This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The strong Haagerup inequality for qq-circular systems

Todd Kemp Department of Mathematics, University of California, San Diego 9500 Gilman Drive #0112 La Jolla, CA 92093-0112, USA tkemp@ucsd.edu  and  Akihiro Miyagawa Department of Mathematics, University of California, San Diego 9500 Gilman Drive #0112 La Jolla, CA 92093-0112, USA amiyagwa@ucsd.edu
Abstract.

The first author and Speicher proved the inequality for operator norms of holomorphic homogeneous polynomials in freely independent \mathscr{R}-diagonal elements, which improves the bound obtained by Haagerup. We prove a similar inequality for qq-circular systems, which are neither freely independent nor \mathscr{R}-diagonal.

1. Introduction

Haagerup [Haa79] proved the following inequality in the reduced C\mathrm{C}^{*}-algebra Cred(𝔽d)\mathrm{C}^{*}_{\mathrm{red}}(\mathbb{F}_{d}) of the free group 𝔽d\mathbb{F}_{d} on dd generators:

|g|=nαgλ(g)Cred(𝔽d)(n+1)|g|=nαgλ(g)l2(𝔽d)\left\|\sum_{|g|=n}\alpha_{g}\lambda(g)\right\|_{\mathrm{C}^{*}_{\mathrm{red}}(\mathbb{F}_{d})}\leq(n+1)\left\|\sum_{|g|=n}\alpha_{g}\lambda(g)\right\|_{l^{2}(\mathbb{F}_{d})}

where |g||g| is the length of g𝔽dg\in\mathbb{F}_{d} as reduced words. The first author and Speicher [KS07] improved the Haagerup inequality for freely independent and identically distributed \mathscr{R}-diagonal elements x=(x1,,xd)x=(x_{1},\ldots,x_{d}):

|w|=nαwxwCxn+1|w|=nαwxw2\left\|\sum_{|w|=n}\alpha_{w}x_{w}\right\|\leq C_{x}\sqrt{n+1}\left\|\sum_{|w|=n}\alpha_{w}x_{w}\right\|_{2}

where ww moves around the set of words with letters 1,,d1,\ldots,d and |w||w| is the word length of ww and xw=xw1xwnx_{w}=x_{w_{1}}\cdots x_{w_{n}} for w=w1wnw=w_{1}\cdots w_{n}. The \mathscr{R}-diagonal elements are introduced by Nica and Speicher [NS97] which form a large family of non-self-adjoint random variables including Voiculescu’s circular elements and Haar unitaries. these elements are defined by using free cumulants and the proof of the strong Haagerup inequality is based on the moment-cumulant formula in free probability. Note that the strong Haagerup inequality stated above does not involve the adjoint of operators x1,,xdx_{1}^{*},\ldots,x_{d}^{*} (it is called the holomorphic setting in [KS07]) while the Haagerup inequality involves the adjoint of generators. This difference reduces moments of |w|=nαwxw\sum_{|w|=n}\alpha_{w}x_{w} and produces the factor n+1\sqrt{n+1} in the strong Haagerup inequality.

There are some generalizations of Kemp-Speicher’s strong Haagerup inequality. In the paper [dlS09], de la Salle proved that freely independent \mathscr{R}-diagonal elements also satisfy the analog of this inequality for operator coefficients polynomials like |w|=nαwxw\sum_{|w|=n}\alpha_{w}\otimes x_{w}. On the other hand, Brannan [Bra12, Theorem 1.4] generalized the strong Haagerup inequality for non-commutative random variables with some invariant properties that do not require the variables to be freely independent. In particular, he proved the strong Haagerup inequality for the free unitary quantum group UN+U_{N}^{+} (see also [You22] for non-Kac type orthogonal quantum groups).

In this paper, we prove that this type of estimate also holds for qq-circular systems c1(q),,cd(q)c_{1}^{(q)},\ldots,c_{d}^{(q)}, which are not freely independent and do not satisfy assumptions in Brannan’s paper [Bra12, Theorem 1.4.] (more precisely, the qq-circular system is not invariant under free complexification). Namely, our main result is the following.

Theorem 1.1.

For 1<q<1-1<q<1, there exists some A=A(|q|)A=A(|q|) such that we have for any nn\in\mathbb{N} and {αw}w[d]\{\alpha_{w}\}_{w\in[d]^{*}}

|w|=nαwcw(q)An+1|w|=nαwcw(q)2.\left\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\right\|\leq A\sqrt{n+1}\left\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\right\|_{2}.

The concept of the qq-circular systems is introduced by Mingo and Nica [MN01] as qq-defomations of the circular systems (q=0q=0) based on the work on the qq-canonical commutation relations [FB70], [BS91]. These qq-relations interpolate Bosonic (q=1)(q=1) and Fermionic (q=1)(q=-1) relations, and it gives a qq-analog of quantum field theory. From this perspective, the algebra of polynomials wαwcw(q)\sum_{w}\alpha_{w}c_{w}^{(q)} has been studied as a qq-analog of the Segal-Bergman space (see [Kem05] and [CH18]). Regarding our main result, if we replace n+1\sqrt{n+1} with n+1n+1, the inequality immediately follows from Bożejko’s Haagerup inequality [Boż99] for qq-Gaussian system. In addition, the second author proved that the operator norm of |w|=nαwcw(q)\sum_{|w|=n}\alpha_{w}c_{w}^{(q)} is continuous for qq [Miy23]. However, before our result, whether we can obtain n+1\sqrt{n+1} for qq-circular system was unclear.

There is a heuristic observation of this qq-deformation that the case 1<q<1-1<q<1 shares the same properties with the case q=0q=0 which can be described by free probability. This is supported by the isomorphism of qq-Gaussian von Neumann algebras [GS14] and qq-Cuntz-Toeplitz algebras [DN93],[Kuz23], hypercontractivity and ultracontractivity of qq-Ornstein-Uhlenbeck semigroup [Bia97], [Kem05],[Boż99],…etc. Our main result of the strong Haagerup inequality also follows this context.

While previous works on the strong Haagerup inequality are based on combinatorial arguments of joint moments, we use several norm inequalities for creations and annihilation operators proved by Bożejko [Boż99]. He used these inequalities to prove the Haagerup inequality for the qq-Gaussian system giving us some insights to prove the strong Haagerup inequality. As an application, our result gives the bounds of joint moments of the qq-circular system without computing combinatorial moments directly. Since c(q)n2mc(q)n\|c^{(q)n}\|_{2m}\leq\|c^{(q)n}\| for any mm\in\mathbb{N}, by the formula of moments of a qq-circular random variable c(q)c^{(q)} [MN01, Definition 1.2], our main result implies

πP(n,n,,n,n2mnvertices)qcr(π)A2m(n+1)m([n]q!)m\sum_{\pi\in P_{\ast-\cdot}(\underbrace{\ast^{n},\ \cdot^{n},\ldots,\ast^{n},\ \cdot^{n}}_{2mn\ \mathrm{vertices}})}q^{\mathrm{cr}(\pi)}\leq A^{2m}(n+1)^{m}{([n]_{q}!)}^{m}

where P(n,n,,n,n)P_{\ast-\cdot}(\ast^{n},\ \cdot^{n},\ldots,\ast^{n},\ \cdot^{n}) is the set of pair partitions on the 2mn2mn vertices alternately aligned with nn stars n\ast^{n} and nn dots n\cdot^{n} which connect \ast with \cdot and cr(π)\mathrm{cr}(\pi) denotes the number of crossings of π\pi. When q=0q=0, the left-hand side of the inequality is equal to the Fuss-Catalan number 1m(m(n+1)m1)\frac{1}{m}\binom{m(n+1)}{m-1} (see [KS07, Corollary 3.2]). By the same proof in [KS07, Theorem 5.4.], we also have strong ultracontractivity of the qq-Ornstein-Uhlenbeck semigroup etN(q)e^{-tN^{(q)}} affiliated with the qq-circular system.

There are some possibilities of other generalizations of the strong Haagerup inequality since our approach is different from previous works. We expect that one can show the strong Haagerup inequality for the mixed qijq_{ij} and twisted relations since they satisfy the Haagerup inequality (see [Kró05]). We also expect that one can show the strong Haagerup inequality for qq-circular system with operator coefficients like de la Salle’s results in [dlS09]. We leave them for future work.

1.1. Another approach to the strong Haagerup inequality for free circular system

Here, we explain our approach to the strong Haagerup inequality with a non-optimal constant for the free circular system which is the case of q=0q=0 in our main result. We refer to Section 2 for our notations. First of all, our free circular system {ci}i=1d\{c_{i}\}_{i=1}^{d} is realized on the full Fock space 0(H)=Ωn=1Hn\mathcal{F}_{0}(H)=\mathbb{C}\Omega\oplus\bigoplus_{n=1}^{\infty}H^{\otimes n} as the sum of left creation and annihilation operators ci=ai+ai¯c_{i}=a_{i}+a_{\overline{i}} which satisfy aiaj=δi,ja_{i}^{*}a_{j}=\delta_{i,j} (i,j{1,,d}{1¯,,d¯}i,j\in\{1,\ldots,d\}\sqcup\{\overline{1},\ldots,\overline{d}\}). Then, we expand products of free circular random variables with respect to left creation and annihilation operators (see Lemma 2.6), and we have

|w|=nαwcw=k=0n|u|=k,|v|=nkαuvauav¯=k=0nAk\sum_{|w|=n}\alpha_{w}c_{w}=\sum_{k=0}^{n}\sum_{|u|=k,|v|=n-k}\alpha_{uv}a_{u}a_{\overline{v}}^{*}=\sum_{k=0}^{n}A_{k}

where Ak=|u|=k,|v|=nkαuvauav¯A_{k}=\sum_{|u|=k,|v|=n-k}\alpha_{uv}a_{u}a_{\overline{v}}^{*}. Note that we have

|w|=nαwcw22=|w|=nαwew0(H)2=|w|=n|αw|2.\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}^{2}=\left\|\sum_{|w|=n}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{0}(H)}^{2}=\sum_{|w|=n}|\alpha_{w}|^{2}.

For a technical reason, we remove the term of k=0k=0 and prove the existence of a constant A>0A>0 such that k=1nAk2An|w|=nαwcw22\|\sum_{k=1}^{n}A_{k}\|^{2}\leq An\|\sum_{|w|=n}\alpha_{w}c_{w}\|_{2}^{2} for any {αw}|w|=n\{\alpha_{w}\}_{|w|=n}. We have the identity for C\mathrm{C}^{*}-algebras k=1nAk2=k=1nAkl=1nAl\|\sum_{k=1}^{n}A_{k}\|^{2}=\|\sum_{k=1}^{n}A_{k}^{*}\sum_{l=1}^{n}A_{l}\| and expand the sum. Then by using the triangular inequality and the identity X=X\|X^{*}\|=\|X\|, we have

k=1nAk2\displaystyle\left\|\sum_{k=1}^{n}A_{k}\right\|^{2} =k=1nAkl=1nAl\displaystyle=\left\|\sum_{k=1}^{n}A_{k}^{*}\sum_{l=1}^{n}A_{l}\right\|
k=1nAkAk+k=1n1l=k+1nAkAl+k=2nl=1k1AkAl\displaystyle\leq\left\|\sum_{k=1}^{n}A_{k}^{*}A_{k}\right\|+\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|+\left\|\sum_{k=2}^{n}\sum_{l=1}^{k-1}A_{k}^{*}A_{l}\right\|
=k=1nAkAk+2k=1n1l=k+1nAkAl.\displaystyle=\left\|\sum_{k=1}^{n}A_{k}^{*}A_{k}\right\|+2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|.

It is known that Ak|w|=nαwcw2\|A_{k}\|\leq\|\sum_{|w|=n}\alpha_{w}c_{w}\|_{2} for 0kn0\leq k\leq n (see [Boż99, Proposition 2.1] or Lemma 2.5 in this paper). Therefore, by the triangular inequality, we have

k=1nAkAkk=1nAk2n|w|=nαwcw22\left\|\sum_{k=1}^{n}A_{k}^{*}A_{k}\right\|\leq\sum_{k=1}^{n}\|A_{k}\|^{2}\leq n\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}^{2}

By using the relation aiaj=δi,ja_{i}^{*}a_{j}=\delta_{i,j} (i,j[d,d¯]i,j\in[d,\overline{d}]), we can cancel some terms in k=1n1l=k+1nAkAl2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|^{2} and this is equal to

k=1n1l=k+1n|u1|=k,|v1|=nk|u2|=l,|v2|=nlαu1v1¯αu2v2(av1¯)(au1)au2av2¯2\displaystyle\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{|u_{1}|=k,|v_{1}|=n-k}\sum_{|u_{2}|=l,|v_{2}|=n-l}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{2}v_{2}}(a_{\overline{v_{1}}}^{*})^{*}(a_{u_{1}})^{*}a_{u_{2}}a_{\overline{v_{2}}}^{*}\right\|^{2}
=k=1n1l=k+1n|u1|=k,|v1|=nk|u2|=lk,|v2|=nlαu1v1¯αu1u2v2av1¯au2av2¯2\displaystyle=\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{\begin{subarray}{c}|u_{1}|=k,|v_{1}|=n-k\\ |u_{2}|=l-k,|v_{2}|=n-l\end{subarray}}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}u_{2}v_{2}}a_{\overline{v_{1}}^{*}}a_{u_{2}}a_{\overline{v_{2}}}^{*}\right\|^{2}

Since ai¯aj=0a_{\overline{i}}^{*}a_{j}=0 (i,j[d]i,j\in[d]), for |v1|=nk|v^{\prime}_{1}|=n-k^{\prime}, |u2|=l|u^{\prime}_{2}|=l^{\prime}, |v1|=nk|v_{1}|=n-k, |u2|=l|u_{2}|=l with kkk\neq k^{\prime}, we have

(av1¯au2)av1¯au2=0(a_{\overline{v^{\prime}_{1}}^{*}}a_{u^{\prime}_{2}})^{*}a_{\overline{v_{1}}^{*}}a_{u_{2}}=0

and if k=kk=k^{\prime},

(av1¯au2)av1¯au2=δv1,v1(au2)au2,(a_{\overline{v^{\prime}_{1}}^{*}}a_{u^{\prime}_{2}})^{*}a_{\overline{v_{1}}^{*}}a_{u_{2}}=\delta_{v^{\prime}_{1},v_{1}}(a_{u^{\prime}_{2}})^{*}a_{u_{2}},

where δv1,v1=1\delta_{v^{\prime}_{1},v_{1}}=1 if v1=v1v^{\prime}_{1}=v_{1} and 0 otherwise. This implies

k=1n1l=k+1n|u1|=k,|v1|=nk|u2|=lk,|v2|=nlαu1v1¯αu1u2v2av1¯au2av2¯2\displaystyle\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{\begin{subarray}{c}|u_{1}|=k,|v_{1}|=n-k\\ |u_{2}|=l-k,|v_{2}|=n-l\end{subarray}}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}u_{2}v_{2}}a_{\overline{v_{1}}^{*}}a_{u_{2}}a_{\overline{v_{2}}}^{*}\right\|^{2}
=k=1n1|v1|=nkl=1nk|u2|=l,|v2|=nkl(|u1|=kαu1v1¯αu1u2v2)au2av2¯2\displaystyle=\sum_{k=1}^{n-1}\sum_{|v_{1}|=n-k}\left\|\sum_{l=1}^{n-k}\sum_{|u_{2}|=l,|v_{2}|=n-k-l}\left(\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}u_{2}v_{2}}\right)a_{u_{2}}a_{\overline{v_{2}}}^{*}\right\|^{2}

By inductive argument, if we assume l=1nkAl2A(nk)|w|=nkαwcw22\|\sum_{l=1}^{n-k}A_{l}\|^{2}\leq A(n-k)\|\sum_{|w|=n-k}\alpha_{w}c_{w}\|_{2}^{2} for any 1kn11\leq k\leq n-1 (now αw\alpha_{w} is replaced with |u1|=kαu1v1¯αu1w\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}w}), we have

k=1n1|v1|=nkl=1nk|u2|=l,|v2|=nkl(|u1|=kαu1v1¯αu1u2v2)au2av2¯2\displaystyle\sum_{k=1}^{n-1}\sum_{|v_{1}|=n-k}\left\|\sum_{l=1}^{n-k}\sum_{|u_{2}|=l,|v_{2}|=n-k-l}\left(\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}u_{2}v_{2}}\right)a_{u_{2}}a_{\overline{v_{2}}}^{*}\right\|^{2}
Ak=1n1(nk)|v1|=nk|w|=nk(|u1|=kαu1v1¯αu1w)cw22\displaystyle\leq A\sum_{k=1}^{n-1}(n-k)\sum_{|v_{1}|=n-k}\left\|\sum_{|w|=n-k}\left(\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}w}\right)c_{w}\right\|^{2}_{2}

Since |w|=nαwcw22=|w|=n|αw|2\|\sum_{|w|=n}\alpha_{w}c_{w}\|_{2}^{2}=\sum_{|w|=n}|\alpha_{w}|^{2}, we have

|w|=nk(|u1|=kαu1v1¯αu1w)cw22=|w|=nk||u1|=kαu1v1¯αu1w|2.\left\|\sum_{|w|=n-k}\left(\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}w}\right)c_{w}\right\|^{2}_{2}=\sum_{|w|=n-k}\left|\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}w}\right|^{2}.

