This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Tamed MHD Equations

Andre Schenke aschenke@math.uni-bielefeld.de Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
Abstract.

We study a regularised version of the magnetohydrodynamics (MHD) equations, the tamed MHD (TMHD) equations. They are a model for the flow of electrically conducting fluids through porous media. We prove existence and uniqueness of TMHD on the whole space 3\mathbb{R}^{3}, that smooth data give rise to smooth solutions, and show that solutions to TMHD converge to a suitable weak solution of the MHD equations as the taming parameter NN tends to infinity. Furthermore, we adapt a regularity result for the Navier-Stokes equations to the MHD case.

Key words and phrases:
Tamed MHD equations, magnetohydrodynamics, MHD equations, porous media
1991 Mathematics Subject Classification:
76W05, 76S05; 35K91, 76D03

1. Introduction

1.1. Magnetohydrodynamics

The magnetohydrodynamics (MHD) equations describe the dynamic motion of electrically conducting fluids. They combine the equations of motion for fluids (Navier-Stokes equations) with the field equations of electromagnetic fields (Maxwell’s equations), coupled via Ohm’s law. In plasma physics, the equations are a macroscopic model for plasmas in that they deal with averaged quantities and assume the fluid to be a continuum with frequent collisions. Both approximations are not met in hot plasmas. Nonetheless, the MHD equations provide a good description of the low-frequency, long-wavelength dynamics of real plasmas. In this thesis, we consider the incompressible, viscous, resistive equations with homogeneous mass density, and regularised variants of it. In dimensionless formulation, the MHD equations are of the following form:

(1.1) 𝒗t=1ReΔ𝒗(𝒗)𝒗+S(𝑩)𝑩+(p+S|𝑩|22),𝑩t=1RmΔ𝑩(𝒗)𝑩+(𝑩)𝒗div𝒗=0,div𝑩=0.\begin{split}\frac{\partial\bm{v}}{\partial t}&=\frac{1}{Re}\Delta\bm{v}-\left(\bm{v}\cdot\nabla\right)\bm{v}+S\left(\bm{B}\cdot\nabla\right)\bm{B}+\nabla\left(p+\frac{S|\bm{B}|^{2}}{2}\right),\\ \frac{\partial\bm{B}}{\partial t}&=\frac{1}{Rm}\Delta\bm{B}-\left(\bm{v}\cdot\nabla\right)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}\\ \operatorname*{div}\bm{v}&=0,\quad\operatorname*{div}\bm{B}=0.\end{split}

Here, 𝒗=𝒗(x,t)\bm{v}=\bm{v}(x,t), 𝑩=𝑩(x,t)\bm{B}=\bm{B}(x,t) denote the velocity and magnetic fields, p=p(x,t)p=p(x,t) is the pressure, Re>0Re>0, Rm>0Rm>0 are the Reynolds number and the magnetic Reynolds number and S>0S>0 denotes the Lundquist number (all of which are dimensionless constants). The two last equations concerning the divergence-freeness of the velocity and magnetic field are the incompressibility of the flow and Maxwell’s second equation. For simplicity, in the remainder of the paper, we set S=Rm=Re=1S=Rm=Re=1.

Mathematical treatment of the deterministic MHD equations reaches back to the works of G. Duvaut and J.-L. Lions [12] and M. Sermange and R. Temam [41]. Since then, a large amount of papers have been devoted to the subject. We only mention several interesting regularity criteria [8, 21, 22, 27] and the more recent work on non-resistive MHD equations (Rm=Rm=\infty) by C.L. Fefferman, D.S. McCormick J.C. Robinson and J.L. Rodrigo on local existence via higher-order commutator estimates [15, 16].

In this paper, we want to study a regularised version of the MHD equations on the whole space 3\mathbb{R}^{3}, which we call the tamed MHD equations (TMHD), following M. Röckner and X.C. Zhang [39]. They arise from (1.1) by adding two extra terms (the taming terms) that act as restoring forces:

𝒗t=Δ𝒗(𝒗)𝒗+S(𝑩)𝑩(p+S|𝑩|22)gN(|(𝒗,𝑩)|2)𝒗,𝑩t=Δ𝑩(𝒗)𝑩+(𝑩)𝒗+πgN(|(𝒗,𝑩)|2)𝑩.\begin{split}\frac{\partial\bm{v}}{\partial t}&=\Delta\bm{v}-\left(\bm{v}\cdot\nabla\right)\bm{v}+S\left(\bm{B}\cdot\nabla\right)\bm{B}-\nabla\left(p+\frac{S|\bm{B}|^{2}}{2}\right)-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{v},\\ \frac{\partial\bm{B}}{\partial t}&=\Delta\bm{B}-\left(\bm{v}\cdot\nabla\right)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}+\nabla\pi-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{B}.\end{split}

The taming terms are discussed in more detail in Section 1.2, and we discuss the results of this work in Section 1.3. The extra term π\nabla\pi, which we call the magnetic pressure, will be explained in Section 1.2.3. However, before we study the tamed equations, we want to give an overview of regularisation schemes for the Navier-Stokes and the MHD equations to put our model into the broader context of the mathematical literature.

1.1.1. Damped Navier-Stokes Equations (or BFeD Models)

A related model to the tamed Navier–Stokes equations are the so-called (nonlinearly) damped Navier-Stokes equations:

𝒗t=Δ𝒗(𝒗)𝒗pα|𝒗|β1𝒗,\displaystyle\frac{\partial\bm{v}}{\partial t}=\Delta\bm{v}-(\bm{v}\cdot\nabla)\bm{v}-\nabla p-\alpha|\bm{v}|^{\beta-1}\bm{v},

with α>0\alpha>0 and β1\beta\geq 1. The damping term α|𝒗|β1𝒗-\alpha|\bm{v}|^{\beta-1}\bm{v} models the resistence to the motion of the flow resulting from physical effects like porous media flow, drag or friction or other dissipative mechanisms (cf. [7] and Section 1.2.1). It represents a restoring force, which for β=1\beta=1 assumes the form of classical, linear damping, whereas β>1\beta>1 means a restoring force that grows superlinearly with the velocity (or magnetic field). X.J. Cai and Q.S. Jiu [7] first proved existence and uniqueness of a global strong solution for 72β5\frac{7}{2}\leq\beta\leq 5. This range was lowered down to β(3,5]\beta\in(3,5] by Z.J. Zhang, X.L. Wu and M. Lu in [53]. Furthermore, they considered the case β=3\beta=3 to be critical [53, Remark 3.1]. Y. Zhou in [55] proved the existence of a global solution for all β[3,5]\beta\in[3,5]. For the case β[1,3)\beta\in[1,3), he established regularity criteria that ensure smoothness. Uniqueness holds for any β1\beta\geq 1 in the class of weak solutions. Existence, decay rates and qualitative properties of weak solutions were also investigated by S.N. Antontsev and H.B. de Oliveira [1].

The Brinkman-Forchheimer-extended Darcy model (BFeD model, cf. Section 1.2.1) is a related model for flow of fluids through porous media and uses the damping terms for β{1,2,3}\beta\in\{1,2,3\}

𝒗t=Δ𝒗(𝒗)𝒗pα0𝒗α1P|𝒗|𝒗α2P|𝒗|2𝒗.\displaystyle\frac{\partial\bm{v}}{\partial t}=\Delta\bm{v}-(\bm{v}\cdot\nabla)\bm{v}-\nabla p-\alpha_{0}\bm{v}-\alpha_{1}P|\bm{v}|\bm{v}-\alpha_{2}P|\bm{v}|^{2}\bm{v}.

The first problems studied were continuous dependence of the solutions on their parameters, e.g. in F. Franchi, B. Straughan [20]. V.K. Kalantarov and S. Zelik [26] and P.A. Markowich, E.S. Titi and S. Trabelsi [34] proved existence and uniqueness of a weak solution for Dirichlet and periodic boundary conditions, respectively. Long-time behaviour and existence of global attractors have been studied by several authors [35, 45, 46, 49]. An anisotropic version of the equations was studied by H. Bessaih, S. Trabelsi and H. Zorgati [2].

The flow of electrically conducting fluids through porous media, modelled by MHD equations with damping, was studied first by Z. Ye in [48]. He considered the system with nonlinear damping in the equations for both the velocity field (with nonlinear damping parameter α\alpha) and the magnetic field (with paramter β\beta) and he proved existence and uniqueness of global strong solutions in the full space case for several ranges of parameters, most interestingly for our purposes for α,β4\alpha,\beta\geq 4. Z.J. Zhang and X. Yang [54] tried to improve this to α,β>3\alpha,\beta>3, but apparently made a mistake in their proof ([52, Remark after Equation (9), p. 2]). Z.J. Zhang, C.P. Wu, Z.A. Yao [52] then improved the range to α[3,278],β4\alpha\in[3,\frac{27}{8}],\beta\geq 4. The present paper, in a way, deals with the “critical” case α=β=3\alpha=\beta=3, see the discussion of the results below. Furthermore, E.S. Titi and S. Trabelsi [44] proved global well-posedness for an MHD model with nonlinear damping only in the velocity field. They thus avoid the magnetic pressure problem outlined in Section 1.2.3, as opposed to the above papers which seem to have overlooked this issue.

1.2. The Tamed Equations

We first motivate the tamed equations from a physical point of view by pointing out situations where similar models arise naturally in applications. The tamed Navier-Stokes equations are in a sense a variant of the Navier-Stokes equations with damping in the critical case β=3\beta=3, combined with a cutoff.

1.2.1. Physical Motivation - Flows Through Porous Media

Since the tamed equations are closely related to the damped equations of Section 1.1.1, which are much more well-studied, we focus on the occurence of these in the physics literature.

A system with possibly nonlinear damping is considered as a model for the flow of a fluid through porous media. To make this clear, consider the following 1-D compressible Euler equations with damping:

(1.2) ρt+x(ρv)=0,(ρv)t+x(ρv2+p)=αρv.\begin{split}\rho_{t}+\partial_{x}(\rho v)&=0,\\ (\rho v)_{t}+\partial_{x}\left(\rho v^{2}+p\right)&=-\alpha\rho v.\end{split}

The interpretation that this equation models the flow through porous media is in line with the result that as tt\rightarrow\infty, the density ρ\rho converges to the solution of the porous medium equation (cf. e.g. F.M. Huang, R.H. Pan [25]). The momentum, on the other hand, is described in the limit by Darcy’s law:

p=μk𝒗,\displaystyle\nabla p=-\frac{\mu}{k}\bm{v},

which represents a simple linear relationship between the flow rate and the pressure drop in a porous medium. Here, kk is the permeability of the porous medium and μ\mu is the dynamic viscosity. The velocity 𝒗\bm{v} is called Darcy’s seepage velocity.

In the interface region between a porous medium and a fluid layer, C.T. Hsu and P. Cheng [24, Equation (31), p. 1591] proposed the following equation111For ease of presentation, we have omitted various physical constants in the formulation of the equations.:

div𝒗\displaystyle\operatorname*{div}\bm{v} =0,\displaystyle=0,
t𝒗+div(𝒗𝒗)\displaystyle\partial_{t}\bm{v}+\operatorname*{div}(\bm{v}\otimes\bm{v}) =p+νΔ𝒗α0𝒗α1|𝒗|𝒗,\displaystyle=-\nabla p+\nu\Delta\bm{v}-\alpha_{0}\bm{v}-\alpha_{1}|\bm{v}|\bm{v},

where 𝒗\bm{v} is the so-called volume-averaged Darcy seepage velocity and pp is the volume-averaged pressure. This equation is motivated by a quadratic correction of P. Forchheimer to Darcy’s law, called Forchheimer’s law or Darcy-Forchheimer law (cf. for example P.A. Markowich, E.S. Titi, S. Trabelsi [34]):

p=μk𝒗FγρF|𝒗F|𝒗F,\displaystyle\nabla p=-\frac{\mu}{k}\bm{v}_{F}-\gamma\rho_{F}|\bm{v}_{F}|\bm{v}_{F},

with the Forchheimer coefficient γ>0\gamma>0, the Forchheimer velocity 𝒗F\bm{v}_{F} as well as the density ρF\rho_{F}. Furthermore, this correction becomes necessary at higher flow rates through porous media, see below for a more detailed discussion.

The question arises whether there are cases where a nonlinear correction of yet higher degree is necessary, i.e., where the flow obeys a cubic Forchheimer’s law:

(1.3) p=μk𝒗γρ|𝒗|𝒗κρ2|𝒗|2𝒗.\nabla p=-\frac{\mu}{k}\bm{v}-\gamma\rho|\bm{v}|\bm{v}-\kappa\rho^{2}|\bm{v}|^{2}\bm{v}.

Indeed, this seems to be the case. P. Forchheimer [18] himself suggested several corrections to Darcy’s law at higher flow velocities, one of them being the cubic law (1.3). M. Firdaouss, J.-L. Guermond and P. Le Quéré [17] revisited several historic data sets, amongst them the ones used by Darcy and Forchheimer (who did not correct for Reynolds numbers) and found that the data are actually better described by a linear and cubic Darcy-Forchheimer law (i.e., where γ=0\gamma=0), in the regime of low to moderate Reynolds numbers, which, as they note [17, p. 333], includes most practical cases:

(1.4) p=μk𝒗κρ2|𝒗|2𝒗.\nabla p=-\frac{\mu}{k}\bm{v}-\kappa\rho^{2}|\bm{v}|^{2}\bm{v}.

At higher Reynolds numbers, the correct behaviour seems to be quadratic, i.e., Forchheimer’s law, in accordance with numerical simulations, e.g. in the work of M. Fourar et al. [19]. The point at which this behaviour changes seems to be dimension-dependent: it occurs much earlier in the numerical simulations of [19, Figure 7] in the 3D case than in the 2D case. Another instance where a cubic Forchheimer law is observed is the high-rate flow in a radial fracture with corrugated walls, cf. M. Buès, M. Panfilov, S. Crosnier and C. Oltean [6, Equation (7.2), p. 54].

Taking into account all nonlinear corrections of Darcy’s law, we arrive at the Brinkman-Forchheimer-extended Darcy (BFeD) model

div𝒗\displaystyle\operatorname*{div}\bm{v} =0,\displaystyle=0,
t𝒗+div(𝒗𝒗)\displaystyle\partial_{t}\bm{v}+\operatorname*{div}(\bm{v}\otimes\bm{v}) =p+νΔ𝒗α0𝒗α1|𝒗|𝒗α2|𝒗|2𝒗.\displaystyle=-\nabla p+\nu\Delta\bm{v}-\alpha_{0}\bm{v}-\alpha_{1}|\bm{v}|\bm{v}-\alpha_{2}|\bm{v}|^{2}\bm{v}.

The tamed Navier-Stokes equations model the behaviour of the flow through porous media in the regime of relatively low to moderate Reynolds numbers, assuming that the higher-order behaviour is much more significant than the linear Darcy behaviour. For a more physically accurate model, one should also include the linear damping term, but we want to focus on the nonlinear effects here and thus for simplicity have omitted this term. The fact that the onset of nonlinear behaviour occurs at higher flow rates is modelled by the cutoff function gNg_{N} which is nonzero only for sufficiently high velocity.

1.2.2. Review of Results for Tamed Navier-Stokes Equations

The tamed Navier-Stokes equations were introduced in [39] by M. Röckner and X.C. Zhang and have the following form:

(1.5) 𝒗t=νΔ𝒗(𝒗)𝒗gN(|𝒗|2)𝒗p+𝒇𝒗=0𝒗(0,x)=𝒗0(x).\begin{split}&\frac{\partial\bm{v}}{\partial t}=\nu\Delta\bm{v}-(\bm{v}\cdot\nabla)\bm{v}-g_{N}(|\bm{v}|^{2})\bm{v}-\nabla p+\bm{f}\\ &\nabla\cdot{\bm{v}}=0\\ &\bm{v}(0,x)=\bm{v}_{0}(x).\end{split}

The “taming function” gNg_{N} (defined below) allowed them to obtain stronger estimates than for the untamed Navier-Stokes equations, and hence regularity results that are out of reach for the Navier-Stokes equations. Furthermore, they could show that bounded solutions to the Navier-Stokes equations, if they exist, coincide with the solutions to the tamed Navier-Stokes equations, as shown in [39]. This is a feature that most regularisations of the Navier-Stokes equations do not share.

The deterministic case was further studied by X.C. Zhang on uniform C2C^{2}-domains in [51]. In a series of subsequent papers, various properties of the stochastic version of the equations were studied: existence and uniqueness to the stochastic equation as well as ergodicity in [39], Freidlin-Wentzell type large deviations in [38] as well as the case of existence, uniqueness and small time large deviation principles for the Dirichlet problem in bounded domains [37] (both with T.S. Zhang). More recently, there has been resparked interest in the subject, with contributions by Z. Dong and R.R. Zhang [11] (existence and uniqueness for multiplicative Lévy noise) as well as Z. Brzeźniak and G. Dhariwal [5] (existence, uniqueness and existence of invariant measures in the full space 3\mathbb{R}^{3} for a slightly simplified system and by different methods).

The taming function was subsequently simplified by changing the expression of gNg_{N} as well as replacing the argument of the function gNg_{N} by the square of the spatial LL^{\infty} norm of the velocity, i.e., gN(𝒗𝕃2)g_{N}\left(\|\bm{v}\|_{\mathbb{L}^{\infty}}^{2}\right), see W. Liu and M. Röckner [33, pp. 170 ff]. This leads to simpler assumptions on gNg_{N} as well as easier proofs, especially when spatial derivatives are concerned (which then act only on the remaining factor 𝒗\bm{v}). However, this only seems to work within the framework of locally monotone operators, which cannot be applied here due to the crucial assumption of compact embeddings. Thus we do not use this simplification in this work.

1.2.3. The Magnetic Pressure Problem

From the form of the MHD equations, it would seem like there should also be a “pressure” term π\nabla\pi in the equation for the magnetic field. That this is not the case is due to the structure of the nonlinear term in the equation, as was noted already in the work of M. Sermange and R. Temam [41, p. 644]. To make this precise, note that

(1.6) (𝒗)𝑩+(𝑩)𝒗=×(𝒗×𝑩),-(\bm{v}\cdot\nabla)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}=\nabla\times(\bm{v}\times\bm{B}),

i.e., the nonlinear terms in the magnetic field equation combine to an expression that is manifestly divergence-free. If there existed a magnetic pressure π\pi such that

t𝑩=Δ𝑩+×(𝒗×𝑩)π,\displaystyle\partial_{t}\bm{B}=\Delta\bm{B}+\nabla\times(\bm{v}\times\bm{B})-\nabla\pi,

taking the divergence of this equation, observing that div𝑩=0\operatorname*{div}\bm{B}=0, would give

Δπ=0,\displaystyle\Delta\pi=0,

where π(t,x)Lloc2(+;L2(3))\nabla\pi(t,x)\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3})), which implies π=0\nabla\pi=0. Thus, a careful balancing in the two nonlinear terms leads to the “magnetic pressure” being zero. Now, if we introduce further nonlinearities into the equation for the magnetic field, we might offset this cancellation and thus we will get an artificial “magnetic pressure” in our tamed equations. We can show that this pressure converges to zero as NN\rightarrow\infty, but for the tamed equations, it is undeniably present. We will informally name this phenomenon the magnetic pressure problem:

Definition 1.1 (Magnetic Pressure Problem).

Introducing extra terms 𝒩(𝐯,𝐁)\mathcal{N}(\bm{v},\bm{B}) that are not divergence-free into the equation for the magnetic field 𝐁\bm{B} in the MHD equations will lead to the appearance of an artificial, possibly unphysical “magnetic pressure” π\pi, i.e., it will be of the form

t𝑩=Δ𝑩(𝒗)𝑩(𝑩)𝒗π+𝒩(𝒗,𝑩).\displaystyle\partial_{t}\bm{B}=\Delta\bm{B}-(\bm{v}\cdot\nabla)\bm{B}-(\bm{B}\cdot\nabla)\bm{v}-\nabla\pi+\mathcal{N}(\bm{v},\bm{B}).

This term, being of gradient type, does not manifest itself in the weak formulation of the problem, which is most often studied. Our system is no exception here, so when talking about the pointwise form of the equation, we have to include the magnetic pressure term π\pi, as above. This fact is easily overlooked when introducing regularising terms into the equation for the magnetic field. To give an example, in the work of Z.J. Zhang, C.P. Wu and Z.A. Yao [52], the authors introduce a damping term |𝑩|β1𝑩|\bm{B}|^{\beta-1}\bm{B} into the magnetic field equation, but forgot to include a “magnetic pressure” in the strong form of this equation. Note that in other regularisations of the MHD equations, such as the Leray-α\alpha model, this problem is avoided by only introducing terms that preserve the structure of the nonlinearities (1.6).

Ideally, one should thus introduce taming terms for the velocity field only. For mathematical reasons, however, at this point we have to content ourselves with taming terms in both components, for otherwise, in the crucial H1H^{1}-estimate (2.10) we could not cancel all four nonlinearities.

1.2.4. The Magnetic Field: To Regularise or Not to Regularise?

There seems to be no clear answer, even for schemes which do not introduce magnetic pressure, to the question of whether in the MHD equations the magnetic field should be regularised as well, or whether one should restrict oneself to only regularising the velocity field. A mathematical criticism formulated in J.S. Linshiz and E.S. Titi [32, p. 3] is that regularising the magnetic part as well might add an unnecessary amount of dissipativity to the system. However, for the mathematical reasons discussed in the previous section, we add a taming term to the magnetic field equation as well.

1.2.5. The Tamed MHD Equations

We investigate the case of the deterministic version of tamed magnetohydrodynamics (TMHD) equations in this paper. They can be understood as a model of an electrically conducting fluid in a porous medium at low to moderate Reynolds numbers (cf. P.A. Markowich, E.S. Titi and S. Trabelsi [34]). Following the approach of M. Röckner and X.C. Zhang, we study the following equations:

(1.7) 𝒗t=Δ𝒗(𝒗)𝒗+(𝑩)𝑩(p+|𝑩|22)gN(|(𝒗,𝑩)|2)𝒗+𝒇v𝑩t=Δ𝑩(𝒗)𝑩+(𝑩)𝒗πgN(|(𝒗,𝑩)|2)𝑩+𝒇B.\begin{split}\frac{\partial\bm{v}}{\partial t}&=\Delta\bm{v}-\left(\bm{v}\cdot\nabla\right)\bm{v}+\left(\bm{B}\cdot\nabla\right)\bm{B}-\nabla\left(p+\frac{|\bm{B}|^{2}}{2}\right)-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{v}+\bm{f}_{v}\\ \frac{\partial\bm{B}}{\partial t}&=\Delta\bm{B}-\left(\bm{v}\cdot\nabla\right)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}-\nabla\pi-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{B}+\bm{f}_{B}.\end{split}

If we write y:=(𝒗,𝑩)y:=(\bm{v},\bm{B}), the equations differ from the “untamed” MHD equations by the taming term

gN(|y(t,x)|2)y(t,x),-g_{N}(|y(t,x)|^{2})y(t,x),

which is a direct generalisation of the term in (1.5). The norm is defined in equation (2.2) below.

The taming function gN:++g_{N}\colon\mathbb{R}_{+}\rightarrow\mathbb{R}_{+} is defined by

(1.8) {gN(r):=0,r[0,N],gN(r):=Ctaming(rN12),rN+1,0gN(r)C1,r0,|gN(k)(r)|Ck,r0,k.\begin{cases}g_{N}(r):=0,\quad&r\in[0,N],\\ g_{N}(r):=C_{\text{taming}}\left(r-N-\frac{1}{2}\right),\quad&r\geq N+1,\\ 0\leq g_{N}^{\prime}(r)\leq C_{1},\quad&r\geq 0,\\ |g_{N}^{(k)}(r)|\leq C_{k},\quad&r\geq 0,k\in\mathbb{N}.\end{cases}

Here, the constant CtamingC_{\text{taming}} is defined by

Ctaming:=2max{Re,Rm}=2.C_{\text{taming}}:=2\max\{Re,Rm\}=2.

For the Navier-Stokes case, M. Röckner and X.C. Zhang in [39] set C=1νReC=\frac{1}{\nu}\propto Re, so the fact that CtamingReC_{\text{taming}}\propto Re is not surprising. The factor 2 arises from the fact that we need to tame more terms here. The dependency on RmRm seems natural as well.

The idea of the taming procedure remains very clear: try to counteract the nonlinear terms of which there are four in the case of the MHD equations. To pinpoint the exact place where the power of the taming function unfolds, see the discussion after Lemma 2.2.

1.3. Results and Structure of This Paper

We follow the ideas of [39]. However, the proof of the regularity of the solution requires an MHD adaptation of a result from E.B. Fabes, B.F. Jones and N.M. Rivière [14], which the author could not find in the literature. See Appendix A for a discussion and a proof of this result.

Our main results can be summarised as follows:

Theorem 1.2 (Global well-posedness).

Let y0=(𝐯0,𝐁0)1y_{0}=(\bm{v}_{0},\bm{B}_{0})\in\mathcal{H}^{1} and f=(𝐟v,𝐟B)Lloc2(+;0)f=(\bm{f}_{v},\bm{f}_{B})\in L_{\text{loc}}^{2}(\mathbb{R}_{+};\mathcal{H}^{0}). For any N>0N>0, there exists a unique weak solution yy to the TMHD equation in the sense of Definition 2.4, depending continuously on the initial data, such that

  1. (i)

    For all t0t\geq 0,

    (1.9) y(t)0y00+0tf(s)0ds,\|y(t)\|_{\mathcal{H}^{0}}\leq\|y_{0}\|_{\mathcal{H}^{0}}+\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s,

    and

    (1.10) 0ty(s)0+gN(|y(s)|2)|y(s)|L22dsy002+2[0tf(s)0ds]2.\begin{split}&\int_{0}^{t}\|\nabla y(s)\|_{\mathcal{H}^{0}}+\|\sqrt{g_{N}(|y(s)|^{2})}|y(s)|\|_{L^{2}}^{2}\mathrm{d}s\\ &\leq\|y_{0}\|_{\mathcal{H}^{0}}^{2}+2\left[\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}.\end{split}
  2. (ii)

    The solution satisfies yC(+;1)Lloc2(+;2)y\in C(\mathbb{R}_{+};\mathcal{H}^{1})\cap L_{\text{loc}}^{2}(\mathbb{R}_{+};\mathcal{H}^{2}), tyLloc2(+;0)\partial_{t}y\in L_{\text{loc}}^{2}(\mathbb{R}_{+};\mathcal{H}^{0}) and for all t0t\geq 0,

    (1.11) y(t)12+0t(y(s)22+|y(s)||y(s)|L22)dsC(y012+0tf(s)02ds)+C(1+N+t)(y002+[0tf(s)0ds]2).\begin{split}&\|y(t)\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\left(\|y(s)\|_{\mathcal{H}^{2}}^{2}+\||y(s)||\nabla y(s)|\|_{L^{2}}^{2}\right)\mathrm{d}s\\ &\leq C\left(\|y_{0}\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s\right)\\ &\quad+C(1+N+t)\left(\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\left[\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}\right).\end{split}
  3. (iii)

    There exist real-valued functions p(t,x)p(t,x) and π(t,x)\pi(t,x), satisfying the conditions pLloc2(+;L2(3;3))\nabla p\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3};\mathbb{R}^{3})), πLloc2(+;L2(3;3))\nabla\pi\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3};\mathbb{R}^{3})), such that for almost all t0t\geq 0, in L2(3;6)L^{2}(\mathbb{R}^{3};\mathbb{R}^{6}) we have

    𝒗t\displaystyle\frac{\partial\bm{v}}{\partial t} =Δ𝒗(𝒗)𝒗+(𝑩)𝑩(p+|𝑩|22)gN(|(𝒗,𝑩)|2)𝒗+𝒇v,\displaystyle=\Delta\bm{v}-\left(\bm{v}\cdot\nabla\right)\bm{v}+\left(\bm{B}\cdot\nabla\right)\bm{B}-\nabla\left(p+\frac{|\bm{B}|^{2}}{2}\right)-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{v}+\bm{f}_{v},
    𝑩t\displaystyle\frac{\partial\bm{B}}{\partial t} =Δ𝑩(𝒗)𝑩+(𝑩)𝒗πgN(|(𝒗,𝑩)|2)𝑩+𝒇B.\displaystyle=\Delta\bm{B}-\left(\bm{v}\cdot\nabla\right)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}-\nabla\pi-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{B}+\bm{f}_{B}.

