This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19C, B-4000 Liège, Belgium 22institutetext: Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 33institutetext: Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200, La Laguna, Tenerife, Spain 44institutetext: School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 55institutetext: Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 66institutetext: Department of Astronomy & Astrophysics, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 77institutetext: Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 88institutetext: Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile 99institutetext: Kotizarovci Observatory, Sarsoni 90, 51216 Viskovo, Croatia 1010institutetext: Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Faculty of sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco 1111institutetext: Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan 1212institutetext: Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19C, B-4000 Liège, Belgium 1313institutetext: NASA Exoplanet Science Institute, IPAC, California Institute of Technology, Pasadena, CA 91125 USA 1414institutetext: Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA 1515institutetext: Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012, Bern, Switzerland 1616institutetext: Paris Region Fellow, Marie Sklodowska-Curie Action 1717institutetext: AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, F-91191 Gif-sur-Yvette, France 1818institutetext: Institut Trottier de recherche sur les exoplanètes, Département de Physique, Université de Montréal, Montréal, Québec, Canada 1919institutetext: Department of Astronomy, Tsinghua University, Beijing 100084, People’s Republic of China 2020institutetext: Universidad Nacional Autónoma de México, Instituto de Astronomía, AP 70-264, Ciudad de México, 04510, México 2121institutetext: Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK 2222institutetext: Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA 2323institutetext: NASA Ames Research Center, Moffett Field, CA 94035, USA 2424institutetext: Departamento de Astrofísica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain 2525institutetext: Institute for Particle Physics and Astrophysics , ETH Zürich, Wolfgang-Pauli-Strasse 2, 8093 Zürich, Switzerland 2626institutetext: Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 2727institutetext: Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2828institutetext: Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2929institutetext: Hazelwood Observatory, Australia 3030institutetext: Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star

K. Barkaoui ID E-mail: khalid.barkaoui@uliege.beTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    D. Sebastian TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    S. Zúñiga-Fernández ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A.H.M.J. Triaud TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    B.V. Rackham TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A.J. Burgasser TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    T.W. Carmichael ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    M. Gillon TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    C. Theissen TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    E. Softich TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    B. Rojas-Ayala TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    G. Srdoc TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A. Soubkiou TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A. Fukui ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    M. Timmermans TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    M. Stalport TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A. Burdanov TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    D.R. Ciardi TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    K.A. Collins TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    Y.T. Davis TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    F. Davoudi TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    J. de Wit TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    B.O. Demory TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    S. Deveny TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    G. Dransfield TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    E. Ducrot TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    L. Florian TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    T. Gan TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    Y. Gómez Maqueo Chew TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    M.J. Hooton TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    S. B. Howell ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    J. M. Jenkins TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    C. Littlefield TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    E. L. Martín TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    F. Murgas TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    P. Niraula TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    E. Palle TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    P.P. Pedersen TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    F.J. Pozuelos TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    D. Queloz TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    G. Ricker TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    R.P. Schwarz TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    S.Seager TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    A. Shporer TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    M.G. Scott TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    C. Stockdale ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star    J. Winn ID TOI-6508 b: A massive transiting brown dwarf orbiting a low-mass starTOI-6508 b: A massive transiting brown dwarf orbiting a low-mass star
(Received/accepted)

We report the discovery of a transiting brown dwarf orbiting a low-mass star, TOI-6508 b. Today, only \sim50 transiting brown dwarfs have been discovered. TOI-6508 b was first detected with data from the Transiting Exoplanet Survey Satellite (TESS) in Sectors 10, 37 and 63. Ground-based follow-up photometric data were collected with the SPECULOOS-South and LCOGT-1m telescopes, and RV measurements were obtained with the Near InfraRed Planet Searcher (NIRPS) spectrograph. We find that TOI-6508 b has a mass of Mp=72.55.1+7.6MJupM_{p}=72.5^{+7.6}_{-5.1}M_{\rm Jup} and a radius of Rp=1.03±0.03RJupR_{p}=1.03\pm 0.03R_{\rm Jup}. Our modeling shows that the data are consistent with an eccentric orbit of 19 day and an eccentricity of e=0.280.08+0.09e=0.28^{+0.09}_{-0.08}. TOI-6508 b has a mass ratio of MBD/M=0.40M_{\rm BD}/M_{\star}=0.40, makes it the second highest mass ratio brown dwarf that transits a low-mass star. The host has a mass of M=0.174±0.004MM_{\star}=0.174\pm 0.004M_{\odot}, a radius of R=0.205±0.006RR_{\star}=0.205\pm 0.006R_{\odot}, an effective temperature of Teff=2930±70T_{\rm eff}=2930\pm 70 K, and a metallicity of [Fe/H]=0.22±0.08[Fe/H]=-0.22\pm 0.08. This makes TOI-6508 b an interesting discovery that has come to light in a region still sparsely populated.

Key Words.:
Brown Dwarf; stars: TOI-6508; techniques: photometric, techniques: Radial velocity

1 Introduction

Brown dwarfs (BDs) are traditionally defined as objects between giant planets (\sim13 MJupM_{\rm Jup}) and stars (\sim80 MJupM_{\rm Jup}), with radii ranging from 0.7 to 1.4 RJupR_{\rm Jup}. The lower limit that separates giant planets from BDs corresponds to the ignition of deuterium fusion in the core of the BD. This limit varies within the range 11–16 MJupM_{\rm Jup} depending on the abundance of deuterium and the bulk metallicity (Spiegel et al. 2011). The upper limit that separates the BDs and stars corresponds to hydrogen fusion, and varies within the range 75–80 MJupM_{\rm Jup} depending on the stellar initial formation conditions (Baraffe et al. 2002). Based on this mass definition, the cores of BDs are partially degenerate. To improve the characterization and classification of the BDs, the transit method is very useful as it brings additional information, specifically the radius. However, any candidate companion close in size to 1RJ1R_{\rm J} can be a brown dwarf, giant planet, or a low-mass star as it is not clear solely from the radius, making the measurement of the companion’s mass crucial for BD discovery.

Transiting BDs orbiting low-mass stars offer us valuable opportunities to measure the radius and mass (with the combination with radial velocity technique) and orbital parameters of the system. The relatively small size of the star leads to a large transit signal on the order of ten percent. Furthermore, the relatively low mass results in a huge radial-velocity signal on the order of several kilometers per second. This makes possible high-precision measurements of a BD’s mass and radius. The mass and radius are key for exploring the physical properties of the BDs, in order to improve our understanding of the mechanisms of formation and evolution of these mysterious sub-stellar objects. (Baraffe et al. 2002; Saumon & Marley 2008; Phillips et al. 2020; Chabrier et al. 2023).

Our current understanding of planetary formation predicts a low probability for the existence of Jupiter-like planets and BDs around low-mass stars with M0.4MM_{\star}\leq 0.4M_{\odot} , and their formation by core accretion becomes increasingly unlikely as M>0.4MM_{\star}>0.4M_{\odot}. (Kanodia et al. 2022; Palle et al. 2021; Burn et al. 2021). However, we have discovered only 9 transiting BDs orbiting low-mass stars to date, with host masses ranging from 0.25–0.65 M. Due to the small size of this sample, the occurrence rate of BDs around low-mass stars is still highly uncertain; more detections are necessary to compare observations to theoretical expectations.

In this work, we present a new system orbiting a low-mass M dwarf (M=0.17±0.02MM_{\star}=0.17\pm 0.02M_{\odot}) in a 19-day eccentric orbit (e=0.280.08+0.09e=0.28^{+0.09}_{-0.08}), TOI-6508. This system contains a transiting BD, TOI-6508 b with a mass of MBD=72.5MJupM_{\rm BD}=72.5\leavevmode\nobreak\ M_{\rm Jup} and a radius of RBD=1.03RJupR_{\rm BD}=1.03\leavevmode\nobreak\ R_{\rm Jup} around an M5 star.

The paper is organized as follows. We present TESS data and ground-based photometric and spectroscopic observations in Section 2. Stellar characterization of TOI-6508 (spectroscopic and spectral energy distribution analysis) is presented in Section 3. Section 4 describes the global modeling of photometric and radial velocity data. Finally, a discussion and our conclusions are presented in Section 5.

2 Observations and data reduction

2.1 TESS photometric observation

The host star TIC 142277868 (TOI-6508) was observed by the TESS mission (Ricker et al. 2015) in Sector 10, from March 26 to 22 April 2019. The relevant data are available within the full-frame images (FFIs) with a cadence of 1800 seconds. The target was re-observed during the extended mission in Sectors 37 and 63, and FFI data are available with a cadence of 600 seconds and 200 seconds, respectively (see Table 1). We used the Pre-search Data Conditioning Simple Aperture Photometry flux (PDC-SAP; Stumpe et al. 2012; Smith et al. 2012; Stumpe et al. 2014), constructed by the TESS Science Processing Operations Center (SPOC; Jenkins et al. 2016) at the Ames Research Center, from the Mikulski Archive for Space Telescopes 111https://archive.stsci.edu/missions-and-data/tess. The PDC-SAP light curves were calibrated for any instrument systematics and crowding effects. The TOI-6508 light curves are normalized using the lightkurve (Lightkurve Collaboration et al. 2018) Python package. Figure 1 shows the TOI-6508 field of view in the TESS data, as well as the photometric apertures that were used to construct the light curves. The locations of nearby Gaia DR3 sources are also marked (Gaia Collaboration et al. 2021). Figure 2 shows the TESS photometric data.

Sector Exptime [s] Camera CCD Observation date
10 1800 2 4 2019 Mar-26 – Apr-22
37 600 2 4 2021 Apr-02 – Apr-28
63 200 1 2 2023 Mar-10 – Apr-06
Table 1: TESS observations log for TOI-6508.
Refer to caption
Refer to caption
Refer to caption
Figure 1: TESS target pixel file images for TOI-6508 observed in Sectors 10 (top), 37 (middle) and 63 (bottom). The plots are made with the tpfplotter (Aller et al. 2020) package. The pixels highlighted in yellow show the TESS apertures. The red dots show the positions of Gaia DR3 sources, and their sizes correspond to their TESS magnitudes.
Refer to caption
Figure 2: TESS PDC-SAP flux of TOI-6508 extracted from the full frame images (FFIs). The target was observed in Sectors 10 (top) at 1800-second, 37 (middle) at 600-second, and 63 (bottom) at 200-second cadence. The solid line is the best-fitting model of the transit.

2.2 Ground-based photometric observation

We performed ground-based follow-up observations of TOI-6508 as part of the TESS follow-up observing program (TFOP) in order to confirm the transit event on the target star, rule out nearby eclipsing binaries (NEBs) as the source of the transit signal, measure the transit depth, as well as refine the transit ephemerides. To schedule time-series observations, we used the TESS transit finder tool (Jensen 2013), which is a customized version of the Tapir software package. The ground-based photometric observations are summarized in Table 2. The observed transit light curves are presented in Figures 3 and 4.

2.2.1 SPECULOOS-South

We used the SPECULOOS-South (Search for habitable Planets EClipsing ULtra-cOOl Stars, Jehin et al. (2018); Delrez et al. (2018); Sebastian et al. (2021)) facilities to observe the transits of TOI-6508 b simultaneously in the Sloan-rr^{\prime} and -ii^{\prime} filters on UTC March 29 2024 with an exposure time of 180 seconds and 105 seconds, respectively. Each 1.0 m telescope is equipped with a 2K×\times2K CCD camera with a pixel scale of 0.35\arcsec and a total FOV of 12\arcmin×\times12\arcmin. Data reduction and aperture photometry were performed using the PROSE222Prose: https://github.com/lgrcia/prose pipeline (Garcia et al. 2022).

2.2.2 LCOGT-1.0m

We used the Las Cumbres Observatory Global Telescope (LCOGT; Brown et al. 2013) 1.0m facilities to observe simultaneously four full transits of TOI-6508 b in the Pan-STARRS-zsz_{\mathrm{s}} and V filters. Two transits were observed on UTC Feb 21 2024, and two others were observed on UTC March 11 2024. An additional transit of TOI-6508 b was observed with LCO-Teid-1m0 at the Teide Observatory on UTC Jan 10 2025 in the Pan-STARRS-zsz_{\mathrm{s}}. The LCOGT telescopes are equipped with 4096×40964096\times 4096 SINISTRO camera with a pixel scale of 0.3890.389\arcsec per pixel and a total FOV of 26×2626^{\prime}\times 26^{\prime}.

TOI-6508 b was also observed during an occulation at the Southern African Astronomical Observatory (SAAO) in the Sloan-ii^{\prime} filter. The first observation was carried out on UTC May 16 2024 assuming a circular orbit. The Second observation was carried out on UTC February 8 2025 assuming an eccentric orbit. Figure 5 shows the secondary eclipse light curves.

The science data processing was performed using the standard LCOGT BANZAI pipeline (McCully et al. 2018), and aperture & differential photometric were performed using AstroImageJ333AstroImageJ:https://www.astro.louisville.edu/software/astroimagej/ (Collins et al. 2017).

