This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

TOI-6324b: An Earth-Mass Ultra-Short-Period Planet Transiting a Nearby M Dwarf

Rena A. Lee NSF Graduate Research Fellow Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Fei Dai Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Andrew W. Howard Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Samuel Halverson Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Jonathan Gomez Barrientos Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Michael Greklek-McKeon Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Heather A. Knutson Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Benjamin J. Fulton Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Guðmundur Stefánsson Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Jack Lubin Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA Howard Isaacson Department of Astronomy, 501 Campbell Hall, University of California, Berkeley, CA 94720, USA Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia Casey L. Brinkman NSF Graduate Research Fellow Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Nicholas Saunders NSF Graduate Research Fellow Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Hey Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Huber Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Lauren M. Weiss Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA Leslie A. Rogers Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA Diana Valencia Centre for Planetary Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada Mykhaylo Plotnykov Department of Physics, University of Toronto, Toronto, ON M5S 3H4, Canada Kimberly Paragas Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Renyu Hu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Division of Geological and Planetary Sciences, 1200 E California Blvd, Pasadena, CA, 91125, USA Te Han Department of Physics & Astronomy, The University of California, Irvine, Irvine, CA 92697, USA Erik A. Petigura Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA Ryan Rubenzahl Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA David R. Ciardi NASA Exoplanet Science Institute/Caltech-IPAC, California Institute of Technology, Pasadena, CA 91125, USA Aaron Householder Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Gregory J. Gilbert Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA J. M. Joel Ong NASA Hubble Fellow Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Jingwen Zhang NASA FINESST Fellow Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Jacob Luhn Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Luke Handley Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Corey Beard NASA FINESST Fellow Department of Physics & Astronomy, The University of California, Irvine, Irvine, CA 92697, USA Steven Giacalone Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Rae Holcomb Department of Physics & Astronomy, The University of California, Irvine, Irvine, CA 92697, USA Judah Van Zandt Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA Ashley D. Baker Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA Max Brodheim W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA Matt Brown W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA David Charbonneau Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA Karen A. Collins Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA Ian J. M. Crossfield Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA William Deich UC Observatories, University of California, Santa Cruz, CA 95064, USA Xavier Dumusque Observatoire Astronomique de l’Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland Steven R. Gibson Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA Emily Gilbert Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Grant M. Hill W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA Bradford Holden UC Observatories, University of California, Santa Cruz, CA 95064, USA Jon M. Jenkins NASA Ames Research Center, Moffett Field, CA 94035, USA Stephen Kaye Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA Russ R. Laher NASA Exoplanet Science Institute/Caltech-IPAC, California Institute of Technology, Pasadena, CA 91125, USA Kyle Lanclos W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA W. Garett Levine Department of Astronomy, Yale University, New Haven, CT 06511, USA Joel Payne W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA Alex S. Polanski Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA John O’Meara W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA George R. Ricker Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Kodi Rider Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA Paul Robertson Department of Physics & Astronomy, The University of California, Irvine, Irvine, CA 92697, USA Arpita Roy Astrophysics & Space Institute, Schmidt Sciences, New York, NY 10011, USA Joshua E. Schlieder NASA’s Goddard Space Flight Center, Greenbelt, MD 20771, USA Christian Schwab School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia Sara Seager Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Abby P. Shaum Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA Martin M. Sirk Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA Stephanie Striegel SETI Institute, Mountain View, CA 94043 USA NASA Ames Research Center, Moffett Field, CA 94035, USA Johanna Teske Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015, USA John Valliant W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA Roland Vanderspek Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Gautam Vasisht Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Josh Walawender W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA Sharon Xuesong Wang Department of Astronomy, Tsinghua University, Beijing 100084, China Joshua N. Winn Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540, USA Edward Wishnow Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA Sherry Yeh W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA
Abstract

We report the confirmation of TOI-6324 b, an Earth-sized (1.059 ±\pm 0.041 R) ultra-short-period (USP) planet orbiting a nearby (\sim20 pc) M dwarf. Using the newly commissioned Keck Planet Finder (KPF) spectrograph, we have measured the mass of TOI-6324 b 1.17 ±\pm 0.22 M. Because of its extremely short orbit of just \sim6.7 hours, TOI-6324 b is intensely irradiated by its M dwarf host, and is expected to be stripped of any thick, H/He envelope. We were able to constrain its interior composition and found an iron core mass fraction (CMF = 27±\pm37%) consistent with that of Earth (\sim33%) and other confirmed USPs. TOI-6324 b is the closest to Earth-sized USP confirmed to date. TOI-6324 b is a promising target for JWST phase curve and secondary eclipse observations (Emission Spectroscopy Metric = 25) which may reveal its surface mineralogy, day-night temperature contrast, and possible tidal deformation. From 7 sectors of TESS data, we report a tentative detection of the optical phase curve variation with an amplitude of 42±2842\pm 28 ppm.

1 Introduction

Detecting and characterizing Earth-like planets is a leading pursuit in the field of exoplanetary astronomy. Photometric surveys, such as the Transiting Exoplanet Survey Satellite (TESS) mission (Ricker et al., 2015), have enabled the identification of hundreds of Earth-sized planets and planet candidates. To begin to explore the interiors of these distant worlds, we require precise mass and radius measurements. However, true Earth analogs, with radial velocity (RV) semi-amplitudes on the order of \sim10 cm s-1, are not yet routinely detectable even with the current state-of-the-art instrumentation. The best insight into terrestrial planet composition, therefore, is currently offered by Earth-sized ultra-short-period planets (USPs; Sanchis-Ojeda et al., 2014) whose RV semi-amplitudes are typically an order of magnitude larger than their longer-period counterparts.

USPs (Rp << 2R, P<orb{}_{\rm orb}\,< 1 d) are expected to be stripped rocky cores (Sanchis-Ojeda et al., 2014; Lundkvist et al., 2016), since they are so intensely irradiated by their host stars (>> 650 S around Sun-like stars; Lundkvist et al., 2016). This has been observationally confirmed via transmission and emission spectroscopy for several USPs (e.g., GJ 1252 b, LHS 3844 b and GJ 367 b, Crossfield et al., 2022; Kreidberg et al., 2019; Zhang et al., 2024, respectively). Precise mass and radius measurements of USPs therefore allow us to directly probe their compositions, with fewer unknown parameters than planets that may have a gaseous atmosphere. Still, non-negligible volatile envelopes have been suggested to be present on larger (\sim1.5-2 R) USPs, such as TOI-561 b (Brinkman et al., 2023) and 55 Cnc e (Demory et al., 2016; Tsiaras et al., 2016; Dai et al., 2019), though there may be other reasons for their anomolously low densities. Earth-sized and smaller USPs may be less likely to retain secondary atmospheres because of their lower escape velocities. Precise composition constraints for such planets are paramount for informing the formation pathways of terrestrial planets. For example, confirming a more complete sample of Earth-sized and smaller exoplanets may verify the mass-dependence of compositional outcomes during the final stages of the giant impact phase of planet formation (e.g., Scora et al., 2022).

In addition to being ideal for precise interior composition studies, USPs are especially promising targets for detailed observations of their surface characteristics with the James Webb Space Telescope (JWST). TOI-6324 b, confirmed in the present work, has one of the highest emission spectroscopy metrics (ESM = 25; Kempton et al., 2018), which is a proxy for the expected signal-to-noise of secondary eclipse measurements by JWST. It is one of the most similar in size to Earth, even among previously-selected JWST targets. Measuring the phase offset, longitudinal temperature distribution (day-night temperature contrast), and albedo from the phase curve will reveal the presence or absence of a secondary atmosphere (e.g., Demory et al., 2016; Angelo & Hu, 2017; Kreidberg et al., 2019; Hu et al., 2024; Weiner Mansfield et al., 2024). Furthermore, USPs may be subject to significant deformation due to tidal interactions (Dai et al., 2024), and the phase curve may constrain the degree of tidal distortion (Price & Rogers, 2020). Secondary eclipse emission spectra, in the absence of a secondary atmosphere, will constrain the dominant surface rock type of the planet (Hu et al., 2012; Kreidberg et al., 2019; Whittaker et al., 2022; Zhang et al., 2024).

In this work, we set out to confirm and further characterize TOI-6324 b. This paper is organized as follows: we detail the properties of the host star TOI-6324 (TIC 372207328) in Sec. 2. We present our transit modeling, phase curve modeling, and radius measurement of TOI-6324 b in Sec. 3, and our RV monitoring and mass measurement in Sec. 4. We discuss the interior composition and possible tidal deformation of TOI-6324 b in Sec. 5, along with prospective JWST observations. We conclude with a summary of our key findings in Sec. 6.

