This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Toward an estimate of the amplitude 𝑿​(πŸ‘πŸ–πŸ•πŸ)β†’π…πŸŽβ€‹πŒπ’„β€‹πŸβ€‹(πŸβ€‹π‘·)X(3872)\to\pi^{0}\chi_{c1}(1P)

N. N. Achasov 111achasov@math.nsc.ru and G. N. Shestakov 222shestako@math.nsc.ru Laboratory of Theoretical Physics, S. L. Sobolev Institute for Mathematics, 630090, Novosibirsk, Russia
Abstract

The well-known model of the triangle diagrams with Dβˆ—β€‹D¯​Dβˆ—D^{*}\bar{D}D^{*} and DΒ―βˆ—β€‹D​DΒ―βˆ—\bar{D}^{*}D\bar{D}^{*} mesons in the loops is compared with the modern data on the amplitude of the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay. Considering the X​(3872)X(3872) object as a Ο‡c​1​(2​P)\chi_{c1}(2P) charmonium state, we introduce a parameter ΞΎ\xi characterizing the scale of the isotopic symmetry violation in this decay and find a lower limit of ξ≃0.0916\xi\simeq 0.0916. The model incorporates the only fitted parameter associated with the form factor. We analyze in detail the influence of the form factor on the amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) and on the parameter ΞΎ\xi. As the suppression of the amplitude by the form factor increases, ΞΎ\xi increases. Because the X​(3872)X(3872) resonance is located practically at the threshold of the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} channel, the amplitude of X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) turns out to be proportional to mdβˆ’mu\sqrt{m_{d}-m_{u}}. Using the estimating values for the coupling constants gX​D​DΒ―βˆ—g_{XD\bar{D}^{*}}, gΟ‡c​1​D​DΒ―βˆ—g_{\chi_{c1}D\bar{D}^{*}}, and gDβˆ—0​Dβˆ—0​π0g_{D^{*0}D^{*0}\pi^{0}}, we show that the model of the triangle loop diagrams is in reasonable agreement with the available data. Apart from the difference in the masses of neutral and charged charmed mesons, any additional exotic sources of isospin violation in X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) (such as a significant difference between the coupling constants gX​D0​DΒ―βˆ—0g_{XD^{0}\bar{D}^{*0}} and gX​D+​Dβˆ—βˆ’g_{XD^{+}D^{*-}}) are not required to interpret the data. This indirectly confirms the isotopic neutrality of the X​(3872)X(3872), which is naturally realized for the c​cΒ―c\bar{c} state Ο‡c​1​(2​P)\chi_{c1}(2P).

I Introduction

The state X​(3872)X(3872) or Ο‡c​1​(3872)\chi_{c1}(3872) PDG23 was observed for the first time by the Belle Collaboration in 2003 in the process BΒ±β†’(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)​KΒ±B^{\pm}\to(X(3872)\to\pi^{+}\pi^{-}J/\psi)K^{\pm} Cho03 . Then it was observed in many other experiments in other processes and decay channels PDG23 ; Kop23 . The X​(3872)X(3872) is a very narrow resonance. Its visible width depends on the decay channel. In the Ο€+β€‹Ο€βˆ’β€‹J/ψ\pi^{+}\pi^{-}J/\psi channel, the width of the X​(3872)X(3872) peak is approximately of 1 MeV PDG23 ; Cho11 ; Aai20 and in the (Dβˆ—0​DΒ―0+DΒ―βˆ—0​D0)β†’D0​DΒ―0​π0(D^{*0}\bar{D}^{0}+\bar{D}^{*0}D^{0})\to D^{0}\bar{D}^{0}\pi^{0} channel, it is of about 2–5 MeV PDG23 ; Gok06 ; Aus10 ; Hir23 ; Abl23 ; Tan23 . Its mass coincides practically with the Dβˆ—0​DΒ―0D^{*0}\bar{D}^{0} threshold PDG23 . The X​(3872)X(3872) has the quantum numbers IG​(JP​C)=0+​(1++)I^{G}(J^{PC})=0^{+}(1^{++}) PDG23 ; Aub05 ; Cho11 ; Aai13 ; Aai15 . In addition to decays into Ο€+β€‹Ο€βˆ’β€‹J/ψ\pi^{+}\pi^{-}J/\psi Cho03 ; Cho11 ; Aai13 ; Abl14 ; Aai20 and D0​DΒ―0​π0D^{0}\bar{D}^{0}\pi^{0} Gok06 ; Aus10 ; Hir23 ; Abl23 ; Tan23 , the X​(3872)X(3872) also decays into ω​J/ψ\omega J/\psi Abe05 ; Amo10 ; Abl19 , γ​J/ψ\gamma J/\psi Abe05 ; Aub09 ; Bha11 ; Aai14 ; Abl20 , Ξ³β€‹Οˆβ€‹(2​S)\gamma\psi(2S) Aub09 ; Bha11 ; Aai14 , and Ο€0​χc​1​(1​P)\pi^{0}\chi_{c1}(1P) Ab19 ; Bh19 . The X​(3872)X(3872) became the first candidate for exotic charmoniumlike states, and many hypotheses have been put forward about its nature; see Refs. PDG23 ; Cho03 ; Kop23 ; Cho11 ; Aai20 ; Gok06 ; Aus10 ; Hir23 ; Abe05 ; Abl14 ; Abl20 ; Abl23 ; Tan23 ; Aub05 ; Aai13 ; Aai15 ; Amo10 ; Abl19 ; Aub09 ; Bha11 ; Aai14 ; Ab19 ; Bh19 ; MR23a ; Sw04 ; Zh14 ; Ma05 ; AR14 ; AR15 ; AR16 ; AKS22 ; Ka05 ; TT13 ; Su05 and references herein. For example, the X​(3872)X(3872) is interpreted as a hadronic D​DΒ―βˆ—D\bar{D}^{*} molecule Sw04 ; Zh14 , a compact tetraquark state Ma05 , a conventional charmonium state Ο‡c​1​(2​P)\chi_{c1}(2P) AR14 ; AR15 ; AR16 ; AKS22 , a mixture of a molecule, and an excited charmonium state Ka05 ; TT13 ; Su05 , etc. So far, none of these explanations have become generally accepted. But there is hope that new, more and more accurate experiments will allow us to make a definite choice between the different interpretations.

Of great interest are the X​(3872)X(3872) decays that violate isospin: X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψX(3872)\to\pi^{+}\pi^{-}J/\psi, X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P), and X​(3872)β†’Ο€0​π+β€‹Ο€βˆ’X(3872)\to\pi^{0}\pi^{+}\pi^{-} Abe05 ; Amo10 ; Abl19 ; Ab19 ; Bh19 ; To04 ; Su05 ; Me07 ; Os09 ; Os10 ; Te10 ; KL10 ; Li12 ; Ac19 ; Zh19 ; Wu21 ; Me21 ; Aa23 ; Wa23 ; DV08 ; FM08 ; Me15 ; AS19 ; Yi21 . In what follows, we will discuss the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay. Even before the appearance of the BESIII Ab19 and Belle Bh19 data (see also PDG23 ), a number of model predictions were made for it DV08 ; FM08 ; Me15 . Then this decay was studied in the works Zh19 ; Wu21 ; Wa23 . In Ref. DV08 , under the assumption that X​(3872)X(3872) is a conventional c​cΒ―c\bar{c} state and that Ο€0\pi^{0} is produced in its decay via two-gluon mechanism, the value of ≃0.06\simeq 0.06 keV was obtained for the width Γ​(X​(3872)β†’Ο€0​χc​1​(1​P))\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P)), which is several orders of magnitude less than what follows from the experiment Ab19 . In Ref. FM08 , the X​(3872)X(3872) was considered as a loosely bound state of neutral charmed mesons D0​DΒ―βˆ—0+DΒ―0​Dβˆ—0D^{0}\bar{D}^{*0}+\bar{D}^{0}D^{*0}. If the decay of such a molecular quarkonium into Ο€0​χc​1​(1​P)\pi^{0}\chi_{c1}(1P) results from the neutral charmed meson loop mechanism, then, according to the estimate Me15 , Γ​(X​(3872)β†’Ο€0​χc​1​(1​P))\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P)) turns out to be greater than the total X​(3872)X(3872) width. To avoid contradictions with experiment, it was proposed Me15 to take into account the coupling of the X​(3872)X(3872) to charged charmed mesons D+​Dβˆ—βˆ’+Dβˆ’β€‹Dβˆ—+D^{+}D^{*-}+D^{-}D^{*+}. In this case, the contributions of the triangle loops with neutral and charged D(βˆ—)D^{(*)} mesons should partially compensate each other in the transition amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) Me15 , which is completely natural for the X​(3872)X(3872) state with isospin I=0I=0. In Ref. Zh19 , to describe the X​(3872)X(3872), a scheme was used in which D​DΒ―βˆ—D\bar{D}^{*} pairs were considered as the dominant components in its wave function, and it was obtained that Γ​(X​(3872)β†’Ο€0​χc​1​(1​P))\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P)) is an order of magnitude smaller than Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)\Gamma(X(3872)\to\pi^{+}\pi^{-}J/\psi). In Ref. Wu21 , the molecular scenario for the X​(3872)X(3872) was considered. It was assumed that the strong isospin violation in the decays X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψX(3872)\to\pi^{+}\pi^{-}J/\psi, X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹Ο€0​J/ψX(3872)\to\pi^{+}\pi^{-}\pi^{0}J/\psi, and X​(3872)β†’Ο€0​χc​J​(1​P)X(3872)\to\pi^{0}\chi_{cJ}(1P) comes from the different coupling strengths of the X​(3872)X(3872) to its charged D+​Dβˆ—βˆ’D^{+}D^{*-} and neutral D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} components as well as through the interference between the charged and neutral meson loops. In Ref. Wu21 , the nonstandard normalizations were used for Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)\Gamma(X(3872)\to\pi^{+}\pi^{-}J/\psi) and Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹Ο€0​J/ψ)\Gamma(X(3872)\to\pi^{+}\pi^{-}\pi^{0}J/\psi) (see Ref. FN1 ), and therefore, the agreement with experiment obtained for the ratio Γ​(X​(3872)β†’Ο€0​χc​1​(1​P))/Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P))/\Gamma(X(3872)\to\pi^{+}\pi^{-}J/\psi) is doubtful. In Ref. Wa23 , the X​(3872)X(3872) was considered as a tetraquark state with the I=0I=0 and 1 isospin components, and its decays were analyzed via the QCD sum rules. In so doing, for Γ​(X​(3872)β†’Ο€0​χc​1​(1​P))\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P)) the value of β‰ˆ0.0016\approx 0.0016 MeV was obtained, which is approximately 20 times smaller in comparison with the experimental estimate PDG23 .

