This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Trace formalism for motivic cohomology

Tomoyuki Abe Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan tomoyuki.abe@ipmu.jp
    • scAbstract. A goal of this paper is to construct trace maps for the six functor formalism of motivic cohomology after Voevodsky, Ayoub, and Cisinski–Déglise. We also construct an \infty-enhancement of such a trace formalism. In the course of the \infty-enhancement, we need to reinterpret the trace formalism in a more functorial manner. This is done by using Suslin–Voevodsky’s relative cycle groups.


      scKeywords. Motivic cohomology, Trace map, infinity enhancement

      sc2020 Mathematics Subject Classification. 14F42, 18N60

  •  
    cOctober 4, 2022Received by the Editors on June 27, 2022.
    Accepted on November 18, 2022.


    Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan

    sce-mail: tomoyuki.abe@ipmu.jp

    This work is supported by JSPS KAKENHI Grant Numbers 16H05993, 18H03667, 20H01790.


    © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

1.  Introduction

Let f:XSf\colon X\rightarrow S be a flat morphism of dimension dd between schemes of finite type over a field kk. Let be a torsion ring in which the exponential characteristic of kk is invertible. In [SGA4, Exposé XVIII, Théorème 2.9], the trace map Trf:Rf!f(d)[2d]\mathrm{Tr}_{f}\colon\mathrm{R}f_{!}f^{*}\Lambda(d)[2d]\rightarrow\Lambda satisfying various functorial properties is constructed. Here, the cohomological functors are taken for the étale topoi. Furthermore, the trace map is characterized by such functorialities. This trace map is fundamentally important, and for example, it is used to construct the cycle class map. In other words, we may view the trace formalism as a device to throw cycle-theoretic information into the cohomological framework. The main goal of this paper is to construct an analogous map for the motivic cohomology of Voevodsky, and its \infty-enhancement. The \infty-enhancement of the trace formalism will serve as an interface between “actual cycle” and “\infty-enhancement of motivic cohomology” in [Abe22b].

Let us explain the method to construct the trace formalism. From now on, we consider the six functor formalism of the motivic cohomology theory with coefficients in :=Z[1/p]\Lambda:=\mathbb{Z}[1/p], where pp is the characteristic of our base field kk. The principle that makes the construction of the trace map work is the observation that the higher homotopies vanish. More precisely, we have

(1.1) RiHom(Rf!f(d)[2d],)=0\mathrm{R}^{i}\mathrm{Hom}\bigl{(}\mathrm{R}f_{!}f^{*}\Lambda(d)[2d],\Lambda\bigr{)}=0

for i<0i<0. A benefit of this vanishing is that if we take an open subscheme j:UXj\colon U\hookrightarrow X such that UsXsU_{s}\subset X_{s} is dense for any sSs\in S, then constructing Trf\mathrm{Tr}_{f} and constructing Trfj\mathrm{Tr}_{f\circ j} are equivalent. In [SGA4], this property is used ingeniously to reduce the construction to simpler situations. Another benefit which is more important for us is that the vanishing allows us to construct the map “locally”. Namely, by the vanishing, constructing Trf\mathrm{Tr}_{f} is equivalent to constructing a morphism R2df!f(d)\mathrm{R}^{2d}f_{!}f^{*}\Lambda(d)\rightarrow\Lambda of sheaves. In the case of étale cohomology, since it admits proper descent, by de Jong’s alteration theorem, the construction is reduced to the case where SS is smooth. We note that we commonly use de Jong’s alteration theorem to reduce proving properties to smooth cases, but to reduce constructions to smooth cases needs control of higher homotopies, which requires great amount of effort in general. In the case where SS is smooth, the construction is easy because we have an isomorphism Hom(Rf!f(d)[2d],)Hom(RpX!pX(dX)[2dX],)\mathrm{Hom}\bigl{(}\mathrm{R}f_{!}f^{*}\Lambda(d)[2d],\Lambda\bigr{)}\cong\mathrm{Hom}\bigl{(}\mathrm{R}p_{X!}p_{X}^{*}\Lambda(d_{X})[2d_{X}],\Lambda\bigr{)}, where pXp_{X} is the structural morphism for XX and dX:=dim(X)d_{X}:=\dim(X), using the relative Poincaré duality, namely the isomorphism pS(dS)[2dS]pS!p_{S}^{*}(d_{S})[2d_{S}]\cong p_{S}^{!}. In the case of étale cohomology, in [SGA4], the relative Poincaré duality theorem is established by using the trace formalism, and the argument we explained here is somewhat circular. However, in the theory of motives, the relative Poincaré duality follows from theorems of Morel–Voevodsky, Ayoub, and Cisinski–Déglise which use completely different methods, and the above argument actually works.

