This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Time reversal symmetry breaking and dd-wave superconductivity of triple-point fermions

Subrata Mandal subratam@sfu.ca Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6    Julia M. Link jmlink@sfu.ca Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6    Igor F. Herbut iherbut@sfu.ca Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Abstract

We study the possibility of complex tensor (dd-wave) superconducting order in three-dimensional semimetals with chiral spin-1/2 triple-point fermions, which have an effective orbital angular momentum of L=1L=1 arising from a crossing of three bands. Retaining the first three lowest order terms in momentum and assuming rotational symmetry we show that the resulting mean-field dd-wave ground state breaks time reversal symmetry, but then depends crucially on the coefficients of the two quadratic terms in the Hamiltonian. The phase diagram at a finite chemical potential displays both the “cyclic” and the “ferromagnetic” superconducting states, distinguished by the average value of the magnetization; in the former state it is minimal (zero), whereas in the latter it is maximal (two). In both states we find mini Bogoliubov-Fermi surfaces in the quasiparticle spectrum, conforming to recent general arguments.

I Introduction

Crystals’ space symmetries allow multiband crossings that lead to topologically non-trivial bands and describe low-energy fermions with effective higher angular momentum Bradlyn et al. (2016). Such exotic fermions provide a fascinating new area of condensed matter physics, and naturally lead to exotic superconductivity, for example, since fermions with higher angular momentum can obviously be Cooper-paired in various ways. Some recent examples of semimetals with such higher effective angular momentum that can lead to unconventional superconductivity are the Rarita-Schwinger-Weyl (RSW) Link et al. (2020) and the Luttinger semimetalsButch et al. (2011); Bay et al. (2014); Boettcher and Herbut (2016); Meinert (2016); Brydon et al. (2016); Smidman et al. (2017); Agterberg et al. (2017); Ghorashi et al. (2017); Yang et al. (2017); Savary et al. (2017); Boettcher and Herbut (2018a); Mandal (2018); Venderbos et al. (2018); Boettcher and Herbut (2018b); Kim et al. (2018); Sim et al. (2019a); Yu and Liu (2018); Szabo et al. (2018); Roy et al. (2019), with spin-orbit coupled fermions with the total angular momentum of L=3/2L=3/2.

Both the RSW and Luttinger semimetals have crossing of four energy bands. Three-band crossingsFulga and Stern (2017); Zhu et al. (2017); Hu et al. (2018), however, are also possible, and were recently observed in CoSiRao et al. (2019) and signs of superconductivity in such materials were observed in PdSb2{\mathrm{PdSb}}_{2} Chapai et al. (2019). The quasiparticles participating in the triple band crossing appear as having an effective orbital angular momentum of L=1L=1 and, as we will discuss, can therefore form local Cooper pairs with a total angular momentum of J=0,1,2J=0,1,2, i. e. exhibit ss-, pp-, and dd-wave superconductivity, respectively. The J=0J=0 channel was already studied by Lin and Nandkishore in ref. Lin and Nandkishore, 2018 and J=1J=1 vector pairing of spinless fermions was examined in ref.  Lin, 2020; Sim et al., 2019b. The three-component pp-wave (J=1J=1) and the five-component dd-wave (J=2J=2) superconducting order parameters are particularly interesting, since they offer a possibility of the superconducting state breaking the time reversal (TR) symmetry, and thus manifesting some form of magnetism in coexistence with superconductivity. The case of tensorial dd-wave pairing is in this context especially rich. The possibility of dd-wave superconducting order of triple-point fermions has to our knowledge not yet been studied, although it has enjoyed a long history in relation to the physics of neutron starsSauls and Serene (1978) and He3{}^{3}\text{He} Mermin (1974), and more recently, of Bose-Einstein condensates Kawaguchi and Ueda (2011) and Luttinger semimetals Butch et al. (2011); Bay et al. (2014); Boettcher and Herbut (2016); Meinert (2016); Brydon et al. (2016); Smidman et al. (2017); Agterberg et al. (2017); Ghorashi et al. (2017); Yang et al. (2017); Savary et al. (2017); Boettcher and Herbut (2018a); Mandal (2018); Venderbos et al. (2018); Boettcher and Herbut (2018b); Kim et al. (2018); Sim et al. (2019a); Yu and Liu (2018); Szabo et al. (2018); Roy et al. (2019). Closing this gap in the growing literature on the subject and at the same time continuing our systematic study of the dd-wave superconducting order in various physical settings, we here focus entirely on the J=2J=2 Cooper pairing of spin-1/2 fermions near a single three-band (L=1L=1) crossing. We find an important new feature emerging; in all previous studies the coefficient of one of the three quartic terms in the Ginzburg-Landau theory for the dd-wave order parameter that discriminated between different TR symmetry-broken superconducting states was either precisely zero, or parametrically small and positive, the latter leading to the “cyclic” ground state with maximal TR symmetry breaking but zero magnetization. In contrast, in the present case of triple-point fermions we find this crucial Ginzburg-Landau coefficient for the first time to depend nontrivially on the values of the coefficients of the two subleading, rotationally invariant terms in the single-particle Hamiltonian, which are quadratic in momentum. As a result, it can be of either sign. The two superconducting ground states that result from this dependence both break TR symmetry maximally, but differ crucially in their magnetization properties. Whereas the already mentioned cyclic state has the minimal (zero) average magnetization and only shows the quadrupolar magnetic order, the “ferromagnetic” state shows maximal average magnetization of two. The spin-1/2 triple fermions appear therefore to be the first system that may exhibit the ferromagnetic dd-wave superconducting state, provided of course that the pairing in the dd-wave channel dominates over other possibilities.

The paper is organized in the following way. In Sec. II we introduce the Hamiltonian that describes low-energy fermions with effective orbital angular momentum of L=1L=1 and spin S=1/2S=1/2. These fermions can form Cooper pairs with total angular momentum J=0,1,2J=0,1,2, as discussed in Sec. III. The Ginzburg-Landau free energy for the dd-wave superconducting order parameter is studied at the mean-field level in Sec. IV, where the potential ground states are introduced prior to the calculation of the coefficients of the free energy, presented in detail in App. C. In Sec. IV.2 we discuss how the curvature of the energy band strongly influences the dd-wave superconducting ground state in the weak coupling regime, and demonstrate that the curvature may be taken as the knob that tunes between the cyclic and the ferromagnetic state. Finally, in Sec. V we summarize our findings.

II Hamiltonian

We consider the system of spin-1/2 fermions with the low-energy spectrum of the lattice Hamiltonian exhibiting a crossing of three bands Bradlyn et al. (2016) at the center of the Brillouin zone:

H(𝒑)=𝟙2×2(H0(𝒑)μ𝟙3×3).H(\boldsymbol{p})=\mathbb{1}_{2\times 2}\otimes(H_{0}(\boldsymbol{p})-\mu\>\mathbb{1}_{3\times 3})\>. (1)

We can think of the left factor in the tensor product as acting on the spin-like degree of freedom, and the H0H_{0} as acting on the orbital-like degree of freedom. μ\mu is the usual chemical potential. For a crystal with cubic or tetragonal symmetry the dynamics of the fermions near the crossing is described by the following TR-symmetric Hamiltonian, expanded to the second order in momentum:

H0(𝒑)=v𝒑𝑳+cp2𝟙3×3+b(𝒑𝑳)2.H_{0}(\boldsymbol{p})=v\>\boldsymbol{p}\cdot\boldsymbol{L}+c\>p^{2}\mathbb{1}_{3\times 3}+b\>(\boldsymbol{p}\cdot\boldsymbol{L})^{2}\>. (2)

The Hamiltonian effectively describes particles with angular momentum of L=1L=1, with the three dimensional matrices LiL_{i}, i=1,2,3=x,y,zi=1,2,3=x,y,z, that form the spin-1 representation of the Lie algebra of the SO(3)SO(3) group of rotations, with [Li,Lj]=iϵijkLk[L_{i},L_{j}]={\rm i}\epsilon_{ijk}L_{k}. In the standard representation these are given by the matrices

Lx\displaystyle L_{x} =12(010101010),\displaystyle=\frac{1}{\sqrt{2}}\begin{pmatrix}0&1&0\\ 1&0&1\\ 0&1&0\\ \end{pmatrix}\>, (3)
Ly\displaystyle L_{y} =i2(010101010),\displaystyle=\frac{{\rm i}}{\sqrt{2}}\begin{pmatrix}0&-1&0\\ 1&0&-1\\ 0&1&0\\ \end{pmatrix}\>, (4)
Lz\displaystyle L_{z} =(100000001).\displaystyle=\begin{pmatrix}1&0&0\\ 0&0&0\\ 0&0&-1\\ \end{pmatrix}\>. (5)

The low-energy Hamiltonian H0H_{0} is the most general such Hamiltonian to the second order in momentum, measured from the crossing. It also has a full rotational symmetry, which we are assuming here for simplicity. The first (linear) term of the Hamiltonian, proportional to the velocity v>0v>0, breaks the inversion symmetry, and exhibits the crossing of two energy bands linear in momentum and of a flat band (see Fig. 1). The two remaining distinct second-order terms add curvature to all three energy bands. The energy dispersion of the bands is given by:

E±1\displaystyle E_{\pm 1} =\displaystyle= (b+c)p2±v|p|μ,\displaystyle(b+c)p^{2}\pm v|p|-\mu\>, (6)
E0\displaystyle E_{0} =\displaystyle= cp2μ.\displaystyle cp^{2}-\mu\>. (7)

Depending on the curvatures of the bands, set by the parameters bb and cc, the number of Fermi surfaces at a chemical potential μ>0\mu>0 varies from zero to three, as can be seen in Fig. 1, where as an illustration we set b=0b=0 and varied only cc. When b+c<v24μb+c<-\frac{v^{2}}{4\mu} and c<0c<0 no energy band crosses the chemical potential and no normal Fermi surface emerges, whereas for v24μ<b+c-\frac{v^{2}}{4\mu}<b+c and c<0c<0 the energy bands cross the Fermi level twice, which leads to two Fermi surfaces. At the special point b=0,c=0b=0,c=0 only one Fermi surface appears, and finally for b+c>v24μb+c>-\frac{v^{2}}{4\mu} with c>0c>0 we find all three Fermi surfaces. The Fermi momenta and the Fermi velocities are generally given by

kF,+1±=v±v2+4(b+c)μ2(b+c),\displaystyle k_{{\rm F},+1_{\pm}}=\frac{-v\pm\sqrt{v^{2}+4(b+c)\mu}}{2(b+c)}\>,\quad vF,+1±=v2+4(b+c)μ\displaystyle v_{{\rm F},+1_{\pm}}=\sqrt{v^{2}+4(b+c)\mu} (8)
kF,0=μc,\displaystyle k_{{\rm F},0}=\sqrt{\frac{\mu}{c}}\>,\quad vF,0=2cμ\displaystyle v_{{\rm F},0}=2\sqrt{c\mu} (9)
kF,1±=v±v2+4(b+c)μ2(b+c),\displaystyle k_{{\rm F},-1_{\pm}}=\frac{v\pm\sqrt{v^{2}+4(b+c)\mu}}{2(b+c)}\>,\quad vF,1±=v2+4(b+c)μ.\displaystyle v_{{\rm F},-1_{\pm}}=\sqrt{v^{2}+4(b+c)\mu}\>. (10)

An exception occurs when b=cb=-c: E±1E_{\pm 1} become then linearly dispersive, but E0E_{0} remains parabolic. As a result, there is always a Fermi surface at p=|μv|p=|\frac{\mu}{v}|, and another Fermi surface emerges if kF,0k_{F,0} becomes real. In Sec.IV.2 we show that the superconducting ground state of the system crucially depends on the curvature of the energy bands.

