Namely, the truncation maps

𝔤𝔩1K(Z)𝔤𝔩1K(Z)[0,1]\mathfrak{gl}_{1}K(\mathbb{Z})\rightarrow\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]
𝔤𝔩1K(F)𝔤𝔩1K(F)[0,1]\mathfrak{gl}_{1}K(\mathbb{F}_{\ell})\rightarrow\mathfrak{gl}_{1}K(\mathbb{F}_{\ell})[0,1]

admit right inverses.

Proof.

Note that 𝔤𝔩1K(Z)=𝔤𝔩1±1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z})=\mathfrak{gl}_{1}^{\pm 1}K(\mathbb{Z}). Moreover the homotopy groups of K(Z)K(\mathbb{Z}) are finitely generated. Having split the truncations 𝔤𝔩1±1(K(Z)p)𝔤𝔩1±1(K(Z)p)[0,1]\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{Z})_{p})\rightarrow\mathfrak{gl}_{1}^{\pm 1}(K(\mathbb{Z})_{p})[0,1] (cf. 4.3.3), we can now apply 2.1.4.

The splitting for K(F)K(\mathbb{F}_{\ell}) is proved in exactly the same way, using the pp-complete splittings from 4.1.5. ∎

5.2 The homotopy type of 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S)

We can use the splittings in 5.1.1 to describe the entire homotopy type of 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}) and 𝔤𝔩1K(F)\mathfrak{gl}_{1}K(\mathbb{F}_{\ell}) by identifying the complimentary summands 𝔤𝔩1K(Z)[2,)\mathfrak{gl}_{1}K(\mathbb{Z})[2,\infty) and 𝔤𝔩1K(F)[2,)\mathfrak{gl}_{1}K(\mathbb{F}_{\ell})[2,\infty), at least after completion at a prime pp.

Theorem 5.2.1.

For every prime pp there are equivalences

𝔤𝔩1K(Z)p[2,)K(Z)p[2,),\mathfrak{gl}_{1}K(\mathbb{Z})_{p}[2,\infty)\simeq K(\mathbb{Z})_{p}[2,\infty),
𝔤𝔩1K(F)p[2,)K(F)p[2,).\mathfrak{gl}_{1}K(\mathbb{F}_{\ell})_{p}[2,\infty)\simeq K(\mathbb{F}_{\ell})_{p}[2,\infty).
Proof.

From the first display of Section 4.3 we know that

𝔤𝔩1K(Z)p[2,)𝔤𝔩1K(Z[1/p])p[2,).\mathfrak{gl}_{1}K(\mathbb{Z})_{p}[2,\infty)\simeq\mathfrak{gl}_{1}K(\mathbb{Z}[1/p])_{p}[2,\infty).

Since K(Z[1/p])pK(\mathbb{Z}[1/p])_{p} is the connective cover of its T(1)T(1)-localization (cf. 2.2.1) we have a logarithmic identification

𝔤𝔩1K(Z[1/p])p[2,)K(Z[1/p])p[2,).\mathfrak{gl}_{1}K(\mathbb{Z}[1/p])_{p}[2,\infty)\simeq K(\mathbb{Z}[1/p])_{p}[2,\infty).

On the other hand, the second fiber sequence in Section 4.3 (in 4.3.2) implies that K(Z[1/p])p[2,)K(Z)p[2,)K(\mathbb{Z}[1/p])_{p}[2,\infty)\simeq K(\mathbb{Z})_{p}[2,\infty). So we get equivalences

𝔤𝔩1K(Z)p[2,)K(Z)p[2,).\mathfrak{gl}_{1}K(\mathbb{Z})_{p}[2,\infty)\simeq K(\mathbb{Z})_{p}[2,\infty).

The argument for K(F)K(\mathbb{F}_{\ell}) is analogous.

5.3 Relation to strict triviality of Σ2Z\Sigma^{2}\mathbb{Z}

Consider the element of pic(Z)\mathrm{pic}(\mathbb{Z}) represented by the Z\mathbb{Z}-module Σ2Z\Sigma^{2}\mathbb{Z}. This admits the structure of a strict element of pic(Z)\mathrm{pic}(\mathbb{Z}), as represented by the dashed arrow in the diagram below, where the middle column is a fiber sequence. In fact this strict structure is canonical, since it corresponds to a choice of nullhomotopy of the composite of multiplication by 2 and quotienting by 2. This strict element of pic(Z)\mathrm{pic}(\mathbb{Z}) produces an element [Σ2Z]π0GmK(Z)[\Sigma^{2}\mathbb{Z}]\in\pi_{0}\mathbb{G}_{m}K(\mathbb{Z}) is the composite of the dashed and horizontal arrow in the following diagram

