This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Torsion graded pieces of Nyggard filtration for crystalline representation

Tong Liu Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA tongliu@math.purdue.edu Dedicated to the memory of my master advisor Xianke Zhang
Abstract.

Let KK be a unramified pp-adic field with the absolute Galois group GKG_{K} and TT a crystalline Zp\mathbb Z_{p}-representation of GKG_{K}. We study the graded pieces of integral filtration on DdR(T)D_{\mathrm{dR}}(T) given by Nyggard filtration of the attached Breuil-Kisin module of TT. We show that the ii-graded piece has nontrivial pp-torsion only if i=rj+mpi=r_{j}+mp for a Hodge-Tate weight rjr_{j} of TT and mm a positive integer.

1. Introduction

Let κ\kappa be a perfect field with char(κ)=p>0{\rm char}(\kappa)=p>0, 𝒪K=W(κ)\mathcal{O}_{K}=W(\kappa) and K=𝒪K[1p]K=\mathcal{O}_{K}[\frac{1}{p}]. Denote GK:=Gal(K¯/K)G_{K}:={\rm Gal}(\overline{K}/K), 𝔖:=W(κ)[[u]]\mathfrak{S}:=W(\kappa)[\![u]\!] and E(u)=upE(u)=u-p. Then (𝔖,(E))(\mathfrak{S},(E)) is a Breuil-Kisin prism if Frobenius φ\varphi on 𝔖\mathfrak{S} is given by φ(u)=up\varphi(u)=u^{p}. Let TT be a crystalline finite free Zp\mathbb Z_{p}-representation of GKG_{K} with Hodge-Tate weights r1,,rdr_{1},\dots,r_{d} so that r1=0r_{1}=0, riri+1,i=1,,d1r_{i}\leq r_{i+1},\forall i=1,\dots,d-1 and h:=rdh:=r_{d}. Let 𝔐\mathfrak{M} be the Kisin module attached to TT ([Kis06]) and 𝔐:=𝔖φ,𝔖𝔐\mathfrak{M}^{*}:=\mathfrak{S}\otimes_{\varphi,\mathfrak{S}}\mathfrak{M}. It is known (see §2 for more details) that 𝔐\mathfrak{M}^{*} admits Nyggard filtration Fili𝔐𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset\mathfrak{M}^{*} so that (𝔐/E𝔐)[1p]DdR(T)(\mathfrak{M}^{*}/E\mathfrak{M}^{*})[\frac{1}{p}]\simeq D_{\mathrm{dR}}(T) and evp(Fili𝔐[1p])=FiliDdR(T)\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}[\frac{1}{p}])=\mathop{\rm Fil}\nolimits^{i}D_{\mathrm{dR}}(T) where evp:𝔐[1p](𝔐/E𝔐)[1p]DdR(T)\mathrm{ev}_{p}:\mathfrak{M}^{*}[\frac{1}{p}]\to(\mathfrak{M}^{*}/E\mathfrak{M}^{*})[\frac{1}{p}]\simeq D_{\mathrm{dR}}(T) is the projection. Set M:=𝔐/E𝔐=evp(𝔐)DdR(T)M:=\mathfrak{M}^{*}/E\mathfrak{M}^{*}=\mathrm{ev}_{p}(\mathfrak{M}^{*})\subset D_{\mathrm{dR}}(T) and griM:=evp(Fili𝔐)/evp(Fili+1𝔐).\mathrm{gr}^{i}M:=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})/\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}). Let (griM)tor(\mathrm{gr}^{i}M)_{\mathrm{tor}} denote the torsion part of griM\mathrm{gr}^{i}M. This paper aims to prove the following result.

Theorem 1.1.

{i|(griM)tor0}{rj+mp|j=1,,d,m>0,rj+mph}.\{i|(\mathrm{gr}^{i}M)_{\mathrm{tor}}\not=0\}\subset\{r_{j}+mp|j=1,\dots,d,m>0,r_{j}+mp\leq h\}.

Write FiliM:=evp(Fili𝔐)DdR(T)\mathop{\rm Fil}\nolimits^{i}M:=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\subset D_{\mathrm{dR}}(T). It is known that FiliM[1p]=FiliDdR(T)\mathop{\rm Fil}\nolimits^{i}M[\frac{1}{p}]=\mathop{\rm Fil}\nolimits^{i}D_{\mathrm{dR}}(T). Thus griM[1p]=griDdR(T)\mathrm{gr}^{i}M[\frac{1}{p}]=\mathrm{gr}^{i}D_{\mathrm{dR}}(T) which is nonzero if and only if i{rj,j=1,,d}i\in\{r_{j},j=1,\dots,d\}. But nontrivial (griM)tor(\mathrm{gr}^{i}M)_{\mathrm{tor}} could appear beyond {rj}\{r_{j}\}. So the theorem provides a restriction of ii so that (griM)tor0(\mathrm{gr}^{i}M)_{\mathrm{tor}}\not=0. It turns out that (griM)tor(\mathrm{gr}^{i}M)_{\mathrm{tor}} strongly relates to the shape of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. We call 𝔐\mathfrak{M}^{*} has an adapted basis if there exists an 𝔖\mathfrak{S}-basis e1,ede_{1}\dots,e_{d} of 𝔐\mathfrak{M}^{*} so that for each ii, Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} has an 𝔖\mathfrak{S}-basis {Eaijej}\{E^{a_{ij}}e_{j}\} where aij=max{0,imax{|ejFil𝔐Fil+1𝔐}}a_{ij}=\max\{0,i-\max\{\ell|e_{j}\in\mathop{\rm Fil}\nolimits^{\ell}\mathfrak{M}^{*}\setminus\mathop{\rm Fil}\nolimits^{\ell+1}\mathfrak{M}^{*}\}\}.

Proposition 1.2.

Assume that (griM)tor=0(\mathrm{gr}^{i}M)_{\mathrm{tor}}=0 for ih1i\leq h-1. Then 𝔐\mathfrak{M}^{*} has an adapted basis.

Proof.

It is easy to check that griM\mathrm{gr}^{i}M has no nontrivial pp-torsion for ih1i\leq h-1 if and only if FiliM\mathop{\rm Fil}\nolimits^{i}M is saturated in MM, namely FiliM=MFiliM[1p]\mathop{\rm Fil}\nolimits^{i}M=M\cap\mathop{\rm Fil}\nolimits^{i}M[\frac{1}{p}]. Then the proposition follows the same proof of [GLS14, Prop4.5]. ∎

By Theorem 1.1, if hph\leq p then gri\mathrm{gr}^{i} has no pp-torsion for ih1i\leq h-1. Now we recover one of the main technical results in [GLS14, Cor. 4.19]

Corollary 1.3.

If hph\leq p then 𝔐\mathfrak{M}^{*} has an adapted basis.

By [GLS14, Example 6.8], there exists a crystalline representation TT of GQpG_{\mathbb Q_{p}} with Hodge-Tate weights {0,p+1}\{0,p+1\} so that 𝔐\mathfrak{M}^{*} has no adpated basis. This implies that (grpM)tor0(\mathrm{gr}^{p}M)_{\mathrm{tor}}\not=0.

Our result is motivated by the following theorem of Gee and Kisin: Let 𝔐¯:=𝔐/p𝔐\overline{\mathfrak{M}}:=\mathfrak{M}/p\mathfrak{M}. Then for a k[[u]]k[\![u]\!]-basis e¯1,,e¯d\bar{e}_{1},\dots,\bar{e}_{d} of 𝔐¯\overline{\mathfrak{M}}, we have

φ𝔐¯(e¯1,,e¯d)=(e¯1,,e¯d)XΛY,\varphi_{\overline{\mathfrak{M}}}(\bar{e}_{1},\dots,\bar{e}_{d})=(\bar{e}_{1},\dots,\bar{e}_{d})X\Lambda Y,

where X,YGLd(k[[u]])X,Y\in\mathop{\rm GL}\nolimits_{d}(k[\![u]\!]) are invertible matrix and Λ\Lambda is a diagonal matrix with uaj,j=1,,du^{a_{j}},j=1,\dots,d on the diagonal. It is known that 0ajh.0\leq a_{j}\leq h.

Theorem 1.4 (Gee-Kisin).

Notations as the above, {aimodp}={rimodp}\{a_{i}\mod p\}=\{r_{i}\mod p\} as multisets.

Though Theorem 1.1 and Theorem 1.4 seem highly related, it is unclear to us that they imply each other unless hph\leq p.

Acknowledgments. The author dedicates this paper to the memory of Prof. Xianke Zhang, who was the author’s master advisor and introduced the author to the study of algebraic number theory,

We would like to thank Bargav Bhatt, Hui Gao and Toby Gee for the discussion and useful comments. The author prepared this paper during his visit in the Institute for Advanced Study and would like to thank IAS for their hospitality. He is supported by the Shiing-Shen Chern Membership during his stay at IAS.