Then, by using Cauchy-Schwarz inequality, we have

Ak=1n1(nk)|v1|=nk|w|=nk||u1|=kαu1v1¯αu1w|2\displaystyle A\sum_{k=1}^{n-1}(n-k)\sum_{|v_{1}|=n-k}\sum_{|w|=n-k}\left|\sum_{|u_{1}|=k}\overline{\alpha_{u_{1}v_{1}}}\alpha_{u_{1}w}\right|^{2}
Ak=1n1(nk)|v1|=nk|w|=nk|u1|=k|αu1v1¯|2|u1|=k|αu1w|2\displaystyle\leq A\sum_{k=1}^{n-1}(n-k)\sum_{|v_{1}|=n-k}\sum_{|w|=n-k}\sum_{|u_{1}|=k}|\overline{\alpha_{u_{1}v_{1}}}|^{2}\sum_{|u_{1}|=k}|\alpha_{u_{1}w}|^{2}
An22|w|=nαwcw24.\displaystyle\leq\frac{An^{2}}{2}\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}^{4}.

Therefore, if AA satisfies 2A+1A\sqrt{2A}+1\leq A, we have

k=1nAk2\displaystyle\left\|\sum_{k=1}^{n}A_{k}\right\|^{2} k=1nAkAk+2k=1n1l=k+1nAkAl2\displaystyle\leq\left\|\sum_{k=1}^{n}A_{k}^{*}A_{k}\right\|+2\sqrt{\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|^{2}}
(2A+1)n|w|=nαwcw22\displaystyle\leq\left(\sqrt{2A}+1\right)n\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}^{2}
An|w|=nαwcw22.\displaystyle\leq An\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}^{2}.

To obtain the strong Haagerup inequality, we use the triangular inequality and A0|w|=nαwcw2\|A_{0}\|\leq\|\sum_{|w|=n}\alpha_{w}c_{w}\|_{2}, and we have

|w|=nαwcw\displaystyle\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\| A0+k=1nAk\displaystyle\leq\|A_{0}\|+\left\|\sum_{k=1}^{n}A_{k}\right\|
(An+1)|w|=nαwcw2\displaystyle\leq(\sqrt{An}+1)\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}
An+1|w|=nαwcw2\displaystyle\leq A^{\prime}\sqrt{n+1}\left\|\sum_{|w|=n}\alpha_{w}c_{w}\right\|_{2}

for some A>0A^{\prime}>0 (A=2AA^{\prime}=\sqrt{2A}, for example).

This paper is organized as follows. In section 2, we explain qq-circular systems and several lemmas to prove our main result. In section 3, by following the above argument for the free case (q=0q=0), we prove Lemma 3.1 and apply it to prove our main result.

Acknowledgement

T. Kemp acknowledges support from NSF grant DMS-2400246. A. Miyagawa acknowledges support from JSPS Overseas Research Fellowship and NSF grant DMS-2055340.

2. Preliminary

Throughout the paper, let dd\in\mathbb{N} and 1<q<1-1<q<1 be a parameter and we set a Hilbert space H=ddH=\mathbb{C}^{d}\oplus\mathbb{C}^{d}. Let {ei}i=1d\{e_{i}\}_{i=1}^{d} and {ei¯}i=1d\{e_{\overline{i}}\}_{i=1}^{d} be orthonormal basis of d\mathbb{C}^{d} in the first and second summands. We consider the algebraic Fock space of HH defined by

alg(H)=n=0Hn\mathcal{F}_{\mathrm{alg}}(H)=\bigoplus_{n=0}^{\infty}H^{\otimes n}

where we take the algebraic direct sum and we set H0=ΩH^{\otimes 0}=\mathbb{C}\Omega with a unit vector Ω\Omega. In [BS91], Bożejko and Speicher introduced the qq-inner product of ξ1ξmHm\xi_{1}\otimes\cdots\otimes\xi_{m}\in H^{\otimes m} and η1ηnHn\eta_{1}\otimes\cdots\otimes\eta_{n}\in H^{\otimes n} is defined by

ξ1ξm,η1ηnq=δm,nP(m)ξ1ξm,η1ηnHm\langle\xi_{1}\otimes\cdots\otimes\xi_{m},\eta_{1}\otimes\cdots\otimes\eta_{n}\rangle_{q}=\delta_{m,n}\langle P^{(m)}\xi_{1}\otimes\cdots\otimes\xi_{m},\eta_{1}\otimes\cdots\otimes\eta_{n}\rangle_{H^{\otimes m}}

where SmS_{m} is the symmetric group of degree mm and P(m)P^{(m)} is a strictly positive operator defined by (note that inv(π)=inv(π1)\mathrm{inv}(\pi)=\mathrm{inv}(\pi^{-1})),

P(m)(ξ1ξm)=πSmqinv(π)ξπ(1)ξπ(m)=πSmqinv(π)ξπ1(1)ξπ1(m).P^{(m)}(\xi_{1}\otimes\cdots\otimes\xi_{m})=\sum_{\pi\in S_{m}}q^{\mathrm{inv}(\pi)}\xi_{\pi(1)}\otimes\cdots\otimes\xi_{\pi(m)}=\sum_{\pi\in S_{m}}q^{\mathrm{inv}(\pi)}\xi_{\pi^{-1}(1)}\otimes\cdots\otimes\xi_{\pi^{-1}(m)}.

This qq-inner product extends to the inner product on alg(H)\mathcal{F}_{\mathrm{alg}}(H) and by completing alg(H)\mathcal{F}_{\mathrm{alg}}(H) we obtain the Hilbert space q(H)\mathcal{F}_{q}(H), so-called the qq-Fock space.

For a vector ξH\xi\in H, we define creation operator a(ξ)a(\xi) and annihilation operator a(ξ)a^{*}(\xi) by

a(ξ)η1ηn\displaystyle a(\xi)\eta_{1}\otimes\cdots\otimes\eta_{n} =ξη1ηn,\displaystyle=\xi\otimes\eta_{1}\otimes\cdots\otimes\eta_{n},
a(ξ)Ω\displaystyle a(\xi)\Omega =ξ,\displaystyle=\xi,
a(ξ)η1ηn\displaystyle a^{*}(\xi)\eta_{1}\otimes\cdots\otimes\eta_{n} =k=1nqk1ηk,ξHη1ηk1ηk+1ηn,\displaystyle=\sum_{k=1}^{n}q^{k-1}\langle\eta_{k},\xi\rangle_{H}\eta_{1}\otimes\cdots\otimes\eta_{k-1}\otimes\eta_{k+1}\cdots\otimes\eta_{n},
a(ξ)η\displaystyle a^{*}(\xi)\eta =η,ξHΩ,\displaystyle=\langle\eta,\xi\rangle_{H}\Omega,
a(ξ)Ω\displaystyle a^{*}(\xi)\Omega =0.\displaystyle=0.

Note that a(ξ)a(\xi) and a(η)a^{*}(\eta) (ξ,ηH\xi,\eta\in H) satisfy the qq-commutation relation:

a(η)a(ξ)qa(ξ)a(η)=ξ,ηHI.a^{*}(\eta)a(\xi)-qa(\xi)a^{*}(\eta)=\langle\xi,\eta\rangle_{H}I.

The qq-circular system (c1,,cd)(c_{1},\ldots,c_{d}) is a tuple of operators on the qq-Fock space q(H)\mathcal{F}_{q}(H) defined by

ci(q)=a(ei)+a(ei¯)=ai+ai¯c^{(q)}_{i}=a(e_{i})+a(e_{\overline{i}})^{*}=a_{i}+a^{*}_{\overline{i}}

The von Neumann algebra W(c1(q),,cd(q))\mathrm{W}^{*}(c_{1}^{(q)},\ldots,c_{d}^{(q)}) generated by a qq-circular system admits a faithful tracial state τ(T)=TΩ,Ωq\tau(T)=\langle T\Omega,\Omega\rangle_{q}, which naturally fits in the framework of non-commutative probability spaces. We defined L2L^{2}-norm T2\|T\|_{2} of TW(c1(q),,cd(q))T\in\mathrm{W}^{*}(c_{1}^{(q)},\ldots,c_{d}^{(q)}) by

T2=τ(TT)12=TΩq(H)\|T\|_{2}=\tau(T^{*}T)^{\frac{1}{2}}=\|T\Omega\|_{\mathcal{F}_{q}(H)}

where q(H)\|\cdot\|_{\mathcal{F}_{q}(H)} denotes the norm on the Hilbert space q(H)\mathcal{F}_{q}(H).

Remark 2.1.

Joint moments of a qq-circular system are known by Mingo and Nica [MN01, Definition 1.2.] which are characterized by pair partitions connecting cic_{i} with cic_{i}^{*} and the number of crossings. Note that the qq-circular system (c1,,cd)(c_{1},\ldots,c_{d}) is not freely independent and each cic_{i} is not \mathscr{R}-diagonal. One can see this by checking 4th moments:

τ(c1(q)c2(q)c1(q)c2(q))\displaystyle\tau(c_{1}^{(q)*}c_{2}^{(q)*}c_{1}^{(q)}c_{2}^{(q)}) =q\displaystyle=q
τ(c1(q)c1(q)c1c1)\displaystyle\tau(c_{1}^{(q)*}c_{1}^{(q)*}c_{1}c_{1}) =1+q.\displaystyle=1+q.

The first equality proves c1,c2c_{1},c_{2} are not freely independent, and the second equality shows κ4(c1,c1,c1,c1)=q\kappa_{4}(c_{1}^{*},c_{1}^{*},c_{1},c_{1})=q which implies c1c_{1} is not \mathscr{R}-diagonal and also not invariant under free complexification introduced in [Bra12, Definition 2.7.].

We also consider the set of words [d,d¯][d,\overline{d}]^{*} which consist of letters in 1,,d1,\ldots,d and 1¯,,d¯\overline{1},\ldots,\overline{d} and the empty word Ω\Omega. For w[d,d¯]w\in[d,\overline{d}]^{*}, |w||w| denotes the word length of ww and we set |Ω|=0|\Omega|=0. We define w¯=w1¯w2¯wn¯\overline{w}=\overline{w_{1}}\cdot\overline{w_{2}}\cdots\overline{w_{n}} for w=w1w2wn[d]w=w_{1}w_{2}\cdots w_{n}\in[d]^{*} and w=wnwn1w1w^{*}=w_{n}w_{n-1}\cdots w_{1} for w=w1w2wn[d,d¯]w=w_{1}w_{2}\cdots w_{n}\in[d,\overline{d}]^{*}. In our convention, for each w=w1w2wn[d,d¯]w=w_{1}w_{2}\cdots w_{n}\in[d,\overline{d}]^{*} and a family of operators {Ti}i[d,d¯]\{T_{i}\}_{i\in[d,\overline{d}]}, we write Tw=Tw1Tw2TwnT_{w}=T_{w_{1}}T_{w_{2}}\cdots T_{w_{n}} and TΩ=1T_{\Omega}=1. We set a linear basis {ew}w[d,d¯]\{e_{w}\}_{w\in[d,\overline{d}]} in alg(H)\mathcal{F}_{\mathrm{alg}}(H) by ew=ew1ewne_{w}=e_{w_{1}}\otimes\cdots\otimes e_{w_{n}} for w=w1wnw=w_{1}\cdots w_{n} and eΩ=Ωe_{\Omega}=\Omega.

We identify πSm\pi\in S_{m} with the permutation operator on HmH^{\otimes m} and the permutation of letters in a word ww as follows; we defined an operator π\pi on HmH^{\otimes m} by

π(ξ1ξm)=ξπ1(1)ξπ1(1),\pi(\xi_{1}\otimes\cdots\otimes\xi_{m})=\xi_{\pi^{-1}(1)}\otimes\cdots\otimes\xi_{\pi^{-1}(1)},

and we define a permutation π(w)\pi(w) of a word w=w1wmw=w_{1}\cdots w_{m} by

π(w)=wπ1(1)wπ1(m),\pi(w)=w_{\pi^{-1}(1)}\cdots w_{\pi^{-1}(m)},

which is a left action of SmS_{m}. Note that we have

P(m)=πSmqinv(π)π1=πSmqinv(π)π.P^{(m)}=\sum_{\pi\in S_{m}}q^{\mathrm{inv}(\pi)}\pi^{-1}=\sum_{\pi\in S_{m}}q^{\mathrm{inv}(\pi)}\pi.

Let Sk×SmkS_{k}\times S_{m-k} is the subgroup of SmS_{m} such that πSk×Smk\pi\in S_{k}\times S_{m-k} maps {1,,k}\{1,\ldots,k\} to {1,,k}\{1,\ldots,k\} and {k+1,,m}\{k+1,\ldots,m\} to {k+1,,m}\{k+1,\ldots,m\}, and SmS_{m}/Sk×SmkS_{k}\times S_{m-k} denote the left cosets of Sk×SmkS_{k}\times S_{m-k} in SmS_{m}. In this note, we always take the unique representative of σSm/Sk×Smk\sigma\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{m}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k}\times S_{m-k}$}}}{\text{\raise 1.0pt\hbox{$S_{m}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{m-k}$}}}{{S_{m}}\,/\,{S_{k}\times S_{m-k}}}{{S_{m}}\,/\,{S_{k}\times S_{m-k}}} so that inv(σ)\mathrm{inv}(\sigma) is minimal. Such permutations can be described as a permutation σSm\sigma\in S_{m} such that σ(1)<σ(2)<<σ(k)\sigma(1)<\sigma(2)<\cdots<\sigma(k) and σ(k+1)<σ(k+2)<σ(m)\sigma(k+1)<\sigma(k+2)\ldots<\sigma(m). If we take πSm\pi\in S_{m}, then we have the unique factorization π=σ(τ1×τ2)\pi=\sigma(\tau_{1}\times\tau_{2}) where σSm/Sk×Smk\sigma\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{m}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k}\times S_{m-k}$}}}{\text{\raise 1.0pt\hbox{$S_{m}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{m-k}$}}}{{S_{m}}\,/\,{S_{k}\times S_{m-k}}}{{S_{m}}\,/\,{S_{k}\times S_{m-k}}} is a permutation such that for each 1ik1\leq i\leq k, σ(i)\sigma(i) is the ii-th smallest number in {π(j)}j=1k\{\pi(j)\}_{j=1}^{k} and for each k+1imk+1\leq i\leq m, σ(i)\sigma(i) is the (ik)(i-k)-th smallest number in {π(j)}j=k+1m\{\pi(j)\}_{j=k+1}^{m}. Note that under this factorization, we have inv(π)=inv(σ)+inv(τ1×τ2)\mathrm{inv}(\pi)=\mathrm{inv}(\sigma)+\mathrm{inv}(\tau_{1}\times\tau_{2}).

Lemma 2.2 (Theorem 2.1 in [Boż99]).

We define an operator Rk,nR_{k,n} on HnH^{\otimes n} by

Rk,n=πSn/Sk×Snkqinv(π)π.R_{k,n}=\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}q^{\mathrm{inv}(\pi)}\pi.

Then we have

Rk,n(P(k)P(nk))=P(n)=(P(k)P(nk))Rk,n,R_{k,n}(P^{(k)}\otimes P^{(n-k)})=P^{(n)}=(P^{(k)}\otimes P^{(n-k)})R_{k,n}^{*},

and

Rk,nC|q|\|R_{k,n}\|\leq C_{|q|}

where

C|q|1=m=1(1|q|m).C_{|q|}^{-1}=\prod_{m=1}^{\infty}(1-|q|^{m}).

Moreover, we have

P(n)C|q|(P(k)P(nk)).P^{(n)}\leq C_{|q|}(P^{(k)}\otimes P^{(n-k)}).
Remark 2.3.

In the one variable case, the operators P(n)P^{(n)} and Rk,nR_{k,n} have the same roles as the qq-factorial [n]q![n]_{q}! and the qq-binomial coefficient (nk)q\binom{n}{k}_{q}. This lemma is the multivariable extension of (nk)q[k]q![nk]q!=[n]q!\binom{n}{k}_{q}[k]_{q}![n-k]_{q}!=[n]_{q}!. The proof is based on the unique factorization of π=σ(τ1×τ2)\pi=\sigma(\tau_{1}\times\tau_{2}) with σSn/Sk×Snk\sigma\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{n}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}} and τ1×τ2Sk×Snk\tau_{1}\times\tau_{2}\in S_{k}\times S_{n-k}.

Lemma 2.4 (Theorem 2.2 in [Boż99]).
w[d,d¯],|w|=nαwaw\displaystyle\left\|\sum_{\begin{subarray}{c}w\in[d,\overline{d}],\\ |w|=n\end{subarray}}\alpha_{w}a_{w}\right\| C|q|12w[d,d¯],|w|=nαwewq(H)\displaystyle\leq C_{|q|}^{\frac{1}{2}}\left\|\sum_{\begin{subarray}{c}w\in[d,\overline{d}],\\ |w|=n\end{subarray}}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)}
w[d,d¯],|w|=nαwaw\displaystyle\left\|\sum_{\begin{subarray}{c}w\in[d,\overline{d}],\\ |w|=n\end{subarray}}\alpha_{w}a_{w}^{*}\right\| C|q|12w[d,d¯],|w|=nαwewq(H)\displaystyle\leq C_{|q|}^{\frac{1}{2}}\left\|\sum_{\begin{subarray}{c}w\in[d,\overline{d}],\\ |w|=n\end{subarray}}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)}
Corollary 2.5.

Let II be a finite set and mm\in\mathbb{N}. If {ui}iI{vi}iI[d,d¯]\{u_{i}\}_{i\in I}\{v_{i}\}_{i\in I}\subset[d,\overline{d}]^{*} satisfy |ui|=|ui||u_{i}|=|u_{i^{\prime}}| and |vi|=|vi||v_{i}|=|v_{i^{\prime}}| for any i,iIi,i^{\prime}\in I, then we have,

iIαiauiaviC|q|iIαieuieviq(H)2.\left\|\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\right\|\leq C_{|q|}\left\|\sum_{i\in I}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}.
Proof.

