This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Thermodynamic stability in relativistic viscous and spin hydrodynamics

Xiang Ren Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China    Chen Yang Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China    Dong-Lin Wang donglinwang@mail.ustc.edu.cn Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China    Shi Pu shipu@ustc.edu.cn Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, China
Abstract

We have applied thermodynamic stability analysis to derive the stability and causality conditions for conventional relativistic viscous hydrodynamics and spin hydrodynamics. We obtain the thermodynamic stability conditions for second-order relativistic hydrodynamics with shear and bulk viscous tensors, finding them identical to those derived from linear mode analysis. We then derive the thermodynamic stability conditions for minimal causal extended second-order spin hydrodynamics in canonical form, both with and without viscous tensors. Without viscous tensors, the constraints from thermodynamic stability exactly match those from linear mode analysis. In the presence of viscous tensors, the thermodynamic stability imposes more stringent constraints than those obtained from linear mode analysis. Our results suggest that conditions derived from thermodynamic stability analysis can guarantee both causality and stability in linear mode analysis.

I Introduction

In relativistic heavy ion collisions, two nuclei are accelerated to speeds close to that of light, collide with each other, and generate a hot and dense matter known as the quark-gluon plasma (QGP) (BRAHMS:2004adc, ; PHENIX:2004vcz, ; STAR:2005gfr, ; ALICE:2008ngc, ). The evolution of the QGP is well described by relativistic hydrodynamics. Relativistic hydrodynamics serves as a macroscopic effective theory for relativistic many-body systems in the long-wavelength and low-frequency limit. The main equations of relativistic hydrodynamics are the conservation equations for the energy-momentum tensor and other conserved currents in the gradient expansion, e.g. the Israel-Stewart theory (Israel:1979wp, ; Israel:1979, ), the extended Baier-Romatschke-Son-Starinets-Stephanov theory (Baier:2007ix, ), the Denicol-Niemi-Molnar-Rischke theory (Denicol:2012cn, ), and the more recently established Bemfica-Disconzi-Noronha-Kovtun theory (Bemfica:2017wps, ; Kovtun:2019hdm, ; Bemfica:2019knx, ; Hoult:2020eho, ; Bemfica:2020zjp, ). For additional studies and developments, we refer the reader to the recent review papers (Gavassino:2021kpi, ; Rocha:2023ilf, ) and the references therein.

In the early stages of noncentral collisions, the nuclei possess a huge initial orbital angular momentum, on the order of 10710^{7}\hbar. This initial orbital angular momentum is transferred to the spin polarization of quarks and subsequently to the final-state particles through spin-orbital coupling. This mechanism leads to the spin polarization of Λ\Lambda and Λ¯\bar{\Lambda} hyperons and the spin alignment of vector mesons (Liang:2004ph, ; Liang:2004xn, ; Gao:2007bc, ). The STAR collaboration has observed both the global and local polarization of Λ\Lambda and Λ¯\bar{\Lambda} hyperons (STAR:2017ckg, ; STAR:2019erd, ), as well as the spin alignment of ϕ\phi and K0,K^{0,*} mesons (STAR:2022fan, ).

On the theoretical side, the global polarization can be well described by various phenomenological models (Becattini:2007sr, ; Karpenko:2016jyx, ; Xie:2017upb, ; Li:2017slc, ; Sun:2017xhx, ; Shi:2017wpk, ; Wei:2018zfb, ; Xia:2018tes, ; Vitiuk:2019rfv, ; Fu:2020oxj, ; Ryu:2021lnx, ; Lei:2021mvp, ; Wu:2022mkr, ) through the combination of the modified Cooper-Frye formula (Becattini:2013fla, ; Fang:2016vpj, ) with hydrodynamic simulations under the assumption that the system is close to global equilibrium. To understand local polarization, effects beyond global equilibrium, such as shear-induced polarization (Liu:2021uhn, ; Liu:2021nyg, ; Fu:2021pok, ; Becattini:2021suc, ; Yi:2021ryh, ; Yi:2021unq, ; Yi:2023tgg, ; Wu:2023tku, ), spin Hall effects (Liu:2020dxg, ; Fu:2022myl, ; Wu:2022mkr, ), weak magnetic fields induced polarization (Sun:2024isb, ) and the corrections due to the interactions between quarks and back ground fields (Fang:2023bbw, ), need to be considered. Although hydrodynamic simulations can qualitatively describe local polarization as functions of azimuthal angle, understanding the dependence on centrality and transverse momentum remains challenging (STAR:2019erd, ; ALICE:2021pzu, ; STAR:2023eck, ). Therefore, it is necessary to consider the evolution of spin during collisions. Recently established spin hydrodynamics, which integrates the total angular momentum conservation equation with conventional relativistic hydrodynamic equations, has been developed from various theoretical frameworks, such as from effective action (Montenegro:2017rbu, ; Montenegro:2017lvf, ), entropy principle (Hattori:2019lfp, ; Fukushima:2020ucl, ; Li:2020eon, ; Gallegos:2021bzp, ; She:2021lhe, ; Hongo:2021ona, ; Wang:2021ngp, ; Wang:2021wqq, ; Cao:2022aku, ; Hu:2022azy, ; Biswas:2023qsw, ), kinetic theory (Florkowski:2017ruc, ; Florkowski:2017dyn, ; Florkowski:2018myy, ; Weickgenannt:2019dks, ; Bhadury:2020puc, ; Weickgenannt:2020aaf, ; Shi:2020htn, ; Speranza:2020ilk, ; Bhadury:2020cop, ; Singh:2020rht, ; Peng:2021ago, ; Sheng:2021kfc, ; Hu:2021pwh, ; Weickgenannt:2022zxs, ; Weickgenannt:2022jes, ; Weickgenannt:2022qvh, ; Wagner:2024fhf, ), holography (Gallegos:2020otk, ; Garbiso:2020puw, ), and quantum statistics (Becattini:2023ouz, ). For recent reviews on this topic, see Refs. (Hidaka:2022dmn, ; Shi:2023sxh, ; Becattini:2024uha, ).

As a fundamental requirement, both conventional relativistic hydrodynamics and spin hydrodynamics must exhibit causality and stability. In pioneering works (Hiscock:1985zz, ; Hiscock:1987zz, ), linear mode analysis was implemented to study the causality and stability of hydrodynamic systems. Through linear mode analysis, the causality and stability conditions for various types of hydrodynamics are derived (Hiscock:1985zz, ; Hiscock:1987zz, ; Koide:2006ef, ; Denicol:2008ha, ; Pu:2009fj, ; Brito:2020nou, ; Brito:2021iqr, ; Sarwar:2022yzs, ; Daher:2022wzf, ; Xie:2023gbo, ; Weickgenannt:2023btk, ; Shokri:2023rpp, ; deBrito:2023vzv, ; Fang:2024skm, ; Daher:2024bah, ). These conditions establish inequalities that constrain the range of transport coefficients. Recently, it was found that the conventional causality criterion (Krotscheck1978CausalityC, ) used in linear mode analysis is insufficient to guarantee causality. Consequently, several studies (Heller:2022ejw, ; Gavassino:2023myj, ; Heller:2023jtd, ; Gavassino:2023mad, ; Wang:2023csj, ; Hoult:2023clg, ) have proposed new causality criteria that also explore the deep connection between causality and stability (Bemfica:2020zjp, ; Gavassino:2021owo, ; Wang:2023csj, ).

Very recently, Ref. (Xie:2023gbo, ) has systematically studied the causality and stability for the minimal extended second-order spin hydrodynamics in the linear mode analysis. Later, Ref. (Daher:2024bah, ) also investigates the impact of other second-order terms. It was revealed that the system appears to be unstable at finite wavelengths, even though it satisfies asymptomatic stability conditions derived for both large and small wavelengths (Xie:2023gbo, ). To address this issue, it is essential to explore the stability of spin hydrodynamics through an alternative approach.

In this work, we apply thermodynamic stability analysis (Hiscock:1983zz, ; Olson:1990rzl, ; Gavassino:2021cli, ; Gavassino:2021kjm, ), which is grounded in the second law of thermodynamics and the principle of maximizing total entropy in equilibrium states (Landau:1980mil, ), to spin hydrodynamics. We will derive stability conditions from this thermodynamic stability analysis and compare them with those obtained through linear mode analysis.

The structure of this paper is organized as follows: In Sec. II, we briefly review thermodynamic stability analysis. Next, we apply this analysis to conventional relativistic viscous hydrodynamics as a test case in Sec. III. In Sec. IV, we analyze the thermodynamic stability conditions for spin hydrodynamics and compare the results with those obtained from linear mode analysis. We conclude with a summary in Sec. V.

Throughout this work, we choose the metric gμν=diag{+,,,}g_{\mu\nu}=\textrm{diag}\{+,-,-,-\} and define the projector Δμν=gμνuμuν\Delta^{\mu\nu}=g^{\mu\nu}-u^{\mu}u^{\nu} with uμu^{\mu} being the fluid velocity. For an arbitrary tensor AμνA^{\mu\nu}, we introduce the notations A(μν)=12(Aμν+Aνμ)A^{(\mu\nu)}=\frac{1}{2}(A^{\mu\nu}+A^{\nu\mu}), A[μν]=12(AμνAνμ)A^{[\mu\nu]}=\frac{1}{2}(A^{\mu\nu}-A^{\nu\mu}), and A<μν>12[ΔμαΔνβ+ΔμβΔνα]Aαβ13Δμν(ΔαβAαβ)A^{<\mu\nu>}\equiv\frac{1}{2}[\Delta^{\mu\alpha}\Delta^{\nu\beta}+\Delta^{\mu\beta}\Delta^{\nu\alpha}]A_{\alpha\beta}-\frac{1}{3}\Delta^{\mu\nu}(\Delta^{\alpha\beta}A_{\alpha\beta}).

II Brief introduction to the thermodynamic stability

In this section, we briefly review the main idea in Ref. (Gavassino:2021kjm, ). Consider an isolated system near thermodynamic equilibrium, consisting of a fluid connected to a sufficiently large heat-particle bath. According to the second law of thermodynamics, the entropy of the entire system, SS, must not decrease, i.e., the variation of entropy ΔS\Delta S follows:

ΔS=ΔSF+ΔSB0,\Delta S=\Delta S_{F}+\Delta S_{B}\geq 0, (1)

where SF,BS_{F,B} stand for the entropy for fluid and bath, respectively. Equation (1) is the original condition for the thermodynamic stability.

Now, let us consider conserved quantities 𝒬a\mathcal{Q}^{a} and their thermodynamic conjugates αa\alpha^{a} in the system, where a=1,2,a=1,2,... label different conserved quantities. For example, if the total number is conserved, then 𝒬\mathcal{Q} and α\alpha correspond to the total number and μ/T\mu/T, respectively, with μ\mu and TT being the chemical potential and temperature. While, if the total energy is conserved, 𝒬\mathcal{Q} and α\alpha are total energy and 1/T-1/T, respectively. Then, the variation of entropy can be expressed as

dS=aαad𝒬a.dS=-\sum_{a}\alpha^{a}d\mathcal{Q}^{a}. (2)

The 𝒬a\mathcal{Q}^{a} can be divided as the part for fluid 𝒬Fa\mathcal{Q}_{F}^{a} and the one for the bath 𝒬Ba\mathcal{Q}_{B}^{a}, with the following relationship:

d𝒬Ba=d𝒬Fa.d\mathcal{Q}_{B}^{a}=-d\mathcal{Q}_{F}^{a}. (3)

Then the variation of total entropy becomes

ΔS=ΔSF+aαBaΔ𝒬Fa0.\Delta S=\Delta S_{F}+\sum_{a}\alpha_{B}^{a}\Delta\mathcal{Q}_{F}^{a}\geq 0. (4)

If defining

ΨSF+aαBa𝒬Fa,\Psi\equiv S_{F}+\sum_{a}\alpha_{B}^{a}\mathcal{Q}_{F}^{a}, (5)

then Eq. (4) implies that the function Ψ\Psi should be maximized in the equilibrium state.

One can also define the information current EμE^{\mu} as

EμδsFμaαFaδJFa,μ,E^{\mu}\equiv-\delta s_{F}^{\mu}-\sum_{a}\alpha_{F}^{a}\delta J_{F}^{a,\mu}, (6)

where sFμs_{F}^{\mu} is the entropy current of the fluid and JFa,μJ_{F}^{a,\mu} is the conserved current associated with 𝒬Fa\mathcal{Q}_{F}^{a}, and the symbol δ\delta denotes the small perturbations from the thermodynamic equilibrium state.

Given that the whole system is near thermodynamic equilibrium and the heat-particle bath is sufficiently large, we can assume that the chemical potential and temperature in the fluid are equal to those in the bath, i.e. αFa\alpha_{F}^{a} for the fluid is approximately equal to αBa\alpha_{B}^{a} in the bath. Under this assumption, αFaδJFa,μ\alpha_{F}^{a}\delta J_{F}^{a,\mu} can be simplified to δ(αaJFa,μ)\delta(\alpha^{a}J_{F}^{a,\mu}), where we do not distinguish between αFa\alpha_{F}^{a} in the fluid and αBa\alpha_{B}^{a} in the bath. Consequently, Eq. (4) can be further written as

E𝑑ΣEμnμ0,E\equiv\int d\Sigma\;E^{\mu}n_{\mu}\geq 0, (7)

holds for an arbitrary spacelike three-dimensional surface Σ\Sigma and its timelike and future-directed normal unit vector nμn^{\mu}. If the thermodynamic equilibrium state is unique, i.e., determined solely by the thermodynamic variables, then from Eq. (7) and the definition of EμE^{\mu} in Eq. (6), the information current EμE^{\mu} must satisfy the following conditions:

(i)\displaystyle\mathrm{(i)} Eμnμ0 for any nμ with n0>0,nμnμ=1,\displaystyle E^{\mu}n_{\mu}\geq 0\textrm{ for any $n^{\mu}$ with $n_{0}>0,n^{\mu}n_{\mu}=1$},
(ii)\displaystyle\mathrm{(ii)} Eμnμ=0 if and only if all perturbations are zero,\displaystyle E^{\mu}n_{\mu}=0\textrm{ if and only if all perturbations are zero},
(iii)\displaystyle\mathrm{(iii)} μEμ0.\displaystyle\partial_{\mu}E^{\mu}\leq 0. (8)

As a remark, the conditions in Eq. (8) can be treated as criteria of thermodynamic stability (Gavassino:2021kjm, ). It has also been found that these criteria in Eq. (8) can guarantee the causality of the system (Gavassino:2021kjm, ). Moreover, when all these conditions are satisfied in one inertial frame of reference, the thermodynamic stability conditions in Eq. (1) are assured across all inertial frames of Refs. (Gavassino:2021owo, ; Wang:2023csj, ). These criteria provide us with a novel tool for analyzing the stability and causality of the system.

III Thermodynamic stability of the second order viscous hydrodynamics

In this section, we implement the thermodynamic stability criteria (8) to the relativistic second order viscous hydrodynamics in the gradient expansion. It can be considered as an example to show the connection between the constraints from the thermodynamic stability and conventional linear mode analysis. For convenience, we focus on the quantities for fluid and omit all the lower index FF from now on.