2. Construction of basis of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}

2.1. Preliminary on Nygaard filtration

Recall that K=W(κ)[1p]K=W(\kappa)[\frac{1}{p}] is unramified with κ\kappa the perfect residue field and char(κ)=p>0{\rm char}(\kappa)=p>0. Let TT be a crystalline finite free Zp\mathbb Z_{p}-representation of GKG_{K} with Hodge-Tate weights [r1,,rd][r_{1},\dots,r_{d}], where 0=r10=r_{1}, riri+1r_{i}\leq r_{i+1}, rd=h>0r_{d}=h>0 and d=dimQpT[1p]d=\dim_{\mathbb Q_{p}}T[\frac{1}{p}]. Let D=Dcris(T[1p])D=D_{\mathrm{cris}}(T[\frac{1}{p}]) be the filtered φ\varphi-module attached to T[1p]T[\frac{1}{p}]. Since KK is unramifed, we have DdR(T[1p])DD_{\rm dR}(T[\frac{1}{p}])\simeq D. Write griD:=FiliD/Fili+1D\mathrm{gr}^{i}D:=\mathop{\rm Fil}\nolimits^{i}D/\mathop{\rm Fil}\nolimits^{i+1}D. Then the set of Hodge-Tate weights HT(T)={rj,1jd}={iZ|griD0}{\rm HT}(T)=\{r_{j},1\leq j\leq d\}=\{i\in\mathbb Z|\mathrm{gr}^{i}D\not=0\}. Let (𝔐,φ𝔐)(\mathfrak{M},\varphi_{\mathfrak{M}}) be the Breuil-Kisin module attached to TT and write 𝔐:=𝔖φ,𝔖𝔐\mathfrak{M}^{*}:=\mathfrak{S}\otimes_{\varphi,\mathfrak{S}}\mathfrak{M}. Fix E=up𝔖E=u-p\in\mathfrak{S}. The Nygaard filtration of 𝔐\mathfrak{M}^{*} is defined by

(1) Fili𝔐:={x𝔐|(1φ𝔐)(x)Ei𝔐},\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}:=\{x\in\mathfrak{M}^{*}|(1\otimes\varphi_{\mathfrak{M}})(x)\in E^{i}\mathfrak{M}\},

and set gri𝔐:=Fili𝔐/Fili+1𝔐\mathrm{gr}^{i}\mathfrak{M}^{*}:=\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}/\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}.

In the following, we review the theory of Breuil module which is very useful to understand Nyggard filtration Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. We refer readers to [BLL23, §2] for more details. Let S:=𝔖[[Epp]]S:=\mathfrak{S}[\![\frac{E^{p}}{p}]\!] and S^E\hat{S}_{E} be the EE-completion of W(κ)[u][1p]W(\kappa)[u][\frac{1}{p}]. For any subring AS^EA\subset\hat{S}_{E}, set FiliA:=AEiS^E\mathop{\rm Fil}\nolimits^{i}A:=A\cap E^{i}\hat{S}_{E}. Clearly, Fili𝔖=Ei𝔖\mathop{\rm Fil}\nolimits^{i}\mathfrak{S}=E^{i}\mathfrak{S}, FiliS[1p]=EiS[1p]\mathop{\rm Fil}\nolimits^{i}S[\frac{1}{p}]=E^{i}S[\frac{1}{p}] (but it is not true that FiliS=EiS\mathop{\rm Fil}\nolimits^{i}S=E^{i}S). Extends Frobenius φ\varphi on W(κ)W(\kappa) to 𝔖\mathfrak{S} and SS by φ(u)=up\varphi(u)=u^{p}. Set :SS\nabla:S\to S (resp. N:SSN:S\to S) by (f)=fu\nabla(f)=\frac{\partial f}{\partial u} (resp. N(f)=fuuN(f)=\frac{\partial f}{\partial u}u). The Breuil module over S[1p]S[\frac{1}{p}] (associated to D=Dcris(T[1p])D=D_{\mathrm{cris}}(T[\frac{1}{p}])) is 𝒟:=S[1p]KD\mathcal{D}:=S[\frac{1}{p}]\otimes_{K}D, which has following structures:

  • Frobenius φ𝒟:=φSφD;\varphi_{\mathcal{D}}:=\varphi_{S}\otimes\varphi_{D};

  • monodromy operator :𝒟𝒟\nabla:\mathcal{D}\to\mathcal{D} (resp. N𝒟:𝒟𝒟N_{\mathcal{D}}:\mathcal{D}\to\mathcal{D}) by (sx)=(s)x\nabla(s\otimes x)=\nabla(s)\otimes x (resp. N𝒟(x)=N(a)x+aN(x)N_{\mathcal{D}}(x)=N(a)\otimes x+a\otimes N(x) 111N=0N=0 in the crystalline case considered here.) where sSs\in S and xDx\in D. Note that N𝒟=uN_{\mathcal{D}}=u\nabla;

  • projection map evp:𝒟D\mathrm{ev}_{p}:\mathcal{D}\to D defined by evp(sa)=s(p)a\mathrm{ev}_{p}(s\otimes a)=s(p)a;

  • Filtration Fili𝒟𝒟\mathop{\rm Fil}\nolimits^{i}\mathcal{D}\subset\mathcal{D} constructed inductively: Fil0𝒟=𝒟\mathop{\rm Fil}\nolimits^{0}\mathcal{D}=\mathcal{D} and

    (2) Fili+1𝒟:={xFili𝒟|(x)Fili1𝒟,evp(x)Fili+1D},\mathop{\rm Fil}\nolimits^{i+1}\mathcal{D}:=\{x\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}|\nabla(x)\in\mathop{\rm Fil}\nolimits^{i-1}\mathcal{D},\ \mathrm{ev}_{p}(x)\in\mathop{\rm Fil}\nolimits^{i+1}D\},

By the comparison of Kisin module and Breuil module, there exists a canonical isomorphism ι:S[1p]𝔖𝔐𝒟=S[1p]KD\iota:S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}^{*}\simeq\mathcal{D}=S[\frac{1}{p}]\otimes_{K}D so that

  1. (1)

    ι\iota is compatible with φ\varphi-actions on both sides;

  2. (2)

    ι\iota is compatible with filtration on both sides in the sense that ι(Fili(S[1p]𝔖𝔐))=Fili𝒟\iota(\mathop{\rm Fil}\nolimits^{i}(S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}^{*}))=\mathop{\rm Fil}\nolimits^{i}\mathcal{D} and filtration on the left sides are defined as follows:

    Fili(S[1p]𝔖𝔐)=Fili(S[1p]𝔖,φ𝔐):={xS[1p]𝔖,φ𝔐|(1φ𝔐)(x)FiliS[1p]𝔖𝔐}.\mathop{\rm Fil}\nolimits^{i}(S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}^{*})=\mathop{\rm Fil}\nolimits^{i}(S[\frac{1}{p}]\otimes_{\mathfrak{S},\varphi}\mathfrak{M}):=\{x\in S[\frac{1}{p}]\otimes_{\mathfrak{S},\varphi}\mathfrak{M}|(1\otimes\varphi_{\mathfrak{M}})(x)\in\mathop{\rm Fil}\nolimits^{i}S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}\}.

So in the following, we identify S[1p]𝔖𝔐S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}^{*} with 𝒟\mathcal{D} via ι\iota. Consequently, we regard 𝔐\mathfrak{M}^{*} as 𝔖\mathfrak{S}-submodule of 𝒟\mathcal{D} and clearly Fili𝔐Fili𝒟\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i}\mathcal{D}. The following lemma collects basic facts on Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and Fili𝒟\mathop{\rm Fil}\nolimits^{i}\mathcal{D}.

Lemma 2.1.
  1. (1)

    Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} generates Fili𝒟\mathop{\rm Fil}\nolimits^{i}\mathcal{D} as S[1p]S[\frac{1}{p}]-module and Fili𝒟𝔐=Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathcal{D}\cap\mathfrak{M}^{*}=\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}.

  2. (2)

    For each ii, Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} is a finite free 𝔖\mathfrak{S}-submodule of 𝔐\mathfrak{M}^{*} and gri𝔐\mathrm{gr}^{i}\mathfrak{M}^{*} is a finite free 𝒪K\mathcal{O}_{K}-module.

  3. (3)

    For each ii, EFili1𝔐Fili𝔐E\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and EFili1𝒟Fili𝒟E\mathop{\rm Fil}\nolimits^{i-1}\mathcal{D}\subset\mathop{\rm Fil}\nolimits^{i}\mathcal{D}.

  4. (4)

    The map Fili𝔐𝒟evpD\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset\mathcal{D}\overset{\mathrm{ev}_{p}}{\to}D induces the following short exact sequence

    0EFili1𝔐Fili𝔐evpevp(Fili𝔐)0.0\to E\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*}\to\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\overset{\mathrm{ev}_{p}}{\longrightarrow}\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\to 0.
Proof.

The exactness of the sequence in (4) is equivalent to that E𝔐Fili𝔐=EFili1𝔐E\mathfrak{M}^{*}\cap\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}=E\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*}, and this easily follows that construction of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} in (1). (3) easily follows from the construction of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and Fili𝒟\mathop{\rm Fil}\nolimits^{i}\mathcal{D}. [GLS14, Lem. 4.3] proves that gri𝔐\mathrm{gr}^{i}\mathfrak{M}^{*} is finite 𝒪K\mathcal{O}_{K}-free and Fili𝒟𝔐=Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathcal{D}\cap\mathfrak{M}^{*}=\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. To see that Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} is finite free, consider the exact sequence

0Fili+1𝔐/EFili𝔐Fili𝔐/EFili𝔐Fili𝔐/Fili+1𝔐0.0\to\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}/E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\to\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}/E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\to\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}/\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}\to 0.

Since Fili+1𝔐/EFili𝔐=evp(Fili+1𝔐)D\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}/E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*})\subset D and Fili𝔐/Fili+1𝔐=gri𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}/\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}=\mathrm{gr}^{i}\mathfrak{M}^{*} are torsion free and hence finite free 𝒪K\mathcal{O}_{K}-modules, we conclude that Fili𝔐/EFili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}/E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} is finite free 𝒪K\mathcal{O}_{K}-module. Since Ei𝔐Fili𝔐𝔐E^{i}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset\mathfrak{M}^{*} and 𝔐\mathfrak{M}^{*} is finite 𝔖\mathfrak{S}-free, Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} is finite 𝔖\mathfrak{S}-free by NAK.

