This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The structure connectivity of Data Center Networks

Lina Ba and Heping Zhang Corresponding author.
(School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
E-mails: baln19@lzu.edu.cn, zhanghp@lzu.edu.cn
)
Abstract

Last decade, numerous giant data center networks are built to provide increasingly fashionable web applications. For two integers m0m\geq 0 and n2n\geq 2, the mm-dimensional DCell network with nn-port switches Dm,nD_{m,n} and nn-dimensional BCDC network BnB_{n} have been proposed. Connectivity is a basic parameter to measure fault-tolerance of networks. As generalizations of connectivity, structure (substructure) connectivity was recently proposed. Let GG and HH be two connected graphs. Let \mathcal{F} be a set whose elements are subgraphs of GG, and every member of \mathcal{F} is isomorphic to HH (resp. a connected subgraph of HH). Then HH-structure connectivity κ(G;H)\kappa(G;H) (resp. HH-substructure connectivity κs(G;H)\kappa^{s}(G;H)) of GG is the size of a smallest set of \mathcal{F} such that the rest of GG is disconnected or the singleton when removing \mathcal{F}. Then it is meaningful to calculate the structure connectivity of data center networks on some common structures, such as star K1,tK_{1,t}, path PkP_{k}, cycle CkC_{k}, complete graph KsK_{s} and so on. In this paper, we obtain that κ(Dm,n;K1,t)=κs(Dm,n;K1,t)=n11+t+m\kappa(D_{m,n};K_{1,t})=\kappa^{s}(D_{m,n};K_{1,t})=\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n21\leq t\leq m+n-2 and κ(Dm,n;Ks)=n1s+m\kappa(D_{m,n};K_{s})=\lceil\frac{n-1}{s}\rceil+m for 3sn13\leq s\leq n-1 by analyzing the structural properties of Dm,nD_{m,n}. We also compute κ(Bn;H)\kappa(B_{n};H) and κs(Bn;H)\kappa^{s}(B_{n};H) for H{K1,t,Pk,Ck|1t2n3,6k2n1}H\in\{K_{1,t},P_{k},C_{k}|1\leq t\leq 2n-3,6\leq k\leq 2n-1\} and n5n\geq 5 by using gg-extra connectivity of BnB_{n}.

Keywords:  Fault-tolerance; Structure connectivity; DCell; BCDC.

1 Introduction

Networks are often modeled by connected graphs. A node replaces with a vertex and a link replaces with an edge. Let GG be a graph. We set V(G)V(G) as vertex set of GG and E(G)E(G) as edge set of GG. Connectivity is a basic parameter in measuring fault tolerance of networks. In order to more accurately measure fault-tolerance of large-scale parallel processing systems, ρ\rho-conditional connectivity for some property ρ\rho proposed by Harary [9] referred to the minimum cardinality of a vertex subset SS of GG such that GSG-S is disconnect and every component has property ρ\rho. Thus, hh-extra connectivity κh(G)\kappa_{h}(G) is introduced by Fàbrega and Fiol [5], and the definition emphasizes that the every component left behind has at least h+1h+1 vertices; hh-restricted connectivity κh(G)\kappa^{h}(G) is came up with by Esfahanian and Hakimi [3], and κh(G)\kappa^{h}(G) requires that any one vertex of every component left behind has at least hh neighborts. In the Network-on-Chip technology, if there is a fault node on the chip, then we assume that the whole chip is fault. Because of the facts, structure (substructure) connectivity is defined by Lin et al. [13]. Let \mathcal{F} be a set of subgraphs of GG. If \mathcal{F} disconnects GG or GG-\mathcal{F} is a trivial graph, then \mathcal{F} is called a subgraph cut of GG. For a connected subgraph HH and a subgraph cut \mathcal{F} of GG, if \mathcal{F}’s every member is isomorphic to HH (resp. a connected subgraph of HH), then \mathcal{F} is called an HH-structure cut (resp. HH-substructure cut). The size of the smallest HH-structure cuts (resp. HH-substructure cuts) of GG is HH-structure connectivity of GG, κ(G;H)\kappa(G;H) (resp. HH-substructure connectivity of GG, κs(G;H)\kappa^{s}(G;H)). Thus, κs(G;H)κ(G;H)\kappa^{s}(G;H)\leqslant\kappa(G;H). Especially, K1K_{1}-structure connectivity is equal to vertex connectivity. For the past few years, there are many studies on structure connectivity for some well-known networks, such as HLHL-networks [12], alternating group graphs [15], star graph [14], wheel network [6] and so on.

Data center network, DCN, is a networking infrastructure inside a data center, which connects many servers by links and switches [7]. Due to the the advances of science and technology, DCN runs thousands of servers. For instance, Google has over 450,000 servers operating in 30 data centers by 2006 [1, 10], and Microsoft and Yahoo! have hundreds of millions of servers running at the same time in their data centers [2, 18]. Then how to efficiently connect numerous servers become a fundamental challenge in DCN. Therefore, DCell and BCDC were proposed by Guo et al. [7] and Wang et al. [19], respectively. DCell defines by a recursive structure. A server connects to distinct levels of DCells by multiple links (for details see Definition 1). According to its structure, with the increase of node degree, DCell shows a doubly exponential growth. Then, without the use of costly core-switches or core-routers, a DCell with a degree less than 4 can operate over thousands of servers [7]. An nn-dimensional BCDC, BnB_{n}, consists of an independent set and two (n1)(n-1)-dimensional BCDC’s (for details see Definition 4). Then the quantity of servers in BCDC add up fast as the dimension of BCDC grows. Such as, with the use of 16-port switches, B16B_{16} operates 524 288 servers at once [19]. It is easy to find that DCell and BCDC provide two ways to connect plentiful servers efficiently. For these two networks, the best application scenarios are large data centers, which contain end-user applications (e.g. Web search and IM) and distributed system operations (e.g. MapReduce and GFS) [7]. Because DCell and BCDC based on complete graphs and crossed cubes, respectively, they still have lots of good properties, such as high-capacity, minor diameter and high fault-tolerance. There are a few primary characters of graphs Dm,nD_{m,n} and BnB_{n}, such as connectivity, diameter, symmetry, broadcasting, have been studied recently [7, 19]. As extensions of connectivity, hh-restricted connectivity [20, 17] and hh-extra connectivity [16, 17] have been studied, yet. Then, we compute the structure connectivities of Dm,nD_{m,n} and BnB_{n} on some common structures, star, complete graph, path and cycle in this paper.

The paper has the following sections. Section 2 defines a few notations. Sections 3 presents the star-structure (substructure) connectivity and complete graph-structure connectivitives of DCell. Sections 4 shows the star-structure (substructure) connectivity, path-structure (substructure) connectivity and cycle-structure (substructure) connectivity of BCDC. Section 5 summarizes the content of this paper and indicates some unsolved questions.

2 Notations

In this paper, we only consider finite and simple graphs. For a graph HH that satisfies the conditions V(H)V(G)V(H)\subseteq V(G) and E(H)E(G)E(H)\subseteq E(G), we call HH a subgraph of GG. For a vertex subset SS of GG, GSG-S is a graph obtained by deleting the vertex set SS and all edges incident to them from GG. If HH is a subgraph of GG, then we set GH=GV(H)G-H=G-V(H). Let \mathcal{F} be a set whose members are subgraphs of GG. Then G=GV()G-\mathcal{F}=G-V(\mathcal{F}), where V()V(\mathcal{F}) is the union of the vertex set of members of \mathcal{F}. For a vertex subset VV^{\prime} of GG, we set G[V]G[V^{\prime}] as the induced subgraph by VV^{\prime} of GG, where V(G[V])=VV(G[V^{\prime}])=V^{\prime} and E(G[V])={(u,u)E(G)|u,uV}.E(G[V^{\prime}])=\{(u,u^{\prime})\in E(G)|u,u^{\prime}\in V^{\prime}\}. For any one vertex xx of GG, NG(x)={y|xyE(G)}N_{G}(x)=\{y|xy\in E(G)\}. For a vertex subset AA of GG, NG(A)=xANG(x)AN_{G}(A)=\cup_{x\in A}N_{G}(x)\setminus A. Let Pk=v1,v2,,vkP_{k}=\langle v_{1},v_{2},\ldots,v_{k}\rangle be a path. We set Pk1=vk,vk1,,v1P^{-1}_{k}=\langle v_{k},v_{k-1},\ldots,v_{1}\rangle and Pkviw=v1,,vi1,w,vi+1,,vkP_{k}-v_{i}\cup w=\langle v_{1},\ldots,v_{i-1},w,v_{i+1},\ldots,v_{k}\rangle. If v1=vkv_{1}=v_{k} in PkP_{k}, k3k\geq 3, then we call it cycle CkC_{k}. Let {x;xi|1it}\{x;x_{i}|1\leq i\leq t\} be a star K1,tK_{1,t}. Then we set xx and xix_{i}, 1it1\leq i\leq t, are center and leaves, respectively.

3 The structure connectivity of DCell

Given an integer ss, we set s={0,1,,s}\langle s\rangle=\{0,1,\ldots,s\} and [s]={1,2,,s}[s]=\{1,2,\ldots,s\}. Define I0,n=n1I_{0,n}=\langle n-1\rangle and Ii,n=ti1,nI_{i,n}=\langle t_{i-1,n}\rangle for i[m]i\in[m]. An mm-dimensional DCell with nn-port switches is denoted by Dm,nD_{m,n} for m0m\geq 0 and n2n\geq 2. Let tm,nt_{m,n} be the number of servers in Dm,nD_{m,n}, where t0,n=nt_{0,n}=n and tm,n=tm1,n(tm1,n+1)t_{m,n}=t_{m-1,n}\cdot(t_{m-1,n}+1) for m1m\geq 1. Servers of Dm,nD_{m,n} can be labeled by {xmxm1x1x0|xiIi,n,im}\{x_{m}x_{m-1}\ldots x_{1}x_{0}|x_{i}\in I_{i,n},i\in\langle m\rangle\}.

Definition 1.

[7] The mm-dimensional DCell with nn-port switches Dm,nD_{m,n} is defined recursively as follows.

  1. (1)

    D0,nD_{0,n} is a complete graph consisting of nn servers.

  2. (2)

    For m1m\geq 1, Dm,nD_{m,n} is obtained from tm1,n+1t_{m-1,n}+1 disjoint copies Dm1,nD_{m-1,n} by the following steps.

    1. (i)

      Let Dm1,niD^{i}_{m-1,n} be a copy of Dm1,nD_{m-1,n} by prefixing label of each server with ii for iIm,n.i\in I_{m,n}.

    2. (ii)

      Server u=umum1,,u0u=u_{m}u_{m-1},\ldots,u_{0} in Dm1,numD^{u_{m}}_{m-1,n} is adjacent to server v=vmvm1,,v0v=v_{m}v_{m-1},\ldots,v_{0} in Dm1,nvmD^{v_{m}}_{m-1,n} if and only if um=v0+j=1m1(vj×tj1,n)u_{m}=v_{0}+\sum^{m-1}_{j=1}(v_{j}\times t_{j-1,n}) and vm=u0+j=1m1(uj×tj1,n)+1v_{m}=u_{0}+\sum^{m-1}_{j=1}(u_{j}\times t_{j-1,n})+1 for any um,vmIm,nu_{m},v_{m}\in I_{m,n} and um<vmu_{m}<v_{m}.

If uu has a neighbor uDm1,niu^{\prime}\notin D^{i}_{m-1,n} for uDm1,niu\in D^{i}_{m-1,n} and iIm,ni\in I_{m,n}, then uu^{\prime} is called the outside neighbor of uu. Figure 1(a) shows 1-dimensional DCell with 4-port switches. Since switches are transparent in networks, the graph structure of D1,4D_{1,4} is shown in Figure 1(b).