The energy momentum conservation equation reads

μTμν=0,\partial_{\mu}T^{\mu\nu}=0, (9)

and the energy momentum tensor in the Landau or energy frame is given by (landau:1987Fluid, )

Tμν\displaystyle T^{\mu\nu} =\displaystyle= (e+P)uμuνPgμν+πμνΠΔμν,\displaystyle(e+P)u^{\mu}u^{\nu}-Pg^{\mu\nu}+\pi^{\mu\nu}-\Pi\Delta^{\mu\nu}, (10)

where e,P,πμν,Πe,P,\pi^{\mu\nu},\Pi are energy density, pressure, shear viscous tensor, and bulk pressure, respectively. Note that the net baryon number density of the QGP produced in relativistic heavy ion collisions is negligible (Yagi:2005yb, ). For simplicity, the following discussions are limited in the cases where (baryon) currents vanish.

In order to compare the constraints from thermodynamic stability and linear mode analysis, we choose the minimal extension of second order viscous hydrodynamics (Koide:2006ef, ). The corresponding entropy current is given by

sμ=suμQμ+𝒪(3),s^{\mu}=su^{\mu}-Q^{\mu}+\mathcal{O}(\partial^{3}), (11)

where QμQ^{\mu} stands for the possible corrections from the second order. Following Refs. (Israel:1979wp, ; Israel:1979, ), we take

Qμ=12uμT(χΠΠ2+χππρσπρσ),Q^{\mu}=\frac{1}{2}\frac{u^{\mu}}{T}(\chi_{\Pi}\Pi^{2}+\chi_{\pi}\pi^{\rho\sigma}\pi_{\rho\sigma}), (12)

as an example. Then the entropy principle μsμ0\partial_{\mu}s^{\mu}\geq 0 gives the constitutive equations for πμν\pi^{\mu\nu} and Π\Pi as below,

τΠ(u)Π+Π\displaystyle\tau_{\Pi}(u\cdot\partial)\Pi+\Pi =\displaystyle= ζ[μuμ+12χΠTρ(uρ/T)Π],\displaystyle-\zeta\left[\partial_{\mu}u^{\mu}+\frac{1}{2}\chi_{\Pi}T\partial_{\rho}(u^{\rho}/T)\Pi\right],
τπΔα<μΔν>β(u)παβ+πμν\displaystyle\tau_{\pi}\Delta^{\alpha<\mu}\Delta^{\nu>\beta}(u\cdot\partial)\pi_{\alpha\beta}+\pi^{\mu\nu} =\displaystyle= 2η[<μuν>12χπTρ(uρ/T)πμν],\displaystyle 2\eta\left[\partial^{<\mu}u^{\nu>}-\frac{1}{2}\chi_{\pi}T\partial_{\rho}(u^{\rho}/T)\pi^{\mu\nu}\right], (13)

where

ζ,η>0,\zeta,\eta>0, (14)

and

τΠ=ζχΠ,τπ=2ηχπ.\tau_{\Pi}=\zeta\chi_{\Pi},\quad\tau_{\pi}=2\eta\chi_{\pi}. (15)

For the more comprehensive discussions on the second order theories, we refer to Refs. (Israel:1979wp, ; Israel:1979, ). Later, we will compare our results from thermodynamic stability with those from linear mode analysis (Denicol:2008ha, ; Pu:2009fj, ). The terms proportional to χΠ,χπ\chi_{\Pi},\chi_{\pi} on the right-hand side of Eq. (13) do not appear in the constitutive equations in Refs. (Denicol:2008ha, ; Pu:2009fj, ), but these terms will not contribute to the causality and stability conditions in linear mode analysis.

Next, we choose local rest frame uμ=(1,0)u^{\mu}=(1,0) and assume the fluid reaches the thermodynamic equilibrium state, in which Π\Pi and πμν\pi^{\mu\nu} are zero. For the macroscopic variables φ=(e,uμ,Π,πμν)\varphi=(e,u^{\mu},\Pi,\pi^{\mu\nu}), we consider the perturbations near the thermodynamic equilibrium, δφ\delta\varphi. We can expand the system in the power series of δφ\delta\varphi. By using the following relationship,

uμδuμ\displaystyle u^{\mu}\delta u_{\mu} =\displaystyle= 12δuμδuμ,\displaystyle-\frac{1}{2}\delta u^{\mu}\delta u_{\mu},
uμδπμν\displaystyle u_{\mu}\delta\pi^{\mu\nu} =\displaystyle= δuμδπμν,\displaystyle-\delta u_{\mu}\delta\pi^{\mu\nu},
δπμμ\displaystyle\delta\pi_{\mu}^{\mu} =\displaystyle= 0,\displaystyle 0, (16)

we find,

δui,δπij\displaystyle\delta u^{i},\delta\pi^{ij} \displaystyle\sim 𝒪(δ),\displaystyle\mathcal{O}(\delta),
δu0,δπ0i\displaystyle\delta u^{0},\delta\pi^{0i} \displaystyle\sim 𝒪(δ2),\displaystyle\mathcal{O}(\delta^{2}),
δπ00\displaystyle\delta\pi^{00} \displaystyle\sim 𝒪(δ3).\displaystyle\mathcal{O}(\delta^{3}). (17)

With the help of Eq. (11), the information current is then given by (Gavassino:2021cli, ; Gavassino:2021kjm, )

Eμ\displaystyle E^{\mu} =\displaystyle= δsμ+uνTδTμν\displaystyle-\delta s^{\mu}+\frac{u_{\nu}}{T}\delta T^{\mu\nu} (18)
=\displaystyle= uμ(δeTδs)+1TδuμδP+12uμT(χπδπαβδπαβ+χΠδΠδΠ)\displaystyle u^{\mu}\left(\frac{\delta e}{T}-\delta s\right)+\frac{1}{T}\delta u^{\mu}\delta P+\frac{1}{2}\frac{u^{\mu}}{T}(\chi_{\pi}\delta\pi^{\alpha\beta}\delta\pi_{\alpha\beta}+\chi_{\Pi}\delta\Pi\delta\Pi)
12T(e+P)uμδuνδuν1Tδuνδπμν+1TδuμδΠ+𝒪(δ3).\displaystyle-\frac{1}{2T}(e+P)u^{\mu}\delta u_{\nu}\delta u^{\nu}-\frac{1}{T}\delta u_{\nu}\delta\pi^{\mu\nu}+\frac{1}{T}\delta u^{\mu}\delta\Pi+\mathcal{O}(\delta^{3}).

By using the thermodynamic relations,

ds=1Tde,dP=sdT,ds=\frac{1}{T}de,\;dP=sdT, (19)

we find that

δs\displaystyle\delta s =\displaystyle= 1Tδe+122se2(δe)2+𝒪(δ3)\displaystyle\frac{1}{T}\delta e+\frac{1}{2}\frac{\partial^{2}s}{\partial e^{2}}(\delta e)^{2}+\mathcal{O}(\delta^{3}) (20)
=\displaystyle= 1Tδe12TδPe+Pδe+𝒪(δ3)\displaystyle\frac{1}{T}\delta e-\frac{1}{2T}\frac{\delta P}{e+P}\delta e+\mathcal{O}(\delta^{3})
=\displaystyle= 1Tδe12Tcs2e+P(δe)2+𝒪(δ3),\displaystyle\frac{1}{T}\delta e-\frac{1}{2T}\frac{c_{s}^{2}}{e+P}(\delta e)^{2}+\mathcal{O}(\delta^{3}),

where cs2c_{s}^{2} is the speed of sound. Then, EμE^{\mu} can be further simplified,

Eμ\displaystyle E^{\mu} =\displaystyle= 12Tuμcs2e+P(δe)2+cs2Tδuμδe12T(e+P)uμδuνδuν\displaystyle\frac{1}{2T}\frac{u^{\mu}c_{s}^{2}}{e+P}(\delta e)^{2}+\frac{c_{s}^{2}}{T}\delta u^{\mu}\delta e-\frac{1}{2T}(e+P)u^{\mu}\delta u_{\nu}\delta u^{\nu} (21)
1Tδuνδπμν+1TδuμδΠ+12Tuμ(χπδπαβδπαβ+χΠδΠδΠ).\displaystyle-\frac{1}{T}\delta u_{\nu}\delta\pi^{\mu\nu}+\frac{1}{T}\delta u^{\mu}\delta\Pi+\frac{1}{2T}u^{\mu}(\chi_{\pi}\delta\pi^{\alpha\beta}\delta\pi_{\alpha\beta}+\chi_{\Pi}\delta\Pi\delta\Pi).

Let us now impose the three conditions (8) on EμE^{\mu}. From the definition (6), we have μEμ=μδsμ\partial_{\mu}E^{\mu}=-\partial_{\mu}\delta s^{\mu}, so that the condition (iii) in Eq. (8) leads to the inequality (14), which is consistent with the requirement from the conventional entropy principle. To analyze the constraints from the conditions (i) and (ii) in Eq. (8), we introduce an arbitrary timelike future-directed vector nμn^{\mu} with n0>0,nμnμ=1n_{0}>0,n^{\mu}n_{\mu}=1. After some tedious and straightforward calculations, we obtain,

2n0TEμnμe+P\displaystyle\frac{2n_{0}TE^{\mu}n_{\mu}}{e+P} =\displaystyle= n02τπη(e+P)i<j[δπij1n0χπn(iδuj)]2\displaystyle\frac{n_{0}^{2}\tau_{\pi}}{\eta(e+P)}\sum_{i<j}\left[\delta\pi^{ij}-\frac{1}{n_{0}\chi_{\pi}}n_{(i}\delta u_{j)}\right]^{2} (22)
+n02τπη(e+P)[δπ11+12δπ22+12n0χπ(n3δu3n1δu1)]2\displaystyle+\frac{n_{0}^{2}\tau_{\pi}}{\eta(e+P)}\left[\delta\pi^{11}+\frac{1}{2}\delta\pi^{22}+\frac{1}{2n_{0}\chi_{\pi}}(n_{3}\delta u_{3}-n_{1}\delta u_{1})\right]^{2}
+3n02τπ4η(e+P)[δπ22+13n0χπ(n3δu3+n1δu12n2δu2)]2\displaystyle+\frac{3n_{0}^{2}\tau_{\pi}}{4\eta(e+P)}\left[\delta\pi^{22}+\frac{1}{3n_{0}\chi_{\pi}}(n_{3}\delta u_{3}+n_{1}\delta u_{1}-2n_{2}\delta u_{2})\right]^{2}
+i=15ai(δAi)2,\displaystyle+\sum_{i=1}^{5}a_{i}(\delta A_{i})^{2},

where the exact expressions for aia_{i} and δAi\delta A_{i} can be found in Appendix B. Imposing the conditions (i) and (ii) in Eq. (8) leads to111In this work, we assume e+P>0e+P>0, while Ref. (Almaalol:2022pjc, ) also explores cases where e+P<0e+P<0. Additionally, we note that the treatment of δπμν\delta\pi^{\mu\nu} in Eq. (22) is different with Eq. (C14) of Ref. (Almaalol:2022pjc, ), since the number of independent components of δπμν\delta\pi^{\mu\nu} is 55.

cs2,τπ,τΠ\displaystyle c_{s}^{2},\tau_{\pi},\tau_{\Pi} >\displaystyle> 0,\displaystyle 0,
1cs24η3τπ(e+P)ζτΠ(e+P)\displaystyle 1-c_{s}^{2}-\frac{4\eta}{3\tau_{\pi}(e+P)}-\frac{\zeta}{\tau_{\Pi}(e+P)} >\displaystyle> 0,\displaystyle 0, (23)

which are exactly the same as those derived from linear mode analysis in the previous literature (Denicol:2008ha, ; Pu:2009fj, ; Pu:2011vr, ).

In general, if the baryon or other conserved current is considered, e.g. jμ=nuμ+νμj^{\mu}=nu^{\mu}+\nu^{\mu} with nn and νμ\nu^{\mu} being number density and diffusive current, the independent fields become φ=(e,uμ,Π,πμν,n,νμ)\varphi=(e,u^{\mu},\Pi,\pi^{\mu\nu},n,\nu^{\mu}) (Gavassino:2023qnw, ). In these cases, the thermodynamic relations (19), constitutive relations (11)-(13), and information current (18) will be modified. More constraints for thermodynamic stability would occur and the final constraints become different with Eq. (23). For the general analysis including baryon currents, one can refer to Refs. (Gavassino:2021cli, ; Gavassino:2021kjm, ; Almaalol:2022pjc, ; Gavassino:2023qnw, ).

IV Thermodynamic stability of spin hydrodynamics

In this section, we implement the thermodynamic stability criteria (8) to the spin hydrodynamics. First, let us briefly review the spin hydrodynamics in the canonical form. Besides the energy momentum conservation, we also have the conservation equations for the total angular momentum, i.e.

λJλμν\displaystyle\partial_{\lambda}J^{\lambda\mu\nu} =\displaystyle= 0,\displaystyle 0,
μΘμν\displaystyle\partial_{\mu}\Theta^{\mu\nu} =\displaystyle= 0,\displaystyle 0, (24)

where JλμνJ^{\lambda\mu\nu} and Θμν\Theta^{\mu\nu} are the total angular momentum tensor and energy momentum tensor in canonical form, respectively. The constitutive equations of JλμνJ^{\lambda\mu\nu} and Θμν\Theta^{\mu\nu} are

Θμν\displaystyle\Theta^{\mu\nu} =\displaystyle= (e+P)uμuνPgμν+2q[μuν]+ϕμν+πμνΠΔμν,\displaystyle(e+P)u^{\mu}u^{\nu}-Pg^{\mu\nu}+2q^{[\mu}u^{\nu]}+\phi^{\mu\nu}+\pi^{\mu\nu}-\Pi\Delta^{\mu\nu},
Jλμν\displaystyle J^{\lambda\mu\nu} =\displaystyle= xμΘλνxνΘλμ+Σλμν,\displaystyle x^{\mu}\Theta^{\lambda\nu}-x^{\nu}\Theta^{\lambda\mu}+\Sigma^{\lambda\mu\nu}, (25)

where qμ,ϕμνq^{\mu},\phi^{\mu\nu} are related to the spin and Σλμν\Sigma^{\lambda\mu\nu} is the spin tensor. In the following, we will limit our considerations to the cases where (baryon) currents vanish and, therefore, the terms for (baryon) number density do not contribute to constitutive relations and thermodynamic relations.