To prove (1), first note that Ei𝒟Fili𝒟E^{i}\mathcal{D}\subset\mathop{\rm Fil}\nolimits^{i}\mathcal{D} and Ei𝔐Fili𝔐E^{i}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. Now given a x=jfjajFili(S[1p]φ,𝔖𝔐)x=\sum_{j}f_{j}\otimes a_{j}\in\mathop{\rm Fil}\nolimits^{i}(S[\frac{1}{p}]\otimes_{\varphi,\mathfrak{S}}\mathfrak{M}), with fjS[1p]f_{j}\in S[\frac{1}{p}], aj𝔐a_{j}\in\mathfrak{M}^{*}, by removing ElE^{l}-term with lil\geq i, we may assume that fjW(κ)[u][1p]f_{j}\in W(\kappa)[u][\frac{1}{p}]. Therefore pnx𝔐p^{n}x\in\mathfrak{M}^{*} for sufficient large nn. Note that pnxFili(S[1p]φ,𝔖𝔐)p^{n}x\in\mathop{\rm Fil}\nolimits^{i}(S[\frac{1}{p}]\otimes_{\varphi,\mathfrak{S}}\mathfrak{M}^{*}), by construction, we have pnxFili𝔐p^{n}x\in\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. Therefore, xx is S[1p]Fili𝔐Fili𝒟S[\frac{1}{p}]\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i}\mathcal{D} as required. ∎

Remark 2.2.

Indeed, Fili𝒟S[1p]𝔖Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathcal{D}\simeq S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. To show this, it suffices to show that the natural map S[1p]𝔖Fili𝔐𝒟S[1p]𝔖𝔐S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\to\mathcal{D}\simeq S[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathfrak{M}^{*} is injective. By induction on ii and using exact sequence 0Fili+1𝔐Fili𝔐gri𝔐00\to\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}\to\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\to\mathrm{gr}^{i}\mathfrak{M}^{*}\to 0, this follows that Ext𝔖1(S[1p],𝒪K)=0{\rm Ext}^{1}_{\mathfrak{S}}(S[\frac{1}{p}],\mathcal{O}_{K})=0.

2.2. The range of (Fili𝔐)\nabla(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}).

Set Fili𝔐:=𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}:=\mathfrak{M}^{*} and Fili𝒟:=𝒟\mathop{\rm Fil}\nolimits^{i}\mathcal{D}:=\mathcal{D} if i<0i<0. The following Lemma is important for the later use.

Lemma 2.3.

(Fili𝔐)Sp𝔖Fili1𝔐\nabla(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\in S_{p}\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*} where Sp:={fS[1p]|evp(f)W(κ)}S_{p}:=\{f\in S[\frac{1}{p}]|\mathrm{ev}_{p}(f)\in W(\kappa)\}.

Proof.

In this Lemma, we allow the base field KK to be finite ramified over W(κ)[1p]W(\kappa)[\frac{1}{p}]. In such generality, SpS_{p} is replaced by Sπ:={fS[1p]|f(ϖ)𝒪K}S_{\pi}:=\{f\in S[\frac{1}{p}]|f(\varpi)\in\mathcal{O}_{K}\} for a fixed uniformizer ϖ𝒪K\varpi\in\mathcal{O}_{K}. We use the same idea in [GLS14, Prop. 4.6] and [Liu12, Prop. 2.13]. As the above, we fix a uniformizer ϖ𝒪K\varpi\in\mathcal{O}_{K} with Eisenstein polynomial EW(κ)[u]E\in W(\kappa)[u], a compatible system {ϖn}n0\{\varpi_{n}\}_{n\geq 0} of pnp^{n}-th roots with ϖ0=ϖ\varpi_{0}=\varpi as well as a compatible system {ζn}n0\{\zeta_{n}\}_{n\geq 0} of pnp^{n}-th roots of 11. Write ϖ¯(ϖn)n0\underline{\varpi}^{\flat}\coloneqq(\varpi_{n})_{n\geq 0} and ζ¯(ζn)n0\underline{\zeta}^{\flat}\coloneqq(\zeta_{n})_{n\geq 0} as elements in 𝒪Cp\mathcal{O}_{\mathbb C_{p}}^{\flat} where Cp\mathbb C_{p} is the pp-adic completion of K¯\overline{K}. Embed 𝔖Ainf\mathfrak{S}\to{A_{\mathrm{inf}}} and SAcrisS\to A_{\mathrm{cris}} given by u[ϖ¯]u\to[\underline{\varpi}^{\flat}]. Let K=n=1K(ϖn)K_{\infty}=\bigcup_{n=1}^{\infty}K(\varpi_{n}), L=n=1K(ζpn)L=\bigcup_{n=1}^{\infty}K_{\infty}(\zeta_{p^{n}}) and K1=n=1K(ζpn)K_{1^{\infty}}=\bigcup_{n=1}^{\infty}K(\zeta_{p^{n}}). We may always assume that KK1=KK_{\infty}\cap K_{1^{\infty}}=K by selecting a suitable uniformizer ϖ\varpi (this is only needed for p=2p=2 by [Wan22, Lem.2.1]). Let τ\tau be a topological generator of Gal(L/K1)\mathop{\rm Gal}\nolimits(L/K_{1^{\infty}}). We will also use τ\tau to denote a lifting of τ\tau in GKG_{K} when it is acting on an element fixed by Gal(K¯/L)\mathop{\rm Gal}\nolimits(\overline{K}/L).

Write T:=HomZp(T,Zp)T^{\vee}:=\mathop{\rm Hom}\nolimits_{\mathbb Z_{p}}(T,\mathbb Z_{p}) the dual of TT. Then exists an Ainf{A_{\mathrm{inf}}}-linear injection

ι𝔖:Ainf𝔖𝔐TZpAinf\iota_{\mathfrak{S}}:{A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}\longrightarrow T^{\vee}\otimes_{\mathbb Z_{p}}{A_{\mathrm{inf}}}

so that ι𝔖\iota_{\mathfrak{S}} is compatible with Frobenius on both sides and g(Ainf𝔖𝔐)Ainf𝔖𝔐,gGKg({A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M})\subset{A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M},\forall g\in G_{K} by using GKG_{K}-action from that on TZpAinfT^{\vee}\otimes_{\mathbb Z_{p}}{A_{\mathrm{inf}}} via ι𝔖\iota_{\mathfrak{S}}. Also ι𝔖\iota_{\mathfrak{S}} induces the following commutative diagram

Ainfφ,𝔖𝔐\textstyle{{A_{\mathrm{inf}}}\otimes_{\varphi,\mathfrak{S}}\mathfrak{M}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ainf𝔖𝔐\textstyle{{A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι𝔖\scriptstyle{\iota^{*}_{\mathfrak{S}}}TZpAinf\textstyle{T^{\vee}\otimes_{\mathbb Z_{p}}{A_{\mathrm{inf}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}AcrisS𝒟\textstyle{A_{\mathrm{cris}}\otimes_{S}\mathcal{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιS\scriptstyle{\iota_{S}}TZpAcris[1p]\textstyle{T^{\vee}\otimes_{\mathbb Z_{p}}A_{\mathrm{cris}}[\frac{1}{p}]}

Here ι𝔖=Ainfφ,Ainfι𝔖\iota_{\mathfrak{S}}^{*}={A_{\mathrm{inf}}}\otimes_{\varphi,{A_{\mathrm{inf}}}}\iota_{\mathfrak{S}}, ιS=Acris[1p]Ainfι𝔖\iota_{S}=A_{\mathrm{cris}}[\frac{1}{p}]\otimes_{{A_{\mathrm{inf}}}}\iota^{*}_{\mathfrak{S}}, and the left vertical arrows are induced by 𝔐𝒟\mathfrak{M}^{*}\subset\mathcal{D}, and all arrows here are injective. In particular, we may regard Ainf𝔖𝔐{A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}^{*} (resp. AcrisS𝒟A_{\mathrm{cris}}\otimes_{S}\mathcal{D}) as submodule of TZpAinfT^{\vee}\otimes_{\mathbb Z_{p}}{A_{\mathrm{inf}}} (resp. TAcris[1p]T^{\vee}\otimes A_{\mathrm{cris}}[\frac{1}{p}]) via ι𝔖\iota_{\mathfrak{S}} (resp. ιS\iota_{S}). Note that the modules at the right columns have natural GKG_{K}-actions. As submodules, the left columns are stable under these GKG_{K}-actions. The GKG_{K}-action on 𝒟\mathcal{D} is explicitly given by the following formula (see formula (6.19) in [LL21]):

(3) g(x)=i=0i(x)γi(g([ϖ¯])[ϖ¯]),gGK,x𝒟,g(x)=\sum_{i=0}^{\infty}\nabla^{i}(x)\gamma_{i}({g([\underline{\varpi}^{\flat}])-[\underline{\varpi}^{\flat}]}),\ \ \forall g\in G_{K},\ \forall x\in\mathcal{D},

where γi=()ii!\gamma_{i}=\frac{(\bullet)^{i}}{i!} is ii-th divided power. In particular, GG_{\infty}-acts on 𝒟\mathcal{D}-trivially. Pick a τ\tau so that g([ϖ¯])[ϖ¯]=[ζ¯]\frac{g([\underline{\varpi}^{\flat}])}{[\underline{\varpi}^{\flat}]}=[\underline{\zeta}^{\flat}]. The above formula is simplified to τ(x)=i=0i(x)γi(u([ζ¯]1))\tau(x)=\sum\limits_{i=0}^{\infty}\nabla^{i}(x)\gamma_{i}(u([\underline{\zeta}^{\flat}]-1)). Write w:=[ζ¯]1EAinfw:=\frac{[\underline{\zeta}^{\flat}]-1}{E}\in{A_{\mathrm{inf}}}. We see that τ(x)[1p]S𝒟\tau(x)\subset\mathcal{R}[\frac{1}{p}]\otimes_{S}\mathcal{D} where Acris\mathcal{R}\subset A_{\mathrm{cris}} is the pp-adic completion of 𝔖[w,{γi(E)}i1]\mathfrak{S}[w,\{\gamma_{i}(E)\}_{i\geq 1}].