In the case of smooth data, we can prove smoothness of the solutions to the TMHD equations:

Theorem 1.3 (Regularity and Strong Solutions).

Let y0:=m0my_{0}\in\mathcal{H}^{\infty}:=\bigcap_{m\in\mathbb{N}_{0}}\mathcal{H}^{m} and +tf(t)m\mathbb{R}_{+}\ni t\mapsto f(t)\in\mathcal{H}^{m} be smooth for any m0m\in\mathbb{N}_{0}. Then there exists a unique smooth velocity field

𝒗NC(+×3;3)C(+;2),\displaystyle\bm{v}_{N}\in C^{\infty}(\mathbb{R}_{+}\times\mathbb{R}^{3};\mathbb{R}^{3})\cap C(\mathbb{R}_{+};\mathcal{H}^{2}),

a unique smooth magnetic field

𝑩NC(+×3;3)C(+;2),\displaystyle\bm{B}_{N}\in C^{\infty}(\mathbb{R}_{+}\times\mathbb{R}^{3};\mathbb{R}^{3})\cap C(\mathbb{R}_{+};\mathcal{H}^{2}),

and smooth pressure functions

pN,πNC(+×3;),\displaystyle p_{N},\pi_{N}\in C^{\infty}(\mathbb{R}_{+}\times\mathbb{R}^{3};\mathbb{R}),

which are defined up to a time-dependent constant. Furthermore, the quadruplet (𝐯N,𝐁N,pN,πN)(\bm{v}_{N},\bm{B}_{N},p_{N},\pi_{N}) solves the tamed MHD equations (1.7).

Moreover, we have the following estimates: for any T,N>0T,N>0

(1.12) supt[0,T]yN(t)02+0TyN02dsC(y002+[0Tf(s)0ds]2),\sup_{t\in[0,T]}\|y_{N}(t)\|_{\mathcal{H}^{0}}^{2}+\int_{0}^{T}\|\nabla y_{N}\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s\leq C\left(\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\left[\int_{0}^{T}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}\right),
(1.13) supt[0,T]yN(t)12+0TyN(s)22dsCT,y0,f(1+N),\sup_{t\in[0,T]}\|y_{N}(t)\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{T}\|y_{N}(s)\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s\leq C_{T,y_{0},f}\cdot(1+N),
(1.14) supt[0,T]yN(t)22CT,y0,f+CT,y0,f(1+N2).\sup_{t\in[0,T]}\|y_{N}(t)\|_{\mathcal{H}^{2}}^{2}\leq C_{T,y_{0},f}^{\prime}+C_{T,y_{0},f}\cdot(1+N^{2}).

To be precise, the constant CT,y0,fC_{T,y_{0},f} depends on y01\|y_{0}\|_{\mathcal{H}^{1}} and 0Tf0ds\int_{0}^{T}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s and goes to zero as both these quantities tend towards zero. The constant CT,y0,fC_{T,y_{0},f}^{\prime} depends on TT, y02\|y_{0}\|_{\mathcal{H}^{2}} and supt[0,T]f(t)0\sup_{t\in[0,T]}\|f(t)\|_{\mathcal{H}^{0}} as well as 0Tsf02ds\int_{0}^{T}\|\partial_{s}f\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s.

Finally, we have the following convergence result for vanishing taming terms, i.e., in the limit NN\rightarrow\infty.

Theorem 1.4 (Convergence to the untamed equations).

Let y00y_{0}\in\mathcal{H}^{0}, fL2([0,T];0)f\in L^{2}([0,T];\mathcal{H}^{0}), y0N1y_{0}^{N}\in\mathcal{H}^{1} such that 0limNy0N=y0\mathcal{H}^{0}-\lim_{N\rightarrow\infty}y_{0}^{N}=y_{0}. Denote by (yN,pN,πN)(y_{N},p_{N},\pi_{N}) the unique solutions to the tamed equations (1.7) with initial value y0Ny_{0}^{N} given by Theorem 1.2.

Then there is a subsequence (Nk)k(N_{k})_{k\in\mathbb{N}} such that yNky_{N_{k}} converges to a yy in L2([0,T];loc2)L^{2}([0,T];\mathcal{L}_{\text{loc}}^{2}) and pNkp_{N_{k}} converges weakly to some pp in L9/8([0,T];L9/5(3))L^{9/8}([0,T];L^{9/5}(\mathbb{R}^{3})). The magnetic pressure πNk\pi_{N_{k}} converges to zero, weakly in L9/8([0,T];L9/5(3))L^{9/8}([0,T];L^{9/5}(\mathbb{R}^{3})). Furthermore, (y,p)(y,p) is a weak solution to (1.1) such that the following generalised energy inequality holds:

20T3|y|2ϕdxds0T3[|y|2(tϕ+Δϕ)+2y,fϕ+(|y|22p)𝒗,ϕ2𝑩,𝒗𝑩,ϕ]dxds.\begin{split}2\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y|^{2}\phi\mathrm{d}x\mathrm{d}s&\leq\int_{0}^{T}\int_{\mathbb{R}^{3}}\Big{[}|y|^{2}\left(\partial_{t}\phi+\Delta\phi\right)+2\langle y,f\rangle\phi\\ &\quad+(|y|^{2}-2p)\langle\bm{v},\nabla\phi\rangle-2\langle\bm{B},\bm{v}\rangle\langle\bm{B},\nabla\phi\rangle\Big{]}\mathrm{d}x\mathrm{d}s.\end{split}
Remark 1.5.

Compared to the Navier-Stokes case, we get a different type of term in the inequality, namely the last one on the right-hand side of the inequality. Note also that the ”magnetic pressure” disappears as NkN_{k}\rightarrow\infty.

We have been able to extend all the results of [39] to the case of tamed MHD equations. This posed several technical obstacles: we had to extend the regularity result of [14] to the MHD case, which the author could not find in the literature. Moreover, we describe the magnetic pressure problem in regularised MHD equations. Furthermore, our work basically provides the critical case α=β=3\alpha=\beta=3 of the model considered in [48, 54, 52].

The paper is organised as follows: we start in Section 2.1 by introducing the functional framework of the problem. Then we state and prove a number of elementary lemmas regarding estimates as well as (local) convergence results for the operators appearing in the tamed MHD equations. Existence and uniqueness of a weak solution is shown in Section 2.2 via a Faedo-Galerkin approximation procedure. Employing the results of Appendix A, we then show in Section 2.3 that for smooth data the solution to the tamed MHD equations remains smooth. Finally, in Section 2.4 we show that as NN\rightarrow\infty, the solution to the tamed MHD equations converges to a suitable weak solution of the (untamed) MHD equations.

The results of this paper are part of the dissertation [40] of the author.

1.4. Notation

Let G3G\subset\mathbb{R}^{3} be a domain and denote the divergence operator by div\operatorname*{div}. We use the following notational hierarchy for LpL^{p} and Sobolev spaces:

  1. (1)

    For the spaces Lp(G,)L^{p}(G,\mathbb{R}) of real-valued integrable (equivalence classes of) functions we use the notation Lp(G)L^{p}(G) or LpL^{p} if no confusion can arise. These are the spaces of the components viv^{i}, BiB^{i} of the velocity and magnetic field vector fields.

  2. (2)

    We sometimes use the notation 𝑳p(G):=Lp(G;3)\bm{L}^{p}(G):=L^{p}(G;\mathbb{R}^{3}) to denote 3-D vector-valued integrable quantities, especially the velocity vector field and magnetic vector field 𝒗\bm{v} and 𝑩\bm{B}.

  3. (3)

    The divergence-free and pp-integrable vector fields will be denoted by \mathbb symbols, so 𝕃p(G):=𝑳p(G)div1{0}\mathbb{L}^{p}(G):=\bm{L}^{p}(G)\cap\operatorname*{div}^{-1}\{0\}. Its elements are still denoted by bold-faced symbols 𝒗\bm{v}, 𝑩\bm{B} and they satisfy by definition div𝒗=𝒗=0\operatorname*{div}\bm{v}=\nabla\cdot\bm{v}=0, div𝑩=0\operatorname*{div}\bm{B}=0.

  4. (4)

    Finally, we denote the space of the combined velocity and magnetic vector fields by \mathcal symbols, i.e., p(G):=𝕃p(G)×𝕃p(G)\mathcal{L}^{p}(G):=\mathbb{L}^{p}(G)\times\mathbb{L}^{p}(G). It contains elements of the form y=(𝒗,𝑩)y=(\bm{v},\bm{B}), with both 𝒗\bm{v} and 𝑩\bm{B} divergence-free.

For Sobolev spaces, we use the same notational conventions, so for example k(G):=𝑯k(G)div1{0}:=Wk,2(G;3)div1{0}\mathbb{H}^{k}(G):=\bm{H}^{k}(G)\cap\operatorname*{div}^{-1}\{0\}:=W^{k,2}(G;\mathbb{R}^{3})\cap\operatorname*{div}^{-1}\{0\} etc. Finally, if the domain of the functions is not in 3\mathbb{R}^{3}, in particular if it is a real interval (for the time variable), then we use the unchanged LpL^{p} notation.

For brevity, we use the following terminology when discussing the terms on the right-hand side of the tamed MHD equations: the terms involving the Laplace operator are called the linear terms, the terms involving the taming function gNg_{N} are called taming terms and the other terms are called the nonlinear terms. Furthermore, we refer to the initial data y0=(𝒗0,𝑩0)y_{0}=(\bm{v}_{0},\bm{B}_{0}) and the force f=(𝒇v,𝒇B)f=(\bm{f}_{v},\bm{f}_{B}) collectively as the data of the problem.

2. The Tamed MHD Equations on the Whole Space

2.1. Auxiliary Results

We define the following spaces:

𝑾m,p:=C0(3;3)¯m,p,\displaystyle\bm{W}^{m,p}:=\overline{C_{0}^{\infty}(\mathbb{R}^{3};\mathbb{R}^{3})}^{\|\cdot\|_{m,p}},

the closure being with respect to the norm

𝒖m,p:=(3|(IΔ)m/2𝒖|pdx)1/p.\displaystyle\|\bm{u}\|_{m,p}:=\left(\int_{\mathbb{R}^{3}}|(I-\Delta)^{m/2}\bm{u}|^{p}\mathrm{d}x\right)^{1/p}.

This norm is equivalent to the Sobolev norm given by

𝒖Wm,p:=j=0mj𝒖Lp\displaystyle\|\bm{u}\|_{W^{m,p}}:=\sum_{j=0}^{m}\|\nabla^{j}\bm{u}\|_{L^{p}}

where j𝒖\nabla^{j}\bm{u} denotes the j-th total weak derivative of 𝒖\bm{u} of order j. We define the solenoidal spaces by

(2.1) m:={𝒖𝑾m,2|𝒖=0},\mathbb{H}^{m}:=\{\bm{u}\in\bm{W}^{m,2}\leavevmode\nobreak\ |\leavevmode\nobreak\ \nabla\cdot\bm{u}=0\},

where the divergence is taken in the sense of Schwartz distributions.

To handle the velocity and the magnetic field of the MHD equations at the same time, we will need to define a norm on the space m:=m×m\mathcal{H}^{m}:=\mathbb{H}^{m}\times\mathbb{H}^{m}. We will define the scalar products in the usual way (see [41], p. 7): for the vector field y=(𝒗,𝑩)y=(\bm{v},\bm{B}) define

(2.2) y1(x),y2(x):=(𝒗1𝑩1)(x),(𝒗2𝑩2)(x):=𝒗1(x),𝒗2(x)+𝑩1(x),𝑩2(x)\langle y_{1}(x),y_{2}(x)\rangle:=\left\langle\begin{pmatrix}\bm{v}_{1}\\ \bm{B}_{1}\end{pmatrix}(x),\begin{pmatrix}\bm{v}_{2}\\ \bm{B}_{2}\end{pmatrix}(x)\right\rangle:=\langle\bm{v}_{1}(x),\bm{v}_{2}(x)\rangle+\langle\bm{B}_{1}(x),\bm{B}_{2}(x)\rangle

and similarly, for ym×my\in\mathbb{H}^{m}\times\mathbb{H}^{m}, we set

(2.3) (y1,y2)m:=(𝒗1,𝒗2)m+(𝑩1,𝑩2)m,(y_{1},y_{2})_{\mathcal{H}^{m}}:=(\bm{v}_{1},\bm{v}_{2})_{\mathbb{H}^{m}}+(\bm{B}_{1},\bm{B}_{2})_{\mathbb{H}^{m}},

and accordingly for the norms. They behave just like an 2\ell^{2}-type product norm.

In a similar fashion we define Lebesgue norms by

yp:=(d(|𝒗|2+|𝑩|2)p/2dx)1/p=|y|Lp(3)\displaystyle\|y\|_{\mathcal{L}^{p}}:=\left(\int_{\mathbb{R}^{d}}\left(|\bm{v}|^{2}+|\bm{B}|^{2}\right)^{p/2}\mathrm{d}x\right)^{1/p}=\|\leavevmode\nobreak\ |y|\leavevmode\nobreak\ \|_{L^{p}(\mathbb{R}^{3})}

and

(2.4) y:=ess supx3(|𝒗(x)|2+|𝑩(x)|2)1/2=ess supx3|y(x)|.\|y\|_{\mathcal{L}^{\infty}}:=\text{ess sup}_{x\in\mathbb{R}^{3}}\left(|\bm{v}(x)|^{2}+|\bm{B}(x)|^{2}\right)^{1/2}=\text{ess sup}_{x\in\mathbb{R}^{3}}|y(x)|.

We will often employ the following Gagliardo-Nirenberg-Sobolev-type interpolation inequality: Let p,q,r1p,q,r\geq 1 and 0j<m0\leq j<m. Assume the following three conditions:

mj3p0,1r=j3+α(1pm3)+1αq,jmα1.m-j-\frac{3}{p}\notin\mathbb{N}_{0},\quad\frac{1}{r}=\frac{j}{3}+\alpha\left(\frac{1}{p}-\frac{m}{3}\right)+\frac{1-\alpha}{q},\quad\frac{j}{m}\leq\alpha\leq 1.

Then for any 𝒖Wm,pLq(3;3)\bm{u}\in W^{m,p}\cap L^{q}(\mathbb{R}^{3};\mathbb{R}^{3}), we have the following estimate:

(2.5) j𝒖LrCm,j,p,q,r𝒖m,pα𝒖Lq1α.\|\nabla^{j}\bm{u}\|_{L^{r}}\leq C_{m,j,p,q,r}\|\bm{u}\|_{m,p}^{\alpha}\|\bm{u}\|_{L^{q}}^{1-\alpha}.

Applying it to each component of the norm for y=(𝒗,𝑩)y=(\bm{v},\bm{B}), the same estimate carries over to yield

(2.6) jyLrCm,j,p,q,rym,pαyLq1α.\|\nabla^{j}y\|_{L^{r}}\leq C_{m,j,p,q,r}\|y\|_{m,p}^{\alpha}\|y\|_{L^{q}}^{1-\alpha}.

Define the space of (solenoidal) test functions by

𝒱:={y=(𝒗,𝑩):𝒗,𝑩C0(3;3),𝒗=0,𝑩=0}C0(3;6).\mathcal{V}:=\{y=(\bm{v},\bm{B})\leavevmode\nobreak\ \colon\leavevmode\nobreak\ \bm{v},\bm{B}\in C_{0}^{\infty}(\mathbb{R}^{3};\mathbb{R}^{3}),\nabla\cdot\bm{v}=0,\nabla\cdot\bm{B}=0\}\subset C_{0}^{\infty}(\mathbb{R}^{3};\mathbb{R}^{6}).

We then have the following lemma.

Lemma 2.1.

The space 𝒱\mathcal{V} is dense in m\mathcal{H}^{m} for any mm\in\mathbb{N}.

Proof.

See [39], Lemma 2.1. ∎

Let P:L2(3;3)0P\colon L^{2}(\mathbb{R}^{3};\mathbb{R}^{3})\rightarrow\mathbb{H}^{0} be the Leray-Helmholtz projection. Then PP commutes with derivative operators ([36, Lemma 2.9, p. 52]) and can be restricted to a bounded linear operator

P|Hm:Hmm.\displaystyle P|_{H^{m}}\colon H^{m}\rightarrow\mathbb{H}^{m}.

Furthermore, consider the tensorised projection

𝒫:=PP,𝒫y:=(PP)(𝒗𝑩)=(P𝒗P𝑩).\displaystyle\mathcal{P}:=P\otimes P,\quad\mathcal{P}y:=(P\otimes P)\begin{pmatrix}\bm{v}\\ \bm{B}\end{pmatrix}=\begin{pmatrix}P\bm{v}\\ P\bm{B}\end{pmatrix}.

Then 𝒫:20\mathcal{P}\colon\mathcal{L}^{2}\rightarrow\mathcal{H}^{0} is a bounded linear operator. We define the following operator for the terms on the right-hand side of the TMHD equations, projected on the space of divergence free functions:

𝒜(y):=𝒫Δy𝒫((𝒗)𝒗(𝑩)𝑩(𝒗)𝑩(𝑩)𝒗)𝒫(gN(|y|2)y).\displaystyle\mathcal{A}(y):=\mathcal{P}\Delta y-\mathcal{P}\begin{pmatrix}(\bm{v}\cdot\nabla)\bm{v}-(\bm{B}\cdot\nabla)\bm{B}\\ (\bm{v}\cdot\nabla)\bm{B}-(\bm{B}\cdot\nabla)\bm{v}\end{pmatrix}-\mathcal{P}\left(g_{N}(|y|^{2})y\right).

For y:=(𝒗,𝑩)y:=(\bm{v},\bm{B}) and a test function y~:=(𝒗~,𝑩~)1\tilde{y}:=(\tilde{\bm{v}},\tilde{\bm{B}})\in\mathcal{H}^{1}, consider (using the self-adjointness of the projection 𝒫\mathcal{P})

(2.7) 𝒜(y),y~0=𝒗,Δ𝒗~𝑳2+𝑩,Δ𝑩~𝑳2(𝒗)𝒗,𝒗~𝑳2+(𝑩)𝑩,𝒗~𝑳2(𝒗)𝑩,𝑩~𝑳2+(𝑩)𝒗,𝑩~𝑳2gN(|y|2)y,y~.\begin{split}\langle\mathcal{A}(y),\tilde{y}\rangle_{\mathcal{H}^{0}}&=\langle\bm{v},\Delta\tilde{\bm{v}}\rangle_{\bm{L}^{2}}+\langle\bm{B},\Delta\tilde{\bm{B}}\rangle_{\bm{L}^{2}}-\langle(\bm{v}\cdot\nabla)\bm{v},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}+\langle(\bm{B}\cdot\nabla)\bm{B},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}\\ &-\langle(\bm{v}\cdot\nabla)\bm{B},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}+\langle(\bm{B}\cdot\nabla)\bm{v},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}-g_{N}(|y|^{2})\langle y,\tilde{y}\rangle.\end{split}

and for y~3\tilde{y}\in\mathcal{H}^{3}

(2.8) 𝒜(y),y~1=𝒜(y),(IΔ)y~0=𝒗,(IΔ)𝒗~L2𝑩,(IΔ)𝑩~L2(𝒗)𝒗,(IΔ)𝒗~L2+(𝑩)𝑩,(IΔ)𝒗~L2(𝒗)𝑩,(IΔ)𝑩~L2+(𝑩)𝒗,(IΔ)𝑩~L2gN(|y|2)y,(IΔ)y~2.\begin{split}\langle\mathcal{A}(y),\tilde{y}\rangle_{\mathcal{H}^{1}}&=\langle\mathcal{A}(y),(I-\Delta)\tilde{y}\rangle_{0}\\ &=-\langle\nabla\bm{v},(I-\Delta)\nabla\tilde{\bm{v}}\rangle_{L^{2}}-\langle\nabla\bm{B},\nabla(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}}\\ &-\langle(\bm{v}\cdot\nabla)\bm{v},(I-\Delta)\tilde{\bm{v}}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{B},(I-\Delta)\tilde{\bm{v}}\rangle_{L^{2}}\\ &-\langle(\bm{v}\cdot\nabla)\bm{B},(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{v},(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}}\\ &-\langle g_{N}(|y|^{2})y,(I-\Delta)\tilde{y}\rangle_{\mathcal{L}^{2}}.\end{split}

Let us give names to the linear, nonlinear and taming terms of (2.8):

𝒜1(y,y~)\displaystyle\mathcal{A}_{1}(y,\tilde{y}) :=𝒗,(IΔ)𝒗~L2𝑩,(IΔ)𝑩~L2,\displaystyle:=-\langle\nabla\bm{v},(I-\Delta)\nabla\tilde{\bm{v}}\rangle_{L^{2}}-\langle\nabla\bm{B},\nabla(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}},
𝒜2(y,y~)\displaystyle\mathcal{A}_{2}(y,\tilde{y}) :=(𝒗)𝒗,(IΔ)𝒗~L2+(𝑩)𝑩,(IΔ)𝒗~L2\displaystyle:=-\langle(\bm{v}\cdot\nabla)\bm{v},(I-\Delta)\tilde{\bm{v}}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{B},(I-\Delta)\tilde{\bm{v}}\rangle_{L^{2}}
(𝒗)𝑩,(IΔ)𝑩~L2+(𝑩)𝒗,(IΔ)𝑩~L2,\displaystyle\quad-\langle(\bm{v}\cdot\nabla)\bm{B},(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{v},(I-\Delta)\tilde{\bm{B}}\rangle_{L^{2}},
𝒜3(y,y~)\displaystyle\mathcal{A}_{3}(y,\tilde{y}) :=gN(|y|2)y,(IΔ)y~2.\displaystyle:=-\langle g_{N}(|y|^{2})y,(I-\Delta)\tilde{y}\rangle_{\mathcal{L}^{2}}.

The following lemma provides elementary estimates on the terms defined above.

Lemma 2.2.
  1. (i)

    For any y1y\in\mathcal{H}^{1} and y~𝒱\tilde{y}\in\mathcal{V},

    |𝒜(y),y~1|C(1+y13)y~3,|\langle\mathcal{A}(y),\tilde{y}\rangle_{\mathcal{H}^{1}}|\leq C(1+\|y\|_{\mathcal{H}^{1}}^{3})\|\tilde{y}\|_{\mathcal{H}^{3}},

    i.e., 𝒜(y),1\langle\mathcal{A}(y),\cdot\rangle_{\mathcal{H}^{1}} can be considered as an element in the dual space (3)(\mathcal{H}^{3})^{\prime} with its norm bounded by C(1+y13)C(1+\|y\|_{\mathcal{H}^{1}}^{3}).

  2. (ii)

    If y1y\in\mathcal{H}^{1}, then

    (2.9) 𝒜(y),y0=y02gN(|y|2)y,y2.\langle\mathcal{A}(y),y\rangle_{\mathcal{H}^{0}}=-\|\nabla y\|_{\mathcal{H}^{0}}^{2}-\langle g_{N}(|y|^{2})y,y\rangle_{\mathcal{L}^{2}}.
  3. (iii)

    If y2y\in\mathcal{H}^{2}, then

    (2.10) 𝒜(y),y112y22+y02+2(N+1)y02|𝒗||𝒗|𝑳22|𝑩||𝑩|𝑳22|𝒗||𝑩|𝑳22|𝑩||𝒗|𝑳22.\begin{split}\langle\mathcal{A}(y),y\rangle_{\mathcal{H}^{1}}&\leq-\frac{1}{2}\|y\|_{\mathcal{H}^{2}}^{2}+\|y\|_{\mathcal{H}^{0}}^{2}+2(N+1)\|\nabla y\|_{\mathcal{H}^{0}}^{2}\\ &\quad-\||\bm{v}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}\\ &\quad-\||\bm{v}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}.\end{split}
Proof.

Throughout this proof, let 𝝋,𝝍,𝜽{𝒗,𝑩}\bm{\varphi},\bm{\psi},\bm{\theta}\in\{\bm{v},\bm{B}\}.

To prove (i), using also the Sobolev embedding theorem we find

𝝋𝝍,(IΔ)𝜽𝑳2C𝝋𝑳4𝝍𝑳4𝜽3C𝝋1𝝍1𝜽3,\displaystyle\langle\bm{\varphi}\otimes\bm{\psi},\nabla(I-\Delta)\bm{\theta}\rangle_{\bm{L}^{2}}\leq C\|\bm{\varphi}\|_{\bm{L}^{4}}\|\bm{\psi}\|_{\bm{L}^{4}}\|\bm{\theta}\|_{\mathbb{H}^{3}}\leq C\|\bm{\varphi}\|_{\mathbb{H}^{1}}\|\bm{\psi}\|_{\mathbb{H}^{1}}\|\bm{\theta}\|_{\mathbb{H}^{3}},

which yields

𝒜2(y,y~)Cy12y~3.\mathcal{A}_{2}(y,\tilde{y})\leq C\|y\|_{\mathcal{H}^{1}}^{2}\|\tilde{y}\|_{\mathcal{H}^{3}}.

Similarly one can show 𝒜1(y,y~)Cy1y~3,\mathcal{A}_{1}(y,\tilde{y})\leq C\|y\|_{\mathcal{H}^{1}}\|\tilde{y}\|_{\mathcal{H}^{3}}, 𝒜3(y,y~)Cy13y~3,\mathcal{A}_{3}(y,\tilde{y})\leq C\|y\|_{\mathcal{H}^{1}}^{3}\|\tilde{y}\|_{\mathcal{H}^{3}}, which implies the assertion.

Equality (2.9) follows from the divergence-freeness.

To prove (2.10), we start with the inequality

𝒜1(y,y)=𝒗22𝑩22+𝒗02+𝑩02+𝒗02+𝑩02.\displaystyle\mathcal{A}_{1}(y,y)=-\|\bm{v}\|_{\mathbb{H}^{2}}^{2}-\|\bm{B}\|_{\mathbb{H}^{2}}^{2}+\|\nabla\bm{v}\|_{\mathbb{H}^{0}}^{2}+\|\nabla\bm{B}\|_{\mathbb{H}^{0}}^{2}+\|\bm{v}\|_{\mathbb{H}^{0}}^{2}+\|\bm{B}\|_{\mathbb{H}^{0}}^{2}.

The nonlinear terms can be estimated by Young’s inequality:

𝒜2(y,y)\displaystyle\mathcal{A}_{2}(y,y) (𝒗)𝒗𝑳22+14𝒗22+(𝑩)𝑩𝑳22+14𝒗22\displaystyle\leq\|(\bm{v}\cdot\nabla)\bm{v}\|_{\bm{L}^{2}}^{2}+\frac{1}{4}\|\bm{v}\|_{\mathbb{H}^{2}}^{2}+\|(\bm{B}\cdot\nabla)\bm{B}\|_{\bm{L}^{2}}^{2}+\frac{1}{4}\|\bm{v}\|_{\mathbb{H}^{2}}^{2}
+(𝒗)𝑩𝑳22+14𝑩22+(𝑩)𝒗𝑳22+14𝑩22.\displaystyle\quad+\|(\bm{v}\cdot\nabla)\bm{B}\|_{\bm{L}^{2}}^{2}+\frac{1}{4}\|\bm{B}\|_{\mathbb{H}^{2}}^{2}+\|(\bm{B}\cdot\nabla)\bm{v}\|_{\bm{L}^{2}}^{2}+\frac{1}{4}\|\bm{B}\|_{\mathbb{H}^{2}}^{2}.