Now, assume we wish to enhance the trace map \infty-categorically. The first question that immediately comes up with is that what it means by “\infty-enhancement” in this situation. To address the question, we need a reinterpretion of the trace map, and to motivate our reinterpretation, let us discuss a defect of traditional formalism. Let ff be a flat morphism between non-reduced schemes such that fredf_{\mathrm{red}} is not flat. In this situation, we have the trace map Trf\mathrm{Tr}_{f}. However, since motivic or étale cohomology is insensitive to nil-immersions, Trf\mathrm{Tr}_{f} induces a similar map for fredf_{\mathrm{red}}. This observation gives us an impression that the trace map should be associated with a “cycle” rather than a “scheme”. To realize this idea, we use the relative cycle group of Suslin and Voevodsky. For a morphism f:XSf\colon X\rightarrow S, they defined a group denoted by zequi(X/S,d)z_{\mathrm{equi}}(X/S,d) which is a certain subgroup of the group of cycles in XX equidimensional of dimension dd over SS (see [SV]). When ff is flat of dimension dd, the cycle [X][X] is an element of zequi(X/S,d)z_{\mathrm{equi}}(X/S,d). Using these observations, we show that there exists a morphism zequi(X/S,n)Hom(Rf!f(n)[2n],)z_{\mathrm{equi}}(X/S,n)\rightarrow\mathrm{Hom}\bigl{(}\mathrm{R}f_{!}f^{*}\Lambda(n)[2n],\Lambda\bigr{)} for any nn, such that, when ff is flat of dimension dd, the image of [X]zequi(X/S,d)[X]\in z_{\mathrm{equi}}(X/S,d) is the traditional trace map. The object Hom(Rf!f(n),)\mathrm{Hom}\bigl{(}\mathrm{R}f_{!}f^{*}\Lambda(n),\Lambda\bigr{)} is often called the Borel–Moore homology, and is denoted by HBM(X/S,(n))\mathrm{H}^{\mathrm{BM}}(X/S,\Lambda(n)). Note that we are considering it as an object of the derived category (or as a spectrum). The associations zequi(X/S,n)z_{\mathrm{equi}}(X/S,n) and HBM(X/S,(n))\mathrm{H}^{\mathrm{BM}}(X/S,\Lambda(n)) to X/SX/S are functorial with respect to the base changes of SS and pushforwards along proper morphisms XXX\rightarrow X^{\prime} over SS. These functorialities yield (\infty-)functors from a certain category Ar~\widetilde{\mathrm{Ar}} to the \infty-category of spectra 𝒮p\mathcal{S}\mathrm{p}. The \infty-enhancement of the trace map can be formulated as a natural transform between these \infty-functors, and we will show the existence of such an \infty-functor in the last section. This \infty-enhancement of the trace map is one of the crucial ingredients in [Abe22b].