Inserting Eq. (25) into Eq. (24), yields

λΣλμν=2Θ[μν].\partial_{\lambda}\Sigma^{\lambda\mu\nu}=-2\Theta^{[\mu\nu]}. (26)

The spin tensor Σλμν\Sigma^{\lambda\mu\nu} is usually decomposed as (Hattori:2019lfp, ; Fukushima:2020ucl, )

Σλμν=uλSμν+σλμν,\Sigma^{\lambda\mu\nu}=u^{\lambda}S^{\mu\nu}+\sigma^{\lambda\mu\nu}, (27)

where SμνS^{\mu\nu} is named as spin density and σλμν\sigma^{\lambda\mu\nu} is perpendicular to the fluid velocity. We follow Ref. (Fukushima:2020ucl, ) to consider the power counting of the spin tensor,

Sμν𝒪(0),σλμν𝒪(1).S^{\mu\nu}\sim\mathcal{O}(\partial^{0}),\quad\sigma^{\lambda\mu\nu}\sim\mathcal{O}(\partial^{1}). (28)

Analogy to charge chemical potential, one can introduce the spin chemical potential ωμν\omega^{\mu\nu}, which modifies the thermodynamic relations in the presence of spin density (Hattori:2019lfp, ; Fukushima:2020ucl, ),

e+P\displaystyle e+P =\displaystyle= Ts+ωμνSμν,\displaystyle Ts+\omega_{\mu\nu}S^{\mu\nu},
de\displaystyle de =\displaystyle= Tds+ωμνdSμν,\displaystyle Tds+\omega_{\mu\nu}dS^{\mu\nu},
dP\displaystyle dP =\displaystyle= sdT+Sμνdωμν.\displaystyle sdT+S^{\mu\nu}d\omega_{\mu\nu}. (29)

The entropy current in Eq. (11) can also be extended as

sμ\displaystyle s^{\mu} =\displaystyle= suμ+1TqμQμ.\displaystyle su^{\mu}+\frac{1}{T}q^{\mu}-Q^{\mu}. (30)

The complete second order terms for the entropy current is complicated, see e.g. Ref. (Biswas:2023qsw, ). For simplicity, we write down the QμQ^{\mu} analogy to Eq. (12),

Qμ=12Tuμ(χqqνqν+χϕϕαβϕαβ+χΠΠ2+χππαβπαβ).Q^{\mu}=\frac{1}{2T}u^{\mu}(\chi_{q}q^{\nu}q_{\nu}+\chi_{\phi}\phi^{\alpha\beta}\phi_{\alpha\beta}+\chi_{\Pi}\Pi^{2}+\chi_{\pi}\pi^{\alpha\beta}\pi_{\alpha\beta}). (31)

From the second law of thermodynamics, we can get

τqΔμν(u)qν+qμ\displaystyle\tau_{q}\Delta^{\mu\nu}(u\cdot\partial)q_{\nu}+q^{\mu} =\displaystyle= λ[uρρuμTΔμνν1T4ωμνuν+12χqTρ(uρT)qν],\displaystyle\lambda\left[u^{\rho}\partial_{\rho}u^{\mu}-T\Delta^{\mu\nu}\partial_{\nu}\frac{1}{T}-4\omega^{\mu\nu}u_{\nu}+\frac{1}{2}\chi_{q}T\partial_{\rho}\left(\frac{u^{\rho}}{T}\right)q_{\nu}\right],
τϕΔμαΔνβ(u)ϕαβ+ϕμν\displaystyle\tau_{\phi}\Delta^{\mu\alpha}\Delta^{\nu\beta}(u\cdot\partial)\phi_{\alpha\beta}+\phi^{\mu\nu} =\displaystyle= 2γsΔμαΔνβ[[αuβ]+2ωαβ12χϕTρ(uρT)ϕαβ],\displaystyle 2\gamma_{s}\Delta^{\mu\alpha}\Delta^{\nu\beta}\left[\partial_{[\alpha}u_{\beta]}+2\omega_{\alpha\beta}-\frac{1}{2}\chi_{\phi}T\partial_{\rho}\left(\frac{u^{\rho}}{T}\right)\phi_{\alpha\beta}\right], (32)

with the transport coefficients,

τq=λχq,τϕ=2χϕγs,λ,γs>0.\tau_{q}=-\lambda\chi_{q},\quad\tau_{\phi}=2\chi_{\phi}\gamma_{s},\quad\lambda,\gamma_{s}>0. (33)

The equation for πμν\pi^{\mu\nu} and Π\Pi are the same as Eq. (13). We notice that the terms proportional to χq,χϕ\chi_{q,}\chi_{\phi} on the right-hand side of Eq. (32) differs with the constitutive equations for qμq^{\mu} and ϕμν\phi^{\mu\nu} in the minimal causal extended second order theory in Ref. (Xie:2023gbo, ). However, these new terms proportional to χq,χϕ\chi_{q},\chi_{\phi} will not contribute to the causality and stability conditions in linear mode analysis.

IV.1 Information current for spin hydrodynamics

Considering the small perturbations around thermodynamic equilibrium φφ+δφ\varphi\rightarrow\varphi+\delta\varphi, where φ=(e,uμ,Π,πμν,Sμν,qμ,ϕμν)\varphi=(e,u^{\mu},\Pi,\pi^{\mu\nu},S^{\mu\nu},q^{\mu},\phi^{\mu\nu}), we can construct the information current EμE^{\mu} for spin hydrodynamics. According to the definition of EμE^{\mu} in Eq. (6), we next consider the conserved currents.

We note that different with Eq. (18), uνδΘμν/Tu_{\nu}\delta\Theta^{\mu\nu}/T is no longer a conserved current in spin hydrodynamics due to the nonvanishing antisymmetric part of δΘμν\delta\Theta^{\mu\nu}. Recalling that uμ/Tu_{\mu}/T is a killing vector in thermodynamic equilibrium state, i.e., (μ(uν)/T)=0\partial_{(\mu}(u_{\nu)}/T)=0, leading to the general solutions for uμ/Tu_{\mu}/T as (Becattini:2012tc, )

uμ/T=bμ+ϖμνxν,u_{\mu}/T=b_{\mu}+\varpi_{\mu\nu}x^{\nu}, (34)

where bμb_{\mu} and ϖμν=ϖνμ\varpi_{\mu\nu}=-\varpi_{\nu\mu} are space-time independent, and ϖμν\varpi_{\mu\nu} is named as the thermal vorticity in spin hydrodynamics in the global equilibrium (Hattori:2019lfp, ; Fukushima:2020ucl, ). Then, we find

μ(uνTδΘμν)=ϖμνδΘ[μν],\partial_{\mu}\left(\frac{u_{\nu}}{T}\delta\Theta^{\mu\nu}\right)=-\varpi_{\mu\nu}\delta\Theta^{[\mu\nu]}, (35)

indicating that uνδΘμν/Tu_{\nu}\delta\Theta^{\mu\nu}/T is not a conserved current. According to Eq. (26), we notice that μδΣμρσ=2δΘ[μν]\partial_{\mu}\delta\Sigma^{\mu\rho\sigma}=-2\delta\Theta^{[\mu\nu]}, and then construct a new conserved current uνδΘμν/T12ϖρσδΣμρσu_{\nu}\delta\Theta^{\mu\nu}/T-\frac{1}{2}\varpi_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma}, which can also be written as

uνTδΘμν12ϖρσδΣμρσ=bνδΘμν12ϖρσδJμρσ.\frac{u_{\nu}}{T}\delta\Theta^{\mu\nu}-\frac{1}{2}\varpi_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma}=b_{\nu}\delta\Theta^{\mu\nu}-\frac{1}{2}\varpi_{\rho\sigma}\delta J^{\mu\rho\sigma}. (36)

The bνδΘμνb_{\nu}\delta\Theta^{\mu\nu} corresponds to energy and momentum conservation. The 12ϖρσδJμρσ-\frac{1}{2}\varpi_{\rho\sigma}\delta J^{\mu\rho\sigma} comes from total angular momentum conservation. Interestingly, from Eq. (36), the thermal vorticity ϖμν\varpi_{\mu\nu} plays a role like the chemical potential corresponding to the total angular momentum. Numerous studies (Becattini:2012tc, ; Becattini:2014yxa, ; Becattini:2018duy, ; Hattori:2019lfp, ; Fukushima:2020ucl, ; Hongo:2021ona, ) prove that the thermal vorticity in the global equilibrium are proportional to spin chemical potential,

ϖρσ=2ωρσT.\varpi_{\rho\sigma}=\frac{2\omega_{\rho\sigma}}{T}. (37)

The independent currents in spin hydrodynamics are uνδΘμν/T12ϖρσδΣμρσu_{\nu}\delta\Theta^{\mu\nu}/T-\frac{1}{2}\varpi_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma} and ϖρσδJμρσ\varpi_{\rho\sigma}\delta J^{\mu\rho\sigma}. Recalling the definition (6), we assume

Eμ=δsμ+m1(uνTδΘμν12ϖρσδΣμρσ)+m2ϖρσδJμρσ,E^{\mu}=-\delta s^{\mu}+m_{1}\left(\frac{u_{\nu}}{T}\delta\Theta^{\mu\nu}-\frac{1}{2}\varpi_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma}\right)+m_{2}\varpi_{\rho\sigma}\delta J^{\mu\rho\sigma}, (38)

with two constants m1,2m_{1,2}. Since the leading order of EμE^{\mu} is 𝒪(δ2)\mathcal{O}(\delta^{2}) (Gavassino:2021cli, ; Gavassino:2021kjm, ), Eq. (38) implies that

δsμ=m1(uνTδΘμν12ϖρσδΣμρσ)+m2ϖρσδJμρσ,\delta s^{\mu}=m_{1}\left(\frac{u_{\nu}}{T}\delta\Theta^{\mu\nu}-\frac{1}{2}\varpi_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma}\right)+m_{2}\varpi_{\rho\sigma}\delta J^{\mu\rho\sigma}, (39)

holds at order 𝒪(δ)\mathcal{O}(\delta). By contracting uμu_{\mu} on both sides of Eq. (39), we derive

δs=m1T(δeωρσδSρσ)+2m2Tωρσ(2xρuμδΘμσ+δSρσ),\delta s=\frac{m_{1}}{T}\left(\delta e-\omega_{\rho\sigma}\delta S^{\rho\sigma}\right)+\frac{2m_{2}}{T}\omega_{\rho\sigma}\left(2x^{\rho}u_{\mu}\delta\Theta^{\mu\sigma}+\delta S^{\rho\sigma}\right), (40)

where the identity (37) is used. Comparison of Eq. (40) with the thermodynamic relations (29) yields m1=1m_{1}=1 and m2=0m_{2}=0, resulting in

Eμ=δsμ+uνTδΘμν1TωρσδΣμρσ.E^{\mu}=-\delta s^{\mu}+\frac{u_{\nu}}{T}\delta\Theta^{\mu\nu}-\frac{1}{T}\omega_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma}. (41)

Following the same strategy as in Sec. III, we will choose the rest frame of the fluid without rotation and assume the irrotational system reaches the thermodynamic equilibrium,

{qμ,ϕμν,ωμν,Sμν}=0.\{q^{\mu},\phi^{\mu\nu},\omega^{\mu\nu},S^{\mu\nu}\}=0. (42)

The perturbation δs\delta s in Eq. (20) becomes

δs=1Tδe12Tcs2e+P(δe)212TδωαβδSαβ+O(δ3).\delta s=\frac{1}{T}\delta e-\frac{1}{2T}\frac{c_{s}^{2}}{e+P}(\delta e)^{2}-\frac{1}{2T}\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}+O(\delta^{3}). (43)

With the above results and Eqs. (25), (29), and (30), the information current can be expressed as

Eμ\displaystyle E^{\mu} =\displaystyle= δsμ+1TuνδΘμν1TωρσδΣμρσ\displaystyle-\delta s^{\mu}+\frac{1}{T}u_{\nu}\delta\Theta^{\mu\nu}-\frac{1}{T}\omega_{\rho\sigma}\delta\Sigma^{\mu\rho\sigma} (44)
=\displaystyle= 12Tcs2e+P(δe)2uμ+cs2Tδeδuμ+cs2T(e+P)δeδqμ+12TδωαβδSαβuμ\displaystyle\frac{1}{2T}\frac{c_{s}^{2}}{e+P}(\delta e)^{2}u^{\mu}+\frac{c_{s}^{2}}{T}\delta e\delta u^{\mu}+\frac{c_{s}^{2}}{T(e+P)}\delta e\delta q^{\mu}+\frac{1}{2T}\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}u^{\mu}
12T(e+P)uμδuνδuν+1Tδuνδqνuμ1Tδuνδϕμν1Tδuνδπμν+1TδΠδuμ\displaystyle-\frac{1}{2T}(e+P)u^{\mu}\delta u_{\nu}\delta u^{\nu}+\frac{1}{T}\delta u_{\nu}\delta q^{\nu}u^{\mu}-\frac{1}{T}\delta u_{\nu}\delta\phi^{\mu\nu}-\frac{1}{T}\delta u_{\nu}\delta\pi^{\mu\nu}+\frac{1}{T}\delta\Pi\delta u^{\mu}
+12Tuμ(χqδqνδqν+χϕδϕαβδϕαβ+χΠδΠδΠ+χπδπαβδπαβ),\displaystyle+\frac{1}{2T}u^{\mu}(\chi_{q}\delta q^{\nu}\delta q_{\nu}+\chi_{\phi}\delta\phi^{\alpha\beta}\delta\phi_{\alpha\beta}+\chi_{\Pi}\delta\Pi\delta\Pi+\chi_{\pi}\delta\pi^{\alpha\beta}\delta\pi_{\alpha\beta}),

where we have used

uμδqμ\displaystyle u_{\mu}\delta q^{\mu} =\displaystyle= δuμδqμ,\displaystyle-\delta u_{\mu}\delta q^{\mu},
uνδϕμν\displaystyle u_{\nu}\delta\phi^{\mu\nu} =\displaystyle= δuνδϕμν.\displaystyle-\delta u_{\nu}\delta\phi^{\mu\nu}. (45)

As a cross-check, we derive Eq. (44) by using a different approach shown in Appendix A.

Again, let us take uμ=(1,0)u^{\mu}=(1,0). For arbitrary nμn^{\mu} with n0>0n_{0}>0 and nμnμ=1n^{\mu}n_{\mu}=1, we can get

2n0TEμnμe+P\displaystyle\frac{2n_{0}TE^{\mu}n_{\mu}}{e+P} =\displaystyle= n02τπη(e+P)i<j[δπij1n0χπn(iδuj)]2\displaystyle\frac{n_{0}^{2}\tau_{\pi}}{\eta(e+P)}\sum_{i<j}\left[\delta\pi^{ij}-\frac{1}{n_{0}\chi_{\pi}}n_{(i}\delta u_{j)}\right]^{2} (46)
+n02τπη(e+P)[δπ11+12δπ22+12n0χπ(n3δu3n1δu1)]2\displaystyle+\frac{n_{0}^{2}\tau_{\pi}}{\eta(e+P)}\left[\delta\pi^{11}+\frac{1}{2}\delta\pi^{22}+\frac{1}{2n_{0}\chi_{\pi}}(n_{3}\delta u_{3}-n_{1}\delta u_{1})\right]^{2}
+3n02τπ4η(e+P)[δπ22+13n0χπ(n3δu3+n1δu12n2δu2)]2\displaystyle+\frac{3n_{0}^{2}\tau_{\pi}}{4\eta(e+P)}\left[\delta\pi^{22}+\frac{1}{3n_{0}\chi_{\pi}}(n_{3}\delta u_{3}+n_{1}\delta u_{1}-2n_{2}\delta u_{2})\right]^{2}
+n02τqλ(e+P)i[δqi1n0χq(cs2e+Pδeni+n0δui)]2\displaystyle+\frac{n_{0}^{2}\tau_{q}}{\lambda(e+P)}\sum_{i}\left[\delta q^{i}-\frac{1}{n_{0}\chi_{q}}\left(\frac{c_{s}^{2}}{e+P}\delta en_{i}+n_{0}\delta u_{i}\right)\right]^{2}
+n02τϕγs(e+P)i<j(δϕij1n0χϕn[iδuj])2+n02e+PδωαβδSαβ\displaystyle+\frac{n_{0}^{2}\tau_{\phi}}{\gamma_{s}(e+P)}\sum_{i<j}\left(\delta\phi^{ij}-\frac{1}{n_{0}\chi_{\phi}}n_{[i}\delta u_{j]}\right)^{2}+\frac{n_{0}^{2}}{e+P}\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}
+i=610ai(δAi)2+O(δ3),\displaystyle+\sum_{i=6}^{10}a_{i}(\delta A_{i})^{2}+O(\delta^{3}),

where the expressions for aia_{i} and δAi\delta A_{i} are presented in Appendix B. Next, we analyze the thermodynamic stability in two cases: with and without viscous tensors, πμν\pi^{\mu\nu} and ΠΔμν\Pi\Delta^{\mu\nu}. The main reason is as follows. In the previous study by some of us (Xie:2023gbo, ), we find that there exist zero modes in the linear mode analysis for the spin hydrodynamics with vanishing viscous tensors. Such zero modes disappear once we turn on the finite viscous tensors. It is questionable whether the spin hydrodynamics can be stable and causal with vanishing viscous tensors. Therefore, it is necessary to study the thermodynamic stability with and without viscous tensors separately.