Table 2: Observational log for TOI-6508 b: Telescope, date of the observation, filter, exposure time(s), and FWHM of the point-spread function and photometric aperture are tabulated.
Telescope Date (UT) Filter Exptime FWHM Aperture Comment
[second] [arcsec] [arcsec]
LCO-Teid-1.0m Jan 9 2025 Pan-STARRS-zsz_{\mathrm{s}} 100 1.8 4.0 Full transit
SPECULOOS-South-1.0m March 29 2024 Sloan-rr^{\prime} 180 2.0 2.1 Full transit
SPECULOOS-South-1.0m March 29 2024 Sloan-ii^{\prime} 105 2.1 3.5 Full transit
LCO-McD-1.0m March 11 2024 Pan-STARRS-zsz_{\mathrm{s}} 100 2.2 4.7 Full transit
LCO-McD-1.0m March 11 2024 V 100 2.9 5.4 Full transit
LCO-McD-1.0m Feb 21 2024 Pan-STARRS-zsz_{\mathrm{s}} 100 1.8 4.7 Full transit
LCO-McD-1.0m Feb 21 2024 V 100 3.1 5.4 Full transit
LCO-SAAO-1.0m May 16 2024 Sloan-ii^{\prime} 120 1.9 4.3 Full occultation
LCO-SAAO-1.0m Feb 8 2025 Sloan-ii^{\prime} 100 2.1 4.0 Full occultation
Refer to caption
Figure 3: Individual TESS (Sectors 10, 37 and 63) and ground-based (collected with SPECULOOS-S-1.0m and LCOGT-1.0m) light curves of TOI-6508 b. The colored data points show the relative flux measurements (unbinned and binned data). The black solid lines show the best-fitting transit model.
Refer to caption
Refer to caption
Figure 4: Photometric and radial velocity observations for TOI-6508. The left panel shows TESS and ground-based phase-folded light curves (unbinned and binned by 15min data) of TOI-6508 b. The light curves are shifted along y-axis for the visibility. The residuals are also presented bellow each light curve. The right panels show radial velocity measurements collected by the NIRPS spectrograph. a), RV observations vs. time. b), Phase-folded RV measurements. c), RV residuals (OCO-C). The red data points and red solid line show RV measurements and best-fitting assuming a circular orbit. While, the blue data points and blue solid line show RVs measurements and best-fitting assuming an eccentric orbit.
Refer to caption
Figure 5: The secondary eclipse observations of TOI-6508 b from LCO-SAAO-1.0m in the Sloan-ii^{\prime}. Top panel shows the data collected on UTC May 16 2024 assuming a circular orbit and bottom panel shows the data collected on UTC Feb 8 2025 assuming an eccentric orbit (e=0.28e=0.28 constrained from our global MCMC analysis). No significant secondary eclipse is observed. The green region shows the predicted secondary eclipse ingress and egress.

2.3 Spectroscopic observation for TOI-6508

2.3.1 NIRPS observation

TOI-6508 was observed with the Near-InfraRed Planet Searcher (NIRPS; Bouchy et al. (2017); Wildi et al. (2022)) spectrograph installed on the ESO-3.6m telescope at La Silla observatory in Chile. NIRPS is fiber-fed, stabilized high-resolution (R70,000R\approx 70,000) echelle spectrograph operating in the near-infrared covering the range from 950nm to 1800nm, under an adaptive optics system. The observations were carried out as a DDT program (ID:113.27QV, Cycle: 113, PI: K. Barkaoui). Over 3 individual nights, we collected two spectra of TOI-6508 per night with NIRPS with an exposure time of 900 s. The data were collected on June 1, 9 and July 3 2024 with an average signal-to-noise-ratio (SNR) of 12 at 1.6μm1.6\,{\rm\mu m}.
The NIRPS data were reduced with the nominal pipeline for NIRPS data reduction for the ESO science archive through the VLT Data Flow System444https://www.eso.org/sci/software/pipelines/. This pipeline is based on the publicly available ESPRESSO pipeline, which utilizes recipes adapted from software originally developed for the ESPRESSO instrument (Pepe, F. et al. 2021) and specifically refined for near-infrared spectroscopy555Nirps pipeline:https://www.eso.org/sci/software/pipelines/nirps/nirps-pipe-recipes.html (Artigau et al. 2024).
Radial velocities (RVs) were extracted using a cross-correlation with the line-mask for M4-type stars, which is implemented in the NIRPS pipeline. Due to the relatively low SNR we only use orders between 1.4-1.87 μm{\rm\mu m}. The RV measurements are presented in Table 3.

BJDTDB RV [km/s] σRV\sigma_{\rm RV} [km/s]
2460463.468286 24.384 0.203
2460491.481160 51.406 0.159
2460495.471592 30.840 0.790
Table 3: RV measurements for TOI-6508 obtained with the NIRPS spectrograph.

2.3.2 Shane/Kast optical spectroscopy

We observed TOI-6508 with the Kast double spectrograph (Miller & Stone 1994) mounted on the Lick Observatory Shane 3m Telescope on UTC April 2024. Conditions were clear and windy with 1.\aas@@fstack{\prime\prime}8 at the southern declination of the source. We used the 2.\aas@@fstack{\prime\prime}5 (6 pixel) aligned with the parallactic angle and the 600/7500 grating in the Kast red channel to acquire 5800–9000 Å spectra at a resolution of λ/Δλ\lambda/\Delta\lambda \approx 900. Two exposures of 1200 s each were acquired at an average airmass of 3.08, followed by observation of the nearby G2 V star HD 113207 (VV = 7.62) at a similar airmass. The flux standard Feige 34 (VV = 7.6; Massey & Gronwall 1990; Oke 1990) was observed earlier in the night. HeNeAr arclamps, quartz flat-field lamps, and bias frames were obtained at the start of the night for wavelength and pixel response calibration. Data were reduced using kastredux666kastredux: https://github.com/aburgasser/kastredux following standard procedures for optical spectroscopic data reduction (cf. Barkaoui et al. 2024). Our final spectrum has a signal-to-noise (S/N) of 76 at λ\lambda \approx 7500 Å.

2.3.3 IRTF/SpeX spectroscopy

We collected a medium-resolution near-infrared spectrum of TOI-6508 on 10 May 2024 (UT) using the SpeX spectrograph (Rayner et al. 2003) on the 3.2-m NASA Infrared Telescope Facility (IRTF) during clear conditions with 0.\aas@@fstack{\prime\prime}5 seeing. We used the short-wavelength cross-dispersed (SXD) mode and the 0.3×15′′0\aas@@fstack{\prime\prime}3\times 15^{\prime\prime} slit aligned to the parallactic angle, yielding R2000R{\approx}2000 spectra covering 0.80–2.42 μ\mum. We collected 12 integrations of 300 s on the target, nodding in an ABBA pattern. Afterwards we gathered a set of standard SXD flat-field and arc-lamp calibrations and six, 30 s integrations of the A0 V standard HD 100330. We reduced the data with Spextool v4.1 (Cushing et al. 2004), following the standard approach (e.g., Delrez et al. 2022; Barkaoui et al. 2023, 2024). The reduced spectrum has a median S/N of 107 per pixel and 2.5 pixels per resolution element.

2.3.4 High-resolution imaging

As part of the validation and confirmation process for a transiting exoplanet observation, high-resolution imaging is one of the critical assets required. The presence of a close companion star, whether truly bound or line of sight, will provide ”third-light” contamination of the observed transit, leading to derived properties for the exoplanet and host star that are incorrect (Ciardi et al. 2015; Furlan & Howell 2017, 2020). In addition, it has been shown that the presence of a close companion dilutes small planet transits (<1.2R<1.2R_{\oplus}) to the point of non-detection (Lester et al. 2021). Given that nearly one-half of FGK stars are in binary or multiple star systems (Matson et al. 2018) high-resolution imaging yields crucial information toward our understanding of each discovered exoplanet as well as more global information on its formation, dynamics and evolution.
TOI-6508 was observed on UTC 2025 January 10 using the Zorro speckle instrument on Gemini South (Scott et al. 2021). Zorro provides simultaneous speckle imaging in two bands (562 nm and 832 nm) with output data products including a reconstructed image and robust contrast limits on companion detections. Nine sets of 1000 60-ms frames were obtained for TOI-6508 simultaneously in each channel. The data was reduced using our standard software pipeline (Howell et al. 2011). Figure 6 shows the 5-sigma magnitude contrast curves obtained and our 832 nm reconstructed speckle image. We find that TOI-6508 is a single star with no close companion brighter than about 5-6 magnitudes from the diffraction limit (0.02\arcsec) out to 1.2\arcsec. At the distance to TOI-6508 (d=48.5d=48.5 pc) TOI-700, these angular limits correspond to spatial limits of 0.97 to 58 au.

Refer to caption
Figure 6: High-resolution imaging for TOI-6508 with 5σ\sigma magnitude contrast curves in both filters as a function of the angular separation out to 1.2\arcsec. The inset shows the reconstructed 832 nm image of TOI-6508 with a 1\arcsec scale bar. TOI-6508 was found to have no close companions from the diffraction limit (0.02\arcsec) out to 1.2\arcsec to within the contrast levels achieved.

3 Stellar properties for TOI-6508

Table 4: Astrometry, photometry, and spectroscopy stellar properties of TOI-6508.
Star information
Target designations:
TOI 6508
TIC 142277868
GAIA DR3 3465796341653768192
2MASS J12030396-3339552
SIPS J1203-3339
Parameter Value Source
Parallax and distance:
RA [J2000] 12:03:03.42 (1)
Dec [J2000] -33:39:55.8 (1)
Plx [masmas] 20.64±0.0520.64\pm 0.05 (1)
μRA\mu_{RA} [mas yr-1] 413.59±0.06-413.59\pm 0.06 (1)
μDec\mu_{Dec} [mas yr-1] 35.14±0.03-35.14\pm 0.03 (1)
Distance [pc] 48.44±0.1248.44\pm 0.12 (1)
Photometric properties:
TESSmag 14.309±0.00814.309\pm 0.008 (2)
VmagV_{\rm mag} [UCAC4] 17.18±0.2017.18\pm 0.20 (3)
BmagB_{\rm mag} [UCAC4] 18.318.3 (3)
RmagR_{\rm mag} [UCAC4] 16.716.7 (3)
JmagJ_{\rm mag} [2MASS] 12.39±0.0212.39\pm 0.02 (4)
HmagH_{\rm mag} [2MASS] 11.83±0.0311.83\pm 0.03 (4)
KmagK_{\rm mag} [2MASS] 11.49±0.0211.49\pm 0.02 (4)
GmagG_{\rm mag} [Gaia DR3] 15.79±0.00115.79\pm 0.001 (1)
W1magW1_{\rm mag} [WISE] 11.310±0.02211.310\pm 0.022 (5)
W2magW2_{\rm mag} [WISE] 11.098±0.02111.098\pm 0.021 (5)
W3magW3_{\rm mag} [WISE] 10.89±0.0910.89\pm 0.09 (5)
W4magW4_{\rm mag} [WISE] 8.9958.995 (5)
Spectroscopic and derived parameters
TeffT_{\rm eff} [K] 2930±702930\pm 70 this work
logg\log g_{\star} [dex] 5.05±0.025.05\pm 0.02 this work
[Fe/H][Fe/H] [dex] 0.22±0.08-0.22\pm 0.08 this work
MM_{\star} [MM_{\odot}] 0.174±0.0040.174\pm 0.004 a this work
RR_{\star} [RR_{\odot}] 0.205±0.0060.205\pm 0.006 a this work
FbolF_{\rm bol} [erg s-1 cm-2] (4.48±0.21)×1011(4.48\pm 0.21)\times 10^{-11} this work
AvAv [mag] 0.1±0.10.1\pm 0.1 this work
ρ\rho_{\star} [ρ\rho_{\odot}] 20.2±1.820.2\pm 1.8 this work
AgeAge [Gyr] \lesssim7 this work
Spectral type M6±\pm1 [Shane/Kast]
Spectral type M5.0 ±\pm 0.5 this work [IRTF/SpeX]
777Astrometry, photometry, and spectroscopy stellar properties of TOI-6508. (1): Gaia EDR3 Gaia Collaboration et al. (2021); (2) TESS Input Catalog Stassun et al. (2018b); (3) UCAC4 Zacharias et al. (2012); (4) 2MASS Skrutskie et al. (2006); (5) WISE Cutri et al. (2021). a Stellar mass and radius values are computed from Mann et al. (2015, 2019)

3.1 Shane/Kast

Figure 7 shows the Kast optical spectrum of TOI-6508. Characteristic spectral features for mid- to late- M dwarfs are present, including CaH, TiO, and VO molecular features and line absorption from Na I, K I and Ca II. The spectrum is an excellent match to the M6 SDSS spectral template data from Bochanski et al. (2007), implying an optical classification of M6±\pm1. Hα\alpha is seen in clear emission with an equivalent width of -2.95±\pm0.18 Å, which corresponds to a relative emission luminosity of log10LHα/Lbol\log_{10}L_{H\alpha}/L_{bol} = -4.36±\pm0.10 using the χ\chi-factor calibration of Douglas et al. (2014). The presence of magnetic emission is consistent with an activity age \lesssim7 Gyr (West et al. 2008; Rebassa-Mansergas et al. 2023). The relative strength of TiO and CaH absorption in the 7000 Å region yields a ζ\zeta value of 0.85±\pm0.02 (Lépine et al. 2013), near the boundary between dwarf and subdwarf classes, and the Mann et al. (2013) metallicity-ζ\zeta relation yields [Fe/H]==-0.17±\pm0.20.

Refer to caption
Figure 7: Kast spectrum of TOI-6508 (black lines) compared to M5, M6, and M7 standards from Bochanski et al. (2007, magenta lines). All spectra are normalized at 7500 Å and for clarity (zeropoints are indicated by dashed lines). Key atomic and molecular spectral features are labeled, as are regions of strong telluric absorption (\oplus). The inset box highlights the 6520–6770Å region containing the Hα\alpha emission (detected) and Li I absorption lines (absent).