pic(Z)𝔤𝔩1K(Z)ZZΣ2Z/22Sq2/2.\leavevmode\hbox to146.27pt{\vbox to103.93pt{\pgfpicture\makeatletter\hbox{\hskip 73.13327pt\lower-51.96474pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-73.13327pt}{-51.96474pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 42.35414pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.04863pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\text{pic}(\mathbb{Z})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.35417pt\hfil&\hfil\hskip 45.8583pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.5528pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathfrak{gl}_{1}K(\mathbb{Z})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.85834pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 8.07637pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.77083pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.07637pt\hfil&\hfil\hskip 32.07634pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.77083pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Z}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.07637pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 43.19856pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.89305pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\Sigma^{2}\mathbb{Z}/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.1986pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-13.78197pt}{34.44533pt}\pgfsys@lineto{-13.78197pt}{17.24524pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-13.78197pt}{17.04526pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{4.7722pt}{43.30504pt}\pgfsys@lineto{28.81664pt}{43.30504pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.01662pt}{43.30504pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.78053pt}{8.65225pt}\pgfsys@lineto{-22.4583pt}{8.65225pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.25832pt}{8.65225pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-41.16943pt}{11.00502pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@setdash{2.79985pt,1.59991pt}{0.0pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.78053pt}{14.24501pt}\pgfsys@lineto{-27.2212pt}{34.22137pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.82854}{0.55994}{-0.55994}{0.82854}{-27.05553pt}{34.33334pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-13.78197pt}{2.29254pt}\pgfsys@lineto{-13.78197pt}{-14.90755pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-13.78197pt}{-15.10753pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.4292pt}{-8.66858pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\mathrm{Sq}^{2}\circ/2}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Note that the horizontal map is an isomorphism on π1\pi_{1} and surjective on π0\pi_{0}. Therefore, if the aforementioned element of π0GmK(Z)\pi_{0}\mathbb{G}_{m}K(\mathbb{Z}) were zero, the map pic(Z)𝔤𝔩1K(Z)\mathrm{pic}(\mathbb{Z})\rightarrow\mathfrak{gl}_{1}K(\mathbb{Z}) would factor through the cofiber of the dashed arrow and produce a section of the Postnikov truncation 𝔤𝔩1K(Z)𝔤𝔩1K(Z)[0,1]\mathfrak{gl}_{1}K(\mathbb{Z})\rightarrow\mathfrak{gl}_{1}K(\mathbb{Z})[0,1], providing an alternative proof of 5.1.1. Note, however, that the splitting of 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}) does not by itself implies the strict triviality of [Σ2Z][\Sigma^{2}\mathbb{Z}]: it is not clear that the map pic(Z)𝔤𝔩1K(Z)\mathrm{pic}(\mathbb{Z})\to\mathfrak{gl}_{1}K(\mathbb{Z}) factors through the summand 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}). We leave this point for future investigation.

6 The spectrum of strict units

6.1 GmK(Z)\mathbb{G}_{m}K(\mathbb{Z})

From the calculation of the logarithmic fibers (cf. 4.2.1 and 4.2.5) we find that π2Gm(K(Z)p)=0\pi_{\geq 2}\mathbb{G}_{m}(K(\mathbb{Z})_{p})=0. Consider the arithmetic fracture square

GmK(Z)pGmK(Z)pGmK(Z)QGm(pK(Z)pQ),.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 25.60635pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-21.65358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{G}_{m}K(\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 63.83691pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-37.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 63.83691pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\prod_{p}\mathbb{G}_{m}K(\mathbb{Z})_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 93.03023pt\raise-37.00012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-25.60635pt\raise-47.50012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{G}_{m}K(\mathbb{Z}){Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 49.60635pt\raise-47.50012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 49.60635pt\raise-47.50012pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{G}_{m}(\prod_{p}K(\mathbb{Z})_{p}\otimes\mathbb{Q}),}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Assembling various information above (eg. 3.4.1, 3.4.3, and Section 4.3) in the associated long exact sequence, we find

0{0}0{0}0{0}π1GmK(Z){\pi_{1}\mathbb{G}_{m}K(\mathbb{Z})}Z/2{\mathbb{Z}/2}0{0}π0GmK(Z){\pi_{0}\mathbb{G}_{m}K(\mathbb{Z})}Q××pZp×torZp×{\mathbb{Q}^{\times}\times\prod_{p}\mathbb{Z}_{p}\times\text{tor}\mathbb{Z}_{p}^{\times}}A×,{\mathbb{A}^{\times},}

where ApQp\mathbb{A}\subseteq\prod_{p}\mathbb{Q}_{p} is the ring of finite Adeles. Because [Z,X]=π0X[\mathbb{Z},X]=\pi_{0}X if XX is rational, the final map factors through the forgetful map from π0Gm\pi_{0}\mathbb{G}_{m} to π0𝔤𝔩1\pi_{0}\mathfrak{gl}_{1}, and is therefore the conglomerate of maps Zp×torZp×Qp×\mathbb{Z}_{p}\times\text{tor}\mathbb{Z}_{p}^{\times}\rightarrow\mathbb{Q}_{p}^{\times} that factor through projection to the second factor for odd pp and the zero map for p=2p=2. Since GmK(Z)\mathbb{G}_{m}K(\mathbb{Z}) is a Z\mathbb{Z}-module we have a complete calculation of the spectrum of strict units.

Theorem 6.1.1.

We have

GmK(Z)(Z^×Z/2)Σ(Z/2).\mathbb{G}_{m}K(\mathbb{Z})\simeq(\widehat{\mathbb{Z}}\times\mathbb{Z}/2)\oplus\Sigma(\mathbb{Z}/2).

6.2 GmK(F)\mathbb{G}_{m}K(\mathbb{F}_{\ell})

From the calculation of the logarithmic fibers (cf. 4.1.1 and 4.1.4) we find that π2Gm(K(F)p)=0\pi_{\geq 2}\mathbb{G}_{m}(K(\mathbb{F}_{\ell})_{p})=0. Assembling various information above (eg. 3.3.1) via the (LES associated to the) arithmetic fracture square, we find