2 Host Star Properties

2.1 Spectroscopic Analysis

A spectrum of TOI-6324 (TIC 372207328; 2MASS J22032128+6729596; Gaia DR2 2220012421430629632) was obtained with the High Resolution Echelle Spectrometer (HIRES; Vogt et al., 2014) on the 10-m Keck I Telescope situated at Mauna a Wākea (Maunakea). The observation was taken on 2023-11-26UT at 900 s exposure time, with a peak SNR of \sim150. We employed the SpecMatch-Emp routine (Yee et al., 2017) to empirically derive spectroscopic parameters by cross-matching the observed HIRES spectrum with an extensive library of well-calibrated stellar spectra observed by the California Planet Search collaboration. This routine mitigates the significant systematic effects found in direct spectral modeling of low-mass stars, such as poor continuum identification and normalization, or incomplete molecular line lists, which are especially troublesome for cool stars. From SpecMatch-Emp we find Teff = 3247 ±\pm 70 K, consistent with the TESS Input Catalog estimate (TIC; Stassun et al., 2018; Muirhead et al., 2018). We also find [Fe/H] = -0.32 ±\pm 0.09, consistent with the estimate from Dittmann et al. (2016), and an upper limit on vsiniv\sin i of < 2 km s-1.

We utilized the Python package isoclassify (Huber et al., 2017) to derive stellar parameters based on our derived spectroscopic stellar parameters and Gaia astrometry. Isoclassify directly computes the stellar radius (RR_{\star}) using the Stefan-Boltzmann Law, based on the observed K-band magnitude, Gaia parallax, and Teff. We adopted the MESA Isochrones and Stellar Tracks (MIST; Choi et al., 2016) and adhered to the default settings recommended by isoclassify. We compared our results with the empirical M dwarf mass-luminosity relation from Mann et al. (2019), and found that they are consistent within model uncertainties. The derived stellar parameters are given in the top section of Table 1.

2.2 Additional Companion Search

To validate transiting exoplanets and assess possible contamination of bound or unbound companions on the derived planetary radii (Ciardi et al., 2015), we observed TOI-6324 using near-infrared adaptive optics (AO) imaging and optical speckle imaging. The AO observations were conducted on 2023-08-05UT using NIRC2 on Keck-II as part of the K2 and TESS follow-up and validation survey by Schlieder et al. (2021). We utilized a 3-point dither pattern. The narrow-angle mode provided a field of view of  10″ with a pixel scale of 0.0099442\sim 0.0099442\arcsec/pixel, using the narrow-band Kcont filter (λo=2.2706;Δλ=0.0296μ(\lambda_{o}=2.2706;\Delta\lambda=0.0296~\mum).

Refer to caption
Figure 1: NIR AO imaging and sensitivity curve. The black points represent the 5σ\sigma detection limit and the purple region represents the 1σ\sigma azimuthal dispersion of the contrast determination. Inset: AO image of TOI-6324 showing no evidence for a close-in companion.

Each frame had an integration time of 2.9 seconds, totaling 26.1 seconds on-source. Flat fields were taken on-sky, dark subtracted, and median averaged, and sky frames were created from the median average of dithered science frames. These were sky-subtracted and flat-fielded, resulting in a combined image with a resolution of 0.053″. Sensitivity was assessed by injecting simulated sources around the primary target at 20 intervals, scaling brightness until detection at 5σ\sigma significance (Furlan et al., 2017). We ruled out δ\deltamag <<7 companions within 0.5″ (Fig. 1).

In addition to high contrast imaging, we investigated Gaia DR3 to search for stellar companions to TOI-6324. We identified no co-moving sources in Gaia DR3 within a radius of 10″. We further assessed the astrometry of TOI-6324 for evidence of a stellar companion. The Gaia DR3 Renormalised Unit Weight Error (RUWE) value represents the reduced χ2\chi^{2} of Gaia’s single-star astrometric solution and can be used to identify unresolved binaries (Belokurov et al., 2020) at separations of \sim0.1-1.0″ (Wood et al., 2021). For TOI-6324, RUWE = 1.165, well below the empirical threshold (RUWE = 1.4) at which binarity is likely.

2.3 Age

It is notoriously difficult to determine the age of M dwarfs using the methods applied to more massive stars. Their asteroseismic oscillations are too small to be detected with current capabilities (Rodr´ıguez et al., 2016; Berdiñas et al., 2017), and their isochrone ages are poorly calibrated (Engle & Guinan, 2018). To assess the age of TOI-6324, we turned to gyrochronology (Barnes, 2003, 2007), which relates the rotation rate of a star to its age based on empirically-calibrated, mass-dependent spin-down rates (Skumanich, 1972; Barnes, 2007). However, we did not recover a robust rotation signal from a Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) of TESS (Ricker et al., 2015) light curves (further described in Sec. 3) using a standard lightkurve routine (Lightkurve Collaboration et al., 2018). This may be attributed to the approximate upper limit of P=13.7P=13.7 days imposed by the length of the TESS orbit. Older stars with rotation periods longer than 13.7 days are difficult to age-date using TESS photometry alone. Newton et al. (2016) also report a non-detection of the rotation period of TOI-6324, utilizing long-term photometric monitoring data from MEarth (Berta et al., 2012; Irwin et al., 2015). Furthermore, using BANYAN Σ\Sigma (Gagné et al., 2018), we found the Gaia DR3 kinematics of TOI-6324 are consistent with that of field stars. It is therefore unlikely that TOI-6324 is a member of any known nearby young moving groups. We are unable to derive a precise age estimate based on gyrochronology or by association, but it is likely that TOI-6324 is not a young (\lesssim100 Myr) star.

We calculated the probability that TOI-6324 is a member of the thick disk using the prescription of Bensby et al. (2014). TOI-6324 has a TD/D=84TD/D=84, i.e., it is likely a thick disk member based on its Galactic UVW velocity (U, V, W = 9.4±\pm1.0, -65.7±\pm2.1, -60.4±0.5\pm 0.5 km s-1) after correcting for the Local Standard of Rest (LSR). This is consistent with the trend that USPs tend to occur around older stars (Schmidt et al., 2024). We adopted the LSR as U,V,W = 10.0±1.0\pm 1.0, 11.0±2.0\pm 2.0, 7.0±0.5\pm 0.5 km s-1 from Bland-Hawthorn & Gerhard (2016). Unfortunately, we do not have [α/Fe][\alpha/Fe] data to back up the thick disk membership using the host star’s abundances, though we do find a non-detection of Hα\alpha emission in the HIRES spectrum (Sec. 2.1).

Table 1: TOI-6324 system parameters. For parameters derived in this work, the Value column reports median posterior values and 68.3% confidence interval.
Parameter Symbol Prior Posterior (Median and 68.1% CI)
Stellar
TIC ID 372207328
R.A. α\alpha 22:03:22.69
Dec. δ\delta +67:29:55.2
VV (mag) 13.386±0.02613.386\pm 0.026
KsK_{s} (mag) 8.691±0.0228.691\pm 0.022
Effective Temperature (K) T\texteffT_{\text{eff}} 3247±703247\pm 70
Surface Gravity(\textcms2)~(\text{cm~s}^{-2}) logg\log~g 4.93±0.0064.93\pm 0.006
Iron Abundance (\textdex)~(\text{dex}) [\textFe/H][\text{Fe/H}] 0.32±0.09-0.32\pm 0.09
Rotational Broadening (\textkms1~(\text{km~s}^{-1}) v\textsiniv~\text{sin}~i <<2
Stellar Mass(M)~(M_{\odot}) MM_{\star} 0.269±0.0120.269\pm 0.012
Stellar Radius(R)~(R_{\odot}) RR_{\star} 0.293±0.0100.293\pm 0.010
Stellar Density (g cm-3) ρ\rho_{\star} 10.7±1.110.7\pm 1.1
Limb Darkening q1 (Kipping, 2013) UU (0, 1) 0.40±0.280.40\pm 0.28
Limb Darkening q2 (Kipping, 2013) UU (0, 1) 0.130.13+0.32{}^{+0.32}_{-0.13}
Parallax (mas) π\pi 48.6414±0.014648.6414\pm 0.0146
Distance (pc) d 20.5586±0.006120.5586\pm 0.0061
Planetary
Emission Spectroscopy Metric ESM 25
Equilibrium Temperature T\texteqT_{\text{eq}} 1216±601216\pm 60
Planet/Star Radius Ratio Rp/RR_{\rm p}/R_{\star} 𝒩\mathcal{N}\,\propto transit depth 0.0331±0.00060.0331\pm 0.0006
Time of Conjunction (BJD-2457000) TcT_{c} 𝒩\mathcal{N} (1738.5829, 10) 1739.97928±0.000681739.97928\pm 0.00068
Impact Parameter bb UU (0, 1+Rp/R) 0.75±0.030.75\pm 0.03
Scaled Semi-major Axis a/Ra/R_{\star} 3.17±0.203.17\pm 0.20
Orbital Inclination (deg) ii 74.6±0.774.6\pm 0.7
Orbital Eccentricity ee 0 (fixed) 0
Orbital Period (days) PorbP_{\rm orb} 𝒩\mathcal{N} (0.279211, 10) 0.2792210±0.000000100.2792210\pm 0.00000010
Planetary Radius (RR_{\oplus}) RpR_{\rm p} 1.059±0.0411.059\pm 0.041
RV Semi-amplitude (m s-1) KK Jeffreys (0.1, 30) 2.69±0.512.69\pm 0.51
Planetary Mass (MM_{\oplus}) MpM_{\rm p} 1.17±0.221.17\pm 0.22
KPF RV Jitter (m s-1) σjit,KPF\sigma_{\rm jit,KPF} Jeffreys (0.1, 10) 1.31±0.331.31\pm 0.33
GP Kernel Amplitude (m s-1) h Jeffreys (0.1, 100) 21.442.81+3.66{}^{+3.66}_{-2.81}
GP Length (days) ll Jeffreys (2P, 2τ\sqrt{2}\tau) 1.76 0.40+0.29{}^{+0.29}_{-0.40}