3.2 IRTF/SpeX

Figure 8 shows the SpeX SXD spectrum of TOI-6508. Following previous SpeX analyses (e.g., Triaud et al. 2023; Gillon et al. 2024; Timmermans et al. 2024), we used the SpeX Prism Library Analysis Toolkit (SPLAT, Burgasser & Splat Development Team 2017) to assign a spectral type and estimate a stellar metallicity. We compared the spectrum to those of single-star spectral standards in the IRTF Spectral Library (Cushing et al. 2005; Rayner et al. 2009). Finding the best match to the M5 dwarf Wolf 47, we adopt an infrared spectral type of M5.0 ±\pm 0.5, slightly earlier than but consistent with the optical classification. Using the H2O–K2 index (Rojas-Ayala et al. 2012) and Mann et al. (2014) relation, we estimate a sub-solar stellar iron abundance of [Fe/H]=0.22±0.08\mathrm{[Fe/H]}=-0.22\pm 0.08 for TOI-6508, consistent with the optical metallicity.

Refer to caption
Figure 8: SpeX SXD spectrum of TOI-6508 (red) alongside the spectrum of the M5 dwarf Wolf 47 (grey) for comparison. Atomic and molecular features of M dwarfs are annotated, and regions of strong telluric absorption are shaded.

3.3 SED analysis

As an independent determination of the basic stellar parameters, we performed an analysis of the broadband spectral energy distribution (SED) of the star together with the Gaia DR3 parallax (with no systematic offset applied; see, e.g., Stassun & Torres 2021), as described in Stassun & Torres (2016); Stassun et al. (2017, 2018a). We used the the 2MASS JHKSJHK_{S} magnitudes, the WISE W1–W3, and the Gaia GBPGRPG_{\rm BP}G_{\rm RP} magnitudes. Together, the available photometry spans the full stellar SED over the wavelength range 0.4–10 μ\mum (see Figure 9).

We performed a fit using PHOENIX stellar atmosphere models (Husser et al. 2013), with the free parameter being the effective temperature (TeffT_{\rm eff}), and the extinction AVA_{V} which we limited to maximum line-of-sight value from the Galactic dust maps of Schlegel et al. (1998); we used the metallicity ([Fe/H]) value derived from spectroscopic observations (see Sections 3.1 and 3.2). The resulting fit (Figure 9) has a best-fit AV=0.1±0.1A_{V}=0.1\pm 0.1 and Teff=2930±70T_{\rm eff}=2930\pm 70 K, with a reduced χ2\chi^{2} of 3.8. Integrating the (unreddened) model SED gives the bolometric flux at Earth, Fbol=4.48±0.21×1011F_{\rm bol}=4.48\pm 0.21\times 10^{-11} erg s-1 cm-2. Taking the FbolF_{\rm bol} and Gaia parallax gives directly the stellar bolometric luminosity, Lbol=0.00327±0.00015L_{\rm bol}=0.00327\pm 0.00015 L. The stellar radius follows from the Stefan-Boltzmann relation, giving R=0.222±0.013R_{\star}=0.222\pm 0.013 R. In addition, we estimated the stellar mass from the empirical MKM_{K} relations of Mann et al. (2019), giving M=0.20±0.01M_{\star}=0.20\pm 0.01 M. Finally, we used the measured chromospheric activity logHα/logLbol\log H\alpha/\log L_{\rm bol} with the empirical relations from Stassun et al. (2012) to predict the degree of radius inflation, which in this case is predicted to be \approx7%, roughly consistent with the apparent inflation of \sim10%.

Refer to caption
Figure 9: SED fit of TOI-6508. The red symbols with error-bars are the observed fluxes, and black dots are the PHOENIX model fluxes. The best-fitting NextGen atmosphere model is presented in blue.

3.4 Archival imaging for TOI-6508

We used the archival images of TOI-6508 to exclude the possibility that there are background stars blended with the target at its current position. TOI-6508 has a high proper motion of 414 mas/yr. We used the POSS-I/red data taken in 1958, and the LCO-SAAO-1.0m/Sloan-ii^{\prime} data taken in 2024, spanning 72 years with our new observations. The target has been shifted by 27.\aas@@fstack{\prime\prime}40 from 1958 to 2024. There is no bright background source in the current day position of the target (see Figure 10).

Refer to caption
Figure 10: Evolution of TOI-6508’s position over time. Left panel shows archival image of TOI-6508 taken using a photographic plate on the Palomar Schmidt Telescope in the red filter. Right panel shows the Sloan-ii^{\prime} image from LCO-SAAO-1.0m taken in 2024.

3.5 Stellar rotation

We searched for photometric modulation in TESS observations using the TESS-SIP (Hedges et al. 2020) package. TESS-SIP returns two outputs simulateneousely, which are a Lomb–Scargle periodogram (Lomb 1976; Scargle 1982) and detrend systematics. In our case, we used the available TESS photometric data from Sectors 10, 37 and 63. We limit our search to a rotation period range 1–50 days. Our results showed that no indications stellar modulation in the TESS data of TOI-6508 (see Figure 11). This implies that the rotational periods of the target star is probably longer than the TESS observation window for a single sector.

Refer to caption
Figure 11: TESS Systematics-Insensitive Periodogram (TESS-SIP) of TOI-6508 using the TESS data from Sectors 10, 37 and 63 (blue line).

4 Photometric and RVs analysis

We performed a global modeling of transit light curves obtained from the TESS mission (described Section 2.1), and SPECULOOS-South-1.0m and LCO-SAAO-1.0m telescopes (described in Section 2.2), together with the radial velocity measurements collected by the ESO-3.6m/NIRPS spectrograph (described in Section 2.3.1), using the Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970) method implemented in TRAFIT, a revised version of the Markov chain Monte Carlo (MCMC) code described in Gillon et al. (2010, 2012, 2014). We followed the same strategy as described in Barkaoui et al. (2023, 2024). The photometric data were modeled using the Mandel & Agol (2002) quadratic limb-darkening model, multiplied by a transit baseline, in order to correct for external systematic effects related to the time and FWHM of the PSF as well as the airmass, and background light level. The radial velocity data were modeled with the two-body Keplerian model (Murray & Correia 2010).

The baseline model for each transit was selected by minimizing the Bayesian information criterion (BIC; Schwarz (1978)). The error bars of TOI-6508 radial velocity measurements were quadratically rescaled using the ‘jitter’ noise, while the photometric error bars were rescaled using the correction factor CF=βw×βrCF=\beta_{w}\times\beta_{r}, where βr\beta_{r} is the red noise and βw\beta_{w} is the white noise (Gillon et al. 2012).

For the joint fit, the global free parameters for transit modeling are the mid-transit time at a reference epoch (T0T_{0}), the orbital period (PP), the transit depth (dFdF), the impact parameter (bb), the stellar density ρ\rho_{\star}, as well as the total transit duration (WW). We applied a Gaussian prior distribution on the stellar quadratic limb-darkening coefficients (u1u_{1} and u2u_{2}), stellar mass MM_{\star}, radius RR_{\star} and effective temperature TeffT_{\rm eff} (computed from SED analysis), as well as the stellar atmospheric parameters computed from spectroscopic analysis (metallicity TeffT_{\rm eff} and surface gravity logg\log g_{\star}). The quadratic limb-darkening coefficients u1u_{1} and u2u_{2} for the TESS, Pan-STARRS-zsz_{\mathrm{s}}, Sloan-ii^{\prime}, Sloan-rr^{\prime}, and Johnson-VV filters were computed using the stellar parameters (TeffT_{\rm eff}, [Fe/H][Fe/H] and logg\log g_{\star}) and Tables from Claret et al. (2012); Claret (2018). During our analysis, we converted the quadratic limb-darkening coefficients u1u_{1} and u2u_{2} into the combination q1=(u1+u2)2q_{1}=(u_{1}+u_{2})^{2} and q2=0.5u1(u1+u2)1q_{2}=0.5u_{1}(u_{1}+u_{2})^{-1} proposed by Kipping (2013).

We performed two MCMC fits. The first fit assumed an eccentric orbit (i.e. free eccentricity) and the second assumed a perfectly circular orbit (i.e., e=0e=0). Our results favored an eccentric orbit solution based on the Bayes factor BC=exp(ΔBIC/2)>1000BC=\exp{(-\Delta BIC/2)}>1000. For each transit, a preliminary analysis was performed composed of one Markov chain with 5×1055\times 10^{5} steps to compute the CFCF (correction factor; Gillon et al. (2012)). Then, we performed a final MCMC fit composed of five Markov chains with one million steps to infer the physical properties of the system. The convergence for each Markov chain has been checked based on the Gelman & Rubin (1992) statistical test. Our final results for the eccentric orbit solution are presented in Table 5.

Table 5: Derived physical parameters of the TOI-6508 b system with 1-σ\sigma for the eccentric orbit solution.
TOI-6508
Parameter Value
Quadratic Limb-Darkening coefficients
u1,TESSu_{\rm 1,TESS} 0.32±0.020.32\pm 0.02
u2,TESSu_{\rm 2,TESS} 0.23±0.030.23\pm 0.03
u1,PanSTARRSzsu_{\rm 1,{\rm Pan-STARRS-z_{s}}} 0.29±0.020.29\pm 0.02
u2,PanSTARRSzsu_{\rm 2,{\rm Pan-STARRS-z_{s}}} 0.19±0.040.19\pm 0.04
u1,Sloaniu_{\rm 1,{\rm Sloan}-i^{\prime}} 0.43±0.010.43\pm 0.01
u2,Sloaniu_{\rm 2,{\rm Sloan}-i^{\prime}} 0.30±0.010.30\pm 0.01
u1,Sloanru_{\rm 1,{\rm Sloan}-r^{\prime}} 0.70±0.010.70\pm 0.01
u2,Sloanru_{\rm 2,{\rm Sloan}-r^{\prime}} 0.19±0.010.19\pm 0.01
u1,JohnsonVu_{\rm 1,{\rm Johnson}-V} 0.73±0.010.73\pm 0.01
u2,JohnsonVu_{\rm 2,{\rm Johnson}-V} 0.19±0.010.19\pm 0.01
Derived stellar parameters
Stellar mass, MM_{\star} [MM_{\odot} ] 0.17440.0198+0.02030.1744^{+0.0203}_{-0.0198}
Stellar radius, RR_{\star} [RR_{\odot}] 0.20410.0061+0.00610.2041^{+0.0061}_{-0.0061}
Mean density, ρ\rho_{\star} [ρ\rho_{\odot}] 20.382.65+3.3620.38^{+3.36}_{-2.65}
Luminosity, LL_{\star} [LL_{\odot}] 0.0030440.000319+0.0003530.003044_{-0.000319}^{+0.000353}
Effective temperature, TeffT_{\rm eff} [K] 300369+713003^{+71}_{-69}
Derived BD parameters
Radius ratio Rp/RR_{p}/R_{\star} 0.50360.0030+0.00370.5036^{+0.0037}_{-0.0030}
Orbital period PP [days] 18.992659220.0000681+0.000068818.99265922^{+0.0000688}_{-0.0000681}
Transit-timing T0T_{0} 10399.8462781±0.000068510399.8462781\pm 0.0000685
[BJDTDB2450000][{\rm BJD}_{\rm TDB}-2450000]
Orbital semi-major axis aa [AU] 0.08659±0.002960.08659\pm 0.00296
Impact parameter bb [RR_{\star}] 0.6310.044+0.0390.631^{+0.039}_{-0.044}
Transit duration WW [min] 109.2±0.5109.2\pm 0.5
Scaled semi-major axis a/Ra/R_{\star} 90.963.65+4.5390.96^{+4.53}_{-3.65}
Orbital inclination ii [deg] 89.60±0.0489.60\pm 0.04
Eccentricity ee 0.280.08+0.090.28^{+0.09}_{-0.08}
ecos(w)\sqrt{e}\cos(w) 0.350.20+0.170.35_{-0.20}^{+0.17}
esin(w)\sqrt{e}\sin(w) 0.3750.093+0.0680.375_{-0.093}^{+0.068}
RV semi-amplitude KK [km/skm/s] 14.880.69+1.0514.88^{+1.05}_{-0.69}
Mass ratio MBD/MM_{\rm BD}/M_{\star} 0.3970.062+0.0530.397^{+0.053}_{-0.062}
BD Radius RBDR_{\rm BD} [RJupiterR_{\rm Jupiter}] 1.0260.032+0.0311.026_{-0.032}^{+0.031}
BD Mass MBDM_{\rm BD} [MJupiterM_{\rm Jupiter} ] 72.535.09+7.6172.53_{-5.09}^{+7.61}
BD density ρBD\rho_{\rm BD} [g/cm3g/cm^{3}] 89.08.2+13.789.0_{-8.2}^{+13.7}
Surface gravity loggBD\log g_{\rm BD} 5.24690.0338+0.05355.2469_{-0.0338}^{+0.0535}
Incident flux <F><F> [<F><F_{\oplus}>] 0.4070.051+0.0550.407^{+0.055}_{-0.051}

5 Discussion and Conclusion

Transiting BDs around M dwarf stars are rare, and they are helpful for understanding the formation and evolution of such systems. Only 10\sim 10 M dwarf/BD systems are known, and more detections are required to probe the formation and evolution paths.