The taming terms are estimated using gN(r)C(rN)g_{N}(r)\geq C(r-N):

𝒜3(y,y)=gN(|y|2)y,y2(gN(|y|2)y),y2\displaystyle\mathcal{A}_{3}(y,y)=-\langle g_{N}(|y|^{2})y,y\rangle_{\mathcal{L}^{2}}-\langle\nabla\left(g_{N}(|y|^{2})y\right),\nabla y\rangle_{\mathcal{L}^{2}}
3i,k=13ivki(gN(|y|2)vk)iBki(gN(|y|2)Bk)dx\displaystyle\leq-\int_{\mathbb{R}^{3}}\sum_{i,k=1}^{3}\partial_{i}v^{k}\partial_{i}\left(g_{N}(|y|^{2})v^{k}\right)-\partial_{i}B^{k}\partial_{i}\left(g_{N}(|y|^{2})B^{k}\right)\mathrm{d}x
=3gN(|y|2)|y|2dx123gN(|y|2)||y|2|dx\displaystyle=-\int_{\mathbb{R}^{3}}g_{N}(|y|^{2})|\nabla y|^{2}\mathrm{d}x-\frac{1}{2}\int_{\mathbb{R}^{3}}g_{N}^{\prime}(|y|^{2})\left|\nabla|y|^{2}\right|\mathrm{d}x
3gN(|y|2)|y|2dx,\displaystyle\leq-\int_{\mathbb{R}^{3}}g_{N}(|y|^{2})|\nabla y|^{2}\mathrm{d}x,

Finally, since gN(|y|2)Ctaming(|y|2(N+12))g_{N}(|y|^{2})\geq C_{\text{taming}}\left(|y|^{2}-(N+\frac{1}{2})\right) by definition, we get that

𝒜3(y,y)\displaystyle\mathcal{A}_{3}(y,y) Ctaming3|y|2|y|2dx+Ctaming(N+12)y02\displaystyle\leq-C_{\text{taming}}\int_{\mathbb{R}^{3}}|y|^{2}|\nabla y|^{2}\mathrm{d}x+C_{\text{taming}}(N+\frac{1}{2})\|\nabla y\|_{\mathcal{H}^{0}}^{2}
=Ctaming(|𝒗||𝒗|L22+|𝒗||𝑩|L22\displaystyle=-C_{\text{taming}}\big{(}\||\bm{v}||\nabla\bm{v}|\|_{L^{2}}^{2}+\||\bm{v}||\nabla\bm{B}|\|_{L^{2}}^{2}
+|𝑩||𝒗|L22+|𝑩||𝑩|L22)+Ctaming(N+12)y02.\displaystyle\quad+\||\bm{B}||\nabla\bm{v}|\|_{L^{2}}^{2}+\||\bm{B}||\nabla\bm{B}|\|_{L^{2}}^{2}\big{)}+C_{\text{taming}}(N+\frac{1}{2})\|\nabla y\|_{\mathcal{H}^{0}}^{2}.

Since Ctaming=2C_{\text{taming}}=2, we get (2.10) by combining the above three estimates. ∎

Lemma 2.3.

Let yn,y~𝒱y_{n},\tilde{y}\in\mathcal{V} and y1y\in\mathcal{H}^{1}. Let Ω:=supp(y~)\Omega:=\operatorname*{supp}(\tilde{y}) and assume that

supnyn1<,limn(yny)1Ω2=0.\displaystyle\sup_{n}\|y_{n}\|_{\mathcal{H}^{1}}<\infty,\quad\lim_{n\rightarrow\infty}\|(y_{n}-y)1_{\Omega}\|_{\mathcal{L}^{2}}=0.

Then

limn𝒜(yn),y~1=𝒜(y),y~1.\displaystyle\lim_{n\rightarrow\infty}\langle\mathcal{A}(y_{n}),\tilde{y}\rangle_{\mathcal{H}^{1}}=\langle\mathcal{A}(y),\tilde{y}\rangle_{\mathcal{H}^{1}}.
Proof.

The proof follows in the same way as in [39, Lemma 2.3, p. 533 f.]. ∎

2.2. Existence and Uniqueness of Weak Solutions

In this section we will study the well-posedness of the weak formulation of the TMHD equations. We start by stating our notion of weak solution. We proceed to show uniqueness first and then existence of weak solutions via a Faedo-Galerkin approximation scheme.

Definition 2.4 (Weak solution).

Let y00y_{0}\in\mathcal{H}^{0}, fLloc2(+;0)f\in L^{2}_{\text{loc}}(\mathbb{R}_{+};\mathcal{H}^{0}). Let y=(𝐯𝐁)y=\begin{pmatrix}\bm{v}\\ \bm{B}\end{pmatrix} where 𝐯\bm{v} and 𝐁\bm{B} are measurable vector fields, 𝐯,𝐁:+×33\bm{v},\bm{B}\colon\mathbb{R}_{+}\times\mathbb{R}^{3}\rightarrow\mathbb{R}^{3}. We call yy a weak solution of the tamed MHD equations if

  1. (i)

    𝒗,𝑩Lloc(+;L4(3;3))Lloc2(+;1)\bm{v},\bm{B}\in L^{\infty}_{\text{loc}}(\mathbb{R}_{+};L^{4}(\mathbb{R}^{3};\mathbb{R}^{3}))\cap L^{2}_{\text{loc}}(\mathbb{R}_{+};\mathbb{H}^{1}).

  2. (ii)

    For all y~𝒱\tilde{y}\in\mathcal{V} and t0t\geq 0,

    (2.11) y(t),y~0=y0,y~00ty,y~0ds0t(𝒗)𝒗,𝒗~𝑳2ds+0t(𝑩)𝑩,𝒗~𝑳2ds0t(𝒗)𝑩,𝑩~𝑳2ds+0t(𝑩)𝒗,𝑩~𝑳2dsgN(|y|2)y,y~L2ds+0tf,y~0ds.\begin{split}\langle y(t),\tilde{y}\rangle_{\mathcal{H}^{0}}&=\langle y_{0},\tilde{y}\rangle_{\mathcal{H}^{0}}-\int_{0}^{t}\langle\nabla y,\nabla\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s-\int_{0}^{t}\langle(\bm{v}\cdot\nabla)\bm{v},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}\mathrm{d}s+\int_{0}^{t}\langle(\bm{B}\cdot\nabla)\bm{B},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}\mathrm{d}s\\ &\quad-\int_{0}^{t}\langle(\bm{v}\cdot\nabla)\bm{B},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}\mathrm{d}s+\int_{0}^{t}\langle(\bm{B}\cdot\nabla)\bm{v},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}\mathrm{d}s-\int\langle g_{N}(|y|^{2})y,\tilde{y}\rangle_{L^{2}}\mathrm{d}s+\int_{0}^{t}\langle f,\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s.\end{split}
  3. (iii)

    limt0y(t)y02=0\lim_{t\downarrow 0}\|y(t)-y_{0}\|_{\mathcal{L}^{2}}=0.

This definition deals with purely spatial test functions, but it can be extended to the case of test functions that depend also on time, as the next proposition demonstrates.

Proposition 2.5.

Let y=(𝐯𝐁)y=\begin{pmatrix}\bm{v}\\ \bm{B}\end{pmatrix} be a weak solution and let T>0T>0. Then for all y~C1([0,T];1)\tilde{y}\in C^{1}([0,T];\mathcal{H}^{1}) such that y~(T)=0\tilde{y}(T)=0, we have

(2.12) 0Ty,ty~0dt=y0,y~(0)0+0ty,y~0ds+0t(𝒗)𝒗,𝒗~𝑳2ds0t(𝑩)𝑩,𝒗~𝑳2ds+0t(𝒗)𝑩,𝑩~𝑳2ds0t(𝑩)𝒗,𝑩~𝑳2ds+0tgN(|y|2)y,y~L2ds0tf,y~0ds.\begin{split}\int_{0}^{T}\langle y,\partial_{t}\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}t&=-\langle y_{0},\tilde{y}(0)\rangle_{\mathcal{H}^{0}}+\int_{0}^{t}\langle\nabla y,\nabla\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s\\ &+\int_{0}^{t}\langle(\bm{v}\cdot\nabla)\bm{v},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}\mathrm{d}s-\int_{0}^{t}\langle(\bm{B}\cdot\nabla)\bm{B},\tilde{\bm{v}}\rangle_{\bm{L}^{2}}\mathrm{d}s\\ &+\int_{0}^{t}\langle(\bm{v}\cdot\nabla)\bm{B},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}\mathrm{d}s-\int_{0}^{t}\langle(\bm{B}\cdot\nabla)\bm{v},\tilde{\bm{B}}\rangle_{\bm{L}^{2}}\mathrm{d}s\\ &+\int_{0}^{t}\langle g_{N}(|y|^{2})y,\tilde{y}\rangle_{L^{2}}\mathrm{d}s-\int_{0}^{t}\langle f,\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s.\end{split}

Moreover, the following energy equality holds:

(2.13) y(t)02+20ty02ds+20tgN(|y|2)|y|L22ds=y002+20tf,y0ds,t0.\begin{split}\|y(t)\|_{\mathcal{H}^{0}}^{2}&+2\int_{0}^{t}\|\nabla y\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s+2\int_{0}^{t}\|\sqrt{g_{N}(|y|^{2})}|y|\|_{L^{2}}^{2}\mathrm{d}s\\ &=\|y_{0}\|_{\mathcal{H}^{0}}^{2}+2\int_{0}^{t}\langle f,y\rangle_{\mathcal{H}^{0}}\mathrm{d}s,\quad\forall t\geq 0.\end{split}
Proof.

To prove that the right-hand side of (2.12) is well-defined, we proceed as in [39, Proposition 3.3, pp. 534 f.]. The energy equality then follows from approximating the solution accordingly, cf. [3, Lemma 2.7, p. 635]. ∎

Theorem 2.6 (Uniqueness of weak solutions).

Let y1,y2y_{1},y_{2} be two weak solutions in the sense of Definition 2.4. Then we have y1=y2y_{1}=y_{2}.

Proof.

We fix a T>0T>0 and set z(t):=y1(t)y2(t)=:(𝒗𝑩)z(t):=y_{1}(t)-y_{2}(t)=:\begin{pmatrix}\bm{v}\\ \bm{B}\end{pmatrix}. Then we find

z(t)02\displaystyle\|z(t)\|_{\mathcal{H}^{0}}^{2} =20tz02ds20t𝒗,(𝒗1)𝒗1(𝒗2)𝒗2𝑳2ds\displaystyle=-2\int_{0}^{t}\|\nabla z\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s-2\int_{0}^{t}\langle\bm{v},(\bm{v}_{1}\cdot\nabla)\bm{v}_{1}-(\bm{v}_{2}\cdot\nabla)\bm{v}_{2}\rangle_{\bm{L}^{2}}\mathrm{d}s
+20t𝒗,(𝑩1)𝑩1(𝑩2)𝑩2𝑳2ds\displaystyle+2\int_{0}^{t}\langle\bm{v},(\bm{B}_{1}\cdot\nabla)\bm{B}_{1}-(\bm{B}_{2}\cdot\nabla)\bm{B}_{2}\rangle_{\bm{L}^{2}}\mathrm{d}s
20t𝑩,(𝒗1)𝑩1(𝒗2)𝑩2𝑳2ds\displaystyle-2\int_{0}^{t}\langle\bm{B},(\bm{v}_{1}\cdot\nabla)\bm{B}_{1}-(\bm{v}_{2}\cdot\nabla)\bm{B}_{2}\rangle_{\bm{L}^{2}}\mathrm{d}s
+20t𝑩,(𝑩1)𝒗1(𝑩2)𝒗2𝑳2ds\displaystyle+2\int_{0}^{t}\langle\bm{B},(\bm{B}_{1}\cdot\nabla)\bm{v}_{1}-(\bm{B}_{2}\cdot\nabla)\bm{v}_{2}\rangle_{\bm{L}^{2}}\mathrm{d}s
20tz,gN(|y1|2)y1gN(|y2|2)y22ds\displaystyle-2\int_{0}^{t}\langle z,g_{N}(|y_{1}|^{2})y_{1}-g_{N}(|y_{2}|^{2})y_{2}\rangle_{\mathcal{L}^{2}}\mathrm{d}s
=:IL(t)+INL(t)+IT(t).\displaystyle=:I_{L}(t)+I_{NL}(t)+I_{T}(t).

We first investigate the linear term and find, using integration by parts and the definition of the norms 1\|\cdot\|_{\mathcal{H}^{1}} that

IL(t)=20tz12ds20tz02ds.\displaystyle I_{L}(t)=-2\int_{0}^{t}\|z\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s-2\int_{0}^{t}\|z\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s.

The nonlinear term INL(t)I_{NL}(t) consists of four terms of the same structure which are estimated by Young’s inequality:

𝝋,(𝝍1)𝜽1(𝝍2)𝜽2𝑳2=𝝋,𝝍1𝜽1𝝍2𝜽2𝑳214𝝋02+𝝍1𝜽1𝝍2𝜽2L22.\displaystyle\langle\bm{\varphi},(\bm{\psi}_{1}\cdot\nabla)\bm{\theta}_{1}-(\bm{\psi}_{2}\cdot\nabla)\bm{\theta}_{2}\rangle_{\bm{L}^{2}}=-\langle\nabla\bm{\varphi},\bm{\psi}_{1}\otimes\bm{\theta}_{1}-\bm{\psi}_{2}\otimes\bm{\theta}_{2}\rangle_{\bm{L}^{2}}\leq\frac{1}{4}\|\nabla\bm{\varphi}\|_{\mathbb{H}^{0}}^{2}+\|\bm{\psi}_{1}\otimes\bm{\theta}_{1}-\bm{\psi}_{2}\otimes\bm{\theta}_{2}\|_{L^{2}}^{2}.

Thus we need to estimate the latter term which we do by applying the Sobolev embedding theorem as well as Young’s inequality:

𝝍1𝜽1𝝍2𝜽2L22\displaystyle\|\bm{\psi}_{1}\otimes\bm{\theta}_{1}-\bm{\psi}_{2}\otimes\bm{\theta}_{2}\|_{L^{2}}^{2}
2(𝝍1𝝍2𝑳42𝜽1𝑳42+𝝍2𝑳42𝜽1𝜽2𝑳42)\displaystyle\leq 2\left(\|\bm{\psi}_{1}-\bm{\psi}_{2}\|_{\bm{L}^{4}}^{2}\|\bm{\theta}_{1}\|_{\bm{L}^{4}}^{2}+\|\bm{\psi}_{2}\|_{\bm{L}^{4}}^{2}\|\bm{\theta}_{1}-\bm{\theta}_{2}\|_{\bm{L}^{4}}^{2}\right)
2C1,0,2,2,4(𝝍1𝝍213/2𝝍1𝝍201/2𝜽1𝑳42+𝝍2𝑳42𝜽1𝜽213/2𝜽1𝜽201/2)\displaystyle\leq 2C_{1,0,2,2,4}\big{(}\|\bm{\psi}_{1}-\bm{\psi}_{2}\|_{\mathbb{H}^{1}}^{3/2}\|\bm{\psi}_{1}-\bm{\psi}_{2}\|_{\mathbb{H}^{0}}^{1/2}\|\bm{\theta}_{1}\|_{\bm{L}^{4}}^{2}+\|\bm{\psi}_{2}\|_{\bm{L}^{4}}^{2}\|\bm{\theta}_{1}-\bm{\theta}_{2}\|_{\mathbb{H}^{1}}^{3/2}\|\bm{\theta}_{1}-\bm{\theta}_{2}\|_{\mathbb{H}^{0}}^{1/2}\big{)}
Cε(𝝍1𝝍202𝜽1𝑳48+𝜽1𝜽202𝝍2𝑳48)+ε𝝍1𝝍212+ε𝜽1𝜽212.\displaystyle\leq C_{\varepsilon}\left(\|\bm{\psi}_{1}-\bm{\psi}_{2}\|_{\mathbb{H}^{0}}^{2}\|\bm{\theta}_{1}\|_{\bm{L}^{4}}^{8}+\|\bm{\theta}_{1}-\bm{\theta}_{2}\|_{\mathbb{H}^{0}}^{2}\|\bm{\psi}_{2}\|_{\bm{L}^{4}}^{8}\right)+\varepsilon\|\bm{\psi}_{1}-\bm{\psi}_{2}\|_{\mathbb{H}^{1}}^{2}+\varepsilon\|\bm{\theta}_{1}-\bm{\theta}_{2}\|_{\mathbb{H}^{1}}^{2}.

We collect the four terms and use the previous estimates to find (again using the definition of the Sobolev norms)

INL(t)(1+8ε)0tz12ds+CεMy1,y2,t0tz02ds,\displaystyle I_{NL}(t)\leq(1+8\varepsilon)\int_{0}^{t}\|z\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s+C_{\varepsilon}M_{y_{1},y_{2},t}\int_{0}^{t}\|z\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s,

where, by our definition of weak solutions

My1,y2,t:=ess sups[0,t](1+y148+y248)<.M_{y_{1},y_{2},t}:=\text{ess sup}_{s\in[0,t]}\left(1+\|y_{1}\|_{\mathcal{L}^{4}}^{8}+\|y_{2}\|_{\mathcal{L}^{4}}^{8}\right)<\infty.

Concerning the taming term, IT(t)I_{T}(t), we have, using the mean-value theorem of calculus (and the fact that |g|C|g^{\prime}|\leq C), the inequality gN(r)Crg_{N}(r)\leq Cr, Sobolev’s embedding theorem and Young’s inequality (for (p,q)=(4,4/3)(p,q)=(4,4/3))

|z,gN(|y1|2)y1gN(|y2|2)y2L2|3|z|2gN(|y1|2)dx+3|z||gN(|y1|2)gN(|y2|2)||y2|dx\displaystyle|\langle z,g_{N}(|y_{1}|^{2})y_{1}-g_{N}(|y_{2}|^{2})y_{2}\rangle_{L^{2}}|\leq\int_{\mathbb{R}^{3}}|z|^{2}g_{N}(|y_{1}|^{2})\mathrm{d}x+\int_{\mathbb{R}^{3}}|z||g_{N}(|y_{1}|^{2})-g_{N}(|y_{2}|^{2})||y_{2}|\mathrm{d}x
C3|z|2|y1|2+|z|||y1|2|y2|2||y2|dx\displaystyle\leq C\int_{\mathbb{R}^{3}}|z|^{2}|y_{1}|^{2}+|z|||y_{1}|^{2}-|y_{2}|^{2}||y_{2}|\mathrm{d}x
C3|z|2|y1|2+|z|2(|y1|+|y2|)|y2|dx\displaystyle\leq C\int_{\mathbb{R}^{3}}|z|^{2}|y_{1}|^{2}+|z|^{2}\left(|y_{1}|+|y_{2}|\right)|y_{2}|\mathrm{d}x
Cz42|y1|+|y2|L42\displaystyle\leq C\|z\|_{\mathcal{L}^{4}}^{2}\||y_{1}|+|y_{2}|\|_{L^{4}}^{2}
Cz13/2z01/2|y1|+|y2|L42\displaystyle\leq C\|z\|_{\mathcal{H}^{1}}^{3/2}\|z\|_{\mathcal{H}^{0}}^{1/2}\||y_{1}|+|y_{2}|\|_{L^{4}}^{2}
Cεz02(y148+y248)+εz12.\displaystyle\leq C_{\varepsilon}\|z\|_{\mathcal{H}^{0}}^{2}\left(\|y_{1}\|_{\mathcal{L}^{4}}^{8}+\|y_{2}\|_{\mathcal{L}^{4}}^{8}\right)+\varepsilon\|z\|_{\mathcal{H}^{1}}^{2}.

This implies that

IT(t)\displaystyle I_{T}(t) =20tz,gN(|y1|2)y1gN(|y2|2)y22ds\displaystyle=-2\int_{0}^{t}\langle z,g_{N}(|y_{1}|^{2})y_{1}-g_{N}(|y_{2}|^{2})y_{2}\rangle_{\mathcal{L}^{2}}\mathrm{d}s
2ε0tz12ds+Cε0ty02(y148+y248)ds\displaystyle\leq 2\varepsilon\int_{0}^{t}\|z\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s+C_{\varepsilon}\int_{0}^{t}\|y\|_{\mathcal{H}^{0}}^{2}\left(\|y_{1}\|_{\mathcal{L}^{4}}^{8}+\|y_{2}\|_{\mathcal{L}^{4}}^{8}\right)\mathrm{d}s
2ε0tz12ds+CεMy1,y2,t0tz02ds.\displaystyle\leq 2\varepsilon\int_{0}^{t}\|z\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s+C_{\varepsilon}M_{y_{1},y_{2},t}\int_{0}^{t}\|z\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s.

Hence, altogether we have the inequality

z(t)02\displaystyle\|z(t)\|_{\mathcal{H}^{0}}^{2} 20tz(s)12ds+(1+10ε)0tz(s)12ds\displaystyle\leq-2\int_{0}^{t}\|z(s)\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s+(1+10\varepsilon)\int_{0}^{t}\|z(s)\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s
+CεMy1,y2,t0tz(s)02ds.\displaystyle+C_{\varepsilon}M_{y_{1},y_{2},t}\int_{0}^{t}\|z(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s.

Choosing ε=110\varepsilon=\frac{1}{10}, we find that

z(t)02CMy1,y2,t0tz(s)02ds\displaystyle\|z(t)\|_{\mathcal{H}^{0}}^{2}\leq CM_{y_{1},y_{2},t}\int_{0}^{t}\|z(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s

and Gronwall’s lemma implies that z(s)=0z(s)=0 for all s[0,t]s\in[0,t]. ∎

Our next step is to establish existence of weak solutions, i.e., the existence part of Theorem 1.2.

Proof of existence of a weak solution.

We use a Faedo-Galerkin approximation on [0,T][0,T]. Take an orthonormal basis {ek|k}𝒱\{e_{k}\leavevmode\nobreak\ |\leavevmode\nobreak\ k\in\mathbb{N}\}\subset\mathcal{V} of 1\mathcal{H}^{1} such that span{ek}\operatorname*{span}\{e_{k}\} is dense in 3\mathcal{H}^{3}. Fix an nn\in\mathbb{N}. For z=(z1,,zn)nz=\begin{pmatrix}z^{1},\ldots,z^{n}\end{pmatrix}\in\mathbb{R}^{n} and e=(e1,,en)𝒱ne=\begin{pmatrix}e_{1},\ldots,e_{n}\end{pmatrix}\in\mathcal{V}^{n} set

ze\displaystyle z\cdot e :=i=1nziei𝒱\displaystyle:=\sum_{i=1}^{n}z^{i}e_{i}\in\mathcal{V}
bn(z)\displaystyle b_{n}(z) :=(𝒜(ze),ei1)i=1n\displaystyle:=\left(\langle\mathcal{A}(z\cdot e),e_{i}\rangle_{\mathcal{H}^{1}}\right)_{i=1}^{n}
fn(t)\displaystyle f_{n}(t) :=(ρnf(t),e11,,ρnfn(t),en1),\displaystyle:=\left(\langle\rho_{n}*f(t),e_{1}\rangle_{\mathcal{H}^{1}},\ldots,\langle\rho_{n}*f_{n}(t),e_{n}\rangle_{\mathcal{H}^{1}}\right),

where the ρn\rho_{n} are a family of mollifiers such that

ρnf(t)0f(t)0,limnρnf(t)f(t)0=0.\|\rho_{n}*f(t)\|_{\mathcal{H}^{0}}\leq\|f(t)\|_{\mathcal{H}^{0}},\quad\lim_{n\rightarrow\infty}\|\rho_{n}*f(t)-f(t)\|_{\mathcal{H}^{0}}=0.

Now we consider the ordinary differential equation

(2.14) {dzndt(t)=bn(zn(t))+fn(t),zn(0)=(y0,ei1)i=1n.\begin{cases}\frac{\mathrm{d}z_{n}}{\mathrm{d}t}(t)&=b_{n}(z_{n}(t))+f_{n}(t),\\ z_{n}(0)&=\left(\langle y_{0},e_{i}\rangle_{\mathcal{H}^{1}}\right)_{i=1}^{n}.\end{cases}

Then we have

z,bn(z)n=i=1nzi𝒜(ze),ei1=𝒜(ze),ze1.\displaystyle\langle z,b_{n}(z)\rangle_{\mathbb{R}^{n}}=\sum_{i=1}^{n}z^{i}\langle\mathcal{A}(z\cdot e),e_{i}\rangle_{\mathcal{H}^{1}}=\langle\mathcal{A}(z\cdot e),z\cdot e\rangle_{\mathcal{H}^{1}}.

Noting that ze32z\cdot e\in\mathcal{H}^{3}\subset\mathcal{H}^{2}, the estimate (2.10) on 𝒜(y),y1\langle\mathcal{A}(y),y\rangle_{\mathcal{H}^{1}} from Lemma 2.2 then yields

z,bn(z)n=𝒜(ze),ze1Cn,N|z|2,\langle z,b_{n}(z)\rangle_{\mathbb{R}^{n}}=\langle\mathcal{A}(z\cdot e),z\cdot e\rangle_{\mathcal{H}^{1}}\leq C_{n,N}|z|^{2},

where the constant Cn,NC_{n,N} contains the norms of all the eie_{i} for i=1,,ni=1,\ldots,n (as all the terms on the right-hand side of (2.10) are quadratic in yy). Moreover, since

zbn(z)=(𝒜(ze),ei1)i=1nnz\mapsto b_{n}(z)=\left(\langle\mathcal{A}(z\cdot e),e_{i}\rangle_{\mathcal{H}^{1}}\right)_{i=1}^{n}\in\mathbb{R}^{n}

is a polynomial in the components of zz in each component, it is a smooth map. Hence, the differential equation (2.14) has a unique solution zn(t)z_{n}(t) such that

zn(t)=zn(0)+0tbn(zn(s))ds+0tfn(s)ds,t0.z_{n}(t)=z_{n}(0)+\int_{0}^{t}b_{n}(z_{n}(s))\mathrm{d}s+\int_{0}^{t}f_{n}(s)\mathrm{d}s,\quad t\geq 0.

Now we set

yn(t)\displaystyle y_{n}(t) :=zn(t)e=i=1nzni(t)ei,\displaystyle:=z_{n}(t)\cdot e=\sum_{i=1}^{n}z_{n}^{i}(t)e_{i},
n𝒜(yn(t))\displaystyle\prod_{n}\mathcal{A}(y_{n}(t)) :=i=1n𝒜(yn(t)),ei1ei,\displaystyle:=\sum_{i=1}^{n}\langle\mathcal{A}(y_{n}(t)),e_{i}\rangle_{\mathcal{H}^{1}}e_{i},
nf(t)\displaystyle\prod_{n}f(t) :=i=1nρnf(t),ei1ei.\displaystyle:=\sum_{i=1}^{n}\langle\rho_{n}*f(t),e_{i}\rangle_{\mathcal{H}^{1}}e_{i}.

Then the function yny_{n} satisfies the differential equation

tyn(t)\displaystyle\partial_{t}y_{n}(t) =(tzn(t))e=(bn(zn(t))e)+(fn(t)e)\displaystyle=\left(\partial_{t}z_{n}(t)\right)\cdot e=\left(b_{n}(z_{n}(t))\cdot e\right)+\left(f_{n}(t)\cdot e\right)
=n𝒜(yn(t))+nf(t)\displaystyle=\prod_{n}\mathcal{A}(y_{n}(t))+\prod_{n}f(t)

and for all nkn\geq k

(2.15) yn(t),ek1=yn(0),ek1+0tn𝒜(yn(s)),ek1ds+0tnf(s),ek1ds=y0,ek1+0t𝒜(yn(s)),ek1ds+0tρnf(s),ek1ds.\begin{split}\langle y_{n}(t),e_{k}\rangle_{\mathcal{H}^{1}}&=\langle y_{n}(0),e_{k}\rangle_{\mathcal{H}^{1}}\\ &\quad+\int_{0}^{t}\Big{\langle}\prod_{n}\mathcal{A}(y_{n}(s)),e_{k}\Big{\rangle}_{\mathcal{H}^{1}}\mathrm{d}s+\int_{0}^{t}\Big{\langle}\prod_{n}f(s),e_{k}\Big{\rangle}_{\mathcal{H}^{1}}\mathrm{d}s\\ &=\langle y_{0},e_{k}\rangle_{\mathcal{H}^{1}}+\int_{0}^{t}\langle\mathcal{A}(y_{n}(s)),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s+\int_{0}^{t}\langle\rho_{n}*f(s),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s.\end{split}

This implies that

yn(t)12=y012+20t𝒜(yn(s)),yn(s)1ds+20tρnf(s),yn(s)1ds.\|y_{n}(t)\|_{\mathcal{H}^{1}}^{2}=\|y_{0}\|_{\mathcal{H}^{1}}^{2}+2\int_{0}^{t}\langle\mathcal{A}(y_{n}(s)),y_{n}(s)\rangle_{\mathcal{H}^{1}}\mathrm{d}s+2\int_{0}^{t}\langle\rho_{n}*f(s),y_{n}(s)\rangle_{\mathcal{H}^{1}}\mathrm{d}s.

