This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Title of the Paper

I. Author1 example@list.ru Institute/Organization/Place of Job, City/Town, ZIP-code Country    I. Author2 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 369167 Russia
Abstract

We study the nearest outskirts (R<3R200cR<3R_{200c}) of 40 groups and clusters of galaxies of the local Universe (0.02<z<0.0450.02<z<0.045 and 300 km s<1σ<950{}^{-1}<\sigma<950 km s-1). Using the SDSS DR10 catalog data, we determined the stellar mass of galaxy clusters corresponding to KsK_{s}-luminosity (which we determined earlier based on the 2MASX catalog data) (M/M)(LK/L)1.010±0.004(M_{*}/M_{\odot})\propto(L_{K}/L_{\odot})^{1.010\pm 0.004} (MK<21.m5M_{K}<-21\hbox{$\,.\!\!^{\rm m}$}5, R<R200cR<R_{200c}). We also found the dependence of the galaxy cluster stellar mass on halo mass: (M/M)(M200c/M)0.77±0.01(M_{*}/M_{\odot})\propto(M_{200c}/M_{\odot})^{0.77\pm 0.01}

stars: double or binary—stars: individual: ADS 48

1 INTRODUCTION

The multiple star system ADS 48, discovered by Otto Struve in 1876, has been repeatedly investigated by various authors (see, for example, G-L, Hopman), but their attention was mainly attracted by the inner pair AB. According to the identification in the WDS catalog, the three stars—A, B and F—are physically connected (by common parallax and proper motions). For the inner AB pair, there has been a long series of observations since its discovery, and the F component has not been observed for almost a century.

2 FIRST SECTION

Here comes some math:

ρ\displaystyle\rho =\displaystyle= x2+y2,θ=arctanxy\displaystyle\sqrt{x^{2}+y^{2}}\leavevmode\nobreak\ ,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \,\qquad\theta\;=\;\arctan\dfrac{x}{y}
μ\displaystyle\mu =\displaystyle= μx2+μy2,ψ=arctanμxμy.\displaystyle\sqrt{\mu_{x}^{\prime 2}+\mu_{y}^{\prime 2}}\leavevmode\nobreak\ ,\qquad\psi\;=\;\arctan\dfrac{\mu_{x}^{\prime}}{\mu_{y}^{\prime}}.

Here

x\displaystyle x =\displaystyle= (αBαA)cosδ×3600,\displaystyle(\alpha_{\rm B}-\alpha_{\rm A})\cos{\delta}\times 3600,
y\displaystyle y =\displaystyle= (δBδA)×3600,\displaystyle(\delta_{\rm B}-\delta_{\rm A})\times 3600,
δ\displaystyle\delta =\displaystyle= (δA+δB)/2,\displaystyle(\delta_{\rm A}+\delta_{\rm B})/2,
μx\displaystyle\mu_{x}^{\prime} =\displaystyle= μxBμxA,μy=μyBμyA.\displaystyle\mu_{x{\rm B}}-\mu_{x{\rm A}},\qquad\mu_{y}^{\prime}=\mu_{y{\rm B}}-\mu_{y{\rm A}}.
Table 1: Two column table
pair AB AB AB–F AB–F AB–F
Instrument 26′′26^{\prime\prime}, CCD GAIA 26′′26\hbox{${}^{\prime\prime}$}, photo 26′′26\hbox{${}^{\prime\prime}$}, photo GAIA
individual individual smoothed
Parameters
T1T2T_{1}-T_{2} 2003200320122012 1968196819951995 1971–1992
T0T_{0} 2008.62008.6 2015.52015.5 1981.51981.5 1981.5 2015.52015.5
n 4848 115115 30
ρ\rho, arcsec. 6.05346.0534 6.007686.00768^{*} 327.3322327.3322 327.3339327.3339 327.1754327.1754
±0.0012\pm 0.0012 ±0.00008\pm 0.00008 ±0.0023\pm 0.0023 ±0.0010\pm 0.0010 ±0.0002\pm 0.0002
θ2000\theta_{2000}, degr. 185.3604185.3604 188.2084188.2084 254.2942254.2942 254.2943254.2943 254.25739254.25739
±0.0059\pm 0.0059 ±0.0010\pm 0.0010 ±0.0017\pm 0.0017 ±0.0005\pm 0.0005 ±0.00001\pm 0.00001
μ\mu, mas/year 43.143.1 44.9444.94 4.34.3 3.93.9 5.45.4
±0.3\pm 0.3 ±0.18\pm 0.18 ±0.5\pm 0.5 ±0.2\pm 0.2 ±0.1\pm 0.1
ψ2000\psi_{2000}, degr. 283.09283.09 288.06288.06 86.486.4 73.273.2 37.837.8
±0.7\pm 0.7 ±0.16\pm 0.16 ±19.6\pm 19.6 ±7.4\pm 7.4 ±1.1\pm 1.1
ρ˙\dot{\rho}, mas/year 6.4-6.4 7.7-7.7 4.2-4.2 3.9-3.9 4.4-4.4
±0.5\pm 0.5 ±0.1\pm 0.1 ±0.4\pm 0.4 ±0.2\pm 0.2 ±0.1\pm 0.1
θ˙\dot{\theta}, degr./year 0.40340.4034 0.42020.4202 0.0002-0.0002 0.0000-0.0000 0.00056-0.00056
±0.0024\pm 0.0024 ±0.0017\pm 0.0017 ±0.0003\pm 0.0003 ±0.0001\pm 0.0001 ±0.00001\pm 0.00001
Here nn is the number of individual or smoothed observations,
—the value ρ\rho is given adjusted for Gaia–CCD=+0.′′03=+0\hbox{$\,.\!\!^{\prime\prime}$}03.
Refer to captionRefer to caption
Figure 1: Two column figure.