Note. — TICv8; Gaia DR3; T\texteq{}^{*}T_{\text{eq}} assumes a low albedo of AB=0.1

3 Photometric Analysis

3.1 Observations & Data

TOI-6324 was observed by TESS during Sectors 16, 17, 18, 24, 58, 77, and 78 (September-November 2019, April-May 2020, November 2022, and April-May 2024). The data were processed by the TESS Science Processing Operations Center (SPOC at NASA Ames Research Center; Jenkins et al., 2016) and the MIT Quick-Look Pipeline (QLP; Huang et al., 2020). The transit signal of TOI-6324 b at 0.279 days was first alerted in a faint-star search in QLP, reported on the Exoplanet Follow-up Observing Program (ExoFOP 111https://exofop.ipac.caltech.edu/tess/target.php?id=372207328), and the SPOC pipeline detected the transit signature in every sector observed. We collected the 2-minute cadence SPOC light curves using the Python package lightkurve (Lightkurve Collaboration et al., 2018). We applied transit-depth bias correction to the Year 2 data (Sectors 16, 17, 18, and 24) which were affected by a sky background bias issue documented in the S27 Data Release Notes. We utilized the Presearch Data Conditioning Simple Aperture Photometry (PDC-SAP) light curves (Smith et al., 2012; Stumpe et al., 2012, 2014; Twicken et al., 2010) for transit modeling after removing data points with non-zero data quality flags.

3.2 Transit Modeling

To prepare the PDC-SAP light curve for transit modeling we first removed instrumental and long-term stellar systematics using the wōtan Python package (Hippke et al., 2019). We first masked the transit signal of TOI-6324 b based on the QLP transit parameters. We then used an iterative sigma-clipping spline fit (rspline) with a width of 0.5 days to detrend the transit-masked light curve.

Our transit model was constructed using the exoplanet package (Foreman-Mackey et al., 2021), a gradient-based probabilistic inference toolkit for modeling time-series astronomical data. We used the transit parameters reported by QLP (depth, duration, orbital period, and epoch) as the basis for uninformative priors (either uniform or broad normal distributions) to initialize our model. This allowed for a thorough and unconstrained search of the parameter space. We additionally imposed Gaussian stellar radius and density priors derived in this work (see Sec. 2 and Table 1). Limb darkening coefficients q1 and q2 were re-parameterized following the following the quadratic law formulation of Kipping (2013). We assumed a circular orbit (ee = 0) for model simplicity. Since the orbital period is extremely short, we expect this to be a valid assumption due to tidal circularization. The transit model further included the planet-to-star radius ratio Rp/RR_{\rm p}/R_{\star} derived from transit depth, and the impact parameter bb. The orbital inclination ii was derived from bb. We fit all transits assuming a constant period, since we did not identify any significant transit-timing variations.

A maximum a posteriori (MAP) transit model solution was determined from an initial non-linear optimzation using pyMC3 and set as the initial condition for sampling. We then explored the parameter space using No U-Turn Sampling (NUTS; Hoffman & Gelman, 2011) in a gradient-based Hamiltonian Monte Carlo (HMC; Neal, 2011; Betancourt, 2017) framework in pyCM3 to generate the transit parameter posteriors. We ran 2 chains for 10000 draws, with 5000 iterations to tune (15,000 steps total). We list the median values of the posterior distributions for the transit parameters in Table 1 along with the 68.3% confidence intervals. Fig. 2 shows the binned and phase-folded PDC-SAP light curve of TOI-6324, with a robust detection of TOI-6324 b, along with the best-fit transit model. We report a radius of RpR_{\rm p} = 1.059 ±\pm 0.041 R for TOI-6324 based on the best-fit planet-to-star radius ratio Rp/RR_{\rm p}/R_{\star} = 0.0331 ±\pm 0.0006 and our derived stellar radius of RR_{\star} = 0.293 ±\pm 0.010 R(Table 1).

Refer to caption
Figure 2: Binned and phase-folded SPOC PDC-SAP light curve of TOI-6324 revealing the transit signal of TOI-6324 b, with the best-fit transit model over-plotted in blue. The residuals (data minus model) are shown in the bottom panel.

3.3 Additional Photometry Sources

In addition to the SPOC light curves, we obtained TESS-Gaia light curves (TGLC; Han & Brandt, 2023), which are created from FFIs forward-modeled with the effective point-spread function (PSF) to remove contamination from nearby stars. Based on Gaia DR3 positions and magnitudes, these light curves achieve a very high-treatment account of dilution. We performed the identical analysis on the TGLC light curves, and find RpR_{\rm p} = 1.075 ±\pm 0.05 R  consistent with the result from the SPOC light curves within 1σ\sigma. Furthermore, TOI-6324 b was observed with the 200-in Hale Telescope at Palomar Observatory for transit validation (Gomez Barrientos et al., 2024). The radius measurement of Gomez Barrientos et al. (2024), using both ground-based and TESS SPOC light curves, is consistent with the measurement from this work.

3.4 Additional Transiting Planet Search

No additional transiting planet candidates of TOI-6324 have been reported by QLP nor SPOC. To search for additional transit signals in the PDC-SAP light curves described in Sec. 3.2, we masked the transits of TOI-6324 b and performed a Box-Least-Square (BLS; Kovács et al., 2002) analysis using the lightcurve.to_periodogram function of lightkurve (Lightkurve Collaboration et al., 2018). We allowed for periods between 0.1 and 30 days, and transit durations between 0.1 and 2.15 hr. We phase-folded the light curve on the significant periodic signals from this search, and we did not identify any additional planetary transit signals.

3.5 Phase Curve

TOI-6324 b is \sim20% from the Roche limit, making it likely to be tidally distorted (see Sec. 5.3). We searched the TESS light curves for evidence of phase curve variation and secondary eclipse signal from TOI-6324 b. The light curve was iteratively sigma-clipped and detrended in the same manner as in Sec. 3.2, but with a wider spline width of 2Porb2*P_{orb} or \sim13.4 hr, to ensure any phase curve signal was not removed in the detrending step. The light curve was then phase-folded and binned to \sim10 minute intervals (50 bins total). We used batman (Kreidberg, 2015) to construct a secondary eclipse model based on the transit parameters derived in Sec. 3.2 (Table 1), but with the limb darkening coefficients (u1, u2) set to 0. The eclipse time (tsect_{sec}) was fixed to a 0.5 phase offset from the primary transit time.

In addition to the secondary eclipse, we modeled the out-of-eclipse phase curve variation, initially characterized by a combination of the illumination effect from reflected stellar light (AillA_{ill}), an offset of the peak illumination effect (θ\theta), and ellipsoidal light variation (AELVA_{ELV}). AillA_{ill} was fixed to be the same as the secondary eclipse depth (δsec\delta_{sec}). We found that the TESS data do not have sufficient SNR to robustly constrain θ\theta, and thus we set θ=0\theta=0 for model simplicity.

The ellipsoidal light variation AELVA_{ELV} can be due to both the tidal distortion of the star and the planet itself. We estimated that the stellar component is likely smaller than 1 ppm (e.g. Faigler et al., 2012), however the planetary distortion can be substantial given the extremely short orbital period of the planet. We compared two phase curve models: with and without the ellipsoidal light variation AELVA_{ELV}. Combined with the secondary eclipse model, the best-fit solutions were determined using the Levenberg-Marquardt least-squares likelihood maximization method (lmfit; Newville et al., 2014). We employed a nested sampling routine using dynesty (Speagle, 2020; Koposov et al., 2024) to sample the posteriors and compare the Bayesian evidence (log(Z)\log(Z)) of the two models, and found that the non-ELV model is preferred over the ELV-inclusive model (Δlog(Z)=5\Delta\log(Z)=5). We show in Fig. 3a the best-fit phase curve models with and without ELV. The posterior medians of the non-ELV and ELV models are consistent within 1σ1\sigma uncertainties, and from the preferred non-ELV model we find δsecAill=42±28\delta_{sec}\equiv A_{ill}=42\pm 28 ppm (<2σ<2\sigma). From the ELV model, we report a tentative (1σ\sim 1\sigma) detection of AELV=21±17A_{ELV}=21\pm 17 ppm, corresponding to a Bond Albedo of AB=0.360.36+0.28A_{B}=0.36^{+0.28}_{-0.36} (Fig. 3b).