Using the definition of 1\mathcal{H}^{1}, the self-adjointness of (IΔ)(I-\Delta) and Young’s inequality for the last term as well as (2.10) for the second term (dropping the nonlinear terms, all of which have negative signs), we find that

yn(t)12\displaystyle\|y_{n}(t)\|_{\mathcal{H}^{1}}^{2} y0120t12yn22+2yn02+4(N+1)yn02ds+20tf(s)02ds.\displaystyle\leq\|y_{0}\|_{\mathcal{H}^{1}}^{2}-\int_{0}^{t}\frac{1}{2}\|y_{n}\|_{\mathcal{H}^{2}}^{2}+2\|y_{n}\|_{\mathcal{H}^{0}}^{2}+4(N+1)\|\nabla y_{n}\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s+2\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s.

This implies

(2.16) yn(t)12+0tyn22dsCN(y012+0tyn12ds+0tf02ds).\|y_{n}(t)\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\|y_{n}\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s\leq C_{N}\left(\|y_{0}\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\|y_{n}\|_{\mathcal{H}^{1}}^{2}\mathrm{d}s+\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s\right).

Dropping the second term on the left-hand side and using Gronwall’s lemma, we find that

suptTyn(t)12Cy0,N,T,f.\sup_{t\leq T}\|y_{n}(t)\|_{\mathcal{H}^{1}}^{2}\leq C_{y_{0},N,T,f}.

Using this information in (2.16), we find that also

0tyn22dsCy0,N,T,f.\int_{0}^{t}\|y_{n}\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s\leq C_{y_{0},N,T,f}.

Now for a fixed kk\in\mathbb{N}, set Gn(k)(t):=yn(t),ek1G_{n}^{(k)}(t):=\langle y_{n}(t),e_{k}\rangle_{\mathcal{H}^{1}}. Then by the preceding step, the Gn(k)G_{n}^{(k)} are uniformly bounded on [0,T][0,T]. Furthermore, they are equi-continuous, as can be seen from

|Gn(k)(t)Gn(k)(r)|\displaystyle|G_{n}^{(k)}(t)-G_{n}^{(k)}(r)| =|yn(t),ek1yn(r),ek1|\displaystyle=|\langle y_{n}(t),e_{k}\rangle_{\mathcal{H}^{1}}-\langle y_{n}(r),e_{k}\rangle_{\mathcal{H}^{1}}|
=|rt𝒜(yn(s),ek1ds+rtρnf(s),ek1ds|\displaystyle=\left|\int_{r}^{t}\langle\mathcal{A}(y_{n}(s),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s+\int_{r}^{t}\langle\rho_{n}*f(s),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s\right|
Crt(1+yn(s)13)ek3ds+ek2rtf(s)0ds,\displaystyle\leq C\int_{r}^{t}(1+\|y_{n}(s)\|_{\mathcal{H}^{1}}^{3})\|e_{k}\|_{\mathcal{H}^{3}}\mathrm{d}s+\|e_{k}\|_{\mathcal{H}^{2}}\int_{r}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s,

and equation (2.16), where we used Lemma 2.2 (i). Therefore, the theorem of Arzelà-Ascoli implies that (Gn(k))n\left(G_{n}^{(k)}\right)_{n\in\mathbb{N}} is sequentially relatively compact with respect to the uniform topology and hence there is a subsequence such that (Gnlk(k))l\left(G_{n_{l}^{k}}^{(k)}\right)_{l\in\mathbb{N}} converges uniformly to a limit G(k)G^{(k)}. Now a diagonalisation argument implies that there is a subsequence, which we denote again by (Gnk)n(G_{n}^{k})_{n\in\mathbb{N}}

k:limnsupt[0,T]|Gn(k)(t)G(k)(t)|=0.\forall k\in\mathbb{N}:\quad\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|G_{n}^{(k)}(t)-G^{(k)}(t)|=0.

Again invoking (2.16), we see that supnsupt[0,T]yn(t)12C\sup_{n\in\mathbb{N}}\sup_{t\in[0,T]}\|y_{n}(t)\|_{\mathcal{H}^{1}}^{2}\leq C. Since closed balls of 1\mathcal{H}^{1} are weakly compact by the Banach-Alaoglu theorem, we find that for almost all t[0,T]t\in[0,T] we have the 1\mathcal{H}^{1}-weak convergence yn(t)y(t)y_{n}(t)\rightharpoonup y(t) as nn\rightarrow\infty. To conclude that this holds true for all t[0,T]t\in[0,T] we note that G(k)G^{(k)}, as the uniform limit of continuous functions, is continuous, and that on the other hand by the weak convergence just mentioned,

Gn(k)(t)=yn(t),ek1y(t),ek1.G_{n}^{(k)}(t)=\langle y_{n}(t),e_{k}\rangle_{\mathcal{H}^{1}}\rightarrow\langle y(t),e_{k}\rangle_{\mathcal{H}^{1}}.

Hence, ty(t),ek1t\mapsto\langle y(t),e_{k}\rangle_{\mathcal{H}^{1}} is continuous for all kk\in\mathbb{N} and by the density of the {ek}k\{e_{k}\}_{k\in\mathbb{N}}, we find that ty(t),y~1t\mapsto\langle y(t),\tilde{y}\rangle_{\mathcal{H}^{1}} is continuous for all y~1\tilde{y}\in\mathcal{H}^{1}. We can thus conclude that ty(t)t\mapsto y(t) is weakly continuous in 1\mathcal{H}^{1}, and that for all y~1\tilde{y}\in\mathcal{H}^{1}:

limnsupt[0,T]|yn(t)y(t),y~1|=0.\displaystyle\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|\langle y_{n}(t)-y(t),\tilde{y}\rangle_{\mathcal{H}^{1}}|=0.

This implies (by considering y~=(IΔ)1z~21\tilde{y}=(I-\Delta)^{-1}\tilde{z}\in\mathcal{H}^{2}\subset\mathcal{H}^{1} for z0z\in\mathcal{H}^{0} and using the formal self-adjointness of (IΔ)(I-\Delta))

limnsupt[0,T]|yn(t)y(t),z~0|=0.\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|\langle y_{n}(t)-y(t),\tilde{z}\rangle_{\mathcal{H}^{0}}|=0.

We next invoke the Helmholtz-Weyl decomposition 2=0(0)\mathcal{L}^{2}=\mathcal{H}^{0}\oplus\left(\mathcal{H}^{0}\right)^{\perp}. Since yn(t)y(t)10y_{n}(t)-y(t)\in\mathcal{H}^{1}\subset\mathcal{H}^{0}, this allows us to conclude that

(2.17) limnsupt[0,T]|yn(t)y(t),z~2|=0z~2.\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|\langle y_{n}(t)-y(t),\tilde{z}\rangle_{\mathcal{L}^{2}}|=0\quad\forall\tilde{z}\in\mathcal{L}^{2}.

To be more precise, we can use the Helmholtz-Weyl decomposition for L2(3;3)L^{2}(\mathbb{R}^{3};\mathbb{R}^{3}) for both the velocity component and the magnetic field component of ynyy_{n}-y, and putting these two together yields (2.17). Note that this equation implies the component-wise convergence

(2.18) limnsupt[0,T]|ϕi,n(t)ϕi(t),z~L2|=0zL2(3;),ϕ{𝒗,𝑩}.\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}|\langle\phi_{i,n}(t)-\phi_{i}(t),\tilde{z}\rangle_{L^{2}}|=0\quad\forall z\in L^{2}(\mathbb{R}^{3};\mathbb{R}),\phi\in\{\bm{v},\bm{B}\}.

This can be seen by taking z~\tilde{z} of the form z~=(0,,0,z,0,,0)\tilde{z}=(0,\ldots,0,z,0,\ldots,0), where zL2(3;)z\in L^{2}(\mathbb{R}^{3};\mathbb{R}).

From this equation as well as (2.16) and Fatou’s lemma, we get

0Ty(s)22dslim infn0Tyn(s)22ds<.\displaystyle\int_{0}^{T}\|y(s)\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s\leq\liminf_{n\rightarrow\infty}\int_{0}^{T}\|y_{n}(s)\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s<\infty.

Next we want to show that yy is indeed a solution of the tamed MHD equations (1.5).

To this end, recall first the following Friedrichs’ inequality222The first use of the inequality in the context of the Navier-Stokes equations seems to be in E. Hopf [23, p. 230]. Hopf uses the inequality and cites R. Courant’s and D. Hilbert’s book [9]. The inequality and a proof can be found in Chapter VII, Paragraph 3, Section 1, Satz 1, p. 489. Hopf also notes that the statement is not true for arbitrary bounded domains. For a more modern presentation, cf. J.C. Robinson, J.L. Rodrigo and W. Sadowski [36, Exercises 4.2–4.9, pp. 107 ff.]. (see e.g. [30]): let Q3Q\subset\mathbb{R}^{3} be a bounded cuboid. Then for all ε>0\varepsilon>0 there is a KεK_{\varepsilon}\in\mathbb{N} and functions hiεL2(G)h_{i}^{\varepsilon}\in L^{2}(G), i=1,,Kεi=1,\ldots,K_{\varepsilon} such that for all wW01,2(G)w\in W_{0}^{1,2}(G)

(2.19) Q|w(x)|2dxi=1Kε(Qw(x)hiε(x)dx)2+εQ|w(x)|2dx.\int_{Q}|w(x)|^{2}\mathrm{d}x\leq\sum_{i=1}^{K_{\varepsilon}}\left(\int_{Q}w(x)h_{i}^{\varepsilon}(x)\mathrm{d}x\right)^{2}+\varepsilon\int_{Q}|\nabla w(x)|^{2}\mathrm{d}x.

Now let GG¯QG\subset\bar{G}\subset Q and choose a smooth cutoff function ρ\rho such that 1ρ01\geq\rho\geq 0, ρ1\rho\equiv 1 on GG and suppρQ\operatorname*{supp}\rho\subset Q. Then we have for all j=1,2,3j=1,2,3 and ϕ{𝒗,𝑩}\phi\in\{\bm{v},\bm{B}\} that ρ(ϕj,n(t,)ϕj(t,))W01,2(Q)\rho(\phi_{j,n}(t,\cdot)-\phi_{j}(t,\cdot))\in W_{0}^{1,2}(Q) and hence by applying Friedrichs’ inequality, we find

G|yn(t,x)y(t,x)|2dx\displaystyle\int_{G}|y_{n}(t,x)-y(t,x)|^{2}\mathrm{d}x j=13Qρ2(x)|vj,n(t,x)vj(t,x)|2dx+Qρ2(x)|Bj,n(t,x)Bj(t,x)|2dx\displaystyle\leq\sum_{j=1}^{3}\int_{Q}\rho^{2}(x)|v_{j,n}(t,x)-v_{j}(t,x)|^{2}\mathrm{d}x+\int_{Q}\rho^{2}(x)|B_{j,n}(t,x)-B_{j}(t,x)|^{2}\mathrm{d}x
j=13i=1Kε(Q(vj,nvj)ρhiεdx)2+εj=13Q|[ρ(vj,nvj)]|2dx\displaystyle\leq\sum_{j=1}^{3}\sum_{i=1}^{K_{\varepsilon}}\left(\int_{Q}(v_{j,n}-v_{j})\rho h_{i}^{\varepsilon}\mathrm{d}x\right)^{2}+\varepsilon\sum_{j=1}^{3}\int_{Q}|\nabla\left[\rho(v_{j,n}-v_{j})\right]|^{2}\mathrm{d}x
+j=13i=1Kε(Q(Bj,nBj)ρhiεdx)2+εj=13Q|[ρ(Bj,nBj)]|2dx.\displaystyle\quad+\sum_{j=1}^{3}\sum_{i=1}^{K_{\varepsilon}}\left(\int_{Q}(B_{j,n}-B_{j})\rho h_{i}^{\varepsilon}\mathrm{d}x\right)^{2}+\varepsilon\sum_{j=1}^{3}\int_{Q}|\nabla\left[\rho(B_{j,n}-B_{j})\right]|^{2}\mathrm{d}x.

The first and third terms in the last two lines vanish in the limit nn\rightarrow\infty by (2.18), since ρhiεL2(3)\rho h_{i}^{\varepsilon}\in L^{2}(\mathbb{R}^{3}). To the second and fourth term (those proportional to ε\varepsilon), we apply the product rule for weak derivatives (see e.g. [13, Theorem 5.2.3.1 (iv)(iv), pp. 261 f.]) and (2.16) to see that the integrals are bounded. As ε>0\varepsilon>0 is arbitrary, we find

(2.20) limnsupt[0,T]G|yn(t,x)y(t,x)|2dx=0.\lim_{n\rightarrow\infty}\sup_{t\in[0,T]}\int_{G}|y_{n}(t,x)-y(t,x)|^{2}\mathrm{d}x=0.

Now let, for kk\in\mathbb{N}, supp(ek)Gk\operatorname*{supp}(e_{k})\subset G_{k} for bounded sets GkG_{k}. If we fix s[0,t]s\in[0,t], then by (2.16) and (2.20) we get

supnyn(s,)1<andlimn(yn(s,)y(s,))1GkL2=0.\displaystyle\sup_{n}\|y_{n}(s,\cdot)\|_{\mathcal{H}^{1}}<\infty\quad\text{and}\quad\lim_{n}\|(y_{n}(s,\cdot)-y(s,\cdot))1_{G_{k}}\|_{L^{2}}=0.

Thus an application of Lemma 2.3 and Lebesgue’s dominated convergence theorem yields

0t𝒜(yn(s)),ek1ds0t𝒜(y(s)),ek1ds.\displaystyle\int_{0}^{t}\langle\mathcal{A}(y_{n}(s)),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s\rightarrow\int_{0}^{t}\langle\mathcal{A}(y(s)),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s.

Having established this convergence, we can take limits nn\rightarrow\infty in (2.15) to find

y(t),ek1=y0,ek1+0t𝒜(y(s)),ek1ds+0tf(s),(IΔ)ek0ds.\displaystyle\langle y(t),e_{k}\rangle_{\mathcal{H}^{1}}=\langle y_{0},e_{k}\rangle_{\mathcal{H}^{1}}+\int_{0}^{t}\langle\mathcal{A}(y(s)),e_{k}\rangle_{\mathcal{H}^{1}}\mathrm{d}s+\int_{0}^{t}\langle f(s),(I-\Delta)e_{k}\rangle_{\mathcal{H}^{0}}\mathrm{d}s.

As this equation is linear in eke_{k}, it holds for linear combinations and since span{ek}\operatorname*{span}\{e_{k}\} forms a dense subset in 3\mathcal{H}^{3}, we conclude

y(t),y~1=y0,y~1+0t𝒜(y(s)),y~1ds+0tf(s),(IΔ)y~0ds.\displaystyle\langle y(t),\tilde{y}\rangle_{\mathcal{H}^{1}}=\langle y_{0},\tilde{y}\rangle_{\mathcal{H}^{1}}+\int_{0}^{t}\langle\mathcal{A}(y(s)),\tilde{y}\rangle_{\mathcal{H}^{1}}\mathrm{d}s+\int_{0}^{t}\langle f(s),(I-\Delta)\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s.

Now, letting y~:=(IΔ)1y¯\tilde{y}:=(I-\Delta)^{-1}\bar{y} for y¯3\bar{y}\in\mathcal{H}^{3},

y(t),y¯0=y0,y¯0+0t𝒜(y(s),y¯0ds+0tf(s),y¯0ds,\displaystyle\langle y(t),\bar{y}\rangle_{\mathcal{H}^{0}}=\langle y_{0},\bar{y}\rangle_{\mathcal{H}^{0}}+\int_{0}^{t}\langle\mathcal{A}(y(s),\bar{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s+\int_{0}^{t}\langle f(s),\bar{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s,

that is, Equation (2.11).

We are left to prove (i) - (iii). We will start with (iii). In equation (2.11) we set y~=(𝒗~,0)\tilde{y}=(\tilde{\bm{v}},0) and we find for almost all t0t\geq 0 that

(2.21) 𝒗t=Δ𝒗𝒫[(𝒗)𝒗+(𝑩)𝑩]𝒫[gN(|y|2)𝒗]+𝒇1(t)\frac{\partial\bm{v}}{\partial t}=\Delta\bm{v}-\mathcal{P}\left[\left(\bm{v}\cdot\nabla\right)\bm{v}+\left(\bm{B}\cdot\nabla\right)\bm{B}\right]-\mathcal{P}\left[g_{N}(|y|^{2})\bm{v}\right]+\bm{f}_{1}(t)

and infer from [43, Proposition 1.1.] the existence of a function p¯\bar{p} with p¯Lloc2(+;L2(3))\nabla\bar{p}\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3})) such that (for almost all t0t\geq 0)

𝒗t=Δ𝒗(𝒗)𝒗+(𝑩)𝑩gN(|y|2)𝒗+p¯+𝒇1(t).\displaystyle\frac{\partial\bm{v}}{\partial t}=\Delta\bm{v}-\left(\bm{v}\cdot\nabla\right)\bm{v}+\left(\bm{B}\cdot\nabla\right)\bm{B}-g_{N}(|y|^{2})\bm{v}+\nabla\bar{p}+\bm{f}_{1}(t).

Now we define the pressure pp by

p¯=p+|𝑩|22,\displaystyle\bar{p}=p+\frac{|\bm{B}|^{2}}{2},

and we observe that since |𝑩|22=(𝑩)𝑩Lloc2(+;L2(3;3))\nabla\frac{|\bm{B}|^{2}}{2}=(\bm{B}\cdot\nabla)\bm{B}\in L^{2}_{\text{loc}}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3};\mathbb{R}^{3})) due to (1.11), and by the regularity of p¯\bar{p}, pp also satisfies the right regularity condition pLloc2(+;L2(3))\nabla p\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3})).

In the same way (cf. Section 1.2.3), by testing against y~=(0,𝑩~)𝒱\tilde{y}=(0,\tilde{\bm{B}})\in\mathcal{V} to get

(2.22) 𝑩t=Δ𝑩𝒫(𝒗)𝑩+𝒫(𝑩)𝒗𝒫[gN(|(𝒗,𝑩)|2)𝑩]+𝒇2,\frac{\partial\bm{B}}{\partial t}=\Delta\bm{B}-\mathcal{P}\left(\bm{v}\cdot\nabla\right)\bm{B}+\mathcal{P}(\bm{B}\cdot\nabla)\bm{v}-\mathcal{P}\left[g_{N}(|(\bm{v},\bm{B})|^{2})\bm{B}\right]+\bm{f}_{2},

we can find a π\pi such that πLloc2(+;L2(3))\nabla\pi\in L_{\text{loc}}^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{3})) (note that this function in general cannot be expected to be equal to zero for our equation, as we argued in Section 1.2.3) such that for almost all t0t\geq 0

𝑩t=Δ𝑩(𝒗)𝑩+(𝑩)𝒗+πgN(|(𝒗,𝑩)|2)𝑩+𝒇2.\displaystyle\frac{\partial\bm{B}}{\partial t}=\Delta\bm{B}-\left(\bm{v}\cdot\nabla\right)\bm{B}+(\bm{B}\cdot\nabla)\bm{v}+\nabla\pi-g_{N}(|(\bm{v},\bm{B})|^{2})\bm{B}+\bm{f}_{2}.

These two statements imply (iii).

Next we want to prove (i). We take the scalar product in 0\mathcal{H}^{0} of the system (2.21), (2.22) with y(t)y(t) as well as (2.9) to find

(2.23) ty(t),y(t)0=𝒜(y(t)),y(t)0+f(t),y(t)0=y(t)02gN(|y(t)|2)|y(t)|L22+f(t),y(t)0y(t)02gN(|y(t)|2)|y(t)|L22+f(t)0y(t)0,\begin{split}\langle\partial_{t}y(t),y(t)\rangle_{\mathcal{H}^{0}}&=\langle\mathcal{A}(y(t)),y(t)\rangle_{\mathcal{H}^{0}}+\langle f(t),y(t)\rangle_{\mathcal{H}^{0}}\\ &=-\|\nabla y(t)\|_{\mathcal{H}^{0}}^{2}-\|\sqrt{g_{N}(|y(t)|^{2})}|y(t)|\|_{L^{2}}^{2}+\langle f(t),y(t)\rangle_{\mathcal{H}^{0}}\\ &\leq-\|\nabla y(t)\|_{\mathcal{H}^{0}}^{2}-\|\sqrt{g_{N}(|y(t)|^{2})}|y(t)|\|_{L^{2}}^{2}+\|f(t)\|_{\mathcal{H}^{0}}\|y(t)\|_{\mathcal{H}^{0}},\end{split}

which yields (as ty(t),y(t)0=12ddty(t)02=y(t)0ddty(t)0\langle\partial_{t}y(t),y(t)\rangle_{\mathcal{H}^{0}}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|y(t)\|_{\mathcal{H}^{0}}^{2}=\|y(t)\|_{\mathcal{H}^{0}}\frac{\mathrm{d}}{\mathrm{d}t}\|y(t)\|_{\mathcal{H}^{0}})

ddty(t)0f(t)0.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\|y(t)\|_{\mathcal{H}^{0}}\leq\|f(t)\|_{\mathcal{H}^{0}}.

Integrating this inequality gives

(2.24) y(t)0y00+0tf(s)0ds,\|y(t)\|_{\mathcal{H}^{0}}\leq\|y_{0}\|_{\mathcal{H}^{0}}+\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s,

and integrating (2.23), we find

(2.25) 0ty(s)02+gN(|y(s)|2)|y(s)|L22ds12y002+0tf(s)0y(s)0ds12y002+0tf(s)0(y00+0sf(r)0dr)dsy002+32[0tf(s)0ds]2.\begin{split}&\int_{0}^{t}\|\nabla y(s)\|_{\mathcal{H}^{0}}^{2}+\|\sqrt{g_{N}(|y(s)|^{2})}|y(s)|\|_{L^{2}}^{2}\mathrm{d}s\leq\frac{1}{2}\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\|y(s)\|_{\mathcal{H}^{0}}\mathrm{d}s\\ &\leq\frac{1}{2}\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\left(\|y_{0}\|_{\mathcal{H}^{0}}+\int_{0}^{s}\|f(r)\|_{\mathcal{H}^{0}}\mathrm{d}r\right)\mathrm{d}s\leq\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\frac{3}{2}\left[\int_{0}^{t}\|f(s)\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}.\end{split}

Thus we have shown (i).

For (ii), we note that

210\displaystyle\mathcal{H}^{2}\hookrightarrow\mathcal{H}^{1}\hookrightarrow\mathcal{H}^{0}

forms a Gelfand triple and thus by [43, Chapter III, Section 1, Lemma 1.2, p. 260 f.] and (2.21), (2.22) we get the equality

y(t)12=y012+20t𝒜(y),y1ds+20tf,y1ds.\displaystyle\|y(t)\|_{\mathcal{H}^{1}}^{2}=\|y_{0}\|_{\mathcal{H}^{1}}^{2}+2\int_{0}^{t}\langle\mathcal{A}(y),y\rangle_{\mathcal{H}^{1}}\mathrm{d}s+2\int_{0}^{t}\langle f,y\rangle_{\mathcal{H}^{1}}\mathrm{d}s.

The right-hand side is continuous in tt and thus together with the weak continuity of ty(t)1t\mapsto y(t)\in\mathcal{H}^{1} by [50, Proposition 21.23 (d), p. 258] we get that ty(t)1t\mapsto y(t)\in\mathcal{H}^{1} is strongly continuous. We then apply (2.10), (i) and Young’s inequality to find

y(t)12\displaystyle\|y(t)\|_{\mathcal{H}^{1}}^{2}
y0120ty22ds+20ty02ds+2(N+1)0ty02ds\displaystyle\leq\|y_{0}\|_{\mathcal{H}^{1}}^{2}-\int_{0}^{t}\|y\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s+2\int_{0}^{t}\|y\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s+2(N+1)\int_{0}^{t}\|\nabla y\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s
20t|𝒗||𝒗|𝑳22|𝑩||𝑩|𝑳22|𝒗||𝑩|𝑳22|𝑩||𝒗|𝑳22ds\displaystyle-2\int_{0}^{t}\||\bm{v}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{v}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}\mathrm{d}s
+20tf0y2ds\displaystyle+2\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}\|y\|_{\mathcal{H}^{2}}\mathrm{d}s
C(y012+0tf0ds)+C(1+N+t)(y002+[0tf0ds]2)\displaystyle\leq C\left(\|y_{0}\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s\right)+C(1+N+t)\left(\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\left[\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}\right)
20t|𝒗||𝒗|𝑳22|𝑩||𝑩|𝑳22|𝒗||𝑩|𝑳22|𝑩||𝒗|𝑳22ds\displaystyle-2\int_{0}^{t}\||\bm{v}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{v}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}\mathrm{d}s
120ty22ds.\displaystyle-\frac{1}{2}\int_{0}^{t}\|y\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s.

Hence we can conclude that

y(t)12+120ty22ds\displaystyle\|y(t)\|_{\mathcal{H}^{1}}^{2}+\frac{1}{2}\int_{0}^{t}\|y\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s
+20t|𝒗||𝒗|𝑳22+|𝑩||𝑩|𝑳22+|𝒗||𝑩|𝑳22+|𝑩||𝒗|𝑳22ds\displaystyle\quad+2\int_{0}^{t}\||\bm{v}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}+\||\bm{B}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}+\||\bm{v}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}+\||\bm{B}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}\mathrm{d}s
C(y012+0tf0ds)+C(1+N+t)(y002+[0tf0ds]2),\displaystyle\leq C\left(\|y_{0}\|_{\mathcal{H}^{1}}^{2}+\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s\right)+C(1+N+t)\left(\|y_{0}\|_{\mathcal{H}^{0}}^{2}+\left[\int_{0}^{t}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}\right),

which implies (1.11). ∎

2.3. Existence, Uniqueness and Regularity of a Strong Solution

In this section, we will show that for smooth initital data, the TMHD equations admit a smooth solution, i.e., Theorem 1.3. To prove this, we have to prove their regularity, which is done via the regularity result of Appendix A. We use the notation from Appendix A. We denote the space-time LpL^{p} norms by yp(ST)\|y\|_{\mathcal{L}^{p}(S_{T})}. Let (t)t0(\mathcal{F}_{t})_{t\geq 0} be the Gaussian heat semigroup on 3\mathbb{R}^{3}. We define its action on a function by the space-convolution

th(x):=1(4πt)3/23e|xz|24th(z)dz.\displaystyle\mathcal{F}_{t}h(x):=\frac{1}{(4\pi t)^{3/2}}\int_{\mathbb{R}^{3}}e^{-\frac{|x-z|^{2}}{4t}}h(z)\mathrm{d}z.

We can thus rewrite the operator ¯\bar{\mathcal{B}} as

¯(u,u)i(t,x)=j=130t(Dxjts)[uj(s)ui(s)kRiRkuk(s)uj(s)](x)ds.\displaystyle\bar{\mathcal{B}}(u,u)_{i}(t,x)=\sum_{j=1}^{3}\int_{0}^{t}\left(D_{x_{j}}\mathcal{F}_{t-s}\right)\left[u^{j}(s)u_{i}(s)-\sum_{k}R_{i}R_{k}u^{k}(s)u^{j}(s)\right](x)\mathrm{d}s.

Then by Appendix A, Theorem A.4, the weak solution yy constructed in Theorem 1.2 satisfies the integral equation

y(t,x)=fN(t,x)(y,y)(t,x),\displaystyle y(t,x)=f_{N}(t,x)-\mathcal{B}(y,y)(t,x),

where

fN(t,x)\displaystyle f_{N}(t,x) :=ty0Γ\oast¯(1+𝒫(gN(|y|2)yf))(t,x\displaystyle:=\mathcal{F}_{t}y_{0}-\Gamma\bar{\oast}\left(1_{\mathbb{R}_{+}}\mathcal{P}(g_{N}(|y|^{2})y-f)\right)(t,x
:=ty00tts(𝒫(gN(|y(s)|2)y(s)f(s)))(x)ds.\displaystyle:=\mathcal{F}_{t}y_{0}-\int_{0}^{t}\mathcal{F}_{t-s}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)(x)\mathrm{d}s.

The Riesz projection term vanishes here because the Helmholtz-Leray projection 𝒫\mathcal{P} ensures that the divergence of the taming term is zero, and the forcing term has zero divergence by assumption.

Proof of Theorem 1.3.

We first prove the regularity statement. To this end, we show the following for all kk\in\mathbb{N}:

(2.26) y10(53)k1(ST),DxαDtjy2(53)k(ST),|α|+2j2.y\in\mathcal{L}^{10\cdot(\frac{5}{3})^{k-1}}(S_{T}),D_{x}^{\alpha}D_{t}^{j}y\in\mathcal{L}^{2\cdot(\frac{5}{3})^{k}}(S_{T}),\quad|\alpha|+2j\leq 2.