Before concluding the introduction, let us present the organization of this paper. In Section 2, we recall the six functor formalism of the theory of motives after Voevodsky, Ayoub, Cisinski–Déglise. In Section 3, we formulate our main result. To describe the functoriality of zequi(X/S,n)z_{\mathrm{equi}}(X/S,n) and HBM(X/S,(n))\mathrm{H}^{\mathrm{BM}}(X/S,\Lambda(n)) above, it is convenient to use the language of “bivariant theory” after Fulton–MacPherson. We start by recalling such a theory, and we state our main theorem. We conclude this section by showing an analogue of (1.1) in the motivic setting. In Section 4, we construct the trace map in the case where the base scheme SS is smooth. In Section 5, we construct the trace map in general and show the main result. In Section 6, we establish the \infty-enhancement. We note that, even though we use the language of \infty-categories throughout the paper for convenience and coherence, it is straightforward to formulate and prove the results of Sections 2 to 5 using the language of model categories, as in [CD15, CD19]. Using the language of \infty-categories is more essential in Section 6.

Acknowledgment

The author is grateful to Deepam Patel for numerous discussions, without which this paper would not have been written. He wishes to thank Adeel Kahn for various helpful comments on the paper. Especially, Remark 3.6-(5) is due to him. He also thanks Frédéric Déglise for answering several questions, and Shane Kelly for some discussions. Finally, he wishes to thank the referee for reading the manuscript very carefully, and gave him numerous comments which helped to improve the quality of the paper.

Notation and conventions

We fix a perfect field kk of characteristic p>0p>0. By \infty-category, we always mean (,1)(\infty,1)-category, and by category we always mean 11-category. For a scheme SS, we denote by Sch/S\mathrm{Sch}_{/S} the category of schemes separated of finite type over SS. When S=Spec(k)S=\mathrm{Spec}(k), we often denote this by Sch/k\mathrm{Sch}_{/k}.

2.  Review of six functors

2.1.  

We will use the language of \infty-categories, but except for §6, this is used just to facilitate the presentation. See the remark at the end of this paragraph for some explanation.

Let 𝒫rstL\mathcal{P}\mathrm{r}^{\mathrm{L}}_{\mathrm{st}} be the full subcategory of 𝒫rL\mathcal{P}\mathrm{r}^{\mathrm{L}} (cf. [Lur09, Definition 5.5.3.1]) spanned by stable \infty-categories. We have the functor 𝒮:Sch/kop𝒫rstL\mathcal{SH}\colon\mathrm{Sch}_{/k}^{\mathrm{op}}\rightarrow\mathcal{P}\mathrm{r}^{\mathrm{L}}_{\mathrm{st}} sending TT to Voevodsky-Morel’s stable homotopy \infty-category 𝒮(T)\mathcal{SH}(T) (cf. [CD15, §2.1] or [CD19, Example 1.4.3] for model categorical treatment and [Abe22a, §6.7] and references therein for \infty-categorical treatment). Let be a commutative ring. Then Voevodsky defined the motivic Eilenberg-MacLane spectrum Hk\mathbb{H}{}_{k}, which is an E\mathbb{E}_{\infty}-algebra of 𝒮(Spec(k))\mathcal{SH}(\mathrm{Spec}(k)). By pulling back, this spectrum yields a spectrum HT/k\mathbb{H}{}_{T/k} on 𝒮(T)\mathcal{SH}(T), and defines an “absolute ring 𝒮\mathcal{SH}-spectrum” in the sense of [Deg18, Definition 1.1.1]. The absolute ring 𝒮\mathcal{SH}-spectrum HT/k\mathbb{H}{}_{T/k} is equipped with an “orientation” in the sense of [Deg18, Definition 2.2.2] by [Deg18, Example 2.2.4]. Under this situation, all the results of [Deg18, Introduction, Theorem 1] can be applied. We do not try to recall the definitions of each terminology, but instead, we sketch what we can get by fixing these data.