Refer to caption
Refer to caption
(a)
Figure 1: The 1-dimensional DCell with 4-port switches and the graph structure of D1,4D_{1,4}.
Lemma 3.1.

[8] For m0m\geq 0 and n2n\geq 2, the following statements hold:

  1. (i)

    Dm,nD_{m,n} is (m+n1)(m+n-1)-regular and |Vm,n|=tm,n|V_{m,n}|=t_{m,n},

  2. (ii)

    for m1m\geq 1, Dm,nD_{m,n} consists of tm1,n+1t_{m-1,n}+1 copies of Dm1,nD_{m-1,n}, denoted by Dm1,niD^{i}_{m-1,n}, for each iIm,ni\in I_{m,n}. There is only one edge between Dm1,niD^{i}_{m-1,n} and Dm1,njD^{j}_{m-1,n} for any i,jIm,ni,j\in I_{m,n} and iji\neq j, which implies that the outside neighbors of vertices in Dm1,niD^{i}_{m-1,n} belong to different copies of Dm1,njD^{j}_{m-1,n} for i,jIm,ni,j\in I_{m,n} and iji\neq j.

For convenience, let

Dm,n=Dm1,n0Dm1,n1Dm1,n2Dm1,ntm1,n.D_{m,n}=D^{0}_{m-1,n}\otimes D^{1}_{m-1,n}\otimes D^{2}_{m-1,n}\otimes\ldots\otimes D^{t_{m-1,n}}_{m-1,n}. (3.1)
Lemma 3.2.

[7] For m0m\geq 0 and n2n\geq 2, κ(Dm,n)=n+m1\kappa(D_{m,n})=n+m-1 and tm,n(n+12)2m12.t_{m,n}\geq(n+\frac{1}{2})^{2^{m}}-\frac{1}{2}.

Lemma 3.3.

κs(Dm,n;K1,t)n11+t+m\kappa^{s}(D_{m,n};K_{1,t})\geq\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n1.1\leq t\leq m+n-1.

Proof.

Let’s explain this by mathematical induction on mm. For m=0m=0, D0,nKnD_{0,n}\cong K_{n}. Assume κs(D0,n;K1,t)n11+t1\kappa^{s}(D_{0,n};K_{1,t})\leq\lceil\frac{n-1}{1+t}\rceil-1 for 1tn1.1\leq t\leq n-1. Then D0,nD_{0,n} has a K1,tK_{1,t}-substructure cut \mathcal{F^{\prime}} with ||n11+t1|\mathcal{F^{\prime}}|\leq\lceil\frac{n-1}{1+t}\rceil-1. We have

|V()|(1+t)(n11+t1)(1+t)(n+t11+t1)=n2.|V(\mathcal{F^{\prime}})|\leq(1+t)(\lceil\frac{n-1}{1+t}\rceil-1)\leq(1+t)(\frac{n+t-1}{1+t}-1)=n-2.

Since κ(D0,n)=n1\kappa(D_{0,n})=n-1, |V()|<κ(D0,n)|V(\mathcal{F^{\prime}})|<\kappa(D_{0,n}), a contradiction. Then it is true for m=0m=0.

Suppose κs(Dm1,n;K1,t)n11+t+m1\kappa^{s}(D_{m-1,n};K_{1,t})\geq\lceil\frac{n-1}{1+t}\rceil+m-1 for 1tm+n2.1\leq t\leq m+n-2. Now, we consider Dm,nD_{m,n}. Let ={Ti|0in11+t+m2}\mathcal{F}=\{T_{i}|0\leq i\leq\lceil\frac{n-1}{1+t}\rceil+m-2\} be a set of connected subgraphs of K1,tK_{1,t} for 1tn+m11\leq t\leq n+m-1. We need to show that Dm,nD_{m,n}-\mathcal{F} is connected. Let i=Dm1,ni\mathcal{F}^{i}=\mathcal{F}\cap D^{i}_{m-1,n}, M=iMi\mathcal{F}^{M}=\cup_{i\in M}\mathcal{F}^{i} and Dm1,nM=iMDm1,niD_{m-1,n}^{M}=\cup_{i\in M}D^{i}_{m-1,n} by Eq. (3.1). We know that each star is in at most two Dm1,niD^{i}_{m-1,n}’s by Definition 1. Then there exist at most 2(n11+t+m1)2(\lceil\frac{n-1}{1+t}\rceil+m-1) Dm1,niD^{i}_{m-1,n}’s such that i.\mathcal{F}^{i}\neq\emptyset. Let S={0,1,2,,s}S=\{0,1,2,\ldots,s\} be a set such that i\mathcal{F}^{i}\neq\emptyset for iSi\in S. Then |S|2(n11+t+m1)|S|\leq 2(\lceil\frac{n-1}{1+t}\rceil+m-1). By Lemma 3.2, for m1m\geq 1 and n2n\geq 2,

tm1,n+1|S|tm1,n+12(n11+t+m1)tm1,n+12(n+t11+t+m1)\displaystyle t_{m-1,n}+1-|S|\geq t_{m-1,n}+1-2(\lceil\frac{n-1}{1+t}\rceil+m-1)\geq t_{m-1,n}+1-2(\frac{n+t-1}{1+t}+m-1)
tm1,n+12(n2+m1)(n+12)2m1n2m+52(n+12)n2+52=1,\displaystyle\geq t_{m-1,n}+1-2(\frac{n}{2}+m-1)\geq(n+\frac{1}{2})^{2^{m-1}}-n-2m+\frac{5}{2}\geq(n+\frac{1}{2})-n-2+\frac{5}{2}=1,

which implies that there exists Dm1,niD^{i}_{m-1,n} satisfied i=\mathcal{F}^{i}=\emptyset for iIm,nSi\in I_{m,n}\setminus S. Then Im,nS=\mathcal{F}^{I_{m,n}\setminus S}=\emptyset and Dm1,nIm,nSIm,nS=Dm1,nIm,nSD_{m-1,n}^{I_{m,n}\setminus S}-\mathcal{F}^{I_{m,n}\setminus S}=D_{m-1,n}^{I_{m,n}\setminus S} is connected. Let S1={0,1,2,,s1}S_{1}=\{0,1,2,\ldots,s_{1}\} be a subset of SS satisfied that there exist star-centers in i\mathcal{F}^{i} for iS1i\in S_{1}. Then there only leaves of stars in i\mathcal{F}^{i} for iSS1i\in S\setminus S_{1}.

If there exist Dm1,niD^{i}_{m-1,n} and Dm1,njD^{j}_{m-1,n} such that both Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} and Dm1,njjD^{j}_{m-1,n}-\mathcal{F}^{j} are disconnected for iSi\in S, jSj\in S and iji\neq j, then |i|n11+t+m1|\mathcal{F}^{i}|\geq\lceil\frac{n-1}{1+t}\rceil+m-1 and |j|n11+t+m1|\mathcal{F}^{j}|\geq\lceil\frac{n-1}{1+t}\rceil+m-1 by induction hypothesis. Since ||=n11+t+m1|\mathcal{F}|=\lceil\frac{n-1}{1+t}\rceil+m-1, |i|n11+t+m1|\mathcal{F}^{i}|\geq\lceil\frac{n-1}{1+t}\rceil+m-1 and |j|n11+t+m1|\mathcal{F}^{j}|\geq\lceil\frac{n-1}{1+t}\rceil+m-1 are impossible by Definition 1. Thus there is at most one Dm1,niD^{i}_{m-1,n} satisfied that Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is disconnected for iSi\in S.

Case 1. Each Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is connected for iSi\in S.

For each iSS1i\in S\setminus S_{1}, i\mathcal{F}^{i} consists of the outside neighbors of partical star-centers which are in Dm1,nS1D^{S_{1}}_{m-1,n}. Then Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has an outside neighbor of a vertex which is in Dm1,nIm,nSD^{I_{m,n}\setminus S}_{m-1,n} for iSS1i\in S\setminus S_{1}. Since Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is connected, Dm1,nIm,nS1Im,nS1D_{m-1,n}^{I_{m,n}\setminus S_{1}}-\mathcal{F}^{I_{m,n}\setminus S_{1}} is connected. Let pip_{i} be the number of star-centers in Dm1,niD^{i}_{m-1,n} for iS1i\in S_{1}. For pi=n11+t+m1p_{i}=\lceil\frac{n-1}{1+t}\rceil+m-1, we find S1={i}S_{1}=\{i\}. Then each vertex of Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has an outside neighbor in Dm1,nIm,nSD_{m-1,n}^{I_{m,n}\setminus S}. Since Dm1,nIm,n{i}Im,n{i}D^{I_{m,n}\setminus\{i\}}_{m-1,n}-\mathcal{F}^{I_{m,n}\setminus\{i\}} is connected, Dm,nD_{m,n}-\mathcal{F} is connected (see Figure 2(a)). For pin11+t+m2p_{i}\leq\lceil\frac{n-1}{1+t}\rceil+m-2, by Lemma 3.2, we have for n2n\geq 2 and m2m\geq 2,

|V(Dm1,ni)|(1+t)pi(n11+t+m1pi)=tm1,ntpi(n11+t+m1)\displaystyle|V(D^{i}_{m-1,n})|-(1+t)p_{i}-(\lceil\frac{n-1}{1+t}\rceil+m-1-p_{i})=t_{m-1,n}-tp_{i}-(\lceil\frac{n-1}{1+t}\rceil+m-1)\geq
tm1,nt(n11+t+m2)(n11+t+m1)=tm1,n(1+t)(n11+t+m1)+t\displaystyle t_{m-1,n}-t(\lceil\frac{n-1}{1+t}\rceil+m-2)-(\lceil\frac{n-1}{1+t}\rceil+m-1)=t_{m-1,n}-(1+t)(\lceil\frac{n-1}{1+t}\rceil+m-1)+t
tm1,n(1+t)(n+t11+t+m1)+t(n+12)2m1nm(m1)t+32\displaystyle\geq t_{m-1,n}-(1+t)(\frac{n+t-1}{1+t}+m-1)+t\geq(n+\frac{1}{2})^{2^{m-1}}-n-m-(m-1)t+\frac{3}{2}
(n+12)2m1nm(m1)(n+m1)+32=(n+12)2m1mnm2+m+12\displaystyle\geq(n+\frac{1}{2})^{2^{m-1}}-n-m-(m-1)(n+m-1)+\frac{3}{2}=(n+\frac{1}{2})^{2^{m-1}}-mn-m^{2}+m+\frac{1}{2}
(2+12)2m12mm2+m+12(2+12)244+2+12>0,\displaystyle\geq(2+\frac{1}{2})^{2^{m-1}}-2m-m^{2}+m+\frac{1}{2}\geq(2+\frac{1}{2})^{2}-4-4+2+\frac{1}{2}>0,

and for m=1m=1,

|V(D0,ni)|(1+t)pi(n11+tpi)t0,n(1+t)(n+t11+t+11)+t>0,\displaystyle|V(D^{i}_{0,n})|-(1+t)p_{i}-(\lceil\frac{n-1}{1+t}\rceil-p_{i})\geq t_{0,n}-(1+t)(\frac{n+t-1}{1+t}+1-1)+t>0,

which implies that Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has a vertex that is connected to Dm1,nIm,nS1Im,nS1D_{m-1,n}^{I_{m,n}\setminus S_{1}}-\mathcal{F}^{I_{m,n}\setminus S_{1}} for each iS1i\in S_{1} (see Figure 2(b)). Thus Dm,nD_{m,n}-\mathcal{F} is connected.