We use a proof by induction.
k=1¯\underline{k=1}. First, by the Sobolev embedding theorem, we have

y10(ST)10\displaystyle\|y\|_{\mathcal{L}^{10}(S_{T})}^{10} =0T3|y(s,x)|10dxdsC2,0,2,6,10100T(y21/5y64/5)10ds\displaystyle=\int_{0}^{T}\int_{\mathbb{R}^{3}}|y(s,x)|^{10}\mathrm{d}x\mathrm{d}s\leq C_{2,0,2,6,10}^{10}\int_{0}^{T}\left(\|y\|_{\mathcal{H}^{2}}^{1/5}\|y\|_{\mathcal{L}^{6}}^{4/5}\right)^{10}\mathrm{d}s
=C2,0,2,6,10100Ty22y68dsC0Ty22y18ds\displaystyle=C_{2,0,2,6,10}^{10}\int_{0}^{T}\|y\|_{\mathcal{H}^{2}}^{2}\|y\|_{\mathcal{L}^{6}}^{8}\mathrm{d}s\leq C\int_{0}^{T}\|y\|_{\mathcal{H}^{2}}^{2}\|y\|_{\mathcal{H}^{1}}^{8}\mathrm{d}s
Csupt[0,T]y(t)180Ty(s)22ds<.\displaystyle\leq C\sup_{t\in[0,T]}\|y(t)\|_{\mathcal{H}^{1}}^{8}\int_{0}^{T}\|y(s)\|_{\mathcal{H}^{2}}^{2}\mathrm{d}s<\infty.

Hence we find that

gN(|y|2)y10/3(ST).\displaystyle g_{N}(|y|^{2})y\in\mathcal{L}^{10/3}(S_{T}).

Now, as y0y_{0} and ff are smooth, by Lemma A.2, we find that

DxαDtjfN10/3(ST),|α|+2j2.\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}\in\mathcal{L}^{10/3}(S_{T}),\quad|\alpha|+2j\leq 2.

An application of Theorem A.5 then yields

DxαDtjy10/3(ST),|α|+2j2.\displaystyle D_{x}^{\alpha}D_{t}^{j}y\in\mathcal{L}^{10/3}(S_{T}),\quad|\alpha|+2j\leq 2.

kk+1¯\underline{k\rightarrow k+1}. Assume (2.26). We want to apply the Sobolev embedding theorem, which is justified as

03+15(12(53)k23)+11/56=110(53)k.\displaystyle\frac{0}{3}+\frac{1}{5}\left(\frac{1}{2\cdot\left(\frac{5}{3}\right)^{k}}-\frac{2}{3}\right)+\frac{1-1/5}{6}=\frac{1}{10\cdot\left(\frac{5}{3}\right)^{k}}.

Therefore,

y10(53)k10(53)k\displaystyle\|y\|_{\mathcal{L}^{10\cdot\left(\frac{5}{3}\right)^{k}}}^{10\cdot\left(\frac{5}{3}\right)^{k}} C2,0,2(53)k,6,10(53)k10(53)k0T(y2,2(53)k1/5y64/5)10(53)kds\displaystyle\leq C^{10\cdot\left(\frac{5}{3}\right)^{k}}_{2,0,2\cdot\left(\frac{5}{3}\right)^{k},6,10\cdot\left(\frac{5}{3}\right)^{k}}\int_{0}^{T}\left(\|y\|_{2,2\cdot\left(\frac{5}{3}\right)^{k}}^{1/5}\|y\|_{\mathcal{L}^{6}}^{4/5}\right)^{10\cdot\left(\frac{5}{3}\right)^{k}}\mathrm{d}s
C0Ty2,2(53)k2(53)ky18(53)kds\displaystyle\leq C\int_{0}^{T}\|y\|_{2,2\cdot\left(\frac{5}{3}\right)^{k}}^{2\cdot\left(\frac{5}{3}\right)^{k}}\|y\|_{\mathcal{H}^{1}}^{8\cdot\left(\frac{5}{3}\right)^{k}}\mathrm{d}s
Csupt[0,T]y(t)18(53)k0Ty2,2(53)k2(53)kds<,\displaystyle\leq C\sup_{t\in[0,T]}\|y(t)\|_{\mathcal{H}^{1}}^{8\cdot\left(\frac{5}{3}\right)^{k}}\int_{0}^{T}\|y\|_{2,2\cdot\left(\frac{5}{3}\right)^{k}}^{2\cdot\left(\frac{5}{3}\right)^{k}}\mathrm{d}s<\infty,

which implies

gN(|y|2)y2(53)k+1(ST)\displaystyle g_{N}(|y|^{2})y\in\mathcal{L}^{2\cdot\left(\frac{5}{3}\right)^{k+1}}(S_{T})

and by another application of Lemma A.2, this yields

DxαDtjfNL2(53)k+1(ST),|α|+2j2,\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}\in L^{2\cdot\left(\frac{5}{3}\right)^{k+1}}(S_{T}),\quad|\alpha|+2j\leq 2,

and hence, by Theorem A.5,

DxαDtjyL2(53)k+1(ST),|α|+2j2.\displaystyle D_{x}^{\alpha}D_{t}^{j}y\in L^{2\cdot\left(\frac{5}{3}\right)^{k+1}}(S_{T}),\quad|\alpha|+2j\leq 2.

We have thus shown that

DxαDtjfNq>1Lq(ST),|α|+2j2.\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}\in\bigcap_{q>1}L^{q}(S_{T}),\quad|\alpha|+2j\leq 2.

The next step of the proof consists of another induction on the number of derivatives. Namely we want to show that

DxαDtjfNq>1Lq(ST),|α|+2jm.\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}\in\bigcap_{q>1}L^{q}(S_{T}),\quad|\alpha|+2j\leq m.

We have shown the base case m=2m=2 already. So we are left to show the induction step mm+1m\rightarrow m+1.

There are two cases to consider:

  1. (a)

    There is at least one spatial derivative, i.e., we have

    DxαDtjfN=DxkDxβDtjfN,|β|=|α|1>0,|β|+1+2j=m+1.\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}=D_{x_{k}}D_{x}^{\beta}D_{t}^{j}f_{N},\quad|\beta|=|\alpha|-1>0,\quad|\beta|+1+2j=m+1.

    In this case we have

    DxkDxβDtjfNLq(ST)=DxkDxβDtj(ty00tts(𝒫(gN(|y(s)|2)y(s)f(s)))(x)ds)Lq.\displaystyle\|D_{x_{k}}D_{x}^{\beta}D_{t}^{j}f_{N}\|_{L^{q}(S_{T})}=\left\|D_{x_{k}}D_{x}^{\beta}D_{t}^{j}\left(\mathcal{F}_{t}y_{0}-\int_{0}^{t}\mathcal{F}_{t-s}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)(x)\mathrm{d}s\right)\right\|_{L^{q}}.

    Applying linearity and the triangle inequality, we see that the term containing the initial condition y0y_{0} is bounded. For the other term we get the upper bound

    DxkDxβDtj0tts(𝒫(gN(|y(s)|2)y(s)f(s)))dsLq\displaystyle\left\|D_{x_{k}}D_{x}^{\beta}D_{t}^{j}\int_{0}^{t}\mathcal{F}_{t-s}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)\mathrm{d}s\right\|_{L^{q}}
    Dtj1DxkDxβ𝒫(gN(|y(t)|2)y(t)f(t))Lq\displaystyle\leq\left\|D_{t}^{j-1}D_{x_{k}}D_{x}^{\beta}\mathcal{P}(g_{N}(|y(t)|^{2})y(t)-f(t))\right\|_{L^{q}}
    +0t(Dxkts)DxβDtj(𝒫(gN(|y(s)|2)y(s)f(s)))dsLq.\displaystyle+\left\|\int_{0}^{t}\left(D_{x_{k}}\mathcal{F}_{t-s}\right)D_{x}^{\beta}D_{t}^{j}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)\mathrm{d}s\right\|_{L^{q}}.

    The first term is bounded by the induction hypothesis, since

    |β|+1+2(j1)=|α|1+2j=m.|\beta|+1+2(j-1)=|\alpha|-1+2j=m.

    The second term is bounded by Young’s convolution inequality and the fact that DxktL1(ST)D_{x_{k}}\mathcal{F}_{t}\in L^{1}(S_{T}) just like in the proof of Lemma A.1.

  2. (b)

    There are only derivatives with respect to time, i.e.,

    DxαDtjfN=DtjfN,2j=m+1.\displaystyle D_{x}^{\alpha}D_{t}^{j}f_{N}=D_{t}^{j}f_{N},\quad 2j=m+1.

    The term containing the initial condition is again not a problem. In a similar way as before we find

    Dtj0tts(𝒫(gN(|y(s)|2)y(s)f(s)))dsLq\displaystyle\left\|D_{t}^{j}\int_{0}^{t}\mathcal{F}_{t-s}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)\mathrm{d}s\right\|_{L^{q}}
    Dtj1𝒫(gN(|y(t)|2)y(t)f(t))Lq\displaystyle\leq\left\|D_{t}^{j-1}\mathcal{P}(g_{N}(|y(t)|^{2})y(t)-f(t))\right\|_{L^{q}}
    +0t(Δts)Dtj1(𝒫(gN(|y(s)|2)y(s)f(s)))dsLq,\displaystyle+\left\|\int_{0}^{t}\left(\Delta\mathcal{F}_{t-s}\right)D_{t}^{j-1}\left(\mathcal{P}(g_{N}(|y(s)|^{2})y(s)-f(s))\right)\mathrm{d}s\right\|_{L^{q}},

    where we have used that t\mathcal{F}_{t} solves the heat equation. Now by using integration by parts, in the last term, we transfer one spatial derivative from the Laplacian to the second factor and since 2j1=m2j-1=m, we conclude the boundedness as before by Young’s convolution inequality and the L1L^{1}-boundedness of DxktsD_{x_{k}}\mathcal{F}_{t-s}.

By the Sobolev embedding theorem we now find that yy is smooth. Thus we get for every t0t\geq 0 that

(2.27) t𝒗(t)=Δ𝒗(t)𝒫((𝒗)𝒗)+𝒫((𝑩)𝑩)𝒫(gN(|𝒗|2)𝒗)+𝒇v(t)t𝑩(t)=Δ𝑩(t)𝒫((𝒗)𝑩)+𝒫((𝑩)𝒗)𝒫(gN(|𝑩|2)𝑩)+𝒇B(t)\begin{split}\partial_{t}\bm{v}(t)&=\Delta\bm{v}(t)-\mathcal{P}((\bm{v}\cdot\nabla)\bm{v})+\mathcal{P}((\bm{B}\cdot\nabla)\bm{B})-\mathcal{P}(g_{N}(|\bm{v}|^{2})\bm{v})+\bm{f}_{v}(t)\\ \partial_{t}\bm{B}(t)&=\Delta\bm{B}(t)-\mathcal{P}((\bm{v}\cdot\nabla)\bm{B})+\mathcal{P}((\bm{B}\cdot\nabla)\bm{v})-\mathcal{P}(g_{N}(|\bm{B}|^{2})\bm{B})+\bm{f}_{B}(t)\end{split}

We take this equation and apply 3 different inner products to both sides of the equations:

  1. (a)

    ,ty(t)0\langle\cdot,\partial_{t}y(t)\rangle_{\mathcal{H}^{0}}, which will lead to an estimate for 0Tty02dt\int_{0}^{T}\|\partial_{t}y\|_{\mathcal{H}^{0}}^{2}\mathrm{d}t

  2. (b)

    First apply t\partial_{t}, then apply ,ty(t)0\langle\cdot,\partial_{t}y(t)\rangle_{\mathcal{H}^{0}}. This will lead to an estimate for ty02\|\partial_{t}y\|_{\mathcal{H}^{0}}^{2}.

  3. (c)

    ,y(t)1\langle\cdot,y(t)\rangle_{\mathcal{H}^{1}}, which gives an estimate for y(t)22\|y(t)\|_{\mathcal{H}^{2}}^{2}.

  1. (a)

    We find by using Young’s inequality

    ty02\displaystyle\|\partial_{t}y\|_{\mathcal{H}^{0}}^{2} =y,ty(t)0(𝒗)𝒗,t𝒗L2+(𝑩)𝑩,t𝒗L2\displaystyle=-\langle\nabla y,\partial_{t}\nabla y(t)\rangle_{\mathcal{H}^{0}}-\langle(\bm{v}\cdot\nabla)\bm{v},\partial_{t}\bm{v}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{B},\partial_{t}\bm{v}\rangle_{L^{2}}
    (𝒗)𝑩,t𝑩L2+(𝑩)𝒗,t𝑩L2gN(|y|2)12t|y|2dx+f,ty0\displaystyle\quad-\langle(\bm{v}\cdot\nabla)\bm{B},\partial_{t}\bm{B}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{v},\partial_{t}\bm{B}\rangle_{L^{2}}-\int g_{N}(|y|^{2})\frac{1}{2}\partial_{t}|y|^{2}\mathrm{d}x+\langle f,\partial_{t}y\rangle_{\mathcal{H}^{0}}
    =12ddty0(𝒗)𝒗,t𝒗L2+(𝑩)𝑩,t𝒗L2\displaystyle=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\nabla y\|_{\mathcal{H}^{0}}-\langle(\bm{v}\cdot\nabla)\bm{v},\partial_{t}\bm{v}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{B},\partial_{t}\bm{v}\rangle_{L^{2}}
    (𝒗)𝑩,t𝑩L2+(𝑩)𝒗,t𝑩L212ddtGN(|y|2)L1+f,ty0\displaystyle\quad-\langle(\bm{v}\cdot\nabla)\bm{B},\partial_{t}\bm{B}\rangle_{L^{2}}+\langle(\bm{B}\cdot\nabla)\bm{v},\partial_{t}\bm{B}\rangle_{L^{2}}-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|G_{N}(|y|^{2})\|_{L^{1}}+\langle f,\partial_{t}y\rangle_{\mathcal{H}^{0}}
    12ddty0+18(2t𝒗(t)02+2t𝑩(t)02)\displaystyle\leq-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\nabla y\|_{\mathcal{H}^{0}}+\frac{1}{8}\left(2\|\partial_{t}\bm{v}(t)\|_{\mathcal{H}^{0}}^{2}+2\|\partial_{t}\bm{B}(t)\|_{\mathcal{H}^{0}}^{2}\right)
    +2(|𝒗||𝒗|L22+|𝑩||𝑩|L22+|𝒗||𝑩|L22+|𝑩||𝒗|L22)\displaystyle\quad+2\left(\||\bm{v}||\nabla\bm{v}|\|_{L^{2}}^{2}+\||\bm{B}||\nabla\bm{B}|\|_{L^{2}}^{2}+\||\bm{v}||\nabla\bm{B}|\|_{L^{2}}^{2}+\||\bm{B}||\nabla\bm{v}|\|_{L^{2}}^{2}\right)
    +14ty(t)02+f(t)0212ddtGN(|y|2)L1\displaystyle\quad+\frac{1}{4}\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}+\|f(t)\|_{\mathcal{H}^{0}}^{2}-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|G_{N}(|y|^{2})\|_{L^{1}}
    =12ddty0+12ty(t)02+2|y||y|L22+f(t)0212ddtGN(|y|2)L1.\displaystyle=-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\nabla y\|_{\mathcal{H}^{0}}+\frac{1}{2}\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}+2\||y|\cdot|\nabla y|\|_{L^{2}}^{2}+\|f(t)\|_{\mathcal{H}^{0}}^{2}-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|G_{N}(|y|^{2})\|_{L^{1}}.

    Here, we denote by GNG_{N} a primitive function of gNg_{N}. Since gN(r)2rg_{N}(r)\leq 2r, we find 0GN(r):=0rgN(s)ds2r22=r20\leq G_{N}(r):=\int_{0}^{r}g_{N}(s)\mathrm{d}s\leq 2\frac{r^{2}}{2}=r^{2}. Integrating from 0 to TT yields – estimating the nonpositive terms by zero – the following:

    (2.28) 120Tty(t)02dt12y(0)02+0T(2|y||y|L22+f02)dt+12GN(|y(0)|2)L112y(0)02+2TCT,N,y0,f(1)+0Tf02dt+12y044=:CT,N,y0,f(2).\begin{split}&\frac{1}{2}\int_{0}^{T}\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}t\leq\frac{1}{2}\|\nabla y(0)\|_{\mathcal{H}^{0}}^{2}+\int_{0}^{T}\left(2\||y|\cdot|\nabla y|\|_{L^{2}}^{2}+\|f\|_{\mathcal{H}^{0}}^{2}\right)\mathrm{d}t+\frac{1}{2}\|G_{N}(|y(0)|^{2})\|_{L^{1}}\\ &\leq\frac{1}{2}\|\nabla y(0)\|_{\mathcal{H}^{0}}^{2}+2TC_{T,N,y_{0},f}^{(1)}+\int_{0}^{T}\|f\|_{\mathcal{H}^{0}}^{2}\mathrm{d}t+\frac{1}{2}\|y_{0}\|_{\mathcal{L}^{4}}^{4}=:C_{T,N,y_{0},f}^{(2)}.\end{split}
  2. (b)

    We first differentiate Equation (2.27) with respect to tt and then take the inner product with ty\partial_{t}y in 0\mathcal{H}^{0}. Note that for 𝜽,ϕ,𝝍{𝒗,𝑩}\bm{\theta},\bm{\phi},\bm{\psi}\in\{\bm{v},\bm{B}\}, we get

    (2.29) t((𝜽)ϕ),t𝝍L2=(t𝜽)ϕ,t𝝍L2+(𝜽)tϕ,t𝝍L2.\langle\partial_{t}((\bm{\theta}\cdot\nabla)\bm{\phi}),\partial_{t}\bm{\psi}\rangle_{L^{2}}=\langle(\partial_{t}\bm{\theta}\cdot\nabla)\bm{\phi},\partial_{t}\bm{\psi}\rangle_{L^{2}}+\langle(\bm{\theta}\cdot\nabla)\partial_{t}\bm{\phi},\partial_{t}\bm{\psi}\rangle_{L^{2}}.

    By the (anti-)symmetry of the nonlinear terms, if ϕ=𝝍\bm{\phi}=\bm{\psi}, the second term vanishes, which accounts for the (𝒗)𝒗(\bm{v}\cdot\nabla)\bm{v} and (𝑩)𝑩(\bm{B}\cdot\nabla)\bm{B} terms. The other two nonlinear terms cancel each other, so we are left with four variations of the first term of the right-hand side of Equation (2.29), which can be simplified further using the divergence-freeness to yield

    (t𝜽)ϕ,t𝝍L2=(t𝜽ϕ),t𝝍L2=t𝜽ϕ,t𝝍L2.\displaystyle\langle(\partial_{t}\bm{\theta}\cdot\nabla)\bm{\phi},\partial_{t}\bm{\psi}\rangle_{L^{2}}=\langle\nabla\cdot(\partial_{t}\bm{\theta}\otimes\bm{\phi}),\partial_{t}\bm{\psi}\rangle_{L^{2}}=-\langle\partial_{t}\bm{\theta}\otimes\bm{\phi},\partial_{t}\nabla\bm{\psi}\rangle_{L^{2}}.

    Taking this into account and applying Young’s inequality, we find

    12ddtty(t)02\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}
    =ty(t)02+tf,ty0\displaystyle=-\|\partial_{t}\nabla y(t)\|_{\mathcal{H}^{0}}^{2}+\langle\partial_{t}f,\partial_{t}y\rangle_{\mathcal{H}^{0}}
    +t𝒗𝒗,t𝒗L2t𝑩𝑩,t𝒗L2\displaystyle\quad+\langle\partial_{t}\bm{v}\otimes\bm{v},\partial_{t}\nabla\bm{v}\rangle_{L^{2}}-\langle\partial_{t}\bm{B}\otimes\bm{B},\partial_{t}\nabla\bm{v}\rangle_{L^{2}}
    +t𝒗𝑩,t𝑩L2t𝑩𝒗,t𝑩L2\displaystyle\quad+\langle\partial_{t}\bm{v}\otimes\bm{B},\partial_{t}\nabla\bm{B}\rangle_{L^{2}}-\langle\partial_{t}\bm{B}\otimes\bm{v},\partial_{t}\nabla\bm{B}\rangle_{L^{2}}
    gN(|y|2)|ty|L22gN(|y|2)|t|y|2|L22\displaystyle\quad-\|\sqrt{g_{N}(|y|^{2})}\leavevmode\nobreak\ |\partial_{t}y|\leavevmode\nobreak\ \|_{L^{2}}^{2}-\|\sqrt{g_{N}^{\prime}(|y|^{2})}\leavevmode\nobreak\ |\partial_{t}|y|^{2}|\leavevmode\nobreak\ \|_{L^{2}}^{2}
    ty(t)02+14tf02+ty02\displaystyle\leq-\|\partial_{t}\nabla y(t)\|_{\mathcal{H}^{0}}^{2}+\frac{1}{4}\|\partial_{t}f\|_{\mathcal{H}^{0}}^{2}+\|\partial_{t}y\|_{\mathcal{H}^{0}}^{2}
    +|𝒗||t𝒗|L22+|𝑩||t𝑩|L22+|𝒗||t𝑩|L22+|𝑩||t𝒗|L22\displaystyle\quad+\||\bm{v}||\partial_{t}\bm{v}|\|_{L^{2}}^{2}+\||\bm{B}||\partial_{t}\bm{B}|\|_{L^{2}}^{2}+\||\bm{v}||\partial_{t}\bm{B}|\|_{L^{2}}^{2}+\||\bm{B}||\partial_{t}\bm{v}|\|_{L^{2}}^{2}
    +14(2t𝒗02+2t𝑩02)gN(|y|2)|ty|L22\displaystyle\quad+\frac{1}{4}\left(2\|\partial_{t}\nabla\bm{v}\|_{\mathcal{H}^{0}}^{2}+2\|\partial_{t}\nabla\bm{B}\|_{\mathcal{H}^{0}}^{2}\right)-\|\sqrt{g_{N}(|y|^{2})}\leavevmode\nobreak\ |\partial_{t}y|\leavevmode\nobreak\ \|_{L^{2}}^{2}
    12ty(t)02|y||ty|L22+14tf02+2(N+1)ty02.\displaystyle\leq-\frac{1}{2}\|\partial_{t}\nabla y(t)\|_{\mathcal{H}^{0}}^{2}-\||y||\partial_{t}y|\|_{L^{2}}^{2}+\frac{1}{4}\|\partial_{t}f\|_{\mathcal{H}^{0}}^{2}+2(N+1)\|\partial_{t}y\|_{\mathcal{H}^{0}}^{2}.

    Integrating from 0 to tTt\leq T then gives (again estimating non-positive terms by zero)

    (2.30) ty(t)02ty(0)02+4(N+1)0Tsy(s)02ds+120Tsf(s)02dsC(1+y026+f(0)02)+8(N+1)CT,N,y0,f(2)+120Tsf02ds=:CT,N,y0,f(3).\begin{split}&\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}\leq\|\partial_{t}y(0)\|_{\mathcal{H}^{0}}^{2}+4(N+1)\int_{0}^{T}\|\partial_{s}y(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s+\frac{1}{2}\int_{0}^{T}\|\partial_{s}f(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s\\ &\leq C(1+\|y_{0}\|_{\mathcal{H}^{2}}^{6}+\|f(0)\|_{\mathcal{H}^{0}}^{2})+8(N+1)C_{T,N,y_{0},f}^{(2)}+\frac{1}{2}\int_{0}^{T}\|\partial_{s}f\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s=:C_{T,N,y_{0},f}^{(3)}.\end{split}

    Here we used (2.28) as well as the following estimate for the time derivative of the initial condition: since (2.27) holds for all tt, we can set t=0t=0 there to and take the 0\mathcal{H}^{0}-norm to find

    ty002\displaystyle\|\partial_{t}y_{0}\|_{\mathcal{H}^{0}}^{2} C(y022+|y0|02|y0|02+y026+f(0)02)\displaystyle\leq C\left(\|y_{0}\|_{\mathcal{H}^{2}}^{2}+\||y_{0}|\|_{\mathcal{H}^{0}}^{2}\||\nabla y_{0}|\|_{\mathcal{H}^{0}}^{2}+\|y_{0}\|_{\mathcal{H}^{2}}^{6}+\|f(0)\|_{\mathcal{H}^{0}}^{2}\right)
    C(y022+|y0|04+|y0|04+y026+f(0)02)\displaystyle\leq C\left(\|y_{0}\|_{\mathcal{H}^{2}}^{2}+\||y_{0}|\|_{\mathcal{H}^{0}}^{4}+\||\nabla y_{0}|\|_{\mathcal{H}^{0}}^{4}+\|y_{0}\|_{\mathcal{H}^{2}}^{6}+\|f(0)\|_{\mathcal{H}^{0}}^{2}\right)
    C(1+y026+f(0)02).\displaystyle\leq C\left(1+\|y_{0}\|_{\mathcal{H}^{2}}^{6}+\|f(0)\|_{\mathcal{H}^{0}}^{2}\right).
  3. (c)

    Finally, we take the 1\mathcal{H}^{1} inner product with y(t)y(t) and use Equation (2.10):

    ty(t),y(t)1\displaystyle\langle\partial_{t}y(t),y(t)\rangle_{\mathcal{H}^{1}} 12y22+y02+2(N+1)y02|𝒗||𝒗|𝑳22|𝑩||𝑩|𝑳22\displaystyle\leq-\frac{1}{2}\|y\|_{\mathcal{H}^{2}}^{2}+\|y\|_{\mathcal{H}^{0}}^{2}+2(N+1)\|\nabla y\|_{\mathcal{H}^{0}}^{2}-\||\bm{v}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}
    |𝒗||𝑩|𝑳22|𝑩||𝒗|𝑳22+14y22+f02,\displaystyle\quad-\||\bm{v}||\nabla\bm{B}|\|_{\bm{L}^{2}}^{2}-\||\bm{B}||\nabla\bm{v}|\|_{\bm{L}^{2}}^{2}+\frac{1}{4}\|y\|_{\mathcal{H}^{2}}^{2}+\|f\|_{\mathcal{H}^{0}}^{2},

    which implies

    y(t)224y(t)02+8(N+1)y(t)02+4f(t)02+8ty(t)02+12y(t)22,\displaystyle\|y(t)\|_{\mathcal{H}^{2}}^{2}\leq 4\|y(t)\|_{\mathcal{H}^{0}}^{2}+8(N+1)\|\nabla y(t)\|_{\mathcal{H}^{0}}^{2}+4\|f(t)\|_{\mathcal{H}^{0}}^{2}+8\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}+\frac{1}{2}\|y(t)\|_{\mathcal{H}^{2}}^{2},

    and hence, using (2.30) and (1.12),

    supt[0,T]y(t)22\displaystyle\sup_{t\in[0,T]}\|y(t)\|_{\mathcal{H}^{2}}^{2} 16(N+1)supt[0,T]y(t)02+8supt[0,T]y(t)02\displaystyle\leq 16(N+1)\sup_{t\in[0,T]}\|\nabla y(t)\|_{\mathcal{H}^{0}}^{2}+8\sup_{t\in[0,T]}\|y(t)\|_{\mathcal{H}^{0}}^{2}
    +8supt[0,T]f(t)02+16supt[0,T]ty(t)02\displaystyle+8\sup_{t\in[0,T]}\|f(t)\|_{\mathcal{H}^{0}}^{2}+16\sup_{t\in[0,T]}\|\partial_{t}y(t)\|_{\mathcal{H}^{0}}^{2}
    C(N+1)CT,N,y0,f(1)+4[y00+0Tf0ds]2\displaystyle\leq C(N+1)C_{T,N,y_{0},f}^{(1)}+4\left[\|y_{0}\|_{\mathcal{H}^{0}}+\int_{0}^{T}\|f\|_{\mathcal{H}^{0}}\mathrm{d}s\right]^{2}
    +8supt[0,T]f(t)02+16CT,N,y0,f(3)=:CT,N,y0,f+CT,N,y0,f(1+N2),\displaystyle+8\sup_{t\in[0,T]}\|f(t)\|_{\mathcal{H}^{0}}^{2}+16C_{T,N,y_{0},f}^{(3)}=:C_{T,N,y_{0},f}^{\prime}+C_{T,N,y_{0},f}(1+N^{2}),

    i.e., (1.14). Equation (1.12) follows from (1.10), and Equation (1.13) follows from (1.11). This concludes the proof.