The proof is based on the same argument as in the proof of Proposition 2.1 in Bożejko’s paper [Boż99]. We take ξ=lξl\xi=\sum_{l}\xi_{l} in the algebraic Fock space with ξlHl\xi_{l}\in H^{\otimes l}. Since |ui|=|ui||u_{i}|=|u_{i^{\prime}}| and |vi|=|vi||v_{i}|=|v_{i^{\prime}}| for any i,iIi,i^{\prime}\in I, iIαiauiaviξl\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\xi_{l} is orthogonal to iIαiauiaviξl\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\xi_{l^{\prime}} if lll\neq l^{\prime}. By using P(l+|ui||vi|)C|q|P(|ui|)P(l|vi|)P^{(l+|u_{i}|-|v_{i}|)}\leq C_{|q|}P^{(|u_{i}|)}\otimes P^{(l-|v_{i}|)}, we have

iIαiauiaviξq(H)2\displaystyle\left\|\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\xi\right\|^{2}_{\mathcal{F}_{q}(H)} =liIαiauiaviξlq(H)2\displaystyle=\sum_{l}\left\|\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\xi_{l}\right\|^{2}_{\mathcal{F}_{q}(H)}
C|q|li1,i2Iαi1αi2¯eui1,eui2qavi1ξl,avi2ξlq.\displaystyle\leq C_{|q|}\sum_{l}\sum_{i_{1},i_{2}\in I}\alpha_{i_{1}}\overline{\alpha_{i_{2}}}\langle e_{u_{i_{1}}},e_{u_{i_{2}}}\rangle_{q}\left\langle a^{*}_{v_{i_{1}}}\xi_{l},a^{*}_{v_{i_{2}}}\xi_{l}\right\rangle_{q}.

We take the orthogonal decomposition of αieui=sβ(s,i)fs\alpha_{i}e_{u_{i}}=\sum_{s}\beta(s,i)f_{s} for some orthonormal basis of H|ui|H^{\otimes|u_{i}|} with respect to qq-inner product. Then, we have

iIαiauiaviξq(H)2\displaystyle\left\|\sum_{i\in I}\alpha_{i}a_{u_{i}}a^{*}_{v_{i}}\xi\right\|^{2}_{\mathcal{F}_{q}(H)} C|q|li1,i2Iαi1αi2¯eui1,eui2qavi1ξl,avi2ξlq\displaystyle\leq C_{|q|}\sum_{l}\sum_{i_{1},i_{2}\in I}\alpha_{i_{1}}\overline{\alpha_{i_{2}}}\langle e_{u_{i_{1}}},e_{u_{i_{2}}}\rangle_{q}\left\langle a^{*}_{v_{i_{1}}}\xi_{l},a^{*}_{v_{i_{2}}}\xi_{l}\right\rangle_{q}
=C|q|lsi1,i2Iβ(s,i1)β(s,i2)¯avi1ξl,avi2ξlq\displaystyle=C_{|q|}\sum_{l}\sum_{s}\sum_{i_{1},i_{2}\in I}\beta(s,i_{1})\overline{\beta(s,i_{2})}\left\langle a^{*}_{v_{i_{1}}}\xi_{l},a^{*}_{v_{i_{2}}}\xi_{l}\right\rangle_{q}
=C|q|lsiIβ(s,i)aviξlq(H)2\displaystyle=C_{|q|}\sum_{l}\sum_{s}\left\|\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi_{l}\right\|^{2}_{\mathcal{F}_{q}(H)}

Since |vi|=|vi||v_{i}|=|v_{i^{\prime}}| for any i,iIi,i^{\prime}\in I, iIβ(s,i)aviξl\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi_{l} is orthogonal to iIβ(s,i)aviξl\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi_{l^{\prime}} is lll\neq l^{\prime}. This implies liIβ(s,i)aviξlq(H)2=iIβ(s,i)aviξq(H)2\sum_{l}\left\|\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi_{l}\right\|^{2}_{\mathcal{F}_{q}(H)}=\left\|\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi\right\|^{2}_{\mathcal{F}_{q}(H)}. Then, by applying Lemma 2.4, we have

C|q|siIβ(s,i)aviξq(H)2\displaystyle C_{|q|}\sum_{s}\left\|\sum_{i\in I}\beta(s,i)a_{v_{i}}^{*}\xi\right\|^{2}_{\mathcal{F}_{q}(H)} C|q|2siIβ(s,i)eviq(H)2ξq(H)2\displaystyle\leq C_{|q|}^{2}\sum_{s}\left\|\sum_{i\in I}\beta(s,i)e_{v_{i}}\right\|^{2}_{\mathcal{F}_{q}(H)}\|\xi\|_{\mathcal{F}_{q}(H)}^{2}
=C|q|2iIαieuieviq(H)22ξq(H)2\displaystyle=C_{|q|}^{2}\left\|\sum_{i\in I}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}\|\xi\|_{\mathcal{F}_{q}(H)}^{2}

where we use the definition of β(s,i)\beta(s,i) in the last inequality. ∎

Lemma 2.6.

For each w=w1wn[d]w=w_{1}\cdots w_{n}\in[d]^{*}, we have

cw(q)=k=0nπSn/Sk×Snkqinv(π)aπ1(w)kaπ1(w)>k¯c_{w}^{(q)}=\sum_{k=0}^{n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}}

where wk=w1wkw_{\leq k}=w_{1}\cdots w_{k} and w>k=wk+1wnw_{>k}=w_{k+1}\cdots w_{n} for knk\leq n. As a consequence, we have

|w|=nαwcw(q)=k=0n|w|=nπSn/Sk×Snkαwqinv(π)aπ1(w)kaπ1(w)>k¯,\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}=\sum_{k=0}^{n}\sum_{|w|=n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}\alpha_{w}\ q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}},

and |w|=nαwcw(q)2=|w|=nαwewq(H)\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\|_{2}=\|\sum_{|w|=n}\alpha_{w}e_{w}\|_{\mathcal{F}_{q}(H)}.

Proof.

Since cw(q)=i=1n(awi+awi¯)c_{w}^{(q)}=\prod_{i=1}^{n}(a_{w_{i}}+a^{*}_{\overline{w_{i}}}), we expand this product and obtain the formula. The index kk in the formula implies how many awia_{w_{i}} we pick from the product. When kk is fixed, each term aw1ϵ1awnϵna_{w_{1}}^{\epsilon_{1}}\ldots a_{w_{n}}^{\epsilon_{n}} (where ϵ=±1\epsilon=\pm 1 and awi+1=awia_{w_{i}}^{+1}=a_{w_{i}} and awi1=awi¯a_{w_{i}}^{-1}=a^{*}_{\overline{w_{i}}}) in the expansion of cw(q)c_{w}^{(q)} is associated with a permutation πSn/Sk×Snk\pi\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{n}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}} in the following way; for each 1ik1\leq i\leq k, π(i)\pi(i) is the ii-th smallest number in {j|ϵj=+1}\{j\ |\ \epsilon_{j}=+1\}, and for each k+1ink+1\leq i\leq n, π(i)\pi(i) is the (ik)(i-k)-th smallest number in {j|ϵj=1}\{j\ |\ \epsilon_{j}=-1\}. Then we rearrange the product aw1ϵ1awnϵna_{w_{1}}^{\epsilon_{1}}\ldots a_{w_{n}}^{\epsilon_{n}} in the form awi1awikawik+1¯awin¯a_{w_{i_{1}}}\cdots a_{w_{i_{k}}}a_{\overline{w_{i_{k+1}}}}^{*}\cdots a_{\overline{w_{i_{n}}}}^{*} by using the qq-commutation relation:

ai¯aj=qajai¯.a_{\overline{i}}^{*}a_{j}=qa_{j}a_{\overline{i}}^{*}.

By definition, we can see

awi1awikawik+1¯awin¯=aπ1(w)kaπ1(w)>k¯,a_{w_{i_{1}}}\cdots a_{w_{i_{k}}}a_{\overline{w_{i_{k+1}}}}^{*}\cdots a_{\overline{w_{i_{n}}}}^{*}=a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}},

and the number of qq appearing by this rearrangement is exactly inv(π)\mathrm{inv}(\pi). Therefore, we have

aw1ϵ1awnϵn=qinv(π)aπ1(w)kaπ1(w)>k¯.a_{w_{1}}^{\epsilon_{1}}\ldots a_{w_{n}}^{\epsilon_{n}}=q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}}.

Note that by the formula of cw(q)c_{w}^{(q)}, we have

cw(q)Ω=ew.c_{w}^{(q)}\Omega=e_{w}.

Thus, we have |w|=nαwcw(q)2=|w|=nαwewq(H)\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\|_{2}=\|\sum_{|w|=n}\alpha_{w}e_{w}\|_{\mathcal{F}_{q}(H)}. ∎

Remark 2.7.

The formula in Lemma 2.6 has a similar form to the formula for qq-Wick polynomials. The qq-Gausssian system is given by

Xi(q)=ai+ai,i[d].X_{i}^{(q)}=a_{i}+a_{i}^{*},\quad i\in[d].

Then, there is an isomorphism DD between the qq-Fock space q(d)\mathcal{F}_{q}(\mathbb{C}^{d}) and GNS Hilbert space L2(X1(q),,Xd(q),τ)L^{2}(\mathbb{C}\langle X_{1}^{(q)},\cdots,X_{d}^{(q)}\rangle,\tau) such that TΩ=TT\Omega=T for TX1(q),,Xd(q)T\in\mathbb{C}\langle X_{1}^{(q)},\ldots,X_{d}^{(q)}\rangle. For ewq(d)e_{w}\in\mathcal{F}_{q}(\mathbb{C}^{d}) (w[d]w\in[d]^{*}), DewDe_{w} is a polynomial in X1(q),,Xd(q)X_{1}^{(q)},\ldots,X_{d}^{(q)} determined by the recursion, and its expansion in terms of the creation and annihilation operators is given by

ew(X1(q),,Xd(q))=k=0nπSn/Sk×Snkqinv(π)aπ1(w)kaπ1(w)>k.e_{w}(X_{1}^{(q)},\ldots,X_{d}^{(q)})=\sum_{k=0}^{n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\pi^{-1}(w)_{>k}}.

The following lemma is important for the proof of strong Haagerup inequality.

Lemma 2.8.

Let u,v[d]u,v\in[d]^{*} with |v|=k|v|=k and |u|=l|u|=l. Then we have,

(av)au=m=0min(k,l)q(km)(lm)\displaystyle(a_{v})^{*}a_{u}=\sum_{m=0}^{\min(k,l)}q^{(k-m)(l-m)} π1Sk/Skm×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(v)>km],eπ21(u)maπ21(u)>maπ11(v)km.\displaystyle\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{\pi_{2}^{-1}(u)_{>m}}a_{\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}.
Remark 2.9.

In the one-variable case (d=1d=1), our formula implies

akal=m=0min(k,l)q(km)(lm)(kkm)q(lm)q[m]q!almakm.a^{*k}a^{l}=\sum_{m=0}^{\min(k,l)}q^{(k-m)(l-m)}\binom{k}{k-m}_{q}\binom{l}{m}_{q}[m]_{q}!\ a^{l-m}a^{*k-m}.
Proof.

We may assume klk\leq l since if l<kl<k, we have

(au)av=m=0lq(km)(lm)\displaystyle(a_{u})^{*}a_{v}=\sum_{m=0}^{l}q^{(k-m)(l-m)} π2Sl/Slm×Smπ1Sk/Sm×Skmqinv(π1)+inv(π2)\displaystyle\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{l-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{l-m}\times S_{m}$}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{k-m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{k-m}$}}}{{S_{k}}\,/\,{S_{m}\times S_{k-m}}}{{S_{k}}\,/\,{S_{m}\times S_{k-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π21(u)>lm],eπ11(u)maπ11(v)>maπ21(u)lm\displaystyle\langle P^{(m)}e_{[\pi_{2}^{-1}(u^{*})_{>l-m}]^{*}},e_{\pi_{1}^{-1}(u)_{\leq m}}\rangle a_{\pi_{1}^{-1}(v)_{>m}}a_{\pi_{2}^{-1}(u^{*})_{\leq l-m}}^{*}

and by taking the adjoint, we obtain

(av)au=m=0lq(km)(lm)π2Sl/Slm×Smπ1Sk/Sm×Skmqinv(π1)+inv(π2)\displaystyle(a_{v})^{*}a_{u}=\sum_{m=0}^{l}q^{(k-m)(l-m)}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{l-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{l-m}\times S_{m}$}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{k-m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{k-m}$}}}{{S_{k}}\,/\,{S_{m}\times S_{k-m}}}{{S_{k}}\,/\,{S_{m}\times S_{k-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)eπ11(v)m,e[π21(u)>lm]a[π21(u)lm]a[π11(v)>m]\displaystyle\langle P^{(m)}e_{\pi_{1}^{-1}(v)_{\leq m}},e_{[\pi_{2}^{-1}(u^{*})_{>l-m}]^{*}}\rangle a_{[\pi_{2}^{-1}(u^{*})_{\leq l-m}]^{*}}a^{*}_{[\pi_{1}^{-1}(v)_{>m}]^{*}}
=m=0lq(km)(lm)π2Sl/Sm×Slmπ1Sk/Skm×Smqinv(π1)+inv(π2)\displaystyle=\sum_{m=0}^{l}q^{(k-m)(l-m)}\sum_{\pi_{2}^{*}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}\sum_{\pi_{1}^{*}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}q^{\mathrm{inv}(\pi^{*}_{1})+\mathrm{inv}(\pi_{2}^{*})}
P(m)e[π11(v)>km],eπ21(u)maπ21(u)>maπ11(v)km\displaystyle\langle P^{(m)}e_{[{\pi_{1}^{*}}^{-1}(v^{*})_{>k-m}]^{*}},e_{{\pi_{2}^{*}}^{-1}(u)_{\leq m}}\rangle a_{{\pi_{2}^{*}}^{-1}(u)_{>m}}a^{*}_{{\pi_{1}^{*}}^{-1}(v^{*})_{\leq k-m}}

where Sl/Slm×SmππSl/Sm×Slm\mathchoice{\text{\raise 4.30554pt\hbox{$S_{l}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{l-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{l-m}\times S_{m}$}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}{{S_{l}}\,/\,{S_{l-m}\times S_{m}}}\ni\pi\mapsto\pi^{*}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{l}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}} is given π=w0πw0\pi^{*}=w_{0}\pi w_{0} with w0(i)=(l+1i)w_{0}(i)=(l+1-i) for 1il1\leq i\leq l which preserves the number of inversions (see the proof of [Boż99, Theorem 2.2 (c)]).

We prove this lemma by induction on 0kl0\leq k\leq l. Obviously, the formula holds when k=0k=0. Suppose that the formula holds for k<lk<l.

(avi)au\displaystyle(a_{vi})^{*}a_{u} =ai(av)au\displaystyle=a_{i}^{*}(a_{v})^{*}a_{u}
=m=0kq(km)(lm)π1Sk/Skm×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle=\sum_{m=0}^{k}q^{(k-m)(l-m)}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(v)>km],eπ21(u)maiaπ21(u)>maπ11(v)km\displaystyle\qquad\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{i}^{*}a_{\pi_{2}^{-1}(u)_{>m}}a_{\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}

We expand aiaπ21(u)>ma_{i}^{*}a_{\pi_{2}^{-1}(u)_{>m}} by iterating the qq-commutation relation. Then, we have two cases; aiaπ21(u)ja_{i}^{*}a_{\pi_{2}^{-1}(u)_{j}} for some m+1jlm+1\leq j\leq l; aia_{i}^{*} commutes with aπ21(u)ja_{\pi_{2}^{-1}(u)_{j}} for all m+1jlm+1\leq j\leq l. Thus, the above sum is equal to

m=0kq(k+1m)(lm)π1Sk/Skm×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{m=0}^{k}q^{(k+1-m)(l-m)}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(v)>km],eπ21(u)maπ21(u)>maiπ11(v)km\displaystyle\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{\pi_{2}^{-1}(u)_{>m}}a_{i\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}
+m=0kq(km)(lm)π1Sk/Skm×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle+\sum_{m=0}^{k}q^{(k-m)(l-m)}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(v)>km],eπ21(u)mj=m+1lqjm1δi,π21(u)jaπ21(u)(m,l]{j}aπ11(v)km\displaystyle\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle\sum_{j=m+1}^{l}q^{j-m-1}\delta_{i,\pi_{2}^{-1}(u)_{j}}a_{\pi_{2}^{-1}(u)_{(m,l]\setminus\{j\}}}a_{\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}

We also expand P(m)e[π11(v)>km],eπ21(u)m\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle by definition of P(m)P^{(m)}, and the quantity above is equal to

m=0kq(k+1m)(lm)π1Sk/Skm×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{m=0}^{k}q^{(k+1-m)(l-m)}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(v)>km],eπ21(u)maπ21(u)>maiπ11(v)km\displaystyle\langle P^{(m)}e_{[\pi_{1}^{-1}(v^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{\pi_{2}^{-1}(u)_{>m}}a_{i\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}
+m=0kq(km)(lm)π1Sk/Skm×Smπ2Sl/Sm×SlmσSmj=m+1lqjm1+inv(π1)+inv(π2)+inv(σ)\displaystyle+\sum_{m=0}^{k}q^{(k-m)(l-m)}\sum_{\pi_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}\sum_{\sigma\in S_{m}}\sum_{j=m+1}^{l}q^{j-m-1+\mathrm{inv}(\pi_{1})+\mathrm{inv}(\pi_{2})+\mathrm{inv}(\sigma)}
eσ([π11(v)>km]),eπ21(u)mδi,π21(u)jaπ21(u)(m,l]{j}aπ11(v)km\displaystyle\langle e_{\sigma([\pi_{1}^{-1}(v^{*})_{>k-m}]^{*})},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle\delta_{i,\pi_{2}^{-1}(u)_{j}}a_{\pi_{2}^{-1}(u)_{(m,l]\setminus\{j\}}}a_{\pi_{1}^{-1}(v^{*})_{\leq k-m}}^{*}

where aπ21(u)(m,l]{j}=aπ21(u)m+1aπ21(u)j1aπ21(u)j+1aπ21(u)la_{\pi_{2}^{-1}(u)_{(m,l]\setminus\{j\}}}=a_{\pi_{2}^{-1}(u)_{m+1}}\cdots a_{\pi_{2}^{-1}(u)_{j-1}}a_{\pi_{2}^{-1}(u)_{j+1}}\cdots a_{\pi_{2}^{-1}(u)_{l}}. For the first sum, we replace π1Sk/Skm×Sm\pi_{1}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{k}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}} with π1Sk+1/Sk+1m×Sm\pi^{\prime}_{1}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}, π1(1)=1\pi^{\prime}_{1}(1)=1 defined by π1(1)=1\pi^{\prime}_{1}(1)=1 and π1(j)=π(j1)+1\pi^{\prime}_{1}(j)=\pi(j-1)+1 for j>1j>1. Note that we have

inv(π1)=inv(π1).\mathrm{inv}(\pi^{\prime}_{1})=\mathrm{inv}(\pi_{1}).