The Hamiltonian H0H_{0} is invariant under TR symmetry and thus commutes with the antiunitary operator 𝒯0=U0𝒦\mathcal{T}_{0}=U_{0}\mathcal{K} with 𝒯02=+1\mathcal{T}_{0}^{2}=+1, where 𝒦\mathcal{K} is the complex conjugation, and U0U_{0} is the unitary matrix

U0=eiπLy=(001010100).U_{0}=e^{-{\rm i}\pi L_{y}}=\begin{pmatrix}0&0&1\\ 0&-1&0\\ 1&0&0\end{pmatrix}\>. (11)

The TR operator for the full Hamiltonian H(𝒑)H(\boldsymbol{p}) is given by 𝒯=σ2𝒯0=𝒰𝒦\mathcal{T}=\sigma_{2}\otimes\mathcal{T}_{0}=\mathcal{U}\mathcal{K} with 𝒰=σ2U0\mathcal{U}=\sigma_{2}\otimes U_{0}, and therefore 𝒯2=1\mathcal{T}^{2}=-1, as appropriate to particles with half-integer spin.

Refer to caption
Figure 1: The energy dispersion of H(p)H(\textbf{p}) in the normal state for different values of cc when b=0b=0 and μ>0\mu>0. Depending on the curvature of the energy bands the number of Fermi surfaces varies from two for v2/(4μ)<c<0-v^{2}/(4\mu)<c<0, to one for c=0c=0, and three for c>0c>0.

III Superconducting order parameter

SS LL JJ MJM_{J}
0 0 0 𝟙2×2𝟙3×3\mathbb{1}_{2\times 2}\otimes\mathbb{1}_{3\times 3}
11 11 0,1,20,1,2 σiLj\sigma_{i}\otimes L_{j}
0 22 22 Γa=𝟙2×2γa\Gamma_{a}=\mathbb{1}_{2\times 2}\otimes\gamma_{a}
Table 1: The allowed local superconducting pairings with the Cooper pair’s total angular momentum JJ, total spin SS and orbital angular momentum LL, and their corresponding pairing matrices MJM_{J}. σi\sigma_{i} are the Pauli matrices and γa\gamma_{a} are defined as γ1=Lx2Ly2\gamma_{1}=L_{x}^{2}-L_{y}^{2}, γ2=13(2Lz2Lx2Ly2)\gamma_{2}=\frac{1}{\sqrt{3}}(2L_{z}^{2}-L_{x}^{2}-L_{y}^{2}), γ3=LxLz+LzLx\gamma_{3}=L_{x}L_{z}+L_{z}L_{x}, γ4=LyLz+LzLy\gamma_{4}=L_{y}L_{z}+L_{z}L_{y}, γ5=LxLy+LyLx\gamma_{5}=L_{x}L_{y}+L_{y}L_{x}.

We consider next the local channels available for Cooper pairing of the triple-point fermions. The chiral fermions with orbital angular momentum of L=1L=1 and spin 1/21/2 can form Cooper pairs with total-angular momentum J=0,1,2J=0,1,2, i.e. the pairing channels consist of ss-, pp-, or dd-wave order parameter. More precisely, for two fermions with (S=1/2)(L=1)\big{(}S=1/2\big{)}\otimes\big{(}L=1\big{)} we have the standard angular momentum algebra

(121)(121)=(01)(012),\big{(}\frac{1}{2}\otimes 1\big{)}\otimes\big{(}\frac{1}{2}\otimes 1\big{)}=\big{(}0\oplus 1\big{)}\otimes\big{(}0\oplus 1\oplus 2\big{)}\>, (12)

where the first bracket on the right hand side refers to total spin, and the second to the total orbital angular momentum. Since the electrons obey Fermi statistics the only allowed combinations of total spin and total orbital angular momentum are those that are completely antisymmetric under exchange of particles, and these are (S,L)(S,L)={(0,0)(0,0), (0,2)(0,2), and (1,1)(1,1)}, i.e. ss-, dd-, and pp-wave order parameters. If we conveniently consider pairing between time-reversed states Link et al. (2020), the pairing matrices MJM_{J} that correspond to these allowed channels are then even under time-reversal, i.e. [MJ,𝒯]=0[M_{J},\mathcal{T}]=0. The different pairing channels and the corresponding matrices that are allowed by the Fermi statistic are listed in table 1, where the channel (S,L,J)=(0,0,0)(S,L,J)=(0,0,0) corresponds to the ss-wave order parameter, (1,1,J)(1,1,J) to the pp-wave order parameter, and (0,2,2)(0,2,2) to the dd-wave order parameter.

In this paper we focus on the (0,2,2)(0,2,2) channel, i. e. the spin-singlet dd-wave order parameter, and neglect possible Cooper pairing in other channels. The simplest Lagrangian yielding the dd-wave pairing may be written as

L=ψ(τ+H(p))ψg(ψΓa𝒰ψ)(ψT𝒰Γaψ),L=\psi^{\dagger}\big{(}\partial_{\tau}+H(\textbf{p})\big{)}\psi-g\big{(}\psi^{\dagger}\Gamma_{a}\mathcal{U}\psi^{*}\big{)}\big{(}\psi^{\rm T}\mathcal{U}\Gamma_{a}\psi\big{)}\>, (13)

where ψ(𝒙,τ)=(a1,,a0,,a1,,a1,,a0,,a1,)T\psi(\boldsymbol{x},\tau)=(a_{1,\uparrow},a_{0,\uparrow},a_{-1,\uparrow},a_{1,\downarrow},a_{0,\downarrow},a_{-1,\downarrow})^{\rm T} is a 6-component Grassmann field, τ\tau denotes the imaginary time, p=i\textbf{p}=-i\nabla is the momentum operator, the coupling g>0g>0, and Γa=𝟙2×2γa\Gamma_{a}=\mathbb{1}_{2\times 2}\otimes\gamma_{a}. The sum over repeated indices is assumed. The matrices γa\gamma_{a}, a=1,2,5a=1,2,...5, are defined in the caption of Table 1. We ignore the issue of a possible physical origin of the pairing interaction and take the coupling gg as an effective parameter that leads to a dd-wave superconducting state. Instead of the dynamical pairing mechanism our problem is the actual nature of the dd-wave state in the system given the simplest phenomenological interaction that manifestly favors this particular order parameter, but does not distinguish between its different components.

Just as the condensation of the single complex Δs=ψT𝒰ψ\Delta_{s}=\left<\psi^{\rm T}\mathcal{U}\psi\right> would correspond to the onset of the conventional ss-wave superconducting order parameter, the condensation of any linear combination of the five complex Δa=ψT𝒰Γaψ\Delta_{a}=\left<\psi^{\rm T}\mathcal{U}\Gamma_{a}\psi\right> indicates the onset of the dd-wave. The explicit expressions for both Δs\Delta_{s} and Δa\Delta_{a} in terms of fermion operators are given in Appendix A.

The five complex components of Δ=(Δ1,,Δ5)\Delta=\big{(}\Delta_{1},\ldots,\Delta_{5}\big{)} and the pairing matrices Γa\Gamma_{a} transform as j=2j=2 irreducible representation of the SO(3)SO(3). (See Appendix B.) We may therefore arrange the five Δa\Delta_{a} into a matrix ϕ\phi, which is an irreducible second-rank tensor under rotations, defined as

ϕij=ΔaMa,ij.\displaystyle\phi_{ij}=\Delta_{a}M_{a,ij}. (14)

The five real Gell-Mann matrices Janssen and Herbut (2015) MaM_{a} provide a basis of three-dimensional symmetric real traceless matrices. We choose the particular representation in which

ϕ=(Δ113Δ2Δ5Δ3Δ5Δ113Δ2Δ4Δ3Δ423Δ2).\displaystyle\phi=\begin{pmatrix}\Delta_{1}-\frac{1}{\sqrt{3}}\Delta_{2}&\Delta_{5}&\Delta_{3}\\ \Delta_{5}&-\Delta_{1}-\frac{1}{\sqrt{3}}\Delta_{2}&\Delta_{4}\\ \Delta_{3}&\Delta_{4}&\frac{2}{\sqrt{3}}\Delta_{2}\end{pmatrix}. (15)

IV Ginzburg-Landau theory

In the first part of this section we describe the general Ginzburg-Landau free energy for rotationally invariant systems that describes the phase transition to the dd-wave order parameter, and analyze the possible superconducting ground state configurations that would minimize it. We then discuss the dependence of the actual superconducting ground state in the present case on the values of the parameters bb and cc which add curvature to the energy bands.

IV.1 Possible superconducting ground states

The Ginzburg-Landau free energy describing a finite-temperature second-order phase transition towards a dd-wave order parameter is given by Mermin (1974); Boettcher and Herbut (2018a)

F(Δ)=F2(Δ)+F4(Δ)+𝒪(Δ6),\displaystyle F(\Delta)=F_{2}(\Delta)+F_{4}(\Delta)+\mathcal{O}(\Delta^{6}), (16)

with the terms quadratic and quartic in the uniform order parameter as

F2(Δ)\displaystyle F_{2}(\Delta) =rΔaΔa,\displaystyle=r\Delta^{*}_{a}\Delta_{a}, (17)
F4(Δ)\displaystyle F_{4}(\Delta) =q1(ΔaΔa)2+q2|ΔaΔa|2+q32Tr(ϕϕϕϕ).\displaystyle=q_{1}(\Delta^{*}_{a}\Delta_{a})^{2}+q_{2}|\Delta_{a}\Delta_{a}|^{2}+\frac{q_{3}}{2}\operatorname{Tr}\big{(}\phi^{\dagger}\phi\phi^{\dagger}\phi\big{)}. (18)

The superconducting phase ensues when the quadratic coefficient r<0r<0; the coefficient q1q_{1} also needs to be positive for FF to be bounded from below. Note that the quartic term multiplied by the coefficient q1q_{1} has the same value for all normalized states, so the value of the coefficient q1q_{1} does not play a role in the selection of the superconducting order parameter. The signs and magnitudes of the two remaining coefficients q2q_{2} and q3q_{3} generally decide the broken symmetry state of the system. Let us first understand the role of the coefficient q2q_{2}, and assume q3q_{3} to be sufficiently small. The value of the product |ΔaΔa|2|\Delta_{a}\Delta_{a}|^{2} in our representation quantifies the overlap of the macroscopic superconducting state with its time-reversed counterpart Link et al. (2020). Hence, if q2<0q_{2}<0, the real order parameters which describe TR-preserving states maximize this term, and are therefore favored. The matrix ϕ\phi can then be rotated into the diagonal form:

ϕreal=Δ1M1+Δ2M2,\phi_{\rm real}={\Delta}_{1}M_{1}+{\Delta}_{2}M_{2}\>, (19)

with the relative values of Δ1\Delta_{1} and Δ2\Delta_{2} that need to be determined from higher order terms, or by considering Gaussian fluctuations around the mean-field solution. If, on the other hand, q2>0q_{2}>0, the complex states with ΔaΔa=0\Delta_{a}\Delta_{a}=0 and with maximally broken TR symmetry are preferred. There are also infinitely many order parameters which break TR symmetry maximally, so q2q_{2} alone does not uniquely select the superconducting ground state. This brings us to the role of the remaining coefficient q3q_{3}. The sign of q3q_{3} decides which of the complex superconducting states that break TR maximally is the superconducting ground state. The third term in the right-hand side of Eq.(18) with the coefficient q3q_{3} may be shown to be related to the average magnetization of the state,Link et al. (2020) so that when q2>0q_{2}>0 and q3<0q_{3}<0, the state with maximal average magnetization and maximally broken TR symmetry is favored. This is the “ferromagnetic” state with

ϕferro=Δ2(M1+iM5).\phi_{\rm ferro}=\frac{\Delta}{\sqrt{2}}(M_{1}+{\rm i}M_{5})\>. (20)

However, if the coefficients q2q_{2} and q3q_{3} both are positive, then the magnetization of the ground states needs to be minimized while keeping the TR symmetry maximally broken. These two requirements are not mutually exclusive, and are in fact fulfilled by the “cyclic” state, which is defined as

ϕcyclic=Δ2(M1+iM2).\phi_{\rm cyclic}=\frac{\Delta}{\sqrt{2}}(M_{1}+{\rm i}M_{2})\>. (21)

The details of arriving at Eqs. (19), (20) and (21) are presented in Appendix (B). The potential ground states configurations can also be systematically identified from a symmetry-based classificationKawaguchi and Ueda (2011); Herbut et al. (2019) of the dd-wave order parameter. These states always show some residual symmetry, breaking the rotational SO(3)SO(3) invariance of the normal state. For instance, the ferromagnetic state and the cyclic state, which will be of our main interest eventually, have the remaining SO(2)SO(2) and tetragonal symmetry, respectively.