2.4. Convergence to the Untamed MHD Equations

In this section we stress the dependence of the solution to the tamed equation on NN by writing yNy_{N}. We will prove that as NN\rightarrow\infty, the solutions to the tamed equations converge to weak solutions of the untamed equations, i.e., Theorem 1.4.

Proof.

The proof follows along the same lines as that of Theorem 1.2 in [39].

Let y0N1y_{0}^{N}\in\mathcal{H}^{1} with y0Ny0y_{0}^{N}\rightarrow y_{0} in 0\mathcal{H}^{0} and (yN,pN)(y_{N},p_{N}) be the associated unique strong solution given by Theorem 1.2. Combining (2.24) with (2.25) yields

(2.31) supt[0,T]yN(t)02+0TyN12+gN(|y|2)|y|L22dsCy0,f,T.\sup_{t\in[0,T]}\|y_{N}(t)\|_{\mathcal{H}^{0}}^{2}+\int_{0}^{T}\|y_{N}\|_{\mathcal{H}^{1}}^{2}+\|\sqrt{g_{N}(|y|^{2})}|y|\|_{L^{2}}^{2}\mathrm{d}s\leq C_{y_{0},f,T}.

For q[2,)q\in[2,\infty), r(2,6]r\in(2,6] such that

3r+2q=32,\frac{3}{r}+\frac{2}{q}=\frac{3}{2},

by an application of the Sobolev embedding (2.6) and (2.31) we find

(2.32) 0TyNrqdtC1,0,2,2,rq0TyN12yN0q2dtCy0,f,T,r,q.\int_{0}^{T}\|y_{N}\|_{\mathcal{L}^{r}}^{q}\mathrm{d}t\leq C_{1,0,2,2,r}^{q}\int_{0}^{T}\|y_{N}\|_{\mathcal{H}^{1}}^{2}\|y_{N}\|_{\mathcal{H}^{0}}^{q-2}\mathrm{d}t\leq C_{y_{0},f,T,r,q}.

Employing the Arzelà-Ascoli theorem and the Helmholtz-Weyl decomposition in the same way as in the proof of Theorem 1.2, we find a subsequence yNky_{N_{k}} (again denoted by yNy_{N}) and a y=(𝒗,𝑩)L([0,T];0)L2([0,T];1)y=\begin{pmatrix}\bm{v},\bm{B}\end{pmatrix}\in L^{\infty}([0,T];\mathcal{H}^{0})\cap L^{2}([0,T];\mathcal{H}^{1}) such that for all y~=(𝒗~,𝑩~)2\tilde{y}=\begin{pmatrix}\tilde{\bm{v}},\tilde{\bm{B}}\end{pmatrix}\in\mathcal{L}^{2}

(2.33) limNsupt[0,T]|yN(t)y(t),y~2|=0.\lim_{N\rightarrow\infty}\sup_{t\in[0,T]}|\langle y_{N}(t)-y(t),\tilde{y}\rangle_{\mathcal{L}^{2}}|=0.

In fact, we can even prove that for every bounded open set G3G\subset\mathbb{R}^{3}, we have

(2.34) limN0TG|yN(t,x)y(t,x)|2dxdt=0.\lim_{N\rightarrow\infty}\int_{0}^{T}\int_{G}|y_{N}(t,x)-y(t,x)|^{2}\mathrm{d}x\mathrm{d}t=0.

To this end, let GG¯QG\subset\bar{G}\subset Q for a cuboid QQ, and ρ\rho be a smooth, non-negative cutoff function with ρ1\rho\equiv 1 on GG, ρ0\rho\equiv 0 on 3\Q\mathbb{R}^{3}\backslash Q, and by Friedrichs’ inequality (2.19)

0TG|yN(t,x)y(t,x)|2dxdt\displaystyle\int_{0}^{T}\int_{G}|y_{N}(t,x)-y(t,x)|^{2}\mathrm{d}x\mathrm{d}t
0TQ|𝒗N(t,x)𝒗(t,x)|2ρ2(x)dxdt+0TQ|𝑩N(t,x)𝑩(t,x)|2ρ2(x)dxdt\displaystyle\leq\int_{0}^{T}\int_{Q}|\bm{v}_{N}(t,x)-\bm{v}(t,x)|^{2}\rho^{2}(x)\mathrm{d}x\mathrm{d}t+\int_{0}^{T}\int_{Q}|\bm{B}_{N}(t,x)-\bm{B}(t,x)|^{2}\rho^{2}(x)\mathrm{d}x\mathrm{d}t
i=1Kε0T(Q(𝒗N(t,x)𝒗(t,x))ρ(x)hiε(x)dx)2dt\displaystyle\leq\sum_{i=1}^{K_{\varepsilon}}\int_{0}^{T}\left(\int_{Q}(\bm{v}_{N}(t,x)-\bm{v}(t,x))\rho(x)h_{i}^{\varepsilon}(x)\mathrm{d}x\right)^{2}\mathrm{d}t
+i=1Kε0T(Q(𝑩N(t,x)𝑩(t,x))ρ(x)hiε(x)dx)2dt\displaystyle+\sum_{i=1}^{K_{\varepsilon}}\int_{0}^{T}\left(\int_{Q}(\bm{B}_{N}(t,x)-\bm{B}(t,x))\rho(x)h_{i}^{\varepsilon}(x)\mathrm{d}x\right)^{2}\mathrm{d}t
+ε0TQ|((𝒗N𝒗)ρ)(x)|2dxdt+ε0TQ|((𝑩N𝑩)ρ)(x)|2dxdt\displaystyle+\varepsilon\int_{0}^{T}\int_{Q}|\nabla\left((\bm{v}_{N}-\bm{v})\rho\right)(x)|^{2}\mathrm{d}x\mathrm{d}t+\varepsilon\int_{0}^{T}\int_{Q}|\nabla\left((\bm{B}_{N}-\bm{B})\rho\right)(x)|^{2}\mathrm{d}x\mathrm{d}t
=:I1(N,ε)+I2(N,ε)+I3(N,ε)+I4(N,ε).\displaystyle=:I_{1}(N,\varepsilon)+I_{2}(N,\varepsilon)+I_{3}(N,\varepsilon)+I_{4}(N,\varepsilon).

The terms I1(N,ε)I_{1}(N,\varepsilon), I2(N,ε)I_{2}(N,\varepsilon) vanish for NN\rightarrow\infty as using (2.33) we get

limNI1(N,ε)Ti=1KεlimNsupt[0,T]|3(𝒗N(t,x)𝒗(t,x))ρ(x)hiε(x)1Q(x)dx|2=0,\displaystyle\lim_{N\rightarrow\infty}I_{1}(N,\varepsilon)\leq T\sum_{i=1}^{K_{\varepsilon}}\lim_{N\rightarrow\infty}\sup_{t\in[0,T]}\left|\int_{\mathbb{R}^{3}}(\bm{v}_{N}(t,x)-\bm{v}(t,x))\rho(x)h_{i}^{\varepsilon}(x)1_{Q}(x)\mathrm{d}x\right|^{2}=0,

and an analogous computation yields limNI2(N,ε)=0\lim_{N\rightarrow\infty}I_{2}(N,\varepsilon)=0.

The other two terms can be bounded by

I3(N,ε)+I4(N,ε)εCρ0T(yN(t)12+y(t)12)dtCρ,y0,T,fε,\displaystyle I_{3}(N,\varepsilon)+I_{4}(N,\varepsilon)\leq\varepsilon\cdot C_{\rho}\int_{0}^{T}\left(\|y_{N}(t)\|_{\mathcal{H}^{1}}^{2}+\|y(t)\|_{\mathcal{H}^{1}}^{2}\right)\mathrm{d}t\leq C_{\rho,y_{0},T,f}\cdot\varepsilon,

and the arbitrariness of ε>0\varepsilon>0 implies the claim.

Next we prove that for any y~𝒱\tilde{y}\in\mathcal{V}

limN0tgN(|yN(s)|2)yN(s),y~0ds=0.\displaystyle\lim_{N\rightarrow\infty}\int_{0}^{t}\langle g_{N}(|y_{N}(s)|^{2})y_{N}(s),\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s=0.

This can be seen as follows:

limN0tgN(|yN(s)|2)yN(s),y~0ds\displaystyle\lim_{N\rightarrow\infty}\int_{0}^{t}\langle g_{N}(|y_{N}(s)|^{2})y_{N}(s),\tilde{y}\rangle_{\mathcal{H}^{0}}\mathrm{d}s
y~Llim supN0t3|yN(s)|31{|yN(s,x)|2N}dxds\displaystyle\leq\|\tilde{y}\|_{L^{\infty}}\cdot\limsup_{N\rightarrow\infty}\int_{0}^{t}\int_{\mathbb{R}^{3}}|y_{N}(s)|^{3}\cdot 1_{\{|y_{N}(s,x)|^{2}\geq N\}}\mathrm{d}x\mathrm{d}s
y~Llim supN(0tyN(s)10/310/3ds)9/10(0t31{|yN(s,x)|2N}dxds)1/10\displaystyle\leq\|\tilde{y}\|_{L^{\infty}}\cdot\limsup_{N\rightarrow\infty}\left(\int_{0}^{t}\|y_{N}(s)\|_{\mathcal{L}^{10/3}}^{10/3}\mathrm{d}s\right)^{9/10}\cdot\left(\int_{0}^{t}\int_{\mathbb{R}^{3}}1_{\{|y_{N}(s,x)|^{2}\geq N\}}\mathrm{d}x\mathrm{d}s\right)^{1/10}
Cy~,y0,T,flim supN(1N0tyN(s)02ds)1/10=0,\displaystyle\leq C_{\tilde{y},y_{0},T,f}\cdot\limsup_{N\rightarrow\infty}\left(\frac{1}{N}\int_{0}^{t}\|y_{N}(s)\|_{\mathcal{H}^{0}}^{2}\mathrm{d}s\right)^{1/10}=0,

where we have used (2.32) and Chebychev’s inequality.

As in the proof of Theorem 1.2, there exist pressure functions pN,πNL2([0,T];Lloc2(3))p_{N},\pi_{N}\in L^{2}([0,T];L_{\text{loc}}^{2}(\mathbb{R}^{3})) such that pN,πNL2([0,T];L2(3;3))\nabla p_{N},\nabla\pi_{N}\in L^{2}([0,T];L^{2}(\mathbb{R}^{3};\mathbb{R}^{3})), and we have for almost all t0t\geq 0 that

(2.35) 𝒗Nt\displaystyle\frac{\partial\bm{v}_{N}}{\partial t} =Δ𝒗N(𝒗N)𝒗N+(𝑩N)𝑩N+(pN+|𝑩N|22)\displaystyle=\Delta\bm{v}_{N}-\left(\bm{v}_{N}\cdot\nabla\right)\bm{v}_{N}+\left(\bm{B}_{N}\cdot\nabla\right)\bm{B}_{N}+\nabla\left(p_{N}+\frac{|\bm{B}_{N}|^{2}}{2}\right)
gN(|(𝒗N,𝑩N)|2)𝒗N+𝒇1\displaystyle\quad-g_{N}(|(\bm{v}_{N},\bm{B}_{N})|^{2})\bm{v}_{N}+\bm{f}_{1}
(2.36) 𝑩Nt\displaystyle\frac{\partial\bm{B}_{N}}{\partial t} =Δ𝑩N(𝒗N)𝑩N+(𝑩N)𝒗N+πNgN(|(𝒗N,𝑩N)|2)𝑩N+𝒇2.\displaystyle=\Delta\bm{B}_{N}-\left(\bm{v}_{N}\cdot\nabla\right)\bm{B}_{N}+(\bm{B}_{N}\cdot\nabla)\bm{v}_{N}+\nabla\pi_{N}-g_{N}(|(\bm{v}_{N},\bm{B}_{N})|^{2})\bm{B}_{N}+\bm{f}_{2}.

To derive the generalised energy inequality, we take a non-negative ϕC0((0,T)×3)\phi\in C_{0}^{\infty}((0,T)\times\mathbb{R}^{3}) and then take the inner products with 2yNϕ2y_{N}\phi in 0\mathcal{H}^{0} of this equation. Let us use the abbreviation =0T3dxdt\iint=\int_{0}^{T}\int_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}t. Then we get

(2.37) t𝒗N2𝒗Nϕ+t𝑩N2𝑩Nϕ\displaystyle\iint\partial_{t}\bm{v}_{N}\cdot 2\bm{v}_{N}\phi+\iint\partial_{t}\bm{B}_{N}\cdot 2\bm{B}_{N}\phi
(2.38) =Δ𝒗N2𝒗Nϕ+Δ𝑩N2𝑩Nϕ\displaystyle=\iint\Delta\bm{v}_{N}\cdot 2\bm{v}_{N}\phi+\iint\Delta\bm{B}_{N}\cdot 2\bm{B}_{N}\phi
(2.39) (𝒗N)𝒗N2𝒗Nϕ+(𝑩N)𝑩N2𝒗Nϕ\displaystyle\quad-\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{v}_{N}\cdot 2\bm{v}_{N}\phi+\iint\left(\bm{B}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot 2\bm{v}_{N}\phi
(2.40) (𝒗N)𝑩N2𝑩Nϕ+(𝑩N)𝒗N2𝑩Nϕ\displaystyle\quad-\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot 2\bm{B}_{N}\phi+\iint\left(\bm{B}_{N}\cdot\nabla\right)\bm{v}_{N}\cdot 2\bm{B}_{N}\phi
(2.41) 2gN(|yN|2)|𝒗N|2ϕ2gN(|yN|2)|𝑩N|2ϕ\displaystyle\quad-2\iint g_{N}(|y_{N}|^{2})|\bm{v}_{N}|^{2}\phi-2\iint g_{N}(|y_{N}|^{2})|\bm{B}_{N}|^{2}\phi
(2.42) +2pN𝒗Nϕ+2πN𝑩Nϕ+2f,yNϕ.\displaystyle\quad+2\iint\nabla p_{N}\cdot\bm{v}_{N}\phi+2\iint\nabla\pi_{N}\cdot\bm{B}_{N}\phi+2\iint\langle f,y_{N}\rangle\phi.

Let us discuss this equation line by line. The first line (2.37) is a simple application of integration by parts (with respect to the time variable):

tyNyNϕ\displaystyle\iint\partial_{t}y_{N}\cdot y_{N}\phi =yNt(yNϕ)=yN(tyN)ϕ|yN|2tϕ\displaystyle=-\iint y_{N}\cdot\partial_{t}\left(y_{N}\phi\right)=-\iint y_{N}\cdot\left(\partial_{t}y_{N}\right)\phi-\iint|y_{N}|^{2}\partial_{t}\phi

which in turn yields

2tyNyNϕ=|yN|2tϕ.\displaystyle 2\iint\partial_{t}y_{N}\cdot y_{N}\phi=-\iint|y_{N}|^{2}\partial_{t}\phi.

For the second line (2.38), we proceed along similar lines, this time with respect to the space variable. To avoid confusion, we will write the equation in components:

2Δ𝒗N𝒗Nϕ+2Δ𝑩N𝑩Nϕ\displaystyle 2\iint\Delta\bm{v}_{N}\cdot\bm{v}_{N}\phi+2\iint\Delta\bm{B}_{N}\cdot\bm{B}_{N}\phi
=2i,k(i𝒗Nk)i(𝒗Nkϕ)2i,k(i𝑩Nk)i(𝑩Nkϕ).\displaystyle=-2\iint\sum_{i,k}\left(\partial_{i}\bm{v}_{N}^{k}\right)\partial_{i}\left(\bm{v}_{N}^{k}\phi\right)-2\iint\sum_{i,k}\left(\partial_{i}\bm{B}_{N}^{k}\right)\partial_{i}\left(\bm{B}_{N}^{k}\phi\right).

We will focus on the velocity terms, the magnetic field works in exactly the same way.

2i,k(i𝒗Nk)i(𝒗Nkϕ)=2i,k|i𝒗Nk|2ϕ2(i𝒗Nk)𝒗Nkiϕ.\displaystyle-2\iint\sum_{i,k}\left(\partial_{i}\bm{v}_{N}^{k}\right)\partial_{i}\left(\bm{v}_{N}^{k}\phi\right)=-2\iint\sum_{i,k}\left|\partial_{i}\bm{v}_{N}^{k}\right|^{2}\phi-2\iint(\partial_{i}\bm{v}_{N}^{k})\bm{v}_{N}^{k}\partial_{i}\phi.

The last term on the right-hand side equals, after another application of integration by parts,

2(i𝒗Nk)𝒗Nkiϕ=2𝒗Nki(𝒗Nkiϕ)=2(i𝒗Nk)𝒗Nkiϕ+2𝒗Nk𝒗Nk(i2ϕ),\displaystyle-2\iint(\partial_{i}\bm{v}_{N}^{k})\bm{v}_{N}^{k}\partial_{i}\phi=2\iint\bm{v}_{N}^{k}\partial_{i}\left(\bm{v}_{N}^{k}\partial_{i}\phi\right)=2\iint\left(\partial_{i}\bm{v}_{N}^{k}\right)\bm{v}_{N}^{k}\partial_{i}\phi+2\iint\bm{v}_{N}^{k}\bm{v}_{N}^{k}\left(\partial_{i}^{2}\phi\right),

and thus

2(i𝒗Nk)𝒗Nkiϕ=|𝒗N|2Δϕ.\displaystyle-2\iint(\partial_{i}\bm{v}_{N}^{k})\bm{v}_{N}^{k}\partial_{i}\phi=\iint|\bm{v}_{N}|^{2}\Delta\phi.

Hence, (2.38) can be rewritten as

2Δ𝒚N𝒚Nϕ=|yN|2ϕ+|yN|2Δϕ.\displaystyle 2\iint\Delta\bm{y}_{N}\cdot\bm{y}_{N}\phi=-\iint|\nabla y_{N}|^{2}\phi+\iint|y_{N}|^{2}\Delta\phi.

The third line, (2.39) will be dealt with term by term. By the incompressibility condition

2(𝒗N)𝒗N𝒗Nϕ=2|𝒗N|2(𝒗Nϕ)=2|𝒗N|2𝒗Nϕ.\displaystyle-2\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{v}_{N}\cdot\bm{v}_{N}\phi=2\iint|\bm{v}_{N}|^{2}\nabla\cdot\left(\bm{v}_{N}\phi\right)=2\iint|\bm{v}_{N}|^{2}\bm{v}_{N}\cdot\nabla\phi.

The second term, in a similar fashion, becomes (again using the divergence-freeness)

2(𝑩N)𝑩N𝒗Nϕ=2(𝑩N)𝒗N𝑩Nϕ2(𝑩N𝒗N)(𝑩Nϕ).\displaystyle 2\iint\left(\bm{B}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot\bm{v}_{N}\phi=-2\iint(\bm{B}_{N}\cdot\nabla)\bm{v}_{N}\cdot\bm{B}_{N}\phi-2\iint(\bm{B}_{N}\cdot\bm{v}_{N})(\bm{B}_{N}\cdot\nabla\phi).

The first term of the last line here cancels with the second term of (2.40). Thus we only have to deal with the first term of (2.40):

2(𝒗N)𝑩N𝑩Nϕ=2i,k𝒗Ni(i𝑩Nk)𝑩Nkϕ\displaystyle-2\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot\bm{B}_{N}\phi=-2\sum_{i,k}\iint\bm{v}_{N}^{i}\left(\partial_{i}\bm{B}_{N}^{k}\right)\bm{B}_{N}^{k}\phi
=2i,k𝑩Nki(𝒗Ni𝑩Nkϕ)=2i,k𝒗Ni𝑩Nki(𝑩Nkϕ)\displaystyle=2\sum_{i,k}\iint\bm{B}_{N}^{k}\partial_{i}\left(\bm{v}_{N}^{i}\bm{B}_{N}^{k}\phi\right)=2\sum_{i,k}\iint\bm{v}_{N}^{i}\bm{B}_{N}^{k}\partial_{i}\left(\bm{B}_{N}^{k}\phi\right)
=2i,k𝒗Ni𝑩Nk(i𝑩Nk)ϕ+2i,k𝒗Ni𝑩Nk𝑩Nkiϕ\displaystyle=2\sum_{i,k}\iint\bm{v}_{N}^{i}\bm{B}_{N}^{k}\left(\partial_{i}\bm{B}_{N}^{k}\right)\phi+2\sum_{i,k}\iint\bm{v}_{N}^{i}\bm{B}_{N}^{k}\bm{B}_{N}^{k}\partial_{i}\phi
=2(𝒗N)𝑩N𝑩Nϕ+2|𝑩N|2𝒗Nϕ,\displaystyle=2\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot\bm{B}_{N}\phi+2\iint|\bm{B}_{N}|^{2}\bm{v}_{N}\cdot\nabla\phi,

and therefore

2(𝒗N)𝑩N𝑩Nϕ=|𝑩N|2𝒗Nϕ.\displaystyle-2\iint\left(\bm{v}_{N}\cdot\nabla\right)\bm{B}_{N}\cdot\bm{B}_{N}\phi=\iint|\bm{B}_{N}|^{2}\bm{v}_{N}\cdot\nabla\phi.

The last terms that we have to treat are the pressure terms of (2.42). For the first term, we find, again by integration by parts and the incompressibility

2pN𝒗Nϕ=2pN𝒗Nϕ,\displaystyle 2\iint\nabla p_{N}\cdot\bm{v}_{N}\phi=-2\iint p_{N}\bm{v}_{N}\cdot\nabla\phi,

and similarly for the second term

2πN𝑩Nϕ=2πN𝑩Nϕ.\displaystyle 2\iint\nabla\pi_{N}\cdot\bm{B}_{N}\phi=-2\iint\pi_{N}\bm{B}_{N}\cdot\nabla\phi.

Thus, altgether we find that

(2.43) 20T3|yN|2ϕdxds+20T3gN(|yN|2)|yN|2ϕdxds=0T3[|yN|2(tϕ+Δϕ)+2yN,fϕ2πN𝑩N,ϕ3+(|yN|22pN)𝒗N,ϕ32𝑩N,𝒗N3𝑩N,ϕ3]dxds.\begin{split}&2\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y_{N}|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s+2\int_{0}^{T}\int_{\mathbb{R}^{3}}g_{N}(|y_{N}|^{2})|y_{N}|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s\\ &=\int_{0}^{T}\int_{\mathbb{R}^{3}}\Big{[}|y_{N}|^{2}\left(\partial_{t}\phi+\Delta\phi\right)+2\langle y_{N},f\rangle\phi-2\pi_{N}\langle\bm{B}_{N},\nabla\phi\rangle_{\mathbb{R}^{3}}\\ &\quad+(|y_{N}|^{2}-2p_{N})\langle\bm{v}_{N},\nabla\phi\rangle_{\mathbb{R}^{3}}-2\langle\bm{B}_{N},\bm{v}_{N}\rangle_{\mathbb{R}^{3}}\langle\bm{B}_{N},\nabla\phi\rangle_{\mathbb{R}^{3}}\Big{]}\mathrm{d}x\mathrm{d}s.\end{split}

Since 0ϕCc0\leq\phi\in C_{c}^{\infty}, it acts as a density, and thus, by [10, Theorem 1.2.1], the map y0T3|y|2ϕdxdsy\mapsto\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s is lower semi-continuous in L2([0,T];0)L^{2}([0,T];\mathcal{H}^{0}). Thus, the limit of the left-hand side of (2.43) as NN\rightarrow\infty is greater than or equal to

lim infN0T3|yN|2ϕdxds+20T3gN(|yN|2)|yN|2ϕdxds\displaystyle\liminf_{N\rightarrow\infty}\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y_{N}|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s+2\int_{0}^{T}\int_{\mathbb{R}^{3}}g_{N}(|y_{N}|^{2})|y_{N}|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s
lim infN0T3|yN|2ϕdxds20T3|y|2ϕdxds.\displaystyle\geq\liminf_{N\rightarrow\infty}\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y_{N}|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s\geq 2\int_{0}^{T}\int_{\mathbb{R}^{3}}|\nabla y|^{2}\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s.

On the other hand, the limit of the right-hand side as NN\rightarrow\infty consists of four terms, which we treat individually. We denote G:=suppϕG:=\operatorname*{supp}\phi.

For the first term, by Cauchy-Schwarz-Buniakowski, (2.31) and (2.34), we find

0T3(|yN|2|y|2)(tϕ+Δϕ)dxds\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(|y_{N}|^{2}-|y|^{2}\right)\left(\partial_{t}\phi+\Delta\phi\right)\mathrm{d}x\mathrm{d}s
0TG|yNy|(|yN|+|y|)(tϕ+Δϕ)dxds\displaystyle\leq\int_{0}^{T}\int_{G}|y_{N}-y|(|y_{N}|+|y|)\left(\partial_{t}\phi+\Delta\phi\right)\mathrm{d}x\mathrm{d}s
Cϕ(0TG|yNy|2dxds)1/2(0TG2(|yN|2+|y|2)dxds)1/2\displaystyle\leq C_{\phi}\left(\int_{0}^{T}\int_{G}|y_{N}-y|^{2}\mathrm{d}x\mathrm{d}s\right)^{1/2}\left(\int_{0}^{T}\int_{G}2(|y_{N}|^{2}+|y|^{2})\mathrm{d}x\mathrm{d}s\right)^{1/2}
Cϕ,y0,T,f(0TG|yNy|2dxds)1/2N0.\displaystyle\leq C_{\phi,y_{0},T,f}\left(\int_{0}^{T}\int_{G}|y_{N}-y|^{2}\mathrm{d}x\mathrm{d}s\right)^{1/2}\overset{N\rightarrow\infty}{\longrightarrow}0.

The second term can be treated in a similar fashion:

0T32yNy,fϕdxds\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}2\langle y_{N}-y,f\rangle\phi\leavevmode\nobreak\ \mathrm{d}x\mathrm{d}s (0TG|yNy|2dxds)1/2(0TG|f|2ϕ2dxds)1/2\displaystyle\leq\left(\int_{0}^{T}\int_{G}|y_{N}-y|^{2}\mathrm{d}x\mathrm{d}s\right)^{1/2}\left(\int_{0}^{T}\int_{G}|f|^{2}\phi^{2}\mathrm{d}x\mathrm{d}s\right)^{1/2}
CϕfL2([0,T];0)(0TG|yNy|2dxds)1/2N0.\displaystyle\leq C_{\phi}\|f\|_{L^{2}([0,T];\mathcal{H}^{0})}\left(\int_{0}^{T}\int_{G}|y_{N}-y|^{2}\mathrm{d}x\mathrm{d}s\right)^{1/2}\overset{N\rightarrow\infty}{\longrightarrow}0.

For the term

0T3|yN|2𝒗N,ϕ3dxds=0TG|yN|2𝒗N,1Gϕϕ3ϕdxds,\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}|y_{N}|^{2}\langle\bm{v}_{N},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}s=\int_{0}^{T}\int_{G}|y_{N}|^{2}\left\langle\bm{v}_{N},1_{G}\frac{\nabla\phi}{\phi}\right\rangle_{\mathbb{R}^{3}}\phi\mathrm{d}x\mathrm{d}s,

we note that since ϕCc((0,T)×3)\phi\in C_{c}^{\infty}((0,T)\times\mathbb{R}^{3}), (2.34) implies convergence in measure for the finite measure μ:=ϕdxds\mu:=\phi\mathrm{d}x\otimes\mathrm{d}s. One can also prove uniform integrability with respect to this measure. Then by the generalised Lebesgue dominated convergence theorem we get

0T3|yN|2𝒗N,ϕ3dxdsN0T3|y|2𝒗,ϕ3dxds.\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}|y_{N}|^{2}\langle\bm{v}_{N},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}s\overset{N\rightarrow\infty}{\longrightarrow}\int_{0}^{T}\int_{\mathbb{R}^{3}}|y|^{2}\langle\bm{v},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}s.