000π1GmK(F)p(F×)p0π0GmK(F)Q××p(F×)p×Fp×pQp×.\leavevmode\hbox to218.92pt{\vbox to78.84pt{\pgfpicture\makeatletter\hbox{\hskip 109.46133pt\lower-39.41808pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.46133pt}{-39.41808pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 28.51482pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.20927pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\mathbb{G}_{m}K(\mathbb{F}_{\ell})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.51482pt\hfil&\hfil\hskip 44.81055pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.50504pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\prod_{p}(\mathbb{F}_{\ell}^{\times})_{p}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.81058pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 28.51482pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.20927pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\mathbb{G}_{m}K(\mathbb{F}_{\ell})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.51482pt\hfil&\hfil\hskip 65.14847pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.84296pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{Q}^{\times}\times\prod_{p}(\mathbb{F}_{\ell}^{\times})_{p}\times\mathbb{F}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 41.1485pt\hfil&\hfil\hskip 39.79802pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.49251pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\prod_{p}\mathbb{Q}_{p}^{\times}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 15.79805pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-73.94098pt}{31.81393pt}\pgfsys@lineto{5.31126pt}{31.81393pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.51125pt}{31.81393pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.7223pt}{31.81393pt}\pgfsys@lineto{86.25778pt}{31.81393pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{86.45776pt}{31.81393pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-52.2317pt}{11.5279pt}\pgfsys@lineto{-8.69377pt}{11.5279pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.49379pt}{11.5279pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{33.72734pt}{11.5279pt}\pgfsys@lineto{86.25778pt}{11.5279pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{86.45776pt}{11.5279pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-52.2317pt}{-18.75827pt}\pgfsys@lineto{-29.0317pt}{-18.75827pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.83171pt}{-18.75827pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{54.06526pt}{-18.75827pt}\pgfsys@lineto{77.26527pt}{-18.75827pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.46526pt}{-18.75827pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Because [Z,X]=π0X[\mathbb{Z},X]=\pi_{0}X if XX is rational, the final map factors through the forgetful map from π0Gm\pi_{0}\mathbb{G}_{m} to π0𝔤𝔩1\pi_{0}\mathfrak{gl}_{1}, and is therefore the conglomerate of maps (F×)p×Fp×Qp×(\mathbb{F}_{\ell}^{\times})_{p}\times\mathbb{F}_{p}^{\times}\rightarrow\mathbb{Q}_{p}^{\times} that factor through projection to the second factor (and then the map induced by Zp×Qp×\mathbb{Z}_{p}^{\times}\hookrightarrow\mathbb{Q}_{p}^{\times}. Since GmK(F)\mathbb{G}_{m}K(\mathbb{F}_{\ell}) is a Z\mathbb{Z}-module we have a complete calculation of the spectrum of strict units.

Theorem 6.2.1.
GmK(F)=F×ΣF×.\mathbb{G}_{m}K(\mathbb{F}_{\ell})=\mathbb{F}_{\ell}^{\times}\oplus\Sigma\mathbb{F}_{\ell}^{\times}.

7 The splitting of the sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K

7.1 Sheaves of Spectra

Let AffZ(CAlgZ)op\mathrm{Aff}_{\mathbb{Z}}\simeq(\operatorname{CAlg}{Z}^{\heartsuit})^{\mathrm{op}} be the site of affine schemes666For set theoretic reasons, one should restrict to affine schemes which are the Zariski spectra of κ\kappa-compact rings for suitable cardinal κ\kappa. Since the KK-theory functor is accessible, this issue will not cause trouble and we keep it implicit., endowed with the Zariski topology. Let PShv(AffZ;Spcn)\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) be the \infty-category of presheaves of connective spectra on AffZ\mathrm{Aff}_{\mathbb{Z}}, and let Shv(AffZ;Sp)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}) be the full-subcategory of Zariski sheaves. For PShv(AffZ;Spcn)\mathscr{F}\in\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) and a ring SS, we shall denote (S):=(Spec(S))\mathscr{F}(S):=\mathscr{F}(\operatorname{Spec}(S)). Note that Shv(AffZ;Spcn)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) is a symmetric monoidal localization of PShv(AffZ;Sp)\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}) via the sheafification functor

LZar:PShv(AffZ;Spcn)Shv(AffZ;Spcn),L_{\text{Zar}}\colon\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}})\to\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}),

and hence inherits a canonical symmetric monoidal structure.

Recall that the \infty-category Shv(AffZ;Sp)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}) has a tt-structure in which the positive part is Shv(AffZ;Spcn)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}). Accordingly, for a sheaf \mathscr{F} we can set [a,b]:=τaτb\mathscr{F}[a,b]:=\tau_{\geq a}\tau_{\leq b}\mathscr{F}, with respect to this tt-structure. Similarly, we can form the sheaves πiShv(AffZ;Sp)\pi_{i}\mathscr{F}\in\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\heartsuit}), which we regard as discrete objects of Shv(AffZ;Spcn)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}).

Remark 7.1.1.

All the above constructions can be defined explicitly as the sheafifications of the corresponding (pointwise) operations on presheaves. For example, [a,b]\mathscr{F}[a,b] is the sheafification of the presheaf given by A(A)[a,b]A\mapsto\mathscr{F}(A)[a,b], e.t.c.

We can thus define the analog of 2.0.2 in the context of sheaves.

Definition 7.1.2.

We say that a sheaf of connective spectra Shv(AffZ;Spcn)\mathscr{F}\in\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) splits at aa if [0,a][a+1,)\mathscr{F}\simeq\mathscr{F}[0,a]\oplus\mathscr{F}[a+1,\infty).

Warning 7.1.3.

We warn the reader right away that since sheafification is involved in the formation of Postnikov truncations of sheaves, the fact that a sheaf \mathscr{F} splits at aa does not imply that (S)\mathscr{F}(S) splits at aa for every ring SS. In fact, we will produce a concrete counterexample of this phenomenon in 8.0.4.