In the present work, we consider the X​(3872)X(3872) meson as a Ο‡c​1​(2​P)\chi_{c1}(2P) charmonium state, which has the equal coupling constants with the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} and D+​Dβˆ—βˆ’D^{+}D^{*-} channels owing to the isotopic symmetry. Section II collects the available data on the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay. In Sec. III, we calculate the transition amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) corresponding to the simplest Dβˆ—β€‹D¯​Dβˆ—+c.c.D^{*}\bar{D}D^{*}+c.c. loop mechanism Me15 ; Wu21 , we pay attention to details that were not previously discussed, and introduce the parameter ΞΎ\xi characterizing the natural scale of isospin violation for the process under consideration. In Sec. IV, we analyze in detail the influence of the form factor on the magnitude of the amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) and on the parameter ΞΎ\xi. Using the evaluating values for coupling constants gX​D​DΒ―βˆ—g_{XD\bar{D}^{*}}, gΟ‡c​1​D​DΒ―βˆ—g_{\chi_{c1}D\bar{D}^{*}}, and gDβˆ—0​Dβˆ—0​π0g_{D^{*0}D^{*0}\pi^{0}}, we show that the model of charmed meson loops explains the data on the absolute value of the amplitude of the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay by a quite naturally way. Our conclusions from the presented analysis are given in Sec. V, together with a short comment regarding the molecular model of the X​(3872)X(3872) state.

II Data on the 𝑿​(πŸ‘πŸ–πŸ•πŸ)β†’π…πŸŽβ€‹πŒπ’„β€‹πŸβ€‹(πŸβ€‹π‘·)X(3872)\to\pi^{0}\chi_{c1}(1P) decay

Let us write the transition amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) in the form,

ℳ​(X​(3872)β†’Ο€0​χc​1​(1​P);s)≑ℳπ0​(s)=Ρμ​ν​λ​κ​ϡμX​(p1)β€‹Ο΅Ξ½βˆ—Ο‡c​1​(p2)​p1​λ​p2​κ​GΟ€0​(s),\displaystyle\mathcal{M}(X(3872)\to\pi^{0}\chi_{c1}(1P);s)\equiv\mathcal{M}_{\pi^{0}}(s)=\varepsilon^{\mu\nu\lambda\kappa}\epsilon^{X}_{\mu}(p_{1})\epsilon^{*\chi_{c1}}_{\nu}(p_{2})p_{1\lambda}p_{2\kappa}G_{\pi^{0}}(s), (1)

where Ο΅X​(p1)\epsilon^{X}(p_{1}) and Ο΅βˆ—Ο‡c​1​(p2)\epsilon^{*\chi_{c1}}(p_{2}) are the polarization four-vectors of the X​(3872)X(3872) and Ο‡c​1​(1​P)\chi_{c1}(1P) mesons, respectively (helicity indices omitted), p1p_{1}, p2p_{2} and p3=p1βˆ’p2p_{3}=p_{1}-p_{2} are the four-momenta of X​(3872)X(3872), Ο‡c​1​(1​P)\chi_{c1}(1P) and Ο€0\pi^{0}, respectively, s=(p2+p3)2s=(p_{2}+p_{3})^{2} is the squared invariant mass of the Ο€0​χc​1​(1​P)\pi^{0}\chi_{c1}(1P) system or of the virtual X​(3872)X(3872) state, and GΟ€0​(s)G_{\pi^{0}}(s) is the invariant amplitude. The energy-dependent width of the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay in the rest frame of X​(3872)X(3872) is expressed in terms of GΟ€0​(s)G_{\pi^{0}}(s) as follows :

Γ​(X​(3872)β†’Ο€0​χc​1​(1​P);s)=|GΟ€0​(s)|212​π​|pβ†’3|3,\displaystyle\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P);s)=\frac{|G_{\pi^{0}}(s)|^{2}}{12\pi}\,|\vec{p}_{3}|^{3}, (2)

where |pβ†’3|=s2βˆ’2​s​(mΟ‡c​12+mΟ€02)+(mΟ‡c​12βˆ’mΟ€02)2/(2​s)|\vec{p}_{3}|=\sqrt{s^{2}-2s(m^{2}_{\chi_{c1}}+m^{2}_{\pi^{0}})+(m^{2}_{\chi_{c1}}-m^{2}_{\pi^{0}})^{2}}/(2\sqrt{s}). The following information is available about the decay of X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P). The BESIII Collaboration Ab19 observed this decay and determined the value of the ratio,

ℬ​(X​(3872)β†’Ο€0​χc​1​(1​P))ℬ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)=0.88βˆ’027+033Β±0.10.\displaystyle\frac{\mathcal{B}(X(3872)\to\pi^{0}\chi_{c1}(1P))}{\mathcal{B}(X(3872)\to\pi^{+}\pi^{-}J/\psi)}=0.88^{+033}_{-027}\pm 0.10. (3)

The Belle Collaboration Bh19 set an upper limit for this ratio,

ℬ​(X​(3872)β†’Ο€0​χc​1​(1​P))ℬ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)<0.97\displaystyle\frac{\mathcal{B}(X(3872)\to\pi^{0}\chi_{c1}(1P))}{\mathcal{B}(X(3872)\to\pi^{+}\pi^{-}J/\psi)}<0.97 (4)

at the 90% confidence level. The Particle Data Group (PDG)PDG23 gives for the branching fraction of X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) the following value:

ℬ​(X​(3872)β†’Ο€0​χc​1​(1​P))=(3.4Β±1.6)%,\displaystyle\mathcal{B}(X(3872)\to\pi^{0}\chi_{c1}(1P))=(3.4\pm 1.6)\%, (5)

and also gives a constraint ℬ​(X​(3872)β†’Ο€0​χc​1​(1​P))<4%\mathcal{B}(X(3872)\to\pi^{0}\chi_{c1}(1P))<4\% based on the Belle data. Moreover, according to the analysis presented in Ref. LY19 , ℬ​(X​(3872)β†’Ο€0​χc​1​(1​P))=(3.6βˆ’1.6+2.2)%\mathcal{B}(X(3872)\to\pi^{0}\chi_{c1}(1P))=(3.6^{+2.2}_{-1.6})\%.

Using Eqs. (2), (5) and the value of the X​(3872)X(3872) total decay width presented by the PDG PDG23 , Ξ“Xtot=(1.19Β±0.21)\Gamma^{\scriptsize\mbox{tot}}_{X}=(1.19\pm 0.21) MeV, we obtain the following approximate estimates for the absolute decay width of X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) and for the effective coupling constant |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})|:

Γ​(X​(3872)β†’Ο€0​χc​1​(1​P);mX2)=(0.04Β±0.02)​MeV,|GΟ€0​(mX2)|=(0.216Β±0.054)​GeVβˆ’1.\displaystyle\Gamma(X(3872)\to\pi^{0}\chi_{c1}(1P);m^{2}_{X})=(0.04\pm 0.02)\ \mbox{MeV},\qquad|G_{\pi^{0}}(m^{2}_{X})|=(0.216\pm 0.054)\ \mbox{GeV}^{-1}. (6)

III Loop mechanism of 𝑿​(πŸ‘πŸ–πŸ•πŸ)β†’π…πŸŽβ€‹πŒπ’„β€‹πŸβ€‹(πŸβ€‹π‘·)X(3872)\to\pi^{0}\chi_{c1}(1P)

Let us consider the simplest model of triangle loop diagrams for the amplitude β„³Ο€0​(s)\mathcal{M}_{\pi^{0}}(s) introduced in Eq. (1). It is graphically depicted in Fig. 1. The specific structure of the vertices in these diagrams is determined with use of the effective Lagrangian,

β„’=i​gX​D​DΒ―βˆ—β€‹Xμ​(D†​DΞΌβˆ—βˆ’D​DΞΌβˆ—β€ )+i​gΟ‡c​1​D​DΒ―βˆ—β€‹Ο‡c​1μ​(D†​DΞΌβˆ—βˆ’D​DΞΌβˆ—β€ )+gDβˆ—0​Dβˆ—0​π0β€‹Ξ΅ΞΌβ€‹Ξ½β€‹Ξ»β€‹ΞΊβ€‹βˆ‚ΞΌDΞ½βˆ—β€‹(Ο„β†’^​π→+Ξ·0)β€‹βˆ‚Ξ»DΞΊβˆ—β€ ,\displaystyle\mathcal{L}=ig_{XD\bar{D}^{*}}X^{\mu}(D^{\dagger}D^{*}_{\mu}-DD^{*{\dagger}}_{\mu})+ig_{\chi_{c1}D\bar{D}^{*}}\chi_{c1}^{\mu}(D^{\dagger}D^{*}_{\mu}-DD^{*{\dagger}}_{\mu})+g_{D^{*0}D^{*0}\pi^{0}}\varepsilon^{\mu\nu\lambda\kappa}\partial_{\mu}D^{*}_{\nu}(\hat{\vec{\tau}}\vec{\pi}+\eta_{0})\partial_{\lambda}D^{*{\dagger}}_{\kappa}, (7)

where DD, D†D^{\dagger}, Dβˆ—D^{*}, and Dβˆ—β€ D^{*{\dagger}} are the charm meson isodoublets, Ο„β†’^=(Ο„^1,Ο„^2,Ο„^3)\hat{\vec{\tau}}=(\hat{\tau}_{1},\hat{\tau}_{2},\hat{\tau}_{3}) are the Pauli matrices, Ο€β†’=(Ο€1,Ο€2,Ο€3)\vec{\pi}=(\pi_{1},\pi_{2},\pi_{3}) is the isotopic triplet of Ο€\pi mesons, the Ο€3=Ο€0\pi_{3}=\pi^{0} state has the quark structure (u​uΒ―βˆ’d​dΒ―)/2(u\bar{u}-d\bar{d})/\sqrt{2}, and Ξ·0\eta_{0} denotes isosinglet pseudoscalar state with the quark structure (u​uΒ―+d​dΒ―)/2(u\bar{u}+d\bar{d})/\sqrt{2}. The amplitude of the virtual Ξ·0\eta_{0} state production, β„³Ξ·0​(s)\mathcal{M}_{\eta_{0}}(s), will be useful to us in the following. For the coupling constants indicated in Eq. (7), we introduce short notations: gX​D​DΒ―βˆ—=gXg_{XD\bar{D}^{*}}=g_{X}, gΟ‡c​1​D​DΒ―βˆ—=gΟ‡c​1g_{\chi_{c1}D\bar{D}^{*}}=g_{\chi_{c1}}, and gDβˆ—0​Dβˆ—0​π0=gΟ€0g_{D^{*0}D^{*0}\pi^{0}}=g_{\pi^{0}}.

Refer to caption
Figure 1: The model of triangle loop diagrams for the transitions X​(3872)β†’(D​DΒ―βˆ—+D¯​Dβˆ—)β†’(Ο€0,Ξ·0)​χc​1​(1​P)X(3872)\to(D\bar{D}^{*}+\bar{D}D^{*})\to(\pi^{0},\,\eta_{0})\chi_{c1}(1P).