Write 𝒟Acris:=AcrisS𝒟\mathcal{D}_{A_{\mathrm{cris}}}:=A_{\mathrm{cris}}\otimes_{S}\mathcal{D} and 𝔐Ainf:=Ainf𝔖𝔐\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}:={A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}^{*}. Set Fili𝒟Acris:=Acris[1p]𝔖Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathcal{D}_{A_{\mathrm{cris}}}:=A_{\mathrm{cris}}[\frac{1}{p}]\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and Fili𝔐Ainf:=Ainf𝔖Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}:={A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. By a similar arguments as in Remark 2.2, we see that Fili𝒟Acris\mathop{\rm Fil}\nolimits^{i}\mathcal{D}_{A_{\mathrm{cris}}}, Fili𝔐Ainf\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}} injects to 𝒟Acris\mathcal{D}_{A_{\mathrm{cris}}}, 𝔐Ainf\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}} respectively. We claim that g(Fili𝔐Ainf)Fili𝔐Ainf,gGKg(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}})\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}},\forall g\in G_{K}. To prove the claim, it suffices to show that

Fili𝔐Ainf=Fi:={x𝔐Ainf|(1φ𝔐)(x)Ei(Ainf𝔖𝔐)}.\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}=F^{i}:=\{x\in\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}|(1\otimes\varphi_{\mathfrak{M}})(x)\in E^{i}({A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M})\}.

Consider 𝔐\mathfrak{M}^{*} as an 𝔖\mathfrak{S}-submodule of 𝔐\mathfrak{M} via 1φ𝔐1\otimes\varphi_{\mathfrak{M}}. Then Fili𝔐=𝔐Ei𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}=\mathfrak{M}^{*}\cap E^{i}\mathfrak{M} and Fi=(Ainf𝔖𝔐)Ei(Ainf𝔖𝔐)F^{i}=({A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}^{*})\cap E^{i}({A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathfrak{M}). Since Ainf{A_{\mathrm{inf}}} is flat over 𝔖\mathfrak{S}, we have Fili𝔐Ainf=Fi\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}=F^{i} as required.

As in the proof of [GLS14, Prop. 4.6] and [Liu12, Prop. 2.13], for any subring AAcris[1p]A\subset A_{\mathrm{cris}}[\frac{1}{p}] such that φ(A)A\varphi(A)\subset A, let I[i]A={xA|φn(x)FiliBdR,nN},I^{[i]}A=\{x\in A|\varphi^{n}(x)\in\mathop{\rm Fil}\nolimits^{i}B_{\mathrm{dR}},\forall n\in\mathbb N\}, and I[n]:=I[n]Ainf=([ζ¯]1)nAinfI^{[n]}:=I^{[n]}{A_{\mathrm{inf}}}=([\underline{\zeta}^{\flat}]-1)^{n}{A_{\mathrm{inf}}}. Now we claim that (τ1)n(Fili𝔐)Filin𝔐𝔖I[n](\tau-1)^{n}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\subset\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}I^{[n]}. To prove this claim, we first prove that

(τ1)n(Fili𝒟)Filin𝒟S[1p]I[n][1p]Filin𝔐𝔖I[n]Acris[1p].(\tau-1)^{n}(\mathop{\rm Fil}\nolimits^{i}\mathcal{D})\subset\mathop{\rm Fil}\nolimits^{i-n}\mathcal{D}\otimes_{S[\frac{1}{p}]}I^{[n]}{\mathcal{R}}[\frac{1}{p}]\subset\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}I^{[n]}A_{\mathrm{cris}}[\frac{1}{p}].

By a similar argument in [Liu08, (5.1.2)], (τ1)n(x)=mnamnm(x)γm(u([ζ¯]1))(\tau-1)^{n}(x)=\sum\limits_{m\geq n}a_{mn}\nabla^{m}(x)\gamma_{m}(u([\underline{\zeta}^{\flat}]-1)) with amnZa_{mn}\in\mathbb Z. For nmin\leq m\leq i, we have m(x)Filim𝒟\nabla^{m}(x)\in\mathop{\rm Fil}\nolimits^{i-m}\mathcal{D} by Griffith transversality (Fili𝒟)Fili1𝒟\nabla(\mathop{\rm Fil}\nolimits^{i}\mathcal{D})\subset\mathop{\rm Fil}\nolimits^{i-1}\mathcal{D} and [ζ¯]1=Ew[\underline{\zeta}^{\flat}]-1=Ew. Since EmnFilim𝒟Filin𝒟E^{m-n}\mathop{\rm Fil}\nolimits^{i-m}\mathcal{D}\subset\mathop{\rm Fil}\nolimits^{i-n}\mathcal{D}, (τ1)n(x)Filin𝒟S[1p]I[n][1p](\tau-1)^{n}(x)\in\mathop{\rm Fil}\nolimits^{i-n}\mathcal{D}\otimes_{S[\frac{1}{p}]}I^{[n]}{\mathcal{R}}[\frac{1}{p}].

Note that Fili𝔐Ainf=Fili𝔐𝔖Ainf\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}=\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}{{A_{\mathrm{inf}}}} and gGK,g(Fili𝔐)Fili𝔐Ainf=Ainf𝔖Fili𝔐\forall g\in G_{K},\ g(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}_{{A_{\mathrm{inf}}}}={A_{\mathrm{inf}}}\otimes_{\mathfrak{S}}\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. Then using that Filin𝔐\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*} is finite 𝔖\mathfrak{S}-free, we have

(τ1)n(Fili𝔐)Filin𝔐𝔖(I[n]Acris[1p]Ainf)=Filin𝔐𝔖I[n]Ainf.(\tau-1)^{n}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*})\subset\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}(I^{[n]}A_{\mathrm{cris}}[\frac{1}{p}]\cap{A_{\mathrm{inf}}})=\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}I^{[n]}{A_{\mathrm{inf}}}.

This prove that claim.

Now for any xFili𝔐x\in\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}, we have

(x)=n=1(1)n1(τ1)nnu([ζ¯]1)(x)\nabla(x)=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{(\tau-1)^{n}}{nu([\underline{\zeta}^{\flat}]-1)}(x)

By the claim, we have

(τ1)nnu([ζ¯]1)(x)Filin𝔐𝔖([ζ¯1])n1nAinfFili1𝔐wn1nAinf.\frac{(\tau-1)^{n}}{nu([\underline{\zeta}^{\flat}]-1)}(x)\in\mathop{\rm Fil}\nolimits^{i-n}\mathfrak{M}^{*}\otimes_{\mathfrak{S}}\frac{([\underline{\zeta}^{\flat}-1])^{n-1}}{n}{A_{\mathrm{inf}}}\subset\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*}\otimes\frac{w^{n-1}}{n}{A_{\mathrm{inf}}}.

Note that evπ:S𝒪K\mathrm{ev}_{\pi}:S\to\mathcal{O}_{K} is the same as the canonical projection θ:Ainf𝒪Cp\theta:{A_{\mathrm{inf}}}\to\mathcal{O}_{\mathbb C_{p}}. Now it suffices to check that θ(wn1n)𝒪Cp\theta(\frac{w^{n-1}}{n})\in\mathcal{O}_{\mathbb C_{p}}. It turns out that vp(w)=1p1v_{p}(w)=\frac{1}{p-1} and this follows that n1p1vp(n)\frac{n-1}{p-1}\geq v_{p}(n). ∎

2.3. Construction of basis in Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}

Recall that M:=evp(𝔐)DM:=\mathrm{ev}_{p}(\mathfrak{M}^{*})\subset D, FiliM:=evp(Fili𝔐)\mathop{\rm Fil}\nolimits^{i}M:=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}) and griM:=FiliM/Fili+1M\mathrm{gr}^{i}M:=\mathop{\rm Fil}\nolimits^{i}M/\mathop{\rm Fil}\nolimits^{i+1}M. Clearly, MDM\subset D is a finite free 𝒪K\mathcal{O}_{K}-lattice in DD. Note that FiliMFiliDM\mathop{\rm Fil}\nolimits^{i}M\subset\mathop{\rm Fil}\nolimits^{i}D\cap M but may not equal. Consequently, griM\mathrm{gr}^{i}M may have pp-power torsion. In the following, by discussion around [GLS14, Lemma 4.4], we can select 𝒪K\mathcal{O}_{K}-basis e1,,ede_{1},\dots,e_{d} of MM so that {ei,,ed}\{e_{i},\dots,e_{d}\} forms a KK-basis of FilriD\mathop{\rm Fil}\nolimits^{r_{i}}D. Write di:=ddimKFiliDd_{i}:=d-\dim_{K}\mathop{\rm Fil}\nolimits^{i}D. Then it is easy to check there exists two 𝒪K\mathcal{O}_{K}-bases {ej(i)|j=di+1,,d}\{e^{(i)}_{j}|j=d_{i}+1,\dots,d\} and {fj(i),j=di+1,,d}\{f^{(i)}_{j},j=d_{i}+1,\dots,d\} of FiliM\mathop{\rm Fil}\nolimits^{i}M so that ej(i+1)=pnijfj(i)e^{(i+1)}_{j}=p^{n_{ij}}f^{(i)}_{j}, for j=di+1+1,,dj=d_{i+1}+1,\dots,d. We can set fj(0)=ej(0)=ej,j=1,,df^{(0)}_{j}=e^{(0)}_{j}=e_{j},j=1,\dots,d.