7.2 KK-theory sheaf

The goal of this section is to show that the spectrum of units of KK-theory, considered as a Zariski sheaf, splits at 11. We begin by introducing this sheaf. Since algebraic KK-theory satisfies Zariski descent [15], we have a commutative algebra object KCAlg(Shv(AffZ;Spcn))K\in\operatorname{CAlg}(\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}})) (where we consider here the connective KK-theory for convenience). Taking units produces a sheaf of connective spectra 𝔤𝔩1KShv(AffZ;Spcn)\mathfrak{gl}_{1}K\in\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) by the formula

(𝔤𝔩1K)(S):=𝔤𝔩1(K(S)).(\mathfrak{gl}_{1}K)(S):=\mathfrak{gl}_{1}(K(S)).
Remark 7.2.1.

Note that since KK-theory preserves filtered colimits, the stalks of the KK-theory sheaf at the points of Spec(S)\operatorname{Spec}(S) are the KK-theory spectra of the localizations of SS. Hence, the same holds for 𝔤𝔩1K\mathfrak{gl}_{1}K.

For a connective spectrum XX, let X¯\underline{X} denotes the constant Zariski sheaf on XX, that is, the sheafification of the constant presheaf with value XX. Then for each PShv(AffZ;Spcn)\mathscr{F}\in\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}), there is a natural identification

Map(X¯,)Map(X,(Z)),\mathrm{Map}(\underline{X},\mathscr{F})\simeq\mathrm{Map}(X,\mathscr{F}(\mathbb{Z})),

exhibiting the functor XX¯X\to\underline{X} as left adjoint to the evaluation-at-Z\mathbb{Z} functor PShv(AffZ;Spcn)Spcn\mathrm{PShv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}})\to\text{Sp}^{\mathrm{cn}}.

Lemma 7.2.2.

The lowest homotopy sheaves of 𝔤𝔩1K\mathfrak{gl}_{1}K are given by

π0𝔤𝔩1KZ/2¯andπ1𝔤𝔩1KGm,\pi_{0}\mathfrak{gl}_{1}K\simeq\underline{\mathbb{Z}/2}\quad\text{and}\quad\pi_{1}\mathfrak{gl}_{1}K\simeq\mathbb{G}_{m},

where Gm\mathbb{G}_{m} here stands for the sheaf of units on AffZ\mathrm{Aff}_{\mathbb{Z}}.

Proof.

We start with π1\pi_{1}. Let picShv(AffZ;Spcn)\mathrm{pic}\in\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) be the Picard sheaf, taking SS to invertible objects of ModS(Sp)\operatorname{Mod}_{S}(\text{Sp}). The maps pic(S)𝔤𝔩1K(S)\mathrm{pic}(S)\to\mathfrak{gl}_{1}K(S) are natural in SS and hence assemble to a morphism of sheaves pic𝔤𝔩1K\mathrm{pic}\to\mathfrak{gl}_{1}K. Taking loops, we get a map GmΩpicΩ𝔤𝔩1K\mathbb{G}_{m}\simeq\Omega\mathrm{pic}\to\Omega\mathfrak{gl}_{1}K. We claim that this map induces an isomorphism on π0\pi_{0}-sheaves. Indeed, this can be checked at all the stalks, and since both functors preserve filtered colimits, it thus suffices to check this at local rings. The claim then follows from the fact that K1(S)S×K_{1}(S)\simeq S^{\times} when SS is a local ring.

For π0\pi_{0}, we have a canonical map

Z/2π0(𝔤𝔩1K(Z))(π0𝔤𝔩1K)(Z)\mathbb{Z}/2\xrightarrow{\sim}\pi_{0}(\mathfrak{gl}_{1}K(\mathbb{Z}))\to(\pi_{0}\mathfrak{gl}_{1}K)(\mathbb{Z})

which corresponds to a map Z/2¯π0𝔤𝔩1K\underline{\mathbb{Z}/2}\to\pi_{0}\mathfrak{gl}_{1}K. To see that this map is an isomorphism, we may again restrict to local rings, where the claim follows from the fact that π0K(S)Z\pi_{0}K(S)\simeq\mathbb{Z} when SS is a local ring.

Lemma 7.2.3.

There is a pushout square in Shv(AffZ;Spcn)\mathrm{Shv}(\mathrm{Aff}_{\mathbb{Z}};\text{Sp}^{\mathrm{cn}}) of the form

Σπ1𝔤𝔩1K(Z)¯\textstyle{\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Σπ1𝔤𝔩1K\textstyle{\Sigma\pi_{1}\mathfrak{gl}_{1}K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K(Z)[0,1]¯\textstyle{\underline{\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K[0,1].\textstyle{\mathfrak{gl}_{1}K[0,1].}
Proof.

First, the existence of the commutative square follows immediately from the universal property of the constant sheaf construction. In other words, there is a natural commutative square of functors in SS of the form

Σπ1𝔤𝔩1K(Z)\textstyle{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Σπ1𝔤𝔩1K(S)\textstyle{\Sigma\pi_{1}\mathfrak{gl}_{1}K(S)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K(Z)[0,1]\textstyle{\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K(S)[0,1]\textstyle{\mathfrak{gl}_{1}K(S)[0,1]}

which sheafifies to the square in the lemma.

To show that our square is a pushout, it is enough to show that the map between the vertical cofibers is an isomorphism. Since the vertical maps are the connected covers of the 11-truncated sheaves in the bottom row, this is equivalent to the fact the bottom horizontal map induces an isomorphism on π0\pi_{0}, which in turn follows from 7.2.2.

We can now produce the splitting of sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K.

Theorem 7.2.4.

The sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K splits at 11. Namely, there is an isomorphism 𝔤𝔩1K𝔤𝔩1K[0,1]𝔤𝔩1K[2,)\mathfrak{gl}_{1}K\simeq\mathfrak{gl}_{1}K[0,1]\oplus\mathfrak{gl}_{1}K[2,\infty) of sheaves of connective spectra on AffZ\mathrm{Aff}_{\mathbb{Z}}.

Proof.

We will construct a section 𝔤𝔩1K[0,1]𝔤𝔩1K\mathfrak{gl}_{1}K[0,1]\to\mathfrak{gl}_{1}K. By 7.2.3, this amounts to producing a commutative square of the form

Σπ1𝔤𝔩1K(Z)¯\textstyle{\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Σπ1𝔤𝔩1K\textstyle{\Sigma\pi_{1}\mathfrak{gl}_{1}K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K(Z)[0,1]¯\textstyle{\underline{\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔤𝔩1K.\textstyle{\mathfrak{gl}_{1}K.}

with the same left vertical and upper horizontal maps as in 7.2.3. In other words, we have to construct maps

Σπ1𝔤𝔩1K𝔤𝔩1Kand𝔤𝔩1K(Z)[0,1]¯𝔤𝔩1K\Sigma\pi_{1}\mathfrak{gl}_{1}K\rightarrow\mathfrak{gl}_{1}K\quad\text{and}\quad\underline{\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]}\rightarrow\mathfrak{gl}_{1}K

together with a homotopy between the resulting pair of maps Σπ1𝔤𝔩1K(Z)¯𝔤𝔩1K\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})}\to\mathfrak{gl}_{1}K.

  • To construct the right vertical map, we proceed as in 2.4.2. Namely, consider the map pic𝔤𝔩1K\mathrm{pic}\to\mathfrak{gl}_{1}K; taking loops, we get a map π1𝔤𝔩1Kπ1picΩ𝔤𝔩1K\pi_{1}\mathfrak{gl}_{1}K\simeq\pi_{1}\mathrm{pic}\to\Omega\mathfrak{gl}_{1}K whose adjoint is a map Σπ1𝔤𝔩1K𝔤𝔩1K\Sigma\pi_{1}\mathfrak{gl}_{1}K\to\mathfrak{gl}_{1}K as desired.

  • To construct the bottom horizontal map, by the adjunction between the constant sheaf functor and evaluation-at-Z\mathbb{Z}, it suffices to construct a map 𝔤𝔩1K(Z)[0,1]𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]\to\mathfrak{gl}_{1}K(\mathbb{Z}). Such a map is provided by the splitting of 𝔤𝔩1K(Z)\mathfrak{gl}_{1}K(\mathbb{Z}) in 5.1.1.

  • To show that the resulting maps from Σπ1𝔤𝔩1K(Z)¯\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})} to 𝔤𝔩1K\mathfrak{gl}_{1}K are homotopic, we observe that

    Map(Σπ1𝔤𝔩1K(Z)¯,𝔤𝔩1K)\displaystyle\mathrm{Map}(\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})},\mathfrak{gl}_{1}K) Map(Σπ1𝔤𝔩1K(Z),𝔤𝔩1K(Z))\displaystyle\simeq\mathrm{Map}(\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z}),\mathfrak{gl}_{1}K(\mathbb{Z}))
    Map(ΣZ/2,𝔤𝔩1K(Z))\displaystyle\simeq\mathrm{Map}(\Sigma\mathbb{Z}/2,\mathfrak{gl}_{1}K(\mathbb{Z}))
    MapZ(ΣZ/2,GmK(Z))Z/2,\displaystyle\simeq\mathrm{Map}_{\mathbb{Z}}(\Sigma\mathbb{Z}/2,\mathbb{G}_{m}K(\mathbb{Z}))\simeq\mathbb{Z}/2,

    where the first isomorphism is by the constant sheaf adjunction, the second by the fact that K1(Z)Z/2K_{1}(\mathbb{Z})\simeq\mathbb{Z}/2, the third by the adjunction between hom(Z,)\hom(\mathbb{Z},-) and the forgetful functor from Z\mathbb{Z}-modules to spectra, and the last by the computation of GmK(Z)\mathbb{G}_{m}K(\mathbb{Z}) in 6.1.1. Unwinding these identifications, we see that a map α:Σπ1𝔤𝔩1K(Z)¯𝔤𝔩1K\alpha\colon\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})}\to\mathfrak{gl}_{1}K is determined by the composition

    ΣSΣZ/2(Σπ1𝔤𝔩1K(Z)¯)(Z)α(Z)𝔤𝔩1K(Z).\Sigma\mathbb{S}\to\Sigma\mathbb{Z}/2\simeq(\underline{\Sigma\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})})(\mathbb{Z})\xrightarrow{\alpha(\mathbb{Z})}\mathfrak{gl}_{1}K(\mathbb{Z}).

    It is now easy to check that for the constructions above, these composites both give the non-trivial class in π1𝔤𝔩1K(Z)Z/2\pi_{1}\mathfrak{gl}_{1}K(\mathbb{Z})\simeq\mathbb{Z}/2, and hence they are homotopic.