In this paper, we present a BD orbiting a low-mass star, TOI-6508 b. The target was observed with the TESS mission during Sectors 10, 37 and 73 with long-cadence of 1800 s, 600 s and 200 s, respectively (Section 2.1). The candidate was first identified by TESS. Ground-based photometric follow-up observations were performed with the SPECULOOS-South-1.0m and LCOGT-McD-1.0m telescopes (Section 2.2). Radial velocity measurements were collected using the NIRPS spectrograph as described in Section 2.3.1. The host star was characterized by combining optical spectra collected by IRTF/SpeX and Shane/Kast instruments, the spectral energy distribution (SED), and stellar evolutionary models (Section 3). TOI-6508 is a Kmag=11.5K_{\rm mag}=11.5 M5.5 sub-solar star with metallicity of [Fe/H]=0.22±0.08[Fe/H]=-0.22\pm 0.08, a mass of M=0.174±0.004MM_{\star}=0.174\pm 0.004\leavevmode\nobreak\ M_{\odot}, a radius of R=0.205±0.006RR_{\star}=0.205\pm 0.006\leavevmode\nobreak\ R_{\odot} and an effective temperature of Teff=2930±70KT_{\rm eff}=2930\pm 70\leavevmode\nobreak\ K.

We performed a global analysis of the TESS observations together with ground-based photometric and radial velocity observations in order to derive the physical parameters of the system (Section 4). Table 7 shows the stellar physical characteristics of the host star TOI-6508. The derived physical parameters of the system are presented in Table 5. The posterior distribution parameters of TOI-6508 b are presented in Figure 18. We find that TOI-6508 b is a massive brown dwarf with a mass of MBD=72.535.09+7.61MJupM_{\rm BD}=72.53^{+7.61}_{-5.09}M_{\rm Jup} and a radius of RBD=1.0260.032+0.031RJupR_{\rm BD}=1.026^{+0.031}_{-0.032}R_{\rm Jup}. It is the second highest mass ratio BD transiting a low-mass star.

During our modeling, we performed two MCMC fits. The first assuming a circular orbit and the second assuming an eccentric orbit. The best solution is compatible with an eccentric orbit, based on the Bayes factor BCBC. TOI-6508 b orbits its host star with an orbital period of P=18.992659220.0000681+0.0000688P=18.99265922^{+0.0000688}_{-0.0000681} days and an eccentricity of e=0.280.08+0.09e=0.28^{+0.09}_{-0.08}. Figure 12 shows the posterior probability distribution of the orbital eccentricity and the mass of TOI-6508 b, including the evolutionary models from Baraffe et al. (2003). Additional observations of radial velocity are required to improve the orbital eccentricity and mass measurements of TOI-6508 b (see Figure 13). Figure 14 presents the mass ratio MBD/MM_{\rm BD}/M_{\star} as a function of the BD mass. TOI-6508 b has the second highest mass ratio among all known transiting BDs.

Refer to caption
Figure 12: Posterior probability distribution of the eccentricity and the mass of TOI-6508 b. Vertical colored lines show the evolutionary models from Baraffe et al. (2003).
Refer to caption
Figure 13: The eccentricity as a function of the mass of transiting BDs from Table 6. The color of each point indicates the effective temperature of the host star. TESS BD systems are highlighted by the stars and other systems by dots. TOI-6508 b is highlighted by the black circle.
Refer to caption
Figure 14: Comparison of TOI-6508 b to other transiting BD systems from Table 6. TOI-6508 b is the second highest mass ratio transiting BD after ZTF J2020+5033 (El-Badry et al. 2023). Dot are colored according to the stellar effective temperature.

The surface gravity of the transiting BDs gBDg_{\rm BD}, can be derived directly from the transit observations and radial velocity measurements, and is given by,

gBD=GMBDRBD2=2πKRV(1e2)Psin(i)rBD2,g_{\rm BD}=\frac{GM_{\rm BD}}{R^{2}_{\rm BD}}=\frac{2\pi K_{\rm RV}\sqrt{(1-e^{2})}}{P\sin(i)r^{2}_{\rm BD}}, (1)

where, the semi-amplitude KRVK_{\rm RV} and the orbital eccentricity ee are derived from the radial velocity fit. The orbital period PP, the scaled BD radius rBD=a/RBDr_{\rm BD}=a/R_{\rm BD}, and the orbital inclination ii are derived from the fit of transit light curves. The BD’s surface gravity is related directly to the observable parameters independent of those of the host star.
Figure 15 presents the radius–mass diagram for all known transiting objects with masses ranging 10 and 120 MJupM_{\rm Jup}. Figure 16 presents the surface gravity as a function of the mass of known transiting objects. Table 6 shows the updated list of transiting BDs from Carmichael (2022) and Henderson et al. (2024). Some new objects have been included from Vowell et al. (2025). As a preliminary comparison, TOI-6508 b is well placed within the edge of the brown dwarf regime, means, near the hydrogen burning limit (Baraffe et al. 2002). We also presented the tabulated isochrones models for substellar objects derived by Baraffe et al. (2003) (colored solid lines), with different ages of 0.1, 0.5, 1, 5 and 10 Gyr 888Isochrones Models: http://perso.ens-lyon.fr/isabelle.baraffe/.

Refer to caption
Figure 15: The Radius against the mass of transiting BDs from Table 6. The colored solid lines indicate the evolutionary models from Baraffe et al. (2003) with different ages from 0.1 to 10 Gyrs. TOI-6508 b is highlighted by the black dot with error bars.
Refer to caption
Figure 16: The surface gravity measurements loggBD\log g_{\rm BD} as a function of the mass of transiting BDs from Table 6. The colored solid lines indicate the evolutionary models from Baraffe et al. (2003) with different ages from 0.1 to 10 Gyrs. TOI-6508 b is highlighted by the black dot with error bars.

TOI-6508 b shows a deeper primary eclipse of 250 ppt (parts per thousand), but no detectable secondary eclipse. This implies that the secondary component has a lower surface brightness than the primary component. Phase-folded TESS observations are shown in Figure 17. The absence of a detectable secondary eclipse in the data suggested that the companion is a brown dwarf. Based on TESS data, we might rule out a secondary eclipse of δoccult10\delta_{\rm occult}\approx 10 ppt. We observed two full occultations of TOI-6508 b from LCO-SAAO-1m0 in the Sloan-ii^{\prime} on UTC May 16 2024 (assuming a circular orbit) and UTC Feb 8 2025 (assuming an eccentric orbit of e=0.28e=0.28 constrained from our global MCMC analysis). Based on these observations, we might rule out a secondary eclipse of δoccult3\delta_{\rm occult}\approx 3 ppt (see Figure 5). Moreover, the effective temperature TBDT_{\rm BD} for the companion can be computed by combining the companion and stellar radius ratio RBD/RR_{\rm BD}/R_{\star} with the Planck function for blackbody via the formula:

δoccult=(RBDR)2BBD(λ,TBD)B(λ,Teff),\delta_{\rm occult}=\left(\frac{R_{\rm BD}}{R_{\star}}\right)^{2}\frac{B_{\rm BD}(\lambda,T_{\rm BD})}{B_{\star}(\lambda,T_{\rm eff})}, (2)

where BBD(λ,TBD)B_{\rm BD}(\lambda,T_{\rm BD}) and B(λ,Teff)B_{\star}(\lambda,T_{\rm eff}) are the Planck distribution functions for the companion and host star, respectively. This resulted in an effective temperature of the companion of TBD<1800T_{\rm BD}<1800K, indicative of a brown dwarf. Since the luminosity of a BD is mainly emitted at infrared wavelengths, the secondary eclipse should be deeper when observed at infrared wavelengths. Moreover, a new observation in the infrared is required to confirm or not the secondary eclipse of the companion. If a secondary eclipse is present, this will allow an independent determination of the effective temperature of the brown dwarf TOI-6508 b. Moreover, the combination of low mass and low luminosity of the host star, and low incident flux of the companion, make TOI-6508 b a favorable target for upcoming secondary eclipse observation with the JWST, in order to measure its luminosity, its Albedo, and its effective temperature.

Refer to caption
Figure 17: TESS PDC-SAP flux of TOI-6508 extracted from the full frame images (FFIs). The blue data points show the TESS folded-phased transit light curves of TOI-650b b. While, the red data points show the TESS folded-phased secondary eclipse light curves assuming an eccentricity of e=0.28e=0.28 (constrained from our global MCMC analysis). Based on the TESS data, we might rule out a secondary eclipse of δoccult10\delta_{\rm occult}\approx 10 ppt.

6 Acknowledgments

The postdoctoral fellowship of KB is funded by F.R.S.-FNRS grant T.0109.20 and by the Francqui Foundation. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. MG is F.R.S.-FNRS Research Director. Author F.J.P acknowledges financial support from the Severo Ochoa grant CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033 and Ministerio de Ciencia e Innovación through the project PID2022-137241NB-C43. This material is based upon work supported by the National Aeronautics and Space Administration under Agreement No. 80NSSC21K0593 for the program “Alien Earths”. The results reported herein benefited from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate. Based on observations collected at the European Southern Observatory under ESO programme 113.27QV.001. Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract 80HQTR24DA010 with the National Aeronautics and Space Administration. Funding for the TESS mission is provided by NASA’s Science Mission Directorate. KAC acknowledges support from the TESS mission via subaward s3449 from MIT. This paper made use of data collected by the TESS mission, obtained from the Mikulski Archive for Space Telescopes MAST data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This research has made use of the Exoplanet Follow-up Observation Program (ExoFOP; DOI: 10.26134/ExoFOP5) website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Based on data collected by the SPECULOOS-South Observatory at the ESO Paranal Observatory in Chile. The ULiege’s contribution to SPECULOOS has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) (grant Agreement n 336480/SPECULOOS), from the Balzan Prize and Francqui Foundations, from the Belgian Scientific Research Foundation (F.R.S.-FNRS; grant n T.0109.20), from the University of Liege, and from the ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. The Birmingham contribution is in part funded by the European Union’s Horizon 2020 research and innovation programme (grant’s agreement n 803193/BEBOP), and from the Science and Technology Facilities Council (STFC; grant n ST/S00193X/1, ST/W000385/1 and ST/Y001710/1). The Cambridge contribution is supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. Some of the observations in this paper made use of the High-Resolution Imaging instrument Zorro and were obtained under Gemini LLP Proposal Number: GN/S-2021A-LP-105. Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF’s OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea).