The complete phase diagram for rotationally invariant dd-wave superconductors was first obtained by MerminMermin (1974) and has also been rederived and discussed at length in ref. Link et al., 2020. The one-loop values of the quartic coefficients have been computed in several examples so far. Most importantly, for the spherically symmetric Luttinger semimetals and standard BCS dd-wave superconductors, q3q_{3} has been shown to be exactly zeroMermin (1974); Boettcher and Herbut (2018a); Sim et al. (2019a); Herbut et al. (2019), whereas for the RSW semimetals q3q_{3} turns out to be small and positive Link et al. (2020). In the case of three-band crossing under consideration here we show that a qualitatively novel situation arises with q3q_{3} having either sign, depending on curvatures of the energy bands.

In the next section we describe the results of the computation of the quartic coefficients for triple-point fermions, and use it to determine the dd-wave superconducting ground state of the system.

IV.2 Superconducting ground state

Refer to caption
Figure 2: The phase diagram of dd-wave superconductor in semimetals described by H(p)H(\textbf{p}), as a function of cc and bb. This plot is obtained for μ=1\mu=1 and v=1v=1. We find two different superconducting ground states that break the time-reversal symmetry maximally: the ferromagnetic state (red) and the cyclic state (blue). The white area corresponds to v2/(4μ)>c+b-v^{2}/(4\mu)>c+b and c<0c<0, when the energy bands do not cross the chemical potential in the normal state.

After performing the standard but lengthy one-loop integration over triple-point fermions (details are given in App. C), we find that for a finite and positive chemical potential the coefficients q1q_{1} and q2q_{2} are always positive irrespective of the values of the parameters bb and cc in the Hamiltonian, and have the standard temperature dependence of 1/T2\sim 1/T^{2} Stintzing and Zwerger (1997); Herbut (2000). In contrast, the coefficient q3q_{3} changes its sign depending on the values of bb and cc, as shown in Fig. 2, and it depends only logarithmically on temperature.

To understand the different temperature dependence of the quartic terms’ coefficients, and in particular why the sign of the coefficient q3q_{3} is influenced by bb and cc, let us consider μ>0\mu>0 and set b=0b=0 for simplicity so that only the parameter cc determines the curvature of the energy bands. In this case, we find that q1q_{1} and q2q_{2} are positive for all physically relevant values v2/(4μ)<c-v^{2}/(4\mu)<c, whereas the coefficient q3q_{3} is only positive if c0c\leq 0 and it is negative for c>0c>0. The reason for this change in sign of q3q_{3} lies in the analytical structure of the integrands of q1,2,3q_{1,2,3}, and, in particular, in the way that this structure depends on the curvature of the energy bands. To this end, we carry out the finite-temperature Matsubara sum of the one-loop integral over fermions that define the coefficients and Taylor expand around the Fermi momenta of the normal state. The coefficients q1,2,3q_{1,2,3} then reduce to the following form:

q1,2(T,c,b)0Λ𝑑ki(kF,i2akF,i(1,2)vF,i3|𝒌𝒌F,i|3+at,i(1,2)T3+1v21bkF,i(1,2)vF,i|𝒌𝒌F,i|+bt,i(1,2)T+𝒪(|kkF|0)),q_{1,2}(T,c,b)\approx\int_{0}^{\Lambda}dk\sum_{i}\bigg{(}\frac{k_{{\rm F},i}^{2}}{a^{(1,2)}_{k_{\rm F},i}v_{{\rm F},i}^{3}|\boldsymbol{k}-\boldsymbol{k}_{{\rm F},i}|^{3}+a^{(1,2)}_{t,i}T^{3}}+\frac{1}{v^{2}}\frac{1}{b^{(1,2)}_{k_{\rm F},i}v_{{\rm F},i}|\boldsymbol{k}-\boldsymbol{k}_{{\rm F},i}|+b^{(1,2)}_{t,i}T}+\mathcal{O}(|\textbf{k}-\textbf{k}_{\rm F}|^{0})\bigg{)}\>, (22)

and

q3(T,c,b)i0Λ𝑑k1v21b~kF,ivF,i|𝒌𝒌F,i|+b~t,iT+𝒪(|kkF|0),q_{3}(T,c,b)\approx\sum_{i}\int_{0}^{\Lambda}dk\frac{1}{v^{2}}\frac{1}{{\tilde{b}}_{k_{\rm F},i}v_{{\rm F},i}|\boldsymbol{k}-\boldsymbol{k}_{{\rm F},i}|+{\tilde{b}}_{t,i}T}+\mathcal{O}(|\textbf{k}-\textbf{k}_{\rm F}|^{0})\>, (23)

where {akF,i(1),at,i(1),bkF,i(1),bt,i(1)}\{a^{(1)}_{k_{\rm F},i},a^{(1)}_{t,i},b^{(1)}_{k_{\rm F},i},b^{(1)}_{t,i}\}, {akF,i(2),at,i(2),bkF,i(2),bt,i(2)}\{a^{(2)}_{k_{\rm F},i},a^{(2)}_{t,i},b^{(2)}_{k_{\rm F},i},b^{(2)}_{t,i}\}, and {b~kF,i,b~t,i}\{{\tilde{b}}_{k_{\rm F},i},{\tilde{b}}_{t,i}\} are numerical constants associated with quartic coefficients q1q_{1}, q2q_{2}, and q3q_{3}, respectively. Here, the sum is over all Fermi surfaces indexed by ii, and kF,ik_{{\rm F},i} and vF,iv_{{\rm F},i} represent the Fermi momentum and Fermi velocity of the corresponding Fermi surface.

Finally, performing the momentum integration in Eq. (22), we find that q1,2q_{1,2} acquire the usual 1/T2\sim 1/T^{2} temperature dependence to the leading order in inverse temperature, with the next order correction proportional to log(T)\log(T). In the coefficient q3q_{3}, however, the leading order term in the integrand that would be of the form of (a~kF,ivF,i3|kkF,i|3+a~t,iT3)1({\tilde{a}}_{k_{\rm F},i}v^{3}_{{\rm F},i}{|\textbf{k}-\textbf{k}_{{\rm F},i}|}^{3}+{\tilde{a}}_{t,i}T^{3})^{-1} is absent, leaving the first non-zero term in the Taylor expansion proportional to (b~kF,ivF,i|kkF,i|+b~t,iT)1({\tilde{b}}_{k_{\rm F},i}v_{{{\rm F},i}}|\textbf{k}-\textbf{k}_{{\rm F},i}|+{\tilde{b}}_{t,i}T)^{-1}. The absence of the leading order term causes the different temperature dependence of q1,2q_{1,2} and q3q_{3}, and it was also found in the example of dd-wave pairing of the RSW fermions in ref. Link et al., 2020. We find that the coefficients near the critical temperature (TcT_{c}) are given by the following expressions to the leading order in μ/Tc1\mu/T_{c}\ll 1:

q1,2(Tc,c,b)=iηi(1,2)kF,i2vF,i1Tc2+𝒪(log(μ/Tc))q_{1,2}(T_{c},c,b)=\sum_{i}{\eta}^{(1,2)}_{i}\frac{k_{{\rm F},i}^{2}}{v_{{\rm F},i}}\frac{1}{T_{c}^{2}}+\mathcal{O}(\log(\mu/T_{c})) (24)

and

q3(Tc,c,b)=1v2iη~i1vF,ilog(μ/Tc),q_{3}(T_{c},c,b)=\frac{1}{v^{2}}\sum_{i}\tilde{\eta}_{i}\frac{1}{v_{{\rm F},i}}\log(\mu/T_{c})\>, (25)

where ηi(1){\eta}^{(1)}_{i}, ηi(2){\eta}^{(2)}_{i}, and η~i\tilde{\eta}_{i} are numerical coefficients.

What still remains to be explained is the dependence of the coefficient q3q_{3} on parameters bb and cc. As we already noted, parameters bb and cc determine which energy bands cross the Fermi level and thus control the number of Fermi surfaces in the normal state. Hence, the parameter cc sets the number of terms that contribute to the coefficients when we set b=0b=0. For example, if c<0c<0, there are two Fermi surfaces, and to obtain the quartic coefficients one needs to sum over i=+1+,+1i=+1_{+},+1_{-}. In other words, the coefficients then receive two contributions with the same Fermi velocity vF,+1+=vF,+1v_{{\rm F},+1_{+}}=v_{{\rm F},+1_{-}} but with different Fermi momenta kF,+1+k_{{\rm F},+1_{+}} and kF,+1k_{{\rm F},+1_{-}}, as defined in Eqs. (8)-(10). If c=0c=0, the energy band E+1E_{+1} crosses the Fermi level only once, and there is simply one Fermi momentum and the accompanying Fermi velocity that contributes to the quartic coefficients. The situation changes drastically for c>0c>0 where all three energy bands cross the Fermi level; we then find three different Fermi surfaces and the sum is over i=1+,0,+1+i=-1_{+},0,+1_{+} in Eqs. (24)-(25), with three different Fermi momenta kF,0k_{{\rm F},0}, kF,1+k_{{\rm F},-1_{+}}, kF,+1+k_{{\rm F},+1_{+}} and two different Fermi velocities vF,0v_{{\rm F},0} and vF,±1+v_{{\rm F},\pm 1_{+}}. The leading order terms in the weak-coupling (μ/Tc1\mu/T_{c}\ll 1) expressions for the quartic coefficients with b=0b=0 are given as

q1(Tc,c)=C1{v2+2cμc2v2+4cμ1Tc2 for c<0μ2v3Tc2 for c=0v2+2cμ+8cμv2+4cμc2v2+4cμ1Tc2 for c>0\displaystyle q_{1}(T_{c},c)=C_{1}\begin{cases}\frac{v^{2}+2c\mu}{c^{2}\sqrt{v^{2}+4c\mu}}\frac{1}{T_{c}^{2}}&\text{ for }c<0\\ \frac{\mu^{2}}{v^{3}T_{c}^{2}}&\text{ for }c=0\\ \frac{v^{2}+2c\mu+8\sqrt{c\mu}\sqrt{v^{2}+4c\mu}}{c^{2}\sqrt{v^{2}+4c\mu}}\frac{1}{T_{c}^{2}}&\text{ for }c>0\end{cases} (26)

q2(Tc,c)=q1(Tc,c)/2q_{2}(T_{c},c)=q_{1}(T_{c},c)/2, and

q3(Tc,c)=C3{1v2v2+4cμlog(μ/Tc) for c<012v3log(μ/Tc) for c=013v2(3v2+4cμ2cμ)log(μ/Tc) for c>0,\displaystyle q_{3}(T_{c},c)=C_{3}\begin{cases}\frac{1}{v^{2}\sqrt{v^{2}+4c\mu}}\log(\mu/T_{c})&\text{ for }c<0\\ \frac{1}{2v^{3}}\log(\mu/T_{c})&\text{ for }c=0\\ \frac{1}{3v^{2}}\bigg{(}\frac{3}{\sqrt{v^{2}+4c\mu}}-\frac{2}{\sqrt{c\mu}}\bigg{)}\log(\mu/T_{c})&\text{ for }c>0\>,\end{cases} (27)