Finally, to get the splitting of 𝔤𝔩1K\mathfrak{gl}_{1}K from the map 𝔤𝔩1K[0,1]𝔤𝔩1K\mathfrak{gl}_{1}K[0,1]\to\mathfrak{gl}_{1}K, we have to check that it induces isomorphisms on the π0\pi_{0}- and π1\pi_{1}-sheaves. Note that in the square of 7.2.3, the left vertical map is an isomorphism on π1\pi_{1}-sheaves and the lower horizontal map is an isomorphism on π0\pi_{0}-sheaves. Hence, the result follows from the facts that the maps 𝔤𝔩1K(Z)[0,1]¯𝔤𝔩1K\underline{\mathfrak{gl}_{1}K(\mathbb{Z})[0,1]}\to\mathfrak{gl}_{1}K and Σπ1𝔤𝔩1K𝔤𝔩1K\Sigma\pi_{1}\mathfrak{gl}_{1}K\to\mathfrak{gl}_{1}K in the square from the beginning of the proof also induce isomorphisms on π0\pi_{0} and π1\pi_{1} respectively, which is clear by 7.2.2. ∎

We mention again that the result above does not imply that 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) splits at 11 for all SS (we disprove this in the following section). Instead, the spectrum 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) contains the sections of the sheaf 𝔤𝔩1K[0,1]\mathfrak{gl}_{1}K[0,1] over Spec(S)\operatorname{Spec}(S) as a summand. On the positive side, in the cases where the sections of 𝔤𝔩1K[0,1]\mathfrak{gl}_{1}K[0,1] coincide with the 11-truncation of 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S), we do get a splitting for 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) at 11. We finish by spelling out this condition a bit more explicitly and give a few examples.

For a commutative ring SS let Pic(S)\mathrm{Pic}^{\heartsuit}(S) be the Picard group of the abelian category of discrete SS-modules. Recall that there is a map K0(S)Pic(S)Z¯(S)K_{0}(S)\to\mathrm{Pic}^{\heartsuit}(S)\oplus\underline{\mathbb{Z}}(S) taking a virtual projective SS module to its determinant line bundle and its (locally constant) rank function, respectively. Similarly, in degree 11 there is a determinant map K1(S)S×K_{1}(S)\to S^{\times}.

Proposition 7.2.5.

Let SS be a commutative ring for which the maps K0(S)Pic(S)Z¯(S)K_{0}(S)\to\mathrm{Pic}^{\heartsuit}(S)\oplus\underline{\mathbb{Z}}(S) and K1(S)S×K_{1}(S)\to S^{\times} are isomorphisms. Then 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) splits at 11.

Proof.

By 7.2.4 it would suffice to show that the canonical map 𝔤𝔩1K(S)[0,1](𝔤𝔩1K[0,1])(S)\mathfrak{gl}_{1}K(S)[0,1]\to(\mathfrak{gl}_{1}K[0,1])(S) is an isomorphism. This map is obtain from the map of commutative ring spectra K(S)[0,1]K[0,1](S)K(S)[0,1]\to K[0,1](S) by applying the functor 𝔤𝔩1()\mathfrak{gl}_{1}(-), so it suffices to show that the ring map is an isomorphism.

Now, we have a fiber sequence

ΣGmK[0,1]Z¯\Sigma\mathbb{G}_{m}\rightarrow K[0,1]\rightarrow\underline{\mathbb{Z}}

and the sheaf ΣGm\Sigma\mathbb{G}_{m} has homotopy groups

π0((ΣGm)(S))Pic(S)andπ1(ΣGm)(S)S×.\pi_{0}((\Sigma\mathbb{G}_{m})(S))\simeq\mathrm{Pic}^{\heartsuit}(S)\quad\text{and}\quad\pi_{1}(\Sigma\mathbb{G}_{m})(S)\simeq S^{\times}.

Thus, we obtain a canonical isomorphism π1(K[0,1](S))S×\pi_{1}(K[0,1](S))\simeq S^{\times} and an exact sequence

0Pic(S)π0(K[0,1](S))Z¯(S).0\rightarrow\mathrm{Pic}^{\heartsuit}(S)\rightarrow\pi_{0}(K[0,1](S))\rightarrow\underline{\mathbb{Z}}(S).

This sequence is in fact split by the map Z¯(S)K(S)K[0,1](S)\underline{\mathbb{Z}}(S)\to K(S)\to K[0,1](S) that picks the trivial modules of given (locally constant) rank, so that π0(K[0,1](S))Z¯(S)Pic(S)\pi_{0}(K[0,1](S))\simeq\underline{\mathbb{Z}}(S)\oplus\mathrm{Pic}^{\heartsuit}(S). It is straightforward to check that via these isomorphisms the maps πiK(S)πiK[0,1](S)\pi_{i}K(S)\to\pi_{i}K[0,1](S) for i=0,1i=0,1 correspond precisely to the maps from the statement of the proposition, so the result follows from our assumptions on SS. ∎

There are many rings satisfying the conditions.

Example 7.2.6.

Every local ring, as well as every Euclidean domain, satisfies the conditions of 7.2.5 (see, e.g., ). Hence, for these rings we obtain natural splittings 𝔤𝔩1K(S)𝔤𝔩1K(S)[0,1]𝔤𝔩1K(S)[2,)\mathfrak{gl}_{1}K(S)\simeq\mathfrak{gl}_{1}K(S)[0,1]\oplus\mathfrak{gl}_{1}K(S)[2,\infty).

8 A counterexample to point-wise splitting of 𝔤𝔩1K\mathfrak{gl}_{1}K

Observe that 𝔤𝔩1K\mathfrak{gl}_{1}K does not split as a Zariski presheaf—indeed, this would imply that the presheaf S𝔤𝔩1K(S)[0,1]S\mapsto\mathfrak{gl}_{1}K(S)[0,1] is a summand of the sheaf 𝔤𝔩1K\mathfrak{gl}_{1}K, and hence a sheaf itself, which it is clearly not. One may still wonder whether 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) splits for every ring SS (and just not functorially so). In this section we show that even this is false: we produce a ring SS for which 𝔤𝔩1K(S)𝔤𝔩1K(S)[0,1]\mathfrak{gl}_{1}K(S)\to\mathfrak{gl}_{1}K(S)[0,1] is not split. The motivating idea is that, in view of 7.2.5 counterexamples should come from SK1(S):=ker(det:K1(S)S×)SK_{1}(S):=\ker(\det:K_{1}(S)\to S^{\times}). A simple example of a ring with non-trivial SK1SK_{1} is

S:=R[x,y]/(x2+y21),S:=\mathbb{R}[x,y]/(x^{2}+y^{2}-1),

which is the example we shall consider for the rest of this section.