We regard 𝔐\mathfrak{M} as an φ(𝔖)\varphi(\mathfrak{S})-submodule of 𝔐\mathfrak{M}^{*}. There exists a φ(𝔖)\varphi(\mathfrak{S})-basis 𝔢i𝔐\mathfrak{e}_{i}\in\mathfrak{M} so that evp(𝔢j)=ej\mathrm{ev}_{p}(\mathfrak{e}_{j})=e_{j}. Set

J:={rj+mp|j=1,,d;mZ0;0rj+mph},J:=\{r_{j}+mp|j=1,\dots,d;m\in\mathbb Z_{\geq 0};0\leq r_{j}+mp\leq h\},

and

𝒥:={rj+mp|j=1,,d;m>0;0rj+mph}.\mathcal{J}:=\{r_{j}+mp|j=1,\dots,d;m>0;0\leq r_{j}+mp\leq h\}.

Note that 𝒥J\mathcal{J}\subset J and J𝒥={rj|prjl,l<rj,lJ}J\setminus\mathcal{J}=\{r_{j}|\ p\nmid r_{j}-l,\forall l<r_{j},l\in J\}. Recall that our main theorem 1.1 claims that griM=0\mathrm{gr}^{i}M=0 if i𝒥i\not\in\mathcal{J}.

Proposition 2.4.

For each 0ih0\leq i\leq h, there exists

{αj(i),j=1,,di,𝔢j(i),j=di+1,,d}Fili𝔐\{\alpha^{(i)}_{j},j=1,\dots,d_{i},\ \mathfrak{e}^{(i)}_{j},j=d_{i}+1,\dots,d\}\subset\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}

so that

  1. (1)

    {αj(i),𝔢j(i)}\{\alpha^{(i)}_{j},\mathfrak{e}^{(i)}_{j}\} is an 𝔖\mathfrak{S}-basis of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*};

  2. (2)

    evp(αj(i))=0\mathrm{ev}_{p}(\alpha^{(i)}_{j})=0, evp(𝔢j(i))=ej(i)\mathrm{ev}_{p}(\mathfrak{e}^{(i)}_{j})=e_{j}^{(i)};

  3. (3)

    For each j=1,,dij=1,\dots,d_{i}, we have

    (4) αj(i)=k=1d(lJ,l<i,lrkalk(ij)Eil𝔢k(l))\alpha^{(i)}_{j}=\sum_{k=1}^{d}\left(\sum_{l\in J,\ l<i,\ l\leq r_{k}}a_{lk}^{(ij)}E^{i-l}\mathfrak{e}_{k}^{(l)}\right)

    for some alk(ij)𝒪Ka_{lk}^{(ij)}\in\mathcal{O}_{K}.

We make induction on ii to prove the above proposition. The case of i=0i=0 is trivial as we can take 𝔢j(0)=𝔢j\mathfrak{e}_{j}^{(0)}=\mathfrak{e}_{j} (note that d0=0d_{0}=0). Now assume that the statement holds for Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}, consider the statement for Fili+1𝔐\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. The case iJi\in J and iJi\not\in J makes a big difference. We divide these two situations into two different subsections. Set Jik:={lJ,l<i,lrk}.J_{ik}:=\{l\in J,l<i,l\leq r_{k}\}.

2.3.1. The case iJi\not\in J.

First note in this case, pil,lJ,i>lp\nmid i-l,\forall l\in J,i>l. Also griD=0\mathrm{gr}^{i}D=0 and thus FiliD=Fili+1D\mathop{\rm Fil}\nolimits^{i}D=\mathop{\rm Fil}\nolimits^{i+1}D. So di=di+1d_{i}=d_{i+1}.

For j=di+1,,dj=d_{i}+1,\dots,d, we construct βj:=𝔢j(i)+k=1dlJikxlk(ij)Eil𝔢k(l)\beta_{j}:=\mathfrak{e}^{(i)}_{j}+\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik}}x^{(ij)}_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k} with xlk(ij)𝒪Kx_{lk}^{(ij)}\in\mathcal{O}_{K} undetermined so that βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. Since Eil𝔢k(l)E^{i-l}\mathfrak{e}^{(l)}_{k} and 𝔢j(i)\mathfrak{e}^{(i)}_{j} are in Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and evp(βj)=evp(𝔢j(i))=ej(i)FiliD=Fili+1D\mathrm{ev}_{p}(\beta_{j})=\mathrm{ev}_{p}(\mathfrak{e}_{j}^{(i)})=e^{(i)}_{j}\in\mathop{\rm Fil}\nolimits^{i}D=\mathop{\rm Fil}\nolimits^{i+1}D, to construct βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}, it suffices to select xlk(ij)x_{lk}^{(ij)} so that (βj)Fili𝒟\nabla(\beta_{j})\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}. To simplify the notation, we write xkl=xkl(ij)x_{kl}=x_{kl}^{(ij)}.

By Lemma 2.3, we have E(𝔢j(i))=k=1dickαk(i)+k>dick𝔢k(i)E\nabla(\mathfrak{e}^{(i)}_{j})=\sum\limits_{k=1}^{d_{i}}c_{k}\alpha^{(i)}_{k}+\sum\limits_{k>d_{i}}c_{k}^{\prime}\mathfrak{e}^{(i)}_{k} with ck,ckSpc_{k},c^{\prime}_{k}\in S_{p}. Note that E(𝔢j(i))E𝒟E\nabla(\mathfrak{e}^{(i)}_{j})\subset E\mathcal{D}, then evp(E(𝔢j(i)))=0\mathrm{ev}_{p}(E\nabla(\mathfrak{e}^{(i)}_{j}))=0. Since {evp(𝔢j(i))}\{\mathrm{ev}_{p}(\mathfrak{e}^{(i)}_{j})\} forms a basis of FiliD\mathop{\rm Fil}\nolimits^{i}D, we conclude that ckES[1p]c^{\prime}_{k}\in ES[\frac{1}{p}]. Thus,

(𝔢j(i))\displaystyle\nabla(\mathfrak{e}^{(i)}_{j}) =\displaystyle= k=1dickαk(i)E+k>dickE𝔢k(i)\displaystyle\sum\limits_{k=1}^{d_{i}}c_{k}\frac{\alpha^{(i)}_{k}}{E}+\sum\limits_{k>d_{i}}\frac{c_{k}^{\prime}}{E}\mathfrak{e}^{(i)}_{k}
=\displaystyle= k=1dick(p)αk(i)E+k>di(ckE)𝔢k(i)+k=1di(ckck(p))αk(i)E.\displaystyle\sum\limits_{k=1}^{d_{i}}c_{k}(p)\frac{\alpha^{(i)}_{k}}{E}+\sum\limits_{k>d_{i}}(\frac{c_{k}^{\prime}}{E})\mathfrak{e}^{(i)}_{k}+\sum\limits_{k=1}^{d_{i}}(c_{k}-c_{k}(p))\frac{\alpha^{(i)}_{k}}{E}.

Since ckck(p)c_{k}-c_{k}(p) is in ES[1p]ES[\frac{1}{p}], it suffices to pick xlk𝒪Kx_{lk}\in\mathcal{O}_{K} so that

(k=1dlJikxlkEil𝔢k(l))+k=1dick(p)αk(i)EFili𝒟.\nabla\left(\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik}}x_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k}\right)+\sum\limits_{k=1}^{d_{i}}c_{k}(p)\frac{\alpha^{(i)}_{k}}{E}\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}.

By induction on the shape of αj(i)\alpha_{j}^{(i)}, we can write

k=1dick(p)αk(i)E=k=1d(lJikblkEil1𝔢k(l))\sum\limits_{k=1}^{d_{i}}c_{k}(p)\frac{\alpha^{(i)}_{k}}{E}=\sum_{k=1}^{d}\left(\sum_{l\in J_{ik}}b_{lk}E^{i-l-1}\mathfrak{e}_{k}^{(l)}\right)

for some blk𝒪Kb_{lk}\in\mathcal{O}_{K}, which is a combination of alk(ij)a^{(ij)}_{lk} and ck(p)c_{k}(p) (note that ck(p)c_{k}(p) is in 𝒪K\mathcal{O}_{K} by Lemma 2.3). Hence it suffices to show that the existence of xlk𝒪Kx_{lk}\in\mathcal{O}_{K} so that

(k=1dlJikxlkEil𝔢k(l))+k=1d(lJikblkEil1𝔢k(l))Fili𝒟.\nabla\left(\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik}}x_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k}\right)+\sum_{k=1}^{d}\left(\sum_{l\in J_{ik}}b_{lk}E^{i-l-1}\mathfrak{e}_{k}^{(l)}\right)\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}.