References

  • Acton et al. (2021) Acton, J. S., Goad, M. R., Burleigh, M. R., et al. 2021, MNRAS, 505, 2741–2752
  • Aller et al. (2020) Aller, A., Lillo-Box, J., Jones, D., Miranda, L. F., & Barceló Forteza, S. 2020, A&A, 635, A128
  • Artigau et al. (2024) Artigau, É., Bouchy, F., Doyon, R., et al. 2024, in Ground-based and Airborne Instrumentation for Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D. Vernet, Vol. 13096, International Society for Optics and Photonics (SPIE), 130960C
  • Artigau et al. (2021) Artigau, É., Hébrard, G., Cadieux, C., et al. 2021, AJ, 162, 144
  • Baraffe et al. (2002) Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 2002, A&A, 382, 563
  • Baraffe et al. (2003) Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701
  • Barkaoui et al. (2024) Barkaoui, K., Schwarz, R. P., Narita, N., et al. 2024, A&A, 687, A264
  • Barkaoui et al. (2023) Barkaoui, K., Timmermans, M., Soubkiou, A., et al. 2023, A&A, 677, A38
  • Bayliss et al. (2017) Bayliss, D., Hojjatpanah, S., Santerne, A., et al. 2017, AJ, 153, 15
  • Benni et al. (2021) Benni, P., Burdanov, A. Y., Krushinsky, V. V., et al. 2021, MNRAS, 505, 4956
  • Bochanski et al. (2007) Bochanski, J. J., West, A. A., Hawley, S. L., & Covey, K. R. 2007, AJ, 133, 531
  • Bonomo et al. (2015) Bonomo, A. S., Sozzetti, A., Santerne, A., et al. 2015, A&A, 575, A85
  • Bouchy et al. (2011) Bouchy, F., Deleuil, M., Guillot, T., et al. 2011, A&A, 525, A68
  • Bouchy et al. (2017) Bouchy, F., Doyon, R., Artigau, É., et al. 2017, The Messenger, 169, 21
  • Brown et al. (2013) Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, Publications of the Astronomical Society of the Pacific, 125, 1031
  • Burgasser & Splat Development Team (2017) Burgasser, A. J. & Splat Development Team. 2017, in Astronomical Society of India Conference Series, Vol. 14, Astronomical Society of India Conference Series, 7–12
  • Burn et al. (2021) Burn, R., Schlecker, M., Mordasini, C., et al. 2021, A&A, 656, A72
  • Cañas et al. (2018) Cañas, C. I., Bender, C. F., Mahadevan, S., et al. 2018, ApJ, 861, L4
  • Carmichael (2022) Carmichael, T. W. 2022, Monthly Notices of the Royal Astronomical Society, 519, 5177
  • Carmichael et al. (2022) Carmichael, T. W., Irwin, J. M., Murgas, F., et al. 2022, MNRAS, 514, 4944
  • Carmichael et al. (2019) Carmichael, T. W., Latham, D. W., & Vanderburg, A. M. 2019, AJ, 158, 38
  • Carmichael et al. (2020) Carmichael, T. W., Quinn, S. N., Mustill, A. J., et al. 2020, AJ, 160, 53
  • Carmichael et al. (2021) Carmichael, T. W., Quinn, S. N., Zhou, G., et al. 2021, AJ, 161, 97
  • Chabrier et al. (2023) Chabrier, G., Baraffe, I., Phillips, M., & Debras, F. 2023, A&A, 671, A119
  • Chaturvedi et al. (2016) Chaturvedi, P., Chakraborty, A., Anandarao, B. G., Roy, A., & Mahadevan, S. 2016, MNRAS, 462, 554
  • Ciardi et al. (2015) Ciardi, D. R., Beichman, C. A., Horch, E. P., & Howell, S. B. 2015, The Astrophysical Journal, 805, 16
  • Claret (2018) Claret, A. 2018, A&A, 618, A20
  • Claret et al. (2012) Claret, A., Hauschildt, P. H., & Witte, S. 2012, A&A, 546, A14
  • Collins et al. (2017) Collins, K. A., Kielkopf, J. F., Stassun, K. G., & Hessman, F. V. 2017, The Astronomical Journal, 153, 77
  • Csizmadia (2016) Csizmadia, S. 2016, in The CoRoT Legacy Book (EDP Sciences), 143
  • Csizmadia et al. (2015) Csizmadia, S., Hatzes, A., Gandolfi, D., et al. 2015, A&A, 584, A13
  • Cushing et al. (2005) Cushing, M. C., Rayner, J. T., & Vacca, W. D. 2005, ApJ, 623, 1115
  • Cushing et al. (2004) Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004, PASP, 116, 362
  • Cutri et al. (2021) Cutri, R. M., Wright, E. L., Conrow, T., et al. 2021, VizieR Online Data Catalog, II/328
  • David et al. (2019) David, T. J., Hillenbrand, L. A., Gillen, E., et al. 2019, ApJ, 872, 161
  • Deleuil et al. (2008) Deleuil, M., Deeg, H. J., Alonso, R., et al. 2008, A&A, 491, 889
  • Delrez et al. (2018) Delrez, L., Gillon, M., Queloz, D., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10700, Ground-based and Airborne Telescopes VII, ed. H. K. Marshall & J. Spyromilio, 107001I
  • Delrez et al. (2022) Delrez, L., Murray, C. A., Pozuelos, F. J., et al. 2022, A&A, 667, A59
  • D´ıaz et al. (2013) Díaz, R. F., Damiani, C., Deleuil, M., et al. 2013, A&A, 551, L9
  • D´ıaz et al. (2014) Díaz, R. F., Montagnier, G., Leconte, J., et al. 2014, A&A, 572, A109
  • Douglas et al. (2014) Douglas, S. T., Agüeros, M. A., Covey, K. R., et al. 2014, ApJ, 795, 161
  • El-Badry et al. (2023) El-Badry, K., Burdge, K. B., van Roestel, J., & Rodriguez, A. C. 2023, The Open Journal of Astrophysics, 6, 33
  • Ferreira dos Santos et al. (2024) Ferreira dos Santos, T., Rice, M., Wang, X.-Y., & Wang, S. 2024, AJ, 168, 145
  • Furlan & Howell (2017) Furlan, E. & Howell, S. B. 2017, AJ, 154, 66
  • Furlan & Howell (2020) Furlan, E. & Howell, S. B. 2020, The Astrophysical Journal, 898, 47
  • Gaia Collaboration et al. (2021) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 650, C3
  • Garcia et al. (2022) Garcia, L. J., Timmermans, M., Pozuelos, F. J., et al. 2022, MNRAS, 509, 4817
  • Gelman & Rubin (1992) Gelman, A. & Rubin, D. B. 1992, Statistical Science, 7, 457
  • Gill et al. (2022) Gill, S., Ulmer-Moll, S., Wheatley, P. J., et al. 2022, MNRAS, 513, 1785
  • Gillen et al. (2017) Gillen, E., Hillenbrand, L. A., David, T. J., et al. 2017, ApJ, 849, 11
  • Gillon et al. (2010) Gillon, M., Deming, D., Demory, B. O., et al. 2010, A&A, 518, A25
  • Gillon et al. (2014) Gillon, M., Demory, B. O., Madhusudhan, N., et al. 2014, A&A, 563, A21
  • Gillon et al. (2024) Gillon, M., Pedersen, P. P., Rackham, B. V., et al. 2024, Nature Astronomy, 8, 865
  • Gillon et al. (2012) Gillon, M., Triaud, A. H. M. J., Fortney, J. J., et al. 2012, A&A, 542, A4
  • Grieves et al. (2021) Grieves, N., Bouchy, F., Lendl, M., et al. 2021, A&A, 652, A127
  • Hastings (1970) Hastings, W. K. 1970, Biometrika, 57, 97
  • Hedges et al. (2020) Hedges, C., Angus, R., Barentsen, G., et al. 2020, Research Notes of the AAS, 4, 220
  • Henderson et al. (2024) Henderson, B. A., Casewell, S. L., Goad, M. R., et al. 2024, Monthly Notices of the Royal Astronomical Society, 530, 318
  • Hodžić et al. (2018) Hodžić, V., Triaud, A. H. M. J., Anderson, D. R., et al. 2018, MNRAS, 481, 5091
  • Howell et al. (2011) Howell, S. B., Everett, M. E., Sherry, W., Horch, E., & Ciardi, D. R. 2011, AJ, 142, 19
  • Husser et al. (2013) Husser, T. O., Wende-von Berg, S., Dreizler, S., et al. 2013, A&A, 553, A6
  • Irwin et al. (2018) Irwin, J. M., Charbonneau, D., Esquerdo, G. A., et al. 2018, AJ, 156, 140
  • Jackman et al. (2019) Jackman, J. A. G., Wheatley, P. J., Bayliss, D., et al. 2019, MNRAS, 489, 5146
  • Jehin et al. (2018) Jehin, E., Gillon, M., Queloz, D., et al. 2018, The Messenger, 174, 2
  • Jenkins et al. (2016) Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, 99133E
  • Jensen (2013) Jensen, E. 2013, Tapir: A web interface for transit/eclipse observability, Astrophysics Source Code Library, record ascl:1306.007
  • Johnson et al. (2011) Johnson, J. A., Apps, K., Gazak, J. Z., et al. 2011, ApJ, 730, 79
  • Kanodia et al. (2022) Kanodia, S., Libby-Roberts, J., Cañas, C. I., et al. 2022, AJ, 164, 81
  • Khandelwal, A. et al. (2023) Khandelwal, A., Sharma, Rishikesh, Chakraborty, Abhijit, et al. 2023, A&A, 672, L7
  • Kipping (2013) Kipping, D. M. 2013, MNRAS, 435, 2152
  • Lépine et al. (2013) Lépine, S., Hilton, E. J., Mann, A. W., et al. 2013, AJ, 145, 102
  • Lester et al. (2021) Lester, K. V., Matson, R. A., Howell, S. B., et al. 2021, The Astronomical Journal, 162, 75
  • Lightkurve Collaboration et al. (2018) Lightkurve Collaboration, Cardoso, J. V. d. M., Hedges, C., et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library, record ascl:1812.013
  • Lin et al. (2023) Lin, Z., Gan, T., Wang, S. X., et al. 2023, MNRAS, 523, 6162
  • Lomb (1976) Lomb, N. R. 1976, Ap&SS, 39, 447
  • Mandel & Agol (2002) Mandel, K. & Agol, E. 2002, ApJ, 580, L171
  • Mann et al. (2013) Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S., & Hilton, E. J. 2013, AJ, 145, 52
  • Mann et al. (2014) Mann, A. W., Deacon, N. R., Gaidos, E., et al. 2014, AJ, 147, 160
  • Mann et al. (2019) Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63
  • Mann et al. (2015) Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T., & von Braun, K. 2015, The Astrophysical Journal, 804, 64
  • Massey & Gronwall (1990) Massey, P. & Gronwall, C. 1990, ApJ, 358, 344
  • Matson et al. (2018) Matson, R. A., Howell, S. B., Horch, E. P., & Everett, M. E. 2018, The Astronomical Journal, 156, 31
  • McCully et al. (2018) McCully, C., Volgenau, N. H., Harbeck, D.-R., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10707, Software and Cyberinfrastructure for Astronomy V, ed. J. C. Guzman & J. Ibsen, 107070K
  • Metropolis et al. (1953) Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, J. Chem. Phys., 21, 1087
  • Miller & Stone (1994) Miller, J. S. & Stone, R. P. S. 1994, The Kast Double Spectrograph, Tech. Rep. 66, University of California Lick Observatory Technical Reports
  • Mireles et al. (2020) Mireles, I., Shporer, A., Grieves, N., et al. 2020, AJ, 160, 133
  • Moutou et al. (2013) Moutou, C., Bonomo, A. S., Bruno, G., et al. 2013, A&A, 558, L6
  • Murray & Correia (2010) Murray, C. D. & Correia, A. C. M. 2010, in Exoplanets, ed. S. Seager (University of Arizona Press), 15–23
  • Nowak et al. (2017) Nowak, G., Palle, E., Gandolfi, D., et al. 2017, AJ, 153, 131
  • Oke (1990) Oke, J. B. 1990, AJ, 99, 1621
  • Palle et al. (2021) Palle, E., Luque, R., Zapatero Osorio, M. R., et al. 2021, A&A, 650, A55
  • Parviainen et al. (2020) Parviainen, H., Palle, E., Zapatero-Osorio, M. R., et al. 2020, A&A, 633, A28
  • Pepe, F. et al. (2021) Pepe, F., Cristiani, S., Rebolo, R., et al. 2021, A&A, 645, A96
  • Persson et al. (2019) Persson, C. M., Csizmadia, S., Mustill, A. J., et al. 2019, A&A, 628, A64
  • Phillips et al. (2020) Phillips, M. W., Tremblin, P., Baraffe, I., et al. 2020, A&A, 637, A38
  • Pont et al. (2005) Pont, F., Melo, C. H. F., Bouchy, F., et al. 2005, A&A, 433, L21
  • Pont et al. (2006) Pont, F., Moutou, C., Bouchy, F., et al. 2006, A&A, 447, 1035
  • Psaridi et al. (2022) Psaridi, A., Bouchy, F., Lendl, M., et al. 2022, A&A, 664, A94
  • Rayner et al. (2009) Rayner, J. T., Cushing, M. C., & Vacca, W. D. 2009, ApJS, 185, 289
  • Rayner et al. (2003) Rayner, J. T., Toomey, D. W., Onaka, P. M., et al. 2003, PASP, 115, 362
  • Rebassa-Mansergas et al. (2023) Rebassa-Mansergas, A., Maldonado, J., Raddi, R., et al. 2023, MNRAS, 526, 4787
  • Ricker et al. (2015) Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003
  • Rojas-Ayala et al. (2012) Rojas-Ayala, B., Covey, K. R., Muirhead, P. S., & Lloyd, J. P. 2012, ApJ, 748, 93
  • Saumon & Marley (2008) Saumon, D. & Marley, M. S. 2008, ApJ, 689, 1327
  • Scargle (1982) Scargle, J. D. 1982, ApJ, 263, 835
  • Schlegel et al. (1998) Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
  • Schmidt et al. (2023) Schmidt, S. P., Schlaufman, K. C., Ding, K., et al. 2023, The Astronomical Journal, 166, 225
  • Schwarz (1978) Schwarz, G. 1978, Ann. Statist., 6, 461
  • Scott et al. (2021) Scott, N. J., Howell, S. B., Gnilka, C. L., et al. 2021, Frontiers in Astronomy and Space Sciences, 8, 138
  • Sebastian et al. (2021) Sebastian, D., Gillon, M., Ducrot, E., et al. 2021, A&A, 645, A100
  • Sebastian et al. (2022) Sebastian, D., Guenther, E. W., Deleuil, M., et al. 2022, MNRAS, 516, 636
  • Shporer et al. (2017) Shporer, A., Zhou, G., Vanderburg, A., et al. 2017, ApJ, 847, L18
  • Siverd et al. (2012) Siverd, R. J., Beatty, T. G., Pepper, J., et al. 2012, ApJ, 761, 123
  • Skrutskie et al. (2006) Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
  • Smith et al. (2012) Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012, PASP, 124, 1000
  • Spiegel et al. (2011) Spiegel, D. S., Burrows, A., & Milsom, J. A. 2011, ApJ, 727, 57
  • Stassun et al. (2017) Stassun, K. G., Collins, K. A., & Gaudi, B. S. 2017, AJ, 153, 136
  • Stassun et al. (2018a) Stassun, K. G., Corsaro, E., Pepper, J. A., & Gaudi, B. S. 2018a, AJ, 155, 22
  • Stassun et al. (2012) Stassun, K. G., Kratter, K. M., Scholz, A., & Dupuy, T. J. 2012, ApJ, 756, 47
  • Stassun et al. (2018b) Stassun, K. G., Oelkers, R. J., Pepper, J., et al. 2018b, AJ, 156, 102
  • Stassun & Torres (2016) Stassun, K. G. & Torres, G. 2016, AJ, 152, 180
  • Stassun & Torres (2021) Stassun, K. G. & Torres, G. 2021, ApJ, 907, L33
  • Stumpe et al. (2014) Stumpe, M. C., Smith, J. C., Catanzarite, J. H., et al. 2014, Publications of the Astronomical Society of the Pacific, 126, 100
  • Stumpe et al. (2012) Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985
  • Tal-Or et al. (2013) Tal-Or, L., Mazeh, T., Alonso, R., et al. 2013, A&A, 553, A30
  • Timmermans et al. (2024) Timmermans, M., Dransfield, G., Gillon, M., et al. 2024, A&A, 687, A48
  • Triaud et al. (2023) Triaud, A. H. M. J., Dransfield, G., Kagetani, T., et al. 2023, MNRAS, 525, L98
  • Triaud et al. (2013) Triaud, A. H. M. J., Hebb, L., Anderson, D. R., et al. 2013, A&A, 549, A18
  • von Boetticher et al. (2017) von Boetticher, A., Triaud, A. H. M. J., Queloz, D., et al. 2017, A&A, 604, L6
  • von Boetticher et al. (2019) von Boetticher, A., Triaud, A. H. M. J., Queloz, D., et al. 2019, A&A, 625, A150
  • Vowell et al. (2025) Vowell, N., Rodriguez, J. E., Latham, D. W., et al. 2025, arXiv e-prints, arXiv:2501.09795
  • Vowell et al. (2023) Vowell, N., Rodriguez, J. E., Quinn, S. N., et al. 2023, The Astronomical Journal, 165, 268
  • Šubjak et al. (2020) Šubjak, J., Sharma, R., Carmichael, T. W., et al. 2020, AJ, 159, 151
  • West et al. (2008) West, A. A., Hawley, S. L., Bochanski, J. J., et al. 2008, AJ, 135, 785
  • Wildi et al. (2022) Wildi, F., Bouchy, F., Doyon, R., et al. 2022, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 12184, Ground-based and Airborne Instrumentation for Astronomy IX, ed. C. J. Evans, J. J. Bryant, & K. Motohara, 121841H
  • Zacharias et al. (2012) Zacharias, N., Finch, C. T., Girard, T. M., et al. 2012, VizieR Online Data Catalog, I/322A
  • Zhou et al. (2019) Zhou, G., Bakos, G. Á., Bayliss, D., et al. 2019, AJ, 157, 31