In accordance with Fig. 1, we represent the amplitudes β„³Ο€0​(s)\mathcal{M}_{\pi^{0}}(s) and β„³Ξ·0​(s)\mathcal{M}_{\eta_{0}}(s) in the following form:

β„³Ο€0​(s)=gX​gΟ‡c​1​gΟ€016​π​Ρμ​ν​λ​κ​ϡμX​(p1)β€‹Ο΅Ξ½βˆ—Ο‡c​1​(p2)​[2​CΞ»n​(s)βˆ’2​CΞ»c​(s)]​p3​κ,\displaystyle\mathcal{M}_{\pi^{0}}(s)=\frac{g_{X}g_{\chi_{c1}}g_{\pi^{0}}}{16\pi}\varepsilon^{\mu\nu\lambda\kappa}\epsilon^{X}_{\mu}(p_{1})\epsilon^{*\chi_{c1}}_{\nu}(p_{2})[2C^{n}_{\lambda}(s)-2C^{c}_{\lambda}(s)]p_{3\kappa}, (8)
β„³Ξ·0​(s)=gX​gΟ‡c​1​gΞ·016​π​Ρμ​ν​λ​κ​ϡμX​(p1)β€‹Ο΅Ξ½βˆ—Ο‡c​1​(p2)​[2​CΞ»n​(s)+2​CΞ»c​(s)]​p3​κ,\displaystyle\mathcal{M}_{\eta_{0}}(s)=\frac{g_{X}g_{\chi_{c1}}g_{\eta_{0}}}{16\pi}\varepsilon^{\mu\nu\lambda\kappa}\epsilon^{X}_{\mu}(p_{1})\epsilon^{*\chi_{c1}}_{\nu}(p_{2})[2C^{n}_{\lambda}(s)+2C^{c}_{\lambda}(s)]p_{3\kappa}, (9)

where gΞ·0=gΟ€0g_{\eta_{0}}=g_{\pi^{0}}, the amplitudes CΞ»n​(s)C^{n}_{\lambda}(s) and CΞ»c​(s)C^{c}_{\lambda}(s) correspond to the diagrams with neutral and charged particles in the loops, respectively, and the factor 2 in front of them takes into account that for each type of particles there are two such diagrams. The amplitudes CΞ»n​(s)C^{n}_{\lambda}(s) and CΞ»c​(s)C^{c}_{\lambda}(s) are converged separately and have the form,

CΞ»n​(s)=iΟ€3β€‹βˆ«kλ​d4​k(k2βˆ’mDβˆ—02+i​Ρ)​((p1βˆ’k)2βˆ’mDΒ―02+i​Ρ)​((kβˆ’p3)2βˆ’mDβˆ—02+i​Ρ)=p1​λ​C11n​(s)+p3​λ​C12n​(s),\displaystyle C^{n}_{\lambda}(s)=\frac{i}{\pi^{3}}\int\frac{k_{\lambda}\,d^{4}k}{(k^{2}-m^{2}_{D^{*0}}+i\varepsilon)((p_{1}-k)^{2}-m^{2}_{\bar{D}^{0}}+i\varepsilon)((k-p_{3})^{2}-m^{2}_{D^{*0}}+i\varepsilon)}=p_{1\lambda}C^{n}_{11}(s)+p_{3\lambda}C^{n}_{12}(s), (10)
CΞ»c​(s)=iΟ€3β€‹βˆ«kλ​d4​k(k2βˆ’mDβˆ—+2+i​Ρ)​((p1βˆ’k)2βˆ’mDβˆ’2+i​Ρ)​((kβˆ’p3)2βˆ’mDβˆ—+2+i​Ρ)=p1​λ​C11c​(s)+p3​λ​C12c​(s).\displaystyle C^{c}_{\lambda}(s)=\frac{i}{\pi^{3}}\int\frac{k_{\lambda}\,d^{4}k}{(k^{2}-m^{2}_{D^{*+}}+i\varepsilon)((p_{1}-k)^{2}-m^{2}_{D^{-}}+i\varepsilon)((k-p_{3})^{2}-m^{2}_{D^{*+}}+i\varepsilon)}=p_{1\lambda}C^{c}_{11}(s)+p_{3\lambda}C^{c}_{12}(s). (11)

Substitution of Eqs. (10) and (11) into Eq. (8) and comparison the result with Eq. (1) give [the functions C12n​(s)C^{n}_{12}(s) and C12c​(s)C^{c}_{12}(s) do not contribute]

β„³Ο€0​(s)=βˆ’gX​gΟ‡c​1​gΟ€016​π​Ρμ​ν​λ​κ​ϡμX​(p1)β€‹Ο΅Ξ½βˆ—Ο‡c​1​(p2)​p1​λ​p2​κ​[2​C11n​(s)βˆ’2​C11c​(s)],\displaystyle\mathcal{M}_{\pi^{0}}(s)=-\frac{g_{X}g_{\chi_{c1}}g_{\pi^{0}}}{16\pi}\varepsilon^{\mu\nu\lambda\kappa}\epsilon^{X}_{\mu}(p_{1})\epsilon^{*\chi_{c1}}_{\nu}(p_{2})p_{1\lambda}p_{2\kappa}[2C^{n}_{11}(s)-2C^{c}_{11}(s)], (12)
GΟ€0​(s)=βˆ’gX​gΟ‡c​1​gΟ€016​π​[2​C11n​(s)βˆ’2​C11c​(s)].\displaystyle G_{\pi^{0}}(s)=-\frac{g_{X}g_{\chi_{c1}}g_{\pi^{0}}}{16\pi}\left[2C^{n}_{11}(s)-2C^{c}_{11}(s)\right]. (13)

The representation of invariant amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) via dilogarithms is well known tHV79 ; PV79 ; Ku87 ; Den07 . However, it will be convenient for us to calculate them using the dispersion method. To do this, we shall first find their imaginary parts. They are determined by the contributions of real intermediate states, i.e., contributions in which both charmed mesons outgoing from the vertex of the X​(3872)X(3872) decay are on the mass shell. Applying the Kutkosky rule Cu60 to the amplitude CΞ»n​(s)C^{n}_{\lambda}(s) [see diagram (a)(a) in Fig. 1], we find

Im​CΞ»n​(s)=βˆ’|kβ†’|2​π​sβ€‹βˆ«kλ​d​cos⁑θ​d​φ(kβˆ’p3)2βˆ’mDβˆ—02=βˆ’|kβ†’|2​π​sβ€‹βˆ«kλ​d​cos⁑θ​d​φmΟ€02βˆ’2​k0​p30+2​|kβ†’|​|pβ†’3|​cos⁑θ=p1​λ​Im​C11n​(s)+p3​λ​Im​C12n​(s),\displaystyle\mbox{Im}C^{n}_{\lambda}(s)=\frac{-|\vec{k}|}{2\pi\sqrt{s}}\int\frac{k_{\lambda}\,d\cos\theta d\varphi}{(k-p_{3})^{2}-m^{2}_{D^{*0}}}=\frac{-|\vec{k}|}{2\pi\sqrt{s}}\int\frac{k_{\lambda}\,d\cos\theta d\varphi}{m^{2}_{\pi^{0}}-2k_{0}p_{30}+2|\vec{k}||\vec{p}_{3}|\cos\theta}=p_{1\lambda}\mbox{Im}C^{n}_{11}(s)+p_{3\lambda}\mbox{Im}C^{n}_{12}(s), (14)

where kΞ»k_{\lambda} are the components of the four-momentum k=(k0,kβ†’)k=(k_{0},\vec{k}) of the intermediate Dβˆ—0D^{*0} meson [outgoing from the vertex of the X​(3872)X(3872) decay] on its mass shell in the rest frame of X​(3872)X(3872), the polar angle ΞΈ\theta and the azimuthal angle Ο†\varphi determine the direction of the vector kβ†’\vec{k} in the reference frame with the zz axis directed along the momentum pβ†’3\vec{p}_{3}; k0=(s+mDβˆ—02βˆ’mD02)/(2​s)k_{0}=(s+m^{2}_{D^{*0}}-m^{2}_{D^{0}})/(2\sqrt{s}), |kβ†’|=s2βˆ’2​s​(mDβˆ—02+mD02)+(mDβˆ—02βˆ’mD02)2/(2​s)|\vec{k}|=\sqrt{s^{2}-2s(m^{2}_{D^{*0}}+m^{2}_{D^{0}})+(m^{2}_{D^{*0}}-m^{2}_{D^{0}})^{2}}/(2\sqrt{s}), and p30=(s+mΟ€02βˆ’mΟ‡c​12)/(2​s)p_{30}=(s+m^{2}_{\pi^{0}}-m^{2}_{\chi_{c1}})/(2\sqrt{s}). After calculating the scalar products p1λ​Im​CΞ»n​(s)p^{\lambda}_{1}\mbox{Im}C^{n}_{\lambda}(s) and p3λ​Im​CΞ»n​(s)p^{\lambda}_{3}\mbox{Im}C^{n}_{\lambda}(s), we get

Im​C11n​(s)=1s​|pβ†’3|2​[|kβ†’|​p30βˆ’(k0βˆ’12​p30)​mΟ€022​|pβ†’3|​ln⁑(mDβˆ—02βˆ’tβˆ’mDβˆ—02βˆ’t+)],\displaystyle\mbox{Im}C^{n}_{11}(s)=\frac{1}{s|\vec{p}_{3}|^{2}}\left[|\vec{k}|p_{30}-\left(k_{0}-\frac{1}{2}p_{30}\right)\frac{m^{2}_{\pi^{0}}}{2|\vec{p}_{3}|}\ln\left(\frac{m^{2}_{D^{*0}}-t_{-}}{m^{2}_{D^{*0}}-t_{+}}\right)\right], (15)

where tΒ±=mDβˆ—02+mΟ€02βˆ’2​k0​p30Β±2​|kβ†’|​|pβ†’3|t_{\pm}=m^{2}_{D^{*0}}+m^{2}_{\pi^{0}}-2k_{0}p_{30}\pm 2|\vec{k}||\vec{p}_{3}| are the boundary values of the variable t=(kβˆ’p3)2t=(k-p_{3})^{2} at cos⁑θ=Β±1\cos\theta=\pm 1.

Refer to caption
Figure 2: (a) The solid and dashed curves show the imaginary and real parts of the amplitude C11n​(s)C^{n}_{11}(s) constructed using Eqs. (15) and (16), respectively, in a wide region of s\sqrt{s}. The dash-dotted curve shows the contribution to Im​C11n​(s)\mbox{Im}C^{n}_{11}(s) from the first (dominant) term in Eq. (15) and the dotted curve shows the contribution from the term containing a logarithm. (b) The imaginary and real parts of the amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) in the region of the D​DΒ―βˆ—D\bar{D}^{*} thresholds.