Figure 3: a): Binned and phase-folded TESS light curve of TOI-6324. The pink curve shows the best-fit model without ellipsoidal light variation (ELV) in the phase curve model, and the blue curve shows the best-fit result which includes the ELV term. The residuals (data minus model) from each model are shown in the bottom panel. b): Thermal emission (pink dotted line) and reflected light (blue dotted line) in the TESS band as a function of the Bond Albedo. The flux ratio (Fp/F) measured in this work is shown as the black line with the associated 1σ\sigma confidence shaded in grey. The phase curve variation observed in the TESS band is likely attributed to a combination of both thermal emission and reflected stellar light (purple dashed line).

4 Spectroscopic Analysis

4.1 Observations & Data

We obtained high-resolution spectra of TOI-6324 with the Keck Planet Finder (KPF; Gibson et al., 2016, PI: A. Howard) on Keck I. KPF is a high-resolution (R\sim98,000), optical (445-870 nm), fiber-fed echelle spectrometer newly commissioned in late 2022. The confirmation of TOI-6324 b in this work is among the first science results of KPF. KPF boasts an internal instrumental RV precision of \sim50 cm s-1 and has demonstrated the capability to detect a 1.44 M USP to greater than 5σ\sigma precision (TOI-6255 b; Dai et al., 2024). We collected a total of 77 KPF spectra of TOI-6324 between 2023-06-30UT and 2024-01-01UT (see Table 2). Each exposure was 15 min and the average SNR achieved was 65 at 550 nm. We aimed to obtain multiple exposure per night in order to mitigate some of the instrumental drift. The spectra were reduced using the publicly-accessible KPF Data Reduction Pipeline (DRP)222https://github.com/Keck-DataReductionPipelines/KPF-Pipeline, the radial velocities were extracted with the template matching code serval (Zechmeister et al., 2018) after minor modifications for KPF (Dai et al., 2024). RVs from nights with only a single measurement, as well as nightly 3σ\sigma outlier measurements, noted with a (*) in Table 2, were excluded, leaving 65 RV measurements taken over 23 nights for fitting.

\startlongtable
Table 2: Keck/KPF Radial Velocities of TOI-6324
Time (BJD) RV (m/s) RV Uncertainty (m/s)
2460126.076182692 -32.97 1.08
2460130.010714815 -48.53 1.25
2460135.004611146 -50.03 3.23
2460135.099483773 -37.17 1.70
2460146.114391493 -48.06 1.15
2460150.082071852 -20.9 1.12
2460153.098518762 -32.14 1.13
2460153.127477107 -37.35 1.23
2460159.95573294 -54.03 1.14
2460159.987071331 -52.14 1.13
2460162.964025116 -56.23 1.67
2460163.075380926 -54.04 1.63
2460169.969600474 -58.56 1.10
2460170.080126852 -52.53 1.16
2460176.841209965 -55.04 1.74
2460177.049994664 -53.08 1.72
2460180.875071331 -54.19 1.11
2460181.011329491 -51.37 1.13
2460182.876525359 -58.25 1.12
2460183.013670394 -59.47 1.09
2460183.980496354 -48.57 1.10
2460184.814127651 -96.50 1.06
2460184.914328611 -92.69 1.05
2460185.86687493 -84.08 1.22
2460185.935370845 -81.48 1.13
2460186.038032164 -80.85 1.21
2460187.792816146 -51.63 1.14
2460187.894425023 -48.05 1.23
2460188.019864653 -47.90 1.26
2460188.797937361 -40.15 1.18
2460188.825234838 -40.28 1.23
2460189.006935509 -37.43 1.30
2460189.962912512 -38.08 1.17
2460190.01121147 -39.69 1.22
2460190.05758022 -33.78 1.13
2460192.812904292 -42.71 1.16
2460196.778913785 -56.79 1.17
2460196.813865821 -49.94 1.15
2460196.863170963 -48.97 1.19
2460197.766617256 -70.66 1.65
2460197.793505319 -45.34 1.31
2460197.832056304 -50.06 1.14
2460198.802907853 -34.68 1.05
2460198.853179663 -38.10 1.09
2460198.877306925 -38.51 1.03
2460199.762083811 -53.57 1.19
2460199.801108737 -53.61 1.15
2460199.846550467 -53.37 1.15
2460200.760515219 -45.52 1.13
2460200.82617912 -45.10 1.40
2460200.856759512 -49.55 1.38
2460204.762007308 -62.63 1.16
2460204.793847212 -65.26 1.15
2460204.923963133 -61.56 1.24
2460208.770297217 -64.04 1.11
2460208.838113155 -62.98 1.20
2460208.867704152 -53.37 1.16
2460209.752046775 -50.23 1.41
2460209.791566944 -50.48 1.16
2460209.82930193 -53.22 1.23
2460211.734217746 -39.43 1.07
2460211.84252483 -45.36 1.13
2460211.911891459 -40.03 1.14
2460252.886912332 -24.69 1.12
2460252.94776194 -22.74 1.23
2460273.721432364 19.40 0.96
2460273.732485145 18.74 1.00
2460273.746181982 17.70 1.02
2460273.757201615 18.39 1.04
2460273.768154097 16.20 1.06
2460273.779157795 17.94 1.06
2460273.79369893 15.90 1.02
2460273.804679974 15.02 1.04
2460273.815668433 15.01 1.00
2460273.826684487 17.69 1.02
2460310.761742466 -88.81 1.09
2460310.791932109 -84.13 1.21

Note. — Single-measurement nights and nightly 3σ\sigma outlier measurements excluded from our RV fits.

4.2 Gaussian Process Model

To disentangle the planetary RV modulation from the significant instrumental noise in the RV variations of TOI-6324, we employed a Gaussian Process (GP) regression model. We used the package radvel (Fulton et al., 2018) for this analysis. The correlated noise is likely a result of stochastic instrumental drift. Stellar pulsations which normally affect observations in more massive stars have very low amplitudes in M dwarfs, and because they occur on much shorter timescales, are averaged out in each exposure (Kjeldsen & Bedding, 1995; Chaplin et al., 2019). In our analysis of the light curves, we did not identify any periodic variations that could be attributed to rotationally modulated stellar activity or pulsations. As such, we used a squared-exponential GP kernel in our model, rather than the widely-used quasi-periodic kernel (e.g., Grunblatt et al., 2015; Rajpaul et al., 2015; Brinkman et al., 2023), for model simplicity (Dai et al., 2019, 2021, 2024). This is included in the covariance matrix which is factored into the likelihood function. See Dai et al. (2024) for a detailed explanation of these expressions.

The model basis included the orbital elements of orbital period PorbP_{\rm orb}, time of conjunction TcT_{c}, and RV semi-amplitude KK, and the eccentricity ee and argument of pericenter ω\omega were included jointly as ecosω\sqrt{e}\cos\omega and esinω\sqrt{e}\sin\omega. We imposed Gaussian priors on Porb and TcT_{c} derived from our transit analysis (see Sec. 3 and Table 1). We placed a hard lower bound for semi-amplitude of K>0K>0, and we additionally imposed Jeffreys priors on the jitter term for KPF σjit,KPF\sigma_{\rm jit,KPF}, as well as the GP hyperparameters of amplitude hh and length ll. We set a lower bound of l>1l>1 day to ensure the GP did not fit out the 6.7 hour planetary signal of TOI-6324 b. As in the transit model, we fixed the eccentricity to 0.

The standard radvel routine employs emcee (Foreman-Mackey et al., 2013) to explore the parameter space in a Markov Chain Monte Carlo (MCMC) framework. We ran 128 walkers for 104 runs in 3 ensembles for parallelization, achieving a maximum Gelman-Rubin (Max G-R) statistic of 1.001. We show the best-fit GP model in panel (a) and the best-fit Keplerian solution for TOI-6324 b in panel (c) of Fig. 4. The median values of the posterior distributions for the orbital parameters and GP hyperparameters are presented in Table 1, respectively. We found that the RV semi-amplitude imposed by TOI-6324 b is robustly detected at 5σ\sigma precision with K=2.69±0.51ms1K=2.69\pm 0.51\;{\rm m\,s}^{-1}. We did not detect any additional periodic signals or longer-term RV trends in this dataset for evidence of another RV planet.

Refer to caption
Figure 4: The radial velocity (RV) variations of TOI-6324 observed with KPF. a) time-series RV measurements along with the best-fit radvel Gaussian Process (GP) model (blue line) used to remove stellar and instrumental systematics longer than the 6.7 hr orbital period of TOI-6324 b (see Sec. 4.2). The yellow contour represents the uncertainty of the GP model. Data points have been median-offset by -49.94 m s-1; the raw values are given in Table 2. b) residuals (data - GP model). c) RV variations of TOI-6324 as a function of orbital phase, resulting from our GP model. The red points show RVs binned to 10% of PorbP_{orb}. d) RV variations of TOI-6324 as a function of orbital phase, resulting from our Floating Chunk Offset (FCO) analysis (see Sec. 4.3). Data points are colored by observation date. The measured RV semi-amplitude from both the GP and FCO analyses are consistent within 1σ\sigma (KGP = 2.69 ±\pm 0.51 m s-1 and KFCO = 2.19 ±\pm 1.02 m s-1)

.