Case 2. There is exactly one Dm1,niD^{i}_{m-1,n} such that Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is disconnected for iSi\in S.

Since Dm1,njjD^{j}_{m-1,n}-\mathcal{F}^{j} is connected for jSj\in S and jij\neq i, Dm1,nIm,n{i}Im,n{i}D^{I_{m,n}\setminus\{i\}}_{m-1,n}-\mathcal{F}^{I_{m,n}\setminus\{i\}} is connected by the similar argument as Case 1. By induction hypothesis, |i|n11+t+m1|\mathcal{F}^{i}|\geq\lceil\frac{n-1}{1+t}\rceil+m-1. If iS1i\in S_{1}, then each j\mathcal{F}^{j} has exactly one star-center and exactly one of leaves of that star in i\mathcal{F}^{i} for jS1{i}j\in S_{1}\setminus\{i\}, and each j\mathcal{F}^{j} has exactly one leaf of star and its center in i\mathcal{F}^{i} for jSS1j\in S\setminus S_{1} (see Figure 2(c)). By Lemma 3.1(ii)(ii), each vertex of Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has an outside neighbor in Dm1,nIm,nSD^{I_{m,n}\setminus S}_{m-1,n}. Thus Dm,nD_{m,n}-\mathcal{F} is connected. If iSS1i\in S\setminus S_{1}, then SS1={i}S\setminus S_{1}=\{i\} and |S1|=n11+t+m1|S_{1}|=\lceil\frac{n-1}{1+t}\rceil+m-1. Otherwise, |i|<n11+t+m1|\mathcal{F}^{i}|<\lceil\frac{n-1}{1+t}\rceil+m-1, a contradiction. For jS1j\in S_{1}, we have that each j\mathcal{F}^{j} has exactly one star-center and one leaf of the star is in i\mathcal{F}^{i} (see Figure 2(d)). Thus i\mathcal{F}^{i} has all outside neighbors of vertices which from different Dm1,njD^{j}_{m-1,n}s, jS{i}j\in S\setminus\{i\}. By Lemma 3.1(ii)(ii), each vertex of Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has an outside neighbor in Dm1,nIm,nSD^{I_{m,n}\setminus S}_{m-1,n}. Thus Dm,nD_{m,n}-\mathcal{F} is connected. ∎

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Illustration for Lemma 3.3.
Lemma 3.4.

κ(Dm,n;K1,t)n11+t+m\kappa(D_{m,n};K_{1,t})\leq\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n2.1\leq t\leq m+n-2.

Proof.

Given two vertices u=0000u=00\ldots 00 and v=1111v=11\ldots 11 in Dm,nD_{m,n}. Then NDm,n(u)={000i|i[n1]}{1000,0100,,0010}N_{D_{m,n}}(u)=\{00\ldots 0i|i\in[n-1]\}\cup\{10\ldots 00,01\ldots 00,\ldots,00\ldots 10\}. Since Dm,n[{000i|i[n1]}]D_{m,n}[\{00\ldots 0i|i\in[n-1]\}] is a complete graph Kn1K_{n-1} by Definition 1, we need n11+t\lceil\frac{n-1}{1+t}\rceil K1,tK_{1,t}’s to cover all vertices of Dm,n[{000i|i[n1]}]D_{m,n}[\{00\ldots 0i|i\in[n-1]\}]. Then we set

Si={{000[(i1)t+i];000[(i1)t+i+k]|1kt},for1in11+t;{000(n1);000k|nt1kn2},fori=n11+t.S_{i}=\left\{\begin{aligned} &\{00\ldots 0[(i-1)t+i];00\ldots 0[(i-1)t+i+k]|1\leq k\leq t\},~{}~{}for~{}~{}1\leq i\leq\lfloor\frac{n-1}{1+t}\rfloor;\\ &\{00\ldots 0(n-1);00\ldots 0k|n-t-1\leq k\leq n-2\},~{}~{}for~{}~{}i=\lceil\frac{n-1}{1+t}\rceil.\\ \end{aligned}\right.

Next, we will construct several stars K1,tK_{1,t}’s to cover the vertex subset {1000,0100,,0010}\{10\ldots 00,01\ldots 00,\ldots,00\ldots 10\}. For 1jm1\leq j\leq m, let Sn11+t+jS_{\lceil\frac{n-1}{1+t}\rceil+j} be a star with center 001000\ldots 010\ldots 0 (uj=1u_{j}=1) and its leaves are the neighbors of 001000\ldots 010\ldots 0 except uu (see Figure 3(a)).

Let ={Si|i[n11+t+m]}\mathcal{F}=\{S_{i}|i\in[\lceil\frac{n-1}{1+t}\rceil+m]\}. Since NDm,n(u)V()N_{D_{m,n}}(u)\subseteq V(\mathcal{F}) and vV(Dm,n)v\in V(D_{m,n}-\mathcal{F}), Dm,nD_{m,n}-\mathcal{F} has two components. Then uu is a singleton and vv belongs to the other component. Thus κ(Dm,n;K1,t)||=n11+t+m\kappa(D_{m,n};K_{1,t})\leq|\mathcal{F}|=\lceil\frac{n-1}{1+t}\rceil+m.

Lemmas 3.3 and 3.4 imply that n11+t+mκs(Dm,n;K1,t)κ(Dm,n;K1,t)n11+t+m\lceil\frac{n-1}{1+t}\rceil+m\leq\kappa^{s}(D_{m,n};K_{1,t})\leq\kappa(D_{m,n};K_{1,t})\leq\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n21\leq t\leq m+n-2. Then following result holds.

Theorem 3.5.

κ(Dm,n;K1,t)=κs(Dm,n;K1,t)=n11+t+m\kappa(D_{m,n};K_{1,t})=\kappa^{s}(D_{m,n};K_{1,t})=\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n21\leq t\leq m+n-2.

Lemma 3.6.

κ(Dm,n;Ks)n1s+m\kappa(D_{m,n};K_{s})\geq\lceil\frac{n-1}{s}\rceil+m for 3sn13\leq s\leq n-1.

Proof.

Induction on mm. For m=0m=0, D0,nKnD_{0,n}\cong K_{n}. Assume κ(D0,n;Ks)n1s1\kappa(D_{0,n};K_{s})\leq\lceil\frac{n-1}{s}\rceil-1 for 3sn13\leq s\leq n-1. Then there exists a KsK_{s}-structure cut \mathcal{F^{\prime}} of D0,nD_{0,n}, ||n1s1.|\mathcal{F^{\prime}}|\leq\lceil\frac{n-1}{s}\rceil-1. We have

|V()|s(n1s1)s(n+s2s1)=n2<n1.|V(\mathcal{F^{\prime}})|\leq s\cdot(\lceil\frac{n-1}{s}\rceil-1)\leq s\cdot(\frac{n+s-2}{s}-1)=n-2<n-1.

Since κ(D0,n)=n1\kappa(D_{0,n})=n-1, |V()|<κ(D0,n)|V(\mathcal{F^{\prime}})|<\kappa(D_{0,n}), a contradiction. Then κ(D0,n;Ks)n1s\kappa(D_{0,n};K_{s})\geq\lceil\frac{n-1}{s}\rceil for 3sn13\leq s\leq n-1.

Assume κ(Dm1,n;Ks)n1s+m1\kappa(D_{m-1,n};K_{s})\geq\lceil\frac{n-1}{s}\rceil+m-1 for 3sn13\leq s\leq n-1. Now, we consider Dm,nD_{m,n}. Let ={Ti|1in1s+m1}\mathcal{F}=\{T_{i}|1\leq i\leq\lceil\frac{n-1}{s}\rceil+m-1\} be a set such that TiKsT_{i}\cong K_{s} for 1in1s+m11\leq i\leq\lceil\frac{n-1}{s}\rceil+m-1. We need to show that Dm,nD_{m,n}-\mathcal{F} is connected. Let i=Dm1,ni\mathcal{F}^{i}=\mathcal{F}\cap D^{i}_{m-1,n}, T=iTi\mathcal{F}^{T}=\cup_{i\in T}\mathcal{F}^{i} and Dm1,nT=iTDm1,niD_{m-1,n}^{T}=\cup_{i\in T}D^{i}_{m-1,n} by Eq. (3.1). We know that a complete graph KsK_{s} for each 3sn13\leq s\leq n-1 is in exactly one Dm1,niD^{i}_{m-1,n} by Definition 1. Let pip_{i} be the number of KsK_{s}’s in Dm1,niD^{i}_{m-1,n}. If pi=n1s+m1p_{i}=\lceil\frac{n-1}{s}\rceil+m-1 for some iIm,ni\in I_{m,n}, then Im,n{i}=\mathcal{F}^{I_{m,n}\setminus\{i\}}=\emptyset. Thus Dm1,nIm,n{i}Im,n{i}D^{I_{m,n}\setminus\{i\}}_{m-1,n}-\mathcal{F}^{I_{m,n}\setminus\{i\}} is connected. By Definition 1, each vertex of Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has an outside neighbor in Dm1,nIm,n{i}D^{I_{m,n}\setminus\{i\}}_{m-1,n}. Then Dm,nD_{m,n}-\mathcal{F} is connected.

If pin1s+m2p_{i}\leq\lceil\frac{n-1}{s}\rceil+m-2 for some iIm,ni\in I_{m,n}, then Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is connected by induction hypothesis. Since ||=n1s+m1|\mathcal{F}|=\lceil\frac{n-1}{s}\rceil+m-1, there are at most (n1s+m1)(\lceil\frac{n-1}{s}\rceil+m-1) Dm1,niD^{i}_{m-1,n}’s such that i\mathcal{F}^{i}\neq\emptyset. Let X={0,1,,x}X=\{0,1,\ldots,x\} be a set such that i\mathcal{F}^{i}\neq\emptyset for iXi\in X. Then |X|n1s+m1|X|\leq\lceil\frac{n-1}{s}\rceil+m-1. By Lemma 3.2,

tm1,n+1|X|tm1,n+1(n1s+m1)tm1,n+1(n+s2s+m1)\displaystyle t_{m-1,n}+1-|X|\geq t_{m-1,n}+1-(\lceil\frac{n-1}{s}\rceil+m-1)\geq t_{m-1,n}+1-(\frac{n+s-2}{s}+m-1)
(n+12)2m112+1(n+13+m1)n+1n+132,\displaystyle\geq(n+\frac{1}{2})^{2^{m-1}}-\frac{1}{2}+1-(\frac{n+1}{3}+m-1)\geq n+1-\frac{n+1}{3}\geq 2,

which implies that there exist Dm1,niD^{i}_{m-1,n}’s such that i=\mathcal{F}^{i}=\emptyset for iIm,nXi\in I_{m,n}\setminus X. Then Im,nX=\mathcal{F}^{I_{m,n}\setminus X}=\emptyset and Dm1,nIm,nXIm,nXD_{m-1,n}^{I_{m,n}\setminus X}-\mathcal{F}^{I_{m,n}\setminus X} is connected. By Lemma 3.2, we find, for iXi\in X, m1m\geq 1 and n2n\geq 2,

|V(Dm1,ni)|spi(n1s+m1pi)=tm1,n(s1)pi(n1s+m1)\displaystyle|V(D^{i}_{m-1,n})|-sp_{i}-(\lceil\frac{n-1}{s}\rceil+m-1-p_{i})=t_{m-1,n}-(s-1)p_{i}-(\lceil\frac{n-1}{s}\rceil+m-1)
tm1,n(s1)(n1s+m2)(n1s+m1)=tm1,ns(n1s+m2)1\displaystyle\geq t_{m-1,n}-(s-1)(\lceil\frac{n-1}{s}\rceil+m-2)-(\lceil\frac{n-1}{s}\rceil+m-1)=t_{m-1,n}-s(\lceil\frac{n-1}{s}\rceil+m-2)-1
tm1,ns(n+s2s+m2)1(n+12)2m112n(m1)s+1\displaystyle\geq t_{m-1,n}-s(\frac{n+s-2}{s}+m-2)-1\geq(n+\frac{1}{2})^{2^{m-1}}-\frac{1}{2}-n-(m-1)s+1
(n+12)2m1n(m1)(n1)+12=(n+12)n+12=1>0,\displaystyle\geq(n+\frac{1}{2})^{2^{m-1}}-n-(m-1)(n-1)+\frac{1}{2}=(n+\frac{1}{2})-n+\frac{1}{2}=1>0,

which implies that Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} has a vertex that is connected to Dm1,nIm,nXD_{m-1,n}^{I_{m,n}\setminus X} for each iXi\in X. Since Dm1,niiD^{i}_{m-1,n}-\mathcal{F}^{i} is connected for iXi\in X, Dm,nD_{m,n}-\mathcal{F} is connected. ∎

Lemma 3.7.