For the second sum, we associate π1Sk/Skm×Sm\pi_{1}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{k}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m}$}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}{{S_{k}}\,/\,{S_{k-m}\times S_{m}}}, π2Sl/Sm×Slm\pi_{2}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{l}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}, σSm\sigma\in S_{m}, and m+1jlm+1\leq j\leq l with π1Sk+1/Skm×Sm+1\pi^{\prime}_{1}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k-m}\times S_{m+1}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m+1}$}}}{{S_{k+1}}\,/\,{S_{k-m}\times S_{m+1}}}{{S_{k+1}}\,/\,{S_{k-m}\times S_{m+1}}} such that π1(km+1)=1\pi^{\prime}_{1}(k-m+1)=1, π2Sl/Sm+1×Slm1\pi_{2}^{\prime}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{l}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{m+1}\times S_{l-m-1}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m+1}\times S_{l-m-1}$}}}{{S_{l}}\,/\,{S_{m+1}\times S_{l-m-1}}}{{S_{l}}\,/\,{S_{m+1}\times S_{l-m-1}}}, σSm+1\sigma^{\prime}\in S_{m+1} as follows; π1(km+1)=1\pi^{\prime}_{1}(k-m+1)=1 and π1(j)|[1,m+1]{km+1}=π1\pi^{\prime}_{1}(j)|_{[1,m+1]\setminus\{k-m+1\}}=\pi_{1}; π2(a)=π2(j)\pi_{2}^{\prime}(a)=\pi_{2}(j) for 1am+11\leq a\leq m+1 such that π2(a1)<π2(j)<π2(a)\pi_{2}(a-1)<\pi_{2}(j)<\pi_{2}(a) (when π2(m)<π2(j)\pi_{2}(m)<\pi_{2}(j), we set a=m+1a=m+1), π2|[1,l]{a}=π2|[1,l]{j}\pi^{\prime}_{2}|_{[1,l]\setminus\{a\}}=\pi_{2}|_{[1,l]\setminus\{j\}}; σ(m+1)=a\sigma^{\prime}(m+1)=a and σ|[1,m]=σ\sigma^{\prime}|_{[1,m]}=\sigma in a order-preserving way. Note that we have

inv(π1)\displaystyle\mathrm{inv}(\pi^{\prime}_{1}) =inv(π1)+km,\displaystyle=\mathrm{inv}(\pi_{1})+k-m,
inv(π2)\displaystyle\mathrm{inv}(\pi^{\prime}_{2}) =inv(π2)+(jm1)(m+1a),\displaystyle=\mathrm{inv}(\pi_{2})+(j-m-1)-(m+1-a),
inv(σ)\displaystyle\mathrm{inv}(\sigma^{\prime}) =inv(σ)+(m+1a),\displaystyle=\mathrm{inv}(\sigma)+(m+1-a),

and

eσ([π11(iv)>km]),eπ21(u)m+1=eσ([π11(v)>km]),eπ21(u)mδi,π21(u)j.\langle e_{\sigma^{\prime}([{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k-m}]^{*})},e_{{\pi^{\prime}}_{2}^{-1}(u)_{\leq m+1}}\rangle=\langle e_{\sigma([\pi_{1}^{-1}(v^{*})_{>k-m}]^{*})},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle\delta_{i,\pi_{2}^{-1}(u)_{j}}.

Since this correspondence is one-to-one, we rewrite the sum by using π1,π2,σ\pi^{\prime}_{1},\pi^{\prime}_{2},\sigma^{\prime} instead of π1,π2,σ\pi_{1},\pi_{2},\sigma, and we have

m=0kq(k+1m)(lm)π1Sk+1/Sk+1m×Smπ1(1)=1π2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{m=0}^{k}q^{(k+1-m)(l-m)}\sum_{\begin{subarray}{c}\pi^{\prime}_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}\\ \pi^{\prime}_{1}(1)=1\end{subarray}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi^{\prime}_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(iv)>k+1m],eπ21(u)maπ21(u)>maπ11(iv)k+1m\displaystyle\langle P^{(m)}e_{[{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k+1-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{\pi_{2}^{-1}(u)_{>m}}a_{{\pi^{\prime}}_{1}^{-1}(iv^{*})_{\leq k+1-m}}^{*}
+m=0kq(km)(lm1)π1Sk+1/Skm×Sm+1π1(km+1)=1π2Sl/Sm+1×Slm1σSm+1qinv(π1)+inv(π2)+inv(σ)\displaystyle+\sum_{m=0}^{k}q^{(k-m)(l-m-1)}\sum_{\begin{subarray}{c}\pi^{\prime}_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k-m}\times S_{m+1}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k-m}\times S_{m+1}$}}}{{S_{k+1}}\,/\,{S_{k-m}\times S_{m+1}}}{{S_{k+1}}\,/\,{S_{k-m}\times S_{m+1}}}\\ \pi^{\prime}_{1}(k-m+1)=1\end{subarray}}\sum_{\pi^{\prime}_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m+1}\times S_{l-m-1}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m+1}\times S_{l-m-1}$}}}{{S_{l}}\,/\,{S_{m+1}\times S_{l-m-1}}}{{S_{l}}\,/\,{S_{m+1}\times S_{l-m-1}}}}\sum_{\sigma^{\prime}\in S_{m+1}}q^{\mathrm{inv}(\pi^{\prime}_{1})+\mathrm{inv}(\pi^{\prime}_{2})+\mathrm{inv}(\sigma^{\prime})}
eσ([π11(iv)>km]),eπ21(u)m+1aπ21(u)>m+1aπ11(iv)km\displaystyle\langle e_{\sigma^{\prime}([{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k-m}]^{*})},e_{{\pi^{\prime}}_{2}^{-1}(u)_{\leq m+1}}\rangle a_{{\pi^{\prime}}_{2}^{-1}(u)_{>m+1}}a_{{\pi^{\prime}}_{1}^{-1}(iv^{*})_{\leq k-m}}^{*}

By replacing m+1m+1 with mm in the second sum, we have

m=0kq(k+1m)(lm)π1Sk+1/Sk+1m×Smπ1(1)=1π2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{m=0}^{k}q^{(k+1-m)(l-m)}\sum_{\begin{subarray}{c}\pi^{\prime}_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}\\ \pi^{\prime}_{1}(1)=1\end{subarray}}\sum_{\pi_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi^{\prime}_{1})+\mathrm{inv}(\pi_{2})}
P(m)e[π11(iv)>k+1m],eπ21(u)maπ21(u)>maπ11(iv)k+1m\displaystyle\langle P^{(m)}e_{[{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k+1-m}]^{*}},e_{\pi_{2}^{-1}(u)_{\leq m}}\rangle a_{\pi_{2}^{-1}(u)_{>m}}a_{{\pi^{\prime}}_{1}^{-1}(iv^{*})_{\leq k+1-m}}^{*}
+m=1k+1q(k+1m)(lm)π1Sk+1/Sk+1m×Smπ1(k+1m+1)=1π2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle+\sum_{m=1}^{k+1}q^{(k+1-m)(l-m)}\sum_{\begin{subarray}{c}\pi^{\prime}_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}\\ \pi^{\prime}_{1}(k+1-m+1)=1\end{subarray}}\sum_{\pi^{\prime}_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi^{\prime}_{1})+\mathrm{inv}(\pi^{\prime}_{2})}
P(m)e[π11(iv)>k+1m],eπ21(u)maπ21(u)>maπ11(iv)k+1m.\displaystyle\langle P^{(m)}e_{[{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k+1-m}]^{*}},e_{{\pi^{\prime}}_{2}^{-1}(u)_{\leq m}}\rangle a_{{\pi^{\prime}}_{2}^{-1}(u)_{>m}}a_{{\pi^{\prime}}_{1}^{-1}(iv^{*})_{\leq k+1-m}}^{*}.

Note that π1Sk+1/Sk+1m×Sm\pi^{\prime}_{1}\in\mathchoice{\text{\raise 4.30554pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 4.30554pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}} satisfy either π11(1)=1{\pi^{\prime}}_{1}^{-1}(1)=1 or π11(1)=k+1m+1{\pi^{\prime}}_{1}^{-1}(1)=k+1-m+1, and π11(1)=1{\pi^{\prime}}_{1}^{-1}(1)=1 when m=0,k+1m=0,k+1. Therefore, the above sum is equal to

m=0k+1q(k+1m)(lm)π1Sk+1/Sk+1m×Smπ2Sl/Sm×Slmqinv(π1)+inv(π2)\displaystyle\sum_{m=0}^{k+1}q^{(k+1-m)(l-m)}\sum_{\pi^{\prime}_{1}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{k+1}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k+1-m}\times S_{m}$}}}{\text{\raise 1.0pt\hbox{$S_{k+1}$}\big{/}\lower 1.0pt\hbox{$S_{k+1-m}\times S_{m}$}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}{{S_{k+1}}\,/\,{S_{k+1-m}\times S_{m}}}}\sum_{\pi^{\prime}_{2}\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{l}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{m}\times S_{l-m}$}}}{\text{\raise 1.0pt\hbox{$S_{l}$}\big{/}\lower 1.0pt\hbox{$S_{m}\times S_{l-m}$}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}{{S_{l}}\,/\,{S_{m}\times S_{l-m}}}}q^{\mathrm{inv}(\pi^{\prime}_{1})+\mathrm{inv}(\pi^{\prime}_{2})}
P(m)e[π11(iv)>k+1m],eπ21(u)maπ21(u)>maπ11(iv)k+1m,\displaystyle\langle P^{(m)}e_{[{\pi^{\prime}}_{1}^{-1}(iv^{*})_{>k+1-m}]^{*}},e_{{\pi^{\prime}}_{2}^{-1}(u)_{\leq m}}\rangle a_{{\pi^{\prime}}_{2}^{-1}(u)_{>m}}a_{{\pi^{\prime}}_{1}^{-1}(iv^{*})_{\leq k+1-m}}^{*},

which completes the induction. ∎

The next lemma is fundamental and we use it several times in Section 3.

Lemma 2.10.

Let I,JI,J be finite sets and H,K,LH,K,L be Hilbert spaces. If the vectors {xi}I,{yj}JH\{x_{i}\}_{I},\{y_{j}\}_{J}\subset H, {zi}IK,{wj}JL\{z_{i}\}_{I}\subset K,\{w_{j}\}_{J}\subset L satisfy wj,wjK\langle w_{j},w_{j^{\prime}}\rangle_{K}\in\mathbb{R} for any j,jJj,j^{\prime}\in J, then we have

iI,jJxi,yjHziwjKLiIxiziHKjJyjwjHL\left\|\sum_{i\in I,j\in J}\langle x_{i},y_{j}\rangle_{H}z_{i}\otimes w_{j}\right\|_{K\otimes L}\leq\left\|\sum_{i\in I}x_{i}\otimes z_{i}\right\|_{H\otimes K}\left\|\sum_{j\in J}y_{j}\otimes w_{j}\right\|_{H\otimes L}
Proof.

By using the Cauchy-Schwarz inequality

iI,jJxi,yjHziwjKL2=i1,i2Ij1,j2Jxi1,yj1Hxi2,yj2H¯zi1wj1,zi2wj2KL\displaystyle\left\|\sum_{i\in I,j\in J}\langle x_{i},y_{j}\rangle_{H}z_{i}\otimes w_{j}\right\|_{K\otimes L}^{2}=\sum_{\begin{subarray}{c}i_{1},i_{2}\in I\\ j_{1},j_{2}\in J\end{subarray}}\langle x_{i_{1}},y_{j_{1}}\rangle_{H}\overline{\langle x_{i_{2}},y_{j_{2}}\rangle_{H}}\langle z_{i_{1}}\otimes w_{j_{1}},z_{i_{2}}\otimes w_{j_{2}}\rangle_{K\otimes L}
=i1,i2Ij1,j2Jxi1,yj1Hyj2,xi2Hzi1,zi2Kwj1,wj2L\displaystyle=\sum_{\begin{subarray}{c}i_{1},i_{2}\in I\\ j_{1},j_{2}\in J\end{subarray}}\langle x_{i_{1}},y_{j_{1}}\rangle_{H}\langle y_{j_{2}},x_{i_{2}}\rangle_{H}\langle z_{i_{1}},z_{i_{2}}\rangle_{K}\langle w_{j_{1}},w_{j_{2}}\rangle_{L}
=i1,i2Ij1,j2Jxi1,yj1Hyj2,xi2Hzi1,zi2Kwj2,wj1L\displaystyle=\sum_{\begin{subarray}{c}i_{1},i_{2}\in I\\ j_{1},j_{2}\in J\end{subarray}}\langle x_{i_{1}},y_{j_{1}}\rangle_{H}\langle y_{j_{2}},x_{i_{2}}\rangle_{H}\langle z_{i_{1}},z_{i_{2}}\rangle_{K}\langle w_{j_{2}},w_{j_{1}}\rangle_{L}
=i1,j2xi1zi1yj2wj2,j1,i2yj1zi2xi2wj1HKHL\displaystyle=\left\langle\sum_{i_{1},j_{2}}x_{i_{1}}\otimes z_{i_{1}}\otimes y_{j_{2}}\otimes w_{j_{2}},\sum_{j_{1},i_{2}}y_{j_{1}}\otimes z_{i_{2}}\otimes x_{i_{2}}\otimes w_{j_{1}}\right\rangle_{H\otimes K\otimes H\otimes L}
i1,j2xi1zi1yj2wj2HKHLj1,i2yj1zi2xi2wj1HKHL\displaystyle\leq\left\|\sum_{i_{1},j_{2}}x_{i_{1}}\otimes z_{i_{1}}\otimes y_{j_{2}}\otimes w_{j_{2}}\right\|_{H\otimes K\otimes H\otimes L}\left\|\sum_{j_{1},i_{2}}y_{j_{1}}\otimes z_{i_{2}}\otimes x_{i_{2}}\otimes w_{j_{1}}\right\|_{H\otimes K\otimes H\otimes L}
=iIxiziHK2jJyjwjHL2.\displaystyle=\left\|\sum_{i\in I}x_{i}\otimes z_{i}\right\|^{2}_{H\otimes K}\left\|\sum_{j\in J}y_{j}\otimes w_{j}\right\|^{2}_{H\otimes L}.

3. The strong Haagerup inequality for qq-circular systems

To prove our main result, we prove the following lemma.

Lemma 3.1.

There exist A=A(|q|)>0A=A(|q|)>0 such that, for nn\in\mathbb{N} and a finite set Λk\Lambda_{k} (k=1,,nk=1,\dots,n), if we take a family of words {ui}iΛk,{vi}iΛk[d]\{u_{i}\}_{i\in\Lambda_{k}},\{v_{i}\}_{i\in\Lambda_{k}}\subset[d]^{*} for each kk with |ui|=k|u_{i}|=k and |vi|=nk|v_{i}|=n-k, we have

k=1niΛkαiauiavi¯2Anmax1kniΛkαieuieviq(H)22.\left\|\sum_{k=1}^{n}\sum_{i\in\Lambda_{k}}\alpha_{i}a_{u_{i}}a^{*}_{\overline{v_{i}}}\right\|^{2}\leq An\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}.

To prove this Lemma, we estimate 5 operators obtained by the triangular inequality and Lemma 2.8. First of all, we have (see Section 1.1)

k=1niΛkαiauiavi¯2\displaystyle\left\|\sum_{k=1}^{n}\sum_{i\in\Lambda_{k}}\alpha_{i}a_{u_{i}}a^{*}_{\overline{v_{i}}}\right\|^{2} k=1nAkAk+2k=1n1l=k+1nAkAl\displaystyle\leq\sum_{k=1}^{n}\|A_{k}^{*}A_{k}\|+2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|
=k=1nAk2+2k=1n1l=k+1nAkAl\displaystyle=\sum_{k=1}^{n}\|A_{k}\|^{2}+2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|

where we set

Ak=iΛkαiauiavi¯.A_{k}=\sum_{i\in\Lambda_{k}}\alpha_{i}a_{u_{i}}a^{*}_{\overline{v_{i}}}.