Moving on with the energy inequality, the last term of (2.43) can be treated in the same way as just discussed. We are left with the pressure term. As in [39], pp. 547 f., we take the divergence of (2.35) to find

(2.44) ΔpN=div((𝒗N)𝒗N(𝑩N)𝑩N|𝑩N|22+gN(|yN|2)𝒗N)=div((𝒗N)𝒗N(𝑩N)𝑩N𝑩N(𝑩N)+gN(|yN|2)𝒗N).\begin{split}\Delta p_{N}&=\operatorname*{div}\left((\bm{v}_{N}\cdot\nabla)\bm{v}_{N}-(\bm{B}_{N}\cdot\nabla)\bm{B}_{N}-\nabla\frac{|\bm{B}_{N}|^{2}}{2}+g_{N}(|y_{N}|^{2})\bm{v}_{N}\right)\\ &=\operatorname*{div}\left((\bm{v}_{N}\cdot\nabla)\bm{v}_{N}-(\bm{B}_{N}\cdot\nabla)\bm{B}_{N}-\bm{B}_{N}\cdot(\nabla\bm{B}_{N})+g_{N}(|y_{N}|^{2})\bm{v}_{N}\right).\end{split}

Similarly, we take the divergence of (2.36) and obtain333Noting that (𝒗N)𝑩N(𝑩N)𝒗N=×(𝒗×𝑩)(\bm{v}_{N}\cdot\nabla)\bm{B}_{N}-(\bm{B}_{N}\cdot\nabla)\bm{v}_{N}=\nabla\times(\bm{v}\times\bm{B}), which is divergence-free, cf. Section 1.2.3.

(2.45) ΔπN=div(gN(|yN|2)𝑩N).\Delta\pi_{N}=\operatorname*{div}\left(g_{N}(|y_{N}|^{2})\bm{B}_{N}\right).

We note that for NN sufficiently large

(gN(r))9/8r9/16CgN(r)r.(g_{N}(r))^{9/8}\cdot r^{9/16}\leq Cg_{N}(r)\cdot r.

This is obviously true on the set {r|gN(r)=0}\{r\leavevmode\nobreak\ |\leavevmode\nobreak\ g_{N}(r)=0\}. If r>0r>0 is such that gN(r)>0g_{N}(r)>0 (which implies r1r\geq 1), we have

(gN(r))9/8r9/16gN(r)(gN(r))1/8r9/16\displaystyle(g_{N}(r))^{9/8}\cdot r^{9/16}\leq g_{N}(r)(g_{N}(r))^{1/8}\cdot r^{9/16}
gN(r)21/8r1/8r9/16gN(r)21/8r11/1621/8gN(r)r,\displaystyle\leq g_{N}(r)2^{1/8}r^{1/8}\cdot r^{9/16}\leq g_{N}(r)2^{1/8}\cdot r^{11/16}\leq 2^{1/8}g_{N}(r)\cdot r,

where the factor of 22 appears due to the definition of the taming function. Using this inequality and (2.31), we find

(2.46) 0T3|gN(|y|2)y|9/8dxdtC0T3gN(|y|2)|y|2dxdtCT,y0,f.\int_{0}^{T}\int_{\mathbb{R}^{3}}|g_{N}(|y|^{2})y|^{9/8}\mathrm{d}x\mathrm{d}t\leq C\int_{0}^{T}\int_{\mathbb{R}^{3}}g_{N}(|y|^{2})\cdot|y|^{2}\mathrm{d}x\mathrm{d}t\leq C_{T,y_{0},f}.

For the first three nonlinear terms on the right-hand side of (2.44), we note that by Hölder’s inequality (first for the product measure dxdt\mathrm{d}x\otimes\mathrm{d}t and with p=16/7p=16/7, q=16/9q=16/9, then for dt\mathrm{d}t with p=14/6p=14/6, q=14/8q=14/8) and the Sobolev embedding (2.6) we have

(2.47) 0T3|(𝒗N)𝒗N|9/8dxdt0T3|𝒗N|9/8|𝒗N|9/8dxdt(0T𝒗NL18/718/7)716(0T𝒗N12dt)916(0TyN18/718/7dt)716(0TyN12dt)916Cy0,T,f(C2,0,2,2,18/718/70T(yN11/3yN22/3)18/7dt)7/16=Cy0,T,fC2,0,2,2,18/79/8(0TyN16/7yN212/7dt)7/16Cy0,T,fC2,0,2,2,18/79/8((0TyN12dt)6/14(0TyN23dt)8/14)7/16CT,y0,f.\begin{split}&\int_{0}^{T}\int_{\mathbb{R}^{3}}|(\bm{v}_{N}\cdot\nabla)\bm{v}_{N}|^{9/8}\mathrm{d}x\mathrm{d}t\leq\int_{0}^{T}\int_{\mathbb{R}^{3}}|\bm{v}_{N}|^{9/8}|\nabla\bm{v}_{N}|^{9/8}\mathrm{d}x\mathrm{d}t\\ &\leq\left(\int_{0}^{T}\|\bm{v}_{N}\|_{L^{18/7}}^{18/7}\right)^{\frac{7}{16}}\cdot\left(\int_{0}^{T}\|\bm{v}_{N}\|_{\mathbb{H}^{1}}^{2}\mathrm{d}t\right)^{\frac{9}{16}}\\ &\leq\left(\int_{0}^{T}\|y_{N}\|_{\mathcal{L}^{18/7}}^{18/7}\mathrm{d}t\right)^{\frac{7}{16}}\cdot\left(\int_{0}^{T}\|y_{N}\|_{\mathcal{H}^{1}}^{2}\mathrm{d}t\right)^{\frac{9}{16}}\\ &\leq C_{y_{0},T,f}\left(C_{2,0,2,2,18/7}^{18/7}\int_{0}^{T}\left(\|y_{N}\|_{\mathcal{H}^{1}}^{1/3}\|y_{N}\|_{\mathcal{L}^{2}}^{2/3}\right)^{18/7}\mathrm{d}t\right)^{7/16}\\ &=C_{y_{0},T,f}C_{2,0,2,2,18/7}^{9/8}\left(\int_{0}^{T}\|y_{N}\|_{\mathcal{H}^{1}}^{6/7}\|y_{N}\|_{\mathcal{L}^{2}}^{12/7}\mathrm{d}t\right)^{7/16}\\ &\leq C_{y_{0},T,f}C_{2,0,2,2,18/7}^{9/8}\left(\left(\int_{0}^{T}\|y_{N}\|_{\mathcal{H}^{1}}^{2}\mathrm{d}t\right)^{6/14}\left(\int_{0}^{T}\|y_{N}\|_{\mathcal{L}^{2}}^{3}\mathrm{d}t\right)^{8/14}\right)^{7/16}\\ &\leq C_{T,y_{0},f}.\end{split}

The other terms can be bounded in the same way.

Again using the interpolation inequality (2.6), we find

(2.48) 0TpNL9/59/8dtC1,0,9/8,9/8,9/59/80TpN1,9/89/8dt.\int_{0}^{T}\|p_{N}\|_{L^{9/5}}^{9/8}\mathrm{d}t\leq C_{1,0,9/8,9/8,9/5}^{9/8}\int_{0}^{T}\|p_{N}\|_{1,9/8}^{9/8}\mathrm{d}t.

Recall that ΔpN=divN\Delta p_{N}=\operatorname*{div}\mathcal{R}_{N}, where N\mathcal{R}_{N} is defined by (2.44). Then we have

pN1,9/8=(IΔ)1/2Δ1ΔpNL9/8=(IΔ)1/21NL9/8NL9/8.\displaystyle\|p_{N}\|_{1,9/8}=\|(I-\Delta)^{1/2}\Delta^{-1}\Delta p_{N}\|_{L^{9/8}}=\|(I-\Delta)^{1/2}\nabla^{-1}\mathcal{R}_{N}\|_{L^{9/8}}\leq\|\mathcal{R}_{N}\|_{L^{9/8}}.

Here we used the LpL^{p} theory for singular integrals, e.g. [42, Chapter V.3.2, Lemma 2, p. 133 f.]. By (2.46) and (2.47) it follows that the right-hand side of (2.48) is uniformly bounded in NN.

Therefore, by the Eberlein-Šmuljan theorem (cf. [50, Theorem 21.D, p. 255]), there is a subsequence (pNk)k(p_{N_{k}})_{k} and a function

pL9/8([0,T];L9/5(3;3))p\in L^{9/8}([0,T];L^{9/5}(\mathbb{R}^{3};\mathbb{R}^{3}))

such that for kk\rightarrow\infty

(2.49) pNkpweaklyinL9/8([0,T];L9/5(3;3)).p_{N_{k}}\rightarrow p\quad\mathrm{weakly\leavevmode\nobreak\ in\leavevmode\nobreak\ }L^{9/8}([0,T];L^{9/5}(\mathbb{R}^{3};\mathbb{R}^{3})).

Finally, by another application of (2.32), with q=12,r=9/4q=12,r=9/4, we find

0TyN9/412dtCT,y0,f.\int_{0}^{T}\|y_{N}\|_{\mathcal{L}^{9/4}}^{12}\mathrm{d}t\leq C_{T,y_{0},f}.

Thus, in the same way as above, we can employ the generalised Lebesgue dominated convergence theorem to conclude that for ϕC0((0,T)×3)\phi\in C_{0}^{\infty}((0,T)\times\mathbb{R}^{3})

limN\displaystyle\lim_{N\rightarrow\infty} |0T3pN𝒗Np𝒗,ϕ3dxdt|\displaystyle\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}\langle p_{N}\bm{v}_{N}-p\bm{v},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}t\right|
limN|0T3(pNp)𝒗,ϕ3dxdt|\displaystyle\leq\lim_{N\rightarrow\infty}\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}(p_{N}-p)\langle\bm{v},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}t\right|
+|0T3pN𝒗N𝒗,ϕ3dxdt|\displaystyle\quad+\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}p_{N}\langle\bm{v}_{N}-\bm{v},\nabla\phi\rangle_{\mathbb{R}^{3}}\mathrm{d}x\mathrm{d}t\right|
limN(pNL9/59/8dt)8/9(0T|𝒗N𝒗||ϕ|L9/49)1/9=0.\displaystyle\leq\lim_{N\rightarrow\infty}\left(\|p_{N}\|_{L^{9/5}}^{9/8}\mathrm{d}t\right)^{8/9}\left(\int_{0}^{T}\||\bm{v}_{N}-\bm{v}|\cdot|\nabla\phi|\|_{L^{9/4}}^{9}\right)^{1/9}=0.

In exactly the same way we find a subsequence (Nk)k(N_{k})_{k\in\mathbb{N}} such that

πNkπweaklyinL9/8([0,T];L9/5(3;3)).\displaystyle\pi_{N_{k}}\rightarrow\pi\quad\mathrm{weakly\leavevmode\nobreak\ in\leavevmode\nobreak\ }L^{9/8}([0,T];L^{9/5}(\mathbb{R}^{3};\mathbb{R}^{3})).

The limit π\pi satisfies the equation

Δπ=0,\displaystyle\Delta\pi=0,

which, combined with the integrability property of π\pi yields π0\pi\equiv 0, thus eliminating the ”magnetic pressure” from the resulting weak equation as well as the generalised energy inequality. Hence we have shown that the solutions to the tamed MHD equations converge to suitable weak solutions to the MHD equations. ∎

Remark 2.7.

It is to be expected that existence and uniqueness in the case of a bounded domain 𝔻3\mathbb{D}\subset\mathbb{R}^{3} can be shown in a similar way as for the tamed Navier-Stokes equations, as in W. Liu and M. Röckner [33, p. 170 ff.]. However, their method uses an inequality [33, Equation (5.61), p. 166], sometimes called Xie’s inequality, for the LL^{\infty}-norm of a function in terms of the L2L^{2}-norms of the gradient and the Laplacian (more precisely, the Stokes operator). This inequality holds for Dirichlet boundary conditions on quite general domains (cf. R.M. Brown, Z.W. Shen [4, Equation (0.2), p. 1184] for Lipschitz boundaries). If we were to use the method of [33], we would need to have a similar inequality for the magnetic field as well. Unfortunately, to the best of the author’s knowledge, such an inequality has not yet been established for the boundary conditions

𝑩𝝂=0,(×𝑩)×𝝂=0on𝔻\bm{B}\cdot\bm{\nu}=0,\quad(\nabla\times\bm{B})\times\bm{\nu}=0\quad\mathrm{on}\ \partial\mathbb{D}

of the magnetic field (which mean that the boundary is perfectly conducting, cf. [41, Equation (1.3), p. 637]). Here, ν\nu is the outward unit normal vector of the boundary of the domain. If such an inequality could be shown, the rest of the proof of Liu and Röckner should follow in exactly the same way.

Appendix A LpL^{p} Solutions and Integral Equations

In [14] E.B. Fabes, B.F. Jones and N.M. Riviere proved that the weak formulation for the Navier-Stokes equations on the whole space is equivalent to solving a nonlinear integral equation of the form

(A.1) u(x,t)+(u,u)(x,t)=dΓ(xy,t)u0(y)dy.u(x,t)+\mathcal{B}(u,u)(x,t)=\int_{\mathbb{R}^{d}}\Gamma(x-y,t)u_{0}(y)\mathrm{d}y.

They used this formulation to prove regularity estimates in mixed space-time LpL^{p} spaces. Their results play an important role in showing smoothness for smooth initial data for the weak solution of the tamed Navier-Stokes equations in [39] and in this section we attempt to derive analogous results for the MHD equations.

The main idea of [14] is threefold:

  1. 1.

    Find a divergence-free solution to the heat equation with the initial data of the Navier- Stokes problem via Fourier analysis.

  2. 2.

    Use this solution as a test function in the weak formulation to derive the integral equation.

  3. 3.

    Prove regularity of the solution to the integral equation (which amounts to estimating the nonlinear term (u,u)\mathcal{B}(u,u).

We follow their steps with the necessary modifications of the MHD case. Fabes, Jones and Riviere consider mixed space-time Lp,qL^{p,q}-norms on ST:=d×[0,T]S_{T}:=\mathbb{R}^{d}\times[0,T] for p,q2p,q\geq 2, defined by

uLp,q(ST):=j=1d[0T(d|uj(x,t)|pdx)q/pdt]1/q,\displaystyle\|u\|_{L^{p,q}(S_{T})}:=\sum_{j=1}^{d}\left[\int\limits_{0}^{T}\left(\int_{\mathbb{R}^{d}}|u_{j}(x,t)|^{p}\mathrm{d}x\right)^{q/p}\mathrm{d}t\right]^{1/q},

where dp+2q1\frac{d}{p}+\frac{2}{q}\leq 1, d<p<d<p<\infty. The space of functions that have finite Lp,qL^{p,q}-norm is denoted by Lp,q(ST)L^{p,q}(S_{T}). As we are only interested in the case p=qp=q, we will occasionally assume this for simplicity in the following. All the results that follow, however, are true also in the more general case.

A.1. A Divergence-Free Solution to the Heat Equation on the Whole Space

The first step consists in constructing a symmetric d×dd\times d matrix-valued function (t,x)(Eij(x,t))i,j=1d(t,x)\mapsto(E_{ij}(x,t))_{i,j=1}^{d} with the following properties:

  1. (i)

    ΔEij(x,t)tEij(x,t)=0\Delta E_{ij}(x,t)-\partial_{t}E_{ij}(x,t)=0 for all t>0t>0, xdx\in\mathbb{R}^{d}.

  2. (ii)

    Ei(x,t)=0\nabla\cdot E_{i}(x,t)=0 for all xdx\in\mathbb{R}^{d}, t>0t>0 where EiE_{i} is the i-th row of EijE_{ij}, i.e., Ei=(Ei1,,Eid)E_{i}=(E_{i1},\ldots,E_{id})

  3. (iii)

    For g𝕃p(d)g\in\mathbb{L}^{p}(\mathbb{R}^{d}), 1p<1\leq p<\infty (i.e., gLp(d)g\in L^{p}(\mathbb{R}^{d}) and g=0\nabla\cdot g=0 in the sense of distributions), the following convergence holds:

    dE(xy,t)(g(y))dyg(x)inLp(d)ast0.\int_{\mathbb{R}^{d}}E(x-y,t)(g(y))dy\rightarrow g(x)\quad\mathrm{in}\quad L^{p}(\mathbb{R}^{d})\quad\mathrm{as}\quad t\downarrow 0.

The function is given by

(A.2) Eij(x,t)=δijΓ(x,t)RiRjΓ(x,t),E_{ij}(x,t)=\delta_{ij}\Gamma(x,t)-R_{i}R_{j}\Gamma(x,t),

where

Γ(x,t):=1(4πt)n/2e|x|2/4t\Gamma(x,t):=\frac{1}{(4\pi t)^{n/2}}e^{-|x|^{2}/4t}

denotes the Weierstraß kernel and RjR_{j} denotes the Riesz transformation,

Rj(f)(x):=Lplimε0cj|xy|>εxjyj|xy|n+1f(y)dy.R_{j}(f)(x):=L^{p}-\lim_{\varepsilon\rightarrow 0}c_{j}\int_{|x-y|>\varepsilon}\frac{x_{j}-y_{j}}{|x-y|^{n+1}}f(y)\mathrm{d}y.

Then one can show that Eij(x,t)C(d×(0,))E_{ij}(x,t)\in C^{\infty}(\mathbb{R}^{d}\times(0,\infty)), and for 1p<1\leq p<\infty and g𝕃p(d)g\in\mathbb{L}^{p}(\mathbb{R}^{d}),

(A.3) Eij(x,t)(gi)(x)=dΓ(xy,t)gi(y)dy,a.e.E_{ij}(x,t)(g_{i})(x)=\int_{\mathbb{R}^{d}}\Gamma(x-y,t)g_{i}(y)\mathrm{d}y,\quad a.e.

We now want to define the nonlinear operator \mathcal{B}. Recall that EiE_{i} denotes the i-th row of EijE_{ij}. We denote by u(y,s),E(xy,ts)\langle u(y,s),\nabla E(x-y,t-s)\rangle the d×dd\times d-matrix444Note that EE is a d×dd\times d-matrix, so taking its gradient we get a tensor of rank 3. By multiplying with the vector uu, we obtain a tensor of rank 2, i.e., a matrix.

(u(y,s),DxkEi(xy,ts))i,k=1d=(j=1duj(y,s)DxkEij(xy,ts))i,k=1d,\left(\left\langle u(y,s),D_{x_{k}}E_{i}(x-y,t-s)\right\rangle\right)_{i,k=1}^{d}=\left(\sum_{j=1}^{d}u_{j}(y,s)D_{x_{k}}E_{ij}(x-y,t-s)\right)_{i,k=1}^{d},

and define the operator ¯(u,w)\bar{\mathcal{B}}(u,w) by

(A.4) ¯(u,w)(x,t):=0tdu(y,s),E(xy,ts)w(y,s)dyds.\bar{\mathcal{B}}(u,w)(x,t):=\int_{0}^{t}\int_{\mathbb{R}^{d}}\langle u(y,s),\nabla E(x-y,t-s)\rangle\cdot w(y,s)\mathrm{d}y\mathrm{d}s.

Note that even though Eij(,1)L1(d)E_{ij}(\cdot,1)\notin L^{1}(\mathbb{R}^{d}), since its Fourier transform is not continuous at the origin, and L1L^{1} functions have uniformly continuous Fourier transform, cf. [47, Satz V.2.2, p. 212], we still have DxkEijL1(ST)D_{x_{k}}E_{ij}\in L^{1}(S_{T}). This implies the following:

Lemma A.1.

Let u,wLp(ST)u,w\in L^{p}(S_{T}), p2p\geq 2. Then ¯(u,w)Lp/2(ST)\bar{\mathcal{B}}(u,w)\in L^{p/2}(S_{T}).

Proof.

As this statement is not entirely obvious and we will need it below, we prove it here for the reader’s convenience. We want to estimate

i[0Td|¯i(u,w)|p/2dxdt]2/p\displaystyle\sum_{i}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}|\bar{\mathcal{B}}_{i}(u,w)|^{p/2}\mathrm{d}x\mathrm{d}t\right]^{2/p}
=i[0Td|j,k0tdDxkEij(xy,ts)uj(y,s)vk(y,s)dyds|p/2dxdt]2/p.\displaystyle=\sum_{i}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}\left|\sum_{j,k}\int_{0}^{t}\int_{\mathbb{R}^{d}}D_{x_{k}}E_{ij}(x-y,t-s)u_{j}(y,s)v_{k}(y,s)\mathrm{d}y\mathrm{d}s\right|^{p/2}\mathrm{d}x\mathrm{d}t\right]^{2/p}.

To simplify notations, we let

Fijk(y,s):=|DxkEij(y,s)|1[0,T](s)andGjk(y,s):=1[0,T](s)|uj(y,s)vk(y,s)|.F_{ijk}(y,s):=|D_{x_{k}}E_{ij}(y,s)|1_{[0,T]}(s)\leavevmode\nobreak\ \mathrm{and}\leavevmode\nobreak\ G_{jk}(y,s):=1_{[0,T]}(s)|u_{j}(y,s)v_{k}(y,s)|.

We denote by f\oastgf\oast g the convolution in space and time, i.e.,

f\oastg(x,t):=df(xy,ts)g(y,s)dyds.\displaystyle f\oast g(x,t):=\int_{-\infty}^{\infty}\int_{\mathbb{R}^{d}}f(x-y,t-s)g(y,s)\mathrm{d}y\mathrm{d}s.

Then, using that s[0,t]s\in[0,t] if and only if ts[0,t]t-s\in[0,t], the inner integral of the expression we want to estimate can be written and estimated as

0Td|j,k0tdDxkEij(xy,ts)uj(y,s)vk(y,s)dyds|p/2dxdt\displaystyle\int\limits_{0}^{T}\int\limits_{\mathbb{R}^{d}}\left|\sum_{j,k}\int\limits_{0}^{t}\int\limits_{\mathbb{R}^{d}}D_{x_{k}}E_{ij}(x-y,t-s)u_{j}(y,s)v_{k}(y,s)\mathrm{d}y\mathrm{d}s\right|^{p/2}\mathrm{d}x\mathrm{d}t
=0Td|j,kd1[0,t](ts)DxkEij(xy,ts)1[0,t](s)uj(y,s)vk(y,s)dyds|p/2dxdt\displaystyle=\int\limits_{0}^{T}\int\limits_{\mathbb{R}^{d}}\left|\sum_{j,k}\int\limits_{-\infty}^{\infty}\int\limits_{\mathbb{R}^{d}}1_{[0,t]}(t-s)D_{x_{k}}E_{ij}(x-y,t-s)1_{[0,t]}(s)u_{j}(y,s)v_{k}(y,s)\mathrm{d}y\mathrm{d}s\right|^{p/2}\mathrm{d}x\mathrm{d}t
0Td(j,kd1[0,T](ts)|DxkEij(xy,ts)1[0,T](s)||uj(y,s)vk(y,s)|dyds)p/2dxdt\displaystyle\leq\int\limits_{0}^{T}\int\limits_{\mathbb{R}^{d}}\left(\sum_{j,k}\int\limits_{-\infty}^{\infty}\int\limits_{\mathbb{R}^{d}}1_{[0,T]}(t-s)\left|D_{x_{k}}E_{ij}(x-y,t-s)1_{[0,T]}(s)\right|\left|u_{j}(y,s)v_{k}(y,s)\right|\mathrm{d}y\mathrm{d}s\right)^{p/2}\mathrm{d}x\mathrm{d}t
=0Td(j,k(Fijk\oastGjk)(x,t))p/2dxdt.\displaystyle=\int\limits_{0}^{T}\int\limits_{\mathbb{R}^{d}}\left(\sum_{j,k}(F_{ijk}\oast G_{jk})(x,t)\right)^{p/2}\mathrm{d}x\mathrm{d}t.

Thus by Young’s convolution inequality and the Cauchy-Schwarz-Buniakowski inequality

i[0Td|¯i(u,w)|p/2dxdt]2/pi[0Td(j,k(Fijk\oastGjk)(x,t))p/2dxdt]2/p\displaystyle\sum_{i}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}|\bar{\mathcal{B}}_{i}(u,w)|^{p/2}\mathrm{d}x\mathrm{d}t\right]^{2/p}\leq\sum_{i}\left[\int_{0}^{T}\int_{\mathbb{R}^{d}}\left(\sum_{j,k}(F_{ijk}\oast G_{jk})(x,t)\right)^{p/2}\mathrm{d}x\mathrm{d}t\right]^{2/p}
=ij,k1[0,T](Fijk\oastGjk)Lp/2(d+1)i,j,k(Fijk\oastGjk)Lp/2(d+1)\displaystyle=\sum_{i}\|\sum_{j,k}1_{[0,T]}(F_{ijk}\oast G_{jk})\|_{L^{p/2}(\mathbb{R}^{d+1})}\leq\sum_{i,j,k}\|(F_{ijk}\oast G_{jk})\|_{L^{p/2}(\mathbb{R}^{d+1})}
i,j,kFijkL1(d+1)GjkLp/2(d+1)=i,j,kDxkEijL1(ST)ujvkLp/2(ST)\displaystyle\leq\sum_{i,j,k}\|F_{ijk}\|_{L^{1}(\mathbb{R}^{d+1})}\|G_{jk}\|_{L^{p/2}(\mathbb{R}^{d+1})}=\sum_{i,j,k}\|D_{x_{k}}E_{ij}\|_{L^{1}(S_{T})}\|u_{j}v_{k}\|_{L^{p/2}(S_{T})}
=i,j,kDxkEijL1(ST)ujLp(ST)vkLp(ST)(i,j,kDxkEijL1(ST))(j,kujLp(ST)vkLp(ST))\displaystyle=\sum_{i,j,k}\|D_{x_{k}}E_{ij}\|_{L^{1}(S_{T})}\|u_{j}\|_{L^{p}(S_{T})}\|v_{k}\|_{L^{p}(S_{T})}\leq\left(\sum_{i,j,k}\|D_{x_{k}}E_{ij}\|_{L^{1}(S_{T})}\right)\left(\sum_{j,k}\|u_{j}\|_{L^{p}(S_{T})}\|v_{k}\|_{L^{p}(S_{T})}\right)
=(i,j,kDxkEijL1(ST))uLp(ST)vLp(ST),\displaystyle=\left(\sum_{i,j,k}\|D_{x_{k}}E_{ij}\|_{L^{1}(S_{T})}\right)\|u\|_{L^{p}(S_{T})}\|v\|_{L^{p}(S_{T})},

where we used Hölder’s inequality for p=1,p=p=1,p^{\prime}=\infty for the sum j,k\sum_{j,k} and the embedding (d)1(d)\ell^{\infty}(d)\subset\ell^{1}(d). The proof is complete. ∎

Given this operator, we define the operator (y1,y2)\mathcal{B}(y_{1},y_{2}) by

(A.5) (y1,y2):=(¯(v1,v2)¯(B1,B2)¯(v1,B2)¯(B1,v2)).\mathcal{B}(y_{1},y_{2}):=\begin{pmatrix}\bar{\mathcal{B}}(v_{1},v_{2})-\bar{\mathcal{B}}(B_{1},B_{2})\\ \bar{\mathcal{B}}(v_{1},B_{2})-\bar{\mathcal{B}}(B_{1},v_{2})\end{pmatrix}.

The operator \mathcal{B} occurs naturally when we (formally) use the function EiE_{i} as a test function in the weak formulation. This will be the subject of the next section.

Before moving on with the theory, let us give a useful Sobolev version of the classical Schauder estimates (for lack of a better name) for the heat equation. To this end, we introduce another short-hand notation for the convolution appearing in the definition of ¯\bar{\mathcal{B}}, Equation (A.4):

(f\oast¯g)(x,t):=tdf(xy,ts)g(y,s)dyds.\displaystyle(f\bar{\oast}g)(x,t):=\int_{-\infty}^{t}\int_{\mathbb{R}^{d}}f(x-y,t-s)g(y,s)\mathrm{d}y\mathrm{d}s.
Lemma A.2.

Let γ\gamma\in\mathbb{R}, p,q(1,)p,q\in(1,\infty), and fLq((0,T);Wγ,p)f\in L^{q}((0,T);W^{\gamma,p}) be a function. Then the convolution of ff with the heat kernel Γ\Gamma lies in the space Lq((0,T);Wγ+2,p)L^{q}((0,T);W^{\gamma+2,p}). More precisely,

Γ\oast¯fLq((0,T);Wγ+2,p)\displaystyle\|\Gamma\bar{\oast}f\|_{L^{q}((0,T);W^{\gamma+2,p})} cfLq((0,T);Wγ,p).\displaystyle\leq c\|f\|_{L^{q}((0,T);W^{\gamma,p})}.

These can also be rewritten into estimates with respect to temporal derivatives.

Proof.