Appendix A List of published transiting BDs

Table 6: List of published transiting BDs adapted and updated from Carmichael (2022) and Henderson et al. (2024). Some new objects have been included from Vowell et al. (2025) .
Object P [d] M2 [MJupM_{\rm Jup}] R2 [RJupR_{\rm Jup}] TeffT_{\rm eff} [K] M1 [MM_{\odot}] R1 [RR_{\odot}] ecc [Fe/H] logg2\log g_{2} Source
TOI-4603b 7.246 12.900.57+0.5812.90^{+0.58}_{-0.57} 1.04±0.041.04\pm 0.04 6264±956264\pm 95 1.77±0.061.77\pm 0.06 2.74±0.052.74\pm 0.05 0.325±0.020.325\pm 0.02 0.34±0.040.34\pm 0.04 4.4910.072+0.0724.491^{+0.072}_{-0.072} Khandelwal, A. et al. (2023)
HATS-70b 1.89 12.91.6+1.812.9^{+1.8}_{-1.6} 1.380.07+0.081.38^{+0.08}_{-0.07} 7930820+6307930^{+630}_{-820} 1.780.12+0.121.78^{+0.12}_{-0.12} 1.880.07+0.061.88^{+0.06}_{-0.07} ¡0.180.18 0.040.11+0.100.04^{+0.10}_{-0.11} 5.6310.123+0.1255.631^{+0.125}_{-0.123} Zhou et al. (2019)
TOI-1278b 14.48 18.50.5+0.518.5^{+0.5}_{-0.5} 1.090.20+0.241.09^{+0.24}_{-0.20} 379942+423799^{+42}_{-42} 0.550.02+0.020.55^{+0.02}_{-0.02} 0.570.01+0.010.57^{+0.01}_{-0.01} 0.0130.004+0.0040.013^{+0.004}_{-0.004} 0.010.28+0.28-0.01^{+0.28}_{-0.28} 4.6110.160+0.1924.611^{+0.192}_{-0.160} Artigau et al. (2021)
GPX-1b 1.74 19.71.6+1.619.7^{+1.6}_{-1.6} 1.470.10+0.101.47^{+0.10}_{-0.10} 7000200+2007000^{+200}_{-200} 1.680.10+0.101.68^{+0.10}_{-0.10} 1.560.10+0.101.56^{+0.10}_{-0.10} 0 (fixed) 0.350.10+0.100.35^{+0.10}_{-0.10} 4.4560.123+0.1234.456^{+0.123}_{-0.123} Benni et al. (2021)
Kepler-39b 21.09 20.11.2+1.320.1^{+1.3}_{-1.2} 1.240.10+0.091.24^{+0.09}_{-0.10} 6350100+1006350^{+100}_{-100} 1.290.07+0.061.29^{+0.06}_{-0.07} 1.400.10+0.101.40^{+0.10}_{-0.10} 0.1120.057+0.0570.112^{+0.057}_{-0.057} 0.100.14+0.140.10^{+0.14}_{-0.14} 4.6460.083+0.0704.646^{+0.070}_{-0.083} Bonomo et al. (2015)
CoRoT-3b 4.26 21.71.0+1.021.7^{+1.0}_{-1.0} 1.010.07+0.071.01^{+0.07}_{-0.07} 6740140+1406740^{+140}_{-140} 1.370.09+0.091.37^{+0.09}_{-0.09} 1.560.09+0.091.56^{+0.09}_{-0.09} 0 (fixed) 0.020.06+0.06-0.02^{+0.06}_{-0.06} 4.7000.088+0.0864.700^{+0.086}_{-0.088} Deleuil et al. (2008)
TOI-5882b 7.1489 24.361.7+0.8524.36^{+0.85}_{-1.7} 0.8330.059+0.060.833^{+0.06}_{-0.059} 6000±1906000\pm 190 1.5450.17+0.0771.545^{+0.077}_{-0.17} 2.3030.064+0.0662.303^{+0.066}_{-0.064} 0.0347±0.00820.0347\pm 0.0082 0.378±0.0840.378\pm 0.084 4.9590.161+0.0924.959^{+0.092}_{-0.161} Vowell et al. (2025)
KELT-1b 1.22 27.40.9+0.927.4^{+0.9}_{-0.9} 1.120.03+0.041.12^{+0.04}_{-0.03} 651649+496516^{+49}_{-49} 1.340.06+0.061.34^{+0.06}_{-0.06} 1.470.04+0.051.47^{+0.05}_{-0.04} 0.0100.007+0.0100.010^{+0.010}_{-0.007} 0.050.08+0.080.05^{+0.08}_{-0.08} 4.7570.071+0.0694.757^{+0.069}_{-0.071} Siverd et al. (2012)
NLTT41135b 2.89 33.72.6+2.833.7^{+2.8}_{-2.6} 1.130.17+0.271.13^{+0.27}_{-0.17} 3230130+1303230^{+130}_{-130} 0.190.02+0.030.19^{+0.03}_{-0.02} 0.210.01+0.020.21^{+0.02}_{-0.01} <0.02<0.02 0 (fixed) 4.8260.134+0.2104.826^{+0.210}_{-0.134} Csizmadia (2016)
WASP-128b 2.21 37.20.9+0.837.2^{+0.8}_{-0.9} 0.940.02+0.020.94^{+0.02}_{-0.02} 595050+505950^{+50}_{-50} 1.160.04+0.041.16^{+0.04}_{-0.04} 1.150.02+0.021.15^{+0.02}_{-0.02} <0.007<0.007 0.010.12+0.120.01^{+0.12}_{-0.12} 5.0450.046+0.0425.045^{+0.042}_{-0.046} Hodžić et al. (2018)
CWW89Ab 5.29 39.21.1+1.139.2^{+1.1}_{-1.1} 0.940.02+0.020.94^{+0.02}_{-0.02} 575549+495755^{+49}_{-49} 1.100.05+0.051.10^{+0.05}_{-0.05} 1.030.02+0.021.03^{+0.02}_{-0.02} 0.1890.002+0.0020.189^{+0.002}_{-0.002} 0.200.09+0.090.20^{+0.09}_{-0.09} 5.0590.044+0.0395.059^{+0.039}_{-0.044} Nowak et al. (2017)
KOI-205b 11.72 39.91.0+1.039.9^{+1.0}_{-1.0} 0.810.02+0.020.81^{+0.02}_{-0.02} 523760+605237^{+60}_{-60} 0.930.03+0.030.93^{+0.03}_{-0.03} 0.840.02+0.020.84^{+0.02}_{-0.02} <0.031<0.031 0.140.12+0.120.14^{+0.12}_{-0.12} 5.1280.040+0.0465.128^{+0.046}_{-0.040} D´ıaz et al. (2013)
TOI-1406b 10.57 46.02.7+2.646.0^{+2.6}_{-2.7} 0.860.03+0.030.86^{+0.03}_{-0.03} 6290100+1006290^{+100}_{-100} 1.180.09+0.081.18^{+0.08}_{-0.09} 1.350.03+0.031.35^{+0.03}_{-0.03} 0.0260.010+0.0130.026^{+0.013}_{-0.010} 0.080.09+0.09-0.08^{+0.09}_{-0.09} 5.2100.086+0.0795.210^{+0.079}_{-0.086} Carmichael et al. (2020)
TOI-3755b 5.5437 47.32.2+1.947.3^{+1.9}_{-2.2} 0.8760.045+0.050.876^{+0.05}_{-0.045} 5630±1705630\pm 170 1.0420.073+0.0631.042^{+0.063}_{-0.073} 1.040.039+0.0411.04^{+0.041}_{-0.039} 0.005±0.00310.005\pm 0.0031 0.339±0.0910.339\pm 0.091 5.2030.079+0.0755.203^{+0.075}_{-0.079} Vowell et al. (2025)
EPIC212036875b 5.17 52.31.9+1.952.3^{+1.9}_{-1.9} 0.870.02+0.020.87^{+0.02}_{-0.02} 623860+596238^{+59}_{-60} 1.290.06+0.071.29^{+0.07}_{-0.06} 1.500.03+0.031.50^{+0.03}_{-0.03} 0.1320.004+0.0040.132^{+0.004}_{-0.004} 0.010.10+0.100.01^{+0.10}_{-0.10} 5.2670.060+0.0615.267^{+0.061}_{-0.060} Persson et al. (2019)
TOI-503b 3.68 53.71.2+1.253.7^{+1.2}_{-1.2} 1.340.15+0.261.34^{+0.26}_{-0.15} 7650160+1407650^{+140}_{-160} 1.800.06+0.061.80^{+0.06}_{-0.06} 1.700.04+0.051.70^{+0.05}_{-0.04} 0 (fixed) 0.300.09+0.080.30^{+0.08}_{-0.09} 4.890.113+0.1784.89^{+0.178}_{-0.113} Šubjak et al. (2020)
TOI-852b 4.95 53.71.3+1.453.7^{+1.4}_{-1.3} 0.830.04+0.040.83^{+0.04}_{-0.04} 576881+845768^{+84}_{-81} 1.320.04+0.051.32^{+0.05}_{-0.04} 1.710.04+0.041.71^{+0.04}_{-0.04} 0.0040.003+0.0040.004^{+0.004}_{-0.003} 0.330.09+0.090.33^{+0.09}_{-0.09} 5.3020.047+0.0495.302^{+0.049}_{-0.047} Carmichael et al. (2021)
TOI-2844b 3.552 53.85.1+5.053.8^{+5.0}_{-5.1} 0.7750.044+0.0480.775^{+0.048}_{-0.044} 6900±2206900\pm 220 1.5850.073+0.0711.585^{+0.071}_{-0.073} 1.7850.081+0.0871.785^{+0.087}_{-0.081} 0.429±0.0480.429\pm 0.048 0.061±0.120.061\pm 0.12 5.3670.133+0.1335.367^{+0.133}_{-0.133} Vowell et al. (2025)
AD3116b 1.98 54.24.3+4.354.2^{+4.3}_{-4.3} 1.020.28+0.281.02^{+0.28}_{-0.28} 318429+293184^{+29}_{-29} 0.280.02+0.020.28^{+0.02}_{-0.02} 0.290.08+0.080.29^{+0.08}_{-0.08} 0.1460.016+0.0240.146^{+0.024}_{-0.016} 0 (fixed) 5.1930.072+0.0755.193^{+0.075}_{-0.072} Gillen et al. (2017)
CoRoT-33b 5.82 59.21.7+1.859.2^{+1.8}_{-1.7} 1.100.53+0.531.10^{+0.53}_{-0.53} 522580+805225^{+80}_{-80} 0.860.04+0.040.86^{+0.04}_{-0.04} 0.940.08+0.140.94^{+0.14}_{-0.08} 0.0700.002+0.0020.070^{+0.002}_{-0.002} 0.440.10+0.100.44^{+0.10}_{-0.10} 5.1020.420+0.4205.102^{+0.420}_{-0.420} Csizmadia et al. (2015)
TOI-3577b 5.2667 59.18.4+6.259.1^{+6.2}_{-8.4} 0.8440.08+0.0920.844^{+0.092}_{-0.08} 6510±8706510\pm 870 1.290.27+0.211.29^{+0.21}_{-0.27} 1.640.11+0.111.64^{+0.11}_{-0.11} 0.005±0.0080.005\pm 0.008 0.21±0.44-0.21\pm 0.44 5.3340.256+0.2115.334^{+0.211}_{-0.256} Vowell et al. (2025)
RIK72b 97.76 59.26.70+6.8059.2^{+6.80}_{-6.70} 3.100.31+0.313.10^{+0.31}_{-0.31} 3349±1423349\pm 142 0.4390.044+0.0440.439^{+0.044}_{-0.044} 0.9610.096+0.0960.961^{+0.096}_{-0.096} 0.1079±0.01160.1079\pm 0.0116 0.0±0.00.0\pm 0.0 4.2170.106+0.1124.217^{+0.112}_{-0.106} (David et al. 2019)
TOI-811b 25.17 59.98.6+13.059.9^{+13.0}_{-8.6} 1.260.06+0.061.26^{+0.06}_{-0.06} 610777+776107^{+77}_{-77} 1.320.07+0.051.32^{+0.05}_{-0.07} 1.270.09+0.061.27^{+0.06}_{-0.09} 0.5090.075+0.0750.509^{+0.075}_{-0.075} 0.400.09+0.070.40^{+0.07}_{-0.09} 5.0130.105+0.1335.013^{+0.133}_{-0.105} Carmichael et al. (2021)
TOI-263b 0.56 61.64.0+4.061.6^{+4.0}_{-4.0} 0.910.07+0.070.91^{+0.07}_{-0.07} 347133+333471^{+33}_{-33} 0.440.04+0.040.44^{+0.04}_{-0.04} 0.440.03+0.030.44^{+0.03}_{-0.03} 0.0170.010+0.0090.017^{+0.009}_{-0.010} 0.000.10+0.100.00^{+0.10}_{-0.10} 5.3120.082+0.0825.312^{+0.082}_{-0.082} Parviainen et al. (2020)
KOI-415b 166.79 62.12.7+2.762.1^{+2.7}_{-2.7} 0.790.07+0.120.79^{+0.12}_{-0.07} 581080+805810^{+80}_{-80} 0.940.06+0.060.94^{+0.06}_{-0.06} 1.250.10+0.151.25^{+0.15}_{-0.10} 0.6980.002+0.0020.698^{+0.002}_{-0.002} 0.240.11+0.11-0.24^{+0.11}_{-0.11} 5.3530.044+0.1295.353^{+0.129}_{-0.044} Moutou et al. (2013)