Subsequently, by applying Lemma 2.8 and decomposing the sum into two parts corresponding to 0mk10\leq m\leq k-1 and m=km=k, AkAlA_{k}^{*}A_{l} is equal to

iΛkjΛlm=0kπ1Sk/Skm×Smπ2Sl/Sm×Slmαi¯αjq(km)(lm)+i=12inv(πi)e[π11(ui)>km],eπ21(uj)mq\displaystyle\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l}\end{subarray}}\sum_{m=0}^{k}\sum_{\begin{subarray}{c}\pi_{1}\in S_{k}/S_{k-m}\times S_{m}\\ \pi_{2}\in S_{l}/S_{m}\times S_{l-m}\end{subarray}}\overline{\alpha_{i}}\alpha_{j}q^{(k-m)(l-m)+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}\langle e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\rangle_{q}
avi¯aπ21(uj)>maπ11(ui)kmavj¯\displaystyle\quad\quad a_{\overline{v_{i}^{*}}}a_{\pi_{2}^{-1}(u_{j})_{>m}}a_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}^{*}a_{\overline{v_{j}}}^{*}
=m=0k1iΛkjΛlπ1Sk/Skm×Smπ2Sl/Sm×Slmαi¯αjq(km)(lm)+i=12inv(πi)e[π11(ui)>km],eπ21(uj)mq\displaystyle=\sum_{m=0}^{k-1}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{k}/S_{k-m}\times S_{m}\\ \pi_{2}\in S_{l}/S_{m}\times S_{l-m}\end{subarray}}\overline{\alpha_{i}}\alpha_{j}q^{(k-m)(l-m)+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}\langle e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\rangle_{q}
avi¯aπ21(uj)>maπ11(ui)kmavj¯\displaystyle\quad\quad a_{\overline{v_{i}^{*}}}a_{\pi_{2}^{-1}(u_{j})_{>m}}a_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}^{*}a_{\overline{v_{j}}}^{*}
+iΛkjΛlπSl/Sk×Slkαi¯αjqinv(π)eui,eπ1(uj)kqavi¯aπ1(uj)>kavj¯\displaystyle\quad+\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l}\end{subarray}}\sum_{\pi\in S_{l}/S_{k}\times S_{l-k}}\overline{\alpha_{i}}\alpha_{j}q^{\mathrm{inv}(\pi)}\langle e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\rangle_{q}\ a_{\overline{v_{i}^{*}}}a_{\pi^{-1}(u_{j})_{>k}}a_{\overline{v_{j}}}^{*}
=m=0k1Ak,l,m<k+Ak,l,k.\displaystyle=\sum_{m=0}^{k-1}A_{k,l,m<k}+A_{k,l,k}.

Thus by the triangular inequality, we have

k=1n1l=k+1nAkAlk=1n1l=k+1nm=0k1Ak,l,m<k+k=1n1l=k+1nAk,l,k\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|\leq\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{m=0}^{k-1}A_{k,l,m<k}\right\|+\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k,l,k}\right\|

As the next step, we estimate k=1n1l=k+1nAk,l,k2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k,l,k}\right\|^{2} and in a similar way to the first step, we have

k=1n1l=k+1nAk,l,k2\displaystyle\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k,l,k}\right\|^{2} k=1n1BkBk+2k1=1n2k2=k1+1n1Bk1Bk2\displaystyle\leq\sum_{k=1}^{n-1}\|B_{k}^{*}B_{k}\|+2\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\|

where we put

Bk=l=k+1nAk,l,k=l=k+1niΛkjΛlπSl/Sk×Slkαi¯αjqinv(π)eui,eπ1(uj)kqavi¯aπ1(uj)>kavj¯.B_{k}=\sum_{l=k+1}^{n}A_{k,l,k}=\sum_{l=k+1}^{n}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l}\end{subarray}}\sum_{\pi\in S_{l}/S_{k}\times S_{l-k}}\overline{\alpha_{i}}\alpha_{j}q^{\mathrm{inv}(\pi)}\langle e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\rangle_{q}\ a_{\overline{v_{i}^{*}}}a_{\pi^{-1}(u_{j})_{>k}}a_{\overline{v_{j}}}^{*}.

Finally, we apply Lemma 2.8 to BkBkB_{k}^{*}B_{k} and decompose the sum into the two parts corresponding to 0mnk10\leq m\leq n-k-1 and m=nkm=n-k, and we obtain by the triangular inequality

BkBk\displaystyle\|B_{k}^{*}B_{k}\|
l1=k+1l2=k+1ni1Λkj1Λl1i2Λkj2Λl2π1Sl1/Sk×Sl1kπ2Sl2/Sk×Sl2km=0nk1σ1Snk/Snkm×Smσ2Snk/Sm×Snkm\displaystyle\leq\Biggl{\|}\sum_{\begin{subarray}{c}l_{1}=k+1\\ l_{2}=k+1\end{subarray}}^{n}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k}\times S_{l_{1}-k}\\ \pi_{2}\in S_{l_{2}}/S_{k}\times S_{l_{2}-k}\end{subarray}}\sum_{m=0}^{n-k-1}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k}/S_{n-k-m}\times S_{m}\\ \sigma_{2}\in S_{n-k}/S_{m}\times S_{n-k-m}\end{subarray}}
αi1αj1αi2¯αj2q(nkm)2+i=12inv(πi)+inv(σi)\displaystyle\qquad\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{(n-k-m)^{2}+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})}
eui1,eπ11(uj1)kq¯eui2,eπ21(uj2)kqe[σ11(vi1)>nkm]¯,eσ21(vi2)m¯q\displaystyle\qquad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k}}\rangle_{q}\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}
avj1¯a[π11(uj1)>k]aσ21(vi2)>m¯aσ11(vi1)nkm¯aπ21(uj2)>kavj2¯\displaystyle\qquad a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k}]^{*}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k-m}}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k}}a^{*}_{\overline{v_{j_{2}}}}\Biggr{\|}
+l1=k+1l2=k+1ni1Λkj1Λl1i2Λkj2Λl2π1Sl1/Sk×Sl1kπ2Sl2/Sk×Sl2kαi1αj1αi2¯αj2qi=12inv(πi)\displaystyle+\Biggl{\|}\sum_{\begin{subarray}{c}l_{1}=k+1\\ l_{2}=k+1\end{subarray}}^{n}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k}\times S_{l_{1}-k}\\ \pi_{2}\in S_{l_{2}}/S_{k}\times S_{l_{2}-k}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}
eui1,eπ11(uj1)kq¯eui2,eπ21(uj2)kqevi1¯,evi2¯qavj1¯a[π11(uj1)>k]aπ21(uj2)>kavj2¯\displaystyle\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k}}\rangle_{q}\langle e_{\overline{v_{i_{1}}^{*}}},e_{\overline{v_{i_{2}}^{*}}}\rangle_{q}a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k}}a_{\overline{v_{j_{2}}}}^{*}\Biggr{\|}
=Bk,m<nk+Bk,nk.\displaystyle=\|B_{k,m<n-k}\|+\|B_{k,n-k}\|.

According to this decomposition, we need to estimate the following 5 terms:

k=1nAk2,k=1n1l=k+1nm=0k1Ak,l,m<k,k1=1n2k2=k1+1n1Bk1Bk2,\displaystyle\sum_{k=1}^{n}\|A_{k}\|^{2},\quad\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{m=0}^{k-1}A_{k,l,m<k}\right\|,\quad\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\|,
k=1n1Bk,m<nk,k=1n1Bk,nk.\displaystyle\quad\sum_{k=1}^{n-1}\|B_{k,m<n-k}\|,\quad\sum_{k=1}^{n-1}\|B_{k,n-k}\|.

In the following lemmas, we give a bound for each term and prove Lemma 3.1 by combining them.

Lemma 3.2.
k=1nAk2C|q|2nmax1kniΛkαieuieviq(H)22.\sum_{k=1}^{n}\|A_{k}\|^{2}\leq C_{|q|}^{2}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}.
Proof.

By Corollary 2.5, we have

k=1nAk2nmax1knAk2C|q|2nmax1kniΛkαieuieviq(H)22.\sum_{k=1}^{n}\|A_{k}\|^{2}\leq n\max_{1\leq k\leq n}\|A_{k}\|^{2}\leq C_{|q|}^{2}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}.

Lemma 3.3.

There exists D1=D1(|q|)>0D_{1}=D_{1}(|q|)>0 such that

k=1n1l=k+1nm=0k1Ak,l,m<kD1nmax1kniΛkαieuieviq(H)22\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{m=0}^{k-1}A_{k,l,m<k}\right\|\leq D_{1}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}
Proof.

We replace lkl-k with ll and rearrange the summands. Then we have

k=1n1l=k+1nm=0k1Ak,l,m<k\displaystyle\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{m=0}^{k-1}A_{k,l,m<k}\right\| =m=0n2l=1nm1k=m+1nlAk,l+k,m<k\displaystyle=\left\|\sum_{m=0}^{n-2}\sum_{l=1}^{n-m-1}\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|
m=0n2l=1nm1k=m+1nlAk,l+k,m<k.\displaystyle\leq\sum_{m=0}^{n-2}\sum_{l=1}^{n-m-1}\left\|\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|.

Since the operator avi¯aπ21(uj)>maπ11(ui)kmavj¯a_{\overline{v_{i}^{*}}}a_{\pi_{2}^{-1}(u_{j})_{>m}}a_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}^{*}a_{\overline{v_{j}}}^{*} in Ak,l+k,mA_{k,l+k,m} is a product of the creation operator avi¯aπ21(uj)>ma_{\overline{v_{i}^{*}}}a_{\pi_{2}^{-1}(u_{j})_{>m}} and the annihilation operator aπ11(ui)kmavj¯a_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}^{*}a_{\overline{v_{j}}}^{*} with |vi¯|+|π21(uj)>m|=n+lm|\overline{v_{i}^{*}}|+|\pi_{2}^{-1}(u_{j})_{>m}|=n+l-m and |π11(ui)km|+|vj¯|=nlm|\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}|+|\overline{v_{j}}|=n-l-m, which don’t depend on kk. Thus, we can apply Lemma 2.5 and have

k=m+1nlAk,l+k,m<k2\displaystyle\left\|\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|^{2}
C|q|2k=m+1nliΛkjΛl+kπ1Sk/Skm×Smπ2Sl+k/Sm×Sl+kmαi¯αjq(km)(l+km)+i=12inv(πi)\displaystyle\leq C_{|q|}^{2}\Biggl{\|}\sum_{k=m+1}^{n-l}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l+k}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{k}/S_{k-m}\times S_{m}\\ \pi_{2}\in S_{l+k/S_{m}\times S_{{l+k-m}}}\end{subarray}}\overline{\alpha_{i}}\alpha_{j}q^{(k-m)(l+k-m)+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}
e[π11(ui)>km],eπ21(uj)mq[evi¯eπ21(uj)>m][eπ11(ui)kmevj¯]2q(H)2.\displaystyle\quad\quad\langle e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\rangle_{q}[e_{\overline{v_{i}^{*}}}\otimes e_{\pi_{2}^{-1}(u_{j})_{>m}}]\otimes[e_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}\otimes e_{\overline{v_{j}}}]\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 2}}.

Since ex,ey¯=0\langle e_{x},e_{\overline{y}}\rangle=0, if |u1|=k1|u_{1}|=k_{1} and |v1|=l1|v_{1}|=l_{1} and |u2|=k2|u_{2}|=k_{2} and |v2|=l2|v_{2}|=l_{2} with k1k2k_{1}\neq k_{2}, then by the definition of qq-inner product, we always have

eu1¯ev1,eu2¯ev2q=0,\langle e_{\overline{u_{1}}}\otimes e_{v_{1}},e_{\overline{u_{2}}}\otimes e_{v_{2}}\rangle_{q}=0,

and if k1=k2k_{1}=k_{2},

eu1¯ev1,eu2¯ev2q=eu1¯,eu2¯qev1,ev2q.\langle e_{\overline{u_{1}}}\otimes e_{v_{1}},e_{\overline{u_{2}}}\otimes e_{v_{2}}\rangle_{q}=\langle e_{\overline{u_{1}}},e_{\overline{u_{2}}}\rangle_{q}\langle e_{v_{1}},e_{v_{2}}\rangle_{q}.

This implies

k=m+1nlAk,l+k,m<k2\displaystyle\left\|\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|^{2}
C|q|2k=m+1nlq2(km)(l+km)iΛkjΛl+kπ1Sk/Skm×Smπ2Sl+k/Sm×Sl+kmαi¯αjqi=12inv(πi)\displaystyle\leq C_{|q|}^{2}\sum_{k=m+1}^{n-l}q^{2(k-m)(l+k-m)}\Biggl{\|}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l+k}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{k}/S_{k-m}\times S_{m}\\ \pi_{2}\in S_{l+k}/S_{m}\times S_{l+k-m}\end{subarray}}\overline{\alpha_{i}}\alpha_{j}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}
e[π11(ui)>km],eπ21(uj)mqevi¯eπ21(uj)>meπ11(ui)kmevj¯2q(H)4.\displaystyle\quad\quad\langle e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\rangle_{q}e_{\overline{v_{i}^{*}}}\otimes e_{\pi_{2}^{-1}(u_{j})_{>m}}\otimes e_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}\otimes e_{\overline{v_{j}}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 4}}.

By applying Lemma 2.10, we have

iΛkjΛl+kπ1Sk/Skm×Smπ2Sl+k/Sm×Sl+kmαi¯αjqi=12inv(πi)e[π11(ui)>km],eπ21(uj)mq\displaystyle\Biggl{\|}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l+k}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{k}/S_{k-m}\times S_{m}\\ \pi_{2}\in S_{l+k}/S_{m}\times S_{l+k-m}\end{subarray}}\overline{\alpha_{i}}\alpha_{j}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}\langle e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}},e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\rangle_{q}
evi¯eπ21(uj)>meπ11(ui)kmevj¯2q(H)4\displaystyle\quad\quad e_{\overline{v_{i}^{*}}}\otimes e_{\pi_{2}^{-1}(u_{j})_{>m}}\otimes e_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}\otimes e_{\overline{v_{j}}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 4}}
iΛkπ1Sk/Skm×Smαi¯qinv(π1)e[π11(ui)>km]evi¯eπ11(ui)kmq(H)32\displaystyle\leq\left\|\sum_{i\in\Lambda_{k}}\sum_{\pi_{1}\in S_{k}/S_{k-m}\times S_{m}}\overline{\alpha_{i}}q^{\mathrm{inv}(\pi_{1})}e_{[\pi_{1}^{-1}(u_{i}^{*})_{>k-m}]^{*}}\otimes e_{\overline{v_{i}^{*}}}\otimes e_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}
×jΛl+kπ2Sl+k/Sm×Sl+kmαj¯qinv(π2)eπ21(uj)meπ21(uj)>mevj¯q(H)32\displaystyle\quad\times\left\|\sum_{j\in\Lambda_{l+k}}\sum_{\pi_{2}\in S_{l+k}/S_{m}\times S_{l+k-m}}\overline{\alpha_{j}}q^{\mathrm{inv}(\pi_{2})}e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\otimes e_{\pi_{2}^{-1}(u_{j})_{>m}}\otimes e_{\overline{v_{j}}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}

Since exchanging tensor components (when we consider the canonical inner product on a tensor product of Hilbert spaces) and the maps ew¯ewe_{\overline{w}}\mapsto e_{w}, ewewe_{w}\to e_{w^{*}} are unitary operator (since inv(w0πw0)=inv(π)\mathrm{inv}(w_{0}\pi w_{0})=\mathrm{inv}(\pi) for w0w_{0} defined in the proof of Lemma 2.8), the quantity above is equal to

iΛkπ1Sk/Skm×Smαi¯qinv(π1)evieπ11(ui)kmeπ11(ui)>kmq(H)32\displaystyle\left\|\sum_{i\in\Lambda_{k}}\sum_{\pi_{1}\in S_{k}/S_{k-m}\times S_{m}}\overline{\alpha_{i}}q^{\mathrm{inv}(\pi_{1})}e_{v_{i}^{*}}\otimes e_{\pi_{1}^{-1}(u_{i}^{*})_{\leq k-m}}\otimes e_{\pi_{1}^{-1}(u_{i}^{*})_{>k-m}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}
×jΛl+kπ2Sl+k/Sm×Sl+kmαj¯qinv(π2)eπ21(uj)meπ21(uj)>mevjq(H)32\displaystyle\quad\times\left\|\sum_{j\in\Lambda_{l+k}}\sum_{\pi_{2}\in S_{l+k}/S_{m}\times S_{l+k-m}}\overline{\alpha_{j}}q^{\mathrm{inv}(\pi_{2})}e_{\pi_{2}^{-1}(u_{j})_{\leq m}}\otimes e_{\pi_{2}^{-1}(u_{j})_{>m}}\otimes e_{v_{j}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}

By the definition of Rn,kR_{n,k}^{*}, this is equal to

(InkRk,km)iΛkαi¯evieuiq(H)32(Rl+k,mInlk)jΛl+kαj¯eujevjq(H)32\displaystyle\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}\left\|(R^{*}_{l+k,m}\otimes I_{n-l-k})\sum_{j\in\Lambda_{l+k}}\overline{\alpha_{j}}e_{u_{j}}\otimes e_{v_{j}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}

By using (P(k)P(km))Rk,km=P(k)(P^{(k)}\otimes P^{(k-m)})R^{*}_{k,k-m}=P^{(k)} and Cauchy-Schwarz inequality, we have

(InkRk,km)iΛkαi¯evieuiq(H)32\displaystyle\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}
=P(nk)P(k)iΛkαi¯evieui,(InkRk,km)iΛkαi¯evieui\displaystyle=\left\langle P^{(n-k)}\otimes P^{(k)}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}},(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\rangle
iΛkαi¯evieuiq(H)2(InkRk,km)iΛkαi¯evieuiq(H)2.\displaystyle\leq\left\|\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}.

By using P(k)C|q|P(km)P(m)P^{(k)}\leq C_{|q|}P^{(k-m)}\otimes P^{(m)} and Cauchy-Schwarz inequality, we have

(InkRk,km)iΛkαi¯evieuiq(H)22\displaystyle\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 2}}
C|q|P(nk)P(k)iΛkαi¯evieui,(InkRk,km)iΛkαi¯evieui\displaystyle\leq C_{|q|}\left\langle P^{(n-k)}\otimes P^{(k)}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}},(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\rangle
C|q|iΛkαi¯evieuiq(H)2(InkRk,km)iΛkαi¯evieuiq(H)2.\displaystyle\leq C_{|q|}\left\|\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}.