with C1=1/(21/331/615120π)C_{1}=1/(2^{1/3}3^{1/6}15120\pi), and C3=3/(35π2)C_{3}=3/(35\pi^{2}) . The coefficients q1q_{1} and q2q_{2} are positive for all values of cc since all terms in the sum iηi(1,2)kF,i2vF,i\sum_{i}{\eta}^{(1,2)}_{i}\frac{k_{{\rm F},i}^{2}}{v_{{\rm F},i}} arising from different Fermi surfaces are positive. The situation is, however, different for the q3q_{3} coefficient; for c0c\leq 0, there are two Fermi surfaces that bring in two positive contributions to q3q_{3} and yield a positive sign for q3q_{3}. On the other hand, when c>0c>0, an additional Fermi surface appears and there is a competition between the contributions arising from different Fermi surfaces, i.e., a competition between η~0/vF,0\tilde{\eta}_{0}/v_{{\rm F},0} and η~±1+/vF,±1+\tilde{\eta}_{\pm 1_{+}}/v_{{\rm F},\pm 1_{+}}. In other words, if we only consider contributions arising due to the expansions around kF,±1+k_{{\rm F},\pm 1_{+}}, which corresponds to η~±1+/vF,±1+3/v2+4cμ\tilde{\eta}_{{\pm 1}_{+}}/v_{{\rm F},{\pm 1}_{+}}\propto 3/\sqrt{v^{2}+4c\mu}, the sign of q3q_{3} would be positive. However, when we include the contribution from the expansion around kF,0k_{{\rm F},0} which corresponds to η~0/vF,02/cμ\tilde{\eta}_{0}/v_{{\rm F},0}\propto-2/\sqrt{c\mu}, it always dominates and ultimately leads to a negative sign for q3q_{3}. As a result, for b=0b=0, the cyclic state is favored if c0c\leq 0, and the ferromagnetic state is preferred when c>0c>0.

As already mentioned earlier, for μ>0\mu>0 and c<0c<0, we get positive contributions from two Fermi surfaces that originate from the same band E+1E_{+1}. A similar situation also arises when one considers μ<0\mu<0 and c>0c>0. In such a case, the E1E_{-1} band intersects the Fermi level twice instead, forms two Fermi surfaces at two different momenta, and eventually leads to two positive contributions to q3q_{3}. One can easily check that the expressions for quartic coefficients stay invariant when one simultaneously transforms {μμ,bb\{\mu\rightarrow-\mu,b\rightarrow-b, and cc}c\rightarrow-c\}. This invariance suggests that the phase diagram for a positive chemical potential and the phase diagram for a negative chemical potential are related by two joint reflections, one around the bb axis and the other around the cc axis.

Finally, let us see how a finite parameter bb influences the superconducting state of the system. As shown in Fig. 2, in the case of the positive chemical potential, the cyclic state is the preferred superconducting state for c0c\leq 0 and finite bb. However, for positive cc we find that the superconducting state could be either the cyclic or the ferromagnetic state depending on the value of bb. To understand the phase diagram qualitatively, let us assume again a finite, positive value of cc and b=0b=0. As we already noted, for b=0b=0 and c>0c>0, the negative contribution arising due to the expansion around kF,0k_{{\rm F},0} always dominates the positive kF,±1+k_{{\rm F},\pm 1_{+}} contribution and q3q_{3} is consequently negative. However, coefficient η~0/vF,0\tilde{\eta}_{0}/v_{{\rm F},0} gets progressively weaker with increasing |b||b|, and it even changes sign at a finite value of bb. On the other hand, the two coefficients η~±1+/vF,±1+\tilde{\eta}_{\pm 1_{+}}/v_{{\rm F},\pm 1_{+}} for b+c>0b+c>0 (η~+1±/vF,+1±\tilde{\eta}_{+1_{\pm}}/v_{{\rm F},+1_{\pm}} for b+c<0b+c<0), always stay positive. As a consequence, one finds a phase boundary where the positive contribution from the Fermi surfaces at kF,±1±k_{{\rm F},\pm 1_{\pm}} exceeds the negative contribution from near the Fermi momentum kF,0k_{{\rm F},0}, and any further increase of the absolute value of the parameter bb only yields the cyclic state as the superconducting ground state.

The curvature of the energy bands is thus found to be the “knob” that can tune between the cyclic and the ferromagnetic superconducting state.

Refer to caption
Figure 3: BF surfaces that occur in the superconducting ground state of the fermionic system described by H(p)H(\textbf{p}) with v=1v=1 and μ=1\mu=1. Depending on the parameters bb and cc, the cyclic state exhibits 8, 16, or 24 BF surfaces as shown in the first three panels from the left. However, the ferromagnetic state appears in a narrow region of the phase diagram where 6 BF surfaces emerge as shown in the fourth panel.

IV.3 Bogoliubov-Fermi surfaces

In this section we analyze the energy spectrum of the Bogoliubov-de Gennes (BdG) quasiparticles which are described by the BdG-Hamiltonian pΨHBdGΨ\sum_{\textbf{p}}\Psi^{\dagger}H_{\rm BdG}\Psi with

HBdG=(H(p)ΔaΓaΔaΓaH(p)),H_{\rm BdG}=\begin{pmatrix}H(\textbf{p})&\Delta_{a}\Gamma_{a}\\ \Delta_{a}^{\dagger}\Gamma_{a}&-H(\textbf{p})\end{pmatrix}\>, (28)

where the Nambu spinor is given by Ψ(ωn,p)=(ψ(ωn,p),𝒰ψ(ωn,p)){\Psi(\omega_{n},\textbf{p})=\big{(}\psi(\omega_{n},\textbf{p}),\mathcal{U}\psi^{*}(-\omega_{n},-\textbf{p})\big{)}}. We focus on the quasiparticle energy spectrum for the cyclic and the ferromagnetic state, and find that both of these TR-symmetry-breaking states exhibit extended regions in the momentum space where the energy vanishes. These regions are known as Bogoliubov-Fermi (BF) surfacesTimm et al. (2017); Agterberg et al. (2017); Bzdušek and Sigrist (2017); Brydon et al. (2018); Menke et al. (2019); Lapp et al. (2020); Setty et al. (2020); Link and Herbut (2020); Herbut and Link (2021) and can be determined by identifying the momentum points that satisfy det[HBdG(𝐩)]=0\det[H_{\rm BdG}(\mathbf{p})]=0. The emergence of these BF surfaces in the present case is elaborated on in Appendix D.

The mini BF surfaces that emerge for the cyclic and the ferromagnetic superconducting states are shown in Fig. 3. Note that the number of BF surfaces is tied to the number of Fermi surfaces present in the normal state. If the superconducting ground state is the cyclic state, for example, then it displays 8, 16, or 24 BF surfaces depending on whether it has one, two, or three Fermi surfaces in the normal state. The BF surfaces in this case generally appear along the diagonals of a cube centered at the origin of the momentum space. This picture changes in the ferromagnetic state; this state emerges in a narrow region of the phase diagram where the normal state generally has three Fermi surfaces. As a result, it typically exhibits six BF surfaces centered around the zz-axis. We observe that despite of the triple-point fermion Hamiltonian’s lack of inversion symmetry, the BF surfaces appear nevertheless, in accord with the general arguments presented in ref. Link and Herbut, 2020.

V Conclusion

In conclusion, we have studied the dd-wave superconductivity in the system of spin-1/2 fermions with triple-band crossings. In the weak-coupling limit and for a non-zero chemical potential, we have shown that the superconducting ground state prefers breaking of the time reversal symmetry, which leads to a competition between two distinct superconducting ground states that do so maximally: the cyclic and the ferromagnetic states. In contrast to previously studied examples, however, here we find that either of the two superconducting states can be the mean-field ground state, depending on the the parameters bb and cc in the single-particle Hamiltonian, which are directly related to the curvature of the energy bands. We have obtained the mean-field phase diagram below the superconducting critical temperature for finite chemical potential. In addition, the spectrum of the BdG quasiparticles in the cyclic and the ferromagnetic state is computed. Both of these states display multiple Bogoliubov-Fermi surfaces, in agreement with the general expectation for the multiband noncentrosymmetric superconductors that break time reversalLink and Herbut (2020).

Our main result is the surprising effect of the central m=0m=0 band on the coefficients of the Ginzburg-Landau free energy. When this band is found to intersect the Fermi level, it yields a contribution to the key quartic term coefficient q3q_{3} of the opposite sign of that from the other two bands, and that way it may overturn the overall sign of the q3q_{3}. Since the sign of this coefficient directly determines the time-reversal broken superconducting ground state, a negative q3q_{3} leads to the appearance of the ferromagnetic state in the phase diagram. This state exhibits the maximal average magnetization, in addition to maximal breaking of time reversal dictated by the always-positive quartic term coefficient q2q_{2}. This is the first time, to the best of our knowledge, that such a possibility arises in a simple model that shows three-dimensional dd-wave superconductivity.

Acknowledgements.
JML is supported by the DFG grant No. LI 3628/1-1, and SM and IFH by the NSERC of Canada.

Appendix A Tensor order and Cooper pairing

The condensation of Δa=ψT𝒰Γaψ\Delta_{a}=\langle\psi^{\rm T}\mathcal{U}\Gamma_{a}\psi\rangle indicates the onset of the dd-wave superconductivity where a={1,,5}a=\{1,\cdots,5\}. These five components of Δa{\Delta}_{a} have the explicit form in terms of the original fermionic operators as

Δ1\displaystyle\Delta_{1} =\displaystyle= 2ia1,a1,+a1,a1,,\displaystyle 2{\rm i}\langle a_{1,\downarrow}a_{1,\uparrow}+a_{-1,\downarrow}a_{-1,\uparrow}\rangle\>, (29)
Δ2\displaystyle\Delta_{2} =\displaystyle= 2i3a1,a1,+a1,a1,+2a0,a0,,\displaystyle\frac{2{\rm i}}{\sqrt{3}}\langle a_{-1,\downarrow}a_{1,\uparrow}+a_{1,\downarrow}a_{-1,\uparrow}+2a_{0,\downarrow}a_{0,\uparrow}\rangle\>, (30)
Δ3\displaystyle\Delta_{3} =\displaystyle= 2i3a0,a1,a1,a0,+a1,a0,+a0,a1,,\displaystyle\frac{2{\rm i}}{\sqrt{3}}\langle-a_{0,\downarrow}a_{1,\uparrow}-a_{1,\downarrow}a_{0,\uparrow}+a_{-1,\downarrow}a_{0,\uparrow}+a_{0,\downarrow}a_{-1,\uparrow}\rangle\>, (31)
Δ4\displaystyle\Delta_{4} =\displaystyle= 22a0,a1,+a1,a0,+a1,a0,+a0,a1,,\displaystyle\frac{2}{\sqrt{2}}\langle a_{0,\downarrow}a_{1,\uparrow}+a_{1,\downarrow}a_{0,\uparrow}+a_{-1,\downarrow}a_{0,\uparrow}+a_{0,\downarrow}a_{-1,\uparrow}\rangle\>, (32)
Δ5\displaystyle\Delta_{5} =\displaystyle= 2a1,a1,+a1,a1,,\displaystyle 2\langle-a_{1,\downarrow}a_{1,\uparrow}+a_{-1,\downarrow}a_{-1,\uparrow}\rangle\>, (33)

with the coefficients which may be recognized as related to the usual Clebsch-Gordan coefficients. In the case of a reduced cubic symmetry, (Δ1,Δ2)(\Delta_{1},\Delta_{2}) would belong to the E-representation, while (Δ3,Δ4,Δ5)(\Delta_{3},\Delta_{4},\Delta_{5}) would belong to the T2gT_{2g}-representation.