For s≫4\sqrt{s}\gg 4 GeV, Im​C11n​(s)∼1/s\mbox{Im}C^{n}_{11}(s)\sim 1/s. We determine the real part of the amplitude C11n​(s)C^{n}_{11}(s) numerically from the dispersion relation,

C11n​(s)=1Ο€β€‹βˆ«sn∞Im​C11n​(sβ€²)sβ€²βˆ’sβˆ’i​Ρ​𝑑sβ€²,\displaystyle C^{n}_{11}(s)=\frac{1}{\pi}\int\limits^{\infty}_{s_{n}}\frac{\mbox{Im}C^{n}_{11}(s^{\prime})}{s^{\prime}-s-i\varepsilon}ds^{\prime}, (16)

where sn=(mD0+mDΒ―βˆ—0)2s_{n}=(m_{D^{0}}+m_{\bar{D}^{*0}})^{2}. Figure 2(a) shows the result of calculating the imaginary and real parts of the amplitude C11n​(s)C^{n}_{11}(s) using Eqs. (15) and (16) in a wide region of s\sqrt{s}. Of course, we will ultimately be interested a very narrow energy region near the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} threshold where the X​(3872)X(3872) object is located. The amplitude C11c​(s)C^{c}_{11}(s) is calculated in exactly the same way. In the region of the D​DΒ―βˆ—D\bar{D}^{*} thresholds, the imaginary and real parts of the amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) are shown in Fig. 2(b), and the modulus and imaginary part of the difference 2​C11n​(s)βˆ’2​C11c​(s)2C^{n}_{11}(s)-2C^{c}_{11}(s) are shown in Fig. 3(a). The ss dependence of the function 2​C11n​(s)βˆ’2​C11c​(s)2C^{n}_{11}(s)-2C^{c}_{11}(s) in this region is well approximated by the difference between the rapidly changing threshold factors ρn​(s)\rho^{n}(s) and ρc​(s)\rho^{c}(s) [see the dotted curve in Fig. 3(a) as an example]:

2​C11n​(s)βˆ’2​C11c​(s)≃i​[ρn​(s)βˆ’Οc​(s)]Γ—(0.692​GeVβˆ’2),\displaystyle 2C^{n}_{11}(s)-2C^{c}_{11}(s)\simeq i[\rho^{n}(s)-\rho^{c}(s)]\times(0.692\,\mbox{GeV}^{-2}), (17)

where ρn​(s)=1βˆ’(mD0+mDΒ―βˆ—0)2/s\rho^{n}(s)=\sqrt{1-(m_{D^{0}}+m_{\bar{D}^{*0}})^{2}/s} and ρc​(s)=1βˆ’(mD++mDβˆ—βˆ’)2/s\rho^{c}(s)=\sqrt{1-(m_{D^{+}}+m_{D^{*-}})^{2}/s} for s\sqrt{s} above the corresponding threshold, and below one ρn​(s)β†’i​|ρn​(s)|\rho^{n}(s)\to i|\rho^{n}(s)| and ρc​(s)β†’i​|ρc​(s)|\rho^{c}(s)\to i|\rho^{c}(s)|. Note that at the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} threshold 2​C11n​((mD0+mDβˆ—0)2)βˆ’2​C11c​((mD0+mDβˆ—0)2)≃|ρc​((mD0+mDβˆ—0)2)|Γ—(0.692​GeVβˆ’2)2C^{n}_{11}((m_{D^{0}}+m_{D^{*0}})^{2})-2C^{c}_{11}((m_{D^{0}}+m_{D^{*0}})^{2})\simeq|\rho^{c}((m_{D^{0}}+m_{D^{*0}})^{2})|\times(0.692\,\mbox{GeV}^{-2}); i.e., as a result of compensation, this difference is determined by the remainder of the contribution of charged intermediate states D+​Dβˆ—βˆ’+Dβˆ’β€‹Dβˆ—+D^{+}D^{*-}+D^{-}D^{*+}. For s\sqrt{s} between the D​DΒ―βˆ—D\bar{D}^{*} thresholds, we have

|ρn​(s)βˆ’Οc​(s)|≃2​(mD++mDβˆ—βˆ’βˆ’mD0βˆ’mDΒ―βˆ—0)mD0+mDΒ―βˆ—0≃0.0652.\displaystyle|\rho^{n}(s)-\rho^{c}(s)|\simeq\sqrt{\frac{2(m_{D^{+}}+m_{D^{*-}}-m_{D^{0}}-m_{\bar{D}^{*0}})}{m_{D^{0}}+m_{\bar{D}^{*0}}}}\simeq 0.0652. (18)

Since the X​(3872)X(3872) resonance is located almost at the threshold of the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} channel [see Fig. 3(a)], then the amplitude of the isospin-violating decay X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P), that is due to the considered loop mechanism, turns out to be proportional to mdβˆ’mu\sqrt{m_{d}-m_{u}} [see Eqs. (17) and (18)], rather than to mdβˆ’mum_{d}-m_{u} [similar to the threshold effect of the a0​(980)βˆ’f0​(980)a_{0}(980)-f_{0}(980) mixing AS79 ; AS19a ].

Refer to caption
Figure 3: (a) The solid and dashed curves show the magnitude and imaginary part of the amplitude 2​C11n​(s)βˆ’2​C11c​(s)2C^{n}_{11}(s)-2C^{c}_{11}(s) from Eq. (12); the dotted curve corresponds to the approximation of |2​C11n​(s)βˆ’2​C11c​(s)||2C^{n}_{11}(s)-2C^{c}_{11}(s)| using Eq. (17). (b) The energy-dependent isospin violation parameter ξ​(s)=|C11n​(s)βˆ’C11c​(s)|/|C11n​(s)+C11c​(s)|\xi(s)=|C^{n}_{11}(s)-C^{c}_{11}(s)|/|C^{n}_{11}(s)+C^{c}_{11}(s)|. The vertical dashed lines in (a) and (b) mark the position of the X​(3872)X(3872) resonance.

As a dimensionless parameter characterizing the scale of isospin violation, it is natural to take the ratio of the production amplitudes of the Ο€0\pi^{0} and Ξ·0\eta_{0} states [see diagrams in Fig. 1 and Eqs. (8) and (9)], i.e., the quantity

ξ​(s)=|C11n​(s)βˆ’C11c​(s)||C11n​(s)+C11c​(s)|.\displaystyle\xi(s)=\frac{|C^{n}_{11}(s)-C^{c}_{11}(s)|}{|C^{n}_{11}(s)+C^{c}_{11}(s)|}. (19)

The energy dependence of the parameter ξ​(s)\xi(s) is shown in Fig. 3(b). At s=mX=3871.65\sqrt{s}=m_{X}=3871.65 MeV PDG23 , we have

ΞΎ=ξ​(mX2)≃0.916.\displaystyle\xi=\xi(m^{2}_{X})\simeq 0.916. (20)

As we will see in the next section, this value is a lower limit for ΞΎ\xi in the considered model. If the above estimate of ΞΎ\xi being the relative quantity can be rated as sufficiently reasonable, then to estimates of the absolute values of the strong interaction amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) [see Figs. 2 and 3(a)], we should treat with the extreme caution. Here, we mean the need to take into account the influence of the form factor on these amplitudes in order to obtain physically more meaningful estimates for them. We discuss this issue below.

IV Estimate of the amplitude 𝑿​(πŸ‘πŸ–πŸ•πŸ)β†’π…πŸŽβ€‹πŒπ’„β€‹πŸβ€‹(πŸβ€‹π‘·)X(3872)\to\pi^{0}\chi_{c1}(1P)

In order to take into account to some extent the internal structure and the off-mass-shell effect for the Dβˆ—D^{*} meson, by which there is the exchange between the intermediate D​(DΒ―)D(\bar{D}) and DΒ―βˆ—β€‹(Dβˆ—)\bar{D}^{*}(D^{*}) mesons in the triangle loops (see Fig. 1), it is necessary to introduce the form factor into each vertex of the Dβˆ—D^{*} exchange,

ℱ​(q2,mDβˆ—2)=Ξ›2βˆ’mDβˆ—2Ξ›2βˆ’q2,\displaystyle\mathcal{F}(q^{2},m^{2}_{D^{*}})=\frac{\Lambda^{2}-m^{2}_{D^{*}}}{\Lambda^{2}-q^{2}}, (21)

where Ξ›\Lambda is the cutoff parameter, mDβˆ—m_{D^{*}} and qq are the mass and four-momentum of the exchanged Dβˆ—D^{*} meson, respectively. Such a type of the monopole form factor was first used in Lo94 ; Go96 to calculate triangle loops when describing the annihilation process at rest p​p¯→π​ϕp\bar{p}\to\pi\phi, introduced into use Co02 ; Co04 for estimating rescattering effects in Bβˆ’β†’Kβˆ’β€‹Ο‡c​0B^{-}\to K^{-}\chi_{c0}, Bβˆ’β†’Kβˆ’β€‹hcB^{-}\to K^{-}h_{c} decays, discussed in detail in calculations of final state interactions in various hadronic BB meson decay channels Ch05 , and is now widely used in describing loop mechanisms of heavy quarkonium decays; see, for example, Li07 ; Me07 ; Li12 ; Wu21 ; Ba22 ; Wa22 and references herein. The standard form of the parameter Ξ›\Lambda isCh05 Ξ›=mDβˆ—+α​ΛQCD\Lambda=m_{D^{*}}+\alpha\Lambda_{\scriptsize\mbox{QCD}}, where Ξ›QCD=220\Lambda_{\scriptsize\mbox{QCD}}=220 MeV and a priori unknown value of Ξ±\alpha is found from fitting the data. Let us rewrite Eq. (21) as follows: ℱ​(q2,mDβˆ—2)=11+(mDβˆ—2βˆ’q2)/(Ξ›2βˆ’mDβˆ—2)\mathcal{F}(q^{2},m^{2}_{D^{*}})=\frac{1}{1+(m^{2}_{D^{*}}-q^{2})/(\Lambda^{2}-m^{2}_{D^{*}})}. From here, it is clear that the parameter 1/(Ξ›2βˆ’mDβˆ—2)1/(\Lambda^{2}-m^{2}_{D^{*}}) determines the rate of change of the form factor when the Dβˆ—D^{*} meson leaves the mass shell.

Refer to caption
Figure 4: (a) The solid and dashed curves show the imaginary and real parts of the amplitude C11n​(s)C^{n}_{11}(s), respectively, constructed in a wide region of s\sqrt{s} taking into account the form factor, see Eq. (21), at Ξ±=2.878\alpha=2.878 (Λ≃2.64\Lambda\simeq 2.64 GeV) according to Eqs. (16) and (22)–(24). The dash-dotted curve shows the contribution to Im​C11n​(s)\mbox{Im}C^{n}_{11}(s) from the first term in Eq. (15) modified according to Eq. (23), and the dotted curve is from the term containing logarithm modified according to Eq. (24). (b) Imaginary and real parts of the amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) in the region of the D​DΒ―βˆ—D\bar{D}^{*} thresholds taking into account the form factors at Ξ±=2.878.\alpha=2.878.