By combining them, we have

(InkRk,km)iΛkαi¯evieuiq(H)32\displaystyle\left\|(I_{n-k}\otimes R_{k,k-m}^{*})\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}} C|q|iΛkαi¯evieuiq(H)22\displaystyle\leq C_{|q|}\left\|\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}e_{v_{i}^{*}}\otimes e_{u_{i}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}
=C|q|iΛkαieuieviq(H)22\displaystyle=C_{|q|}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}

Note that ewewe_{w}\mapsto e_{w^{*}} is a unitary with respect to the qq-inner product and eu,evq\langle e_{u},e_{v}\rangle_{q}\in\mathbb{R}. Similarly, we have

(Rl+k,mInlk)jΛl+kαj¯eujevjq(H)32C|q|jΛl+kαjeujevjq(H)22\displaystyle\left\|(R^{*}_{l+k,m}\otimes I_{n-l-k})\sum_{j\in\Lambda_{l+k}}\overline{\alpha_{j}}e_{u_{j}}\otimes e_{v_{j}}\right\|^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}\leq C_{|q|}\left\|\sum_{j\in\Lambda_{l+k}}\alpha_{j}e_{u_{j}}\otimes e_{v_{j}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}

Thus, we obtain

k=m+1nlAk,l+k,m<k2\displaystyle\left\|\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|^{2}
C|q|4k=m+1nlq2(km)(l+km)jΛl+kαjeujevjq(H)22iΛkαieuieviq(H)22\displaystyle\leq C_{|q|}^{4}\sum_{k=m+1}^{n-l}q^{2(k-m)(l+k-m)}\left\|\sum_{j\in\Lambda_{l+k}}\alpha_{j}e_{u_{j}}\otimes e_{v_{j}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}
C|q|4q2l(k=1q2k2)max1kniΛkαieuieviq(H)24\displaystyle\leq C_{|q|}^{4}q^{2l}\left(\sum_{k=1}^{\infty}q^{2k^{2}}\right)\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}

Therefore, we have by the triangular inequality

k=1n1l=k+1nm=0k1Ak,l,m<k\displaystyle\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}\sum_{m=0}^{k-1}A_{k,l,m<k}\right\|
m=0n2l=1nm1k=m+1nlAk,l+k,m<k\displaystyle\leq\sum_{m=0}^{n-2}\sum_{l=1}^{n-m-1}\left\|\sum_{k=m+1}^{n-l}A_{k,l+k,m<k}\right\|
C|q|2k=1q2k2max1kniΛkαieuieviq(H)22m=0n2l=1nm1|q|l\displaystyle\leq C_{|q|}^{2}\sqrt{\sum_{k=1}^{\infty}q^{2k^{2}}}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}\sum_{m=0}^{n-2}\sum_{l=1}^{n-m-1}|q|^{l}
D1nmax1kniΛkαieuieviq(H)22\displaystyle\leq D_{1}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}

where D1=C|q|2(l=1|q|l)k=1q2k2D_{1}=C_{|q|}^{2}\left(\sum_{l=1}^{\infty}|q|^{l}\right)\sqrt{\sum_{k=1}^{\infty}q^{2k^{2}}}. ∎

The next step is to estimate k1=1n2k2=k1+1n1Bk1Bk2\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\| and k=1n1Bk,m<nk\sum_{k=1}^{n-1}\|B_{k,m<n-k}\|.

Lemma 3.4.

There exists D2=D2(|q|)>0D_{2}=D_{2}(|q|)>0 and D3=D3(|q|)>0D_{3}=D_{3}(|q|)>0 such that

k1=1n2k2=k1+1n1Bk1Bk2\displaystyle\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\| D2n2max1kniΛkαieuieviq(H)24\displaystyle\leq D_{2}n^{2}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}
k=1n1Bk,m<nk\displaystyle\sum_{k=1}^{n-1}\|B_{k,m<n-k}\| D3nmax1kniΛkαieuieviq(H)24.\displaystyle\leq D_{3}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}.
Proof.

By triangular inequality, we have

k1=1n2k2=k1+1n1Bk1Bk2\displaystyle\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\|
k1=1n2k2=k1+1n1l1=k1+1l2=k2+1ni1Λk1j1Λl1i2Λk2j2Λl2π1Sl1/Sk1×Sl1k1π2Sl2/Sk2×Sl2k2m=0nk2σ1Snk1/Snk1m×Smσ2Snk2/Sm×Snk2m\displaystyle\leq\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}\Biggl{\|}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k_{1}}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k_{2}}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k_{1}}\times S_{l_{1}-k_{1}}\\ \pi_{2}\in S_{l_{2}}/S_{k_{2}}\times S_{l_{2}-k_{2}}\end{subarray}}\sum_{m=0}^{n-k_{2}}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k_{1}}/S_{n-k_{1}-m}\times S_{m}\\ \sigma_{2}\in S_{n-k_{2}}/S_{m}\times S_{n-k_{2}-m}\end{subarray}}
αi1αj1αi2¯αj2qi=12(nkim)2+i=12inv(πi)+inv(σi)eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2q\displaystyle\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\prod_{i=1}^{2}(n-k_{i}-m)^{2}+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})}\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}
e[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯qavj1¯a[π11(uj1)>k1]aσ21(vi2)>m¯aσ11(vi1)nk1m¯aπ21(uj2)>k2avj2¯\displaystyle\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}a^{*}_{\overline{v_{j_{2}}}}\Biggr{\|}

By the triangular inequality, we take m=0nk2|q|i=12(nkim)2\sum_{m=0}^{n-k_{2}}|q|^{\prod_{i=1}^{2}(n-k_{i}-m)^{2}} outside the norm. Then, k1=1n2k2=k1+1n1Bk1Bk2\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\| is bounded by

k1=1n2k2=k1+1n1l1=k1+1l2=k2+1nm=0nk2|q|i=12(nkim)2\displaystyle\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}\sum_{m=0}^{n-k_{2}}|q|^{\prod_{i=1}^{2}(n-k_{i}-m)^{2}}
i1Λk1j1Λl1i2Λk2j2Λl2π1Sl1/Sk1×Sl1k1π2Sl2/Sk2×Sl2k2σ1Snk1/Snk1m×Smσ2Snk2/Sm×Snk2mαi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)\displaystyle\quad\Biggl{\|}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k_{1}}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k_{2}}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k_{1}}\times S_{l_{1}-k_{1}}\\ \pi_{2}\in S_{l_{2}}/S_{k_{2}}\times S_{l_{2}-k_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k_{1}}/S_{n-k_{1}-m}\times S_{m}\\ \sigma_{2}\in S_{n-k_{2}}/S_{m}\times S_{n-k_{2}-m}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})}
eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2qe[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯q\displaystyle\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}
avj1¯a[π11(uj1)>k1]aσ21(vi2)>m¯aσ11(vi1)nk1m¯aπ21(uj2)>k2avj2¯.\displaystyle\quad\quad a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}a^{*}_{\overline{v_{j_{2}}}}\Biggr{\|}.

Since |[π11(uj1)>k1]|=l1k1|[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}|=l_{1}-k_{1}, |σ21(vi2)>m¯|=nk2m|\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}|=n-k_{2}-m, |σ11(vi1)nk1m¯|=nk1m|\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}|=n-k_{1}-m, |π21(uj2)>k2|=l2k2|\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}|=l_{2}-k_{2}, we have by using qq-commutation relations aiaj¯=qaj¯aia_{i}^{*}a_{\overline{j}}=qa_{\overline{j}}a_{i}^{*},

a[π11(uj1)>k1]aσ21(vi2)>m¯\displaystyle a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}} =q(l1k1)(nk2m)aσ21(vi2)>m¯a[π11(uj1)>k1]\displaystyle=q^{(l_{1}-k_{1})(n-k_{2}-m)}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}
aσ11(vi1)nk1m¯aπ21(uj2)>k2\displaystyle a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}} =q(l2k2)(nk1m)aπ21(uj2)>k2aσ11(vi1)nk1m¯.\displaystyle=q^{(l_{2}-k_{2})(n-k_{1}-m)}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}.

Thus we get

k1=1n2k2=k1+1n1l1=k1+1l2=k2+1nm=0nk2|q|(l1k1)(nk2m)+(l2k2)(nk1m)+i=12(nkim)2\displaystyle\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}\sum_{m=0}^{n-k_{2}}|q|^{(l_{1}-k_{1})(n-k_{2}-m)+(l_{2}-k_{2})(n-k_{1}-m)+\prod_{i=1}^{2}(n-k_{i}-m)^{2}}
i1Λk1j1Λl1i2Λk2j2Λl2π1Sl1/Sk1×Sl1k1π2Sl2/Sk2×Sl2k2σ1Snk1/Snk1m×Smσ2Snk2/Sm×Snk2mαi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)\displaystyle\quad\Biggl{\|}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k_{1}}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k_{2}}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k_{1}}\times S_{l_{1}-k_{1}}\\ \pi_{2}\in S_{l_{2}}/S_{k_{2}}\times S_{l_{2}-k_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k_{1}}/S_{n-k_{1}-m}\times S_{m}\\ \sigma_{2}\in S_{n-k_{2}}/S_{m}\times S_{n-k_{2}-m}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})}
eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2qe[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯q\displaystyle\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}
avj1¯aσ21(vi2)>m¯a[π11(uj1)>k1]aπ21(uj2)>k2aσ11(vi1)nk1m¯avj2¯\displaystyle\quad\quad a_{\overline{v_{j_{1}}^{*}}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}a^{*}_{\overline{v_{j_{2}}}}\Biggr{\|}

By applying Lemma 2.8, we have

a[π11(uj1)>k1]aπ21(uj2)>k2\displaystyle a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}
=m=0min(l1k1,l2k2)τ1Sl1k1/Sl1k1m×Smτ2Sl2k2/Sm×Sl2k2mqi=12(likim)+i=12inv(τi)\displaystyle=\sum_{m^{\prime}=0}^{\min(l_{1}-k_{1},l_{2}-k_{2})}\sum_{\begin{subarray}{c}\tau_{1}S_{l_{1}-k_{1}}/S_{l_{1}-k_{1}-m^{\prime}}\times S_{m^{\prime}}\\ \tau_{2}\in S_{l_{2}-k_{2}}/S_{m^{\prime}}\times S_{l_{2}-k_{2}-m^{\prime}}\end{subarray}}q^{\prod_{i=1}^{2}(l_{i}-k_{i}-m^{\prime})+\sum_{i=1}^{2}\mathrm{inv}(\tau_{i})}
e[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mq\displaystyle\qquad\qquad\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}
aτ21[π21(uj2)>k2]>maτ11([π11(uj1)>k1])l1k1m\displaystyle\qquad\qquad a_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}a^{*}_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}

After we rewrite a[π11(uj1)>k1]aπ21(uj2)>k2a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}}, we take m=0min(l1k1,l2k2)qi=12(likim)\sum_{m^{\prime}=0}^{\min(l_{1}-k_{1},l_{2}-k_{2})}q^{\prod_{i=1}^{2}(l_{i}-k_{i}-m^{\prime})} outside the norm. Then, we have

k1=1n2k2=k1+1n1l1=k1+1l2=k2+1nm=0nk2m=0min(l1k1,l2k2)\displaystyle\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}\sum_{m=0}^{n-k_{2}}\sum_{m^{\prime}=0}^{\min(l_{1}-k_{1},l_{2}-k_{2})}
|q|(l1k1)(nk2m)+(l2k2)(nk1m)+i=12(nkim)2+i=12(likim)\displaystyle\qquad|q|^{(l_{1}-k_{1})(n-k_{2}-m)+(l_{2}-k_{2})(n-k_{1}-m)+\prod_{i=1}^{2}(n-k_{i}-m)^{2}+\prod_{i=1}^{2}(l_{i}-k_{i}-m^{\prime})}
i1Λk1j1Λl1i2Λk2j2Λl2π1Sl1/Sk1×Sl1k1π2Sl2/Sk2×Sl2k2σ1Snk1/Snk1m×Smσ2Snk2/Sm×Snk2mτ1Sl1k1/Sl1k1m×Smτ2Sl2k2/Sm×Sl2k2m\displaystyle\Biggl{\|}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k_{1}}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k_{2}}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k_{1}}\times S_{l_{1}-k_{1}}\\ \pi_{2}\in S_{l_{2}}/S_{k_{2}}\times S_{l_{2}-k_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k_{1}}/S_{n-k_{1}-m}\times S_{m}\\ \sigma_{2}\in S_{n-k_{2}}/S_{m}\times S_{n-k_{2}-m}\end{subarray}}\sum_{\begin{subarray}{c}\tau_{1}S_{l_{1}-k_{1}}/S_{l_{1}-k_{1}-m^{\prime}}\times S_{m^{\prime}}\\ \tau_{2}\in S_{l_{2}-k_{2}}/S_{m^{\prime}}\times S_{l_{2}-k_{2}-m^{\prime}}\end{subarray}}
αi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)+inv(τi)eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2q\displaystyle\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})+\mathrm{inv}(\tau_{i})}\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}
e[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯qe[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mq\displaystyle\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}
avj1¯aσ21(vi2)>m¯aτ21[π21(uj2)>k2]>maτ11([π11(uj1)>k1])l1k1maσ11(vi1)nk1m¯avj2¯\displaystyle\quad\quad a_{\overline{v_{j_{1}}^{*}}}a_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}a_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}a^{*}_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}a^{*}_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}a^{*}_{\overline{v_{j_{2}}}}\Biggr{\|}

By applying Lemma 2.5, the norm part of the above sum is bounded by

C|q|i1Λk1j1Λl1i2Λk2j2Λl2π1Sl1/Sk1×Sl1k1π2Sl2/Sk2×Sl2k2σ1Snk1/Snk1m×Smσ2Snk2/Sm×Snk2mτ1Sl1k1/Sl1k1m×Smτ2Sl2k2/Sm×Sl2k2m\displaystyle C_{|q|}\Biggl{\|}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k_{1}}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k_{2}}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k_{1}}\times S_{l_{1}-k_{1}}\\ \pi_{2}\in S_{l_{2}}/S_{k_{2}}\times S_{l_{2}-k_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\sigma_{1}\in S_{n-k_{1}}/S_{n-k_{1}-m}\times S_{m}\\ \sigma_{2}\in S_{n-k_{2}}/S_{m}\times S_{n-k_{2}-m}\end{subarray}}\sum_{\begin{subarray}{c}\tau_{1}S_{l_{1}-k_{1}}/S_{l_{1}-k_{1}-m^{\prime}}\times S_{m^{\prime}}\\ \tau_{2}\in S_{l_{2}-k_{2}}/S_{m^{\prime}}\times S_{l_{2}-k_{2}-m^{\prime}}\end{subarray}}
αi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)+inv(τi)eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2q\displaystyle\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})+\mathrm{inv}(\tau_{i})}\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}
e[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯qe[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mq\displaystyle\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}
[evj1¯eσ21(vi2)>m¯eτ21[π21(uj2)>k2]>m]\displaystyle\left[e_{\overline{v_{j_{1}}^{*}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\right]
[eτ11([π11(uj1)>k1])l1k1meσ11(vi1)nk1m¯evj2¯]q(H)2\displaystyle\qquad\otimes\left[e_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}\otimes e_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}\otimes e_{\overline{v_{j_{2}}}}\right]\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 2}}

By Lemma 2.10, we have

P(2n+l2l12k2mm)\displaystyle P^{(2n+l_{2}-l_{1}-2k_{2}-m-m^{\prime})} C|q|P(nl1)P(n+l22k2mm)\displaystyle\leq C_{|q|}P^{(n-l_{1})}\otimes P^{(n+l_{2}-2k_{2}-m-m^{\prime})}
P(2n+l1l22k1mm)\displaystyle P^{(2n+l_{1}-l_{2}-2k_{1}-m-m^{\prime})} C|q|P(n+l12k1mm)P(nl2).\displaystyle\leq C_{|q|}P^{(n+l_{1}-2k_{1}-m-m^{\prime})}\otimes P^{(n-l_{2})}.

Since ei,ej¯=0\langle e_{i},e_{\overline{j}}\rangle=0 for any i,j[d]i,j\in[d], we have

P(n+l22k2mm)eσ21(vi2)>m¯eτ21[π21(uj2)>k2]>m,eσ21(vi2)>m¯eτ21[π21(uj2)>k2]>m\displaystyle\langle P^{(n+l_{2}-2k_{2}-m-m^{\prime})}e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\rangle
=eσ21(vi2)>m¯,eσ21(vi2)>m¯qeτ21[π21(uj2)>k2]>m,eτ21[π21(uj2)>k2]>mq.\displaystyle=\langle e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}\rangle_{q}\langle e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\rangle_{q}.

Similarly, we can compute the inner product with respect to P(n+l12k1mm)P^{(n+l_{1}-2k_{1}-m-m^{\prime})}, and this computation implies that the norm with respect to q(H)2\mathcal{F}_{q}(H)^{\otimes 2} can be bounded the norm with respect to q(H)6\mathcal{F}_{q}(H)^{\otimes 6} by multiplying C|q|C_{|q|}. Therefore we get the bound

C|q|2i1,j1i2,j2π1,σ1,τ1π2,σ2,τ2αi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)+inv(τi)eui1,eπ11(uj1)k1q¯\displaystyle C_{|q|}^{2}\Biggl{\|}\sum_{\begin{subarray}{c}i_{1},j_{1}\\ i_{2},j_{2}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1},\sigma_{1},\tau_{1}\\ \pi_{2},\sigma_{2},\tau_{2}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})+\mathrm{inv}(\tau_{i})}\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}
eui2,eπ21(uj2)k2qe[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯q\displaystyle\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}
e[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mqevj1¯eσ21(vi2)>m¯\displaystyle\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}\ e_{\overline{v_{j_{1}}^{*}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}
eτ21[π21(uj2)>k2]>meτ11([π11(uj1)>k1])l1k1meσ11(vi1)nk1m¯evj2¯q(H)6.\displaystyle\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\otimes e_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}\otimes e_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}\otimes e_{\overline{v_{j_{2}}}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 6}}.