IV.2 Case I: With vanishing viscous tensors

By simply setting δπμν\delta\pi^{\mu\nu} and δΠ\delta\Pi to zero in Eq. (46), we find that the sufficient and necessary conditions for thermodynamic stability (8) are

cs2,γs,λ,τϕ,τq,δωαβδSαβ\displaystyle c_{s}^{2},\gamma_{s},\lambda,\tau_{\phi},\tau_{q},\delta\omega_{\alpha\beta}\delta S^{\alpha\beta} >\displaystyle> 0,\displaystyle 0,
1λτq(e+P)γsτϕ(e+P)\displaystyle 1-\frac{\lambda}{\tau_{q}(e+P)}-\frac{\gamma_{s}}{\tau_{\phi}(e+P)} >\displaystyle> 0,\displaystyle 0,
1cs2(3cs2+1)λτq(e+P)\displaystyle 1-c_{s}^{2}-\frac{(3c_{s}^{2}+1)\lambda}{\tau_{q}(e+P)} >\displaystyle> 0.\displaystyle 0. (47)

The last two inequalities can be rewritten as

0<2γτq(2τqλ)τϕ\displaystyle 0<\frac{2\gamma^{\prime}\tau_{q}}{(2\tau_{q}-\lambda^{\prime})\tau_{\phi}} <\displaystyle< 1,\displaystyle 1,
0<cs2(2τq+3λ)2τqλ\displaystyle 0<\frac{c_{s}^{2}(2\tau_{q}+3\lambda^{\prime})}{2\tau_{q}-\lambda^{\prime}} <\displaystyle< 1,\displaystyle 1, (48)

where

λ=2λe+P,γ=γse+P.\lambda^{\prime}=\frac{2\lambda}{e+P},\ \gamma^{\prime}=\frac{\gamma_{s}}{e+P}. (49)

We find that the conditions (48) are exactly the same as the causality conditions derived by linear mode analysis (Xie:2023gbo, ).

The stability conditions from linear mode analysis are given by (Xie:2023gbo, )

cs2,γs,λ,τϕ,τq,χs,χb\displaystyle c_{s}^{2},\gamma_{s},\lambda,\tau_{\phi},\tau_{q},\chi_{s},-\chi_{b} >\displaystyle> 0,\displaystyle 0,
2τqλ\displaystyle 2\tau_{q}-\lambda^{\prime} >\displaystyle> 0,\displaystyle 0,
χe0i\displaystyle\chi_{e}^{0i} =\displaystyle= 0,\displaystyle 0, (50)

where χeμν\chi_{e}^{\mu\nu} and χb,χs\chi_{b},\chi_{s} are the spin susceptibilities with respect to ee and S0i,SijS^{0i},S^{ij}, i.e.

δω0i\displaystyle\delta\omega^{0i} =\displaystyle= χe0iδe+χbδS0i,\displaystyle\chi_{e}^{0i}\delta e+\chi_{b}\delta S^{0i},
δωij\displaystyle\delta\omega^{ij} =\displaystyle= χeijδe+χsδSij.\displaystyle\chi_{e}^{ij}\delta e+\chi_{s}\delta S^{ij}. (51)

The inequality 2τq>λ2\tau_{q}>\lambda^{\prime} can be directly derived from the thermodynamic stability conditions (47).

With the parametrization (51), the inequalities χb<0\chi_{b}<0 and χs>0\chi_{s}>0 are necessary conditions for δωαβδSαβ>0\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}>0 in Eq. (47). However, χe0i=0\chi_{e}^{0i}=0 does not arise immediately from the thermodynamic stability conditions. In fact, the spin susceptibility χeμν\chi_{e}^{\mu\nu} introduced in Eq. (51) is a high order correction in our setup. Let us consider the equations of state,

e=e(T,ωμν),Sμν=Sμν(T,ωμν).e=e(T,\omega^{\mu\nu}),\quad S^{\mu\nu}=S^{\mu\nu}(T,\omega^{\mu\nu}). (52)

For simplicity, let us focus on SxyS^{xy} and ωxy\omega^{xy}, and assume other components of SμνS^{\mu\nu} and ωμν\omega^{\mu\nu} are vanishing. Since the ωxy𝒪(1)\omega^{xy}\sim\mathcal{O}(\partial^{1}) is the quantum correction to the thermodynamic variables, the equations of state can be expressed as power series of ωxy\omega^{xy} based on symmetry considerations222Here, we assume the absence of characteristic or external tensors. In other words, the system is considered “isotropic.” Clearly, this assumption implies χeμνωμν\chi_{e}^{\mu\nu}\sim\omega^{\mu\nu} by considering the antisymmetric tensor structure of χeμν\chi_{e}^{\mu\nu}. If this assumption does not hold, then χeμν\chi_{e}^{\mu\nu} may be nonzero even if ωμν=0\omega^{\mu\nu}=0.,

(δeδSxy)=(a11T3a12ωxyT2a21ωxyTa22T2)(δTδωxy)+𝒪(ωxy2δωxy,ωxy2δT),\left(\begin{array}[]{c}\delta e\\ \delta S^{xy}\end{array}\right)=\left(\begin{array}[]{cc}a_{11}T^{3}&a_{12}\omega^{xy}T^{2}\\ a_{21}\omega^{xy}T&a_{22}T^{2}\end{array}\right)\left(\begin{array}[]{c}\delta T\\ \delta\omega^{xy}\end{array}\right)+\mathcal{O}(\omega_{xy}^{2}\delta\omega^{xy},\omega_{xy}^{2}\delta T), (53)

where aija_{ij} are dimensionless constants and a11,a220a_{11},a_{22}\neq 0. The inverse of Eq. (53) gives

(δTδωxy)=1a11a22T4(a22Ta12ωxyTa21ωxya11T2)(δeδSxy)+𝒪(ωxy2δe,ωxy2δSμν).\left(\begin{array}[]{c}\delta T\\ \delta\omega^{xy}\end{array}\right)=\frac{1}{a_{11}a_{22}T^{4}}\left(\begin{array}[]{cc}a_{22}T&-a_{12}\omega^{xy}T\\ -a_{21}\omega^{xy}&a_{11}T^{2}\end{array}\right)\left(\begin{array}[]{c}\delta e\\ \delta S^{xy}\end{array}\right)+\mathcal{O}(\omega_{xy}^{2}\delta e,\omega_{xy}^{2}\delta S^{\mu\nu}). (54)

We find that χexyωxy\chi_{e}^{xy}\propto\omega^{xy}. When the system reaches irrotational equilibrium state shown in Eq. (42), χexyδωxy\chi_{e}^{xy}\propto\delta\omega^{xy}, therefore χexyδe𝒪(δ2)\chi_{e}^{xy}\delta e\sim\mathcal{O}(\delta^{2}) are high order corrections. While χs1/(a22T2)𝒪(δ0)\chi_{s}\sim 1/(a_{22}T^{2})\sim\mathcal{O}(\delta^{0}) can survive. Hence, the condition χeμν=𝒪(δ)\chi_{e}^{\mu\nu}=\mathcal{O}(\delta) does not arise from stability demand but rather from our choice of an irrotational background.

Taking the parameterization (51) with χeμν=𝒪(δ)\chi_{e}^{\mu\nu}=\mathcal{O}(\delta), the inequalities χb<0\chi_{b}<0 and χs>0\chi_{s}>0 now become equivalent to δωαβδSαβ>0\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}>0. Consequently, in the case of Π,πμν=0\Pi,\pi^{\mu\nu}=0, the thermodynamic stability conditions align with the stability and causality conditions derived from linear mode analysis in Ref. (Xie:2023gbo, ). It also indicates that the zero modes in the dispersion relations appeared in linear mode analysis (Xie:2023gbo, ) will not lead to instabilities.

IV.3 Case II: With finite viscous tensors

Let us consider the full form of EμE^{\mu} shown in Eq. (44). Imposing the thermodynamic stability conditions (8) yields

cs2,λ,γs,η,ζ,τq,τϕ,τπ,τΠ,χb,χs\displaystyle c_{s}^{2},\lambda,\gamma_{s},\eta,\zeta,\tau_{q},\tau_{\phi},\tau_{\pi},\tau_{\Pi},-\chi_{b},\chi_{s} >\displaystyle> 0,\displaystyle 0, (55)
1λ2τq4γ3τπ13τΠ(3γ4γ)\displaystyle 1-\frac{\lambda^{\prime}}{2\tau_{q}}-\frac{4\gamma_{\perp}}{3\tau_{\pi}}-\frac{1}{3\tau_{\Pi}}(3\gamma_{\|}-4\gamma_{\perp}) >\displaystyle> 0,\displaystyle 0, (56)
1λ2τqγτπγτϕ\displaystyle 1-\frac{\lambda^{\prime}}{2\tau_{q}}-\frac{\gamma_{\perp}}{\tau_{\pi}}-\frac{\gamma^{\prime}}{\tau_{\phi}} >\displaystyle> 0,\displaystyle 0, (57)
1cs2(1+3cs2)λ2τq(2τqcs2λ)[4γτΠ+τπ(3γ4γ)]6τqτπτΠ\displaystyle 1-c_{s}^{2}-\frac{(1+3c_{s}^{2})\lambda^{\prime}}{2\tau_{q}}-\frac{(2\tau_{q}-c_{s}^{2}\lambda^{\prime})[4\gamma_{\perp}\tau_{\Pi}+\tau_{\pi}(3\gamma_{\|}-4\gamma_{\perp})]}{6\tau_{q}\tau_{\pi}\tau_{\Pi}} >\displaystyle> 0,\displaystyle 0, (58)
2cs2(2+3cs2)λ2τq4γτΠ+τπ(3γ4γ)3τπτΠ\displaystyle 2-c_{s}^{2}-\frac{(2+3c_{s}^{2})\lambda^{\prime}}{2\tau_{q}}-\frac{4\gamma_{\perp}\tau_{\Pi}+\tau_{\pi}(3\gamma_{\|}-4\gamma_{\perp})}{3\tau_{\pi}\tau_{\Pi}} >\displaystyle> 0,\displaystyle 0, (59)

where we have used the parametrization (51) and the shorthand notations (49) and

γ=ηe+P,γ=43η+ζe+P.\gamma_{\perp}=\frac{\eta}{e+P},\ \gamma_{\|}=\frac{\frac{4}{3}\eta+\zeta}{e+P}. (60)

We now compare these conditions (55)-(59) to those derived from linear mode analysis (Xie:2023gbo, ). The causality conditions in linear mode analysis are given by

0<2τq(γτπ+γτϕ)(2τqλ)τπτϕ\displaystyle 0<\frac{2\tau_{q}(\gamma^{\prime}\tau_{\pi}+\gamma_{\perp}\tau_{\phi})}{(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\phi}} <\displaystyle< 1,\displaystyle 1, (61)
0<b11/2±(b1b2)1/26(2τqλ)τπτΠ\displaystyle 0<\frac{b_{1}^{1/2}\pm(b_{1}-b_{2})^{1/2}}{6(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi}} <\displaystyle< 1,\displaystyle 1, (62)

where b1,2b_{1,2} are defined as

b11/2\displaystyle b_{1}^{1/2} =\displaystyle= 8γτqτΠ+τπ[2τq(3γ4γ)+3τΠcs2(3λ+2τq)],\displaystyle 8\gamma_{\perp}\tau_{q}\tau_{\Pi}+\tau_{\pi}[2\tau_{q}(3\gamma_{\|}-4\gamma_{\perp})+3\tau_{\Pi}c_{s}^{2}(3\lambda^{\prime}+2\tau_{q})],
b2\displaystyle b_{2} =\displaystyle= 12cs2λ(2τqλ)τπτΠ[τπ(3γ4γ)+4γτΠ].\displaystyle 12c_{s}^{2}\lambda^{\prime}(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi}[\tau_{\pi}(3\gamma_{\|}-4\gamma_{\perp})+4\gamma_{\perp}\tau_{\Pi}]. (63)

It is straightforward to show that the inequality (61) can be derived from inequalities (55) and (57). Similarly, one can derive (62) by using inequalities (55) and (59). We then conclude that the causality in linear mode analysis is ensured by thermodynamic stability conditions.

The stability conditions derived by linear mode analysis are (Xie:2023gbo, )

cs2,λ,γs,η,ζ,τq,τϕ,τπ,τΠ,χb,χs\displaystyle c_{s}^{2},\lambda,\gamma_{s},\eta,\zeta,\tau_{q},\tau_{\phi},\tau_{\pi},\tau_{\Pi},-\chi_{b},\chi_{s} >\displaystyle> 0,\displaystyle 0, (64)
2τqλ\displaystyle 2\tau_{q}-\lambda^{\prime} >\displaystyle> 0,\displaystyle 0, (65)
b1>b2\displaystyle b_{1}>b_{2} >\displaystyle> 0,\displaystyle 0, (66)
c2c3\displaystyle\frac{c_{2}}{c_{3}} >\displaystyle> 0,\displaystyle 0, (67)

where the definitions of c2,3c_{2,3} are presented in Appendix C. After performing the calculations detailed in Appendix D, we show that the inequalities (66), (67) can be derived from (64), (65). Consequently, the independent stability conditions in linear mode analysis reduce to Eqs. (64), (65). It is worth noting that the inequality (64) aligns precisely with inequality (55) under the parametrization (51), while inequality (65) can be derived from either inequality (56) or (57).

Our results reveal that the stability and causality conditions derived in linear mode analysis can indeed be derived from thermodynamic stability conditions. However, the reverse does not hold in the current case. For instance, the inequality (56) cannot be derived from the causality and stability conditions identified in linear mode analysis. Therefore, unlike the scenarios discussed in Secs. III and IV.2, the thermodynamic stability conditions for spin hydrodynamics involving nonvanishing components qμq^{\mu}, ϕμν\phi^{\mu\nu}, Π\Pi, and πμν\pi^{\mu\nu} are more stringent than those derived from linear mode analysis.