κ(Dm,n;Ks)n1s+m\kappa(D_{m,n};K_{s})\leq\lceil\frac{n-1}{s}\rceil+m for 3sn13\leq s\leq n-1.

Proof.

Given two vertices u=0000u=00\ldots 00 and v=1111v=11\ldots 11 in Dm,nD_{m,n}. Then NDm,n(u)={000i|i[n1]}{1000,0100,,0010}N_{D_{m,n}}(u)=\{00\ldots 0i|i\in[n-1]\}\cup\{10\ldots 00,01\ldots 00,\ldots,00\ldots 10\}. Let Si={xi|1is}S_{i}=\{x_{i}|1\leq i\leq s\} be a complete graph KsK_{s}. Since Dm,n[{000i|i[n1]}]D_{m,n}[\{00\ldots 0i|i\in[n-1]\}] is a complete graph Kn1K_{n-1} by Definition 1, we need n1s\lceil\frac{n-1}{s}\rceil KsK_{s}’s to cover all vertices of Dm,n[{000i|i[n1]}]D_{m,n}[\{00\ldots 0i|i\in[n-1]\}]. Then we set

Si={{000[(i1)s+k+1]|0ks1},for1in1s;{000k|nskn1},fori=n1s.S_{i}=\left\{\begin{aligned} &\{00\ldots 0[(i-1)s+k+1]|0\leq k\leq s-1\},~{}~{}for~{}~{}1\leq i\leq\lfloor\frac{n-1}{s}\rfloor;\\ &\{00\ldots 0k|n-s\leq k\leq n-1\},~{}~{}for~{}~{}i=\lceil\frac{n-1}{s}\rceil.\\ \end{aligned}\right.

Next, we will construct several complete graphs KsK_{s}’s to cover the vertex subset {1000,0100,,0010}\{10\ldots 00,01\ldots 00,\ldots,00\ldots 10\}. For each j[m]j\in[m], let Sn1s+jS_{\lceil\frac{n-1}{s}\rceil+j} be a KsK_{s} with vertices 00100k0\ldots 010\ldots 0k (uj=1u_{j}=1 and u0=ku_{0}=k) for 0ks10\leq k\leq s-1. Precisely, Sn1s+1={0001k|0ks1}S_{\lceil\frac{n-1}{s}\rceil+1}=\{00\ldots 01k|0\leq k\leq s-1\}, Sn1s+2={0010k|0ks1}S_{\lceil\frac{n-1}{s}\rceil+2}=\{00\ldots 10k|0\leq k\leq s-1\}, analogously, Sn1s+m={1000k|0ks1}S_{\lceil\frac{n-1}{s}\rceil+m}=\{10\ldots 00k|0\leq k\leq s-1\} (see Figure 3(b)).

Let ={Si|i[n1s+m]}\mathcal{F}=\{S_{i}|i\in[\lceil\frac{n-1}{s}\rceil+m]\}. Since NDm,n(u)V()N_{D_{m,n}}(u)\subseteq V(\mathcal{F}) and vV(Dm,n)v\in V(D_{m,n}-\mathcal{F}), Dm,nD_{m,n}-\mathcal{F} has two components. Then uu is a singleton and vv belongs to the other component. Thus κ(Dm,n;Ks)||=n1s+m\kappa(D_{m,n};K_{s})\leq|\mathcal{F}|=\lceil\frac{n-1}{s}\rceil+m. ∎

Refer to caption
(a) A K1,4K_{1,4}-structure cut of D6,8D_{6,8}.
Refer to caption
(b) A K5K_{5}-structure cut of D6,8D_{6,8}.
Figure 3: Illustration for Lemmas 3.4 and 3.7.

On the basis of 3.6 and 3.7, the following result holds.

Theorem 3.8.

κ(Dm,n;Ks)=n1s+m\kappa(D_{m,n};K_{s})=\lceil\frac{n-1}{s}\rceil+m for 3sn13\leq s\leq n-1.

4 The structure connectivity of BCDC

Since nn-dimensional BCDC consists of two n1n-1-dimensional crossed cubes and an independent set, we introduce nn-dimensional crossed cube first.

Definition 2.

[4] Two binary strings x=x1x0x=x_{1}x_{0} and y=y1y0y=y_{1}y_{0} are called pair related (denoted by xyx\sim y) if and only if (x,y){(00,00),(10,10),(01,11),(11,01)}(x,y)\in\{(00,00),(10,10),(01,11),(11,01)\}.

Definition 3.

[4] We set CQ1CQ_{1} as K2K_{2} with vertices 0 and 11. CQnCQ_{n} consists of CQn10CQ^{0}_{n-1} and CQn11CQ^{1}_{n-1}. Two vertices u=0un2u0V(CQn10)u=0u_{n-2}\ldots u_{0}\in V(CQ^{0}_{n-1}) and v=1vn2v0V(CQn11)v=1v_{n-2}\ldots v_{0}\in V(CQ^{1}_{n-1}) are joined by an edge in CQnCQ_{n} if and only if

  1. (i)

    un2=vn2u_{n-2}=v_{n-2} if nn is even, and

  2. (ii)

    u2i+1u2iv2i+1v2iu_{2i+1}u_{2i}\sim v_{2i+1}v_{2i}, for 0i<n120\leq i<\lfloor\frac{n-1}{2}\rfloor.

For any two vertices u=un1un2u0u=u_{n-1}u_{n-2}\ldots u_{0} and v=vn1vn2v0v=v_{n-1}v_{n-2}\ldots v_{0}, uu is adjacent to vv if and only if there is 0dn10\leq d\leq n-1 satisfying the following conditions: (1) un1ud+1=vn1vd+1u_{n-1}\ldots u_{d+1}=v_{n-1}\ldots v_{d+1}, (2) udvdu_{d}\neq v_{d}, (3) ud1=vd1u_{d-1}=v_{d-1} if dd is odd, (4) u2i+1u2iv2i+1v2iu_{2i+1}u_{2i}\sim v_{2i+1}v_{2i}, for all 0id210\leq i\leq\lfloor\frac{d}{2}\rfloor-1. Then we set vv as dd-dimensional neighbor of uu, denoted by udu^{d}.

BCDC’s switches are vertices of CQnCQ_{n} and servers are edges of CQnCQ_{n}. Each switch is an nn-bit binary string x=xn1xn2x0x=x_{n-1}x_{n-2}\ldots x_{0} and each server is a pair [x,y][x,y]. Then we get the original graph AnA_{n} of the nn-dimensional BCDC network, BnB_{n}. Consider that switches are transparent, the graph structure of BCDC network as follows:

Definition 4.

[19] We set B2B_{2} as a 44-cycle with vertices [00,01],[00,10],[01,11][00,01],[00,10],[01,11] and [10,11].[10,11]. For n3n\geq 3, Bn10B^{0}_{n-1} (resp. Bn11B^{1}_{n-1}) is obtained by prefixing each vertex [x,y][x,y] of Bn1B_{n-1} with 0 (resp. 11). BnB_{n} consists of Bn10B^{0}_{n-1}, Bn11B^{1}_{n-1} and a vertex subset Sn={[a,b]|aV(CQn10),bV(CQn11)S_{n}=\{[a,b]|a\in V(CQ^{0}_{n-1}),b\in V(CQ^{1}_{n-1}) and (a,b)E(CQn)}(a,b)\in E(CQn)\}. For three vertices u=[a,b]V(Bn10),v=[c,d]Snu=[a,b]\in V(B^{0}_{n-1}),v=[c,d]\in S_{n} and w=[e,f]V(Bn11)w=[e,f]\in V(B^{1}_{n-1}),

  1. (i)

    (u,v)E(Bn)(u,v)\in E(B_{n}) if and only if a=ca=c or b=cb=c;

  2. (ii)

    (v,w)E(Bn)(v,w)\in E(B_{n}) if and only if e=de=d or f=df=d.

Refer to caption
(a) A3A_{3}.
Refer to caption
(b) CQ3CQ_{3}.
Refer to caption
(c) B3B_{3}.
Figure 4: A3A_{3}, CQ3CQ_{3} and B3B_{3}.
Lemma 4.1.

[11] CQnCQ_{n} is nn-regular and triangle-free.

Lemma 4.2.

[17] For BnB_{n}, we have the statements below:

  1. (i)

    BnB_{n} is (2n2)(2n-2)-regular and has n2n1n2^{n-1} vertices, n(n1)2n1n(n-1)2^{n-1} edges.

  2. (ii)

    κ(Bn)=2n2\kappa(B_{n})=2n-2.

  3. (iii)

    BnB_{n} is the line graph of CQnCQ_{n}.

Lemma 4.3.

[17] For n3n\geq 3 and 0gn30\leq g\leq n-3,

κg(Bn)={4,ifn=3;2n+g(n2)2,ifn4.\kappa_{g}(B_{n})=\left\{\begin{aligned} 4,~{}~{}if~{}n=3;\\ 2n+g(n-2)-2,~{}~{}if~{}n\geq 4.\\ \end{aligned}\right.
Lemma 4.4.

Bn[NBn(u)]B_{n}[N_{B_{n}}(u)] is two independent complete graphs Kn1K_{n-1}.

Proof.

Given a vertex u=[v,w]u=[v,w] in BnB_{n}, where vwvw is an edge of CQnCQ_{n}. Since CQnCQ_{n} is nn-regular, we set NCQn(v)={w}{vi|0in2}N_{CQ_{n}}(v)=\{w\}\cup\{v^{i}|0\leq i\leq n-2\} and NCQn(w)={v}{wi|0in2}N_{CQ_{n}}(w)=\{v\}\cup\{w^{i}|0\leq i\leq n-2\}. Then NBn(u)={[v,vi],[w,wi]|0in2}N_{B_{n}}(u)=\{[v,v^{i}],[w,w^{i}]|0\leq i\leq n-2\}. According to the Definition 4, Bn[{[v,vi]|0in2}]Kn1B_{n}[\{[v,v^{i}]|0\leq i\leq n-2\}]\cong K_{n-1} and Bn[{[w,wi]|0in2}]Kn1B_{n}[\{[w,w^{i}]|0\leq i\leq n-2\}]\cong K_{n-1}. Suppose [v,vi][v,v^{i}] is adjacent to [w,wj][w,w^{j}] in BnB_{n}. Then vi=wjv^{i}=w^{j}, which implies that v,wv,w and viv^{i} (or wjw^{j}) induce a triangle in CQnCQ_{n}, a contradiction by Lemma 4.1. Thus Bn[NBn(u)]B_{n}[N_{B_{n}}(u)] is two independent complete graphs Kn1.K_{n-1}.