Definition 8.0.1.

Let tr:K(R[i])K(R)\text{tr}:K(\mathbb{R}[i])\to K(\mathbb{R}) be the map induced by restriction of modules along RR[i]\mathbb{R}\to\mathbb{R}[i]. Write Cofib(tr)\text{Cofib}(\text{tr}) for the associated cofiber.

Lemma 8.0.2 (cf. [13]).

There is a cofiber sequence

K(R[i])(0,tr)K(R)K(R)K(S).K(\mathbb{R}[i])\xrightarrow{(0,\text{tr})}K(\mathbb{R})\oplus K(\mathbb{R})\rightarrow K(S).

In particular, K(S)K(R)Cofib(tr)K(S)\simeq K(\mathbb{R})\oplus\text{Cofib}(\text{tr}).

Proof.

The scheme Spec(S)\operatorname{Spec}(S) is isomorphic to the complement of the pair of complex conjugate points {[1:i],[1:i]}\{[1:i],[1:-i]\} in P1R\mathbb{P}^{1}{R} (which we view as a point with residue field C\mathbb{C}). The cofiber sequence is the localization sequence for the open-closed decomposition P1R={[1:i],[1:i]}Spec(S)\mathbb{P}^{1}{R}=\{[1:i],[1:-i]\}\cup\operatorname{Spec}(S). ∎

Lemma 8.0.3 (cf. e.g. [17, Example 1.5.4]).

There is an isomorphism

π1K(S)(Z/2)2,\pi_{1}K(S)\simeq(\mathbb{Z}/2)^{2},

generated by the image of η\eta under the unit map SK(S)\mathbb{S}\to K(S) and the element of GL(S)/E(S)GL(S)/E(S) represented by the following element of SL2(S)SL_{2}(S):

[xyyx].\begin{bmatrix}x&y\\ -y&x\\ \end{bmatrix}.

Here, E(S)GL(S)E(S)\subseteq\mathrm{GL}(S) is the normal subgroup generated by elementary matrices.

Proof.

Consider the long exact sequence calculating the homotopy groups of Cofib(tr)\text{Cofib}(\text{tr}):

π1K(R[i])π1K(R)π1Cofib(tr)π0K(R[i])π0K(R)π0Cofib(tr).\leavevmode\hbox to196.84pt{\vbox to43.64pt{\pgfpicture\makeatletter\hbox{\hskip 98.42091pt\lower-21.8194pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-98.42091pt}{-21.8194pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 25.38417pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.07863pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}K(\mathbb{R}[i])}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 25.38417pt\hfil&\hfil\hskip 44.88379pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.57828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}K(\mathbb{R})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 20.88382pt\hfil&\hfil\hskip 52.15292pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.84741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{1}\text{Cofib}(\text{tr})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.15295pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 25.38417pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.07863pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}K(\mathbb{R}[i])}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 25.38417pt\hfil&\hfil\hskip 44.88379pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.57828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}K(\mathbb{R})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.88382pt\hfil&\hfil\hskip 52.15292pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.84741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi_{0}\text{Cofib}(\text{tr})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.15295pt\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-47.45258pt}{13.15968pt}\pgfsys@lineto{-24.25256pt}{13.15968pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.05258pt}{13.15968pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.31503pt}{13.15968pt}\pgfsys@lineto{41.51505pt}{13.15968pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.71503pt}{13.15968pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.11502pt}{15.51245pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-47.45258pt}{-8.65971pt}\pgfsys@lineto{-24.25256pt}{-8.65971pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.05258pt}{-8.65971pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.31503pt}{-8.65971pt}\pgfsys@lineto{41.51505pt}{-8.65971pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.71503pt}{-8.65971pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.11502pt}{-6.30695pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

On π0\pi_{0} the transfer is multiplication by 2. On π1\pi_{1} the transfer is given by the norm map (x+iy)x2+y2(x+iy)\mapsto x^{2}+y^{2}. Together with the facts that π2K(R[i])=0\pi_{2}K(\mathbb{R}[i])=0, π1K(R[i])=C×\pi_{1}K(\mathbb{R}[i])=\mathbb{C}^{\times}, and π1K(R)=R×\pi_{1}K(\mathbb{R})=\mathbb{R}^{\times} this shows that π1Cofib(tr)Z/2\pi_{1}\text{Cofib}(\text{tr})\simeq\mathbb{Z}/2. Together with 8.0.2 this shows that π1K(S)(Z/2)2\pi_{1}K(S)\simeq(\mathbb{Z}/2)^{2}, as well as the claim that η\eta can be taken to be one generator. To finish the proof, note that the 2×22\times 2 matrix in question represents a nontrivial class in GL(S)/E(S)\mathrm{GL}(S)/E(S) (where E(S)E(S) is the normal subgroup generated by elementary matrices), and it has determinant 1. Therefore it must represent the generator of SK1(S)π1Cofib(tr)SK_{1}(S)\simeq\pi_{1}\text{Cofib}(\text{tr}).

Theorem 8.0.4.

The connective spectrum 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) does not split at 11.

Proof.