WASP-30b 4.16 62.51.2+1.262.5^{+1.2}_{-1.2} 0.950.02+0.030.95^{+0.03}_{-0.02} 620251+426202^{+42}_{-51} 1.250.04+0.031.25^{+0.03}_{-0.04} 1.390.03+0.031.39^{+0.03}_{-0.03} <0.004<0.004 0.080.05+0.070.08^{+0.07}_{-0.05} 5.2360.039+0.0505.236^{+0.050}_{-0.039} Triaud et al. (2013)
LHS6343c 12.71 62.72.4+2.462.7^{+2.4}_{-2.4} 0.830.02+0.020.83^{+0.02}_{-0.02} 313020+203130^{+20}_{-20} 0.370.01+0.010.37^{+0.01}_{-0.01} 0.380.01+0.010.38^{+0.01}_{-0.01} 0.0560.032+0.0320.056^{+0.032}_{-0.032} 0.040.08+0.080.04^{+0.08}_{-0.08} 5.3690.027+0.0275.369^{+0.027}_{-0.027} Johnson et al. (2011)
CoRoT-15b 3.06 63.34.1+4.163.3^{+4.1}_{-4.1} 1.120.15+0.301.12^{+0.30}_{-0.15} 6350200+2006350^{+200}_{-200} 1.320.12+0.121.32^{+0.12}_{-0.12} 1.460.14+0.311.46^{+0.31}_{-0.14} 0 (fixed) 0.100.20+0.200.10^{+0.20}_{-0.20} 5.2730.151+0.1695.273^{+0.169}_{-0.151} Bouchy et al. (2011)
TOI-569b 6.56 64.11.4+1.964.1^{+1.9}_{-1.4} 0.750.02+0.020.75^{+0.02}_{-0.02} 576892+1105768^{+110}_{-92} 1.210.05+0.051.21^{+0.05}_{-0.05} 1.480.03+0.031.48^{+0.03}_{-0.03} 0.0020.001+0.0020.002^{+0.002}_{-0.001} 0.290.08+0.090.29^{+0.09}_{-0.08} 5.4640.062+0.0395.464^{+0.039}_{-0.062} Carmichael et al. (2020)
TOI-2119b 7.20 64.42.2+2.364.4^{+2.3}_{-2.2} 1.080.03+0.031.08^{+0.03}_{-0.03} 362146+483621^{+48}_{-46} 0.530.02+0.020.53^{+0.02}_{-0.02} 0.500.02+0.020.50^{+0.02}_{-0.02} 0.3370.001+0.0020.337^{+0.002}_{-0.001} 0.060.08+0.080.06^{+0.08}_{-0.08} 5.1540.031+0.0335.154^{+0.033}_{-0.031} Carmichael et al. (2022)
TOI-1982b 17.17 65.92.7+2.865.9^{+2.8}_{-2.7} 1.080.04+0.041.08^{+0.04}_{-0.04} 6325110+1106325^{+110}_{-110} 1.410.08+0.081.41^{+0.08}_{-0.08} 1.510.05+0.051.51^{+0.05}_{-0.05} 0.2720.014+0.0140.272^{+0.014}_{-0.014} 0.100.09+0.09-0.10^{+0.09}_{-0.09} 5.1610.080+0.0795.161^{+0.079}_{-0.080} Psaridi et al. (2022)
NGTS-28Ab 1.25 69.04.8+5.369.0^{+5.3}_{-4.8} 0.95±0.050.95\pm 0.05 362644+473626^{+47}_{-44} 0.560.02+0.020.56^{+0.02}_{-0.02} 0.590.03+0.030.59^{+0.03}_{-0.03} 0.0400.010+0.0070.040^{+0.007}_{-0.010} 0.140.17+0.16-0.14^{+0.16}_{-0.17} 5.3130.051+0.0515.313^{+0.051}_{-0.051} Henderson et al. (2024)
EPIC201702477b 40.74 66.91.7+1.766.9^{+1.7}_{-1.7} 0.760.07+0.070.76^{+0.07}_{-0.07} 551770+705517^{+70}_{-70} 0.870.03+0.030.87^{+0.03}_{-0.03} 0.900.06+0.060.90^{+0.06}_{-0.06} 0.2280.003+0.0030.228^{+0.003}_{-0.003} 0.160.05+0.05-0.16^{+0.05}_{-0.05} 5.4260.059+0.0625.426^{+0.062}_{-0.059} Bayliss et al. (2017)
TOI-629b 8.72 67.03.0+3.067.0^{+3.0}_{-3.0} 1.110.05+0.051.11^{+0.05}_{-0.05} 9100200+2009100^{+200}_{-200} 2.160.13+0.132.16^{+0.13}_{-0.13} 2.370.11+0.112.37^{+0.11}_{-0.11} 0.2980.008+0.0080.298^{+0.008}_{-0.008} 0.100.15+0.150.10^{+0.15}_{-0.15} 5.1370.122+0.1225.137^{+0.122}_{-0.122} Psaridi et al. (2022)
TOI-4737b 9.320 67.53.3+3.267.5^{+3.2}_{-3.3} 0.8160.044+0.0520.816^{+0.052}_{-0.044} 6330±2206330\pm 220 1.4020.085+0.0831.402^{+0.083}_{-0.085} 1.5680.062+0.0761.568^{+0.076}_{-0.062} 0.018±0.0220.018\pm 0.022 0.25±0.110.25\pm 0.11 5.41960.091+0.0945.4196^{+0.094}_{-0.091} Vowell et al. (2025)
TOI-2543b 7.54 67.63.5+3.567.6^{+3.5}_{-3.5} 0.950.09+0.090.95^{+0.09}_{-0.09} 606082+826060^{+82}_{-82} 1.290.08+0.081.29^{+0.08}_{-0.08} 1.860.15+0.151.86^{+0.15}_{-0.15} 0.0090.002+0.0030.009^{+0.003}_{-0.002} 0.280.10+0.10-0.28^{+0.10}_{-0.10} 5.3620.110+0.1105.362^{+0.110}_{-0.110} Psaridi et al. (2022)
HIP33609b 39.4718 68.007.10+7.4068.00^{+7.40}_{-7.10} 1.5800.070+0.0741.580^{+0.074}_{-0.070} 10400±80010400\pm 800 2.3830.095+0.102.383^{+0.10}_{-0.095} 1.8630.082+0.0871.863^{+0.087}_{-0.082} 0.560±0.0310.560\pm 0.031 0.01±0.20-0.01\pm 0.20 4.8490.108+0.1124.849^{+0.112}_{-0.108} Vowell et al. (2023)
LP261-75b 1.88 68.12.1+2.168.1^{+2.1}_{-2.1} 0.900.01+0.010.90^{+0.01}_{-0.01} 310050+503100^{+50}_{-50} 0.300.02+0.020.30^{+0.02}_{-0.02} 0.310.00+0.000.31^{+0.00}_{-0.00} <0.007<0.007 0.0 5.3400.021+0.0215.340^{+0.021}_{-0.021} Irwin et al. (2018)
NGTS-19b 17.84 69.55.4+5.769.5^{+5.7}_{-5.4} 1.030.05+0.061.03^{+0.06}_{-0.05} 471628+394716^{+39}_{-28} 0.810.04+0.040.81^{+0.04}_{-0.04} 0.900.04+0.040.90^{+0.04}_{-0.04} 0.3770.006+0.0060.377^{+0.006}_{-0.006} 0.110.07+0.070.11^{+0.07}_{-0.07} 5.2330.061+0.0605.233^{+0.060}_{-0.061} Acton et al. (2021)
TOI-2336b 7.71198 69.92.3+2.369.9^{+2.3}_{-2.3} 1.050.04+0.041.05^{+0.04}_{-0.04} 6550±1006550\pm 100 1.410.08+0.081.41^{+0.08}_{-0.08} 1.7810.059+0.0591.781^{+0.059}_{-0.059} 0.010±0.0060.010\pm 0.006 0.0±0.030.0\pm 0.03 5.2180.080+0.0805.218^{+0.080}_{-0.080} Lin et al. (2023)
CoRoT-34b 2.1185 71.408.60+8.9071.40^{+8.90}_{-8.60} 1.090.16+0.171.09^{+0.17}_{-0.16} 7820±1607820\pm 160 1.660.15+0.081.66^{+0.08}_{-0.15} 1.850.25+0.291.85^{+0.29}_{-0.25} 0.00±0.000.00\pm 0.00 0.20±0.20-0.20\pm 0.20 5.1930.239+0.2155.193^{+0.215}_{-0.239} Sebastian et al. (2022)
TOI-2533b 6.6847 72.03.00+3.0072.0^{+3.00}_{-3.00} 0.8500.030+0.0400.850^{+0.040}_{-0.030} 6180±806180\pm 80 1.0200.070+0.0601.020^{+0.060}_{-0.070} 1.1100.010+0.0101.110^{+0.010}_{-0.010} 0.060±0.0700.060\pm 0.070 0.3±0.20-0.3\pm 0.20 5.4180.072+0.0695.418^{+0.069}_{-0.072} Ferreira dos Santos et al. (2024)
TOI-6508b 18.99 72.535.09+7.6172.53_{-5.09}^{+7.61} 0.9850.032+0.0310.985^{+0.031}_{-0.032} 3003±1003003\pm 100 0.17440.0198+0.02930.1744^{+0.0293}_{0.0198} 0.20410.0061+0.00610.2041^{+0.0061}_{-0.0061} 0.28±0.080.28\pm 0.08 0.22±0.08-0.22\pm 0.08 5.2550.048+0.0545.255^{+0.054}_{-0.048} This work
NGTS-7Ab 0.68 75.513.7+3.075.5^{+3.0}_{-13.7} 1.380.14+0.131.38^{+0.13}_{-0.14} 335989+1063359^{+106}_{-89} 0.480.12+0.030.48^{+0.03}_{-0.12} 0.610.06+0.060.61^{+0.06}_{-0.06} 0 (fixed) 0 (fixed) 4.8450.092+0.0954.845^{+0.095}_{-0.092} Jackman et al. (2019)
TOI-148b 4.87 77.14.6+5.877.1^{+5.8}_{-4.6} 0.810.06+0.050.81^{+0.05}_{-0.06} 5990140+1405990^{+140}_{-140} 0.970.09+0.120.97^{+0.12}_{-0.09} 1.200.07+0.071.20^{+0.07}_{-0.07} 0.0050.004+0.0060.005^{+0.006}_{-0.004} 0.240.25+0.25-0.24^{+0.25}_{-0.25} 5.4830.127+0.1275.483^{+0.127}_{-0.127} Grieves et al. (2021)
TOI-2521b 5.5630 77.53.3+3.377.5^{+3.3}_{-3.3} 1.010.04+0.041.01^{+0.04}_{-0.04} 5600±1005600\pm 100 1.100.07+0.071.10^{+0.07}_{-0.07} 1.7700.068+0.0681.770^{+0.068}_{-0.068} 0.0±1.100.0\pm 1.10 0.3±0.3-0.3\pm 0.3 5.3330.090+0.0905.333^{+0.090}_{-0.090} Lin et al. (2023)
KOI-189b 30.36 78.03.4+3.478.0^{+3.4}_{-3.4} 1.000.02+0.021.00^{+0.02}_{-0.02} 495240+404952^{+40}_{-40} 0.760.05+0.050.76^{+0.05}_{-0.05} 0.730.02+0.020.73^{+0.02}_{-0.02} 0.2750.004+0.0040.275^{+0.004}_{-0.004} 0.120.10+0.10-0.12^{+0.10}_{-0.10} 5.3300.036+0.0385.330^{+0.038}_{-0.036} D´ıaz et al. (2014)
Kepler-503b 7.2584 78.63.1+3.178.6^{+3.1}_{-3.1} 0.960.04+0.060.96^{+0.06}_{-0.04} 5670±1005670\pm 100 1.1540.042+0.0471.154^{+0.047}_{-0.042} 1.7640.068+0.0801.764^{+0.080}_{-0.068} 0.025±0.0140.025\pm 0.014 0.169±0.0460.169\pm 0.046 5.3430.056+0.0725.343^{+0.072}_{0.056} Cañas et al. (2018)
ZTFJ2020+5033 0.07928 80.11.60+1.6080.1^{+1.60}_{-1.60} 1.0500.010+0.0101.050^{+0.010}_{-0.010} 2856±62856\pm 6 0.1340.004+0.0040.134^{+0.004}_{-0.004} 0.1760.002+0.0020.176^{+0.002}_{-0.002} 0.0±0.00.0\pm 0.0 0.0±0.00.0\pm 0.0 5.2780.032+0.0315.278^{+0.031}_{-0.032} El-Badry et al. (2023)
TOI-587b 8.04 81.17.0+7.181.1^{+7.1}_{-7.0} 1.320.06+0.071.32^{+0.07}_{-0.06} 9800200+2009800^{+200}_{-200} 2.330.12+0.122.33^{+0.12}_{-0.12} 2.010.09+0.092.01^{+0.09}_{-0.09} 0.0510.036+0.0490.051^{+0.049}_{-0.036} 0.080.12+0.110.08^{+0.11}_{-0.12} 4.6970.096+0.1054.697^{+0.105}_{-0.096} Grieves et al. (2021)