In contrast, the standard ss-wave order parameter corresponds to

Δs=ψT𝒰ψ=2ia1,a1,+a1,a1,a0,a0,.\Delta_{s}=\langle\psi^{\rm T}\mathcal{U}\psi\rangle=2{\rm i}\langle a_{1,\downarrow}a_{-1,\uparrow}+a_{-1,\downarrow}a_{1,\uparrow}-a_{0,\downarrow}a_{0,\uparrow}\rangle\>. (34)

Appendix B Potential Ground States

Since the irreducible representations of the SO(3)SO(3) of given dimension are unique, the tensor dd-wave order parameter is entirely equivalent to a quantum state in the spin-22 Hilbert space. The five real Gell-Mann matrices in Eq. (15) which form the basis in the irreducible tensor (symmetric traceless matrix) space, under the SO(3)SO(3) rotations transform exactly as the following states, given as linear combinations in the standard basis:

|M1\displaystyle|M_{1}\rangle =12(|2+|2)\displaystyle=\dfrac{1}{\sqrt{2}}\Big{(}|-2\rangle+|2\rangle\Big{)} (35)
|M2\displaystyle|M_{2}\rangle =|0\displaystyle=|0\rangle (36)
|M3\displaystyle|M_{3}\rangle =12(|1|1)\displaystyle=\dfrac{1}{\sqrt{2}}\Big{(}|-1\rangle-|1\rangle\Big{)} (37)
|M4\displaystyle|M_{4}\rangle =i2(|1+|1)\displaystyle=\dfrac{i}{\sqrt{2}}\Big{(}|-1\rangle+|1\rangle\Big{)} (38)
|M5\displaystyle|M_{5}\rangle =i2(|2|2)\displaystyle=\dfrac{i}{\sqrt{2}}\Big{(}|-2\rangle-|2\rangle\Big{)} (39)

where, Jz|m=m|mJ_{z}|m\rangle=m|m\rangle and m=0,±1,±2m=0,\pm 1,\pm 2. For the five-component dd-wave superconducting order parameter, the free energy to the quartic order can be shown to have the following form Mermin (1974); Boettcher and Herbut (2018a)

F(Δ)=rΔaΔa+q1(ΔaΔa)2+q2|ΔaΔa|2+q32Tr(ϕϕϕϕ)+𝒪(Δ6)\begin{split}F(\Delta)&=r\Delta^{*}_{a}\Delta_{a}+q_{1}(\Delta^{*}_{a}\Delta_{a})^{2}+q_{2}|\Delta_{a}\Delta_{a}|^{2}\\ &+\frac{q_{3}}{2}\operatorname{Tr}\big{(}\phi^{\dagger}\phi\phi^{\dagger}\phi\big{)}+\mathcal{O}(\Delta^{6})\end{split} (40)

Mermin was the first to directly minimize the above free energy for the dd-wave order parameter Mermin (1974). In a related approach, in the context of the spinor Bose-Einstein condensates Kawaguchi and Ueda employed an elegant and general symmetry-based approach based on Michel’s theorem. Kawaguchi and Ueda (2011) They found that among all the ground state candidates with some residual symmetry, the real states, the ferromagnetic state, and the cyclic state are the only true minima of the Ginzburg-Landau free energy, each one winning in a different part of the parameter space. In the above “real” (TR invariant) basis |Mi|M_{i}\rangle these states are given by:

Δreal\displaystyle{\vec{\Delta}}_{\rm real} =(Δ1,Δ2,0,0,0)\displaystyle=\big{(}{\Delta}_{1},{\Delta}_{2},0,0,0\big{)} (41)
Δferro\displaystyle{\vec{\Delta}}_{\rm ferro} =Δ2(1,0,0,0,i)\displaystyle=\dfrac{\Delta}{\sqrt{2}}\big{(}1,0,0,0,i\big{)} (42)
Δcyclic\displaystyle{\vec{\Delta}}_{\rm cyclic} =Δ2(1,i,0,0,0)\displaystyle=\dfrac{\Delta}{\sqrt{2}}\big{(}1,i,0,0,0\big{)} (43)

Note that Δferro{\vec{\Delta}}_{\rm ferro} is simply proportional to the state |2|2\rangle, and therefore has the maximal magnetization. Δcyclic{\vec{\Delta}}_{\rm cyclic}, on the other hand, has the average magnetization of zero, as may be easily checked. Both states break the TR maximally, i.e. ΔiΔi=0\Delta_{i}\Delta_{i}=0. In terms of three dimensional traceless matrices these states are equivalent to the following matrix order parameters:

ϕreal=Δ1M1+Δ2M2\displaystyle{\phi}_{\rm real}={\Delta}_{1}M_{1}+{\Delta}_{2}M_{2} (44)
ϕferro=Δ2(M1+iM5)\displaystyle{\phi}_{\rm ferro}=\dfrac{\Delta}{\sqrt{2}}\big{(}M_{1}+iM_{5}\big{)} (45)
ϕcyclic=Δ2(M1+iM2)\displaystyle{\phi}_{\rm cyclic}=\dfrac{\Delta}{\sqrt{2}}\big{(}M_{1}+iM_{2}\big{)} (46)

Appendix C Computation of the coefficients

Here we outline the computation of the coefficients q1,2,3q_{1,2,3} in the Ginzburg-Landau free energy. As usual, one first obtains the mean-field expression for the free energy by integrating out the fermionic degrees of freedom for a constant order parameter, and then expands the mean-field free energy to the quartic order in the order parameter. These steps lead to

F2(Δ)\displaystyle F_{2}(\Delta) =(1gδab12Kab)ΔaΔb,\displaystyle=\big{(}\frac{1}{g}\delta_{ab}-\frac{1}{2}K_{ab}\big{)}\Delta^{*}_{a}\Delta_{b}, (47)
F4(Δ)\displaystyle F_{4}(\Delta) =14KabcdΔaΔbΔcΔd\displaystyle=\frac{1}{4}K_{abcd}\Delta^{*}_{a}\Delta_{b}\Delta^{*}_{c}\Delta_{d} (48)

with

Kab=trQΛ\displaystyle K_{ab}=\mbox{tr}\int_{Q}^{\Lambda}{} G0(ωn,μ,q)ΓaG0(ωn,μ,q)Γb,\displaystyle G_{0}(\omega_{n},\mu,\textbf{q})\Gamma_{a}G_{0}(-\omega_{n},\mu,\textbf{q})\Gamma_{b}\>, (49)
Kabcd=trQΛ\displaystyle K_{abcd}=\mbox{tr}\int_{Q}^{\Lambda}{} G0(ωn,μ,q)ΓaG0(ωn,μ,q)Γb\displaystyle G_{0}(\omega_{n},\mu,\textbf{q})\Gamma_{a}G_{0}(-\omega_{n},\mu,\textbf{q})\Gamma_{b}
×G0(ωn,μ,q)ΓcG0(ωn,μ,q)Γd.\displaystyle\times G_{0}(\omega_{n},\mu,\textbf{q})\Gamma_{c}G_{0}(-\omega_{n},\mu,\textbf{q})\Gamma_{d}\>. (50)

The measure of the integrals are given by

QΛ:=TnqΛ:=TnqΛd3q(2π)3,\int_{Q}^{\Lambda}:=T\sum_{n\in\mathbb{Z}}\int_{\textbf{q}}^{\Lambda}:=T\sum_{n\in\mathbb{Z}}\int_{q\leq\Lambda}\frac{d^{3}q}{(2\pi)^{3}}\>, (51)

with the fermionic Matsubara frequency ω=(2n+1)πT\omega=(2n+1)\pi T, the temperature TT, and the ultraviolet cutoff Λμ,T\Lambda\gg\mu,T. The fermionic Green’s function is defined as

G0(ωn,μ,p)=(iωnH(p))1.G_{0}(\omega_{n},\mu,\textbf{p})=\big{(}{\rm i}\omega_{n}-H(\textbf{p})\big{)}^{-1}\>. (52)

To determine the coefficients q1,2,3q_{1,2,3} we insert the states Δ1=Δ(0,1,0,0,0)\Delta_{1}=\Delta(0,1,0,0,0), Δ2=Δ2(1,i,0,0,0)\Delta_{2}=\frac{\Delta}{\sqrt{2}}(1,{\rm i},0,0,0), and Δ3=Δ2(0,0,1,i,0)\Delta_{3}=\frac{\Delta}{\sqrt{2}}(0,0,1,{\rm i},0) in Eq. (50) and thus obtain the following matching conditions:

F4(Δ1)\displaystyle F_{4}(\Delta_{1}) =\displaystyle= (q1+q2+q3)Δ4\displaystyle(q_{1}+q_{2}+q_{3})\Delta^{4} (53)
F4(Δ2)\displaystyle F_{4}(\Delta_{2}) =\displaystyle= (q1+23q3)Δ4\displaystyle\big{(}q_{1}+\frac{2}{3}q_{3}\big{)}\Delta^{4} (54)
F4(Δ3)\displaystyle F_{4}(\Delta_{3}) =\displaystyle= (q1+q3)Δ4.\displaystyle(q_{1}+q_{3})\Delta^{4}\>. (55)

C.1 Explicit expressions for the coefficients

Here, we have presented the expressions for the coefficients with the setting of v=1v=1. In such scenario, the quadratic coefficient rr is given by

r(g,μ,T,Λ)=1g12K11(T,μ,Λ)r(g,\mu,T,\Lambda)=\dfrac{1}{g}-\dfrac{1}{2}K_{11}(T,\mu,\Lambda) (56)

where,

K11=QΛ(4(p8(b+c)2(2b2+10bc+15c2)p6(2μ(b+c)(7b2+30bc+30c2)+4b2+14bc+15c2)+p4(ω2(17b2+40bc+30c2)+μ(37b2μ+2b(60cμ+7)+30c(3cμ+1))+2)+5p2(ω2(8bμ12cμ+1)μ2(8bμ+12cμ+3))+15(μ2+ω2)2))/(15(cp2μiω)(cp2μ+iω)(p2(b+c)μ+piω)(p(p(b+c)1)μiω)×(p2(b+c)μ+p+iω)(p(p(b+c)1)μ+iω)).\begin{split}K_{11}&=\int_{Q}^{\Lambda}\Big{(}4(p^{8}(b+c)^{2}(2b^{2}+10bc+15c^{2})-p^{6}(2\mu(b+c)(7b^{2}+30bc+30c^{2})+4b^{2}+14bc+15c^{2})+p^{4}(\omega^{2}(17b^{2}\\ &+40bc+30c^{2})+\mu(37b^{2}\mu+2b(60c\mu+7)+30c(3c\mu+1))+2)+5p^{2}(\omega^{2}(-8b\mu-12c\mu+1)-\mu^{2}(8b\mu+12c\mu+3))\\ &+15(\mu^{2}+\omega^{2})^{2})\Big{)}/\Big{(}15(cp^{2}-\mu-i\omega)(cp^{2}-\mu+i\omega)(p^{2}(b+c)-\mu+p-i\omega)(p(p(b+c)-1)-\mu-i\omega)\\ &\times(p^{2}(b+c)-\mu+p+i\omega)(p(p(b+c)-1)-\mu+i\omega)\Big{)}\>.\end{split} (57)