We prove this by back induction on ll. Let s=max{lJ|li1}s=\max\{l\in J|l\leq i-1\}. Note that (xskEis𝔢k(s))=xsk(is)Eis1𝔢k(s)+xskEis(𝔢k(s))\nabla(x_{sk}E^{i-s}\mathfrak{e}^{(s)}_{k})=x_{sk}(i-s)E^{i-s-1}\mathfrak{e}^{(s)}_{k}+x_{sk}E^{i-s}\nabla(\mathfrak{e}^{(s)}_{k}). By the calculation in the third paragraph of this subsection §2.3.1, we have Eis(𝔢j(s))=k=1dsckEis1αk(s)+k>dsckEis1𝔢k(s)E^{i-s}\nabla(\mathfrak{e}^{(s)}_{j})=\sum\limits_{k=1}^{d_{s}}c_{k}E^{i-s-1}\alpha^{(s)}_{k}+\sum\limits_{k>d_{s}}c_{k}^{\prime}E^{i-s-1}\mathfrak{e}^{(s)}_{k} with ck,ckSpc_{k},c^{\prime}_{k}\in S_{p} and ckES[1p]c^{\prime}_{k}\in ES[\frac{1}{p}]. Using the induction on αk(s)\alpha_{k}^{(s)} and note that

k=1ds(ckck(p))Eis1αk(s)+k>dsckEis1𝔢k(s)Fili𝒟,\sum\limits_{k=1}^{d_{s}}(c_{k}-c_{k}(p))E^{i-s-1}\alpha^{(s)}_{k}+\sum\limits_{k>d_{s}}c_{k}^{\prime}E^{i-s-1}\mathfrak{e}^{(s)}_{k}\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D},

we have Eis(𝔢j(s))=k=1d(lJskclk′′Eil1𝔢k(l))+zE^{i-s}\nabla(\mathfrak{e}^{(s)}_{j})=\sum\limits_{k=1}^{d}(\sum\limits_{l\in J_{sk}}c^{\prime\prime}_{lk}E^{i-l-1}\mathfrak{e}^{(l)}_{k})+z with zFili𝒟z\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D} and clk′′𝒪Kc^{\prime\prime}_{lk}\in\mathcal{O}_{K}. Therefore, by setting xsk=(is)1bskx_{sk}=-(i-s)^{-1}b_{sk} (note that pisp\nmid i-s as iJi\not\in J), we need to further solve new xlk𝒪Kx_{lk}\in\mathcal{O}_{K} for

(k=1dlJik,l<sxlkEil𝔢k(l))+k=1d(lJik,l<sblkEil1𝔢k(l)lJsk(is)1bskclk′′Eil1𝔢k(l))Fili𝒟.\nabla\left(\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik},l<s}x_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k}\right)+\sum_{k=1}^{d}\left(\sum_{l\in J_{ik},l<s}b_{lk}E^{i-l-1}\mathfrak{e}_{k}^{(l)}-\sum\limits_{l\in J_{sk}}(i-s)^{-1}b_{sk}c^{\prime\prime}_{lk}E^{i-l-1}\mathfrak{e}^{(l)}_{k}\right)\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}.

Continue this step and decrease lJl\in J until l=0l=0. In this situation, (x0kEi𝔢k(0))=x0kiEi1𝔢k(0)+x0kEi(𝔢k(0))\nabla(x_{0k}E^{i}\mathfrak{e}_{k}^{(0)})=x_{0k}iE^{i-1}\mathfrak{e}^{(0)}_{k}+x_{0k}E^{i}\nabla(\mathfrak{e}^{(0)}_{k}). As Ei(𝔢k(0))Fili𝒟E^{i}\nabla(\mathfrak{e}^{(0)}_{k})\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}, pip\nmid i, x0k𝒪Kx_{0k}\in\mathcal{O}_{K} can be always found. This completes the construction of βj\beta_{j}.

Now we claim that Fili+1𝔐\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} is generated by {Eαj(i),j=1,,di,βj,j=di+1,,d}.\{E\alpha^{(i)}_{j},j=1,\dots,d_{i},\beta_{j},j=d_{i}+1,\dots,d\}. Write Fi+1𝔐F^{i+1}\mathfrak{M}^{*} be 𝔖\mathfrak{S}-submodule of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} generated by {Eαj(i),j=1,,di,βj,j=di+1,,d}\{E\alpha^{(i)}_{j},j=1,\dots,d_{i},\beta_{j},j=d_{i}+1,\dots,d\}. By the above construction, βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. So Fi+1𝔐Fili+1𝔐F^{i+1}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. By the construction βj=𝔢j(i)+k=1dlJikxlk(ij)Eil𝔢k(l)\beta_{j}=\mathfrak{e}^{(i)}_{j}+\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik}}x^{(ij)}_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k}, {αj(i),j=1,,di,βj,j=di+1,,d}\{\alpha^{(i)}_{j},j=1,\dots,d_{i},\beta_{j},j=d_{i}+1,\dots,d\} is another basis for Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. In particular, EFili𝔐Fi+1𝔐E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset F^{i+1}\mathfrak{M}^{*}. Since evp(βj)=evp(𝔢j(i))=ej(i)\mathrm{ev}_{p}(\beta_{j})=\mathrm{ev}_{p}(\mathfrak{e}_{j}^{(i)})=e_{j}^{(i)}, evp(Fi+1𝔐)=FiliM\mathrm{ev}_{p}(F^{i+1}\mathfrak{M}^{*})=\mathop{\rm Fil}\nolimits^{i}M. But Fi+1𝔐Fili+1𝔐F^{i+1}\mathfrak{M}^{*}\subset\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} and evp(Fili+1𝔐)=Fili+1M\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*})=\mathop{\rm Fil}\nolimits^{i+1}M. This forces that FiliM=evp(Fi+1𝔐)=evp(Fili+1𝔐)=Fili+1M.\mathop{\rm Fil}\nolimits^{i}M=\mathrm{ev}_{p}(F^{i+1}\mathfrak{M}^{*})=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*})=\mathop{\rm Fil}\nolimits^{i+1}M. Together with that Fili+1𝔐/EFili𝔐=Fili+1M\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}/E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}=\mathop{\rm Fil}\nolimits^{i+1}M and that EFili𝔐Fi+1𝔐E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset F^{i+1}\mathfrak{M}^{*}, we conclude that Fi+1𝔐=Fili+1𝔐F^{i+1}\mathfrak{M}^{*}=\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} and griM=FiliM/Fili+1M=0\mathrm{gr}^{i}M=\mathop{\rm Fil}\nolimits^{i}M/\mathop{\rm Fil}\nolimits^{i+1}M=0. Finally, since both fj(i)f_{j}^{(i)} and ej(i)e_{j}^{(i)} are bases of FiliM\mathop{\rm Fil}\nolimits^{i}M, we may select an invertible matrix AGLddi(𝒪K)A\in\mathop{\rm GL}\nolimits_{d-d_{i}}(\mathcal{O}_{K}) so that (βdi+1,,βd)=(βdi+1,,βd)A(\beta^{\prime}_{d_{i}+1},\dots,\beta^{\prime}_{d})=(\beta_{d_{i}+1},\dots,\beta_{d})A satisfies fp(βj)=fj(i)f_{p}(\beta^{\prime}_{j})=f^{(i)}_{j}. Since griM=0\mathrm{gr}^{i}M=0, ej(i+1)=fj(i)e^{(i+1)}_{j}=f^{(i)}_{j} and we can set 𝔢j(i+1):=βj\mathfrak{e}^{(i+1)}_{j}:=\beta^{\prime}_{j} and αj(i+1)=Eαj(i)\alpha^{(i+1)}_{j}=E\alpha^{(i)}_{j} as required.

2.3.2. The case iJi\in J

First let us consider the following commutative diagram:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fili𝔐\textstyle{\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\scriptstyle{E}Fili+1𝔐\textstyle{\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}evp\scriptstyle{\mathrm{ev}_{p}}Fili+1M\textstyle{\mathop{\rm Fil}\nolimits^{i+1}M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fili1𝔐\textstyle{\mathop{\rm Fil}\nolimits^{i-1}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\scriptstyle{E}Fili𝔐\textstyle{\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}evp\scriptstyle{\mathrm{ev}_{p}}q\scriptstyle{q}FiliM\textstyle{\mathop{\rm Fil}\nolimits^{i}M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q¯\scriptstyle{\bar{q}}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gri1𝔐\textstyle{\mathrm{gr}^{i-1}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιE\scriptstyle{\iota_{E}}gri𝔐\textstyle{\mathrm{gr}^{i}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}griM\textstyle{\mathrm{gr}^{i}M\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Note that all rows and columns are short exact. By induction, {αj(i),𝔢j(i)}\{\alpha^{(i)}_{j},\mathfrak{e}^{(i)}_{j}\} is an 𝔖\mathfrak{S}-basis of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} so that {evp(𝔢j(i))=ej(i)}\{\mathrm{ev}_{p}(\mathfrak{e}^{(i)}_{j})=e^{(i)}_{j}\}. Recall that {fj(i)}\{f^{(i)}_{j}\} is another 𝒪K\mathcal{O}_{K}-basis of FiliM\mathop{\rm Fil}\nolimits^{i}M so that ej(i+1)=pnijfj(i)e^{(i+1)}_{j}=p^{n_{ij}}f^{(i)}_{j}. Similar to the argument at the end of §2.3.1, we may choose βjFili𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} so that evp(βj)=fj(i)\mathrm{ev}_{p}(\beta_{j})=f^{(i)}_{j} and then {αj(i),βj}\{\alpha^{(i)}_{j},\beta_{j}\} is still an 𝔖\mathfrak{S}-basis of Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. To simplify the notation, write αj=αj(i)\alpha_{j}=\alpha^{(i)}_{j}.

Now let us discuss the structure of griM\mathrm{gr}^{i}M. Divide the set R:={j|j=di+1,,d}R:=\{j|j=d_{i}+1,\dots,d\} into three subsets R0R_{0}, RfR_{f} and RtorR_{\mathrm{tor}} in the following: R0:={jR|q¯(fj(i))=0}R_{0}:=\{j\in R|\bar{q}(f^{(i)}_{j})=0\}; Rf:={jR|q¯(fj(i)) is torsion free}R_{f}:=\{j\in R|\bar{q}(f^{(i)}_{j})\text{ is torsion free}\}; Rtor:={jR|q¯(fj(i)) is killed by pnij}.R_{\mathrm{tor}}:=\{j\in R|\bar{q}(f^{(i)}_{j})\text{ is killed by }p^{n_{ij}}\}. Write f¯j=q¯(fj(i))\bar{f}_{j}=\bar{q}(f^{(i)}_{j}), nj=nijn_{j}=n_{ij}, W=𝒪K=W(κ)W=\mathcal{O}_{K}=W(\kappa) and Wn:=W/pnWW_{n}:=W/p^{n}W. Now we have

griM=jRfWf¯jjRtorWnjf¯j.\mathrm{gr}^{i}M=\bigoplus_{j\in R_{f}}W\bar{f}_{j}\oplus\bigoplus_{j\in R_{\mathrm{tor}}}W_{n_{j}}\bar{f}_{j}.
Lemma 2.5.