TOI-1712b 3.5666 82.07.00+7.0082.0^{+7.00}_{-7.00} 1.7400.070+0.0801.740^{+0.080}_{-0.070} 6860±406860\pm 40 1.6300.020+0.0101.630^{+0.010}_{-0.020} 3.1000.100+0.0703.100^{+0.070}_{-0.100} 0.090±0.0720.090\pm 0.072 0.2±0.10-0.2\pm 0.10 4.8480.054+0.0554.848^{+0.055}_{-0.054} Schmidt et al. (2023)
TOI-746b 10.98 82.24.4+4.982.2^{+4.9}_{-4.4} 0.950.06+0.090.95^{+0.09}_{-0.06} 5690140+1405690^{+140}_{-140} 0.940.08+0.090.94^{+0.09}_{-0.08} 0.970.03+0.040.97^{+0.04}_{-0.03} 0.1990.003+0.0030.199^{+0.003}_{-0.003} 0.020.23+0.23-0.02^{+0.23}_{-0.23} 5.3720.143+0.1435.372^{+0.143}_{-0.143} Grieves et al. (2021)
TOI-4635b 12.2769 84.02.0+2.184.0^{+2.1}_{-2.0} 1.020.019+0.0191.02^{+0.019}_{-0.019} 4555±674555\pm 67 0.6980.025+0.0270.698^{+0.027}_{-0.025} 0.6830.011+0.0110.683^{+0.011}_{-0.011} 0.4906±0.00150.4906\pm 0.0015 0.091±0.039-0.091\pm 0.039 5.3210.028+0.0305.321^{+0.030}_{-0.028} Vowell et al. (2025)
EBLM J0555-57Ab 7.76 87.94.0+4.087.9^{+4.0}_{-4.0} 0.820.06+0.130.82^{+0.13}_{-0.06} 6368124+1246368^{+124}_{-124} 1.180.08+0.081.18^{+0.08}_{-0.08} 1.000.07+0.141.00^{+0.14}_{-0.07} 0.0900.004+0.0040.090^{+0.004}_{-0.004} 0.040.14+0.14-0.04^{+0.14}_{-0.14} 5.5290.098+0.1565.529^{+0.156}_{-0.098} von Boetticher et al. (2017)
TOI-681b 15.78 88.72.3+2.588.7^{+2.5}_{-2.3} 1.520.15+0.251.52^{+0.25}_{-0.15} 7440140+1507440^{+150}_{-140} 1.540.05+0.061.54^{+0.06}_{-0.05} 1.470.04+0.041.47^{+0.04}_{-0.04} 0.0930.019+0.0220.093^{+0.022}_{-0.019} 0.080.05+0.05-0.08^{+0.05}_{-0.05} 4.9970.097+0.1534.997^{+0.153}_{-0.097} Grieves et al. (2021)
OGLE-TR-123b 1.80 89.011.5+11.589.0^{+11.5}_{-11.5} 1.290.09+0.091.29^{+0.09}_{-0.09} 6700300+3006700^{+300}_{-300} 1.290.26+0.261.29^{+0.26}_{-0.26} 1.550.10+0.101.55^{+0.10}_{-0.10} 0 (fixed) - 5.1400.245+0.2455.140^{+0.245}_{-0.245} Pont et al. (2006)
TOI-694b 48.05 89.05.3+5.389.0^{+5.3}_{-5.3} 1.110.02+0.021.11^{+0.02}_{-0.02} 549681+875496^{+87}_{-81} 0.970.04+0.050.97^{+0.05}_{-0.04} 1.000.01+0.011.00^{+0.01}_{-0.01} 0.5190.001+0.0010.519^{+0.001}_{-0.001} 0.210.08+0.080.21^{+0.08}_{-0.08} 5.2750.042+0.0505.275^{+0.050}_{-0.042} Mireles et al. (2020)
TOI-1608b 2.4727 90.73.7+3.790.7^{+3.7}_{-3.7} 1.210.06+0.061.21^{+0.06}_{-0.06} 5950±1005950\pm 100 1.380.0+0.081.38^{+0.08}_{-0.0} 2.2220.076+0.00762.222^{+0.0076}_{-0.076} 0.0410.019+0.0240.041^{+0.024}_{-0.019} 0.1±0.30.1\pm 0.3 5.2200.098+0.0985.220^{+0.098}_{-0.098} Lin et al. (2023)
TOI-5467b 2.6571 91.62.82.891.6^{2.8}_{-2.8} 1.1260.049+0.0511.126^{+0.051}_{-0.049} 6740±1606740\pm 160 1.5120.063+0.0601.512^{+0.060}_{-0.063} 1.5310.049+0.0531.531^{+0.053}_{-0.049} 0.0439±0.00060.0439\pm 0.0006 0.28±0.090.28\pm 0.09 5.2720.071+0.0705.272^{+0.070}_{-0.071} Vowell et al. (2025)
KOI-607b 5.89 95.13.4+3.395.1^{+3.3}_{-3.4} 1.090.06+0.091.09^{+0.09}_{-0.06} 541885+875418^{+87}_{-85} 0.990.05+0.050.99^{+0.05}_{-0.05} 0.920.03+0.030.92^{+0.03}_{-0.03} 0.3950.009+0.0090.395^{+0.009}_{-0.009} 0.380.09+0.080.38^{+0.08}_{-0.09} 5.3160.067+0.0865.316^{+0.086}_{-0.067} Carmichael et al. (2019)
EBLM J1219-39b 6.76 95.42.5+1.995.4^{+1.9}_{-2.5} 1.140.05+0.071.14^{+0.07}_{-0.05} 541265+815412^{+81}_{-65} 0.830.03+0.030.83^{+0.03}_{-0.03} 0.810.02+0.040.81^{+0.04}_{-0.02} 0.0550.000+0.0000.055^{+0.000}_{-0.000} 0.210.08+0.07-0.21^{+0.07}_{-0.08} 5.2790.047+0.0605.279^{+0.060}_{-0.047} Triaud et al. (2013)
TIC-320687387 B 29.77 96.22.0+1.996.2^{+1.9}_{-2.0} 1.140.02+0.021.14^{+0.02}_{-0.02} 578080+805780^{+80}_{-80} 1.080.03+0.031.08^{+0.03}_{-0.03} 1.160.02+0.021.16^{+0.02}_{-0.02} 0.3660.003+0.0030.366^{+0.003}_{-0.003} 0.300.08+0.080.30^{+0.08}_{-0.08} Gill et al. (2022)
OGLE-TR-122b 7.27 96.49.4+9.496.4^{+9.4}_{-9.4} 1.170.13+0.231.17^{+0.23}_{-0.13} 5700300+3005700^{+300}_{-300} 0.980.14+0.140.98^{+0.14}_{-0.14} 1.050.09+0.201.05^{+0.20}_{-0.09} 0.2050.008+0.0080.205^{+0.008}_{-0.008} 0.150.36+0.360.15^{+0.36}_{-0.36} 5.2510.162+0.2145.251^{+0.214}_{-0.162} Pont et al. (2005)
TOI-1213b 27.22 97.54.2+4.497.5^{+4.4}_{-4.2} 1.660.55+0.781.66^{+0.78}_{-0.55} 5590150+1505590^{+150}_{-150} 0.990.06+0.070.99^{+0.07}_{-0.06} 0.990.04+0.040.99^{+0.04}_{-0.04} 0.4980.002+0.0030.498^{+0.003}_{-0.002} 0.250.14+0.130.25^{+0.13}_{-0.14} 4.9620.293+0.4134.962^{+0.413}_{-0.293} Grieves et al. (2021)
K2-76b 11.99 98.72.0+2.098.7^{+2.0}_{-2.0} 0.890.03+0.050.89^{+0.05}_{-0.03} 574764+705747^{+70}_{-64} 0.960.03+0.030.96^{+0.03}_{-0.03} 1.170.03+0.061.17^{+0.06}_{-0.03} 0.2550.007+0.0070.255^{+0.007}_{-0.007} 0.010.04+0.040.01^{+0.04}_{-0.04} 3.5280.0422+0.0613.528^{+0.061}_{-0.0422} Shporer et al. (2017)
CoRoT-101186644 20.68 100.611.5+11.5100.6^{+11.5}_{-11.5} 1.010.06+0.251.01^{+0.25}_{-0.06} 6090200+2006090^{+200}_{-200} 1.200.20+0.201.20^{+0.20}_{-0.20} 1.070.07+0.071.07^{+0.07}_{-0.07} 0.4020.006+0.0060.402^{+0.006}_{-0.006} 0.200.20+0.200.20^{+0.20}_{-0.20} 5.4060.190+0.2825.406^{+0.282}_{-0.190} Tal-Or et al. (2013)
TOI-3122b 6.1836 101.54.8+4.1101.5^{+4.1}_{-4.8} 1.2350.057+0.0751.235^{+0.075}_{-0.057} 6120220+1806120^{+180}_{-220} 1.2470.091+0.0741.247^{+0.074}_{-0.091} 1.3360.045+0.0621.336^{+0.062}_{-0.045} 0.4704±0.0080.4704\pm 0.008 0.29±0.110.29\pm 0.11 5.2370.098+0.0915.237^{+0.091}_{-0.098} Vowell et al. (2025)
TOI-4759b 9.65779 1025.3+7.8102^{+7.8}_{-5.3} 0.9930.075+0.0820.993^{+0.082}_{-0.075} 5680±1505680\pm 150 1.2420.097+0.151.242^{+0.15}_{-0.097} 1.9270.098+0.111.927^{+0.11}_{-0.098} 0.2424±0.00320.2424\pm 0.0032 0.28±0.170.28\pm 0.17 5.4280.111+0.1555.428^{+0.155}_{-0.111} Vowell et al. (2025)
J2343+29Ab 16.95 102.77.3+7.3102.7^{+7.3}_{-7.3} 1.240.07+0.071.24^{+0.07}_{-0.07} 515060+905150^{+90}_{-60} 0.860.10+0.100.86^{+0.10}_{-0.10} 0.850.06+0.050.85^{+0.05}_{-0.06} 0.1610.003+0.0020.161^{+0.002}_{-0.003} 0.070.17+0.010.07^{+0.01}_{-0.17} 5.2350.105+0.1055.235^{+0.105}_{-0.105} Chaturvedi et al. (2016)
EBLM J0954-23Ab 7.57 102.86.0+5.9102.8^{+5.9}_{-6.0} 0.980.17+0.170.98^{+0.17}_{-0.17} 6406124+1246406^{+124}_{-124} 1.170.08+0.081.17^{+0.08}_{-0.08} 1.230.17+0.171.23^{+0.17}_{-0.17} 0.0420.001+0.0010.042^{+0.001}_{-0.001} 0.010.14+0.14-0.01^{+0.14}_{-0.14} 5.4240.173+0.1735.424^{+0.173}_{-0.173} von Boetticher et al. (2019)
KOI-686b 52.51 103.44.8+4.8103.4^{+4.8}_{-4.8} 1.220.04+0.041.22^{+0.04}_{-0.04} 5834100+1005834^{+100}_{-100} 0.980.07+0.070.98^{+0.07}_{-0.07} 1.040.03+0.031.04^{+0.03}_{-0.03} 0.5560.004+0.0040.556^{+0.004}_{-0.004} 0.060.13+0.13-0.06^{+0.13}_{-0.13} 5.2540.071+0.0715.254^{+0.071}_{-0.071} D´ıaz et al. (2014)
TIC-220568520b 18.56 107.25.2+5.2107.2^{+5.2}_{-5.2} 1.250.02+0.021.25^{+0.02}_{-0.02} 558981+815589^{+81}_{-81} 1.030.04+0.041.03^{+0.04}_{-0.04} 1.010.01+0.011.01^{+0.01}_{-0.01} 0.0960.003+0.0030.096^{+0.003}_{-0.003} 0.260.07+0.070.26^{+0.07}_{-0.07} 5.2390.042+0.0425.239^{+0.042}_{-0.042} Mireles et al. (2020)
TOI-4462b 4.9133 107.65.86.6107.6^{6.6}_{-5.8} 1.2860.058+0.0711.286^{+0.071}_{-0.058} 5960±1205960\pm 120 1.360.11+0.131.36^{+0.13}_{-0.11} 2.1490.064+0.0852.149^{+0.085}_{-0.064} 0.0202±0.00370.0202\pm 0.0037 0.09±0.160.09\pm 0.16 5.2260.109+0.1285.226^{+0.128}_{-0.109} Vowell et al. (2025)
TOI-5240b 4.17930 127.65+5127.6^{+5}_{-5} 1.70.11+0.111.7^{+0.11}_{-0.11} 7340±3607340\pm 360 1.7440.096+0.0961.744^{+0.096}_{-0.096} 2.380.12+0.122.38^{+0.12}_{-0.12} 0.0109±0.0120.0109\pm 0.012 0.13±0.19-0.13\pm 0.19 5.0580.111+0.1115.058^{+0.111}_{-0.111} Vowell et al. (2025)

Appendix B Posterior probability distribution for the system TOI-6508.

Refer to caption
Figure 18: Posterior probability distribution for the TOI-6508 system parameters derived from our global MCMC analysis. The median value for each parameter is represented by the vertical dashed lines.