The transition temperature for different bb and cc parameters can be obtained from r(g,μ,Tc,Λ)=0r(g,\mu,T_{c},\Lambda)=0. Here we refrain from going into details of the result for the transition temperature, which ultimately has the standard weak-coupling form, and focus on the nature of the superconducting ground state. This requires the computation of the quartic terms in the Ginzburg-Landau expansion. For a finite chemical potential μ\mu, the coefficients of the three independent quartic terms are given by

q1(T,b,c)=QΛ(2p2(b2(b+c)4(8b2+48cb+63c2)p14+(b+c)2(32b4176cb3201c2b22(b+c)(b+3c)(40b+63c)μb2+42c3b+105c4)p12+(3(101μ2b6+4μ(143cμ+20)b5+2(cμ(578cμ+195)+8)b4+8c(cμ(125cμ+67)+10)b3+c2(cμ(315cμ+16)+87)b212c3(35cμ+1)b42c4(5cμ+1))b2(b+c)2(47b2+30cb63c2)ω2)p10+(572μ3b5μ2(2312cμ+585)b424μ(cμ(125cμ+67)+10)b32(9cμ(2cμ(35cμ+2)+29)+16)b2+4c(9cμ(70cμ+3)20)b+(124μb5+(88cμ+169)b4+8c(10736cμ)b3252c2(cμ6)b2+1008c3b+105c4)ω2+21c2(3cμ(25cμ+8)+1))p8+(b2(118b2+204cb+63c2)ω4(44μ2b4+8μ(10736cμ)b3+(197378cμ(cμ8))b2+12c(252cμ+61)b+84c2(5cμ+7))ω2+μ(578μ3b4+4μ2(375cμ+134)b3+3μ(cμ(315cμ+16)+87)b24(9cμ(70cμ+3)20)b42c(2cμ(25cμ+9)+1))+8)p6+3((68μb3+2(21cμ+86)b2+252cb35c2)ω4+(2μ(16μ2b342μ(cμ6)b2+2(252cμ+61)b+7c(15cμ+28))+25)ω2+μ2(μ(100μ2b32μ(63cμ+2)b2+12(35cμ+1)b+21c(25cμ+8))+7))p4+21(3b2ω6+(10cμ3b(bμ+12)μ+2)ω4+μ2(20cμ+3b(bμ16)μ28)ω2+3μ4(10cμ+b(bμ4)μ2))p2+105(μω)(μ+ω)(μ2+ω2)2))/(315((b+c)p2+pμiω)2×(cp2μ+iω)2((b+c)p2+pμ+iω)2(p((b+c)p1)μ+iω)2(cp2+μ+iω)2((b+c)p2+p+μ+iω)2),\begin{split}&q_{1}(T,b,c)=\int_{Q}^{\Lambda}\Big{(}2p^{2}(b^{2}(b+c)^{4}(8b^{2}+48cb+63c^{2})p^{14}+(b+c)^{2}(-32b^{4}-176cb^{3}-201c^{2}b^{2}-2(b+c)(b+3c)(40b\\ &+63c)\mu b^{2}+42c^{3}b+105c^{4})p^{12}+(3(101\mu^{2}b^{6}+4\mu(143c\mu+20)b^{5}+2(c\mu(578c\mu+195)+8)b^{4}+8c(c\mu(125c\mu+67)\\ &+10)b^{3}+c^{2}(c\mu(315c\mu+16)+87)b^{2}-12c^{3}(35c\mu+1)b-42c^{4}(5c\mu+1))-b^{2}(b+c)^{2}(47b^{2}+30cb-63c^{2})\omega^{2})p^{10}\\ &+(-572\mu^{3}b^{5}-\mu^{2}(2312c\mu+585)b^{4}-24\mu(c\mu(125c\mu+67)+10)b^{3}-2(9c\mu(2c\mu(35c\mu+2)+29)+16)b^{2}\\ &+4c(9c\mu(70c\mu+3)-20)b+(124\mu b^{5}+(88c\mu+169)b^{4}+8c(107-36c\mu)b^{3}-252c^{2}(c\mu-6)b^{2}+1008c^{3}b+105c^{4})\omega^{2}\\ &+21c^{2}(3c\mu(25c\mu+8)+1))p^{8}+(-b^{2}(118b^{2}+204cb+63c^{2})\omega^{4}-(44\mu^{2}b^{4}+8\mu(107-36c\mu)b^{3}+(197-378c\mu(c\mu\\ &-8))b^{2}+12c(252c\mu+61)b+84c^{2}(5c\mu+7))\omega^{2}+\mu(578\mu^{3}b^{4}+4\mu^{2}(375c\mu+134)b^{3}+3\mu(c\mu(315c\mu+16)+87)b^{2}\\ &-4(9c\mu(70c\mu+3)-20)b-42c(2c\mu(25c\mu+9)+1))+8)p^{6}+3((68\mu b^{3}+2(21c\mu+86)b^{2}+252cb-35c^{2})\omega^{4}\\ &+(2\mu(-16\mu^{2}b^{3}-42\mu(c\mu-6)b^{2}+2(252c\mu+61)b+7c(15c\mu+28))+25)\omega^{2}+\mu^{2}(\mu(-100\mu^{2}b^{3}-2\mu(63c\mu+2)b^{2}\\ &+12(35c\mu+1)b+21c(25c\mu+8))+7))p^{4}+21(-3b^{2}\omega^{6}+(10c\mu-3b(b\mu+12)\mu+2)\omega^{4}+\mu^{2}(-20c\mu+3b(b\mu-16)\mu\\ &-28)\omega^{2}+3\mu^{4}(-10c\mu+b(b\mu-4)\mu-2))p^{2}+105(\mu-\omega)(\mu+\omega)(\mu^{2}+\omega^{2})^{2})\Big{)}/\Big{(}315((b+c)p^{2}+p-\mu-i\omega)^{2}\\ &\times(cp^{2}-\mu+i\omega)^{2}((b+c)p^{2}+p-\mu+i\omega)^{2}(p((b+c)p-1)-\mu+i\omega)^{2}(-cp^{2}+\mu+i\omega)^{2}(-(b+c)p^{2}+p+\mu+i\omega)^{2}\Big{)},\end{split} (58)
q2(T,b,c)=QΛ(p2(b2(b+c)4(8b2+24cb+21c2)p14+(b+c)2(56μb52(109cμ+16)b48c(36cμ+13)b33c2(42cμ+65)b2210c3b105c4)p12+(3(55μ2b6+4μ(65cμ+14)b5+2(5cμ(46cμ+29)+8)b4+8c(cμ(45cμ+88)+7)b3+5c2(3cμ(7cμ+64)+25)b2+4c3(175cμ+37)b+70c4(3cμ+1))b2(b+c)2(5b26cb21c2)ω2)p10+(4μ(ω265μ2)b5(5(184cμ+87)μ2+(56cμ19)ω2)b4+8(2c(9cμ+11)ω23μ(cμ(45cμ+88)+7))b3+2(3c(14c(cμ+8)ω25μ(2cμ(7cμ+72)+25))16)b24c(3c(56cω2+μ(350cμ+111))+14)b105c2(c(cω2+μ(15cμ+8))+1))p8+(b2(34b2+60cb+21c2)ω4+(28μ2b4+16μ(9cμ+11)b3+(42cμ(3cμ+32)23)b2+36c(56cμ+5)b+84c2(5cμ+1))ω2+μ(230μ3b4+4μ2(135cμ+176)b3+15μ(3cμ(7cμ+64)+25)b2+4(3cμ(350cμ+111)+14)b+210c(2cμ(5cμ+3)+1))+8)p6+3((20μb3+2(7cμ48)b284cb+35c2)ω4(2μ(8μ2b3+14μ(cμ+8)b2+6(56cμ+5)b+7c(15cμ+4))3)ω2+μ2(μ(36μ2b36μ(7cμ+40)b24(175cμ+37)b35c(15cμ+8))35))p4+21(b2ω6+(2μ(10c+b(bμ12)))ω4+μ2(20cμ+b(bμ+32)μ+4)ω2+μ4(30cμ+b(bμ+20)μ+10))p2105(μω)(μ+ω)(μ2+ω2)2))/(315((b+c)p2+pμiω)2×(cp2μ+iω)2((b+c)p2+pμ+iω)2(p((b+c)p1)μ+iω)2(cp2+μ+iω)2((b+c)p2+p+μ+iω)2),\begin{split}&q_{2}(T,b,c)=\int_{Q}^{\Lambda}\Big{(}p^{2}(b^{2}(b+c)^{4}(8b^{2}+24cb+21c^{2})p^{14}+(b+c)^{2}(-56\mu b^{5}-2(109c\mu+16)b^{4}-8c(36c\mu+13)b^{3}\\ &-3c^{2}(42c\mu+65)b^{2}-210c^{3}b-105c^{4})p^{12}+(3(55\mu^{2}b^{6}+4\mu(65c\mu+14)b^{5}+2(5c\mu(46c\mu+29)+8)b^{4}+8c(c\mu(45c\mu\\ &+88)+7)b^{3}+5c^{2}(3c\mu(7c\mu+64)+25)b^{2}+4c^{3}(175c\mu+37)b+70c^{4}(3c\mu+1))-b^{2}(b+c)^{2}(5b^{2}-6cb-21c^{2})\omega^{2})p^{10}\\ &+(4\mu(\omega^{2}-65\mu^{2})b^{5}-(5(184c\mu+87)\mu^{2}+(56c\mu-19)\omega^{2})b^{4}+8(-2c(9c\mu+11)\omega^{2}-3\mu(c\mu(45c\mu+88)+7))b^{3}\\ &+2(3c(-14c(c\mu+8)\omega^{2}-5\mu(2c\mu(7c\mu+72)+25))-16)b^{2}-4c(3c(56c\omega^{2}+\mu(350c\mu+111))+14)b\\ &-105c^{2}(c(c\omega^{2}+\mu(15c\mu+8))+1))p^{8}+(-b^{2}(34b^{2}+60cb+21c^{2})\omega^{4}+(28\mu^{2}b^{4}+16\mu(9c\mu+11)b^{3}+(42c\mu(3c\mu+32)\\ &-23)b^{2}+36c(56c\mu+5)b+84c^{2}(5c\mu+1))\omega^{2}+\mu(230\mu^{3}b^{4}+4\mu^{2}(135c\mu+176)b^{3}+15\mu(3c\mu(7c\mu+64)+25)b^{2}\\ &+4(3c\mu(350c\mu+111)+14)b+210c(2c\mu(5c\mu+3)+1))+8)p^{6}+3((20\mu b^{3}+2(7c\mu-48)b^{2}-84cb+35c^{2})\omega^{4}\\ &-(2\mu(8\mu^{2}b^{3}+14\mu(c\mu+8)b^{2}+6(56c\mu+5)b+7c(15c\mu+4))-3)\omega^{2}+\mu^{2}(\mu(-36\mu^{2}b^{3}-6\mu(7c\mu+40)b^{2}-4(175c\mu\\ &+37)b-35c(15c\mu+8))-35))p^{4}+21(-b^{2}\omega^{6}+(2-\mu(10c+b(b\mu-12)))\omega^{4}+\mu^{2}(20c\mu+b(b\mu+32)\mu+4)\omega^{2}\\ &+\mu^{4}(30c\mu+b(b\mu+20)\mu+10))p^{2}-105(\mu-\omega)(\mu+\omega)(\mu^{2}+\omega^{2})^{2})\Big{)}/\Big{(}315((b+c)p^{2}+p-\mu-i\omega)^{2}\\ &\times(cp^{2}-\mu+i\omega)^{2}((b+c)p^{2}+p-\mu+i\omega)^{2}(p((b+c)p-1)-\mu+i\omega)^{2}(-cp^{2}+\mu+i\omega)^{2}(-(b+c)p^{2}+p+\mu+i\omega)^{2}\Big{)},\end{split} (59)
q3(T,b,c)=QΛ(105c8p16+8b7(cp2μ)p14840c7μp14+b6(95(μcp2)2+49ω2)p12+35c6(12(7μ2+ω2)7p2)p12+8b5(cp2μ)(55c2p4(110cμ+3)p2+55μ2+44ω2)p10+210c5μ(7p24(7μ2+3ω2))p10+b4(203ω4+(1222c2p4(2444cμ+111)p2+1222μ2)ω2+25(μcp2)2(43c2p4(86cμ+9)p2+43μ2))p8+35c4(5p415(7μ2+ω2)p2+6(35μ4+30ω2μ2+3ω4))p8140c3μ(5p45(7μ2+3ω2)p2+6(μ2+ω2)(7μ2+3ω2))p6+8b3(cp2μ)(190c4p8c2(760cμ+91)p6+(c(303cω2+2μ(570cμ+91))+3)p4((760cμ+91)μ2+3(202cμ+23)ω2)p2+(μ2+ω2)(190μ2+113ω2))p6+b2(259ω6+(1771c2p42(1771cμ+41)p2+1771μ2)ω4+(2765c4p828c2(395cμ+39)p6+3(14cμ(395cμ+52)+25)p428μ2(395cμ+39)p2+2765μ4)ω2+(μcp2)2(1253c4p82c2(2506cμ+561)p6+3(2cμ(1253cμ+374)+55)p42μ2(2506cμ+561)p2+1253μ4))p47c2(5p66(25μ2+3ω2)p4+15(35μ4+30ω2μ2+3ω4)p260(μ2+ω2)2(7μ2+ω2))p4+14cμ(5p62(25μ2+9ω2)p4+15(μ2+ω2)(7μ2+3ω2)p260(μ2+ω2)3)p2+8b(cp2μ)(70c6p12105c4(4cμ+1)p10+6c2(35c(cω2+μ(5cμ+2))+6)p8(c(7c(120cμ+19)ω2+2μ(35cμ(20cμ+9)+36))+1)p6+(210c2ω4+(14cμ(90cμ+19)+25)ω2+6μ2(35cμ(5cμ+2)+6))p47(μ2+ω2)×(4ω2+15μ(4cμ2+μ+4cω2))p2+70(μ2+ω2)3)p2+105ω835(p212μ2)ω6+7(p445μ2p2+90μ4)ω435μ2(p23μ2)(p2μ2)2+(13p6+126μ2p4525μ4p2+420μ6)ω2)/(105((b+c)p2+pμiω)2(cp2μ+iω)2×((b+c)p2+pμ+iω)2(p((b+c)p1)μ+iω)2(cp2+μ+iω)2((b+c)p2+p+μ+iω)2),\begin{split}&q_{3}(T,b,c)=\int_{Q}^{\Lambda}\Big{(}105c^{8}p^{16}+8b^{7}(cp^{2}-\mu)p^{14}-840c^{7}\mu p^{14}+b^{6}(95(\mu-cp^{2})^{2}+49\omega^{2})p^{12}+35c^{6}(12(7\mu^{2}+\omega^{2})-7p^{2})p^{12}\\ &+8b^{5}(cp^{2}-\mu)(55c^{2}p^{4}-(110c\mu+3)p^{2}+55\mu^{2}+44\omega^{2})p^{10}+210c^{5}\mu(7p^{2}-4(7\mu^{2}+3\omega^{2}))p^{10}+b^{4}(203\omega^{4}+(1222c^{2}p^{4}\\ &-(2444c\mu+111)p^{2}+1222\mu^{2})\omega^{2}+25(\mu-cp^{2})^{2}(43c^{2}p^{4}-(86c\mu+9)p^{2}+43\mu^{2}))p^{8}+35c^{4}(5p^{4}-15(7\mu^{2}+\omega^{2})p^{2}\\ &+6(35\mu^{4}+30\omega^{2}\mu^{2}+3\omega^{4}))p^{8}-140c^{3}\mu(5p^{4}-5(7\mu^{2}+3\omega^{2})p^{2}+6(\mu^{2}+\omega^{2})(7\mu^{2}+3\omega^{2}))p^{6}+8b^{3}(cp^{2}-\mu)(190c^{4}p^{8}\\ &-c^{2}(760c\mu+91)p^{6}+(c(303c\omega^{2}+2\mu(570c\mu+91))+3)p^{4}-((760c\mu+91)\mu^{2}+3(202c\mu+23)\omega^{2})p^{2}\\ &+(\mu^{2}+\omega^{2})(190\mu^{2}+113\omega^{2}))p^{6}+b^{2}(259\omega^{6}+(1771c^{2}p^{4}-2(1771c\mu+41)p^{2}+1771\mu^{2})\omega^{4}+(2765c^{4}p^{8}-28c^{2}(395c\mu\\ &+39)p^{6}+3(14c\mu(395c\mu+52)+25)p^{4}-28\mu^{2}(395c\mu+39)p^{2}+2765\mu^{4})\omega^{2}+(\mu-cp^{2})^{2}(1253c^{4}p^{8}-2c^{2}(2506c\mu+561)p^{6}\\ &+3(2c\mu(1253c\mu+374)+55)p^{4}-2\mu^{2}(2506c\mu+561)p^{2}+1253\mu^{4}))p^{4}-7c^{2}(5p^{6}-6(25\mu^{2}+3\omega^{2})p^{4}+15(35\mu^{4}+30\omega^{2}\mu^{2}\\ &+3\omega^{4})p^{2}-60(\mu^{2}+\omega^{2})^{2}(7\mu^{2}+\omega^{2}))p^{4}+14c\mu(5p^{6}-2(25\mu^{2}+9\omega^{2})p^{4}+15(\mu^{2}+\omega^{2})(7\mu^{2}+3\omega^{2})p^{2}-60(\mu^{2}+\omega^{2})^{3})p^{2}\\ &+8b(cp^{2}-\mu)(70c^{6}p^{12}-105c^{4}(4c\mu+1)p^{10}+6c^{2}(35c(c\omega^{2}+\mu(5c\mu+2))+6)p^{8}-(c(7c(120c\mu+19)\omega^{2}\\ &+2\mu(35c\mu(20c\mu+9)+36))+1)p^{6}+(210c^{2}\omega^{4}+(14c\mu(90c\mu+19)+25)\omega^{2}+6\mu^{2}(35c\mu(5c\mu+2)+6))p^{4}-7(\mu^{2}+\omega^{2})\\ &\times(4\omega^{2}+15\mu(4c\mu^{2}+\mu+4c\omega^{2}))p^{2}+70(\mu^{2}+\omega^{2})^{3})p^{2}+105\omega^{8}-35(p^{2}-12\mu^{2})\omega^{6}+7(p^{4}-45\mu^{2}p^{2}+90\mu^{4})\omega^{4}\\ &-35\mu^{2}(p^{2}-3\mu^{2})(p^{2}-\mu^{2})^{2}+(-13p^{6}+126\mu^{2}p^{4}-525\mu^{4}p^{2}+420\mu^{6})\omega^{2}\Big{)}/\Big{(}105((b+c)p^{2}+p-\mu-i\omega)^{2}(cp^{2}-\mu+i\omega)^{2}\\ &\times((b+c)p^{2}+p-\mu+i\omega)^{2}(p((b+c)p-1)-\mu+i\omega)^{2}(-cp^{2}+\mu+i\omega)^{2}(-(b+c)p^{2}+p+\mu+i\omega)^{2}\Big{)},\end{split} (60)