Refer to caption
Figure 5: Illustration for B9[NB9(u)]B_{9}[N_{B_{9}}(u)].
Theorem 4.5.
κ(Bn;K1,1)=κs(Bn;K1,1)={n1,foroddn5;n,forevenn4.\kappa(B_{n};K_{1,1})=\kappa^{s}(B_{n};K_{1,1})=\left\{\begin{aligned} n-1,~{}~{}for~{}odd~{}n\geq 5;\\ n,~{}~{}for~{}even~{}n\geq 4.\\ \end{aligned}\right.
Proof.

Assume κs(Bn;K1,1)n2\kappa^{s}(B_{n};K_{1,1})\leq n-2 (n1\leq n-1) for odd (even) nn. Then BnB_{n} has a K1,1K_{1,1}-substructure cut \mathcal{F}. Let CC be a smallest component of BnB_{n}-\mathcal{F}. For odd n5n\geq 5, |V()|2(n2)<κ(Bn)|V(\mathcal{F})|\leq 2(n-2)<\kappa(B_{n}) by Lemma 4.2, a contradiction. Thus κs(Bn;K1,1)n1\kappa^{s}(B_{n};K_{1,1})\geq n-1 for odd n5n\geq 5. For even n4n\geq 4, |V()|2(n1)<κ1(Bn)|V(\mathcal{F})|\leq 2(n-1)<\kappa_{1}(B_{n}) by Lemma 4.3. Then |V(C)|=1|V(C)|=1, say uu. We have NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}). By Lemma 4.4, n1n-1 subgraphs of K1,1K_{1,1} can not cover all vertices of NBn(u)N_{B_{n}}(u), a contradiction. Thus κs(Bn;K1,1)n\kappa^{s}(B_{n};K_{1,1})\geq n for even n4n\geq 4.

We give a K1,1K_{1,1}-structure cut of BnB_{n} for n4n\geq 4. Let u=[v,w]u=[v,w] be a vertex of BnB_{n} with v=0000v=00\ldots 00 and w=1000w=10\ldots 00. Then NBn(u)={[v,vi],[w,wi]|0in2}N_{B_{n}}(u)=\{[v,v^{i}],[w,w^{i}]|0\leq i\leq n-2\}. For 0jn2210\leq j\leq\lfloor\frac{n-2}{2}\rfloor-1, we set Sj={[v,v2j];[v,v2j+1]}S_{j}=\{[v,v^{2j}];[v,v^{2j+1}]\} and Sj={[w,w2j];[w,w2j+1]}S^{\prime}_{j}=\{[w,w^{2j}];[w,w^{2j+1}]\}. For odd nn, we set

Sn22={[v,vn3];[v,vn2]},Sn22={[w,wn3];[w,wn2]}.\displaystyle S_{\lfloor\frac{n-2}{2}\rfloor}=\{[v,v^{n-3}];[v,v^{n-2}]\},~{}~{}S^{\prime}_{\lfloor\frac{n-2}{2}\rfloor}=\{[w,w^{n-3}];[w,w^{n-2}]\}.

For even nn, we set

Sn22={[v,vn2];[vn2,vn2,n1]},Sn22={[w,wn2];[wn2,wn2,n1]}.\displaystyle S_{\lfloor\frac{n-2}{2}\rfloor}=\{[v,v^{n-2}];[v^{n-2},v^{n-2,n-1}]\},~{}~{}S^{\prime}_{\lfloor\frac{n-2}{2}\rfloor}=\{[w,w^{n-2}];[w^{n-2},w^{n-2,n-1}]\}.

Let ={Sj,Sj|0jn22}\mathcal{F}=\{S_{j},S^{\prime}_{j}|0\leq j\leq\lfloor\frac{n-2}{2}\rfloor\}. We find NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) and [1111,1110]V(Bn)[11\ldots 11,11\ldots 10]\notin V(B_{n}-\mathcal{F}), which implies that BnB_{n}-\mathcal{F} has two components. Then uu is a singleton and [1111,1110][11\ldots 11,11\ldots 10] belongs to the other component. Thus κ(Bn;K1,1)n1\kappa(B_{n};K_{1,1})\leq n-1 for odd n5n\geq 5 and κ(Bn;K1,1)n\kappa(B_{n};K_{1,1})\leq n for even n4n\geq 4. ∎

Lemma 4.6.

For n4n\geq 4 and 2t2n32\leq t\leq 2n-3, let rr be remainder of n1n-1 divided by 1+t1+t. Then

κs(Bn;K1,t){2n41+t+1,if2tn3andr=1,2n11+t,otherwise.\kappa^{s}(B_{n};K_{1,t})\geq\left\{\begin{aligned} &\frac{2n-4}{1+t}+1,~{}~{}if~{}2\leq t\leq n-3~{}and~{}r=1,\\ &2\lceil\frac{n-1}{1+t}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Proof.

Suppose to the contrary that κs(Bn;K1,t)2n41+t\kappa^{s}(B_{n};K_{1,t})\leq\frac{2n-4}{1+t} for 2tn32\leq t\leq n-3 and r=1r=1, and κs(Bn;K1,t)2n11+t1\kappa^{s}(B_{n};K_{1,t})\leq 2\lceil\frac{n-1}{1+t}\rceil-1 for otherwise. Then BnB_{n} has a K1,tK_{1,t}-substructure cut \mathcal{F}. Let CC be a smallest component of BnB_{n}-\mathcal{F}. Then |V()|κ(Bn)=2n2|V(\mathcal{F})|\geq\kappa(B_{n})=2n-2 by Lemma 4.2. For 2tn32\leq t\leq n-3, if r=0r=0, then |V()|(1+t)(2n11+t1)<2n2|V(\mathcal{F})|\leq(1+t)(2\lceil\frac{n-1}{1+t}\rceil-1)<2n-2, a contradiction. If r=1r=1, then |V()|(1+t)2n41+t=2n4<2n2|V(\mathcal{F})|\leq(1+t)\frac{2n-4}{1+t}=2n-4<2n-2, a contradiction. Similarly, for n2t2n4n-2\leq t\leq 2n-4, |V()|1+t2n3<2n2|V(\mathcal{F})|\leq 1+t\leq 2n-3<2n-2, a contradiction. Then we consider the cases t=2n3t=2n-3, or 2tn32\leq t\leq n-3 and r2r\geq 2. We find |V()|(1+t)(2n11+t1)=1+t2n2|V(\mathcal{F})|\leq(1+t)(2\lceil\frac{n-1}{1+t}\rceil-1)=1+t\leq 2n-2 for t=2n3t=2n-3, and |V()|(1+t)(2n11+t1)(1+t)(2n1+t1+t1)=2n3+t3n6|V(\mathcal{F})|\leq(1+t)(2\lceil\frac{n-1}{1+t}\rceil-1)\leq(1+t)(2\frac{n-1+t}{1+t}-1)=2n-3+t\leq 3n-6 for 2tn32\leq t\leq n-3 and r2r\geq 2. By Lemma 4.3, |V()|<κ1(Bn)|V(\mathcal{F})|<\kappa_{1}(B_{n}). Then |V(C)|=1|V(C)|=1, say u=[v,w]u=[v,w]. Thus NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}), which implies that Bn[NBn(u)]B_{n}[N_{B_{n}}(u)] has a star K1,2n3K_{1,2n-3} for t=2n3t=2n-3, contradicting Lemma 4.4. For 2tn32\leq t\leq n-3 and r2r\geq 2, ||2n11+t1|\mathcal{F}|\leq 2\lceil\frac{n-1}{1+t}\rceil-1. If all star-centers are in NBn(u)N_{B_{n}}(u), then 2n11+t12\lceil\frac{n-1}{1+t}\rceil-1 stars can not cover all vertices of NBn(u)N_{B_{n}}(u) by Lemma 4.4. Thus there exists a star whose center xx is not in NBn(u){u}N_{B_{n}}(u)\cup\{u\}. We know that xx has at most two neighbors in NBn(u)N_{B_{n}}(u) since [v,vi][v,v^{i}] and [v,vj][v,v^{j}] ([w,wi][w,w^{i}] and [w,wj][w,w^{j}]) have no common neighbor in V(Bn)NBn(u){u}V(B_{n})-N_{B_{n}}(u)-\{u\}. Then V()(1+t)2n11+t+2=(1+t)2n1r1+t+2=2n2r<2n2V(\mathcal{F})\leq(1+t)\cdot 2\cdot\lfloor\frac{n-1}{1+t}\rfloor+2=(1+t)\cdot 2\cdot\frac{n-1-r}{1+t}+2=2n-2r<2n-2 for r2r\geq 2. It is a contradiction. ∎

Lemma 4.7.

For n4n\geq 4 and 2t2n32\leq t\leq 2n-3, let rr be remainder of n1n-1 divided by 1+t1+t. Then

κ(Bn;K1,t){2n41+t+1,if2tn3andr=1,2n11+t,otherwise.\kappa(B_{n};K_{1,t})\leq\left\{\begin{aligned} &\frac{2n-4}{1+t}+1,~{}~{}if~{}2\leq t\leq n-3~{}and~{}r=1,\\ &2\lceil\frac{n-1}{1+t}\rceil,~{}~{}otherwise.\end{aligned}\right.
Proof.

Let u=[v,w]u=[v,w] be a vertex of BnB_{n} with v=0000v=00\ldots 00 and w=1000w=10\ldots 00. Then NBn(u)={[v,vi],[w,wi]|0in2}N_{B_{n}}(u)=\{[v,v^{i}],[w,w^{i}]|0\leq i\leq n-2\}.

For n2t2n3n-2\leq t\leq 2n-3, let S1S_{1} (S2S_{2}) be a star with center [v,v0][v,v^{0}] ([w,w0][w,w^{0}]) and the leaves are neighbors of [v,v0][v,v^{0}] ([w,w0][w,w^{0}]). Precisely,

{S1={[v,v0];[v,vi],tj|1in2,n1jt},S2={[w,w0];[w,wi],tj|1in2,n1jt},\left\{\begin{aligned} &S_{1}=\{[v,v^{0}];[v,v^{i}],t_{j}|1\leq i\leq n-2,n-1\leq j\leq t\},\\ &S_{2}=\{[w,w^{0}];[w,w^{i}],t^{\prime}_{j}|1\leq i\leq n-2,n-1\leq j\leq t\},\\ \end{aligned}\right.

where {tj|n1jt}NBn([v,v0]){u,[v,vi]|1in2}\{t_{j}|n-1\leq j\leq t\}\subseteq N_{B_{n}}([v,v^{0}])\setminus\{u,[v,v^{i}]|1\leq i\leq n-2\} and {tj|n1jt}NBn([w,w0]){u,[w,wi]|1in2}\{t^{\prime}_{j}|n-1\leq j\leq t\}\subseteq N_{B_{n}}([w,w^{0}])\setminus\{u,[w,w^{i}]|1\leq i\leq n-2\}. Let ={S1,S2}\mathcal{F}=\{S_{1},S_{2}\}. Since NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) and [1111,1110]V(Bn)[11\ldots 11,11\ldots 10]\notin V(B_{n}-\mathcal{F}), BnB_{n}-\mathcal{F} has two components. Then uu is a singleton and [1111,1110][11\ldots 11,11\ldots 10] belongs to the other component.