There exists an 𝒪K\mathcal{O}_{K}-basis {α~j}\{\tilde{\alpha}_{j}\} of gri1𝔐\mathrm{gr}^{i-1}\mathfrak{M}^{*} (as a submodule of gri𝔐\mathrm{gr}^{i}\mathfrak{M}^{*} via ιE\iota_{E}) so that for any jRtorj\in R_{\mathrm{tor}} there exists a unique k(j)k(j) satisfying α~k(j)=pnjq(βj)\tilde{\alpha}_{k(j)}=p^{n_{j}}q(\beta_{j}).

Proof.

Let N:=jRfWq(βj)gri𝔐N:=\bigoplus\limits_{j\in R_{f}}Wq(\beta_{j})\subset\mathrm{gr}^{i}\mathfrak{M}^{*} and N:=gri𝔐/NN^{\prime}:=\mathrm{gr}^{i}\mathfrak{M}^{*}/N. It is easy to check that Ngri1𝔐=0N\cap\mathrm{gr}^{i-1}\mathfrak{M}^{*}=0 and NN^{\prime} is torsion free. Then we have an exact sequence:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gri1𝔐\textstyle{\mathrm{gr}^{i-1}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\scriptstyle{E}N\textstyle{N^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}jRtorWnjf¯j\textstyle{\bigoplus\limits_{j\in R_{\mathrm{tor}}}W_{n_{j}}\bar{f}_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Consider the natural map ν:jRtor𝒪Kq(βj)gri𝔐N\nu:\bigoplus\limits_{j\in R_{\mathrm{tor}}}\mathcal{O}_{K}q(\beta_{j})\to\mathrm{gr}^{i}\mathfrak{M}^{*}\to N^{\prime}. For any jRtorj\in R_{\mathrm{tor}}, since q¯(evp(βj))=f¯j\bar{q}(\mathrm{ev}_{p}(\beta_{j}))=\bar{f}_{j}, νmodp\nu\mod p is an isomorphism, this forces ν\nu is injective. Note that f¯j\bar{f}_{j} is killed by pnjp^{n_{j}}, we have pnjq(βj)gri1𝔐p^{n_{j}}q(\beta_{j})\in\mathrm{gr}^{i-1}\mathfrak{M}^{*}. Write αj:=pnjq(βj)\alpha^{\prime}_{j}:=p^{n_{j}}q(\beta_{j}). Then we have the following commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}jRtor𝒪Kαj\textstyle{\bigoplus\limits_{j\in R_{\mathrm{tor}}}\mathcal{O}_{K}\alpha^{\prime}_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}jRtor𝒪Kq(βj)\textstyle{\bigoplus\limits_{j\in R_{\mathrm{tor}}}\mathcal{O}_{K}q(\beta_{j})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ν\scriptstyle{\nu}jRtorWnjf¯j\textstyle{\bigoplus\limits_{j\in R_{\mathrm{tor}}}W_{n_{j}}\bar{f}_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\wr}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gri1𝔐\textstyle{\mathrm{gr}^{i-1}\mathfrak{M}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\scriptstyle{E}N\textstyle{N^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}jRtorWnjf¯j\textstyle{\bigoplus\limits_{j\in R_{\mathrm{tor}}}W_{n_{j}}\bar{f}_{j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Consider modulo pp for the second row, we have N/pNN′′jRtorW1f~jN^{\prime}/pN^{\prime}\simeq N^{\prime\prime}\oplus\bigoplus\limits_{j\in R_{\mathrm{tor}}}W_{1}\tilde{f}_{j} where f~j=fjmodp\tilde{f}_{j}=f_{j}\mod p and N′′N^{\prime\prime} is the image of gri1𝔐/p\mathrm{gr}^{i-1}\mathfrak{M}^{*}/p. Pick a lift αl′′gri1𝔐\alpha^{\prime\prime}_{l}\in\mathrm{gr}^{i-1}\mathfrak{M}^{*} so that the image of αl′′\alpha^{\prime\prime}_{l} forms a κ\kappa-basis of N′′N^{\prime\prime}. By Nakayama’s lemma, we easily check that {αl′′,αj}\{\alpha^{\prime\prime}_{l},\alpha^{\prime}_{j}\} forms an 𝒪K\mathcal{O}_{K}-basis of gri1𝔐\mathrm{gr}^{i-1}\mathfrak{M}^{*}. Now just reindex {αl′′,αj}\{\alpha^{\prime\prime}_{l},\alpha^{\prime}_{j}\} to α~j,j=1,,di\tilde{\alpha}_{j},j=1,\dots,d_{i} and the {α~j}\{\tilde{\alpha}_{j}\} is required basis of gri1𝔐\mathrm{gr}^{i-1}\mathfrak{M}^{*}. ∎

Let AGLdi(𝒪K)A\in\mathop{\rm GL}\nolimits_{d_{i}}(\mathcal{O}_{K}) so that (α~1,,α~di)=q(α1(i),,αdi(i))A(\tilde{\alpha}_{1},\dots,\tilde{\alpha}_{d_{i}})=q(\alpha^{(i)}_{1},\dots,\alpha_{d_{i}}^{(i)})A and set (α^1,,α^di)=(α1(i),,αdi(i))A(\hat{\alpha}_{1},\dots,\hat{\alpha}_{d_{i}})=(\alpha^{(i)}_{1},\dots,\alpha_{d_{i}}^{(i)})A. For each jRtorj\in R_{\mathrm{tor}}, set β^j=pnjβjα^k(j)\hat{\beta}_{j}=p^{n_{j}}\beta_{j}-\hat{\alpha}_{k(j)}. Since q(β^j)=0q(\hat{\beta}_{j})=0 by the above lemma, β^jFili+1𝔐\hat{\beta}_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. It is clear that evp(β^j)=evp(pnjβj)=pnijfj(i)=ej(i+1)\mathrm{ev}_{p}(\hat{\beta}_{j})=\mathrm{ev}_{p}(p^{n_{j}}\beta_{j})=p^{n_{ij}}f^{(i)}_{j}=e^{(i+1)}_{j}.

Now we define αj(i+1):=Eα^j(i)\alpha^{(i+1)}_{j}:=E\hat{\alpha}^{(i)}_{j} if j{1,,di}{k(j)|jRtor}j\in\{1,\dots,d_{i}\}\setminus\{k(j)|j\in R_{\mathrm{tor}}\}; αk(j)(i+1):=Eβj\alpha^{(i+1)}_{k(j)}:=E\beta_{j} if jRtorj\in R_{\mathrm{tor}} and αj(i+1)=Eβj\alpha_{j}^{(i+1)}=E\beta_{j} if jRfj\in R_{f}; Define 𝔢j(i+1):=β^j\mathfrak{e}^{(i+1)}_{j}:=\hat{\beta}_{j} for jRtorj\in R_{\mathrm{tor}}. For jR0j\in R_{0}, choose a lift 𝔢j(i+1)Fili+1𝔐\mathfrak{e}^{(i+1)}_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} so that evp(𝔢j(i+1))=ej(i+1)\mathrm{ev}_{p}(\mathfrak{e}^{(i+1)}_{j})=e^{(i+1)}_{j}.

Now we need to check that {αj(i+1),𝔢j(i+1)}\{\alpha_{j}^{(i+1)},\mathfrak{e}_{j}^{(i+1)}\} satisfies the requirement of Proposition 2.4 to complete the induction. First note that RtorR0R_{\mathrm{tor}}\cup R_{0} is the set of indices jj for ej(i+1)e^{(i+1)}_{j}. So we have evp(𝔢j(i+1))=ej(i+1)\mathrm{ev}_{p}(\mathfrak{e}^{(i+1)}_{j})=e^{(i+1)}_{j}, which forms a basis of Fili+1M.\mathop{\rm Fil}\nolimits^{i+1}M.

Next we check that αj(i+1)\alpha_{j}^{(i+1)} satisfies the requirement in Equation (4). If j{1,,di}{k(j)|jRtor}j\in\{1,\dots,d_{i}\}\setminus\{k(j)|j\in R_{\mathrm{tor}}\} then αj(i+1):=Eα^j(i)\alpha^{(i+1)}_{j}:=E\hat{\alpha}^{(i)}_{j} and this follows the induction on ii and that α^j(i)\hat{\alpha}^{(i)}_{j} is 𝒪K\mathcal{O}_{K}-linear combination of αj(i)\alpha^{(i)}_{j}. Note that βj\beta_{j} is also 𝒪K\mathcal{O}_{K}-linear combination of 𝔢j(i)\mathfrak{e}^{(i)}_{j} and iJi\in J. So αk(j)(i+1)=Eβj\alpha^{(i+1)}_{k(j)}=E\beta_{j} for jRtorj\in R_{\mathrm{tor}} and αj(i+1)=Eβj\alpha_{j}^{(i+1)}=E\beta_{j} for jRfj\in R_{f} still satisfy the requirement in Equation (4).