Let us discuss the above observation. A dissipative process is called real or on shell if it satisfies the equations of motion, otherwise, it is called virtual or off shell. Linear mode analysis solely considers real processes, whereas thermodynamic stability analysis encompasses both real and virtual processes (Gavassino:2021kjm, ; Gavassino:2024vyu, ). If there are no virtual processes, meaning all forms of perturbations are allowed, then the conditions derived from thermodynamic stability analysis and linear mode analysis coincide, as the cases in Secs. III and IV.2. However, in the presence of virtual processes, additional conditions emerge from thermodynamic stability analysis and are invisible in linear mode analysis. Consequently, the thermodynamic stability are more stringent compared to linear-mode stability. This implies that the thermodynamic stability analysis for spin hydrodynamics with viscous tensors may involve virtual processes that are not allowed by linearized hydrodynamic equations. A systematic verification of this statement is left for our future work.

In Ref. (Xie:2023gbo, ), it was found that the conditions derived from linear mode analysis might be necessary but are not sufficient to ensure stability. In contrast, the thermodynamic stability criteria (8) are both necessary and sufficient for ensuring stability. The reasoning is as follows.

Clearly, the thermodynamic stability criteria (8) are necessary to uphold the fundamental laws of stability, specifically the second law of thermodynamics and the principle of maximizing total entropy in the equilibrium state. On the other hand, the functional E[δφ]E[\delta\varphi] defined in Eq. (7) is positive definite and nonincreasing in time when the criteria (8) are fulfilled. Then E[δφ]E[\delta\varphi] can be interpreted as a Lyapunov functional, which is sufficient to guarantee the stability of the corresponding linearized hydrodynamic equations (lasalle1961stability, ; Gavassino:2021kjm, ; Gavassino:2023odx, ). Therefore, we argue that the unstable modes identified in Ref. (Xie:2023gbo, ) would disappear if we adopt the conditions from thermodynamic stability (55)-(59). A rigorous proof of this assertion will require more general discussions on the structure of linearized hydrodynamic equations and will be presented elsewhere.

V Conclusion

In this work, we have applied thermodynamic stability analysis to derive the stability and causality conditions for conventional relativistic viscous hydrodynamics and spin hydrodynamics.

As a test, we first derived the thermodynamic stability conditions in Eq. (23) for second-order relativistic viscous hydrodynamics without (baryon) currents and heat currents. We found that these conditions are consistent with those derived from linear mode analysis in Refs. (Denicol:2008ha, ; Pu:2009fj, ; Pu:2011vr, ).

We next studied the thermodynamic stability of minimal causal extended second-order spin hydrodynamics in canonical form, both with and without viscous tensors. In the absence of viscous tensors, the constraints derived from thermodynamic stability analysis exactly match those obtained from linear mode analysis. This indicates that the zero modes found in the linear mode analysis will not affect the causality and stability of the spin hydrodynamics in this case.

As another important observation, we also note that the inequality δωαβδSαβ>0\delta\omega_{\alpha\beta}\delta S^{\alpha\beta}>0 in Eq. (47) can be satisfied by adopting physical equations of state. The spin susceptibilities with respect to energy density, χeμν\chi_{e}^{\mu\nu}, are found to be 𝒪(δ)\sim\mathcal{O}(\delta) and therefore can be neglected in the current setup. This finding could help us understand the unstable modes identified in Ref. (Xie:2023gbo, ) when the asymptotic stability conditions are met in the linear modes analysis.

We then derive the thermodynamic stability conditions in Eqs. (55)-(59) for spin hydrodynamics in the presence of viscous tensors. These conditions are consistent with the causality conditions derived from linear mode analysis and are more stringent than the stability conditions found in linear mode analysis. Our studies suggest that the conditions derived from thermodynamic stability analysis can guarantee both causality and stability in linear mode analysis.

In the current studies, we have only considered irrotational spin hydrodynamics. The inclusion of a rotating background will affect the analysis, as noted in Ref. (Shokri:2023rpp, ), and should be studied systematically in future work.

Acknowledgements.
We thank Lorenzo Gavassino for explaining the differences between thermodynamic stability analysis and linear mode analysis and Masoud Shokri for fruitful discussions on the information current for spin hydrodynamics. This work is supported in part by the National Key Research and Development Program of China under Contract No. 2022YFA1605500, by the Chinese Academy of Sciences (CAS) under Grant No. YSBR-088 and by National Nature Science Foundation of China (NSFC) under Grants No. 12075235 and No.12135011.

Appendix A Another approach to derive the information current for spin hydrodynamics

Here we employ the method used in Ref. (Gavassino:2023qnw, ) (see also the Supplemental Material of Ref. (Gavassino:2021kjm, )) to derive the information current (44) for spin hydrodynamics. This method is based on the fact that the function Ψ\Psi, defined in Eq. (5), should be maximized in the equilibrium state. We now introduce θ\theta to characterize a smooth one-parameter family of solutions to hydrodynamic equations, where only θ=0\theta=0 corresponds to the equilibrium state. Then Ψ=Ψ(θ)\Psi=\Psi(\theta) is a function of θ\theta. Since Ψ\Psi is maximized in the equilibrium state, we have

Ψ˙(0)=0,Ψ¨(0)0,\dot{\Psi}(0)=0,\quad\ddot{\Psi}(0)\leq 0, (68)

where the dot represents the derivative with respect to θ\theta. Given an arbitrary three-dimensional spacelike Cauchy surface Σ\Sigma with the future-directed and timelike normal unit vector nμn^{\mu}, we can express Ψ\Psi as Ψ=Σ𝑑Σnμψμ\Psi=\int_{\Sigma}d\Sigma n_{\mu}\psi^{\mu}, with the current ψμ=ψμ(θ)\psi^{\mu}=\psi^{\mu}(\theta) given by

ψμ=sμ+aαaJa,μ.\psi^{\mu}=s^{\mu}+\sum_{a}\alpha^{a}J^{a,\mu}. (69)

Due to arbitrariness of the Cauchy surface Σ\Sigma, Eq. (68) implies that

ψ˙μ(0)=0,\dot{\psi}^{\mu}(0)=0, (70)

and ψ¨μ(0)\ddot{\psi}^{\mu}(0) is past-directed and nonspacelike. For small θ\theta, the information current EμE^{\mu} can be derived through (Gavassino:2021kjm, ; Gavassino:2023qnw, )

Eμ=12θ2ψ¨μ(0).E^{\mu}=-\frac{1}{2}\theta^{2}\ddot{\psi}^{\mu}(0). (71)

To calculate the the information current EμE^{\mu} using Eq. (71), let us first construct the current ψμ\psi^{\mu}. According to the discussion in Sec. IV.1, there are two independent conserved currents,

κνΘμν+12[ρκσ]Σμρσ,ξρσJμρσ,\kappa_{\nu}\Theta^{\mu\nu}+\frac{1}{2}\partial_{[\rho}\kappa_{\sigma]}\Sigma^{\mu\rho\sigma},\quad\xi_{\rho\sigma}J^{\mu\rho\sigma}, (72)

where κμ\kappa^{\mu} is a killing vector and ξρσ\xi_{\rho\sigma} is an antisymmetric constant tensor. The general form for ψμ\psi^{\mu} is

ψμ=sμκνΘμν12[ρκσ]ΣμρσξρσJμρσ.\psi^{\mu}=s^{\mu}-\kappa_{\nu}\Theta^{\mu\nu}-\frac{1}{2}\partial_{[\rho}\kappa_{\sigma]}\Sigma^{\mu\rho\sigma}-\xi_{\rho\sigma}J^{\mu\rho\sigma}. (73)

By introducing another killing vector

βν=κν+2ξρνxρ,\beta_{\nu}=\kappa_{\nu}+2\xi_{\rho\nu}x^{\rho}, (74)

the expression (73) can be equivalently written as

ψμ=sμβνΘμν12[ρβσ]Σμρσ.\psi^{\mu}=s^{\mu}-\beta_{\nu}\Theta^{\mu\nu}-\frac{1}{2}\partial_{[\rho}\beta_{\sigma]}\Sigma^{\mu\rho\sigma}. (75)

Substituting the constitutive equations (25) into it, we obtain

ψμ\displaystyle\psi^{\mu} =\displaystyle= [s(e+P+Π)βνuν12[ρβσ]Sρσ+qνβν𝒦]uμ\displaystyle\left[s-(e+P+\Pi)\beta_{\nu}u^{\nu}-\frac{1}{2}\partial_{[\rho}\beta_{\sigma]}S^{\rho\sigma}+q^{\nu}\beta_{\nu}-\mathcal{K}\right]u^{\mu} (76)
+(P+Π)βμqμ(βνuν1T)(ϕμν+πμν)βν,\displaystyle+(P+\Pi)\beta^{\mu}-q^{\mu}(\beta_{\nu}u^{\nu}-\frac{1}{T})-(\phi^{\mu\nu}+\pi^{\mu\nu})\beta_{\nu},

where

𝒦=12T(χqqνqν+χϕϕαβϕαβ+χΠΠ2+χππαβπαβ).\mathcal{K}=\frac{1}{2T}(\chi_{q}q^{\nu}q_{\nu}+\chi_{\phi}\phi^{\alpha\beta}\phi_{\alpha\beta}+\chi_{\Pi}\Pi^{2}+\chi_{\pi}\pi^{\alpha\beta}\pi_{\alpha\beta}). (77)

The next step is to impose the constraint (70) on ψμ\psi^{\mu}. We find

ψ˙μ\displaystyle\dot{\psi}^{\mu} =\displaystyle= [s˙(e˙+P˙+Π˙)βνuν(e+P+Π)βνu˙ν12[ρβσ]S˙ρσ+q˙νβν𝒦˙]uμ\displaystyle\left[\dot{s}-(\dot{e}+\dot{P}+\dot{\Pi})\beta_{\nu}u^{\nu}-(e+P+\Pi)\beta_{\nu}\dot{u}^{\nu}-\frac{1}{2}\partial_{[\rho}\beta_{\sigma]}\dot{S}^{\rho\sigma}+\dot{q}^{\nu}\beta_{\nu}-\dot{\mathcal{K}}\right]u^{\mu} (78)
+[s(e+P+Π)βνuν12[ρβσ]Sρσ+qνβν𝒦]u˙μ\displaystyle+\left[s-(e+P+\Pi)\beta_{\nu}u^{\nu}-\frac{1}{2}\partial_{[\rho}\beta_{\sigma]}S^{\rho\sigma}+q^{\nu}\beta_{\nu}-\mathcal{K}\right]\dot{u}^{\mu}
+(P˙+Π˙)βμq˙μ(βνuν1T)qμ(βνu˙ν+1T2T˙)(ϕ˙μν+π˙μν)βν.\displaystyle+(\dot{P}+\dot{\Pi})\beta^{\mu}-\dot{q}^{\mu}(\beta_{\nu}u^{\nu}-\frac{1}{T})-q^{\mu}(\beta_{\nu}\dot{u}^{\nu}+\frac{1}{T^{2}}\dot{T})-(\dot{\phi}^{\mu\nu}+\dot{\pi}^{\mu\nu})\beta_{\nu}.

Note that here uμu^{\mu} and u˙μ\dot{u}^{\mu} are independent, and this is true for other variables. The constraint (70) demands

uνT=βν,2Tωρσ=[ρβσ],Π,qμ,ϕμν,πμν=0,\frac{u_{\nu}}{T}=\beta_{\nu},\quad\frac{2}{T}\omega_{\rho\sigma}=-\partial_{[\rho}\beta_{\sigma]},\quad\Pi,q^{\mu},\phi^{\mu\nu},\pi^{\mu\nu}=0, (79)

in the equilibrium state. These conditions are exactly the same as those from entropy current analysis (Hattori:2019lfp, ; Fukushima:2020ucl, ).

With the equilibrium conditions (79), we can get

uνu¨ν\displaystyle u_{\nu}\ddot{u}^{\nu} =\displaystyle= u˙νu˙ν,uνq˙ν=0,uνq¨ν=2u˙νq˙ν,\displaystyle\dot{u}_{\nu}\dot{u}^{\nu},\quad u_{\nu}\dot{q}^{\nu}=0,\quad u_{\nu}\ddot{q}^{\nu}=-2\dot{u}_{\nu}\dot{q}^{\nu},
ϕ¨μνuν\displaystyle\ddot{\phi}^{\mu\nu}u_{\nu} =\displaystyle= 2ϕ˙μνu˙ν,π¨μνuν=2π˙μνu˙ν.\displaystyle-2\dot{\phi}^{\mu\nu}\dot{u}_{\nu},\quad\ddot{\pi}^{\mu\nu}u_{\nu}=-2\dot{\pi}^{\mu\nu}\dot{u}_{\nu}. (80)

The thermodynamic relations (29) give

e¨=Ts¨+ωρσS¨ρσ+T˙s˙+ω˙ρσS˙ρσ.\ddot{e}=T\ddot{s}+\omega_{\rho\sigma}\ddot{S}^{\rho\sigma}+\dot{T}\dot{s}+\dot{\omega}_{\rho\sigma}\dot{S}^{\rho\sigma}. (81)

With the help of these identities (80), (81), we derive

ψ¨μ(0)\displaystyle\ddot{\psi}^{\mu}(0) =\displaystyle= [1TT˙s˙+1Tω˙ρσS˙ρσ1T(e+P)u˙νu˙ν+2Tu˙νq˙ν]uμ\displaystyle-\left[\frac{1}{T}\dot{T}\dot{s}+\frac{1}{T}\dot{\omega}_{\rho\sigma}\dot{S}^{\rho\sigma}-\frac{1}{T}(e+P)\dot{u}_{\nu}\dot{u}^{\nu}+\frac{2}{T}\dot{u}_{\nu}\dot{q}^{\nu}\right]u^{\mu} (82)
1T(χqq˙νq˙ν+χϕϕ˙αβϕ˙αβ+χΠΠ˙2+χππ˙αβπ˙αβ)uμ\displaystyle-\frac{1}{T}(\chi_{q}\dot{q}^{\nu}\dot{q}_{\nu}+\chi_{\phi}\dot{\phi}^{\alpha\beta}\dot{\phi}_{\alpha\beta}+\chi_{\Pi}\dot{\Pi}^{2}+\chi_{\pi}\dot{\pi}^{\alpha\beta}\dot{\pi}_{\alpha\beta})u^{\mu}
2T(P˙+Π˙)u˙μ2T2q˙μT˙+2Tϕ˙μνu˙ν+2Tπ˙μνu˙ν.\displaystyle-\frac{2}{T}(\dot{P}+\dot{\Pi})\dot{u}^{\mu}-\frac{2}{T^{2}}\dot{q}^{\mu}\dot{T}+\frac{2}{T}\dot{\phi}^{\mu\nu}\dot{u}_{\nu}+\frac{2}{T}\dot{\pi}^{\mu\nu}\dot{u}_{\nu}.

Notice that, for small θ\theta, the quantity θφ˙\theta\dot{\varphi} represent the small perturbation around the equilibrium state, i.e.