4.3 Floating Chunk Offset Method

To check if there was any over-fitting GP analysis, we additionally performed a fit to the RVs using the floating chunk offset (FCO) method (Hatzes et al., 2010, 2011; Hatzes, 2014, e.g.,). FCO is a common method for determining the RV semi-amplitudes of USPs (P \lesssim 1 day), whose nightly RV variations are typically larger than individual RV measurement uncertainties (Deeg et al., 2023). By assigning nightly additive RV offsets to grouped observations, we focus entirely on intra-night RV variations and effectively remove any long-term (P >> 1 day) stellar and instrumental systematics.

As done for the GP fit, RVs from single-measurement nights and nightly 3σ\sigma outliers were excluded, noted with a (*) in Table 2. We assigned an offset term for each of 23 nights of observation, γnight\gamma_{night}. This model differs from the GP model in that we remove the squared-exponential kernel and use only the white noise component in the covariance function. We implicitly include nightly offsets in the measured RV values in the likelihood function. We again used emcee for sampling in an MCMC to explore the posteriors of the model, mirroring the procedure in our GP analysis. From the FCO method we detected TOI-6324 b at 2σ\sigma precision, with a RV semi-amplitude of K=2.19±1.02ms1K=2.19\pm 1.02\;{\rm m\,s}^{-1}. This is consistent with the result of the GP model within 1σ\sigma uncertainties. Panel (d) of Fig. 4 shows the Keplerian solution from the FCO model in phase with the GP model. Because the FCO model requires many more parameters (due to each γnight\gamma_{night}) than the GP model, therefore introducing larger uncertainty, we chose to adopt the GP model result for further analyses.

5 Discussion

Refer to caption
Figure 5: Mass-radius diagram of confirmed USPs (dark purple) and other rocky planets << 2 R(light purple). TOI-6324 b is plotted in pink. The magenta-outlined point represents TOI-6324 b in the case that it is tidally disorted by 5%. In the spherical case, CMFRtran{}_{R_{tran}}=27±37\pm 37% while in the distorted case, CMFRvol{}_{R_{vol}}=3±40\pm 40%.

5.1 Planet Composition

With precise mass and radius measurements (both << 20% uncertainties) of TOI-6324 b, we are able to approximate its interior composition. As mentioned, because USPs are so strongly irradiated by their host stars, it is suggested that any thick H/He envelopes should be stripped away (e.g., Sanchis-Ojeda et al., 2014; Lundkvist et al., 2016; Wang & Dai, 2018; Kreidberg et al., 2019; Zhang et al., 2024), allowing for direct constraint of their compositions. To compare with other confirmed USPs (queried from the NASA Exoplanet Archive333https://exoplanetarchive.ipac.caltech.edu) and Earth-sized planets, we plotted TOI-6324 b on a mass-radius diagram along with the model composition curves from Zeng et al. (2016), shown in Fig. 5. The light purple colored points represent all confirmed R<p2{}_{\rm p}<2 R planets with well-constrained masses and radii (<< 20% uncertainties), while the dark purple points highlight the USPs among these with P << 1 day. Similarly to other USPs, TOI-6324 b closely follows the Earth-like composition curve of 30% iron and 70% MgSiO3 silicate rock.

5.2 Core-Mass Fraction

To further characterize the interior composition of TOI-6324 b we modeled the iron mass fraction (Fe-MF), which describes the fraction of the planet’s mass that is comprised of the iron core. We modeled the core mass fraction (CMF) using Manipulate Planet444https://lweb.cfa.harvard.edu/~lzeng/manipulateplanet.cdf, a numerical tri-layer planetary interior model with an iron core, silicate rock mantle, and surface water layer (Zeng & Sasselov, 2013; Zeng et al., 2016). The model assumes an undifferentiated core and numerically solves the interior structure of a planet based on the Equation of State (EOS) extrapolated from Earth’s Seismic Density Profile (using the Preliminary Reference Earth Model (PREM; Dziewonski & Anderson, 1981)). We adjusted the model to remove the water layer, and from this bi-layer iron and rock model we found a Fe-MF (adopted as the CMF in this model) of 27±37\pm 37% for TOI-6324 b.

We additionally employed a more sophisticated model, exopie (Plotnykov & Valencia, 2024), based on superearth (Valencia et al., 2006; Plotnykov & Valencia, 2020), which computes an iron mass fraction Fe-MF, distinct from the general CMF. The Fe-MF calculation takes into account the iron that could be in the mantle and removes any light elements in the core, as well as different degrees of core differentiation. We assumed that there is a variable amount of Fe in the mantle and Si in the core (0-20%), but set the Mg/Si ratio in the mantle to be Earth-like (\sim0.9). Ni in the core was fixed to 10%. Using a Monte Carlo scheme, we found that TOI-6324 b has a CMF=32±19\pm 19% and Fe-MF=30±14\pm 14%. These results are in agreement with the simpler model of Zeng et al. (2016).

5.3 Tidal Distortion

The extremely short (6.7 hr) orbit of TOI-6324 b gives rise to the possibility that it is substantially tidally distorted. Such an effect has been suggested for TOI-6255 b, a 1.079 R USP on a 5.7 hr orbit (Dai et al., 2024). Tidal distortion would have a non-negligible effect on the volumetric radius RvolR_{\rm vol} and the effective transit radius of a planet, and thus must be accounted for when approximating the bulk planet composition.

Following the method of Dai et al. (2024) we assess the degree of deformation due to tidal stress first by comparing the orbital period to the Roche limit of an incompressible fluid (Rappaport et al., 2013). The Earth is not very well modeled as an incompressible fluid, so this formula is a very rough approximation:

PRoche12.6h(ρp1gcm3)1/2,P_{\rm Roche}\approx 12.6\,{\rm h}\,\bigg{(}\frac{\rho_{\rm p}}{1\,{\rm g\,cm}^{-3}}\bigg{)}^{-1/2}\,, (1)

where ρp\rho_{\rm p} is the mean bulk density of the planet. The orbital period of the Roche limit, PRocheP_{\rm Roche}, is the minimum orbital period that a planet may attain before being tidally disrupted. At periods shorter than PRocheP_{\rm Roche}, tidal forces imposed by the host star become stronger than the self-gravity of the planet, and the planet begins to disintegrate. For TOI-6324 b, PRocheP_{\rm Roche} = 5.41 ±\pm 0.15 hr, bringing it close to the tidal disruption limit with Porb/PRocheP_{\rm orb}/P_{\rm Roche} = 1.24 ±\pm 0.15, though not extremely so. Still, only TOI-6255 b rivals TOI-6324 b in approaching the tidal disruption limit among confirmed USPs (see Fig. 5 of Dai et al. 2024). The tidal decay timescale for TOI-6324 b, based on the star-to-planet mass ratio, mean stellar density, orbital period, and a nominal stellar tidal quality factor Q=107Q^{\prime}_{\star}=10^{7}, is τP\tau_{P}\approx 8 Gyr. To reach the Roche Limit, the orbital period would need to decrease by \sim20%, which would occur within τRoche\tau_{Roche}\approx550 Myr.

To estimate the tidal distortion δRp\delta R_{\rm p} of TOI-6324 b, we used the Love number h2h_{2} for a solid homogeneous planet (Love, 1944), which describes the radial tidal displacement of a planet’s surface. h2h_{2} depends on the mean tensile strength of the planetary material. For Earth, h2h_{2} has been estimated to be 0.6 to 0.9 (Lambeck, 1980). We adopted h2=1h_{2}=1 assuming a weaker material strength for USPs, as in Dai et al. (2024). This gives δRp=0.07\delta R_{\rm p}=0.07 for TOI-6324 b. A more robust detection of ellipsoidal light variation than we could recover in the TESS phase curve (Sec. 3.5, Fig. 3a) would provide more conclusive evidence that TOI-6324 b is tidally deformed.

Since TOI-6324 b, like other USPs, is expected to be tidally locked (Winn et al., 2018), its planetary rotation period is the same as its orbital period of 6.7 hr. This may also lead to a non-negligible rotational deformation. This is quantified by

q=Ω2Rp3GMp,q=\frac{\Omega^{2}R_{p}^{3}}{GM_{p}}\,, (2)

or the surface gravity acting against centrifugal forces at the planet’s surface. We estimated q=0.04q=0.04 for TOI-6324 b. The deformation of the planet due to the combination of tidal bulge and rotational deformation results in an ellipsoidal shape with semi-major axes R1R_{1} pointing towards the host star, R2R_{2} pointing along the direction of orbital motion, and R3R_{3} pointing along the planet’s rotation axis (Correia et al., 2014). The total volumetric radius of the planet is defined as Rvol(R1R2R3)1/3R_{vol}\equiv(R_{1}R_{2}R_{3})^{1/3}. During transit, a planet’s transit radius is roughly Rtran(R2R3)1/2R_{tran}\equiv(R_{2}R_{3})^{1/2}, and the true volumetric radius is larger than the transit radius by Rvol/Rtran=1+712δRpR_{vol}/R_{tran}=1+\frac{7}{12}\delta R_{\rm p} (Dai et al., 2024). We found Rvol/Rtran=1.05R_{vol}/R_{tran}=1.05, i.e., there is a 5% increase in the volumetric radius compared to the transit radius. The modeled CMF changes significantly from CMFRtran{}_{R_{tran}}=2727+37{}^{+37}_{-27}% to CMFRvol{}_{R_{vol}}=3±40\pm 40%, more consistent with a pure-rock composition. However, within the large uncertainties, this qualitatively does not alter the results of Sections 5.1 and 5.2 (Fig. 5).