Finally, we check that {αj(i+1),𝔢j(i+1)}\{\alpha_{j}^{(i+1)},\mathfrak{e}_{j}^{(i+1)}\} is an 𝔖\mathfrak{S}-basis of Fili+1𝔐\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. First, it is clear that {αj(i+1),𝔢j(i+1)}Fili+1𝔐\{\alpha_{j}^{(i+1)},\mathfrak{e}_{j}^{(i+1)}\}\subset\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} by construction. Set Fi+1𝔐F^{i+1}\mathfrak{M}^{*} be the 𝔖\mathfrak{S}-submodule of Fili+1𝔐\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} generated by {αj(i+1),𝔢j(i+1)}\{\alpha_{j}^{(i+1)},\mathfrak{e}_{j}^{(i+1)}\}. Since evp(𝔢j(i+1))=ej(i+1)\mathrm{ev}_{p}(\mathfrak{e}_{j}^{(i+1)})=e_{j}^{(i+1)} forms a basis of Fili+1M\mathop{\rm Fil}\nolimits^{i+1}M, by using the same argument in the end of §2.3.1, it suffices to show that EFili𝔐Fi+1𝔐E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}\subset F^{i+1}\mathfrak{M}^{*}. Equivalently, we have to show that Eα^jE\hat{\alpha}_{j} and EβjE\beta_{j} are in Fi+1𝔐F^{i+1}\mathfrak{M}^{*}. From our construction, this is clear for Eα^j(i)E\hat{\alpha}^{(i)}_{j} if j{1,,di}{k(j)|jRtor}j\in\{1,\dots,d_{i}\}\setminus\{k(j)|j\in R_{\mathrm{tor}}\}, EβjE\beta_{j} if jRtorj\in R_{\mathrm{tor}} and EβjE\beta_{j} if jRfj\in R_{f}. For jRtorj\in R_{\mathrm{tor}}, since 𝔢j(i+1)=β^j=pnjβjα^k(j)\mathfrak{e}_{j}^{(i+1)}=\hat{\beta}_{j}=p^{n_{j}}\beta_{j}-\hat{\alpha}_{k(j)}. Then Eα^k(j)=pnjEβjE𝔢j(i+1)=pnjαk(j)(i+1)E𝔢j(i+1)Fi+1𝔐.E\hat{\alpha}_{k(j)}=p^{n_{j}}E\beta_{j}-E\mathfrak{e}^{(i+1)}_{j}=p^{n_{j}}\alpha^{(i+1)}_{k(j)}-E\mathfrak{e}^{(i+1)}_{j}\in F^{i+1}\mathfrak{M}^{*}. For jR0j\in R_{0}, note that evp(𝔢j(i+1))=ej(i+1)=evp(βj)\mathrm{ev}_{p}(\mathfrak{e}^{(i+1)}_{j})=e^{(i+1)}_{j}=\mathrm{ev}_{p}(\beta_{j}), we have 𝔢j(i+1)βjEFili𝔐\mathfrak{e}^{(i+1)}_{j}-\beta_{j}\in E\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*}. Thus it is easy to check that Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} has an 𝔖\mathfrak{S}-basis {α^j,j=1,di;βj,jR0;𝔢j(i+1),jR0}\{\hat{\alpha}_{j},j=1,\dots d_{i};\beta_{j},j\not\in R_{0};\mathfrak{e}^{(i+1)}_{j},j\in R_{0}\}. Hence EβjE\beta_{j} is a linear combination of {Eα^j,j=1,di;Eβj,jR0;E𝔢j(i+1),jR0}\{E\hat{\alpha}_{j},j=1,\dots d_{i};E\beta_{j},j\not\in R_{0};E\mathfrak{e}^{(i+1)}_{j},j\in R_{0}\} and hence in Fi+1𝔐F^{i+1}\mathfrak{M}^{*}, as required.

2.4. The proof of Theorem 1.1

2.4.1. The case iJi\not\in J.

In the last paragraph of §2.3.1, we see that if iJi\not\in J then Fili+1𝔐\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} is generated by {Eαi,βj}\{E\alpha_{i},\beta_{j}\} and evp(βj)=ej(i)\mathrm{ev}_{p}(\beta_{j})=e_{j}^{(i)} for j=di+1,,dj=d_{i}+1,\dots,d. Thus evp(Fili+1𝔐)=FiliM\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*})=\mathop{\rm Fil}\nolimits^{i}M and griM=0\mathrm{gr}^{i}M=0.

2.4.2. The case iJ𝒥i\in J\setminus\mathcal{J}.

Note that i=rji=r_{j} but p|rj,l<rj,lJp\nmid|r_{j}-\ell,\forall l<r_{j},l\in J. We can select an invertible matrix AGLddi(𝒪K)A\in\mathop{\rm GL}\nolimits_{d-d_{i}}(\mathcal{O}_{K}) so that if we replace 𝔢di+1(i),,𝔢d(i)\mathfrak{e}^{(i)}_{d_{i}+1},\dots,\mathfrak{e}^{(i)}_{d} by (𝔢di+1(i),,𝔢d(i))A(\mathfrak{e}^{(i)}_{d_{i}+1},\dots,\mathfrak{e}^{(i)}_{d})A then evp(𝔢di+1+1(i)),,evp(𝔢d(i))\mathrm{ev}_{p}(\mathfrak{e}^{(i)}_{d_{i+1}+1}),\dots,\mathrm{ev}_{p}(\mathfrak{e}^{(i)}_{d}) is a basis of Fili+1D\mathop{\rm Fil}\nolimits^{i+1}D. As in §2.3.1, For j=di+1+1,,dj=d_{i+1}+1,\dots,d, we construct βj:=𝔢j(i)+k=1dlJikxlk(ij)Eil𝔢k(l)\beta_{j}:=\mathfrak{e}^{(i)}_{j}+\sum\limits_{k=1}^{d}\sum\limits_{l\in J_{ik}}x^{(ij)}_{lk}E^{i-l}\mathfrak{e}^{(l)}_{k} with xlk(ij)𝒪Kx_{lk}^{(ij)}\in\mathcal{O}_{K} undetermined so that βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}. Since Eil𝔢k(l)E^{i-l}\mathfrak{e}^{(l)}_{k} and 𝔢j(i)\mathfrak{e}^{(i)}_{j} are in Fili𝔐\mathop{\rm Fil}\nolimits^{i}\mathfrak{M}^{*} and evp(βj)=evp(𝔢j(i))\mathrm{ev}_{p}(\beta_{j})=\mathrm{ev}_{p}(\mathfrak{e}_{j}^{(i)}) is a basis for Fili+1D\mathop{\rm Fil}\nolimits^{i+1}D, to construct βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}, it suffices to select xlk(ij)x_{lk}^{(ij)} so that (βj)Fili𝒟\nabla(\beta_{j})\in\mathop{\rm Fil}\nolimits^{i}\mathcal{D}. Note that all arguments in §2.3.1 go through because the key assumption pisp\nmid i-s still holds here as sJ,s<is\in J,s<i. Therefore, we construct βjFili+1𝔐\beta_{j}\in\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*} for j=di+1+1,,dj=d_{i+1}+1,\dots,d. Therefore, Fili+1M=evp(Fili+1𝔐)\mathop{\rm Fil}\nolimits^{i+1}M=\mathrm{ev}_{p}(\mathop{\rm Fil}\nolimits^{i+1}\mathfrak{M}^{*}) contains evp(βj)=ej(i)\mathrm{ev}_{p}(\beta_{j})=e^{(i)}_{j} for j=di+1+1,,dj=d_{i+1}+1,\dots,d. Let Fi+1MFili+1MF^{i+1}M\subset\mathop{\rm Fil}\nolimits^{i+1}M be the finite free 𝒪K\mathcal{O}_{K}-submodule generated by ej(i)e^{(i)}_{j} for j=di+1+1,,dj=d_{i+1}+1,\dots,d. Then FiliM/Fi+1M\mathop{\rm Fil}\nolimits^{i}M/F^{i+1}M is finite free 𝒪K\mathcal{O}_{K}-module with basis edi+1,,edi+1e_{d_{i}+1},\dots,e_{d_{i+1}}. Together with the fact that Fi+1M[1p]=Fili+1DF^{i+1}M[\frac{1}{p}]=\mathop{\rm Fil}\nolimits^{i+1}D, we have Fi+1M=FiliMFili+1DF^{i+1}M=\mathop{\rm Fil}\nolimits^{i}M\cap\mathop{\rm Fil}\nolimits^{i+1}D. This forces that Fi+1M=Fili+1M=FiliMFili+1DF^{i+1}M=\mathop{\rm Fil}\nolimits^{i+1}M=\mathop{\rm Fil}\nolimits^{i}M\cap\mathop{\rm Fil}\nolimits^{i+1}D. Thus griM\mathrm{gr}^{i}M has no pp-torsion as required.

References

  • [BLL23] John Bergdall, Brandon Levin, and Tong Liu, Reductions of 2-dimensional semistable representations with large \mathcal{L}-invariant, J. Inst. Math. Jussieu 22 (2023), no. 6, 2619–2644. MR 4653753
  • [GLS14] Toby Gee, Tong Liu, and David Savitt, The Buzzard-Diamond-Jarvis conjecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2, 389–435. MR 3164985
  • [Kis06] Mark Kisin, Crystalline representations and FF-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR MR2263197 (2007j:11163)
  • [Liu08] Tong Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61–88. MR 2388556
  • [Liu12] by same author, Lattices in filtered (ϕ,N)(\phi,N)-modules, J. Inst. Math. Jussieu 11 (2012), no. 3, 659–693. MR 2931320
  • [LL21] Shizhang Li and Tong Liu, Comparison of prismatic cohomology and derived de rham cohomology, 2021, arXiv:2012.14064.
  • [Wan22] Xiyuan Wang, Weight elimination in two dimensions when p=2p=2, Math. Res. Lett. 29 (2022), no. 3, 887–901. MR 4516043