δφ=θφ˙,\delta\varphi=\theta\dot{\varphi}, (83)

where φ\varphi stands for the hydrodynamic variables T,s,Π,uμ,qμT,s,\Pi,u^{\mu},q^{\mu}, etc. Hence, the information current from Eq. (71) can be expressed as

Eμ\displaystyle E^{\mu} =\displaystyle= 12[1TδTδs+1TδωρσδSρσ1T(e+P)δuνδuν+2Tδuνδqν]uμ\displaystyle\frac{1}{2}\left[\frac{1}{T}\delta T\delta s+\frac{1}{T}\delta\omega_{\rho\sigma}\delta S^{\rho\sigma}-\frac{1}{T}(e+P)\delta u_{\nu}\delta u^{\nu}+\frac{2}{T}\delta u_{\nu}\delta q^{\nu}\right]u^{\mu} (84)
+12T(χqδqνδqν+χϕδϕαβδϕαβ+χΠδΠδΠ+χπδπαβδπαβ)uμ\displaystyle+\frac{1}{2T}(\chi_{q}\delta q^{\nu}\delta q_{\nu}+\chi_{\phi}\delta\phi^{\alpha\beta}\delta\phi_{\alpha\beta}+\chi_{\Pi}\delta\Pi\delta\Pi+\chi_{\pi}\delta\pi^{\alpha\beta}\delta\pi_{\alpha\beta})u^{\mu}
+1T(δP+δΠ)δuμ+1T2δqμδT1Tδϕμνδuν1Tδπμνδuν+𝒪(δ3).\displaystyle+\frac{1}{T}(\delta P+\delta\Pi)\delta u^{\mu}+\frac{1}{T^{2}}\delta q^{\mu}\delta T-\frac{1}{T}\delta\phi^{\mu\nu}\delta u_{\nu}-\frac{1}{T}\delta\pi^{\mu\nu}\delta u_{\nu}+\mathcal{O}(\delta^{3}).

The formula (84) works for both rotational and irrotational background.

In an irrotational background where ωμν,Sμν=0\omega^{\mu\nu},S^{\mu\nu}=0, we have

δs\displaystyle\delta s =\displaystyle= 1Tδe+𝒪(δ2),\displaystyle\frac{1}{T}\delta e+\mathcal{O}(\delta^{2}),
δP\displaystyle\delta P =\displaystyle= cs2δe+𝒪(δ2),\displaystyle c_{s}^{2}\delta e+\mathcal{O}(\delta^{2}),
δT\displaystyle\delta T =\displaystyle= cs2Te+Pδe+𝒪(δ2).\displaystyle\frac{c_{s}^{2}T}{e+P}\delta e+\mathcal{O}(\delta^{2}). (85)

Plugging Eq. (85) into Eq. (84), we obtain the same information current as Eq. (44).

Appendix B Expressions for aia_{i} and δAi\delta A_{i} in Eqs. (22), (46)

Here, we present the expressions for aia_{i} and δAi\delta A_{i} in Eqs. (22, 46),

a1\displaystyle a_{1} =\displaystyle= a6=ζ1τΠ(e+P),\displaystyle a_{6}=\zeta^{-1}\tau_{\Pi}(e+P),
a2\displaystyle a_{2} =\displaystyle= 1[1+C1n12+C2(n22+n32)],\displaystyle\frac{1}{[1+C_{1}n_{1}^{2}+C_{2}(n_{2}^{2}+n_{3}^{2})]},
a3\displaystyle a_{3} =\displaystyle= 1+C2(n12+n22+n32)[1+C1(n12+n22)+C2n32][1+C1n12+C2(n22+n32)],\displaystyle\frac{1+C_{2}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})}{[1+C_{1}(n_{1}^{2}+n_{2}^{2})+C_{2}n_{3}^{2}][1+C_{1}n_{1}^{2}+C_{2}(n_{2}^{2}+n_{3}^{2})]},
a4\displaystyle a_{4} =\displaystyle= 1+C2(n12+n22+n32)[1+C1(n12+n22)+C2n32][1+C1(n12+n22+n32)],\displaystyle\frac{1+C_{2}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})}{[1+C_{1}(n_{1}^{2}+n_{2}^{2})+C_{2}n_{3}^{2}][1+C_{1}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]},
a5\displaystyle a_{5} =\displaystyle= 1+(C1cs2)(n12+n22+n32)1+C1(n12+n22+n32),\displaystyle\frac{1+(C_{1}-c_{s}^{2})(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})}{1+C_{1}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})},
a7\displaystyle a_{7} =\displaystyle= 1C3+C4n12+C5(n22+n32),\displaystyle\frac{1}{C_{3}+C_{4}n_{1}^{2}+C_{5}(n_{2}^{2}+n_{3}^{2})},
a8\displaystyle a_{8} =\displaystyle= C3+C5(n12+n22+n32)[C3+C4(n12+n22)+C5n32][C3+C4n12+C5(n22+n32)],\displaystyle\frac{C_{3}+C_{5}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})}{[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2})+C_{5}n_{3}^{2}][C_{3}+C_{4}n_{1}^{2}+C_{5}(n_{2}^{2}+n_{3}^{2})]},
a9\displaystyle a_{9} =\displaystyle= C3+C5(n12+n22+n32)[C3+C4(n12+n22)+C5n32][C3+C4(n12+n22+n32)],\displaystyle\frac{C_{3}+C_{5}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})}{[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2})+C_{5}n_{3}^{2}][C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]},
a10\displaystyle a_{10} =\displaystyle= {C4cs2[(C32)2(C31)C4]}(n12+n22+n32)2n02[C3+C4(n12+n22+n32)]\displaystyle\frac{\{C_{4}-c_{s}^{2}[(C_{3}-2)^{2}-(C_{3}-1)C_{4}]\}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})^{2}}{n_{0}^{2}[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]} (86)
+[C3+C4+(3C34)cs2](n12+n22+n32)+C3n02[C3+C4(n12+n22+n32)],\displaystyle+\frac{[C_{3}+C_{4}+(3C_{3}-4)c_{s}^{2}](n_{1}^{2}+n_{2}^{2}+n_{3}^{2})+C_{3}}{n_{0}^{2}[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]},

and

δA1\displaystyle\delta A_{1} =\displaystyle= δA6=n0e+PδΠζτΠ(e+P)(n1δu1+n2δu2+n3δu3),\displaystyle\delta A_{6}=\frac{n_{0}}{e+P}\delta\Pi-\frac{\zeta}{\tau_{\Pi}(e+P)}(n_{1}\delta u_{1}+n_{2}\delta u_{2}+n_{3}\delta u_{3}),
δA2\displaystyle\delta A_{2} =\displaystyle= [1+C1n12+C2(n22+n32)]δu1+(C1C2)n1(n2δu2+n3δu3)cs2n0n1e+Pδe,\displaystyle[1+C_{1}n_{1}^{2}+C_{2}(n_{2}^{2}+n_{3}^{2})]\delta u_{1}+(C_{1}-C_{2})n_{1}(n_{2}\delta u_{2}+n_{3}\delta u_{3})-\frac{c_{s}^{2}n_{0}n_{1}}{e+P}\delta e,
δA3\displaystyle\delta A_{3} =\displaystyle= [1+C1(n12+n22)+C2n32]δu2+(C1C2)n2n3δu3cs2n0n2e+Pδe,\displaystyle[1+C_{1}(n_{1}^{2}+n_{2}^{2})+C_{2}n_{3}^{2}]\delta u_{2}+(C_{1}-C_{2})n_{2}n_{3}\delta u_{3}-\frac{c_{s}^{2}n_{0}n_{2}}{e+P}\delta e,
δA4\displaystyle\delta A_{4} =\displaystyle= [1+C1(n12+n22+n32)]δu3cs2n0n3e+Pδe,\displaystyle[1+C_{1}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]\delta u_{3}-\frac{c_{s}^{2}n_{0}n_{3}}{e+P}\delta e,
δA5\displaystyle\delta A_{5} =\displaystyle= δA10=csn0e+Pδe,\displaystyle\delta A_{10}=\frac{c_{s}n_{0}}{e+P}\delta e,
δA7\displaystyle\delta A_{7} =\displaystyle= [C3+C4n12+C5(n22+n32)]δu1+(C4C5)n1(n2δu2+n3δu3)\displaystyle[C_{3}+C_{4}n_{1}^{2}+C_{5}(n_{2}^{2}+n_{3}^{2})]\delta u_{1}+(C_{4}-C_{5})n_{1}(n_{2}\delta u_{2}+n_{3}\delta u_{3})
+(C32)cs2n1n0e+Pδe,\displaystyle+\frac{(C_{3}-2)c_{s}^{2}n_{1}n_{0}}{e+P}\delta e,
δA8\displaystyle\delta A_{8} =\displaystyle= [C3+C4(n12+n22)+C5n32]δu2+(C4C5)n2n3δu3+(C32)cs2n2n0e+Pδe,\displaystyle[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2})+C_{5}n_{3}^{2}]\delta u_{2}+(C_{4}-C_{5})n_{2}n_{3}\delta u_{3}+\frac{(C_{3}-2)c_{s}^{2}n_{2}n_{0}}{e+P}\delta e,
δA9\displaystyle\delta A_{9} =\displaystyle= [C3+C4(n12+n22+n32)]δu3+(C32)cs2n3n0e+Pδe,\displaystyle[C_{3}+C_{4}(n_{1}^{2}+n_{2}^{2}+n_{3}^{2})]\delta u_{3}+\frac{(C_{3}-2)c_{s}^{2}n_{3}n_{0}}{e+P}\delta e, (87)

where we have defined

C1\displaystyle C_{1} =\displaystyle= 14η3τπ(e+P)ζτΠ(e+P),\displaystyle 1-\frac{4\eta}{3\tau_{\pi}(e+P)}-\frac{\zeta}{\tau_{\Pi}(e+P)},
C2\displaystyle C_{2} =\displaystyle= 1ητπ(e+P),\displaystyle 1-\frac{\eta}{\tau_{\pi}(e+P)},
C3\displaystyle C_{3} =\displaystyle= 1λτq(e+P),\displaystyle 1-\frac{\lambda}{\tau_{q}(e+P)},
C4\displaystyle C_{4} =\displaystyle= 1λτq(e+P)4η3τπ(e+P)ζτΠ(e+P),\displaystyle 1-\frac{\lambda}{\tau_{q}(e+P)}-\frac{4\eta}{3\tau_{\pi}(e+P)}-\frac{\zeta}{\tau_{\Pi}(e+P)},
C5\displaystyle C_{5} =\displaystyle= 1λτq(e+P)ητπ(e+P)γsτϕ(e+P).\displaystyle 1-\frac{\lambda}{\tau_{q}(e+P)}-\frac{\eta}{\tau_{\pi}(e+P)}-\frac{\gamma_{s}}{\tau_{\phi}(e+P)}. (88)

Appendix C Expressions for c2,3c_{2,3} in inequality (67)

The expressions for c2,3c_{2,3} in the inequality (67) are given by

c1\displaystyle c_{1} =\displaystyle= b11/2±(b1b2)1/26(2τqλ)τπτΠ,or b11/2±(b1b2)1/26(2τqλ)τπτΠ,\displaystyle\sqrt{\frac{b_{1}^{1/2}\pm(b_{1}-b_{2})^{1/2}}{6(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi}}},\textrm{or }-\sqrt{\frac{b_{1}^{1/2}\pm(b_{1}-b_{2})^{1/2}}{6(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi}}},
c2\displaystyle c_{2} =\displaystyle= 3c14[2τπτΠ+(2τqλ)(τπ+τΠ)]+c12{6γτq+(6γ8γ)τπ\displaystyle-3c_{1}^{4}[2\tau_{\pi}\tau_{\Pi}+(2\tau_{q}-\lambda^{\prime})(\tau_{\pi}+\tau_{\Pi})]+c_{1}^{2}\{6\gamma_{\|}\tau_{q}+(6\gamma_{\|}-8\gamma_{\perp})\tau_{\pi}
+8γτΠ+3cs2[2τπτΠ+(3λ+2τq)(τπ+τΠ)]}3cs2γλ,\displaystyle+8\gamma_{\perp}\tau_{\Pi}+3c_{s}^{2}[2\tau_{\pi}\tau_{\Pi}+(3\lambda^{\prime}+2\tau_{q})(\tau_{\pi}+\tau_{\Pi})]\}-3c_{s}^{2}\gamma_{\|}\lambda^{\prime},
c3\displaystyle c_{3} =\displaystyle= 2cs2λ[(3γ4γ)τπ+4γτΠ]18c14(2τqλ)τπτΠ\displaystyle-2c_{s}^{2}\lambda^{\prime}[(3\gamma_{\|}-4\gamma_{\perp})\tau_{\pi}+4\gamma_{\perp}\tau_{\Pi}]-18c_{1}^{4}(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi} (89)
+4c12[3cs2(3λ+2τq)τπτΠ+2(3γ4γ)τqτπ+8γτqτΠ].\displaystyle+4c_{1}^{2}[3c_{s}^{2}(3\lambda^{\prime}+2\tau_{q})\tau_{\pi}\tau_{\Pi}+2(3\gamma_{\|}-4\gamma_{\perp})\tau_{q}\tau_{\pi}+8\gamma_{\perp}\tau_{q}\tau_{\Pi}].

Note that here we have set χeμν=0\chi_{e}^{\mu\nu}=0, but the corresponding formulas in Ref. (Xie:2023gbo, ) contain nonzero χeμν\chi_{e}^{\mu\nu}.

Appendix D Derive inequalities (66, 67) from (64, 65)

In this appendix, we will show that the inequalities (66), (67) can be derived from (64), (65). In the following calculations, we adopt the notations (49), (60), in which we have

3γ4γ>0.3\gamma_{\|}-4\gamma_{\perp}>0. (90)

The inequalities (65), (90) will be frequently used.

For the inequality (66), we note that

b2\displaystyle b_{2} =\displaystyle= 12cs2λ(2τqλ)τπτΠ[τπ(3γ4γ)+4γτΠ],\displaystyle 12c_{s}^{2}\lambda^{\prime}(2\tau_{q}-\lambda^{\prime})\tau_{\pi}\tau_{\Pi}[\tau_{\pi}(3\gamma_{\|}-4\gamma_{\perp})+4\gamma_{\perp}\tau_{\Pi}],
b1b2\displaystyle b_{1}-b_{2} =\displaystyle= 9(3λ+2τq)2τπ2τΠ2cs4+4τq2[(3γ4γ)τπ+4γτΠ]2\displaystyle 9(3\lambda^{\prime}+2\tau_{q})^{2}\tau_{\pi}^{2}\tau_{\Pi}^{2}c_{s}^{4}+4\tau_{q}^{2}[(3\gamma_{\|}-4\gamma_{\perp})\tau_{\pi}+4\gamma_{\perp}\tau_{\Pi}]^{2} (91)
+12(λ2+λτq+2τq2)τπτΠ[(3γ4γ)τπ+4γτΠ]cs2.\displaystyle+12(\lambda^{\prime 2}+\lambda^{\prime}\tau_{q}+2\tau_{q}^{2})\tau_{\pi}\tau_{\Pi}[(3\gamma_{\|}-4\gamma_{\perp})\tau_{\pi}+4\gamma_{\perp}\tau_{\Pi}]c_{s}^{2}.

Using (64), (65), (90), we find that b2>0b_{2}>0 and b1b2>0b_{1}-b_{2}>0, proving the inequality (66).