For 2tn32\leq t\leq n-3 and 1in11+t1\leq i\leq\lfloor\frac{n-1}{1+t}\rfloor, we set SiS_{i} (SiS^{\prime}_{i}) as a star with center [v,v(i1)(t+1)][v,v^{(i-1)(t+1)}] ([w,w(i1)(t+1)][w,w^{(i-1)(t+1)}]) and the leaves are [v,v(i1)(t+1)+k][v,v^{(i-1)(t+1)+k}] ([w,w(i1)(t+1)+k][w,w^{(i-1)(t+1)+k}]) for each 1kt1\leq k\leq t. The more detailed expressions are

{Si={[v,v(i1)(t+1)];[v,v(i1)(t+1)+k]|1kt}Si={[w,w(i1)(t+1)];[w,w(i1)(t+1)+k]|1kt}\left\{\begin{aligned} &S_{i}=\{[v,v^{(i-1)(t+1)}];[v,v^{(i-1)(t+1)+k}]|1\leq k\leq t\}\\ ~{}~{}&S^{\prime}_{i}=\{[w,w^{(i-1)(t+1)}];[w,w^{(i-1)(t+1)+k}]|1\leq k\leq t\}~{}~{}\end{aligned}\right.

If r=1r=1, then we set S′′={[vn2,wn2];[v,vn2],[w,wn2],ti|1it2}S^{\prime\prime}=\{[v^{n-2},w^{n-2}];[v,v^{n-2}],[w,w^{n-2}],t_{i}|1\leq i\leq t-2\} where {ti|1it2}NBn([vn2,wn2]){[v,vn2],[w,wn2]}\{t_{i}|1\leq i\leq t-2\}\subseteq N_{B_{n}}([v^{n-2},w^{n-2}])\setminus\{[v,v^{n-2}],[w,w^{n-2}]\}. If r2r\geq 2, then we set

{S1′′={[v,vn2];[v,vi],tj|nr1in3,1jtr+1},S2′′={[w,wn2];[w,wi],tj|nr1in3,1jtr+1},\left\{\begin{aligned} &S^{\prime\prime}_{1}=\{[v,v^{n-2}];[v,v^{i}],t_{j}|n-r-1\leq i\leq n-3,1\leq j\leq t-r+1\},\\ &S^{\prime\prime}_{2}=\{[w,w^{n-2}];[w,w^{i}],t^{\prime}_{j}|n-r-1\leq i\leq n-3,1\leq j\leq t-r+1\},\\ \end{aligned}\right.

where {tj|1jtr}NBn([v,vn2]){u,[v,vi]|0in3}\{t_{j}|1\leq j\leq t-r\}\subseteq N_{B_{n}}([v,v^{n-2}])\setminus\{u,[v,v^{i}]|0\leq i\leq n-3\} and {tj|1jtr}NBn([w,wn2]){u,[w,wi]|0in3}\{t^{\prime}_{j}|1\leq j\leq t-r\}\subseteq N_{B_{n}}([w,w^{n-2}])\setminus\{u,[w,w^{i}]|0\leq i\leq n-3\}. Let ={Si,Si|1in11+t}\mathcal{F}=\{S_{i},S^{\prime}_{i}|1\leq i\leq\lfloor\frac{n-1}{1+t}\rfloor\} for r=0r=0, ={Si,Si,S′′|1in11+t}\mathcal{F}=\{S_{i},S^{\prime}_{i},S^{\prime\prime}|1\leq i\leq\lfloor\frac{n-1}{1+t}\rfloor\} for r=1r=1 and ={Si,Si,S1′′,S2′′|1in11+t}\mathcal{F}=\{S_{i},S^{\prime}_{i},S^{\prime\prime}_{1},S^{\prime\prime}_{2}|1\leq i\leq\lfloor\frac{n-1}{1+t}\rfloor\} for r2r\geq 2. We find NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) and [1111,1110]V(Bn)[11\ldots 11,11\ldots 10]\notin V(B_{n}-\mathcal{F}), which implies that BnB_{n}-\mathcal{F} has two components and uu is a singleton and [1111,1110][11\ldots 11,11\ldots 10] belongs to other component. ∎

By Lemmas 4.6 and 4.7, we have the following result.

Theorem 4.8.

For n4n\geq 4 and 2t2n32\leq t\leq 2n-3, let rr be remainder of n1n-1 divided by 1+t1+t. Then

κ(Bn;K1,t)=κs(Bn;K1,t)={2n41+t+1,if2tn3andr=1,2n11+t,otherwise.\kappa(B_{n};K_{1,t})=\kappa^{s}(B_{n};K_{1,t})=\left\{\begin{aligned} &\frac{2n-4}{1+t}+1,~{}~{}if~{}2\leq t\leq n-3~{}and~{}r=1,\\ &2\lceil\frac{n-1}{1+t}\rceil,~{}~{}otherwise.\end{aligned}\right.
Lemma 4.9.

For n4n\geq 4 and 4k2n14\leq k\leq 2n-1, we have

κs(Bn;Pk){2n2k,if4kn1andkn1,2n1k,otherwise.\kappa^{s}(B_{n};P_{k})\geq\left\{\begin{aligned} &\frac{2n-2}{k},~{}~{}if~{}4\leq k\leq n-1~{}and~{}k\mid n-1,\\ &\lceil\frac{2n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Proof.

Suppose κs(Bn;Pk)2n2k1\kappa^{s}(B_{n};P_{k})\leq\frac{2n-2}{k}-1 for 4kn14\leq k\leq n-1 and kn1k\mid n-1, and κs(Bn;Pk)2n1k1\kappa^{s}(B_{n};P_{k})\leq\lceil\frac{2n-1}{k}\rceil-1 for otherwise. Then there exists a PkP_{k}-substructure cut \mathcal{F}. Let CC be a smallest component of BnB_{n}-\mathcal{F}. Then |V()|κ(Bn)=2n2|V(\mathcal{F})|\geq\kappa(B_{n})=2n-2 by Lemma 4.2. For 4kn14\leq k\leq n-1 and kn1k\mid n-1, |V()|k(2n2k1)=2n2k<2n2|V(\mathcal{F})|\leq k\cdot(\frac{2n-2}{k}-1)=2n-2-k<2n-2, a contradiction. Similarly, for nk2n3n\leq k\leq 2n-3, |V()|k(2n1k1)=k2n3<2n2|V(\mathcal{F})|\leq k\cdot(\lceil\frac{2n-1}{k}\rceil-1)=k\leq 2n-3<2n-2, a contradiction.

We have |V(C)|=1|V(C)|=1, say C={u}C=\{u\}, for k=2n2k=2n-2 or 4kn14\leq k\leq n-1 and kn1k\nmid n-1 since |V()|k(2n1k1)k(2n1+k1k1)=2n2<κ1(Bn)|V(\mathcal{F})|\leq k\cdot(\lceil\frac{2n-1}{k}\rceil-1)\leq k(\frac{2n-1+k-1}{k}-1)=2n-2<\kappa_{1}(B_{n}) by Lemma 4.3. Then NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}), which implies that Bn[NBn(u)]B_{n}[N_{B_{n}}(u)] has a hamiltonian path P2n2P_{2n-2} and 2n2k\frac{2n-2}{k} vertex-disjoint PkP_{k}’s for 4kn14\leq k\leq n-1 and kn1k\nmid n-1. It is impossible by Lemma 4.4. ∎

Lemma 4.10.

For n4n\geq 4 and 4k2n14\leq k\leq 2n-1, we have

κ(Bn;Pk){2n2k,if4kn1andkn1,2n1k,otherwise.\kappa(B_{n};P_{k})\leq\left\{\begin{aligned} &\frac{2n-2}{k},~{}~{}if~{}4\leq k\leq n-1~{}and~{}k\mid n-1,\\ &\lceil\frac{2n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Proof.

Let u=[v,w]u=[v,w] be a vertex of BnB_{n} with v=0000v=00\ldots 00 and w=1000w=10\ldots 00. Then NBn(u)={[v,vi],[w,wi]|0in2}N_{B_{n}}(u)=\{[v,v^{i}],[w,w^{i}]|0\leq i\leq n-2\}. For convenience, we set Pn1(w)=[w,w0],[w,w1],,[w,wn2]P_{n-1}(w)=\langle[w,w^{0}],[w,w^{1}],\\ \ldots,[w,w^{n-2}]\rangle as a path with n1n-1 vertices.

For k=2n1k=2n-1, we set =P2n1=Pn1(v),[vn2,wn2],Pn11(w)\mathcal{F}=P_{2n-1}=\langle P_{n-1}(v),[v^{n-2},w^{n-2}],P^{-1}_{n-1}(w)\rangle. For nk2n2n\leq k\leq 2n-2, let P2n21=Pn1(v),Pn1(vn2)[v,vn2][vn2,vn2,n1]P^{1}_{2n-2}=\langle P_{n-1}(v),P_{n-1}(v^{n-2})-[v,v^{n-2}]\cup[v^{n-2},v^{n-2,n-1}]\rangle and P2n22=Pn1(w),Pn1(wn2)[w,wn2][wn2,wn2,n1]P^{2}_{2n-2}=\langle P_{n-1}(w),P_{n-1}(w^{n-2})-[w,w^{n-2}]\cup[w^{n-2},w^{n-2,n-1}]\rangle. Then we set ={Pk1,Pk2}\mathcal{F}=\{P^{1}_{k},P^{2}_{k}\}, where Pk1P^{1}_{k} (Pk2P^{2}_{k}) along P2n21P^{1}_{2n-2} (P2n22P^{2}_{2n-2}) with end-vertices [v,v0][v,v^{0}] ([w,w0][w,w^{0}]) and the kk-th vertex of P2n21P^{1}_{2n-2} (P2n22P^{2}_{2n-2}).

For 4kn14\leq k\leq n-1 and kn1k\mid n-1, we set ={Pki|1i2n2k}\mathcal{F}=\{P^{i}_{k}|1\leq i\leq\frac{2n-2}{k}\}, where Pk1P^{1}_{k} along Pn1(v)P_{n-1}(v) with end-vertices [v,v0][v,v^{0}] and [v,vk1][v,v^{k-1}], Pk2P^{2}_{k} along Pn1(v)P_{n-1}(v) with end-vertices [v,vk][v,v^{k}] and [v,v2k1][v,v^{2k-1}], by the analogous, Pkn1kP^{\frac{n-1}{k}}_{k} along Pn1(v)P_{n-1}(v) with end-vertices [v,vnk1][v,v^{n-k-1}] and [v,vn2][v,v^{n-2}]. Similarly, we set Pkn1k+1P^{\frac{n-1}{k}+1}_{k} along Pn1(w)P_{n-1}(w) with end-vertices [w,w0][w,w^{0}] and [w,wk1][w,w^{k-1}], by the analogous, Pk2n1kP^{2\frac{n-1}{k}}_{k} along Pn1(v)P_{n-1}(v) with end-vertices [w,wnk1][w,w^{n-k-1}] and [w,wn2][w,w^{n-2}]. For 4kn14\leq k\leq n-1 and kn1k\nmid n-1, let P3n2=P2n1,Pn1(w0)[w,w0][w0,w0,n1]P_{3n-2}=\langle P_{2n-1},P_{n-1}(w^{0})-[w,w^{0}]\cup[w^{0},w^{0,n-1}]\rangle and ={Pki|1i2n1k}\mathcal{F}=\{P^{i}_{k}|1\leq i\leq\lceil\frac{2n-1}{k}\rceil\}, where Pk1P^{1}_{k} along P3n2P_{3n-2} with end-vertices [v,v0][v,v^{0}] and [v,vk1][v,v^{k-1}], Pk2P^{2}_{k} along P3n2P_{3n-2} with end-vertices [v,vk][v,v^{k}] and [v,v2k1][v,v^{2k-1}], by the analogous, Pk2n1kP^{\lceil\frac{2n-1}{k}\rceil}_{k} along P3n2P_{3n-2} with end-vertices are the (k(2n1k1)+1)(k(\lceil\frac{2n-1}{k}\rceil-1)+1)-th and k2n1kk\lceil\frac{2n-1}{k}\rceil-th vertices of P3n2P_{3n-2}.