5.4 JWST Prospects

USPs such as TOI-6324 b are particularly excellent targets for phase curve and secondary eclipse observations with JWST. Several such systems have been selected or have already been successfully observed with JWST (e.g., 55 Cnc e, GJ 367 b, K2-141 b, LHS 3844 b, TOI-561 b, TOI-1685 b, TOI-2445 b, TOI-4481 b, and WASP-47 e). Precise study of their surfaces will revolutionize our understanding of planetary atmospheres and geology. USPs tend to orbit late-type stars (Dai et al., 2024), and thus their flux contrasts with their host stars are observationally favorable, on the order of 100 ppm in the infrared. We computed the Emission Spectroscopy Metric (ESM; Kempton et al., 2018) for TOI-6324 b to be 25. This is the highest ESM target among Earth-sized (0.8 R << Rp << 1.2 R) planets. The TESS data alone are insufficient for robustly constraining the phase curve variation, though we do find preliminary evidence of several tens of ppm in the optical (Aill=42±28A_{ill}=42\pm 28 ppm and AELV=21±17A_{ELV}=21\pm 17 ppm; Sec. 3.5, Fig. 3a). For USPs, the planet-to-star flux ratio is expected to be much more significant in the mid-IR (Dai et al., 2024). In the MIRI/LRS bandpass (5-12 μ\mum), the planet’s thermal emission increases to \sim280 ppm assuming a low Bond albedo. We aim to include more detailed modeling of the TESS phase curve variation in a future paper with comparison to JWST observations.

There are several scientific avenues for detailed characterization of TOI-6324 b with JWST MIRI/LRS (Kendrew et al., 2015) observations. Since USPs are tidally locked, they will have constant daysides and nightsides, resulting in a significant longitundal temperature contrasts across their surfaces. An observed offset in the phase curve would signify heat re-circulation over the surface of the planet due to the presence of an outgassed secondary atmosphere (e.g., Knutson et al., 2009; Demory et al., 2013; Showman et al., 2015; von Paris et al., 2016; Angelo & Hu, 2017). A lack of phase offset indicates a bare rock surface (e.g., Zhang et al., 2024; Weiner Mansfield et al., 2024). In this case, variations in the phase curve will trace the projected shape of the planet across its orbit and help to constrain the extent of tidal distortion and provide key insights into the tidal interactions USPs undergo with their host stars (see Sec. 5.3; Dai et al. 2024).

For a bare rock surface, the emission spectrum will constrain the dominant surface rock type of the planet (Hu et al., 2012; Kreidberg et al., 2019; Whittaker et al., 2022; Zhang et al., 2024). The approximate equilibrium temperature of TOI-6324 b is Teq=1216±60T_{eq}=1216\pm 60 K (Table 1), assuming a low albedo of 0.1. This is below the zero-pressure melting point of common silicates found on Earth (such as peridotite at 1390 K), and thus it is unlikely that TOI-6324 b has a pure lava surface, although the hotter dayside, which receives constant irradiation may be partially molten. Assuming zero albedo, the temperature at the substellar point would be approximately 1824 K, which is sufficient to melt silicates. Excessive tidal heating may also contribute to violent volcanism at the surface (Jackson et al., 2008; Hu et al., 2012), if the planet actually has a non-zero eccentricity, contrary to our assumption in Sec 3.2. Detection of basaltic or ultramafic surface mineralogy, based on the Si-O absorption feature from 8-10 μ\mum, will constrain the ongoing geologic processes. Ultramafic rock is formed from high-temperature volcanism and has strong Si-O features, while basaltic rock is formed from Earth-like extrusive volcanism and typically exhibits weaker Si-O features. The presence of granitoid rock (the primary component of Earth’s continental crust) is unlikely at the extreme temperatures of TOI-6324 b, which are high enough to melt feldspar and quartz (the primary minerals in granite). Dedicated simulations of these observations and effects will be included in future works.

6 Summary

In summary, we report the confirmation of TOI-6324 b using TESS transit observations and RV monitoring with KPF. The key findings are as follows:

  • TOI-6324 b has a transit radius of 1.059 ±\pm 0.041 R. This is one of the closest to Earth-sized USP confirmed to date, and one of the only Earth-sized USPs with a precise mass measurement.

  • TOI-6324 b has a mass of 1.17 ±\pm 0.22 M. The RV mass constraints from both Gaussian Process Regression and Floating Chunk Offset methods are consistent within 1σ\sigma.

  • The 27±37\pm 37% CMF of TOI-6324 b, as with other \gtrsim 1 R USPs, is consistent with an Earth-like composition.

  • Accounting for tidal distortion due to its short orbit (Porb/PRocheP_{\rm orb}/P_{\rm Roche} = 1.24 ±\pm 0.15), the radius may be inflated by 5\sim 5%. This would alter the CMF to 3±40\pm 40%.

  • We report preliminary evidence of phase curve variation (Aill=42±28A_{ill}=42\pm 28 ppm) from the TESS data. With an ESM of 25, TOI-6324 b is among the most favorable USP targets for JWST phase curve and emission spectrum observations to constrain its surface mineralogy and tidal deformation.

ACKNOWLEDGEMENTS

Software: arviz (Kumar et al., 2019), astropy (Astropy Collaboration et al., 2013, 2018), batman (Kreidberg, 2015), dynesty (Speagle, 2020; Koposov et al., 2024), emcee (Foreman-Mackey et al., 2013), exopie (Plotnykov & Valencia, 2024), exoplanet (Foreman-Mackey et al., 2021, 2021), isoclassify (Huber et al., 2017), Lightkurve (Lightkurve Collaboration et al., 2018), lmfit (Newville et al., 2014), Manipulate Planet (Zeng & Sasselov, 2013; Zeng et al., 2016), MESA Isochrones and Stellar Tracks (MIST; Choi et al., 2016), pyMC3 (Salvatier et al., 2016), radvel (Fulton et al., 2018), SpecMatch-Emp (Yee et al., 2017), starry (Luger et al., 2019), superearth (Valencia et al., 2006), theano (Theano Development Team, 2016), wōtan (Hippke et al., 2019)

Facilities: Keck I/KPF, Keck I/HIRES, Keck II/NIRC2, TESS

Data: All the TESS data used in this paper can be found in MAST: http://dx.doi.org/10.17909/t9-nmc8-f686 (catalog 10.17909/t9-nmc8-f686). This work uses data supplied from the NASA Exoplanet Archive: http://dx.doi.org/10.26134/ExoFOP3 (catalog 10.26134/ExoFOP3)

The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

RAL acknowledges this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1842402 and Grant No. 2236415. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

We thank Ellen Price for helpful discussions about tidal distortion.

A NASA Key Strategic Mission Support titled “Pinning Down Masses of JWST Ultra-short-period Planets with KPF” (PI: F. Dai) provided the telescope access and funding for the completion of this project.

This work was supported by a NASA Keck PI Data Award, administered by the NASA Exoplanet Science Institute. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency’s scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

DRC acknowledges partial support from NASA Grant 18-2XRP18_2-0007.

JMJO acknowledges support from NASA through the NASA Hubble Fellowship grant HST-HF2-51517.001, awarded by STScI. STScI is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

LMW acknowledges support from the NASA Exoplanet Research Program (grant no. 80NSSC23K0269).

N.S. acknowledges support by the National Science Foundation Graduate Research Fellowship Program under Grant Numbers 1842402 & 2236415 and the National Aeronautics and Space Administration (80NSSC21K0652).

This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

This research was carried out, in part, at the Jet Propulsion Laboratory and the California Institute of Technology under a contract with the National Aeronautics and Space Administration and funded through the President’s and Director’s Research & Development Fund Program.

This research has made use of the Exoplanet Follow-up Observation Program (ExoFOP; DOI: 10.26134/ExoFOP5) website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA HighEnd Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products.

This paper made use of data collected by the TESS mission and are publicly available from the Mikulski Archive for Space Telescopes (MAST) operated by the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by NASA’s Science Mission Directorate. KAC and CNW acknowledge support from the TESS mission via subaward s3449 from MIT.

Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c)3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

References

  • Angelo & Hu (2017) Angelo, I., & Hu, R. 2017, AJ, 154, 232, doi: 10.3847/1538-3881/aa9278
  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
  • Astropy Collaboration et al. (2018) Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
  • Barnes (2003) Barnes, S. A. 2003, ApJ, 586, 464, doi: 10.1086/367639
  • Barnes (2007) —. 2007, ApJ, 669, 1167, doi: 10.1086/519295
  • Belokurov et al. (2020) Belokurov, V., Penoyre, Z., Oh, S., et al. 2020, MNRAS, 496, 1922, doi: 10.1093/mnras/staa1522
  • Bensby et al. (2014) Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71, doi: 10.1051/0004-6361/201322631
  • Berdiñas et al. (2017) Berdiñas, Z. M., Rodríguez-López, C., Amado, P. J., et al. 2017, MNRAS, 469, 4268, doi: 10.1093/mnras/stx1140
  • Berta et al. (2012) Berta, Z. K., Irwin, J., Charbonneau, D., Burke, C. J., & Falco, E. E. 2012, AJ, 144, 145, doi: 10.1088/0004-6256/144/5/145
  • Betancourt (2017) Betancourt, M. 2017, arXiv e-prints, arXiv:1701.02434, doi: 10.48550/arXiv.1701.02434
  • Bland-Hawthorn & Gerhard (2016) Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529, doi: 10.1146/annurev-astro-081915-023441
  • Brinkman et al. (2023) Brinkman, C. L., Weiss, L. M., Dai, F., et al. 2023, The Astronomical Journal, 165, 88, doi: 10.3847/1538-3881/acad83
  • Brinkman et al. (2023) Brinkman, C. L., Weiss, L. M., Dai, F., et al. 2023, AJ, 165, 88, doi: 10.3847/1538-3881/acad83
  • Chaplin et al. (2019) Chaplin, W. J., Cegla, H. M., Watson, C. A., Davies, G. R., & Ball, W. H. 2019, AJ, 157, 163, doi: 10.3847/1538-3881/ab0c01
  • Choi et al. (2016) Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102, doi: 10.3847/0004-637X/823/2/102
  • Ciardi et al. (2015) Ciardi, D. R., Beichman, C. A., Horch, E. P., & Howell, S. B. 2015, ApJ, 805, 16, doi: 10.1088/0004-637X/805/1/16
  • Correia et al. (2014) Correia, A. C. M., Boué, G., Laskar, J., & Rodríguez, A. 2014, A&A, 571, A50, doi: 10.1051/0004-6361/201424211
  • Crossfield et al. (2022) Crossfield, I. J. M., Malik, M., Hill, M. L., et al. 2022, ApJ, 937, L17, doi: 10.3847/2041-8213/ac886b
  • Dai et al. (2019) Dai, F., Masuda, K., Winn, J. N., & Zeng, L. 2019, The Astrophysical Journal, 883, 79, doi: 10.3847/1538-4357/ab3a3b
  • Dai et al. (2021) Dai, F., Howard, A. W., Batalha, N. M., et al. 2021, The Astronomical Journal, 162, 62, doi: 10.3847/1538-3881/ac02bd
  • Dai et al. (2024) Dai, F., Howard, A. W., Halverson, S., et al. 2024, AJ, 168, 101, doi: 10.3847/1538-3881/ad5a7d
  • Deeg et al. (2023) Deeg, H. J., Georgieva, I. Y., Nowak, G., et al. 2023, A&A, 677, A12, doi: 10.1051/0004-6361/202346370
  • Demory et al. (2013) Demory, B.-O., de Wit, J., Lewis, N., et al. 2013, ApJ, 776, L25, doi: 10.1088/2041-8205/776/2/L25
  • Demory et al. (2016) Demory, B.-O., Gillon, M., de Wit, J., et al. 2016, Nature, 532, 207, doi: 10.1038/nature17169
  • Dittmann et al. (2016) Dittmann, J. A., Irwin, J. M., Charbonneau, D., & Newton, E. R. 2016, ApJ, 818, 153, doi: 10.3847/0004-637X/818/2/153
  • Dziewonski & Anderson (1981) Dziewonski, A. M., & Anderson, D. L. 1981, Physics of the Earth and Planetary Interiors, 25, 297, doi: 10.1016/0031-9201(81)90046-7
  • Engle & Guinan (2018) Engle, S. G., & Guinan, E. F. 2018, Research Notes of the American Astronomical Society, 2, 34, doi: 10.3847/2515-5172/aab1f8
  • Faigler et al. (2012) Faigler, S., Mazeh, T., Quinn, S. N., Latham, D. W., & Tal-Or, L. 2012, ApJ, 746, 185, doi: 10.1088/0004-637X/746/2/185
  • Foreman-Mackey et al. (2013) Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306, doi: 10.1086/670067
  • Foreman-Mackey et al. (2021) Foreman-Mackey, D., Luger, R., Agol, E., et al. 2021, Journal of Open Source Software, 6, 3285, doi: 10.21105/joss.03285
  • Foreman-Mackey et al. (2021) Foreman-Mackey, D., Luger, R., Agol, E., et al. 2021, arXiv e-prints, arXiv:2105.01994. https://arxiv.org/abs/2105.01994
  • Foreman-Mackey et al. (2021) Foreman-Mackey, D., Savel, A., Luger, R., et al. 2021, exoplanet-dev/exoplanet v0.5.1, doi: 10.5281/zenodo.1998447
  • Fulton et al. (2018) Fulton, B. J., Petigura, E. A., Blunt, S., & Sinukoff, E. 2018, Publications of the Astronomical Society of the Pacific, 130, 044504, doi: 10.1088/1538-3873/aaaaa8
  • Furlan et al. (2017) Furlan, E., Ciardi, D. R., Everett, M. E., et al. 2017, AJ, 153, 71, doi: 10.3847/1538-3881/153/2/71
  • Gagné et al. (2018) Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, ApJ, 856, 23, doi: 10.3847/1538-4357/aaae09
  • Gibson et al. (2016) Gibson, S. R., Howard, A. W., Marcy, G. W., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, ed. C. J. Evans, L. Simard, & H. Takami, 990870, doi: 10.1117/12.2233334
  • Gomez Barrientos et al. (2024) Gomez Barrientos, J., Greklek-McKeon, M., Knutson, H., & Giacalone, S. 2024, in AAS/Division for Extreme Solar Systems Abstracts, Vol. 56, AAS/Division for Extreme Solar Systems Abstracts, 600.10
  • Grunblatt et al. (2015) Grunblatt, S. K., Howard, A. W., & Haywood, R. D. 2015, ApJ, 808, 127, doi: 10.1088/0004-637X/808/2/127
  • Han & Brandt (2023) Han, T., & Brandt, T. D. 2023, The Astronomical Journal, 165, 71, doi: 10.3847/1538-3881/acaaa7
  • Hatzes (2014) Hatzes, A. P. 2014, A&A, 568, A84, doi: 10.1051/0004-6361/201424025
  • Hatzes et al. (2010) Hatzes, A. P., Dvorak, R., Wuchterl, G., et al. 2010, A&A, 520, A93, doi: 10.1051/0004-6361/201014795
  • Hatzes et al. (2011) Hatzes, A. P., Fridlund, M., Nachmani, G., et al. 2011, ApJ, 743, 75, doi: 10.1088/0004-637X/743/1/75
  • Hippke et al. (2019) Hippke, M., David, T. J., Mulders, G. D., & Heller, R. 2019, The Astronomical Journal, 158, 143, doi: 10.3847/1538-3881/ab3984
  • Hoffman & Gelman (2011) Hoffman, M. D., & Gelman, A. 2011, arXiv e-prints, arXiv:1111.4246, doi: 10.48550/arXiv.1111.4246
  • Hu et al. (2012) Hu, R., Ehlmann, B. L., & Seager, S. 2012, ApJ, 752, 7, doi: 10.1088/0004-637X/752/1/7
  • Hu et al. (2024) Hu, R., Bello-Arufe, A., Zhang, M., et al. 2024, Nature, 630, 609, doi: 10.1038/s41586-024-07432-x
  • Huang et al. (2020) Huang, C. X., Vanderburg, A., Pál, A., et al. 2020, Research Notes of the American Astronomical Society, 4, 204, doi: 10.3847/2515-5172/abca2e
  • Huber et al. (2017) Huber, D., Zinn, J., Bojsen-Hansen, M., et al. 2017, ApJ, 844, 102, doi: 10.3847/1538-4357/aa75ca
  • Irwin et al. (2015) Irwin, J. M., Berta-Thompson, Z. K., Charbonneau, D., et al. 2015, in Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Vol. 18, 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. G. T. van Belle & H. C. Harris, 767–772, doi: 10.48550/arXiv.1409.0891
  • Jackson et al. (2008) Jackson, B., Barnes, R., & Greenberg, R. 2008, MNRAS, 391, 237, doi: 10.1111/j.1365-2966.2008.13868.x
  • Jenkins et al. (2016) Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, 99133E, doi: 10.1117/12.2233418
  • Kempton et al. (2018) Kempton, E. M. R., Bean, J. L., Louie, D. R., et al. 2018, PASP, 130, 114401, doi: 10.1088/1538-3873/aadf6f