To show the inequality (67), it is equivalent to show c2c3>0c_{2}c_{3}>0. Straightforward calculation gives

c2c3=f0±f1(b1b2)1/2,c_{2}c_{3}=f_{0}\pm f_{1}(b_{1}-b_{2})^{1/2}, (92)

where

f0\displaystyle f_{0} =\displaystyle= 19τπ3τΠ3(2τqλ)3f0(1)f0(2),\displaystyle\frac{1}{9\tau_{\pi}^{3}\tau_{\Pi}^{3}(2\tau_{q}-\lambda^{\prime})^{3}}f_{0}^{(1)}f_{0}^{(2)},
f1\displaystyle f_{1} =\displaystyle= 19τπ3τΠ3(2τqλ)3[f1(0)+cs2f1(2)+cs4f1(4)+cs6f1(6)],\displaystyle\frac{1}{9\tau_{\pi}^{3}\tau_{\Pi}^{3}(2\tau_{q}-\lambda^{\prime})^{3}}\left[f_{1}^{(0)}+c_{s}^{2}f_{1}^{(2)}+c_{s}^{4}f_{1}^{(4)}+c_{s}^{6}f_{1}^{(6)}\right], (93)

with

f0(1)\displaystyle f_{0}^{(1)} =\displaystyle= 16τπγτΠ[3cs2τΠ(λ2+τqλ+2τq2)+2(3γ4γ)τq2]\displaystyle 16\tau_{\pi}\gamma_{\perp}\tau_{\Pi}\left[3c_{s}^{2}\tau_{\Pi}(\lambda^{\prime 2}+\tau_{q}\lambda^{\prime}+2\tau_{q}^{2})+2(3\gamma_{\|}-4\gamma_{\perp})\tau_{q}^{2}\right]
+9cs4τπ2τΠ2(3λ+2τq)2+12cs2τπ2τΠ(3γ4γ)(λ2+τqλ+2τq2)\displaystyle+9c_{s}^{4}\tau_{\pi}^{2}\tau_{\Pi}^{2}(3\lambda^{\prime}+2\tau_{q})^{2}+12c_{s}^{2}\tau_{\pi}^{2}\tau_{\Pi}(3\gamma_{\|}-4\gamma_{\perp})(\lambda^{\prime 2}+\tau_{q}\lambda^{\prime}+2\tau_{q}^{2})
+4τπ2τq2(3γ4γ)2+64γ2τΠ2τq2,\displaystyle+4\tau_{\pi}^{2}\tau_{q}^{2}(3\gamma_{\|}-4\gamma_{\perp})^{2}+64\gamma_{\perp}^{2}\tau_{\Pi}^{2}\tau_{q}^{2},
f0(2)\displaystyle f_{0}^{(2)} =\displaystyle= 72cs4λτπ3τΠ3(3λ+2τq)+64γ2τΠ3τq(τπλ+τqλ+2τq2)\displaystyle 72c_{s}^{4}\lambda^{\prime}\tau_{\pi}^{3}\tau_{\Pi}^{3}(3\lambda^{\prime}+2\tau_{q})+64\gamma_{\perp}^{2}\tau_{\Pi}^{3}\tau_{q}(\tau_{\pi}\lambda^{\prime}+\tau_{q}\lambda^{\prime}+2\tau_{q}^{2})
+12cs2τπτΠ3γ(2τq+λ)(4τq2λ2+8λτπ)\displaystyle+12c_{s}^{2}\tau_{\pi}\tau_{\Pi}^{3}\gamma_{\perp}(2\tau_{q}+\lambda^{\prime})(4\tau_{q}^{2}-\lambda^{\prime 2}+8\lambda\tau_{\pi})
+4(3γ4γ)2τπ3τq[λτΠ+τq(2τqλ)]\displaystyle+4(3\gamma_{\|}-4\gamma_{\perp})^{2}\tau_{\pi}^{3}\tau_{q}[\lambda^{\prime}\tau_{\Pi}+\tau_{q}(2\tau_{q}-\lambda^{\prime})]
+(3γ4γ)τπτΠ{3cs2τπ2τΠ(2τq+λ)(4τq2λ2+8λτΠ)\displaystyle+(3\gamma_{\|}-4\gamma_{\perp})\tau_{\pi}\tau_{\Pi}\left\{3c_{s}^{2}\tau_{\pi}^{2}\tau_{\Pi}(2\tau_{q}+\lambda^{\prime})(4\tau_{q}^{2}-\lambda^{\prime 2}+8\lambda^{\prime}\tau_{\Pi})\right.
+16γτπτq[2λτΠ+τq(2τqλ)]+16γτΠτq2(2τqλ)},\displaystyle\quad\left.+16\gamma_{\perp}\tau_{\pi}\tau_{q}[2\lambda^{\prime}\tau_{\Pi}+\tau_{q}(2\tau_{q}-\lambda^{\prime})]+16\gamma_{\perp}\tau_{\Pi}\tau_{q}^{2}(2\tau_{q}-\lambda^{\prime})\right\},
f1(0)\displaystyle f_{1}^{(0)} =\displaystyle= 8τq2[4γ(τΠτπ)+3τπγ]2{4γτΠ2[λτπ+τq(2τqλ)]\displaystyle 8\tau_{q}^{2}[4\gamma_{\perp}(\tau_{\Pi}-\tau_{\pi})+3\tau_{\pi}\gamma_{\parallel}]^{2}\left\{4\gamma_{\perp}\tau_{\Pi}^{2}[\lambda^{\prime}\tau_{\pi}+\tau_{q}(2\tau_{q}-\lambda^{\prime})]\right.
+λτπ2τΠ(3γ4γ)+τπ2τq(3γ4γ)(2τqλ)},\displaystyle\quad\left.+\lambda^{\prime}\tau_{\pi}^{2}\tau_{\Pi}(3\gamma_{\parallel}-4\gamma_{\perp})+\tau_{\pi}^{2}\tau_{q}(3\gamma_{\parallel}-4\gamma_{\perp})(2\tau_{q}-\lambda^{\prime})\right\},
f1(2)\displaystyle f_{1}^{(2)} =\displaystyle= 6τπτΠ[τπ(3γ4γ)+4γτΠ]\displaystyle 6\tau_{\pi}\tau_{\Pi}[\tau_{\pi}(3\gamma_{\parallel}-4\gamma_{\perp})+4\gamma_{\perp}\tau_{\Pi}]
×{τπ2(3γ4γ)[2λτΠ(λ2+5τqλ+10τq2)+4τq3(λ+4τq)3λ3τq]\displaystyle\times\left\{\tau_{\pi}^{2}(3\gamma_{\parallel}-4\gamma_{\perp})[2\lambda^{\prime}\tau_{\Pi}(\lambda^{\prime 2}+5\tau_{q}\lambda^{\prime}+10\tau_{q}^{2})+4\tau_{q}^{3}(\lambda^{\prime}+4\tau_{q})-3\lambda^{\prime 3}\tau_{q}]\right.
+4γτΠ2[2λτπ(λ2+5τqλ+10τq2)+4τq3(λ+4τq)3λ3τq]},\displaystyle\quad\left.+4\gamma_{\perp}\tau_{\Pi}^{2}[2\lambda^{\prime}\tau_{\pi}(\lambda^{\prime 2}+5\tau_{q}\lambda^{\prime}+10\tau_{q}^{2})+4\tau_{q}^{3}(\lambda^{\prime}+4\tau_{q})-3\lambda^{\prime 3}\tau_{q}]\right\},
f1(4)\displaystyle f_{1}^{(4)} =\displaystyle= 72[(3γ4γ)τπ+4τΠγ]τπ3τΠ3λ(5λ2+10λτq+8τq2)\displaystyle 72[(3\gamma_{\parallel}-4\gamma_{\perp})\tau_{\pi}+4\tau_{\Pi}\gamma_{\perp}]\tau_{\pi}^{3}\tau_{\Pi}^{3}\lambda^{\prime}(5\lambda^{\prime 2}+10\lambda^{\prime}\tau_{q}+8\tau_{q}^{2})
+9[(3γ4γ)τπ2+4τΠ2γ]τπ2τΠ2(2τqλ)(2τq+λ)2(3λ+2τq),\displaystyle+9[(3\gamma_{\parallel}-4\gamma_{\perp})\tau_{\pi}^{2}+4\tau_{\Pi}^{2}\gamma_{\perp}]\tau_{\pi}^{2}\tau_{\Pi}^{2}(2\tau_{q}-\lambda^{\prime})(2\tau_{q}+\lambda^{\prime})^{2}(3\lambda^{\prime}+2\tau_{q}),
f1(6)\displaystyle f_{1}^{(6)} =\displaystyle= 216λτπ4τΠ4(3λ+2τq)2.\displaystyle 216\lambda^{\prime}\tau_{\pi}^{4}\tau_{\Pi}^{4}(3\lambda^{\prime}+2\tau_{q})^{2}. (94)

From the inequalities (64), (65), (90), we have

f0>0.f_{0}>0. (95)

Next we calculate

f02f12(b1b2)\displaystyle f_{0}^{2}-f_{1}^{2}(b_{1}-b_{2}) =\displaystyle= (g0+g2cs2+g4cs2)G,\displaystyle(g_{0}+g_{2}c_{s}^{2}+g_{4}c_{s}^{2})G, (96)

where

G\displaystyle G =\displaystyle= 4λ2cs49τπ3τΠ3(2τqλ)3[τπ(3γ4γ)+4τΠγ]\displaystyle\frac{4\lambda^{\prime 2}c_{s}^{4}}{9\tau_{\pi}^{3}\tau_{\Pi}^{3}(2\tau_{q}-\lambda^{\prime})^{3}}[\tau_{\pi}(3\gamma_{\parallel}-4\gamma_{\perp})+4\tau_{\Pi}\gamma_{\perp}]
×{τΠ2[48τπcs2γ(λ2+τq(λ+2τq))+9τπ2cs4(3λ+2τq)2+64γ2τq2]\displaystyle\times\left\{\tau_{\Pi}^{2}\left[48\tau_{\pi}c_{s}^{2}\gamma_{\perp}\left(\lambda^{2}+\tau_{q}(\lambda+2\tau_{q})\right)+9\tau_{\pi}^{2}c_{s}^{4}(3\lambda+2\tau_{q})^{2}+64\gamma_{\perp}^{2}\tau_{q}^{2}\right]\right.
+4τπτΠ(3γ4γ)[3τπcs2(λ2+τq(λ+2τq))+8γτq2]\displaystyle\quad+4\tau_{\pi}\tau_{\Pi}(3\gamma_{\parallel}-4\gamma_{\perp})\left[3\tau_{\pi}c_{s}^{2}\left(\lambda^{2}+\tau_{q}(\lambda+2\tau_{q})\right)+8\gamma_{\perp}\tau_{q}^{2}\right]
+4τπ2τq2(3γ4γ)2},\displaystyle\quad\left.+4\tau_{\pi}^{2}\tau_{q}^{2}(3\gamma_{\parallel}-4\gamma_{\perp})^{2}\right\},
g0\displaystyle g_{0} =\displaystyle= 4{4γτΠ2[λτπ+τq(2τqλ)]+τπ2[τq(2τqλ)+λτΠ](3γ4γ)}\displaystyle 4\left\{4\gamma_{\perp}\tau_{\Pi}^{2}[\lambda^{\prime}\tau_{\pi}+\tau_{q}(2\tau_{q}-\lambda^{\prime})]+\tau_{\pi}^{2}[\tau_{q}(2\tau_{q}-\lambda^{\prime})+\lambda^{\prime}\tau_{\Pi}](3\gamma_{\|}-4\gamma_{\perp})\right\}
×[4γτΠ+τπ(3γ4γ)]2,\displaystyle\times[4\gamma_{\perp}\tau_{\Pi}+\tau_{\pi}(3\gamma_{\|}-4\gamma_{\perp})]^{2},
g2\displaystyle g_{2} =\displaystyle= 24τπ3(3γ4γ)γτΠ2[4λ2+16λτΠ+(2τqλ)2]\displaystyle 24\tau_{\pi}^{3}(3\gamma_{\|}-4\gamma_{\perp})\gamma_{\perp}\tau_{\Pi}^{2}[4\lambda^{\prime 2}+16\lambda^{\prime}\tau_{\Pi}+(2\tau_{q}-\lambda^{\prime})^{2}]
+96τπγ2τΠ4[4λ2+(2τqλ)2]+48γ2τΠ4(2τq+λ)2(2τqλ)\displaystyle+96\tau_{\pi}\gamma_{\perp}^{2}\tau_{\Pi}^{4}[4\lambda^{\prime 2}+(2\tau_{q}-\lambda^{\prime})^{2}]+48\gamma_{\perp}^{2}\tau_{\Pi}^{4}(2\tau_{q}+\lambda^{\prime})^{2}(2\tau_{q}-\lambda^{\prime})
+768λγ2τπ2τΠ4+24γτπ2τΠ3(3γ4γ)[4λ2+(2τqλ)2]\displaystyle+768\lambda^{\prime}\gamma_{\perp}^{2}\tau_{\pi}^{2}\tau_{\Pi}^{4}+24\gamma_{\perp}\tau_{\pi}^{2}\tau_{\Pi}^{3}(3\gamma_{\|}-4\gamma_{\perp})[4\lambda^{\prime 2}+(2\tau_{q}-\lambda^{\prime})^{2}]
+24γτπ2τΠ2(3γ4γ)(2τq+λ)2(2τqλ)\displaystyle+24\gamma_{\perp}\tau_{\pi}^{2}\tau_{\Pi}^{2}(3\gamma_{\|}-4\gamma_{\perp})(2\tau_{q}+\lambda^{\prime})^{2}(2\tau_{q}-\lambda^{\prime})
+6τπ4τΠ(3γ4γ)2[4λ2+8λτΠ+(2τqλ)2]\displaystyle+6\tau_{\pi}^{4}\tau_{\Pi}(3\gamma_{\|}-4\gamma_{\perp})^{2}[4\lambda^{\prime 2}+8\lambda^{\prime}\tau_{\Pi}+(2\tau_{q}-\lambda^{\prime})^{2}]
+3τπ4(3γ4γ)2(2τq+λ)2(2τqλ),\displaystyle+3\tau_{\pi}^{4}(3\gamma_{\|}-4\gamma_{\perp})^{2}(2\tau_{q}+\lambda^{\prime})^{2}(2\tau_{q}-\lambda^{\prime}),
g4\displaystyle g_{4} =\displaystyle= 72λτπ2τΠ2{4γτΠ2(3λ+2τq+2τπ)+τπ2(3γ4γ)[(3λ+2τq)+2τΠ]}.\displaystyle 72\lambda^{\prime}\tau_{\pi}^{2}\tau_{\Pi}^{2}\left\{4\gamma_{\perp}\tau_{\Pi}^{2}(3\lambda^{\prime}+2\tau_{q}+2\tau_{\pi})+\tau_{\pi}^{2}(3\gamma_{\|}-4\gamma_{\perp})[(3\lambda^{\prime}+2\tau_{q})+2\tau_{\Pi}]\right\}. (97)

Again, we can find from the inequalities (64), (65), (90) that

G,g0,g2,g4>0,G,g_{0},g_{2},g_{4}>0, (98)

which leads to

f02f12(b1b2)>0.f_{0}^{2}-f_{1}^{2}(b_{1}-b_{2})>0. (99)

Combing the results (95) and (99), we obtain

c2c3=f0±f1(b1b2)1/2>0,c_{2}c_{3}=f_{0}\pm f_{1}(b_{1}-b_{2})^{1/2}>0, (100)

or the equivalent form, c2/c3>0c_{2}/c_{3}>0, i.e. the inequality (67).