Table 1 shows AMPs calculated from observations of Gaia DR2, and long-term series of observations of the Pulkovo 26-inch refractor. For the AB pair, we compare only with the CCD observations of 2003–2012. For this pair, we found a systematic discrepancy in ρ\rho, which is clearly visible in Fig. 1.

Refer to captionRefer to caption
Figure 2: One column figure.

3 ANOTHER SECTION

The text of the Section.

4 THIRD SECTION

The motion of the outer pair is in the direction ρ\rho, and we can definitely state that for all orbits of the family, the inclination of the orbit i90i\approx 90\hbox{${}^{\circ}$}, and the longitude of the ascending node Ωθ180\Omega\approx\theta-180\hbox{${}^{\circ}$}. Therefore, you can calculate the angle between the planes of the outer and inner orbits. As a result, we get that the planes of the orbits are non-planar.

Equations:

v1=4π2m22r(m1+m2).v_{1}=\sqrt{\dfrac{4\pi^{2}{m_{2}}^{2}}{r(m_{1}+m_{2})}}. (1)

Assuming m2<<m1m_{2}<<m_{1}, we get

m2=v1×m14π2r,m_{2}=v_{1}\times\sqrt{\dfrac{m_{1}}{4\pi^{2}}r}, (2)
v1=f×(μGμph)/pt,\overrightarrow{v_{1}}=f\times(\overrightarrow{\mu_{\rm G}}-\overrightarrow{\mu_{\rm ph}})/p_{t}, (3)

where μph=(μphsinψph,μphcosψph)\overrightarrow{\mu_{\rm ph}}=(\mu_{\rm ph}\sin\,\psi_{\rm ph},\mu_{\rm ph}\cos\,\psi_{\rm ph})is the average orbital motion obtained from a long series of photographic observations; μG\overrightarrow{\mu_{\rm G}} is the instantaneous orbital motion determined by Gaia observation; pt=87p_{t}=87 mas is the parallax; ff is the coefficient of transition from the relative velocity of the orbital motion to the velocity relative to the center of mass of the hierarchical triple system, which is motionless. If component F has a satellite, then

fF=MA+B/MA+B+F.f_{\rm F}=M_{\rm A+B}/M_{\rm A+B+F}.