Let us now write the expression for Im​CΞ»n​(s)\mbox{Im}C^{n}_{\lambda}(s) [see. Eq. (14)] taking into account the form factor,

Im​CΞ»n​(s)=p1​λ​Im​C11n​(s)+p3​λ​Im​C12n​(s)=βˆ’|kβ†’|2​π​sβ€‹βˆ«β„±2​(q2,mDβˆ—02)​kλ​d​cos⁑θ​d​φ(kβˆ’p3)2βˆ’mDβˆ—02,\displaystyle\mbox{Im}C^{n}_{\lambda}(s)=p_{1\lambda}\mbox{Im}C^{n}_{11}(s)+p_{3\lambda}\mbox{Im}C^{n}_{12}(s)=\frac{-|\vec{k}|}{2\pi\sqrt{s}}\int\frac{\mathcal{F}^{2}(q^{2},m^{2}_{D^{*0}})\,k_{\lambda}\,d\cos\theta d\varphi}{(k-p_{3})^{2}-m^{2}_{D^{*0}}}, (22)

where q2=(kβˆ’p3)2q^{2}=(k-p_{3})^{2}, and carry out the corresponding calculations. As a result, the first term in Eq. (15) is multiplied by

(Ξ›2βˆ’mDβˆ—02)2(Ξ›2βˆ’t+)​(Ξ›2βˆ’tβˆ’)\displaystyle\frac{(\Lambda^{2}-m^{2}_{D^{*0}})^{2}}{(\Lambda^{2}-t_{+})(\Lambda^{2}-t_{-})} (23)

and ln⁑[(mDβˆ—02βˆ’tβˆ’)/(mDβˆ—02βˆ’t+)]\ln\left[(m^{2}_{D^{*0}}-t_{-})/(m^{2}_{D^{*0}}-t_{+})\right] is replaced by

ln⁑[(mDβˆ—02βˆ’tβˆ’)​(Ξ›2βˆ’t+)(mDβˆ—02βˆ’t+)​(Ξ›2βˆ’tβˆ’)]βˆ’(Ξ›2βˆ’mDβˆ—02)​(t+βˆ’tβˆ’)(Ξ›2βˆ’t+)​(Ξ›2βˆ’tβˆ’).\displaystyle\ln\left[\frac{(m^{2}_{D^{*0}}-t_{-})(\Lambda^{2}-t_{+})}{(m^{2}_{D^{*0}}-t_{+})(\Lambda^{2}-t_{-})}\right]-\frac{(\Lambda^{2}-m^{2}_{D^{*0}})(t_{+}-t_{-})}{(\Lambda^{2}-t_{+})(\Lambda^{2}-t_{-})}. (24)

Note that in the case under consideration, the virtuality of the Dβˆ—0D^{*0}-meson, i.e., (mDβˆ—02βˆ’q2)(m^{2}_{D^{*0}}-q^{2}) turns out to be greater than 1.373 GeV2. At s≫4\sqrt{s}\gg 4 GeV, the amplitude Im​C11n​(s)\mbox{Im}C^{n}_{11}(s) taking into account the form factor falls as 1/s21/s^{2}. The real part of C11n​(s)C^{n}_{11}(s) is determined numerically from the dispersion relation (16). The amplitude C11c​(s)C^{c}_{11}(s) taking into account the form factor is calculated in exactly the same way. Figure 4(a) shows as an example the result of the calculation of the imaginary and real parts of the amplitude C11n​(s)C^{n}_{11}(s) taking into account the form factor (21) at Ξ±=2.878\alpha=2.878 (Λ≃2.64\Lambda\simeq 2.64 GeV) in a wide region of s\sqrt{s}. In the region of the D​DΒ―βˆ—D\bar{D}^{*} thresholds, the imaginary and real parts of the amplitudes C11n​(s)C^{n}_{11}(s) and C11c​(s)C^{c}_{11}(s) taking into account form factors at Ξ±=2.878\alpha=2.878 are shown in Fig. 4(b). Comparison of the curves in Fig. 4(b) with those in Fig. 2(b), which correspond to β„±2​(q2,mDβˆ—2)≑1\mathcal{F}^{2}(q^{2},m^{2}_{D^{*}})\equiv 1 (i.e., Ξ±=∞\alpha=\infty), shows that the form factor with Ξ±=2.878\alpha=2.878 reduces the amplitudes near the D​DΒ―βˆ—D\bar{D}^{*} thresholds by approximately 3.5 times.

Refer to caption
Figure 5: (a) Modulus of the amplitude 2​C11n​(s)βˆ’2​C11c​(s)2C^{n}_{11}(s)-2C^{c}_{11}(s) for several values of the parameter Ξ±\alpha. (b) The energy-dependent isospin violation parameter ξ​(s)=|C11n​(s)βˆ’C11c​(s)|/|C11n​(s)+C11c​(s)|\xi(s)=|C^{n}_{11}(s)-C^{c}_{11}(s)|/|C^{n}_{11}(s)+C^{c}_{11}(s)| for the same values of Ξ±\alpha. The vertical dotted lines in (a) and (b) mark the position of the X​(3872)X(3872) resonance.
Refer to caption
Figure 6: (a) The isospin violation parameter ΞΎ=ξ​(mX2)\xi=\xi(m^{2}_{X}) and dimensionless amplitudes |2​C11n​(mX2)βˆ’2​C11c​(mX2)|Γ—(1​GeV2)|2C^{n}_{11}(m^{2}_{X})-2C^{c}_{11}(m^{2}_{X})|\times(1\,\mbox{GeV}^{2}) and |2​C11n​(mX2)+2​C11c​(mX2)|Γ—(1​GeV2)|2C^{n}_{11}(m^{2}_{X})+2C^{c}_{11}(m^{2}_{X})|\times(1\,\mbox{GeV}^{2}) as functions of Ξ±\alpha [for Ξ±=∞\alpha=\infty (Ξ›=∞\Lambda=\infty), i.e., when β„±2​(q2,mDβˆ—2)≑1\mathcal{F}^{2}(q^{2},m^{2}_{D^{*}})\equiv 1, the asymptotics of these quantities are 0.916, 0.0419, and 0.457, respectively]. (b) The shaded band shows the dependence on Ξ±\alpha of the values of the right-hand side of Eq. (25) lying within the uncertainty of the quantity |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})|; the solid curve inside the band corresponds to the central value of |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})|. The dot with vertical error bars shows the estimate presented in Eq. (28) for the left side of Eq. (25); the horizontal segment of the straight line marks the interval of Ξ±\alpha values at which the Eq. (25) is consistent.

Let us now trace with the help of Figs. 5 and 6(a) for the influence of the form factor on the modulus of the amplitude difference 2​C11n​(s)βˆ’2​C11c​(s)2C^{n}_{11}(s)-2C^{c}_{11}(s), the parameter ξ​(s)\xi(s) and its particular value ΞΎ=ξ​(mX2)\xi=\xi(m^{2}_{X}) [see Eqs. (19) and (20)]. As can be seen from the examples shown in Fig. 5, |2​C11n​(s)βˆ’2​C11c​(s)||2C^{n}_{11}(s)-2C^{c}_{11}(s)| and ξ​(s)\xi(s) have opposite dependences on Ξ±\alpha. With increasing suppression of the |2​C11n​(s)βˆ’2​C11c​(s)||2C^{n}_{11}(s)-2C^{c}_{11}(s)| amplitude by the form factor (i.e., with decreasing Ξ±\alpha), ξ​(s)\xi(s) increases. For s=mX\sqrt{s}=m_{X}, |2​C11n​(mX2)βˆ’2​C11c​(mX2)||2C^{n}_{11}(m^{2}_{X})-2C^{c}_{11}(m^{2}_{X})| and ΞΎ=ξ​(mX2)\xi=\xi(m^{2}_{X}) as functions of Ξ±\alpha are shown in Fig. 6(a). This figure also explains why there is an increase in isospin violation, i.e., increasing the parameter ΞΎ=ξ​(mX2)\xi=\xi(m^{2}_{X}), with decreasing Ξ±\alpha. This behavior of ΞΎ\xi is due to different suppression rate of the amplitudes |2​C11n​(mX2)βˆ’2​C11c​(mX2)||2C^{n}_{11}(m^{2}_{X})-2C^{c}_{11}(m^{2}_{X})| and |2​C11n​(mX2)+2​C11c​(mX2)||2C^{n}_{11}(m^{2}_{X})+2C^{c}_{11}(m^{2}_{X})| with decreasing Ξ±\alpha (or Ξ›\Lambda) in the form factor; see the dashed and dash-dotted curves in Fig. 6(a).

Now we are ready to estimate the absolute value of the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay amplitude. First of all, we indicate those values of the product of coupling constants |gX​gΟ‡c​1​gΟ€0|/(16​π)|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|/(16\pi) for which the considered model can be consistent with available data. Using Eqs. (6) and (13), we write

|gX​gΟ‡c​1​gΟ€0|16​π=|GΟ€0​(mX2)||2​C11n​(mX2)βˆ’2​C11c​(mX2)|=(0.216Β±0.054)​GeVβˆ’1|2​C11n​(mX2)βˆ’2​C11c​(mX2)|.\displaystyle\frac{|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|}{16\pi}=\frac{|G_{\pi^{0}}(m^{2}_{X})|}{|2C^{n}_{11}(m^{2}_{X})-2C^{c}_{11}(m^{2}_{X})|}=\frac{(0.216\pm 0.054)\ \mbox{GeV}^{-1}}{|2C^{n}_{11}(m^{2}_{X})-2C^{c}_{11}(m^{2}_{X})|}. (25)