At finite temperatures, all of these integrals are finite upon introducing an UV-cutoff Λ\Lambda and can be evaluated by performing the Matsubara sums and momentum integrations numerically. Generally, the most significant contributions at low temperature come from the regions near the normal Fermi surfaces. An approximate ansatz for integrands of q1,2,3q_{1,2,3} can be constructed from first calculating the zero-temperature and the finite-temperature Matsubara sums, then expanding them around the Fermi surfaces. Whereas the first one captures the divergent behavior of integrand at zero temperature, the latter can be used to extract the temperature dependence. Our analysis shows that the coefficients q1,2q_{1,2} always stay positive, and hence sign of the coefficient q3q_{3} selects the superconducting ground state.

Appendix D Emergence of the BF surface

In this appendix we briefly explain why BF surfaces emerge in the TR-breaking superconducting states. To this end, we use the iterative procedure introduced in ref. Link and Herbut, 2020, where an effective Hamiltonian was found for the energy band crossing the chemical potential at a fixed momentum.

In the present case, the 12×1212\times 12 BdG Hamiltonian with

HBdG=(𝟙2×2(H0(p)μ)Δa(𝟙2×2γa)Δa(𝟙2×2γa)𝟙2×2(H0(p)μ))H_{\rm BdG}=\begin{pmatrix}\mathbb{1}_{2\times 2}\otimes(H_{0}(\textbf{p})-\mu)&\Delta_{a}(\mathbb{1}_{2\times 2}\otimes\gamma_{a})\\ \Delta_{a}^{\dagger}(\mathbb{1}_{2\times 2}\otimes\gamma_{a})&-\mathbb{1}_{2\times 2}\otimes(H_{0}(\textbf{p})-\mu)\end{pmatrix} (61)

can be reduced to a 6×66\times 6 Hamiltonian upon rearranging the blocks of the matrix to HBdG=𝟙2×2hBdGH_{\rm BdG}=\mathbb{1}_{2\times 2}\otimes h_{\rm BdG}. hBdGh_{\rm BdG} is defined as

hBdG=(H0(p)μγγ[H0(p)μ]),h_{\rm BdG}=\begin{pmatrix}H_{0}(\textbf{p})-\mu&\gamma\\ \gamma^{\dagger}&-[H_{0}(\textbf{p})-\mu]\end{pmatrix}\>, (62)

where the pairing matrix is given by γ=Δaγa\gamma=\Delta_{a}\gamma_{a}. The eigenstates of the Hamiltonian H0(p)H_{0}(\textbf{p}) are defined as ϕ±1(p)\phi_{\pm 1}(\textbf{p}) and ϕ0(p)\phi_{0}(\textbf{p}). We further use the following properties of the pairing matrices and the eigenstates, namely:

U0γaU0=γaT,U_{0}^{\dagger}\gamma_{a}U_{0}=\gamma_{a}^{\rm T}\>, (63)

and

ϕ1(p)\displaystyle\phi_{-1}(\textbf{p}) =\displaystyle= U0ϕ+1(p)\displaystyle U_{0}\phi_{+1}(\textbf{p})^{*} (64)
ϕ1(p)\displaystyle\phi_{1}(\textbf{p}) =\displaystyle= U0ϕ1(p)\displaystyle U_{0}\phi_{-1}(\textbf{p})^{*} (65)
ϕ0(p)\displaystyle\phi_{0}(\textbf{p}) =\displaystyle= U0ϕ0(p).\displaystyle U_{0}\phi_{0}(\textbf{p})^{*}\>. (66)

Hence, the BdG-Hamiltonian for H(p)H(\textbf{p}) which describes fermions with an angular momentum of L=1L=1 and a spin of S=1/2S=1/2 can be cast into the following form:

hBdG(p)=(E1X0A0BX¯E1D¯0C¯00DE0Y0AA¯0Y¯E0D¯00C0DE1XB¯0A¯0X¯E1),\displaystyle h_{\rm BdG}(\textbf{p})=\begin{pmatrix}E_{1}&X&0&A&0&B\\ \bar{X}&-E_{1}&\bar{D}&0&\bar{C}&0\\ 0&D&E_{0}&Y&0&A\\ \bar{A}&0&\bar{Y}&-E_{0}&\bar{D}&0\\ 0&C&0&D&E_{-1}&X\\ \bar{B}&0&\bar{A}&0&\bar{X}&-E_{-1}\end{pmatrix}\>, (67)

where the intra- and interband couplings are defined as

X\displaystyle X =\displaystyle= ϕ1(p)γϕ1(p)\displaystyle\phi_{1}^{\dagger}(\textbf{p})\gamma\phi_{1}(\textbf{p}) (68)
Y\displaystyle Y =\displaystyle= ϕ0(p)γϕ0(p)\displaystyle\phi_{0}^{\dagger}(\textbf{p})\gamma\phi_{0}(\textbf{p}) (69)
A\displaystyle A =\displaystyle= ϕ1(p)γϕ0(p)\displaystyle\phi_{1}^{\dagger}(\textbf{p})\gamma\phi_{0}(\textbf{p}) (70)
B\displaystyle B =\displaystyle= ϕ1(p)γϕ1(p)\displaystyle\phi_{1}^{\dagger}(\textbf{p})\gamma\phi_{-1}(\textbf{p}) (71)
C\displaystyle C =\displaystyle= ϕ1(p)γϕ+1(p)\displaystyle\phi_{-1}^{\dagger}(\textbf{p})\gamma\phi_{+1}(\textbf{p}) (72)
D\displaystyle D =\displaystyle= ϕ0(p)γϕ+1(p).\displaystyle\phi_{0}^{\dagger}(\textbf{p})\gamma\phi_{+1}(\textbf{p})\>. (73)