Note that the R\mathbb{R}-points of Spec(S)\operatorname{Spec}(S) are topologically equivalent to S1S^{1}. Hence there is a ring map K(S)KO(S1)K(S)\rightarrow KO(S^{1}). Moreover, observe that this map induces an isomorphism on π1\pi_{1}. Indeed, KO(S1)KOΣ1KOKO(S^{1})\simeq KO\oplus\Sigma^{-1}KO is generated by the two maps S1OS^{1}\rightarrow O given by the constant map at 1O-1\in O, and the inclusion of groups S1=SO(2)O(2)OS^{1}=SO(2)\rightarrow O(2)\rightarrow O. The former is detected by η\eta under the composite K(R)K(S)KO(S1)K(\mathbb{R})\rightarrow K(S)\rightarrow KO(S^{1}). The latter is detected by the other generator of π1K(S)\pi_{1}K(S) in the presentation of 8.0.3, as is evident from the matrix presentation provided there.

Now suppose 𝔤𝔩1K(S)\mathfrak{gl}_{1}K(S) were split at 1. Then

𝔤𝔩1K(S)[1,)Σ(Z/2)2𝔤𝔩1K(S)[2,).\mathfrak{gl}_{1}K(S)[1,\infty)\simeq\Sigma(\mathbb{Z}/2)^{2}\oplus\mathfrak{gl}_{1}K(S)[2,\infty).

As the comparison map to KO(S1)\mathrm{KO}(S^{1}) is an isomorphism on π1\pi_{1}, this would force a splitting

𝔤𝔩1KO(S1)[1,)Σ(Z/2)2𝔤𝔩1KO(S1)[2,).\mathfrak{gl}_{1}\mathrm{KO}(S^{1})[1,\infty)\simeq\Sigma(\mathbb{Z}/2)^{2}\oplus\mathfrak{gl}_{1}\mathrm{KO}(S^{1})[2,\infty).

However, 𝔤𝔩1KO(S1)\mathfrak{gl}_{1}\mathrm{KO}(S^{1}) is the connective cover of (𝔤𝔩1KO)(S1)=𝔤𝔩1KOΣ1𝔤𝔩1KO(\mathfrak{gl}_{1}\mathrm{KO})(S^{1})=\mathfrak{gl}_{1}\mathrm{KO}\oplus\Sigma^{-1}\mathfrak{gl}_{1}KO. By considering the second summand, we see that a splitting as in the last display would force a splitting

𝔤𝔩1KO[2,)Σ2Z/2𝔤𝔩1KO[3,).\mathfrak{gl}_{1}\mathrm{KO}[2,\infty)\simeq\Sigma^{2}\mathbb{Z}/2\oplus\mathfrak{gl}_{1}\mathrm{KO}[3,\infty).

However, such a splitting does not exist. Indeed, such a splitting would immediately imply that π2GmKO2\pi_{2}\mathbb{G}_{m}\mathrm{KO}_{2} contains Z/2\mathbb{Z}/2 as a summand, which violates 3.1.5.

References

  • [1] M. Ando, M. Hopkins, and C. Rezk. Multiplicative orientations of KO-theory and of the spectrum of topological modular forms. 2010. https://rezk.web.illinois.edu/koandtmf.pdf.
  • [2] J. Beardsley, K. Luecke, and J. Morava. Brauer-wall groups and truncated picard spectra of K-theory. 2023. https://arxiv.org/abs/2306.10112.
  • [3] A. Blumberg and M. Mandell. The homotopy groups of the algebraic K-theory of the sphere spectrum. Geom. Topol., 23:101–134, 2019.
  • [4] A. Blumberg and M. Mandell. The eigensplitting of the fiber of the cyclotomic trace for the sphere spectrum. Trans. Amer. Math. Soc., 376, 2023.
  • [5] S. Carmeli, T. Schlank, and L. Yanovski. Chromatic cyclotomic extensions. 2021. https://arxiv.org/abs/2103.02471.
  • [6] E. Devinatz and M. Hopkins. Homotopy fixed point spectra for closed subgroups of the morava stabilizer groups. Topology, 43:1–47, 2004.
  • [7] W. Dwyer and E. Friedlander. Algebraic and etale K-theory. Trans. Amer. Math. Soc., 272, 1985.
  • [8] W. Dwyer and S. Mitchell. On the K-theory spectrum of a ring of algebraic integers. K-theory, 14, 1998.
  • [9] L Hodgkin. The K-theory of some well-known spaces. Topology, 11, 1972.
  • [10] D. Quillen. On the cohomology and K-theory of the general linear groups over a finite field. Annals of Mathematics, 7, 1972.
  • [11] C. Rezk. The units of a ring spectrum and a logarithmic cohomology operation. J. Amer. Math. Soc., 16, 2006.
  • [12] J. Rognes and C. Weibel. Two-primary algebraic K-theory of rings of integers in number fields. J. Amer. Math. Soc., 13, 2000.
  • [13] Richard G Swan. K-theory of quadric hypersurfaces. Annals of Mathematics, 122(1):113–153, 1985.
  • [14] R. Thomason. Algebraic K-theory and etale cohomology. Ann. Sci. École Norm. Sup., 18, 1985.
  • [15] R. Thomason and T. Trobaugh. Higher algebraic k-theory of schemes and of derived categories. Progr. Math., 88, 1990.
  • [16] V. Voevodsky. On motivic cohomology with Z/l\mathbb{Z}/l-coefficients. Ann. of Math., 174, 2011.
  • [17] Charles A Weibel. The KK-book: An Introduction to Algebraic KK-theory, volume 145. American Mathematical Soc., 2013.