From Eq. (25), it follows that the suitable values of |gX​gΟ‡c​1​gΟ€0|/(16​π)|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|/(16\pi) (for reasonable values of Ξ±\alpha) lie in the shaded band shown in Fig. 6(b). The band is due to the uncertainty in the value of |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})|. The solid curve inside the band corresponds to the central value of |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})|. In the absence of the form factor, i.e., for Ξ±=∞\alpha=\infty, for |gX​gΟ‡c​1​gΟ€0|/(16​π)|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|/(16\pi) is predicted the range of values from 3.87 to 6.45 GeV. If |gX​gΟ‡c​1​gΟ€0|/(16​π)<3.87|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|/(16\pi)<3.87 GeV, then the model is unsatisfactory. Sources of information about the constants gXg_{X}, gΟ‡c​1g_{\chi_{c1}} and gΟ€0g_{\pi^{0}}, which determine the left side of Eq. (25), are the data on the X​(3872)β†’(D0​DΒ―βˆ—0+DΒ―0​Dβˆ—0)β†’D0​DΒ―0​π0X(3872)\to(D^{0}\bar{D}^{*0}+\bar{D}^{0}D^{*0})\to D^{0}\bar{D}^{0}\pi^{0} and X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψX(3872)\to\pi^{+}\pi^{-}J/\psi decays and theoretical considerations. An approximate value of gX≑gX​D​DΒ―βˆ—β‰‘gX​D0​DΒ―βˆ—0g_{X}\equiv g_{XD\bar{D}^{*}}\equiv g_{XD^{0}\bar{D}^{*0}} [see. Eq. (7)] we will take from the processing of the data on the X​(3872)X(3872) decays obtained by the Belle Aus10 (for processing see Ref. AR14 ), LHCb Aai20 , Belle Hir23 ; Tan23 , and BESIII Abl23 Collaborations. The coupling constant gXg_{X} in Ref. AR14 was denoted as gAg_{A}. Let us note that the fitted parameter used in Refs. Aai20 ; Hir23 ; Tan23 ; Abl23 was the coupling constant gg, which is related to gXg_{X} by the relation g=gX2/(4​π​mX2)g=g^{2}_{X}/(4\pi m^{2}_{X}). Information about the values of gg and gXg_{X} and their statistical errors are collected in Table I. The lower limits for gg were also obtained in Refs. Hir23 ; Tan23 : g>0.075g>0.075 (gX>3.76g_{X}>3.76 GeV) and g>0.094g>0.094 (gX>4.21g_{X}>4.21 GeV) at 95% and 90% confidence level, respectively. Some difficulties with determining the value of gg (partly associated with limited statistics) and the estimates of systematic uncertainties are discussed in detail in Refs. Aai20 ; Hir23 ; Tan23 ; Abl23 . Here, we only note that the sensitivity of gg to the mass of X​(3872)X(3872) (caused by its proximity to the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} threshold) and weak dependence of the X​(3872)X(3872) line shape in the D0​DΒ―0​π0D^{0}\bar{D}^{0}\pi^{0} channel on gg at large gg generate significant positive uncertainties in this constant in the fits. In our opinion, a large positive error in gg should not be given any decisive significance compared to the central value of gg. New experiments with high statistics should clarify the situation. For our purposes, we will use the average value of gX=(5.81βˆ’0.82+8.97)g_{X}=\left(5.81^{+8.97}_{-0.82}\right) GeV found from the data in Table I.

Table 1: Information about the X​(3872)X(3872) coupling to the D0​DΒ―βˆ—0D^{0}\bar{D}^{*0} system.
  Data analysis Β Β AR AR14 Β Β LHCb Aai20 Β Β Belle Hir23 ; Tan23 Β Β BESIII Abl23
gg 0.181βˆ’0.127+0.6470.181^{+0.647}_{-0.127} 0.108Β±0.0030.108\pm 0.003 0.29βˆ’0.15+2.690.29^{+2.69}_{-0.15} 0.16Β±0.100.16\pm 0.10
gXg_{X} (GeV) 5.85βˆ’2.04+10.425.85^{+10.42}_{-2.04} 4.51Β±0.064.51\pm 0.06 7.39βˆ’1.91+34.287.39^{+34.28}_{-1.91} 5.49Β±1.725.49\pm 1.72

To estimate the constants gΟ‡c​1≑gΟ‡c​1​D​DΒ―βˆ—g_{\chi_{c1}}\equiv g_{\chi_{c1}D\bar{D}^{*}} and gΟ€0≑gDβˆ—0​Dβˆ—0​π0g_{\pi^{0}}\equiv g_{D^{*0}D^{*0}\pi^{0}} [see Eq. (7)] we use the results obtained in Refs. Wu21 ; Me07 ; Co02 ; Co04 ; Ch05 ; Gu11 in the framework of the heavy quark effective theory:

gΟ‡c​1​D​DΒ―βˆ—=2​2​g1​mD​mDβˆ—β€‹mΟ‡c​1,g1=βˆ’mΟ‡c​0/3fΟ‡c​0,fΟ‡c​0=(510Β±40)​MeV,\displaystyle g_{\chi_{c1}D\bar{D}^{*}}=2\sqrt{2}g_{1}\sqrt{m_{D}m_{D^{*}}m_{\chi_{c1}}},\quad g_{1}=-\frac{\sqrt{m_{\chi_{c0}}/3}}{f_{\chi_{c0}}},\quad f_{\chi_{c0}}=(510\pm 40)\ \mbox{MeV}, (26)
gDβˆ—0​Dβˆ—0​π0=gDβˆ—0​D0​π0mD​mDβˆ—=2​gfΟ€,fΟ€=132​MeV,g=0.59Β±0.07.\displaystyle g_{D^{*0}D^{*0}\pi^{0}}=\frac{g_{D^{*0}D^{0}\pi^{0}}}{\sqrt{m_{D}m_{D^{*}}}}=\frac{\sqrt{2}g}{f_{\pi}},\quad f_{\pi}=132\ \mbox{MeV},\quad g=0.59\pm 0.07. (27)

Thus we have gΟ‡c​1≑gΟ‡c​1​D​DΒ―βˆ—=(βˆ’21.45Β±1.68)g_{\chi_{c1}}\equiv g_{\chi_{c1}D\bar{D}^{*}}=(-21.45\pm 1.68) GeV, gΟ€0≑gDβˆ—0​Dβˆ—0​π0=(6.32Β±0.75)g_{\pi^{0}}\equiv g_{D^{*0}D^{*0}\pi^{0}}=(6.32\pm 0.75) GeV-1, and

|gX​gΟ‡c​1​gΟ€0|16​π=(15.67βˆ’3.14+24.29)​GeV.\displaystyle\frac{|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|}{16\pi}=\left(15.67^{+24.29}_{-3.14}\right)\ \mbox{GeV}. (28)

The value (28) is shown in Fig. 6(b) in the form of a dot with vertical error bars. Agreement with the data on the amplitude |GΟ€0​(mX2)||G_{\pi^{0}}(m^{2}_{X})| [see Eqs. (6) and (25)] is achieved when this point falls inside the shaded band. This occurs in the Ξ±\alpha interval from 1.487 to 2.565 marked in Fig. 6(b) by a segment of a horizontal straight line. At Ξ±=1.98\alpha=1.98, the central values of the left and right sides of Eq. (25) coincide. In the indicated interval of Ξ±\alpha, the average value of the isospin violation parameter ΞΎ\xi is of about 0.15; see Fig. 6(a).

Refer to caption
Figure 7: The same as in Fig. 6(b) but with taking into account the Ο€0βˆ’Ξ·\pi^{0}-\eta mixing, see the text.

For comparison, we point out that the isospin violation parameter for the Ο€0\pi^{0} production mechanism due to the Ο€0βˆ’Ξ·\pi^{0}-\eta mixing is an order of magnitude smaller Fe00 : Ξ Ο€0​η/(mΞ·2βˆ’mΟ€02)≃0.014\Pi_{\pi^{0}\eta}/(m^{2}_{\eta}-m^{2}_{\pi^{0}})\simeq 0.014, where Ξ Ο€0​η\Pi_{\pi^{0}\eta} is the Ο€0↔η\pi^{0}\leftrightarrow\eta transition amplitude having dimension of a mass squared. Taking into account the mechanism of the Ο€0βˆ’Ξ·\pi^{0}-\eta mixing and the relation Ξ·0=η​sin⁑(ΞΈiβˆ’ΞΈp)+η′​cos⁑(ΞΈiβˆ’ΞΈp)\eta_{0}=\eta\sin(\theta_{i}-\theta_{p})+\eta^{\prime}\cos(\theta_{i}-\theta_{p}), where Ξ·\eta and Ξ·β€²\eta^{\prime} are the physical states of the lightest pseudoscalar isoscalar mesons, Eq. (13) takes the form,

GΟ€0​(s)=βˆ’gX​gΟ‡c​1​gΟ€016​π​[2​C11n​(s)βˆ’2​C11c​(s)+sin⁑(ΞΈiβˆ’ΞΈp)​Ππ0​ηmΞ·2βˆ’mΟ€02​(2​C11n​(s)+2​C11c​(s))].\displaystyle G_{\pi^{0}}(s)=-\frac{g_{X}g_{\chi_{c1}}g_{\pi^{0}}}{16\pi}\left[2C^{n}_{11}(s)-2C^{c}_{11}(s)+\sin(\theta_{i}-\theta_{p})\frac{\Pi_{\pi^{0}\eta}}{m^{2}_{\eta}-m^{2}_{\pi^{0}}}(2C^{n}_{11}(s)+2C^{c}_{11}(s))\right]. (29)

Here ΞΈi=35.3∘\theta_{i}=35.3^{\circ} is the so-called β€œideal” mixing angle and ΞΈp=βˆ’11.3∘\theta_{p}=-11.3^{\circ} is the mixing angle in the nonet of the light pseudoscalar mesons PDG23 . The result of analyzing Eq. (29) is shown in Fig. 7. This result is similar to that based on Eq. (25) and shown in Fig. 6(b). Now the permissible values of Ξ±\alpha lie in the range from 1.406 to 2.368, and the central value of Ξ±\alpha is equal to 1.853; i.e., changes in Ξ±\alpha turn out to be less than 10%. Note that the parameter Ξ±\alpha confirms its status as an useful fitting parameter with expected fitted values of the order of 1. Improving data accuracy on the width of the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay is one of the great demand and essential task. Our conclusions from the present analysis are briefly formulated in the next section.

V Conclusion

Thus, we conclude that the considered model of triangle loops for the decay amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) is generally in reasonable agreement with the available data. Its distinctive feature is the convergence of diagrams with neutral and charged charmed mesons in the loops separately and without taking into account the form factor.

The significant amplitude of the process X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P), which violates isospin, indicates the threshold nature of the origin of this effect. Due to incomplete compensation of the contributions of the Dβˆ—0​DΒ―0​Dβˆ—0+c.c.D^{*0}\bar{D}^{0}D^{*0}+c.c. and Dβˆ—+​Dβˆ’β€‹Dβˆ—++c.c.D^{*+}D^{-}D^{*+}+c.c. loops, caused by the differences in the masses mD+βˆ’mD0m_{D^{+}}-m_{D^{0}} and mDβˆ—+βˆ’mDβˆ—0m_{D^{*+}}-m_{D^{*0}}, the amplitude X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) near the Dβˆ—0​DΒ―0D^{*0}\bar{D}^{0} threshold turns out to be proportional to mdβˆ’mu\sqrt{m_{d}-m_{u}}, and not mdβˆ’mum_{d}-m_{u}. That is, the mechanism of the charmed meson loops manifests itself at a qualitative level.

The product of the coupling constant |gX​gΟ‡c​1​gΟ€0|/(16​π)|g_{X}g_{\chi_{c1}}g_{\pi^{0}}|/(16\pi) and parameter Ξ±\alpha accumulate important information about the interactions of the X​(3872)X(3872), Ο‡c​1​(1​P)\chi_{c1}(1P), DD, Dβˆ—D^{*}, and Ο€\pi mesons and determine the loop mechanism of the process X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) in accordance with existing data.