  • Kendrew et al. (2015) Kendrew, S., Scheithauer, S., Bouchet, P., et al. 2015, PASP, 127, 623, doi: 10.1086/682255
  • Kipping (2013) Kipping, D. M. 2013, MNRAS, 435, 2152, doi: 10.1093/mnras/stt1435
  • Kjeldsen & Bedding (1995) Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87, doi: 10.48550/arXiv.astro-ph/9403015
  • Knutson et al. (2009) Knutson, H. A., Charbonneau, D., Cowan, N. B., et al. 2009, ApJ, 690, 822, doi: 10.1088/0004-637X/690/1/822
  • Koposov et al. (2024) Koposov, S., Speagle, J., Barbary, K., et al. 2024, joshspeagle/dynesty: v2.1.4, v2.1.4, Zenodo, doi: 10.5281/zenodo.12537467
  • Kovács et al. (2002) Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369, doi: 10.1051/0004-6361:20020802
  • Kreidberg (2015) Kreidberg, L. 2015, PASP, 127, 1161, doi: 10.1086/683602
  • Kreidberg et al. (2019) Kreidberg, L., Koll, D. D. B., Morley, C., et al. 2019, Nature, 573, 87, doi: 10.1038/s41586-019-1497-4
  • Kumar et al. (2019) Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. A. 2019, The Journal of Open Source Software, doi: 10.21105/joss.01143
  • Lambeck (1980) Lambeck, K. 1980, The earth’s variable rotation : geophysical causes and consequences
  • Lightkurve Collaboration et al. (2018) Lightkurve Collaboration, Cardoso, J. V. d. M., Hedges, C., et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library. http://ascl.net/1812.013
  • Lomb (1976) Lomb, N. R. 1976, Ap&SS, 39, 447, doi: 10.1007/BF00648343
  • Love (1944) Love, A. E. H. 1944, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (New York: Dover Publications). http://www.worldcat.org/isbn/0486601749
  • Luger et al. (2019) Luger, R., Agol, E., Foreman-Mackey, D., et al. 2019, AJ, 157, 64, doi: 10.3847/1538-3881/aae8e5
  • Lundkvist et al. (2016) Lundkvist, M. S., Kjeldsen, H., Albrecht, S., et al. 2016, Nature Communications, 7, 11201, doi: 10.1038/ncomms11201
  • Mann et al. (2019) Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63, doi: 10.3847/1538-4357/aaf3bc
  • Muirhead et al. (2018) Muirhead, P. S., Dressing, C. D., Mann, A. W., et al. 2018, AJ, 155, 180, doi: 10.3847/1538-3881/aab710
  • Neal (2011) Neal, R. 2011, in Handbook of Markov Chain Monte Carlo, 113–162, doi: 10.1201/b10905
  • Newton et al. (2016) Newton, E. R., Irwin, J., Charbonneau, D., et al. 2016, ApJ, 821, 93, doi: 10.3847/0004-637X/821/2/93
  • Newville et al. (2014) Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, 0.8.0, Zenodo, doi: 10.5281/zenodo.11813
  • Plotnykov & Valencia (2020) Plotnykov, M., & Valencia, D. 2020, MNRAS, 499, 932, doi: 10.1093/mnras/staa2615
  • Plotnykov & Valencia (2024) —. 2024, MNRAS, 530, 3488, doi: 10.1093/mnras/stae993
  • Price & Rogers (2020) Price, E. M., & Rogers, L. A. 2020, ApJ, 894, 8, doi: 10.3847/1538-4357/ab7c67
  • Rajpaul et al. (2015) Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S., & Roberts, S. 2015, MNRAS, 452, 2269, doi: 10.1093/mnras/stv1428
  • Rappaport et al. (2013) Rappaport, S., Sanchis-Ojeda, R., Rogers, L. A., Levine, A., & Winn, J. N. 2013, The Astrophysical Journal Letters, 773, L15, doi: 10.1088/2041-8205/773/1/L15
  • Ricker et al. (2015) Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003, doi: 10.1117/1.JATIS.1.1.014003
  • Rodr´ıguez et al. (2016) Rodríguez, E., Rodríguez-López, C., López-González, M. J., et al. 2016, MNRAS, 457, 1851, doi: 10.1093/mnras/stw033
  • Salvatier et al. (2016) Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. 2016, PeerJ Computer Science, 2, e55
  • Sanchis-Ojeda et al. (2014) Sanchis-Ojeda, R., Rappaport, S., Winn, J. N., et al. 2014, ApJ, 787, 47, doi: 10.1088/0004-637X/787/1/47
  • Sanchis-Ojeda et al. (2014) Sanchis-Ojeda, R., Rappaport, S., Winn, J. N., et al. 2014, The Astrophysical Journal, 787, 47, doi: 10.1088/0004-637X/787/1/47
  • Scargle (1982) Scargle, J. D. 1982, ApJ, 263, 835, doi: 10.1086/160554
  • Schlieder et al. (2021) Schlieder, J. E., Gonzales, E. J., Ciardi, D. R., et al. 2021, Frontiers in Astronomy and Space Sciences, 8, 63, doi: 10.3389/fspas.2021.628396
  • Schmidt et al. (2024) Schmidt, S. P., Schlaufman, K. C., & Hamer, J. H. 2024, AJ, 168, 109, doi: 10.3847/1538-3881/ad5d76
  • Scora et al. (2022) Scora, J., Valencia, D., Morbidelli, A., & Jacobson, S. 2022, ApJ, 940, 144, doi: 10.3847/1538-4357/ac9cda
  • Showman et al. (2015) Showman, A. P., Lewis, N. K., & Fortney, J. J. 2015, ApJ, 801, 95, doi: 10.1088/0004-637X/801/2/95
  • Skumanich (1972) Skumanich, A. 1972, ApJ, 171, 565, doi: 10.1086/151310
  • Smith et al. (2012) Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012, PASP, 124, 1000, doi: 10.1086/667697
  • Speagle (2020) Speagle, J. S. 2020, MNRAS, 493, 3132, doi: 10.1093/mnras/staa278
  • Stassun et al. (2018) Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018, AJ, 156, 102, doi: 10.3847/1538-3881/aad050
  • Stumpe et al. (2014) Stumpe, M. C., Smith, J. C., Catanzarite, J. H., et al. 2014, PASP, 126, 100, doi: 10.1086/674989
  • Stumpe et al. (2012) Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985, doi: 10.1086/667698
  • Theano Development Team (2016) Theano Development Team. 2016, arXiv e-prints, abs/1605.02688. http://arxiv.org/abs/1605.02688
  • Tsiaras et al. (2016) Tsiaras, A., Rocchetto, M., Waldmann, I. P., et al. 2016, ApJ, 820, 99, doi: 10.3847/0004-637X/820/2/99
  • Twicken et al. (2010) Twicken, J. D., Clarke, B. D., Bryson, S. T., et al. 2010, in Proc. SPIE, Vol. 7740, Software and Cyberinfrastructure for Astronomy, 774023, doi: 10.1117/12.856790
  • Valencia et al. (2006) Valencia, D., O’Connell, R. J., & Sasselov, D. 2006, Icarus, 181, 545, doi: 10.1016/j.icarus.2005.11.021
  • Vogt et al. (2014) Vogt, S. S., Radovan, M., Kibrick, R., et al. 2014, PASP, 126, 359, doi: 10.1086/676120
  • von Paris et al. (2016) von Paris, P., Gratier, P., Bordé, P., & Selsis, F. 2016, A&A, 587, A149, doi: 10.1051/0004-6361/201526297
  • Wang & Dai (2018) Wang, L., & Dai, F. 2018, ApJ, 860, 175, doi: 10.3847/1538-4357/aac1c0
  • Weiner Mansfield et al. (2024) Weiner Mansfield, M., Xue, Q., Zhang, M., et al. 2024, arXiv e-prints, arXiv:2408.15123, doi: 10.48550/arXiv.2408.15123
  • Whittaker et al. (2022) Whittaker, E. A., Malik, M., Ih, J., et al. 2022, AJ, 164, 258, doi: 10.3847/1538-3881/ac9ab3
  • Winn et al. (2018) Winn, J. N., Sanchis-Ojeda, R., & Rappaport, S. 2018, New Astronomy Reviews, 83, 37, doi: 10.1016/j.newar.2019.03.006
  • Wood et al. (2021) Wood, M. L., Mann, A. W., & Kraus, A. L. 2021, AJ, 162, 128, doi: 10.3847/1538-3881/ac0ae9
  • Yee et al. (2017) Yee, S. W., Petigura, E. A., & von Braun, K. 2017, ApJ, 836, 77, doi: 10.3847/1538-4357/836/1/77
  • Zechmeister et al. (2018) Zechmeister, M., Reiners, A., Amado, P. J., et al. 2018, A&A, 609, A12, doi: 10.1051/0004-6361/201731483
  • Zeng & Sasselov (2013) Zeng, L., & Sasselov, D. 2013, PASP, 125, 227, doi: 10.1086/669163
  • Zeng et al. (2016) Zeng, L., Sasselov, D. D., & Jacobsen, S. B. 2016, ApJ, 819, 127, doi: 10.3847/0004-637X/819/2/127
  • Zhang et al. (2024) Zhang, M., Hu, R., Inglis, J., et al. 2024, The Astrophysical Journal Letters, 961, L44, doi: 10.3847/2041-8213/ad1a07