If the center of mass of the AB system oscillates, then

fC\displaystyle f_{\rm C} =\displaystyle= MF/MA+B+F,\displaystyle M_{\rm F}/M_{\rm A+B+F},
fA\displaystyle f_{\rm A} =\displaystyle= fC(MA+B/MA),\displaystyle f_{\rm C}\,(M_{\rm A+B}/M_{\rm A}),
fB\displaystyle f_{\rm B} =\displaystyle= fC(MA+B/MB).\displaystyle f_{\rm C}\,(M_{\rm A+B}/M_{\rm B}).

If we use the values of μph\mu_{ph} according to the smoothed series, then

m2,F/r\displaystyle m_{2,{\rm F}}/\sqrt{r} =\displaystyle= 0.0030±0.0006M,\displaystyle 0.0030\pm 0.0006\leavevmode\nobreak\ M_{\odot},
m2,A/r\displaystyle m_{2,{\rm A}}/\sqrt{r} =\displaystyle= m2,B/r=0.0027±0.0006M;\displaystyle m_{2,{\rm B}}/\sqrt{r}=0.0027\pm 0.0006\leavevmode\nobreak\ M_{\odot};

if we use the values of μph\mu_{ph} according to individual observations, then

m2,F/r\displaystyle m_{2,{\rm F}}/\sqrt{r} =\displaystyle= 0.0039±0.0017M,\displaystyle 0.0039\pm 0.0017\leavevmode\nobreak\ M_{\odot},
m2,A/r\displaystyle m_{2,{\rm A}}/\sqrt{r} =\displaystyle= m2,B/r=0.0035±0.0015M.\displaystyle m_{2,{\rm B}}/\sqrt{r}=0.0035\pm 0.0015\leavevmode\nobreak\ M_{\odot}.
Table 2: One column table.
Parameters Orbits
1 2 3 4
apha_{\rm ph}, mas 15.0 14.3 8.2 4.0
PP, year 11.0 11.04 9.52 10.97
ee 0.2 0.24 0.53 0.3
ii, degr. 97.0 96.3 179.98 44
ω\omega, degr. 235.0 258.6 79.8 56.2
Ω\Omega, degr. 147.2 143.2 12.0 217.1
TT, year 1980.0 1980.56 1988.15 1982.8
VrγV_{r\gamma}, m c-1 0.7-0.7
ptp_{t}, mas 87.0 87.0 87.0 86.9
M1,MM_{1},\leavevmode\nobreak\ M_{\odot} 0.5 0.5 0.5 0.65
a1a_{1}, a.u. 0.17 0.16 0.094 0.046
M2,MM_{2},\leavevmode\nobreak\ M_{\odot} 0.023 0.022 0.013 0.007
a2a_{2}, a.u. 3.82 3.82 3.50 4.28
σx\sigma_{x}, mas 2.2 2.0 3.6 5.1
σy\sigma_{y}, mas 12.3 12.0 13.5 5.4
σVr\sigma_{V_{r}}, mas/year 0.078

The system of equations is solved:

x(t)=x0+x˙(tt0)+BXφ+GYφ,x(t)=x_{0}+\dot{x}(t-t_{0})+BX_{\varphi}+GY_{\varphi}, (4)
y(t)=y0+y˙(tt0)+AXφ+FYφ,y(t)=y_{0}+\dot{y}(t-t_{0})+AX_{\varphi}+FY_{\varphi}, (5)

where x=ρsinθx=\rho\sin\theta, y=ρcosθy=\rho\cos\theta; phase φ=(tt0)/P\varphi=(t-t_{0})/P; Xφ=cos(Eφ)eX_{\varphi}=\cos\,(E_{\varphi})-e, Yφ=1e2sin(Eφ)Y_{\varphi}=\sqrt{1-e^{2}}\sin\,(E_{\varphi})are orbital coordinates corresponding to dynamic orbital elements PP, TT and ee; x0x_{0} and y0y_{0} are coordinates of the center of mass at the moment t0t_{0}; AA, BB, FF and GG are the Thiele-Innes elements, from which we obtain the geometric elements of the orbit (aa, ii, ω\omega, Ω\Omega). In Table 2, this orbit is represented by number 2.

5 CONCLUSION

This paper demonstrates the possibility…

Acknowledgements.
The authors are grateful…

FUNDING

This work was supported by the…

CONFLICT OF INTEREST

The authors declare no conflicts of interest.