We find NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) and [1111,1110]V(Bn)[11\ldots 11,11\ldots 10]\notin V(B_{n}-\mathcal{F}), which implies that BnB_{n}-\mathcal{F} has two components. Then uu is a singleton and [1111,1110][11\ldots 11,11\ldots 10] belongs to other component. ∎

Theorem 4.11.

For n4n\geq 4 and 4k2n14\leq k\leq 2n-1, we have

κ(Bn;Pk)=κs(Bn;Pk)={2n2k,if4kn1andkn1,2n1k,otherwise.\kappa(B_{n};P_{k})=\kappa^{s}(B_{n};P_{k})=\left\{\begin{aligned} &\frac{2n-2}{k},~{}~{}if~{}4\leq k\leq n-1~{}and~{}k\mid n-1,\\ &\lceil\frac{2n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.

We have κs(Bn;Ck)κs(Bn;Pk)\kappa^{s}(B_{n};C_{k})\leq\kappa^{s}(B_{n};P_{k}). By the similar argument as Lemma 4.9, we obtain the following result.

Theorem 4.12.

For n4n\geq 4 and 4k2n14\leq k\leq 2n-1, we have

κs(Bn;Ck)={2n2k,if4kn1andkn1,2n1k,otherwise.\kappa^{s}(B_{n};C_{k})=\left\{\begin{aligned} &\frac{2n-2}{k},~{}~{}if~{}4\leq k\leq n-1~{}and~{}k\mid n-1,\\ &\lceil\frac{2n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Lemma 4.13.

For n5n\geq 5 and 3k2n3\leq k\leq 2n, let rr be remainder of n1n-1 divided by kk. Then

κ(Bn;Ck){2n1k1,if3kn1and1rk21,ork=2n,3,ifk=n,2n1k,otherwise.\kappa(B_{n};C_{k})\geq\left\{\begin{aligned} &2\lceil\frac{n-1}{k}\rceil-1,~{}~{}if~{}3\leq k\leq n-1~{}and~{}1\leq r\leq\lfloor\frac{k}{2}\rfloor-1,~{}or~{}k=2n,\\ &3,~{}~{}if~{}k=n,\\ &2\lceil\frac{n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Proof.

Suppose to the contrary that κ(Bn;Ck)2n1k2\kappa(B_{n};C_{k})\leq 2\lceil\frac{n-1}{k}\rceil-2 for 3kn13\leq k\leq n-1 and 1rk211\leq r\leq\lfloor\frac{k}{2}\rfloor-1, or k=2nk=2n, κ(Bn;Ck)2\kappa(B_{n};C_{k})\leq 2 for k=nk=n and κ(Bn;Ck)2n1k1\kappa(B_{n};C_{k})\leq 2\lceil\frac{n-1}{k}\rceil-1 for otherwise. Then there exists a CkC_{k}-structure cut \mathcal{F}. Let CC be a smallest component. We have |V()|κ(Bn)=2n2|V(\mathcal{F})|\geq\kappa(B_{n})=2n-2 by Lemma 4.2. For 3kn13\leq k\leq n-1 and 1rk211\leq r\leq\lfloor\frac{k}{2}\rfloor-1, or k=2nk=2n, |V()|k(2n1k2)k(2(n+k2)k2)=2n4<2n2|V(\mathcal{F})|\leq k(2\lceil\frac{n-1}{k}\rceil-2)\leq k(\frac{2(n+k-2)}{k}-2)=2n-4<2n-2, a contradiction. We have a Similar contradiction for 3kn13\leq k\leq n-1 and r=0r=0 since |V()|<2n2|V(\mathcal{F})|<2n-2.

For nk2n1n\leq k\leq 2n-1, it is easy to find |V()|2n|V(\mathcal{F})|\leq 2n. For 3kn13\leq k\leq n-1 and k2rk1\lfloor\frac{k}{2}\rfloor\leq r\leq k-1, we have

|V()|k(2n1k1)k(2n1+k2k1)2(n1+k+12)k=2n1.\displaystyle|V(\mathcal{F})|\leq k\cdot(2\lceil\frac{n-1}{k}\rceil-1)\leq k\cdot(2\frac{n-1+\lceil\frac{k}{2}\rceil}{k}-1)\leq 2(n-1+\frac{k+1}{2})-k=2n-1.

Then |V()|<κ1(Bn)|V(\mathcal{F})|<\kappa_{1}(B_{n}) for n5n\geq 5 by Lemma 4.3. Thus |V(C)|=1|V(C)|=1, say u=[v,w]u=[v,w], which implies that NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) for nk2n1n\leq k\leq 2n-1, or 3kn13\leq k\leq n-1 and k2rk1\lfloor\frac{k}{2}\rfloor\leq r\leq k-1. We find ||1|\mathcal{F}|\leq 1 for n+1k2n1n+1\leq k\leq 2n-1, that is, a CkC_{k} covers all vertices of NBn(u)N_{B_{n}}(u), contradicting Lemma 4.4. We find ||2|\mathcal{F}|\leq 2 for n=kn=k, which implies that we need two CnC_{n}’s to cover all vertices of NBn(u)N_{B_{n}}(u). We know the longest cycle is Cn1C_{n-1} in Bn[NBn(u)]B_{n}[N_{B_{n}}(u)] by Lemma 4.4. Then a CnC_{n} cover n1n-1 vertices of NBn(u)N_{B_{n}}(u) and these n1n-1 vertices are in a Kn1K_{n-1}. Let x=[x1,x2]x=[x_{1},x_{2}] be a vertex of CnC_{n} but xNBn(u)x\notin N_{B_{n}}(u). Then xx is adjacent to both [v,vi][v,v^{i}] and [v,vj][v,v^{j}] (or [w,wi][w,w^{i}] and [w,wj][w,w^{j}]) for i,j[n]i,j\in[n]. Thus x1=vix_{1}=v^{i} (or wiw^{i}) and x2=vjx_{2}=v^{j} (or wjw^{j}). It is a contradiction since [vi,vj]V(Bn)[v^{i},v^{j}]\notin V(B_{n}) and [wi,wj]V(Bn)[w^{i},w^{j}]\notin V(B_{n}). For 3kn13\leq k\leq n-1 and k2rk1\lfloor\frac{k}{2}\rfloor\leq r\leq k-1, we have 2rk12r\geq k-1 and these 2r2r vertices induce two disjoint PrP_{r}’s. Then we know a CkC_{k} can not cover two disjoint PrP_{r}’s by Lemma 4.4, a contradiction. ∎

Lemma 4.14.

For n5n\geq 5 and 6k2n6\leq k\leq 2n, let rr be remainder of n1n-1 divided by kk. Then

κ(Bn;Ck){2n1k1,if6kn1and1rk21,ork=2n,3,ifk=n,2n1k,otherwise.\kappa(B_{n};C_{k})\leq\left\{\begin{aligned} &2\lceil\frac{n-1}{k}\rceil-1,~{}~{}if~{}6\leq k\leq n-1~{}and~{}1\leq r\leq\lfloor\frac{k}{2}\rfloor-1,~{}or~{}k=2n,\\ &3,~{}~{}if~{}k=n,\\ &2\lceil\frac{n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.
Proof.

Let u=[v,w]u=[v,w] be a vertex of BnB_{n} with v=0000v=00\ldots 00 and w=1000w=10\ldots 00. Then NBn(u)={[v,vi],[w,wi]|0in2}N_{B_{n}}(u)=\{[v,v^{i}],[w,w^{i}]|0\leq i\leq n-2\}. Let Pn1(v)=[v,v1],[v,v0],[v,v2],[v,v3],,[v,vn2]P_{n-1}(v)=\langle[v,v^{1}],[v,v^{0}],[v,v^{2}],[v,v^{3}],\ldots,[v,v^{n-2}]\rangle be a path with n1n-1 vertices.

For k=2nk=2n, we set

=Ck=[v1,w1],Pn1(v),[vn2,wn2],Pn11(w).\displaystyle\mathcal{F}=C_{k}=\langle[v^{1},w^{1}],P_{n-1}(v),[v^{n-2},w^{n-2}],P^{-1}_{n-1}(w)\rangle.

For n+1k2n1n+1\leq k\leq 2n-1, we set ={Ck1,Ck2}\mathcal{F}=\{C^{1}_{k},C^{2}_{k}\} and

Ck1=Pn1(v),[vn2,vn2,1],[vn2,1,v1],t1,,tkn1\displaystyle C^{1}_{k}=\langle P_{n-1}(v),[v^{n-2},v^{n-2,1}],[v^{n-2,1},v^{1}],t_{1},\ldots,t_{k-n-1}\rangle

where {ti|1ikn1}{[v1,v1,i]|i=0,n1\{t_{i}|1\leq i\leq k-n-1\}\subseteq\{[v^{1},v^{1,i}]|i=0,n-1 and 2in3}2\leq i\leq n-3\},

Ck2=Pn1(w),[wn2,wn2,1],[wn2,1,w1],t1,,tkn1\displaystyle C^{2}_{k}=\langle P_{n-1}(w),[w^{n-2},w^{n-2,1}],[w^{n-2,1},w^{1}],t_{1},\ldots,t_{k-n-1}\rangle

where {ti|1ikn1}{[w1,w1,i]|i=0,n1\{t_{i}|1\leq i\leq k-n-1\}\subseteq\{[w^{1},w^{1,i}]|i=0,n-1 and 2in3}2\leq i\leq n-3\}.

For k=nk=n, we set ={Ck1,Ck2,Ck3}\mathcal{F}=\{C^{1}_{k},C^{2}_{k},C^{3}_{k}\} and

Ck1=Pn1(v)[v,vn2],[vn3,vn3,1],[vn3,1,v1];\displaystyle C^{1}_{k}=\langle P_{n-1}(v)-[v,v^{n-2}],[v^{n-3},v^{n-3,1}],[v^{n-3,1},v^{1}]\rangle;
Ck2=Pn1(w)[w,wn2],[wn3,wn3,1],[wn3,1,w1];\displaystyle C^{2}_{k}=\langle P_{n-1}(w)-[w,w^{n-2}],[w^{n-3},w^{n-3,1}],[w^{n-3,1},w^{1}]\rangle;
Ck3=[v,vn2],[vn2,wn2],[w,wn2],[w,w1],[v1,w1],[v,v1],t1,,tk6,\displaystyle C^{3}_{k}=\langle[v,v^{n-2}],[v^{n-2},w^{n-2}],[w,w^{n-2}],[w,w^{1}],[v^{1},w^{1}],[v,v^{1}],t_{1},\ldots,t_{k-6}\rangle,

where {ti|1ik6}{[v,vi]|2in2}\{t_{i}|1\leq i\leq k-6\}\subseteq\{[v,v^{i}]|2\leq i\leq n-2\}.

For 6kn16\leq k\leq n-1 and 1in1k1\leq i\leq\lfloor\frac{n-1}{k}\rfloor, we set

Cki=[v,v(i1)k],[v,v(i1)k+1],,[v,vik1];\displaystyle C^{i}_{k}=\langle[v,v^{(i-1)k}],[v,v^{(i-1)k+1}],\ldots,[v,v^{ik-1}]\rangle;
Cki=[w,w(i1)k],[w,w(i1)k+1],,[w,wik1].\displaystyle C^{\prime i}_{k}=\langle[w,w^{(i-1)k}],[w,w^{(i-1)k+1}],\ldots,[w,w^{ik-1}]\rangle.