In the case p=qp=q, the result is classical, cf. e.g. the book of O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’ceva [29, Chapter IV, Equation (3.1), p. 288]. For pqp\neq q, it was proved by N.V. Krylov in [28, Theorem 1.1] using a Banach space version of the Calderón-Zygmund theorem. ∎

A.2. Equivalence of Weak Solutions to the MHD Equations and Solutions to the Integral Equation

By 𝒮(d+1)\mathcal{S}(\mathbb{R}^{d+1}) we denote the Schwartz space of rapidly decreasing functions, and by 𝒮(d+1)\mathcal{S}^{\prime}(\mathbb{R}^{d+1}) we denote its dual space, the space of tempered distributions. Our space of test functions for the weak formulation of the MHD equations is

𝒟T:={ϕ(x,t)d|ϕi𝒮(d+1),ϕi0fortT,ϕ(x,t)=0x,t}.\mathcal{D}_{T}:=\{\phi(x,t)\in\mathbb{R}^{d}\leavevmode\nobreak\ |\leavevmode\nobreak\ \phi_{i}\in\mathcal{S}(\mathbb{R}^{d+1}),\phi_{i}\equiv 0\leavevmode\nobreak\ \mathrm{for\leavevmode\nobreak\ }t\geq T,\nabla\cdot\phi(x,t)=0\leavevmode\nobreak\ \forall x,t\}.
Definition A.3 (Weak solution).

A function y(x,t)=(v(x,t),B(x,t))2dy(x,t)=(v(x,t),B(x,t))\in\mathbb{R}^{2d} is a weak solution of the MHD equations with initial value y0=(v0,B0)y_{0}=(v_{0},B_{0}) if the following conditions hold:

  1. (i)

    v,BLp,q(ST)v,B\in L^{p,q}(S_{T}), p,q2p,q\geq 2.

  2. (ii)

    For all test functions y~=(v~,B~)𝒟T\tilde{y}=(\tilde{v},\tilde{B})\in\mathcal{D}_{T} we have the following equality:

    (A.6) 0Tdy,ty~+Δy~dx+0Tdv,(v~)(v)(B~)(B)dxdt+0TdB,(B~)(v)(v~)(B)dxdt=dy0(x),y~(x,0)dx0Tdf,y~dxdt.\begin{split}\int_{0}^{T}\int_{\mathbb{R}^{d}}\langle y,\partial_{t}\tilde{y}+\Delta\tilde{y}\rangle\mathrm{d}x&+\int_{0}^{T}\int_{\mathbb{R}^{d}}\langle v,(\nabla\tilde{v})(v)-(\nabla\tilde{B})(B)\rangle\mathrm{d}x\mathrm{d}t\\ &+\int_{0}^{T}\int_{\mathbb{R}^{d}}\langle B,(\nabla\tilde{B})(v)-(\nabla\tilde{v})(B)\rangle\mathrm{d}x\mathrm{d}t\\ &=-\int_{\mathbb{R}^{d}}\langle y_{0}(x),\tilde{y}(x,0)\rangle\mathrm{d}x-\int_{0}^{T}\int_{\mathbb{R}^{d}}\langle f,\tilde{y}\rangle\mathrm{d}x\mathrm{d}t.\end{split}
  3. (iii)

    For dtdt-a.e. t[0,T]t\in[0,T], u(,t)=0\nabla\cdot u(\cdot,t)=0 in the sense of distributions.

The weak solution satisfies a scalar equation. We cast this scalar equation, by choosing suitable test functions, into an equivalent vector-valued equation. More precisely, we have the following result, corresponding to Theorem (2.1) in [14] for f=0f=0 and Theorem (4.4) for f0f\neq 0.

Theorem A.4 (Integral Equation).

Let y0𝕃r(d)y_{0}\in\mathbb{L}^{r}(\mathbb{R}^{d}), 1r<1\leq r<\infty, p,q2p,q\geq 2, p<p<\infty. If yLp,q(ST)y\in L^{p,q}(S_{T}) is a weak solution of the MHD equations with initial value y0y_{0}, then yy solves the integral equation

(A.7) y+(y,y)=dΓ(xz,t)y0(z)dz+0tdE(xz,ts)(f(z,s))dzds.y+\mathcal{B}(y,y)=\int_{\mathbb{R}^{d}}\Gamma(x-z,t)y_{0}(z)\mathrm{d}z+\int_{0}^{t}\int_{\mathbb{R}^{d}}E(x-z,t-s)(f(z,s))\mathrm{d}z\mathrm{d}s.
Proof.

This can be proven in exactly the same way as in [14]. ∎

A.3. Regularity of Solutions to the Integral Equation

Theorem A.5 (Regularity).

Let yy be a solution to the equation y+(y,y)=fy+\mathcal{B}(y,y)=f and yLp,q(ST)y\in L^{p,q}(S_{T}), 2q+dp1\frac{2}{q}+\frac{d}{p}\leq 1. Let kk be a positive integer such that k+1<p,q<k+1<p,q<\infty. If

DxαDtjfLp/(|α|+2j+1),q/(|α|+2j+1)(ST)whenever|α|+2jk,\displaystyle D_{x}^{\alpha}D_{t}^{j}f\in L^{p/(|\alpha|+2j+1),q/(|\alpha|+2j+1)}(S_{T})\quad whenever\leavevmode\nobreak\ |\alpha|+2j\leq k,

then also

DxαDtjyLp/(|α|+2j+1),q/(|α|+2j+1)(ST)for|α|+2jk.\displaystyle D_{x}^{\alpha}D_{t}^{j}y\in L^{p/(|\alpha|+2j+1),q/(|\alpha|+2j+1)}(S_{T})\quad for\leavevmode\nobreak\ |\alpha|+2j\leq k.
Proof.

The proof proceeds along the same lines as that of Theorem 3.4 in [14], with the necessary modifications to the MHD case. Since y=f(y,y)y=f-\mathcal{B}(y,y), we only have to show that DxαDtj(y,y)Lp/(|α|+2j+1),q/(|α|+2j+1)(ST)D_{x}^{\alpha}D_{t}^{j}\mathcal{B}(y,y)\in L^{p/(|\alpha|+2j+1),q/(|\alpha|+2j+1)}(S_{T}).

For k=1k=1, our assumptions read fLp,q(ST)f\in L^{p,q}(S_{T}) and DxifLp/2,q/2(ST)D_{x_{i}}f\in L^{p/2,q/2}(S_{T}) for all ii. We split the argument into two parts: that for the vv-part of the equation, i.e., for the equation v+1(y,y)=f1v+\mathcal{B}_{1}(y,y)=f_{1} and that for the BB-part of the equation, i.e., B+2(y,y)=f2B+\mathcal{B}_{2}(y,y)=f_{2}. Since the terms ¯i(u,v)(x,t)\bar{\mathcal{B}}_{i}(u,v)(x,t) are of the form (with summation convention)

¯i(u,v)(x,t)=(DxkΓ)\oast¯(ul[δilvkRiRlvk])(x,t),\displaystyle\bar{\mathcal{B}}_{i}(u,v)(x,t)=\left(D_{x_{k}}\Gamma\right)\bar{\oast}\left(u_{l}\left[\delta_{il}v_{k}-R_{i}R_{l}v_{k}\right]\right)(x,t),

and as our assumption on the coefficients p,qp,q implies 1<p2,q2<1<\frac{p}{2},\frac{q}{2}<\infty, we can apply Lemma A.2 as well as the Lp,qL^{p,q}-boundedness of the Riesz transform (cf. J.E. Lewis [31, Theorem 4, p. 226]) to find that

Dxj¯i(u,v)Lp/2,q/2(ST)\displaystyle\|D_{x_{j}}\bar{\mathcal{B}}_{i}(u,v)\|_{L^{p/2,q/2}(S_{T})} Cul[δilvkRiRlvk]Lp/2,q/2(ST)\displaystyle\leq C\|u_{l}\left[\delta_{il}v_{k}-R_{i}R_{l}v_{k}\right]\|_{L^{p/2,q/2}(S_{T})}
CulLp,q(ST)(δilvkLp,q(ST)+RiRlvkLp,q(ST))\displaystyle\leq C\|u_{l}\|_{L^{p,q}(S_{T})}\left(\|\delta_{il}v_{k}\|_{L^{p,q}(S_{T})}+\|R_{i}R_{l}v_{k}\|_{L^{p,q}(S_{T})}\right)
CuLp,q(ST)vLp,q(ST),\displaystyle\leq C\|u\|_{L^{p,q}(S_{T})}\|v\|_{L^{p,q}(S_{T})},

and therefore Dxi1(y,y)Lp/2,q/2(ST)D_{x_{i}}\mathcal{B}_{1}(y,y)\in L^{p/2,q/2}(S_{T}). This in turn implies DxivLp/2,q/2(ST)D_{x_{i}}v\in L^{p/2,q/2}(S_{T}). The same argument yields DxiBLp/2,q/2(ST)D_{x_{i}}B\in L^{p/2,q/2}(S_{T}).

For k>1k>1, we use induction over kk, assuming that the theorem is true for kk. Now assume

DxαDtjfLp/(|α|+2j+1),q/(|α|+2j+1)(ST)for|α|+2jk+1,p,q>k+2.\displaystyle D_{x}^{\alpha}D_{t}^{j}f\in L^{p/(|\alpha|+2j+1),q/(|\alpha|+2j+1)}(S_{T})\quad\mathrm{for}\leavevmode\nobreak\ |\alpha|+2j\leq k+1,\leavevmode\nobreak\ p,q>k+2.

Derivatives with respect to multi-indices (j,α)(j,\alpha) with 2j+|α|k2j+|\alpha|\leq k are covered by the induction hypothesis. We thus only need to consider the case 2j+|α|=k+12j+|\alpha|=k+1.

Case 1: j=0j=0. In this case, we apply all but one derivative and see that Dxα1(y,y)D_{x}^{\alpha}\mathcal{B}_{1}(y,y) and Dxα2(y,y)D_{x}^{\alpha}\mathcal{B}_{2}(y,y) each can be written as a sum of terms of the form Dxm¯(Dxβu1,Dxγu2)D_{x_{m}}\bar{\mathcal{B}}(D_{x}^{\beta}u_{1},D_{x}^{\gamma}u_{2}), u1,u2{v,B}u_{1},u_{2}\in\{v,B\} with |β|+|γ|=k|\beta|+|\gamma|=k. The same reasoning as above, since the (induction) hypothesis implies 1<pk+2,qk+2<1<\frac{p}{k+2},\frac{q}{k+2}<\infty, yields

Dxm¯(Dxβu1,Dxγu2)Lp/(k+2),q/(k+2)(ST)CDxβu1,Dxγu2dLp/(k+2),q/(k+2)(ST).\displaystyle\|D_{x_{m}}\bar{\mathcal{B}}(D_{x}^{\beta}u_{1},D_{x}^{\gamma}u_{2})\|_{L^{p/(k+2),q/(k+2)}(S_{T})}\leq C\|\langle D_{x}^{\beta}u_{1},D_{x}^{\gamma}u_{2}\rangle_{\mathbb{R}^{d}}\|_{L^{p/(k+2),q/(k+2)}(S_{T})}.

If we set p¯:=p|β|+1\bar{p}:=\frac{p}{|\beta|+1}, q¯:=p|γ|+1\bar{q}:=\frac{p}{|\gamma|+1}, we can apply the generalised Hölder inequality with r¯:=pk+2\bar{r}:=\frac{p}{k+2} because

1r¯=k+2p=|γ|+1p+|β|+1p=1p¯+1q¯.\frac{1}{\bar{r}}=\frac{k+2}{p}=\frac{|\gamma|+1}{p}+\frac{|\beta|+1}{p}=\frac{1}{\bar{p}}+\frac{1}{\bar{q}}.

This implies that

Dxm¯(Dxβu1,Dxγu2)Lp/(k+2),q/(k+2)(ST)CDxβu1Lp|β|+1Dxγu2Lp|γ|+1,\displaystyle\|D_{x_{m}}\bar{\mathcal{B}}(D_{x}^{\beta}u_{1},D_{x}^{\gamma}u_{2})\|_{L^{p/(k+2),q/(k+2)}(S_{T})}\leq C\|D_{x}^{\beta}u_{1}\|_{L^{\frac{p}{|\beta|+1}}}\|D_{x}^{\gamma}u_{2}\|_{L^{\frac{p}{|\gamma|+1}}},

which is finite by the induction hypothesis.

Case 2: j>0j>0. In this case, we place all the spatial derivatives on the functions u1,u2u_{1},u_{2}, so we can write

(A.8) DtjDxα¯(u1,u2)=|β|+|γ|=|α|Cβ,γDtj¯(Dxβu1,Dxγu2).D_{t}^{j}D_{x}^{\alpha}\bar{\mathcal{B}}(u_{1},u_{2})=\sum_{|\beta|+|\gamma|=|\alpha|}C_{\beta,\gamma}D_{t}^{j}\bar{\mathcal{B}}(D_{x}^{\beta}u_{1},D_{x}^{\gamma}u_{2}).

Since by definition and integration by parts we have

¯(u,w)\displaystyle\bar{\mathcal{B}}(u,w) =0tdu(y,s),E(xy,ts)w(y,s)dyds\displaystyle=\int_{0}^{t}\int_{\mathbb{R}^{d}}\langle u(y,s),\nabla E(x-y,t-s)\rangle\cdot w(y,s)\mathrm{d}y\mathrm{d}s
=d1[0,t](ts)DxkEij(xy,ts)uj(y,s)wk(y,s)dyds\displaystyle=\int_{\mathbb{R}}\int_{\mathbb{R}^{d}}1_{[0,t]}(t-s)D_{x_{k}}E_{ij}(x-y,t-s)u_{j}(y,s)w_{k}(y,s)\mathrm{d}y\mathrm{d}s
=dEij(xy,s)1[0,t](ts)Dxk[uj(y,ts)wk(y,ts)]dyds,\displaystyle=-\int_{\mathbb{R}}\int_{\mathbb{R}^{d}}E_{ij}(x-y,s)1_{[0,t]}(t-s)D_{x_{k}}\left[u_{j}(y,t-s)w_{k}(y,t-s)\right]\mathrm{d}y\mathrm{d}s,

by applying DtD_{t} we get two kinds of terms from the product rule:

  1. (i)

    If the derivative hits the indicator function, we (formally) get terms of the form

    dδ{0}(ts)Eij(xy,ts)Dxk[uj(y,s)wk(y,s)]dyds\displaystyle\int_{\mathbb{R}}\int_{\mathbb{R}^{d}}\delta_{\{0\}}(t-s)E_{ij}(x-y,t-s)D_{x_{k}}\left[u_{j}(y,s)w_{k}(y,s)\right]\mathrm{d}y\mathrm{d}s
    dδ{t}(ts)Eij(xy,ts)Dxk[uj(y,s)wk(y,s)]dyds\displaystyle-\int_{\mathbb{R}}\int_{\mathbb{R}^{d}}\delta_{\{t\}}(t-s)E_{ij}(x-y,t-s)D_{x_{k}}\left[u_{j}(y,s)w_{k}(y,s)\right]\mathrm{d}y\mathrm{d}s
    =dEij(xy,0)Dxk[uj(y,t)wk(y,t)]dy\displaystyle=\int_{\mathbb{R}^{d}}E_{ij}(x-y,0)D_{x_{k}}\left[u_{j}(y,t)w_{k}(y,t)\right]\mathrm{d}y
    dEij(xy,t)Dxk[uj(y,t)wk(y,t)]dy\displaystyle\quad-\int_{\mathbb{R}^{d}}E_{ij}(x-y,t)D_{x_{k}}\left[u_{j}(y,t)w_{k}(y,t)\right]\mathrm{d}y
    =Dxk[uj(x,t)wk(x,t)]dEij(xy,t)Dxk[uj(y,t)wk(y,t)]dy,\displaystyle=D_{x_{k}}\left[u_{j}(x,t)w_{k}(x,t)\right]-\int_{\mathbb{R}^{d}}E_{ij}(x-y,t)D_{x_{k}}\left[u_{j}(y,t)w_{k}(y,t)\right]\mathrm{d}y,

    i.e., in the first term both integrals shrink to a point due to the delta functions and we are left with one spatial derivative of uu and ww. In the second term, we are left with an unproblematic spatial integral.

  2. (ii)

    If the derivative operator hits the function EijE_{ij}, we use the definition of EijE_{ij} to find DtEij=ΔEijD_{t}E_{ij}=\Delta E_{ij}. So each temporal derivative is transformed into two spatial derivatives. We can then use integration by parts again to transfer all but one of these (spatial) derivatives to uu and ww, so this term becomes proportional to

    Dxm¯(Dxβu,Dxγw),\displaystyle D_{x_{m}}\bar{\mathcal{B}}(D_{x}^{\beta^{\prime}}u,D_{x}^{\gamma^{\prime}}w),

    where |β|+|γ|=1|\beta^{\prime}|+|\gamma^{\prime}|=1.

Proceeding inductively, we see that if we apply DtD_{t} for j>1j>1 times, we have two cases:

  1. (i)

    The time derivative hits the indicator function at least once. In this case we get a term

    DtrsDxνu(x,t)(DtsDxηw)(x,t),\displaystyle D_{t}^{r-s}D_{x}^{\nu}u(x,t)(D_{t}^{s}D_{x}^{\eta}w)(x,t),

    where srs\leq r and |ν|+|η|+2r=2(j1)+1=2j1|\nu|+|\eta|+2r=2(j-1)+1=2j-1. Here we get the factor j1j-1 because we “lose” one time derivative to the δ\delta-distribution, but we get one more spatial derivative (with the scaling factor 1) due to the derivative from E\nabla E.

  2. (ii)

    All the derivatives hit E\nabla E. In this case, by continuing as in case 2 above, transferring all but one derivative onto uu and ww, we get a term

    Dxm¯(Dxβu,Dxγw),\displaystyle D_{x_{m}}\bar{\mathcal{B}}(D_{x}^{\beta^{\prime}}u,D_{x}^{\gamma^{\prime}}w),

    where |β|+|γ|=2j1|\beta^{\prime}|+|\gamma^{\prime}|=2j-1.

With regard to (A.8), we replace uu by DxβuD_{x}^{\beta}u and ww by DxγwD_{x}^{\gamma}w, |β|+|γ|=|α||\beta|+|\gamma|=|\alpha| and apply Lemma A.2 to find

DtjDxαB¯(u,w)Lpk+2(ST)C|β|+|γ|+2r=ksr(DtrsDxβu)(DtsDxγw)Lpk+2(ST).\displaystyle\|D_{t}^{j}D_{x}^{\alpha}\bar{B}(u,w)\|_{L^{\frac{p}{k+2}}(S_{T})}\leq C\sum_{|\beta|+|\gamma|+2r=k}\sum_{s\leq r}\|(D_{t}^{r-s}D_{x}^{\beta}u)(D_{t}^{s}D_{x}^{\gamma}w)\|_{L^{\frac{p}{k+2}}(S_{T})}.

The summation runs over |β|+|γ|+2r=k|\beta|+|\gamma|+2r=k since in either case we “lose” one (spatial) derivative. By the inductive hypothesis for the induction over kk, we have

DtrsDxβuLp|β|+2r2s+1(ST),DtsDxγwLp|γ|+2s+1(ST).\displaystyle D_{t}^{r-s}D_{x}^{\beta}u\in L^{\frac{p}{|\beta|+2r-2s+1}}(S_{T}),\quad D_{t}^{s}D_{x}^{\gamma}w\in L^{\frac{p}{|\gamma|+2s+1}}(S_{T}).

Noting that

|β|+2r2s+1p+|γ|+2s+1p=k+2p,\frac{|\beta|+2r-2s+1}{p}+\frac{|\gamma|+2s+1}{p}=\frac{k+2}{p},

we apply the generalised Hölder inequality to find

DtjDxαB¯(u,w)Lpk+2(ST)C|β|+|γ|+2r=ksrDtrsDxβuLp|β|+2r2s+1(ST)DtsDxγwLp|γ|+2s+1(ST),\displaystyle\|D_{t}^{j}D_{x}^{\alpha}\bar{B}(u,w)\|_{L^{\frac{p}{k+2}}(S_{T})}\leq C\sum_{|\beta|+|\gamma|+2r=k}\sum_{s\leq r}\|D_{t}^{r-s}D_{x}^{\beta}u\|_{L^{\frac{p}{|\beta|+2r-2s+1}}(S_{T})}\|D_{t}^{s}D_{x}^{\gamma}w\|_{L^{\frac{p}{|\gamma|+2s+1}}(S_{T})},

which is finite. ∎

Acknowledgements

Financial support by the German Research Foundation (DFG) through the IRTG 2235 is gratefully acknowledged. The author would further like to thank Michael Röckner for helpful discussions, as well as Robert Schippa and Guy Fabrice Foghem Gounoue.

References

  • [1] Stanislav Nikolaevich Antontsev and Hermenegildo Borges de Oliveira. The Navier-Stokes problem modified by an absorption term. Appl. Anal., 89(12):1805–1825, 2010.
  • [2] Hakima Bessaih, Saber Trabelsi, and Hamdi Zorgati. Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations. ESAIM Math. Model. Numer. Anal., 50(6):1817–1823, 2016.
  • [3] Vladimir I. Bogachev, Giuseppe Da Prato, Michael Röckner, and Wilhelm Stannat. Uniqueness of solutions to weak parabolic equations for measures. Bull. Lond. Math. Soc., 39(4):631–640, 2007.
  • [4] Russell Murray Brown and Zhongwei Shen. Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J., 44(4):1183–1206, 1995.
  • [5] Zdzislaw Brzeźniak and Gaurav Dhariwal. Stochastic tamed Navier-Stokes equations on 3\mathbb{R}^{3}: existence, uniqueness of solution and existence of an invariant measure. arXiv preprint, https://arxiv.org/abs/1904.13295, 2019.
  • [6] Michel Buès, Mikhail Panfilov, Sonia Crosnier, and Constantin Oltean. Macroscale model and viscous-inertia effects for Navier-Stokes flow in a radial fracture with corrugated walls. J. Fluid Mech., 504:41–60, 2004.
  • [7] Xiaojing Cai and Quansen Jiu. Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J. Math. Anal. Appl., 343(2):799–809, 2008.
  • [8] Chongsheng Cao and Jiahong Wu. Two regularity criteria for the 3D MHD equations. J. Differential Equations, 248(9):2263–2274, 2010.
  • [9] Richard Courant and David Hilbert. Methoden der Mathematischen Physik. Vol. II. Interscience Publishers, Inc., N.Y., 1943.
  • [10] Edward Brian Davies. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.
  • [11] Zhao Dong and Rangrang Zhang. 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations. arXiv preprint, https://arxiv.org/abs/1810.08868, 2018.
  • [12] Georges Duvaut and Jacques-Louis Lions. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal., 46:241–279, 1972.
  • [13] Lawrence Craig Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  • [14] Eugene Barry Fabes, B. Frank. Jones Jr., and Néstor Marcelo Rivière. The initial value problem for the Navier-Stokes equations with data in LpL^{p}. Arch. Rational Mech. Anal., 45:222–240, 1972.
  • [15] Charles L. Fefferman, David S. McCormick, James C. Robinson, and Jose L. Rodrigo. Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal., 267(4):1035–1056, 2014.
  • [16] Charles L. Fefferman, David S. McCormick, James C. Robinson, and Jose L. Rodrigo. Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch. Ration. Mech. Anal., 223(2):677–691, 2017.
  • [17] Mouaouia Firdaouss, Jean-Luc Guermond, and Patrick Le Quéré. Nonlinear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech., 343:331–350, 1997.
  • [18] Philipp Forchheimer. Wasserbewegung durch Boden. Z. Vereines deutscher Ing., 45(50):1782–1788, 1901.
  • [19] Mostafa Fourar, Giovanni Radilla, Roland Lenormand, and Christian Moyne. On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Advances in Water Resources, 27(6):669–677, 2004.
  • [20] Franca Franchi and Brian Straughan. Continuous dependence and decay for the Forchheimer equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459(2040):3195–3202, 2003.
  • [21] Cheng He and Zhouping Xin. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differential Equations, 213(2):235–254, 2005.
  • [22] Cheng He and Zhouping Xin. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal., 227(1):113–152, 2005.
  • [23] Eberhard Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4:213–231, 1951.
  • [24] Chin-Tsau Hsu and Ping Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33(8):1587–1597, 1990.
  • [25] Feimin Huang and Ronghua Pan. Convergence rate for compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal., 166(4):359–376, 2003.
  • [26] Varga K. Kalantarov and Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal., 11(5):2037–2054, 2012.
  • [27] Kyungkeun Kang and Jihoon Lee. Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Differential Equations, 247(8):2310–2330, 2009.
  • [28] Nicolai Vladimirovich Krylov. Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces. J. Funct. Anal., 183(1):1–41, 2001.
  • [29] Olga Aleksandrovna Ladyzhenskaja, Vsevolod Alekseevich Solonnikov, and Nina Nikolaevna Ural’ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.
  • [30] Olga Aleksandrovna Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2. Gordon and Breach, Science Publishers, New York-London-Paris, 1969.
  • [31] Jeff Earl Lewis. Mixed estimates for singular integrals and an application to initial value problems in parabolic differential equations. In Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), pages 218–231. Amer. Math. Soc., Providence, R.I., 1967.
  • [32] Jasmine S. Linshiz and Edriss Saleh Titi. Analytical study of certain magnetohydrodynamic-α\alpha models. J. Math. Phys., 48(6):065504, 28, 2007.
  • [33] Wei Liu and Michael Röckner. Stochastic partial differential equations: an introduction. Universitext. Springer, Cham, 2015.
  • [34] Peter A. Markowich, Edriss Saleh Titi, and Saber Trabelsi. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 29(4):1292–1328, 2016.
  • [35] Yan Ouyang and Ling-E Yang. A note on the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 70(5):2054–2059, 2009.
  • [36] James C. Robinson, José L. Rodrigo, and Witold Sadowski. The three-dimensional Navier-Stokes equations, volume 157 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
  • [37] Michael Röckner and Tusheng Zhang. Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles. J. Differential Equations, 252(1):716–744, 2012.
  • [38] Michael Röckner, Tusheng Zhang, and Xicheng Zhang. Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim., 61(2):267–285, 2010.
  • [39] Michael Röckner and Xicheng Zhang. Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12(4):525–549, 2009.
  • [40] Andre Schenke. Regularisation and Long-Time Behaviour of Random Systems. PhD thesis, Bielefeld University, 2020.
  • [41] Michel Sermange and Roger Temam. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 36(5):635–664, 1983.
  • [42] Elias Menachem Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
  • [43] Roger Temam. Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition.
  • [44] Edriss Saleh Titi and Saber Trabelsi. Global Well-Posedness of a 3D MHD Model in Porous Media. arXiv preprint, https://arxiv.org/abs/1805.10661, 2018.
  • [45] Davut Uğurlu. On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal., 68(7):1986–1992, 2008.
  • [46] Bixiang Wang and Siyu Lin. Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation. Math. Methods Appl. Sci., 31(12):1479–1495, 2008.
  • [47] Dirk Werner. Funktionalanalysis. Springer-Verlag, Berlin, seventh edition, 2011. (in German).
  • [48] Zhuan Ye. Regularity and decay of 3D incompressible MHD equations with nonlinear damping terms. Colloq. Math., 139(2):185–203, 2015.
  • [49] Yuncheng You, Caidi Zhao, and Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin. Dyn. Syst., 32(10):3787–3800, 2012.
  • [50] Eberhard Zeidler. Nonlinear functional analysis and its applications. II/A. Springer-Verlag, New York, 1990. Linear monotone operators, Translated from German by the author and Leo F. Boron.
  • [51] Xicheng Zhang. A tamed 3D Navier-Stokes equation in uniform C2C^{2}-domains. Nonlinear Anal., 71(7-8):3093–3112, 2009.
  • [52] Zujin Zhang, Chupeng Wu, and Zheng-an Yao. Remarks on global regularity for the 3D MHD system with damping. Appl. Math. Comput., 333:1–7, 2018.
  • [53] Zujin Zhang, Xinglong Wu, and Ming Lu. On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. J. Math. Anal. Appl., 377(1):414–419, 2011.
  • [54] Zujin Zhang and Xian Yang. Global regularity for the 3D MHD system with damping. Colloq. Math., 145(1):107–110, 2016.
  • [55] Yong Zhou. Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping. Appl. Math. Lett., 25(11):1822–1825, 2012.