By representing the product of the inner products as the inner product of the tensor product of Hilbert spaces, we can rewrite the coefficient as the inner product of two vectors such that one of them contains the indices i1,σ1i_{1},\sigma_{1} and the other vector contains all other indices. Namely, we have

αi1αj1αi2¯αj2qi=12inv(πi)+inv(σi)+inv(τi)eui1,eπ11(uj1)k1q¯eui2,eπ21(uj2)k2q\displaystyle\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\sigma_{i})+\mathrm{inv}(\tau_{i})}\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}
e[σ11(vi1)>nk1m]¯,eσ21(vi2)m¯qe[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mq\displaystyle\langle e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\rangle_{q}\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}
=qinv(σ1)αi1eui1e[σ11(vi1)>nk1m]¯,αj1αi2αj2¯qinv(σ2)+i=12inv(πi)+inv(τi)eui2,eπ21(uj2)k2q\displaystyle=\Biggl{\langle}q^{\mathrm{inv}(\sigma_{1})}\alpha_{i_{1}}e_{u_{i_{1}}}\otimes e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}}\ ,\quad\alpha_{j_{1}}\alpha_{i_{2}}\overline{\alpha_{j_{2}}}q^{\mathrm{inv}(\sigma_{2})+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\tau_{i})}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}
e[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mqeπ11(uj1)k1eσ21(vi2)m¯q(H)2\displaystyle\qquad\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}\ e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\Biggr{\rangle}_{\mathcal{F}_{q}(H)^{\otimes 2}}

By applying Lemma 2.10 with I={(i1,σ1)}I=\{(i_{1},\sigma_{1})\} and J={(i2,j1,j2,σ2,π1,π2,τ1,τ2)}J=\{(i_{2},j_{1},j_{2},\sigma_{2},\pi_{1},\pi_{2},\tau_{1},\tau_{2})\}, we have

C|q|2i1,σ1i2,j1,j2,,π1τ1,π2,σ2,τ2qinv(σ1)αi1eui1e[σ11(vi1)>nk1m]¯,αj1αi2αj2¯qinv(σ2)+i=12inv(πi)+inv(τi)\displaystyle C_{|q|}^{2}\Biggl{\|}\sum_{i_{1},\sigma_{1}}\sum_{\begin{subarray}{c}i_{2},j_{1},j_{2},,\pi_{1}\\ \tau_{1},\pi_{2},\sigma_{2},\tau_{2}\end{subarray}}\Biggl{\langle}q^{\mathrm{inv}(\sigma_{1})}\alpha_{i_{1}}e_{u_{i_{1}}}\otimes e_{\overline{[\sigma_{1}^{-1}(v_{i_{1}}^{*})_{>n-k_{1}-m}]^{*}}},\alpha_{j_{1}}\alpha_{i_{2}}\overline{\alpha_{j_{2}}}q^{\mathrm{inv}(\sigma_{2})+\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\tau_{i})}
eui2,eπ21(uj2)k2qe[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mqeπ11(uj1)k1eσ21(vi2)m¯q(H)2\displaystyle\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\rangle_{q}\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}\ e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\Biggr{\rangle}_{\mathcal{F}_{q}(H)^{\otimes 2}}
eσ11(vi1)nk1m¯evj1¯eσ21(vi2)>m¯eτ21[π21(uj2)>k2]>meτ11([π11(uj1)>k1])l1k1mevj2¯q(H)6\displaystyle e_{\overline{\sigma_{1}^{-1}(v_{i_{1}}^{*})_{\leq n-k_{1}-m}}}\otimes e_{\overline{v_{j_{1}}^{*}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\otimes e_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}\otimes e_{\overline{v_{j_{2}}}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 6}}
C|q|2(Ik1Rnk1,nk1m)i1αi1eui1evi1q(H)3\displaystyle\leq C_{|q|}^{2}\left\|(I_{k_{1}}\otimes R^{*}_{n-k_{1},n-k_{1}-m})\sum_{i_{1}}\alpha_{i_{1}}e_{u_{i_{1}}}\otimes e_{v_{i_{1}}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 3}}
×i2,σ2j1,j2,π1τ1,π2,τ2qinv(σ2)αi2eui2,qi=12inv(πi)+inv(τi)αj1¯αj2\displaystyle\times\Biggl{\|}\sum_{i_{2},\sigma_{2}}\sum_{\begin{subarray}{c}j_{1},j_{2},\pi_{1}\\ \tau_{1},\pi_{2},\tau_{2}\end{subarray}}\Biggl{\langle}q^{\mathrm{inv}(\sigma_{2})}\alpha_{i_{2}}e_{u_{i_{2}}}\ ,\ q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})+\mathrm{inv}(\tau_{i})}\overline{\alpha_{j_{1}}}\alpha_{j_{2}}
e[τ11([π11(uj1)>k1])>l1k1m],eτ21[π21(uj2)>k2]mqeπ21(uj2)k2qeσ21(vi2)m¯eσ21(vi2)>m¯\displaystyle\langle e_{[\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{>l_{1}-k_{1}-m^{\prime}}]^{*}},e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{\leq m^{\prime}}}\rangle_{q}e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k_{2}}}\Biggr{\rangle}_{q}e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{\leq m}}}\otimes e_{\overline{\sigma_{2}^{-1}(v_{i_{2}}^{*})_{>m}}}
eπ11(uj1)k1evj1¯eτ21[π21(uj2)>k2]>meτ11([π11(uj1)>k1])l1k1mevj2¯q(H)7.\displaystyle\otimes e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\otimes e_{\overline{v_{j_{1}}^{*}}}\otimes e_{\tau_{2}^{-1}[\pi_{2}^{-1}(u_{j_{2}})_{>k_{2}}]_{>m^{\prime}}}\otimes e_{\tau_{1}^{-1}([\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*})_{\leq l_{1}-k_{1}-m^{\prime}}}\otimes e_{\overline{v_{j_{2}}}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 7}}.

In this way, we apply Lemma 2.10 several times to decompose the original sum into the sums for the same indices. Then, the norm is bounded by (we rearrange the tensor components and apply unitary maps ewewe_{w}\mapsto e_{w^{*}} and ewew¯e_{w}\mapsto e_{\overline{w}} if necessary).

C|q|2(Ik1Rnk1,nk1m)i1αi1eui1evi1q(H)3(Ik2Rnk2,m)i2αi2eui2evi2q(H)3\displaystyle C_{|q|}^{2}\left\|(I_{k_{1}}\otimes R^{*}_{n-k_{1},n-k_{1}-m})\sum_{i_{1}}\alpha_{i_{1}}e_{u_{i_{1}}}\otimes e_{v_{i_{1}}^{*}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 3}}\Biggl{\|}(I_{k_{2}}\otimes R^{*}_{n-k_{2},m})\sum_{i_{2}}\alpha_{i_{2}}e_{u_{i_{2}}}\otimes e_{v_{i_{2}}^{*}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 3}}
×(Ik1Rl1k1,l1k1mInl1)j1,π1qinv(π1)αj1¯eπ11(uj1)k1e[π11(uj1)>k1]evj1¯q(H)4\displaystyle\times\Biggl{\|}(I_{k_{1}}\otimes R^{*}_{l_{1}-k_{1},l_{1}-k_{1}-m^{\prime}}\otimes I_{n-l_{1}})\sum_{j_{1},\pi_{1}}q^{\mathrm{inv}(\pi_{1})}\overline{\alpha_{j_{1}}}e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k_{1}}}\otimes e_{[\pi_{1}^{-1}(u_{j_{1}})_{>k_{1}}]^{*}}\otimes e_{\overline{v_{j_{1}}^{*}}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 4}}
×(Ik2Rl2k2,mInl2)(Rl2,k2Inl2)j2αj2¯euj2evj2¯q(H)4\displaystyle\times\Biggl{\|}(I_{k_{2}}\otimes R^{*}_{l_{2}-k_{2},m^{\prime}}\otimes I_{n-l_{2}})(R^{*}_{l_{2},k_{2}}\otimes I_{n-l_{2}})\sum_{j_{2}}\overline{\alpha_{j_{2}}}e_{u_{j_{2}}}\otimes e_{\overline{v_{j_{2}}}}\Biggr{\|}_{\mathcal{F}_{q}(H)^{\otimes 4}}

By using a similar argument in the proof of Lemma 3.3, this quantity is less than

C|q|5max1kniΛkαieuieviq(H)24.C_{|q|}^{5}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|^{4}_{\mathcal{F}_{q}(H)^{\otimes 2}}.

Thus we obtain,

k1=1n2k2=k1+1n1Bk1Bk2\displaystyle\left\|\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}B_{k_{1}}^{*}B_{k_{2}}\right\|
C|q|5max1kniΛkαieuieviq(H)24k1=1n2k2=k1+1n1l1=k1+1l2=k2+1nm=0nk2m=0min(l1k1,l2k2)\displaystyle\leq C_{|q|}^{5}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|^{4}_{\mathcal{F}_{q}(H)^{\otimes 2}}\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}\sum_{m=0}^{n-k_{2}}\sum_{m^{\prime}=0}^{\min(l_{1}-k_{1},l_{2}-k_{2})}
|q|(l1k1)(nk2m)+(l2k2)(nk1m)+i=12(nkim)+i=12(likim)\displaystyle\quad|q|^{(l_{1}-k_{1})(n-k_{2}-m)+(l_{2}-k_{2})(n-k_{1}-m)+\prod_{i=1}^{2}(n-k_{i}-m)+\prod_{i=1}^{2}(l_{i}-k_{i}-m^{\prime})}
C|q|5max1kniΛkαieuieviq(H)24k1=1n2k2=k1+1n1l1=k1+1l2=k2+1n|q|(l2k2)(k2k1)\displaystyle\leq C_{|q|}^{5}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|^{4}_{\mathcal{F}_{q}(H)^{\otimes 2}}\sum_{k_{1}=1}^{n-2}\sum_{k_{2}=k_{1}+1}^{n-1}\sum_{\begin{subarray}{c}l_{1}=k_{1}+1\\ l_{2}=k_{2}+1\end{subarray}}^{n}|q|^{(l_{2}-k_{2})(k_{2}-k_{1})}
m=0nk2|q|i=12(nkim)m=0min(l1k1,l2k2)|q|i=12(likim)\displaystyle\quad\sum_{m=0}^{n-k_{2}}|q|^{\prod_{i=1}^{2}(n-k_{i}-m)}\sum_{m^{\prime}=0}^{\min(l_{1}-k_{1},l_{2}-k_{2})}|q|^{\prod_{i=1}^{2}(l_{i}-k_{i}-m^{\prime})}
C|q|5(k=0|q|k2)2max1kniΛkαieuieviq(H)24\displaystyle\leq C_{|q|}^{5}\left(\sum_{k=0}^{\infty}|q|^{k^{2}}\right)^{2}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|^{4}_{\mathcal{F}_{q}(H)^{\otimes 2}}
k1=1n2(nk1)k2=k1+1n1|q|k2k1l2=k2+1n|q|l2k21\displaystyle\qquad\sum_{k_{1}=1}^{n-2}(n-k_{1})\sum_{k_{2}=k_{1}+1}^{n-1}|q|^{k_{2}-k_{1}}\sum_{\begin{subarray}{c}l_{2}=k_{2}+1\end{subarray}}^{n}|q|^{l_{2}-k_{2}-1}
12C|q|5(k=0|q|k2)2(k=0|q|k)2n2max1kniΛkαieuieviq(H)24\displaystyle\leq\frac{1}{2}C_{|q|}^{5}\left(\sum_{k=0}^{\infty}|q|^{k^{2}}\right)^{2}\left(\sum_{k=0}^{\infty}|q|^{k}\right)^{2}n^{2}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}

For k=1n1Bk,m<nk\sum_{k=1}^{n-1}\|B_{k,m<n-k}\|, we can apply the same argument with k1=k2=kk_{1}=k_{2}=k and 0mnk10\leq m\leq n-k-1, and we have

k=1n1Bk,m<nk12C|q|5(k=0|q|k2)2(k=0|q|k)2nmax1kniΛkαieuieviq(H)24\sum_{k=1}^{n-1}\|B_{k,m<n-k}\|\leq\frac{1}{2}C_{|q|}^{5}\left(\sum_{k=0}^{\infty}|q|^{k^{2}}\right)^{2}\left(\sum_{k=0}^{\infty}|q|^{k}\right)^{2}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}

To estimate the last term k=1n1Bk,nk\sum_{k=1}^{n-1}\|B_{k,n-k}\|, we use the inductive argument.

Lemma 3.5.

If we assume Lemma 3.1 holds for all 1m<n1\leq m<n, then we have

k=1n1Bk,nkAC|q|2n2max1kniΛkαieuieviq(H)24.\sum_{k=1}^{n-1}\|B_{k,n-k}\|\leq\frac{AC_{|q|}}{2}n^{2}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}.
Proof.

Let {fs}sFnk\{f_{s}\}_{s\in F_{n-k}} is an orthonormal basis of HnkH^{\otimes n-k} with respect to the qq-inner product. Then by triangular inequality, we have

l1=k+1l2=k+1ni1Λkj1Λl1i2Λkj2Λl2π1Sl1/Sk×Sl1kπ2Sl2/Sk×Sl2kαi1αj1αi2¯αj2qi=12inv(πi)\displaystyle\Biggl{\|}\sum_{\begin{subarray}{c}l_{1}=k+1\\ l_{2}=k+1\end{subarray}}^{n}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k}\times S_{l_{1}-k}\\ \pi_{2}\in S_{l_{2}}/S_{k}\times S_{l_{2}-k}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}
eui1,eπ11(uj1)kq¯eui2,eπ21(uj2)kqevi1¯,evi2¯qavj1¯a[π11(uj1)>k]aπ21(uj2)>kavj2¯\displaystyle\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k}}\rangle_{q}\langle e_{\overline{v_{i_{1}}^{*}}},e_{\overline{v_{i_{2}}^{*}}}\rangle_{q}a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k}}a_{\overline{v_{j_{2}}}}^{*}\Biggr{\|}
sFnkl1=k+1l2=k+1ni1Λkj1Λl1i2Λkj2Λl2π1Sl1/Sk×Sl1kπ2Sl2/Sk×Sl2kαi1αj1αi2¯αj2qi=12inv(πi)\displaystyle\leq\sum_{s\in F_{n-k}}\Biggl{\|}\sum_{\begin{subarray}{c}l_{1}=k+1\\ l_{2}=k+1\end{subarray}}^{n}\sum_{\begin{subarray}{c}i_{1}\in\Lambda_{k}\\ j_{1}\in\Lambda_{l_{1}}\end{subarray}}\sum_{\begin{subarray}{c}i_{2}\in\Lambda_{k}\\ j_{2}\in\Lambda_{l_{2}}\end{subarray}}\sum_{\begin{subarray}{c}\pi_{1}\in S_{l_{1}}/S_{k}\times S_{l_{1}-k}\\ \pi_{2}\in S_{l_{2}}/S_{k}\times S_{l_{2}-k}\end{subarray}}\alpha_{i_{1}}\overline{\alpha_{j_{1}}\alpha_{i_{2}}}\alpha_{j_{2}}q^{\sum_{i=1}^{2}\mathrm{inv}(\pi_{i})}
eui1,eπ11(uj1)kq¯eui2,eπ21(uj2)kqevi1¯,fsqevi2¯,fsq¯avj1¯a[π11(uj1)>k]aπ21(uj2)>kavj2¯\displaystyle\quad\overline{\langle e_{u_{i_{1}}},e_{\pi_{1}^{-1}(u_{j_{1}})_{\leq k}}\rangle_{q}}\langle e_{u_{i_{2}}},e_{\pi_{2}^{-1}(u_{j_{2}})_{\leq k}}\rangle_{q}\langle e_{\overline{v_{i_{1}}^{*}}},f_{s}\rangle_{q}\overline{\langle e_{\overline{v_{i_{2}}^{*}}},f_{s}\rangle_{q}}a_{\overline{v_{j_{1}}^{*}}}a^{*}_{[\pi_{1}^{-1}(u_{j_{1}})_{>k}]^{*}}a_{\pi_{2}^{-1}(u_{j_{2}})_{>k}}a_{\overline{v_{j_{2}}}}^{*}\Biggr{\|}
=sFnkl=k+1niΛkjΛlπSl/Sk×Slkαi¯αjqinv(π)eui,eπ21(uj)kqevi¯,fsq¯aπ1(uj)>kavj¯2\displaystyle=\sum_{s\in F_{n-k}}\Biggl{\|}\sum_{l=k+1}^{n}\sum_{\begin{subarray}{c}i\in\Lambda_{k}\\ j\in\Lambda_{l}\end{subarray}}\sum_{\pi\in S_{l}/S_{k}\times S_{l-k}}\overline{\alpha_{i}}\alpha_{j}q^{\mathrm{inv}(\pi)}\langle e_{u_{i}},e_{\pi_{2}^{-1}(u_{j})_{\leq k}}\rangle_{q}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}a_{\pi^{-1}(u_{j})_{>k}}a_{\overline{v_{j}}}^{*}\Biggr{\|}^{2}
=sFnkl=1nkjΛl+kπSl+k/Sk×Slαjqinv(π)iΛkαi¯evi¯,fsq¯eui,eπ1(uj)kqaπ1(uj)>kavj¯2\displaystyle=\sum_{s\in F_{n-k}}\Biggl{\|}\sum_{l=1}^{n-k}\sum_{j\in\Lambda_{l+k}}\sum_{\pi\in S_{l+k}/S_{k}\times S_{l}}\alpha_{j}q^{\mathrm{inv}(\pi)}\Biggl{\langle}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\Biggr{\rangle}_{q}a_{\pi^{-1}(u_{j})_{>k}}a_{\overline{v_{j}}}^{*}\Biggr{\|}^{2}