Apart from the difference in the masses of neutral and charged charmed mesons, any additional exotic sources of isospin violation in X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) (such as a significant difference between the coupling constants gX​D0​DΒ―βˆ—0g_{XD^{0}\bar{D}^{*0}} and gX​D+​Dβˆ—βˆ’g_{XD^{+}D^{*-}}) are not required to interpret the data. This indirectly confirms the isotopic neutrality of the X​(3872)X(3872), which is naturally realized for the c​cΒ―c\bar{c} state Ο‡c​1​(2​P)\chi_{c1}(2P).

Increasing data accuracy about the X​(3872)X(3872) in all directions [in particular, on the X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P) decay] will certainly shed light on the mysterious nature of this extraordinary state.

Here, it would also be appropriate to note the importance of modern studies of the X​(3872)X(3872) state in the molecular model. This model is significantly has evolved and extended its predictions to a large number of specific processes; see Refs. Sw04 ; Zh14 ; Me15 ; Wu21 ; Wa22 ; Gu14 ; Wu23 and references herein. For example, recently in Ref. Wu23 , using a molecular approach within the framework of the triangle diagram model, the large experimentally observed violation of the isospin symmetry in the ℬ​(B+β†’X​(3872)​K+)/ℬ​(B0β†’X​(3872)​K0)\mathcal{B}(B^{+}\to X(3872)K^{+})/\mathcal{B}(B^{0}\to X(3872)K^{0}) ratio was explained. In the molecular model, the X​(3872)X(3872) is formed by neutral D0​DΒ―βˆ—0+DΒ―0​Dβˆ—0D^{0}\bar{D}^{*0}+\bar{D}^{0}D^{*0} and charged D+​Dβˆ—βˆ’+Dβˆ’β€‹Dβˆ—+D^{+}D^{*-}+D^{-}D^{*+} charmed meson pairs. Verification in different processes of model predictions based on the universality (i.e., independence from the process) of the couplings of X​(3872)X(3872) to its neutral and charged constituents (the values of these couplings are different) seems to be extremely important for the molecular scenario.

ACKNOWLEDGMENTS

The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics, Project No. FWNF-2022-0021.