If r=0r=0, then we set ={Cki,Cki|1in1k}\mathcal{F}=\{C^{i}_{k},C^{\prime i}_{k}|1\leq i\leq\lfloor\frac{n-1}{k}\rfloor\}. If 1rk211\leq r\leq\lfloor\frac{k}{2}\rfloor-1, then we set ={Ckn1k}{Cki,Cki|1in1k}\mathcal{F}=\{C^{\lceil\frac{n-1}{k}\rceil}_{k}\}\cup\{C^{i}_{k},C^{\prime i}_{k}|1\leq i\leq\lfloor\frac{n-1}{k}\rfloor\} and

Ckn1k\displaystyle C^{\lceil\frac{n-1}{k}\rceil}_{k} =[w,w1],[v1,w1],[v,v1],t1,,tk2r4,[v,vnr1],[v,vnr],,[v,vn2],\displaystyle=\langle[w,w^{1}],[v^{1},w^{1}],[v,v^{1}],t_{1},\ldots,t_{k-2r-4},[v,v^{n-r-1}],[v,v^{n-r}],\ldots,[v,v^{n-2}],
[vn2,wn2],[w,wn2],[w,wn3],,[w,wnr1],[w,w1];\displaystyle[v^{n-2},w^{n-2}],[w,w^{n-2}],[w,w^{n-3}],\ldots,[w,w^{n-r-1}],[w,w^{1}]\rangle;

where {ti|1ik2r4}{[v,vi]|2inr2}\{t_{i}|1\leq i\leq k-2r-4\}\subseteq\{[v,v^{i}]|2\leq i\leq n-r-2\}. If k2r<k1\lfloor\frac{k}{2}\rfloor\leq r<k-1, then we set ={Cki,Cki|1in1k}\mathcal{F}=\{C^{i}_{k},C^{\prime i}_{k}|1\leq i\leq\lceil\frac{n-1}{k}\rceil\} and

Ckn1k=[v,v1],[v,vnr1],[v,vnr],,[v,vn2],t1,,tkr3,[vn2,vn2,1],[vn2,1,v1],\displaystyle C^{\lceil\frac{n-1}{k}\rceil}_{k}=\langle[v,v^{1}],[v,v^{n-r-1}],[v,v^{n-r}],\ldots,[v,v^{n-2}],t_{1},\ldots,t_{k-r-3},[v^{n-2},v^{n-2,1}],[v^{n-2,1},v^{1}]\rangle,

where {ti|1ikr3}{[vn2,vn2,i]|0in3}\{t_{i}|1\leq i\leq k-r-3\}\subseteq\{[v^{n-2},v^{n-2,i}]|0\leq i\leq n-3\},

Ckn1k\displaystyle C^{\prime\lceil\frac{n-1}{k}\rceil}_{k} =[w,w1],[w,wnr1],[w,wnr],,[w,wn2],t1,,tkr3,[wn2,wn2,1],\displaystyle=\langle[w,w^{1}],[w,w^{n-r-1}],[w,w^{n-r}],\ldots,[w,w^{n-2}],t_{1},\ldots,t_{k-r-3},[w^{n-2},w^{n-2,1}],
[wn2,1,w1],\displaystyle[w^{n-2,1},w^{1}]\rangle,

where {ti|1ikr3}{[wn2,wn2,i]|1in3}\{t_{i}|1\leq i\leq k-r-3\}\subseteq\{[w^{n-2},w^{n-2,i}]|1\leq i\leq n-3\}. If r=k1r=k-1, then we set ={Cki,Cki|1in1k}\mathcal{F}=\{C^{i}_{k},C^{\prime i}_{k}|1\leq i\leq\lceil\frac{n-1}{k}\rceil\} and

Ckn1k=[v,v0],[v,vnk],[v,vnk+1],,[v,vn2],\displaystyle C^{\lceil\frac{n-1}{k}\rceil}_{k}=\langle[v,v^{0}],[v,v^{n-k}],[v,v^{n-k+1}],\ldots,[v,v^{n-2}]\rangle,
Ckn1k=[w,w0],[w,wnk],[w,wnk+1],,[w,wn2].\displaystyle C^{\prime\lceil\frac{n-1}{k}\rceil}_{k}=\langle[w,w^{0}],[w,w^{n-k}],[w,w^{n-k+1}],\ldots,[w,w^{n-2}]\rangle.

We find NBn(u)V()N_{B_{n}}(u)\subseteq V(\mathcal{F}) and [1111,1110]V(Bn)[11\ldots 11,11\ldots 10]\notin V(B_{n}-\mathcal{F}), which implies that BnB_{n}-\mathcal{F} has two components. Then uu is a singleton and [1111,1110][11\ldots 11,11\ldots 10] belongs to the other component. ∎

By Lemmas 4.13 and 4.14, we have the following theorem.

Theorem 4.15.

For n5n\geq 5 and 6k2n6\leq k\leq 2n, let rr be remainder of n1n-1 divided by kk. Then

κ(Bn;Ck)={2n1k1,if6kn1and1rk21,ork=2n,3,ifk=n,2n1k,otherwise.\kappa(B_{n};C_{k})=\left\{\begin{aligned} &2\lceil\frac{n-1}{k}\rceil-1,~{}~{}if~{}6\leq k\leq n-1~{}and~{}1\leq r\leq\lfloor\frac{k}{2}\rfloor-1,~{}or~{}k=2n,\\ &3,~{}~{}if~{}k=n,\\ &2\lceil\frac{n-1}{k}\rceil,~{}~{}otherwise.\\ \end{aligned}\right.

5 Conclusion

In this paper, we obtained structure connectivities of two famous data center networks DCell and BCDC on some common structures. For DCell network Dm,nD_{m,n}, m0m\geq 0 and n2n\geq 2, we got that κ(Dm,n;K1,t)=κs(Dm,n;K1,t)=n11+t+m\kappa(D_{m,n};K_{1,t})=\kappa^{s}(D_{m,n};K_{1,t})=\lceil\frac{n-1}{1+t}\rceil+m for 1tm+n21\leq t\leq m+n-2 and κ(Dm,n;Ks)=n1s+m\kappa(D_{m,n};K_{s})=\lceil\frac{n-1}{s}\rceil+m for 3sn13\leq s\leq n-1 by analyzing the structural properties of Dm,nD_{m,n}. For BCDC network BnB_{n}, n5n\geq 5, we used the existing results of gg-extra connectivity to obtain κ(Bn;K1,t)\kappa(B_{n};K_{1,t}) and κs(Bn;K1,t)\kappa^{s}(B_{n};K_{1,t}) for 1t2n31\leq t\leq 2n-3 (see Theorems 4.5 and 4.8) and κ(Bn;Pk)\kappa(B_{n};P_{k}) and κs(Bn;Pk)\kappa^{s}(B_{n};P_{k}) for 4k2n14\leq k\leq 2n-1 (see Theorem 4.11); κ(Bn;Ck)\kappa(B_{n};C_{k}) and κs(Bn;Ck)\kappa^{s}(B_{n};C_{k}) for 6k2n6\leq k\leq 2n (see Theorem 4.15). It is easy to find that κ(Dm,n;Pk)\kappa(D_{m,n};P_{k}) (κs(Dm,n;Pk)\kappa^{s}(D_{m,n};P_{k})) and κ(Dm,n;Ck)\kappa(D_{m,n};C_{k}) (κs(Dm,n;Ck)\kappa^{s}(D_{m,n};C_{k})) have no relevant conclusions. Except for K1,tK_{1,t}, PkP_{k}, CkC_{k} and KsK_{s}, there are still other structure connectivities of Dm,nD_{m,n} and BnB_{n} have not been studied. So we will keep working on structure connectivity of data center networks.

Acknowledgement

The work is supported by NSFC (Grant No. 11871256).

References

  • [1] S. Arnold, Google Version 2.0: The Calculating Predator, Infonortics Ltd. 2007.
  • [2] A. Carter, Do It Green: Media Interview with Michael Manos, 2007. http://edge.technet.com/Media/Doing-IT-Green/.
  • [3] A. Esfahanian, S. Hakimi, On computing a conditional edge-connectivity of a graph, Inf. Process. Lett. 27 (1988) 195-199.
  • [4] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel and Distributed Systems, 3(5) (1992) 513-524.
  • [5] J. Fàbrega, M.A. Fiod, On the extraconnectivity of graphs, Discrete Math. 155 (1-3) (1996) 49-57.
  • [6] W. Feng, S.Y. Wang, Structure connectivity and substructure connectivity of wheel networks, Theoret. Comput. Sci. 850 (2021) 20-29.
  • [7] C.X. Guo, H.T. Wu, K. Tan, L. Shi, Y.G. Zhang, S.W. Lu, DCell: A Scalable and Fault-Tolerant Network Structure for Data Centers, in Proc. SIGCOMM’08 (Seattle, WA, 2008), Vol. 38, pp. 75-86.
  • [8] C. Hao, W.H. Yang, The Generalization Connectivity of Data Center Networks, Parallel Process. Lett. 29 (2) (2019), No. 1950007, 9 pages.
  • [9] F. Harary, Conditional connectivity, Networks 13 (3) (1983) 347-357.
  • [10] T. Hoff, Google Architecture, 2007. http://highscalability.com/google-architecture.
  • [11] P.D. Kulasinghe, Connectivity of the crossed cube, Inf. Process. Lett. 61 (1997) 221-226.
  • [12] C.K. Lin, E. Cheng, L. Lipták, Structure and Substructure Connectivity of Hypercube-Like Networks, Parallel Process. Lett. 30 (3) (2020), No. 2040007, 23 pages.
  • [13] C.K. Lin, L.L. Zhang, J.X. Fan, D.J. Wang, Structure connectivity and substructure connectivity of hypercubes, Theoret. Comput. Sci. 634 (2016) 97-107.
  • [14] C.F. Li, S.W. Lin, S.J. Li, Structure connectivity and substructure connectivity of star graphs, Discrete Appl. Math. 284 (2020) 472-480.
  • [15] X.W. Li, S.M. Zhou, X.Y. Ren, X. Guo, Structure and substructure connectivity of alternating group graphs, Appl. Math. Comput. 391 (2021), No. 125639, 16 pages.
  • [16] X.Y. Li, J.X. Fan, C.K. Lin, B.L. Chen, X.H. Jia, The extra connectivity, extra conditional diagnosability and t/kt/k-diagnosability of the data center network DCell, Theoret. Comput. Sci. 766 (2019) 16-29.
  • [17] M.J. Lv, B.L. Chen, J.X. Fan, X. Wang, J.Y. Zhou, J. Yu, The Conditional Reliability Evaluation of Data Center Network BCDC, Comput. J. (2020) https://doi.org/10.1093/comjnl/bxaa078.
  • [18] L. Rabbe, Powering the Yahoo! network, 2006. http://yodel.yahoo.com/2006/11/27/powering-the-yahoo-network/.
  • [19] X. Wang, J.X. Fan, C.K. Lin, J.Y. Zhou, Z. Liu, BCDC: A high-performance, server-centric data center network, J. Comput. Sci. Technol. 33(2) (2018) 400-416.
  • [20] X. Wang, J.X. Fan, J.Y. Zhou, C.K. Lin, The restricted hh-connectivity of the data center network DCell, Discrete Appl. Math. 203 (2016) 144-157.