Since 1kn11\leq k\leq n-1 and |π1(uj)>k|=l|\pi^{-1}(u_{j})_{>k}|=l and |vj|=nkl|v_{j}|=n-k-l, we can apply the assumption of lemma. Then, there exists A>0A>0 such that we have,

sFnkl=1nkjΛl+kπSl+k/Sk×Slαjqinv(π)iΛkαi¯evi¯,fsq¯eui,eπ1(uj)kqaπ1(uj)>kavj¯2\displaystyle\sum_{s\in F_{n-k}}\Biggl{\|}\sum_{l=1}^{n-k}\sum_{j\in\Lambda_{l+k}}\sum_{\pi\in S_{l+k}/S_{k}\times S_{l}}\alpha_{j}q^{\mathrm{inv}(\pi)}\Biggl{\langle}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\Biggr{\rangle}_{q}a_{\pi^{-1}(u_{j})_{>k}}a_{\overline{v_{j}}}^{*}\Biggr{\|}^{2}
A(nk)sFnkmax1lnkj,παjqinv(π)iΛkαi¯evi¯,fsq¯eui,eπ1(uj)kqeπ1(uj)>kevjq(H)22\displaystyle\leq A(n-k)\sum_{s\in F_{n-k}}\max_{1\leq l\leq n-k}\Biggl{\|}\sum_{j,\pi}\alpha_{j}q^{\mathrm{inv}(\pi)}\Biggl{\langle}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\Biggr{\rangle}_{q}e_{\pi^{-1}(u_{j})_{>k}}\otimes e_{v_{j}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 2}}

By applying iw,xiHyiziKL=wHixiyiziHKL\|\sum_{i}\langle w,x_{i}\rangle_{H}y_{i}\otimes z_{i}\|_{K\otimes L}=\|w\|_{H}\|\sum_{i}x_{i}\otimes y_{i}\otimes z_{i}\|_{H\otimes K\otimes L}, we have

jΛl+kπSl+k/Sk×Slαjqinv(π)iΛkαi¯evi¯,fsq¯eui,eπ1(uj)kqeπ1(uj)>kevjq(H)22\displaystyle\Biggl{\|}\sum_{j\in\Lambda_{l+k}}\sum_{\pi\in S_{l+k}/S_{k}\times S_{l}}\alpha_{j}q^{\mathrm{inv}(\pi)}\Biggl{\langle}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}},e_{\pi^{-1}(u_{j})_{\leq k}}\Biggr{\rangle}_{q}e_{\pi^{-1}(u_{j})_{>k}}\otimes e_{v_{j}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 2}}
iΛkαi¯evi¯,fsq¯euiq(H)2jΛl+kπSl+k/Sk×Slαjqinv(π)eπ1(uj)keπ1(uj)>kevjq(H)32\displaystyle\leq\Biggl{\|}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}}\Biggr{\|}_{\mathcal{F}_{q}(H)}^{2}\Biggl{\|}\sum_{j\in\Lambda_{l+k}}\sum_{\pi\in S_{l+k}/S_{k}\times S_{l}}\alpha_{j}q^{\mathrm{inv}(\pi)}e_{\pi^{-1}(u_{j})_{\leq k}}\otimes e_{\pi^{-1}(u_{j})_{>k}}\otimes e_{v_{j}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 3}}
C|q|iΛkαi¯evi¯,fsq¯euiq(H)2jΛl+kαjeujevjq(H)22\displaystyle\leq C_{|q|}\Biggl{\|}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}}\Biggr{\|}_{\mathcal{F}_{q}(H)}^{2}\Biggl{\|}\sum_{j\in\Lambda_{l+k}}\alpha_{j}e_{u_{j}}\otimes e_{v_{j}}\Biggr{\|}^{2}_{\mathcal{F}_{q}(H)^{\otimes 2}}

We also have

sFnkiΛkαi¯evi¯,fsq¯euiq(H)2\displaystyle\sum_{s\in F_{n-k}}\Biggl{\|}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}}\Biggr{\|}_{\mathcal{F}_{q}(H)}^{2}
=sFnkiΛkαi¯evi¯,fsq¯eui,iΛkαi¯evi¯,fsq¯euiq\displaystyle=\sum_{s\in F_{n-k}}\Biggl{\langle}\sum_{i\in\Lambda_{k}}\overline{\alpha_{i}}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}e_{u_{i}},\sum_{i^{\prime}\in\Lambda_{k}}\overline{\alpha_{i^{\prime}}}\overline{\langle e_{\overline{v_{i^{\prime}}^{*}}},f_{s}\rangle_{q}}e_{u_{i^{\prime}}}\Biggr{\rangle}_{q}
=i,iΛkαiαi¯eui,euiqsFnkevi¯,fsqevi¯,fsq¯\displaystyle=\sum_{i,i^{\prime}\in\Lambda_{k}}\alpha_{i^{\prime}}\overline{\alpha_{i}}\langle e_{u^{\prime}_{i}},e_{u_{i}}\rangle_{q}\sum_{s\in F_{n-k}}\langle e_{\overline{v_{i^{\prime}}^{*}}},f_{s}\rangle_{q}\overline{\langle e_{\overline{v_{i}^{*}}},f_{s}\rangle_{q}}
=i,iΛkαiαi¯eui,euiqevi¯,evi¯q\displaystyle=\sum_{i,i^{\prime}\in\Lambda_{k}}\alpha_{i^{\prime}}\overline{\alpha_{i}}\langle e_{u^{\prime}_{i}},e_{u_{i}}\rangle_{q}\langle e_{\overline{v_{i^{\prime}}^{*}}},e_{\overline{v_{i}^{*}}}\rangle_{q}
=iΛkαieuieviq(H)22\displaystyle=\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}

Therefore, we have

k=1n1Bk,nk\displaystyle\sum_{k=1}^{n-1}\|B_{k,n-k}\| AC|q|k=1n1(nk)max1kniΛkαieuieviq(H)24\displaystyle\leq AC_{|q|}\sum_{k=1}^{n-1}(n-k)\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}
AC|q|2n2max1kniΛkαieuieviq(H)24.\displaystyle\leq\frac{AC_{|q|}}{2}n^{2}\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}.

Proof of Lemma 3.1.

We prove this Lemma by induction. When n=1n=1, we have the inequality by Corollary 2.5. If Lemma 3.1 holds for 1kn11\leq k\leq n-1, then by Lemma 3.2, 3.3, 3.4, 3.5, we have

k=1niΛkαiauiavi¯2\displaystyle\left\|\sum_{k=1}^{n}\sum_{i\in\Lambda_{k}}\alpha_{i}a_{u_{i}}a^{*}_{\overline{v_{i}}}\right\|^{2}
C|q|2nmax1kniΛkαieuieviq(H)22+2k=1n1l=k+1nAkAl\displaystyle\leq C_{|q|}^{2}n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}+2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k}^{*}A_{l}\right\|
(C|q|2+2D1)nmax1kniΛkαieuieviq(H)22+2k=1n1l=k+1nAk,l,k\displaystyle\leq(C_{|q|}^{2}+2D_{1})n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}+2\left\|\sum_{k=1}^{n-1}\sum_{l=k+1}^{n}A_{k,l,k}\right\|
(C|q|2+2D1)nmax1kniΛkαieuieviq(H)22\displaystyle\leq(C_{|q|}^{2}+2D_{1})n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}
+2(2D2n2+D3n)max1kniΛkαieuieviq(H)24+k=1n1Bk,nk\displaystyle\qquad+2\sqrt{(2D_{2}n^{2}+D_{3}n)\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{4}+\sum_{k=1}^{n-1}\|B_{k,n-k}\|}
(C|q|2+2D1+22D2+D3+AC|q|2)nmax1kniΛkαieuieviq(H)22\displaystyle\leq\left(C_{|q|}^{2}+2D_{1}+2\sqrt{2D_{2}+D_{3}+\frac{AC_{|q|}}{2}}\right)\ n\max_{1\leq k\leq n}\left\|\sum_{i\in\Lambda_{k}}\alpha_{i}e_{u_{i}}\otimes e_{v_{i}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}

Therefore, we have the desired inequality if we take AA large enough to have

C|q|2+2D1+22D2+D3+AC|q|2A.C_{|q|}^{2}+2D_{1}+2\sqrt{2D_{2}+D_{3}+\frac{AC_{|q|}}{2}}\leq A.

Proof of Theorem 1.1.

By Lemma 3.1, we have,

k=0n|w|=nπSn/Sk×Snkαwqinv(π)aπ1(w)kaπ1(w)>k¯\displaystyle\left\|\sum_{k=0}^{n}\sum_{|w|=n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}\alpha_{w}q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}}\right\|
|w|=nαwaw¯+k=1n|w|=nπSn/Sk×Snkαwqinv(π)aπ1(w)kaπ1(w)>k¯\displaystyle\leq\left\|\sum_{|w|=n}\alpha_{w}a^{*}_{\overline{w}}\right\|+\left\|\sum_{k=1}^{n}\sum_{|w|=n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}\alpha_{w}q^{\mathrm{inv}(\pi)}a_{\pi^{-1}(w)_{\leq k}}a^{*}_{\overline{\pi^{-1}(w)_{>k}}}\right\|
|w|=nαwaw¯+Anmax1kn|w|=nπSn/Sk×Snkαwqinv(π)eπ1(w)keπ1(w)>kq(H)22\displaystyle\leq\left\|\sum_{|w|=n}\alpha_{w}a^{*}_{\overline{w}}\right\|+\sqrt{An\max_{1\leq k\leq n}\left\|\sum_{|w|=n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}\alpha_{w}q^{\mathrm{inv}(\pi)}e_{\pi^{-1}(w)_{\leq k}}\otimes e_{\pi^{-1}(w)_{>k}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}}

Since we have,

|v|=nαwaw¯C|q|12|w|=nαwewq(H),\left\|\sum_{|v|=n}\alpha_{w}a^{*}_{\overline{w}}\right\|\leq C_{|q|}^{\frac{1}{2}}\left\|\sum_{|w|=n}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)},

and

max1kn|w|=nπSn/Sk×Snkαwqinv(π)eπ1(w)keπ1(w)>kq(H)22C|q||w|=nαwewq(H)2,\max_{1\leq k\leq n}\left\|\sum_{|w|=n}\sum_{\pi\in\mathchoice{\text{\raise 3.01389pt\hbox{$S_{n}$}\!\Big{/}\!\lower 3.01389pt\hbox{$S_{k}\times S_{n-k}$}}}{\text{\raise 1.0pt\hbox{$S_{n}$}\big{/}\lower 1.0pt\hbox{$S_{k}\times S_{n-k}$}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}{{S_{n}}\,/\,{S_{k}\times S_{n-k}}}}\alpha_{w}q^{\mathrm{inv}(\pi)}e_{\pi^{-1}(w)_{\leq k}}\otimes e_{\pi^{-1}(w)_{>k}}\right\|_{\mathcal{F}_{q}(H)^{\otimes 2}}^{2}\leq C_{|q|}\left\|\sum_{|w|=n}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)}^{2},

we conclude

|w|=nαwcw(q)\displaystyle\left\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\right\| C|q|12(An+1)|w|=nαwewq(H)\displaystyle\leq C_{|q|}^{\frac{1}{2}}(\sqrt{An}+1)\left\|\sum_{|w|=n}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)}
An+1|w|=nαwewq(H)=An+1|w|=nαwcw(q)2\displaystyle\leq A^{\prime}\sqrt{n+1}\left\|\sum_{|w|=n}\alpha_{w}e_{w}\right\|_{\mathcal{F}_{q}(H)}=A^{\prime}\sqrt{n+1}\left\|\sum_{|w|=n}\alpha_{w}c_{w}^{(q)}\right\|_{2}

for some A=A(|q|)A^{\prime}=A^{\prime}(|q|) (for example A=2AC|q|A^{\prime}=\sqrt{2AC_{|q|}}). ∎

As an application of the strong Haagerup inequality that we obtained, we mention the strong ultracontractivity of the qq-Ornstein-Uhlenbeck semigroup, based on the argument in [KS07, Section 5]

Let L2(c1(q),,cd(q),τ)L^{2}(\mathbb{C}\langle c^{(q)}_{1},\ldots,c^{(q)}_{d}\rangle,\tau) be a closed subspace generated by wαwcw(q)\sum_{w}\alpha_{w}c_{w}^{(q)} (not containing c1(q),,cd(q)c_{1}^{(q)*},\ldots,c_{d}^{(q)*}) in L2(c1(q),,cd(q),c1(q),,c(q),τ)q(H)L^{2}(\mathbb{C}\langle c^{(q)}_{1},\ldots,c^{(q)}_{d},c^{(q)*}_{1},\ldots,c^{(q)*}\rangle,\tau)\simeq\mathcal{F}_{q}(H). We define the number operator N(q)N^{(q)} on L2(c1(q),,cd(q),τ)L^{2}(\mathbb{C}\langle c^{(q)}_{1},\ldots,c^{(q)}_{d}\rangle,\tau) affiliated with the qq-circular system as a densely defined unbounded operator satisfying

N(q)cw(q)=|w|cw(q),w[d].N^{(q)}c_{w}^{(q)}=|w|c_{w}^{(q)},\quad w\in[d]^{*}.

We call the semigroup etN(q)e^{-tN^{(q)}} the qq-Ornstein-Uhlenbeck semigroup. We use the same terminology as in Bożejko’s paper [Boż99] where he deals with the number operator affiliated with the qq-Gaussian system. Thanks to the strong Haagerup inequality for qq-circular system, we have the following by the same proof as in [KS07, Theorem 5.4].

Corollary 3.6.

Let N(q)N^{(q)} be the number operator affiliated with qq-circular system. Then, the qq-Ornstein-Uhlenbeck semigroup etN(q)e^{-tN^{(q)}} has the strong ultracontractivity. Namely, for hL2(c1(q),,cd(q),τ)h\in L^{2}(\mathbb{C}\langle c^{(q)}_{1},\ldots,c^{(q)}_{d}\rangle,\tau), we have

etN(q)h12At1h2,t>0\|e^{-tN^{(q)}}h\|\leq\frac{1}{2}At^{-1}\|h\|_{2},\quad t>0

where AA is the same constant in Theorem 1.1.

References

  • [Bia97] Philippe Biane, Free hypercontractivity, Comm. Math. Phys. 184 (1997), no. 2, 457–474. MR 1462754
  • [Boż99] Marek Bożejko, Ultracontractivity and strong Sobolev inequality for qq-Ornstein-Uhlenbeck semigroup (1<q<1)(-1<q<1), Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 2, 203–220.
  • [Bra12] Michael Brannan, Quantum symmetries and strong Haagerup inequalities, Comm. Math. Phys. 311 (2012), no. 1, 21–53.
  • [BS91] Marek Bożejko and Roland Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), no. 3, 519–531.
  • [CH18] Guillaume Cébron and Ching-Wei Ho, Segal-Bargmann transform: the qq-deformation, Lett. Math. Phys. 108 (2018), no. 7, 1677–1715. MR 3802726
  • [dlS09] Mikael de la Salle, Strong Haagerup inequalities with operator coefficients, J. Funct. Anal. 257 (2009), no. 12, 3968–4002.
  • [DN93] Ken Dykema and Alexandru Nica, On the Fock representation of the qq-commutation relations, J. Reine Angew. Math. 440 (1993), 201–212. MR 1225964
  • [FB70] U. Frisch and R. Bourret, Parastochastics, J. Mathematical Phys. 11 (1970), 364–390. MR 260352
  • [GS14] A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math. 197 (2014), no. 3, 613–661. MR 3251831
  • [Haa79] Uffe Haagerup, An example of a nonnuclear CC^{\ast}-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293.
  • [Kem05] Todd Kemp, Hypercontractivity in non-commutative holomorphic spaces, Comm. Math. Phys. 259 (2005), no. 3, 615–637.
  • [Kró05] Ilona Królak, Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations, Math. Z. 250 (2005), no. 4, 915–937.
  • [KS07] Todd Kemp and Roland Speicher, Strong Haagerup inequalities for free \mathscr{R}-diagonal elements, J. Funct. Anal. 251 (2007), no. 1, 141–173.
  • [Kuz23] Alexey Kuzmin, CCR and CAR algebras are connected via a path of Cuntz-Toeplitz algebras, Comm. Math. Phys. 399 (2023), no. 3, 1623–1645. MR 4580530
  • [Miy23] Akihiro Miyagawa, A short note on strong convergence of qq-Gaussians, Internat. J. Math. 34 (2023), no. 14, Paper No. 2350087, 8.
  • [MN01] James Mingo and Alexandru Nica, Random unitaries in non-commutative tori, and an asymptotic model for qq-circular systems, Indiana Univ. Math. J. 50 (2001), no. 2, 953–987.
  • [NS97] Alexandru Nica and Roland Speicher, RR-diagonal pairs—a common approach to Haar unitaries and circular elements, Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 149–188.
  • [You22] Sang-Gyun Youn, Strong Haagerup inequalities on non-Kac free orthogonal quantum groups, J. Funct. Anal. 283 (2022), no. 5, Paper No. 109557, 24.