References

  • (1) BRAHMS, I. Arsene et al., Nucl. Phys. A 757, 1 (2005), nucl-ex/0410020.
  • (2) PHENIX, K. Adcox et al., Nucl. Phys. A 757, 184 (2005), nucl-ex/0410003.
  • (3) STAR, J. Adams et al., Nucl. Phys. A 757, 102 (2005), nucl-ex/0501009.
  • (4) ALICE, K. Aamodt et al., JINST 3, S08002 (2008).
  • (5) W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979).
  • (6) W. Israel and J. M. Stewart, Proceedings of the Royal Society of London Series A 365, 43 (1979).
  • (7) R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov, JHEP 04, 100 (2008), 0712.2451.
  • (8) G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, Phys. Rev. D 85, 114047 (2012), 1202.4551, [Erratum: Phys.Rev.D 91, 039902 (2015)].
  • (9) F. S. Bemfica, M. M. Disconzi, and J. Noronha, Phys. Rev. D 98, 104064 (2018), 1708.06255.
  • (10) P. Kovtun, JHEP 10, 034 (2019), 1907.08191.
  • (11) F. S. Bemfica et al., Phys. Rev. D 100, 104020 (2019), 1907.12695, [Erratum: Phys.Rev.D 105, 069902 (2022)].
  • (12) R. E. Hoult and P. Kovtun, JHEP 06, 067 (2020), 2004.04102.
  • (13) F. S. Bemfica, M. M. Disconzi, and J. Noronha, Phys. Rev. X 12, 021044 (2022), 2009.11388.
  • (14) L. Gavassino and M. Antonelli, Front. Astron. Space Sci. 8, 686344 (2021), 2105.15184.
  • (15) G. S. Rocha, D. Wagner, G. S. Denicol, J. Noronha, and D. H. Rischke, Entropy 26, 189 (2024), 2311.15063.
  • (16) Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005), nucl-th/0410079, [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  • (17) Z.-T. Liang and X.-N. Wang, Phys. Lett. B 629, 20 (2005), nucl-th/0411101.
  • (18) J.-H. Gao et al., Phys. Rev. C 77, 044902 (2008), 0710.2943.
  • (19) STAR, L. Adamczyk et al., Nature 548, 62 (2017), 1701.06657.
  • (20) STAR, J. Adam et al., Phys. Rev. Lett. 123, 132301 (2019), 1905.11917.
  • (21) STAR, M. S. Abdallah et al., Nature 614, 244 (2023), 2204.02302.
  • (22) F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77, 024906 (2008), 0711.1253.
  • (23) I. Karpenko and F. Becattini, Eur. Phys. J. C 77, 213 (2017), 1610.04717.
  • (24) Y. Xie, D. Wang, and L. P. Csernai, Phys. Rev. C 95, 031901 (2017), 1703.03770.
  • (25) H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96, 054908 (2017), 1704.01507.
  • (26) Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017), 1706.09467.
  • (27) S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019), 1712.00878.
  • (28) D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99, 014905 (2019), 1810.00151.
  • (29) X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, Phys. Rev. C 98, 024905 (2018), 1803.00867.
  • (30) O. Vitiuk, L. V. Bravina, and E. E. Zabrodin, Phys. Lett. B 803, 135298 (2020), 1910.06292.
  • (31) B. Fu, K. Xu, X.-G. Huang, and H. Song, Phys. Rev. C 103, 024903 (2021), 2011.03740.
  • (32) S. Ryu, V. Jupic, and C. Shen, Phys. Rev. C 104, 054908 (2021), 2106.08125.
  • (33) A. Lei, D. Wang, D.-M. Zhou, B.-H. Sa, and L. P. Csernai, Phys. Rev. C 104, 054903 (2021), 2110.13485.
  • (34) X.-Y. Wu, C. Yi, G.-Y. Qin, and S. Pu, Phys. Rev. C 105, 064909 (2022), 2204.02218.
  • (35) F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013), 1303.3431.
  • (36) R.-h. Fang, L.-g. Pang, Q. Wang, and X.-n. Wang, Phys. Rev. C 94, 024904 (2016), 1604.04036.
  • (37) S. Y. F. Liu and Y. Yin, JHEP 07, 188 (2021), 2103.09200.
  • (38) Y.-C. Liu and X.-G. Huang, Sci. China Phys. Mech. Astron. 65, 272011 (2022), 2109.15301.
  • (39) B. Fu, S. Y. F. Liu, L. Pang, H. Song, and Y. Yin, Phys. Rev. Lett. 127, 142301 (2021), 2103.10403.
  • (40) F. Becattini, M. Buzzegoli, and A. Palermo, Phys. Lett. B 820, 136519 (2021), 2103.10917.
  • (41) C. Yi, S. Pu, and D.-L. Yang, Phys. Rev. C 104, 064901 (2021), 2106.00238.
  • (42) C. Yi, S. Pu, J.-H. Gao, and D.-L. Yang, Phys. Rev. C 105, 044911 (2022), 2112.15531.
  • (43) C. Yi et al., Phys. Rev. C 109, L011901 (2024), 2304.08777.
  • (44) X.-Y. Wu, C. Yi, G.-Y. Qin, and S. Pu, EPJ Web Conf. 296, 05008 (2024), 2312.09068.
  • (45) S. Y. F. Liu and Y. Yin, Phys. Rev. D 104, 054043 (2021), 2006.12421.
  • (46) B. Fu, L. Pang, H. Song, and Y. Yin, (2022), 2201.12970.
  • (47) J.-A. Sun and L. Yan, (2024), 2401.07458.
  • (48) S. Fang, S. Pu, and D.-L. Yang, Phys. Rev. D 109, 034034 (2024), 2311.15197.
  • (49) ALICE, S. Acharya et al., Phys. Rev. Lett. 128, 172005 (2022), 2107.11183.
  • (50) STAR, (2023), 2303.09074.
  • (51) D. Montenegro, L. Tinti, and G. Torrieri, Phys. Rev. D 96, 056012 (2017), 1701.08263, [Addendum: Phys.Rev.D 96, 079901 (2017)].
  • (52) D. Montenegro, L. Tinti, and G. Torrieri, Phys. Rev. D 96, 076016 (2017), 1703.03079.
  • (53) K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, Phys. Lett. B 795, 100 (2019), 1901.06615.
  • (54) K. Fukushima and S. Pu, Phys. Lett. B 817, 136346 (2021), 2010.01608.
  • (55) S. Li, M. A. Stephanov, and H.-U. Yee, Phys. Rev. Lett. 127, 082302 (2021), 2011.12318.
  • (56) A. D. Gallegos, U. Gürsoy, and A. Yarom, SciPost Phys. 11, 041 (2021), 2101.04759.
  • (57) D. She, A. Huang, D. Hou, and J. Liao, (2021), 2105.04060.
  • (58) M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov, and H.-U. Yee, JHEP 11, 150 (2021), 2107.14231.
  • (59) D.-L. Wang, S. Fang, and S. Pu, Phys. Rev. D 104, 114043 (2021), 2107.11726.
  • (60) D.-L. Wang, X.-Q. Xie, S. Fang, and S. Pu, Phys. Rev. D 105, 114050 (2022), 2112.15535.
  • (61) Z. Cao, K. Hattori, M. Hongo, X.-G. Huang, and H. Taya, PTEP 2022, 071D01 (2022), 2205.08051.
  • (62) J. Hu, (2022), 2209.10979.
  • (63) R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, (2023), 2304.01009.
  • (64) W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, Phys. Rev. C 97, 041901 (2018), 1705.00587.
  • (65) W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E. Speranza, Phys. Rev. D 97, 116017 (2018), 1712.07676.
  • (66) W. Florkowski, E. Speranza, and F. Becattini, Acta Phys. Polon. B 49, 1409 (2018), 1803.11098.
  • (67) N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke, Phys. Rev. D 100, 056018 (2019), 1902.06513.
  • (68) S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, Phys. Lett. B 814, 136096 (2021), 2002.03937.
  • (69) N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang, and D. H. Rischke, Phys. Rev. Lett. 127, 052301 (2021), 2005.01506.
  • (70) S. Shi, C. Gale, and S. Jeon, Phys. Rev. C 103, 044906 (2021), 2008.08618.
  • (71) E. Speranza and N. Weickgenannt, Eur. Phys. J. A 57, 155 (2021), 2007.00138.
  • (72) S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, Phys. Rev. D 103, 014030 (2021), 2008.10976.
  • (73) R. Singh, G. Sophys, and R. Ryblewski, Phys. Rev. D 103, 074024 (2021), 2011.14907.
  • (74) H.-H. Peng, J.-J. Zhang, X.-L. Sheng, and Q. Wang, Chin. Phys. Lett. 38, 116701 (2021), 2107.00448.
  • (75) X.-L. Sheng, N. Weickgenannt, E. Speranza, D. H. Rischke, and Q. Wang, Phys. Rev. D 104, 016029 (2021), 2103.10636.
  • (76) J. Hu, Phys. Rev. D 105, 076009 (2022), 2111.03571.
  • (77) N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, Phys. Rev. D 106, 096014 (2022), 2203.04766.
  • (78) N. Weickgenannt, D. Wagner, and E. Speranza, Phys. Rev. D 105, 116026 (2022), 2204.01797.
  • (79) N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, Phys. Rev. D 106, L091901 (2022), 2208.01955.
  • (80) D. Wagner, M. Shokri, and D. H. Rischke, (2024), 2405.00533.
  • (81) A. D. Gallegos and U. Gürsoy, JHEP 11, 151 (2020), 2004.05148.
  • (82) M. Garbiso and M. Kaminski, JHEP 12, 112 (2020), 2007.04345.
  • (83) F. Becattini, A. Daher, and X.-L. Sheng, Phys. Lett. B 850, 138533 (2024), 2309.05789.
  • (84) Y. Hidaka, S. Pu, Q. Wang, and D.-L. Yang, Prog. Part. Nucl. Phys. 127, 103989 (2022), 2201.07644.
  • (85) P. Shi and H. Xu-Guang, Acta Phys. Sin. 72, 071202 (2023).
  • (86) F. Becattini et al., (2024), 2402.04540.
  • (87) W. A. Hiscock and L. Lindblom, Phys. Rev. D 31, 725 (1985).
  • (88) W. A. Hiscock and L. Lindblom, Phys. Rev. D 35, 3723 (1987).
  • (89) T. Koide, G. S. Denicol, P. Mota, and T. Kodama, Phys. Rev. C 75, 034909 (2007), hep-ph/0609117.
  • (90) G. S. Denicol, T. Kodama, T. Koide, and P. Mota, J. Phys. G 35, 115102 (2008), 0807.3120.
  • (91) S. Pu, T. Koide, and D. H. Rischke, Phys. Rev. D 81, 114039 (2010), 0907.3906.
  • (92) C. V. Brito and G. S. Denicol, Phys. Rev. D 102, 116009 (2020), 2007.16141.
  • (93) C. V. Brito and G. S. Denicol, Phys. Rev. D 105, 096026 (2022), 2107.10319.
  • (94) G. Sarwar, M. Hasanujjaman, J. R. Bhatt, H. Mishra, and J.-e. Alam, (2022), 2209.08652.
  • (95) A. Daher, A. Das, and R. Ryblewski, Phys. Rev. D 107, 054043 (2023), 2209.10460.
  • (96) X.-Q. Xie, D.-L. Wang, C. Yang, and S. Pu, Phys. Rev. D 108, 094031 (2023), 2306.13880.
  • (97) N. Weickgenannt, Phys. Rev. D 108, 076011 (2023), 2307.13561.
  • (98) M. Shokri and D. H. Rischke, Phys. Rev. D 108, 096029 (2023), 2309.07003.
  • (99) C. V. P. de Brito, G. S. Rocha, and G. S. Denicol, (2023), 2311.07272.
  • (100) Z. Fang, K. Hattori, and J. Hu, (2024), 2402.18601.
  • (101) A. Daher, W. Florkowski, R. Ryblewski, and F. Taghinavaz, (2024), 2403.04711.
  • (102) E. Krotscheck and W. Kundt, Communications in Mathematical Physics 60, 171 (1978).
  • (103) M. P. Heller, A. Serantes, M. Spaliński, and B. Withers, Phys. Rev. Lett. 130, 261601 (2023), 2212.07434.
  • (104) L. Gavassino, Phys. Lett. B 840, 137854 (2023), 2301.06651.
  • (105) M. P. Heller, A. Serantes, M. Spaliński, and B. Withers, (2023), 2305.07703.
  • (106) L. Gavassino, M. M. Disconzi, and J. Noronha, Phys. Rev. Lett. 132, 162301 (2024), 2307.05987.
  • (107) D.-L. Wang and S. Pu, Phys. Rev. D 109, L031504 (2024), 2309.11708.
  • (108) R. E. Hoult and P. Kovtun, Phys. Rev. D 109, 046018 (2024), 2309.11703.
  • (109) L. Gavassino, Phys. Rev. X 12, 041001 (2022), 2111.05254.
  • (110) W. A. Hiscock and L. Lindblom, Annals Phys. 151, 466 (1983).
  • (111) T. S. Olson, Annals Phys. 199, 18 (1990).
  • (112) L. Gavassino, Class. Quant. Grav. 38, 21LT02 (2021), 2104.09142.
  • (113) L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. Lett. 128, 010606 (2022), 2105.14621.
  • (114) L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Course of Theoretical Physics Vol. 5 (Butterworth-Heinemann, Oxford, 1980).
  • (115) L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics Vol. 6 (Pergamon, New York, 1987).
  • (116) K. Yagi, T. Hatsuda, and Y. Miake, Quark-gluon plasma: From big bang to little bang (Cambridge University Press, Cambridge, 2005).
  • (117) D. Almaalol, T. Dore, and J. Noronha-Hostler, (2022), 2209.11210.
  • (118) S. Pu, Relativistic fluid dynamics in heavy ion collisions, PhD thesis, Hefei, CUST, 2011, 1108.5828.
  • (119) L. Gavassino and M. Shokri, Phys. Rev. D 108, 096010 (2023), 2307.11615.
  • (120) F. Becattini, Phys. Rev. Lett. 108, 244502 (2012), 1201.5278.
  • (121) F. Becattini, L. Bucciantini, E. Grossi, and L. Tinti, Eur. Phys. J. C 75, 191 (2015), 1403.6265.
  • (122) F. Becattini, W. Florkowski, and E. Speranza, Phys. Lett. B 789, 419 (2019), 1807.10994.
  • (123) L. Gavassino, N. Mullins, and M. Hippert, (2024), 2402.06776.
  • (124) J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method: With Applications, Mathematics in science and engineering Vol. 4 (Academic Press, New York, 1961).
  • (125) L. Gavassino, M. M. Disconzi, and J. Noronha, Phys. Rev. Lett. 132, 222302 (2024), 2302.03478.