References

  • (1) R. L. Workman et al. (Particle Data Group), The Review of Particle Physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update.
  • (2) S. K. Choi et al. (Belle Collaboration), Observation of a Narrow Charmonium-like State in Exclusive BΒ±β†’K±​π+β€‹Ο€βˆ’β€‹J/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi Decays, Phys. Rev. Lett. 91, 262001 (2003) [arXiv:hep-ex/0309032].
  • (3) P. Koppenburg, Flavour Physics at LHCb β€” 50 years of the KM paradigm, arXiv:2310.10504.
  • (4) S. K. Choi et al. (Belle Collaboration), Bounds on the width, mass difference and other properties of X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψX(3872)\to\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. D 84, 052004 (2011) [arXiv:1107.0163].
  • (5) R. Aaij et al. (LHCb Collaboration), Study of the lineshape of the Ο‡c​1​(3872)\chi_{c1}(3872) state, Phys. Rev. D 102, 092005 (2020) [arXiv:2005.13419].
  • (6) G. Gokhroo et al. (Belle Collaboration), Observation of a Near-threshold D0​DΒ―0​π0D^{0}\bar{D}^{0}\pi^{0} Enhancement in Bβ†’D0​DΒ―0​π0​KB\to D^{0}\bar{D}^{0}\pi^{0}K Decay, Phys. Rev. Lett. 97, 162002 (2006) [arXiv:hep-ex/0606055].
  • (7) T. Aushev et al. (Belle Collaboration), Study of the Bβ†’X(3872)(β†’Dβˆ—0DΒ―0)KB\to X(3872)(\to D^{*0}\bar{D}^{0})K, Phys. Rev. D 81, 031103 (2010) [arXiv:0810.0358].
  • (8) H. Hirata et al. (Belle Collaboration), Study of the lineshape of X​(3872)X(3872) using BB decays to D0​DΒ―βˆ—0​KD^{0}\bar{D}^{*0}K, Phys. Rev. D 107, 112011 (2023) [arXiv:2302.02127].
  • (9) K. Tanida, A new measurement of X​(3872)β†’D0​DΒ―βˆ—0X(3872)\to D^{0}\bar{D}^{*0} at Belle, in Proceedings of the 20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) (Genova, Italy, 2023).
  • (10) M. Ablikim et al. (BESIII Collaboration), A coupled-channel analysis of the X​(3872)X(3872) lineshape with BESIII data, arXiv:2309.01502.
  • (11) B. Aubert et al. (BABAR Collaboration), Search for a charged partner of the X​(3872)X(3872) in the BB meson decay Bβ†’Xβˆ’β€‹KB\to X^{-}K, Xβˆ’β†’J/Οˆβ€‹Ο€βˆ’β€‹Ο€0X^{-}\to J/\psi\pi^{-}\pi^{0}, Phys. Rev. D 71, 031501 (2005) [arXiv:hep-ex/0412051].
  • (12) R. Aaij et al. (LHCb Collaboration), Determination of the X​(3872)X(3872) Meson Quantum Numbers, Phys. Rev. Lett. 110, 222001 (2013) [arXiv:1302.6269].
  • (13) R. Aaij et al. (LHCb Collaboration), Quantum numbers of the X​(3872)X(3872) state and orbital angular momentum in its ρ0​J/ψ\rho^{0}J/\psi decay, Phys. Rev. D 92, 011102(R) (2015) [arXiv:1504.06339].
  • (14) M. Ablikim et al. (BESIII Collaboration), Observation of e+​eβˆ’β†’Ξ³β€‹X​(3872)e^{+}e^{-}\to\gamma X(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014) [arXiv:1310.4101].
  • (15) K. Abe et al. (Belle Collaboration), Evidence for X​(3872)→γ​J/ψX(3872)\to\gamma J/\psi and the sub-threshold decay X​(3872)→ω​J/ψX(3872)\to\omega J/\psi, arXiv:hep-ex/0505037.
  • (16) P. del Amo Sanchez et al. (BABAR Callaboration), Evidence for the decay X​(3872)β†’J/Οˆβ€‹Ο‰X(3872)\to J/\psi\omega, Phys. Rev. D 82, 011101(R) (2010) [arXiv:1005.5190].
  • (17) M. Ablikim et al. (BESIII Collaboration), Study of e+​eβˆ’β†’Ξ³β€‹Ο‰β€‹J/ψe^{+}e^{-}\to\gamma\omega J/\psi and Observation of X​(3872)→ω​J/ψX(3872)\to\omega J/\psi, Phys. Rev. Lett. 122, 232002 (2019) [arXiv:1903.04695].
  • (18) B. Aubert et al. (BABAR Collaboration), Evidence for X​(3872)β†’Οˆβ€‹(2​S)​γX(3872)\to\psi(2S)\gamma in BΒ±β†’X​(3872)​KΒ±B^{\pm}\to X(3872)K^{\pm} Decays, and a Study of Bβ†’c​c¯​γ​KB\to c\bar{c}\gamma K, Phys. Rev. Lett. 102 132001 (2009) [arXiv:0809.0042].
  • (19) V. Bhardwaj et al. (Belle Collaboration), Observation of X​(3872)β†’J/Οˆβ€‹Ξ³X(3872)\to J/\psi\gamma and Search for X​(3872)β†’Οˆβ€²β€‹Ξ³X(3872)\to\psi^{\prime}\gamma in BB decays, Phys. Rev. Lett. 107, 091803 (2011) [arXiv:1105.0177].
  • (20) R. Aaij et al. (LHCb Collaboration), Evidence for the decay X​(3872)β†’Οˆβ€‹(2​S)​γX(3872)\to\psi(2S)\gamma, Nucl. Phys. B886, 665 (2014) [arXiv:1404.0275].
  • (21) M. Ablikim et al. (BESIII Collaboration), Study of Open-charm Decay and Radiative Transitions of the X​(3872)X(3872), Phys. Rev. Lett. 124, 242001 (2020) [arXiv:2001.01156].
  • (22) M. Ablikim et al. (BESIII Collaboration), Observation of the Decay X​(3872)β†’Ο€0​χc​1​(1​P)X(3872)\to\pi^{0}\chi_{c1}(1P), Phys. Rev. Lett. 122, 202001 (2019) [arXiv:1901.03992].
  • (23) V. Bhardwaj et al. (Belle Collaboration), Search for X​(3872)X(3872) and X​(3915)X(3915) decay into Ο‡c​1​π0\chi_{c1}\pi^{0} in BB decays at Belle, Phys. Rev. D 99, 111101 (2019) [arXiv:1904.07015].
  • (24) S. Eidelman, J. J. Hernandez-Rey, C. Lourenco, R. E. Mitchell, S. Navas, and C. Patrignani, Spectroscopy of mesons containing two heavy quarks, Review 78 in Ref. PDG23 .
  • (25) E. S. Swanson, Short range structure in the X​(3872)X(3872), Phys. Lett. B 588, 189 (2004) [arXiv:hep-ph/0311229].
  • (26) L. Zhao, L. Ma, and S.-L. Zhu, Spin-orbit force, recoil corrections, and possible B​BΒ―βˆ—B\bar{B}^{*} and D​dΒ―βˆ—D\bar{d}^{*} molecular states, Phys. Rev. D 89, 094026 (2014) [arXiv:1403.4043].
  • (27) L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark-antidiquarks with hidden or open charm and nature of X​(3872)X(3872), Phys. Rev. D 71, 014028 (2005) [arXiv:hep-ph/0412098].
  • (28) N. N. Achasov and E. V. Rogozina, How learn the branching ratio X​(3872)β†’D0β£βˆ—β€‹DΒ―0+c.c.X(3872)\to D^{0*}\bar{D}^{0}+c.c., Pis’ma Zh. Eksp. Teor. Fiz. 100, 252 (2014) [JETP Lett. 100, 227 (2014)], [arXiv:1310.1436].
  • (29) N. N. Achasov and E. V. Rogozina, X​(3872)X(3872),IG​(JP​C)=0+​(1++)I^{G}(J^{PC})=0^{+}(1^{++}), as the Ο‡c​1​(2​P)\chi_{c}1(2P) charmonium, Mod. Phys. Lett. A 30, 1550181 (2015) [arXiv:1501.03583].
  • (30) N. N. Achasov and E. V. Rogozina, Towards nature of the X​(3872)X(3872) resonance, J. Univ. Sci. Tech. China 46, 574 (2016) [arXiv:151007251].
  • (31) N. N. Achasov, A. V. Kiselev, and G. N. Shestakov, Electroweak production of Ο‡Q​1\chi_{Q1} states in e+​eβˆ’e^{+}e^{-} collisions: A brief review, Phys. Rev. D 106, 093012 (2022) [arXiv:2208.00793].
  • (32) M. Suzuki, The X​(3872)X(3872) boson: Molecule or charmonium, Phys. Rev. D 72, 114013 (2005) [arXiv:hep-ph/0508258].
  • (33) Y. S. Kalashnikova, Coupled-channel model for charmonium levels and option for X​(3872)X(3872), Phys. Rev. D 72, 034010 (2005) [arXiv:hep-ph/0506270].
  • (34) M. Takizawa and S. Takeuchi, X​(3872)X(3872) as a hibrid state of charmonium and the hadronic molecule, Prog. Theor. Exp. Phys. 2013, 093D01 (2013) [arXiv:1206.4877].
  • (35) N. A. TΓΆrnqvist, Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson, Phys. Lett. B 590, 209 (2004) [arXiv:hep-ph/0402237].
  • (36) C. Meng and K.-T. Chao, Decays of the X​(3872)X(3872) and Ο‡c​1​(2​P)\chi_{c1}(2P) charmonium, Phys. Rev. D 75, 114002 (2007) [arXiv:hep-ph/0703205].
  • (37) S. Dubynskiy and M. B. Voloshin, Pionic transitions from X​(3872)X(3872) to Ο‡c​J\chi_{cJ}, Phys. Rev. D 77, 014013 (2008) [arXiv:0709.4474].
  • (38) S. Fleming and T. Mehen, Hadronic decays of the X​(3872)X(3872) to in effective field theory, Phys. Rev. D 78, 094019 (2008) [arXiv:0807.2674].
  • (39) D. Gamermann and E. Oset, Isospin breaking effects in the X(3872) resonance, Phys. Rev. D 80, 014003 (2009) [arXiv:0905.0402].
  • (40) D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola, Couplings in coupled channels versus wave functions: Application to the X​(3872)X(3872) resonance, Phys. Rev. D 81, 014029 (2010) [arXiv:0911.4407].
  • (41) K. Terasaki, Ο‰βˆ’Ο0\omega-\rho^{0} mixing as a possible origin of the hypothetical isospin non-conservation in the X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψX(3872)\to\pi^{+}\pi^{-}J/\psi decay, Prog. Theor. Phys. 122, 1285 (2010) [arXiv:0904.3368].
  • (42) M. Karliner and H. J. Lipkin, Isospin violation in X​(3872)X(3872): Explanation from a new tetraquark model, arXiv:1008.0203.
  • (43) N. Li and S.-L. Zhu, Isospin breaking, coupled-channel effects, and X​(3872)X(3872), Phys. Rev. D 86, 074022 (2012) [arXiv:1207.3954].
  • (44) T. Mehen, Hadronic loops versus factorization in effective field theory calculations of X​(3872)β†’Ο‡c​J​π0X(3872)\to\chi_{cJ}\pi^{0}, Phys. Rev. D 92, 034019 (2015) [arXiv:1503.02719].
  • (45) Nikolay Achasov, Electro-weak production of pseudovector C-even heavy quarkonia in electron-positron collisions on Belle II and BES III, EPJ Web Conf. 212, 02001 (2019) [arXiv:1904.08054].
  • (46) Z.-Y. Zhou, M.-T. Yu, and Z. Xiao, Decays of X​(3872)X(3872) to Ο‡c​J​π0\chi_{cJ}\pi^{0} and J/Οˆβ€‹Ο€+β€‹Ο€βˆ’J/\psi\pi^{+}\pi^{-}, Phys. Rev. D 100, 094025 (2019) [arXiv:1904.07509].
  • (47) Q. Wu, D.-Y. Chen, and T. Matsuki, A phenomenological analysis on isospin-violating decay of X(3872), Eur. Phys. J. C 81, 193 (2021) [arXiv:2102.08637].
  • (48) L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Revisit the isospin violating decays of X​(3872)X(3872), Phys. Rev. D 104, 094003 (2021) [arXiv:2109.01333].
  • (49) R. Aaij et al. (LHCb Collaboration), Observation of sizeable Ο‰\omega contribution to Ο‡c​1​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ\chi_{c1}(3872)\to\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. D 108, L011103 (2023) [arXiv:2204.12597].
  • (50) Z.-G. Wang, Decipher the width of the X​(3872)X(3872) via the QCD sum rules, Phys. Rev. D 109, 014017 (2024) [arXiv:2310.02030].
  • (51) N. N. Achasov and G. N. Shestakov, Decay X​(3872)β†’Ο€0​π+β€‹Ο€βˆ’X(3872)\to\pi^{0}\pi^{+}\pi^{-} and SS-wave D0​DΒ―0β†’Ο€+β€‹Ο€βˆ’D^{0}\bar{D}^{0}\to\pi^{+}\pi^{-} scattering length, Phys. Rev. D 99, 116023 (2019) [arXiv:1904.02352].
  • (52) J. H. Yin et al. (Belle Collaboration), Search for X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹Ο€0X(3872)\to\pi^{+}\pi^{-}\pi^{0} at Belle, Phys. Rev. D 107, 052004 (2023) [arXiv:2206.08592].
  • (53) In Ref. Wu21 , the widths Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹J/ψ)\Gamma(X(3872)\to\pi^{+}\pi^{-}J/\psi) and Γ​(X​(3872)β†’Ο€+β€‹Ο€βˆ’β€‹Ο€0​J/ψ)\Gamma(X(3872)\to\pi^{+}\pi^{-}\pi^{0}J/\psi) have been estimated via intermediate charmed meson loops with the same effective coupling constant (gXg_{X}) of X​(3872)X(3872) with its components. In so doing, any additional normalization factors 1/Wρ1/W_{\rho} and 1/WΟ‰1/W_{\omega} are not required in the definition of these widths (Wρ≠WΟ‰W_{\rho}\neq W_{\omega}).
  • (54) C. Li and C.-Z. Yuan, Determination of the absolute branching fractions of X​(3872)X(3872) decays, Phys. Rev. D 100, 094003 (2019) [arXiv:1907.09149].
  • (55) G. ,t Hooft and M. Veltman, Scalar one-loop integrals, Nucl. Phys. B153, 365 (1979).
  • (56) G. Passarina and M. Veltman, One-loop corrections for e+​eβˆ’e^{+}e^{-} annihilation into ΞΌ+β€‹ΞΌβˆ’\mu^{+}\mu^{-} in the Weinberg model, Nucl. Phys. B160, 151 (1979).
  • (57) B. GrzaΜ§dkowski, J. H KΓΌhn, P. Krawczyk, and R. G. Stuart, Electroweak corrections on the toponium resonance, Nucl. Phys. B281, 18 (1987).
  • (58) A. Denner, Techniques for the calculation of electroweak radiative corrections at the one-loop level and results for WW physics at LEP200, Fortschr. Phys. 41, 307 (1993) [arXiv:0709.1075].
  • (59) R. E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. (N.Y.) 1, 429 (1960).
  • (60) N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Sβˆ—βˆ’Ξ΄0S^{*}-\delta^{0} mixing as a threshold phenomenon, Phys. Lett. 88B, 367 (1979).
  • (61) N. N. Achasov and G. N. Shestakov, Strong isospin symmetry breaking in light scalar meson production, Usp. Fiz. Nauk 189, 3 (2019) [Phys.-Usp. 62, 3 (2019)], [arXiv:1905.11729].
  • (62) M. P. Locher, Y. Lu, and B. S. Zoub, Rates for the reactions p¯​p→π​ϕ\bar{p}p\to\pi\phi and γ​ϕ\gamma\phi, Z. Phys. A 347, 281 (1994).
  • (63) O. Gortchakov, M. P. Locher, V. E. Markushin, and S. von Rotz, Two meson doorway calculation for p¯​p→ϕ​π\bar{p}p\to\phi\pi including off-shell effects and the OZI rule, Z. Phys. A 353, 447 (1996).
  • (64) P. Colangeloa, F. De Fazioa, and T. N. Pham, Bβˆ’β†’Kβˆ’β€‹Ο‡c​0B^{-}\to K^{-}\chi_{c0} decay from charmed meson rescattering, Phys. Lett. B 542, 71 (2002) [arXiv:hep-ph/0207061].
  • (65) P. Colangeloa, F. De Fazioa, and T. N. Pham, Nonfactorizable contributions in BB decays to charmonium: The case of Bβˆ’β†’Kβˆ’β€‹hcB^{-}\to K^{-}h_{c}, Phys. Rev. D 69, 054023 (2004) [arXiv:hep-ph/0310084].
  • (66) H.-Y. Cheng, C.-K. Chua, and A. Soni, Final State Interactions in Hadronic BB Decays, Phys. Rev. D 71, 014030 (2005) [arXiv:hep-ph/0409317].
  • (67) X. Liu, B. Zhang, and S.-L. Zhu, The hidden charm decay of X​(3872)X(3872), Y​(3940)Y(3940) and final state interaction effects, Phys. Lett. B 645, 185 (2007) [arXiv:hep-ph/0610278].
  • (68) Z.-Y. Bai., Y.-S. Li, Q. Huang, X. Liu, and T. Matsuki, Ξ₯​(10753)β†’Ξ₯​(n​S)​π+β€‹Ο€βˆ’\Upsilon(10753)\to\Upsilon(nS)\pi^{+}\pi^{-} induced by hadronic loop mechanism, Phys. Rev. D 105, 074007 (2022) [arXiv:2201.12715].
  • (69) Y. Wang, Q. Wu, G. Li, W.-H. Qin, X.-H. Liu, C.-S. An, and J.-J. Xie, Investigations of charmless decays of X​(3872)X(3872) via intermediate meson loops, Phys. Rev. D 106, 074015 (2022) [arXiv:2209.12206].
  • (70) F.-K. Guo, C. Hanhart, G. Li, U.-G. Meißner, and Q. Zhao, Effect of charmed meson loops on charmonium transitions, Phys. Rev. D 83, 034013 (2011) [arXiv:1008.3632].
  • (71) T. Feldmann, Quark structure of pseudoscalar mesons, Int. J. Mod. Phys. A 15, 159 (2000) [arXiv:hep-ph/9907491].
  • (72) F.-K. Guo, C. Hidalgo-Duque, J. Nieves, A. Ozpineci, and M. P. Valderrama, Detecting the long-distance structure of the X​(3872)X(3872), Eur. Phys. J. C 74, 2885 (2014) [arXiv:1404.1776].
  • (73) Q. Wu, M.-Z. Liu, and L.-S. Geng, Productions of X​(3872)X(3872), Zc​(3900)Z_{c}(3900), X2​(4013)X_{2}(4013), and Zc​(4020)Z_{c}(4020) in B(s)B_{(s)} decays offer strong clues on their molecular nature, Eur. Phys. J. C 84, 147 (2024) [arXiv:2304.05269].