In the normal state, there can be up to three Fermi surfaces, since the curvature of the energy bands determines which energy bands intersect the Fermi level. Here, let us assume that the energy band E+1E_{+1} intersects the Fermi level once and study whether a BF surface emerges in the superconducting state. After integrating out the energy bands that are far above the chemical potential, the energy band closest to the chemical potential is described by the following effective Hamiltonian in 2nd order perturbation theory:

Hef=(E1XX¯E1)(|A|2E0|B|2E100|D|2E0+|C|2E1)H_{ef}=\begin{pmatrix}E_{1}&X\\ \bar{X}&-E_{1}\end{pmatrix}-\begin{pmatrix}-\frac{|A|^{2}}{E_{0}}-\frac{|B|^{2}}{E_{1}}&0\\ 0&\frac{|D|^{2}}{E_{0}}+\frac{|C|^{2}}{E_{1}}\end{pmatrix} (74)

The interband pairing between the different states introduces both a shift in the momentum and in the energy of the energybands of the BdG quasiparticles when ADA\neq D and CBC\neq B, which is the case if time-reversal symmetry is broken. The shift in the energy leads to the emergence of the BF surfaces.

References

  • Bradlyn et al. (2016) B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava,  and B. A. Bernevig, “Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals,” Science 353 (2016).
  • Link et al. (2020) J. M. Link, I. Boettcher,  and I. F. Herbut, “dd-wave superconductivity and Bogoliubov-Fermi surfaces in Rarita-Schwinger-Weyl semimetals,” Phys. Rev. B 101, 184503 (2020).
  • Butch et al. (2011) N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope,  and J. Paglione, “Superconductivity in the topological semimetal YPtBi,” Phys. Rev. B 84, 220504(R) (2011).
  • Bay et al. (2014) T.V. Bay, M. Jackson, C. Paulsen, C. Baines, A. Amato, T. Orvis, M.C. Aronson, Y.K. Huang,  and A. de Visser, “Low field magnetic response of the non-centrosymmetric superconductor YPtBi,” Sol. St. Commun. 183, 13–17 (2014).
  • Boettcher and Herbut (2016) I. Boettcher and I. F. Herbut, “Superconducting quantum criticality in three-dimensional Luttinger semimetals,” Phys. Rev. B 93, 205138 (2016).
  • Meinert (2016) M. Meinert, “Unconventional superconductivity in YPtBi and related topological semimetals,” Phys. Rev. Lett. 116, 137001 (2016).
  • Brydon et al. (2016) P. M. R. Brydon, L. Wang, M. Weinert,  and D. F. Agterberg, “Pairing of j=3/2j=3/2 fermions in half-Heusler superconductors,” Phys. Rev. Lett. 116, 177001 (2016).
  • Smidman et al. (2017) M. Smidman, M. B. Salamon, H. Q. Yuan,  and D. F. Agterberg, “Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review,” Rep. Prog. Phys. 80, 036501 (2017).
  • Agterberg et al. (2017) D. F. Agterberg, P. M. R. Brydon,  and C. Timm, “Bogoliubov-Fermi surfaces in superconductors with broken time-reversal symmetry,” Phys. Rev. Lett. 118, 127001 (2017).
  • Ghorashi et al. (2017) S. A. A. Ghorashi, S. Davis,  and M. S. Foster, “Disorder-enhanced topological protection and universal quantum criticality in a spin-32\frac{3}{2} topological superconductor,” Phys. Rev. B 95, 144503 (2017).
  • Yang et al. (2017) W. Yang, T. Xiang,  and C. Wu, “Majorana surface modes of nodal topological pairings in spin-32\frac{3}{2} semimetals,” Phys. Rev. B 96, 144514 (2017).
  • Savary et al. (2017) L. Savary, J. Ruhman, J. W. F. Venderbos, L. Fu,  and P. A. Lee, “Superconductivity in three-dimensional spin-orbit coupled semimetals,” Phys. Rev. B 96, 214514 (2017).
  • Boettcher and Herbut (2018a) I. Boettcher and I. F. Herbut, “Unconventional superconductivity in Luttinger semimetals: theory of complex tensor order and the emergence of the uniaxial nematic state,” Phys. Rev. Lett. 120, 057002 (2018a).
  • Mandal (2018) I. Mandal, “Fate of superconductivity in three-dimensional disordered Luttinger semimetals,” Ann. of Phys. 392, 179–195 (2018).
  • Venderbos et al. (2018) J. W. F. Venderbos, L. Savary, J. Ruhman, P. A. Lee,  and L. Fu, “Pairing states of spin-32\frac{3}{2} fermions: symmetry-enforced topological gap functions,” Phys. Rev. X 8, 011029 (2018).
  • Boettcher and Herbut (2018b) I. Boettcher and I. F. Herbut, “Critical phenomena at the complex tensor ordering phase transition,” Phys. Rev. B 97, 064504 (2018b).
  • Kim et al. (2018) H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon, D. F. Agterberg, M. A. Tanatar, R. Prozorov,  and J. Paglione, “Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal,” Science Advances 4, eaao4513 (2018).
  • Sim et al. (2019a) G. Sim, A. Mishra, M. J. Park, Y. B. Kim, G. Y. Cho,  and S. Lee, “Topological d+sd+s wave superconductors in a multiorbital quadratic band touching system,” Phys. Rev. B 100, 064509 (2019a).
  • Yu and Liu (2018) J. Yu and C.-X. Liu, “Singlet-quintet mixing in spin-orbit coupled superconductors with j=32j=\frac{3}{2} fermions,” Phys. Rev. B 98, 104514 (2018).
  • Szabo et al. (2018) A. Szabo, R. Moessner,  and B. Roy, “Interacting spin-3/2 fermions in a Luttinger (semi)metal: competing phases and their selection in the global phase diagram,”   (2018), arXiv:1811.12415 .
  • Roy et al. (2019) B. Roy, S. A. A. Ghorashi, M. S. Foster,  and A. H. Nevidomskyy, “Topological superconductivity of spin-3/23/2 carriers in a three-dimensional doped luttinger semimetal,” Phys. Rev. B 99, 054505 (2019).
  • Fulga and Stern (2017) I. C. Fulga and Ady Stern, “Triple point fermions in a minimal symmorphic model,” Phys. Rev. B 95, 241116 (2017).
  • Zhu et al. (2017) Y.-Q. Zhu, D.-W. Zhang, H. Yan, D.-Y. Xing,  and S.-L. Zhu, “Emergent pseudospin-1 maxwell fermions with a threefold degeneracy in optical lattices,” Phys. Rev. A 96, 033634 (2017).
  • Hu et al. (2018) H. Hu, J. Hou, F. Zhang,  and C. Zhang, “Topological triply degenerate points induced by spin-tensor-momentum couplings,” Phys. Rev. Lett. 120, 240401 (2018).
  • Rao et al. (2019) Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. W. Qian,  and H. Ding, “Observation of unconventional chiral fermions with long Fermi arcs in CoSi,” Nature 567, 496–499 (2019).
  • Chapai et al. (2019) R. Chapai, Y. Jia, W. A. Shelton, R. Nepal, M. Saghayezhian, J. F. DiTusa, E. W. Plummer, C. Jin,  and R. Jin, “Fermions and bosons in nonsymmorphic PdSb2{\mathrm{{P}d{S}b}}_{2} with sixfold degeneracy,” Phys. Rev. B 99, 161110 (2019).
  • Lin and Nandkishore (2018) Y.-P. Lin and R. M. Nandkishore, “Exotic superconductivity with enhanced energy scales in materials with three band crossings,” Phys. Rev. B 97, 134521 (2018).
  • Lin (2020) Y.-P. Lin, “Chiral flat band superconductivity from symmetry-protected three-band crossings,” Phys. Rev. Research 2, 043209 (2020).
  • Sim et al. (2019b) G. Sim, M. J. Park,  and S. Lee, “Triplet-Superconductivity in triple-Band crossings,”  (2019b), arXiv:1909.04015 [cond-mat.str-el] .
  • Sauls and Serene (1978) J. A. Sauls and J. W. Serene, “p23{}^{3}p_{2} pairing near the transition temperature in neutron-star matter,” Phys. Rev. D 17, 1524–1528 (1978).
  • Mermin (1974) N. D. Mermin, “d-wave pairing near the transition temperature,” Phys. Rev. A 9, 868–872 (1974).
  • Kawaguchi and Ueda (2011) Y. Kawaguchi and M. Ueda, “Symmetry classification of spinor Bose-Einstein condensates,” Phys. Rev. A 84, 053616 (2011).
  • Janssen and Herbut (2015) L. Janssen and I. F. Herbut, “Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching,” Phys. Rev. B 92, 045117 (2015).
  • Herbut et al. (2019) I. F. Herbut, I. Boettcher,  and S. Mandal, “Ground state of the three-dimensional BCS dd-wave superconductor,” Phys. Rev. B 100, 104503 (2019).
  • Stintzing and Zwerger (1997) S. Stintzing and W. Zwerger, “Ginzburg-Landau theory of superconductors with short coherence length,” Phys. Rev. B 56, 9004–9014 (1997).
  • Herbut (2000) I. F. Herbut, “Zero-temperature d\mathit{d}-wave superconducting phase transition,” Phys. Rev. Lett. 85, 1532 (2000).
  • Timm et al. (2017) C. Timm, A. P. Schnyder, D. F. Agterberg,  and P. M. R. Brydon, “Inflated nodes and surface states in superconducting half-heusler compounds,” Phys. Rev. B 96, 094526 (2017).
  • Bzdušek and Sigrist (2017) T. Bzdušek and M. Sigrist, “Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems,” Phys. Rev. B 96, 155105 (2017).
  • Brydon et al. (2018) P. M. R. Brydon, D. F. Agterberg, H. Menke,  and C. Timm, “Bogoliubov-Fermi surfaces: general theory, magnetic order, and topology,” Phys. Rev. B 98, 224509 (2018).
  • Menke et al. (2019) H. Menke, C. Timm,  and P. M. R. Brydon, “Bogoliubov-Fermi surfaces stabilized by spin-orbit coupling,” Phys. Rev. B 100, 224505 (2019).
  • Lapp et al. (2020) C. J. Lapp, G. Börner,  and C. Timm, “Experimental consequences of Bogoliubov-Fermi surfaces,” Phys. Rev. B 101, 024505 (2020).
  • Setty et al. (2020) C. Setty, S. Bhattacharyya, Y. Cao, A. Kreisel,  and P. J. Hirschfeld, “Topological ultranodal pair states in iron-based superconductors,” Nature Communications 11 (2020), 10.1038/s41467-020-14357-2.
  • Link and Herbut (2020) J. M. Link and I. F. Herbut, “Bogoliubov-Fermi Surfaces in noncentrosymmetric multicomponent superconductors,” Phys. Rev. Lett. 125, 237004 (2020).
  • Herbut and Link (2021) I. F. Herbut and J. M. Link, “Bogoliubov-Fermi surface with inversion symmetry and electron-electron interactions: Relativistic analogies and lattice theory,” Phys. Rev. B 103, 144517 (2021).