We put 𝒟T:=ModHT(𝒮(T))\mathcal{D}_{T}:=\mathrm{Mod}_{\mathbb{H}{}_{T}}(\mathcal{SH}(T)), the symmetric monoidal \infty-category of HT\mathbb{H}{}_{T}-module objects in 𝒮(T)\mathcal{SH}(T). Then the assignment 𝒟T\mathcal{D}_{T} to TT can be promoted to a functor 𝒟:Sch/Sop𝒫rstL\mathcal{D}\colon\mathrm{Sch}_{/S}^{\mathrm{op}}\rightarrow\mathcal{P}\mathrm{r}^{\mathrm{L}}_{\mathrm{st}} which yields “motivic categories” in the sense of [CD19]. This can be checked from [CD19, Proposition 5.3.1 and Proposition 7.2.18]. We may find a summary of the axioms of what this means in [Abe22a, §6.1], and also references. Among other things, we may use “six functors”. In this \infty-categorical context, we can find a construction of six functor formalism in [Abe22a, §6.8], which follows the idea of [Kha16]. Let XSch/SX\in\mathrm{Sch}_{/S}. Then 𝒟X\mathcal{D}_{X} is a symmetric monoidal stable \infty-category. Given a morphism f:XYf\colon X\rightarrow Y in Sch/S\mathrm{Sch}_{/S}, the functor 𝒟\mathcal{D} induces the functor 𝒟Y𝒟X\mathcal{D}_{Y}\rightarrow\mathcal{D}_{X}, which we denote by ff^{*} in accordance with the six functor formalism of Grothendieck. The functor ff^{*} admits a right adjoint, which we denote by ff_{*}. We also have the “extraordinary pushforward functor” f!:𝒟X𝒟Yf_{!}\colon\mathcal{D}_{X}\rightarrow\mathcal{D}_{Y} as well as its right adjoint f!f^{!}. We have the natural transform f!ff_{!}\rightarrow f_{*} which is an isomorphism when ff is proper.

The orientation on H\mathbb{H}\Lambda yields an orientation on 𝒟\mathcal{D} in the sense of [CD19, Definition 2.4.12] by [CD19, Example 2.4.40] and [Deg18, §2.2.5]. For nZn\in\mathbb{Z}, we denote the nn-th Tate twist by (n)(n), the nn-th shift by [n][n], and (n)[2n](n)[2n] by n\left<n\right>. We often denote the unit object of 𝒟T\mathcal{D}_{T} by T. By fixing an orientation, we have a canonical isomorphism f(d)[2d]f!f^{*}(d)[2d]\cong f^{!} for any smooth morphism ff in Sch/S\mathrm{Sch}_{/S} (cf. [CD19, Theorem 2.4.50]). In fact, the fundamental class constructed in [Deg18, Introduction, Theorem 1] can be seen as a generalization of this isomorphism.

Remark.

If the reader feels uncomfortable with using \infty-categories, it is essentially harmless to replace 𝒫rstL\mathcal{P}\mathrm{r}^{\mathrm{L}}_{\mathrm{st}} by the the (2,1)(2,1)-category of triangulated categories 𝒯ri\mathcal{T}\mathrm{ri} above. Then, we may regard 𝒟T\mathcal{D}_{T} as a triangulated category. The only exception might be that when we consider descents. In order to consider descents inside the traditional framework, we need to introduce the category of diagrams as in [CD19, §3]. Therefore, strictly speaking, simply considering the functor Sch/Sop𝒯ri\mathrm{Sch}_{/S}^{\mathrm{op}}\rightarrow\mathcal{T}\mathrm{ri} is not enough for the theory of descent. We leave the details to the interested reader.

2.2.  

Let f:XSf\colon X\rightarrow S. For 𝒟S\mathcal{F}\in\mathcal{D}_{S}, we set

c(X/S,):=f!f,(X/S,):=ffandHBM(X/S,):=Hom𝒟S(c(X/S,),)S.\mathcal{H}_{\mathrm{c}}^{*}(X/S,\mathcal{F}):=f_{!}f^{*}\mathcal{F},\quad\mathcal{H}^{*}(X/S,\mathcal{F}):=f_{*}f^{*}\mathcal{F}\quad\text{and}\quad\mathrm{H}^{\mathrm{BM}}(X/S,\mathcal{F}):=\mathrm{Hom}_{\mathcal{D}_{S}}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X/S,\mathcal{F}),{}_{S}\bigr{)}.

Here, we view HBM\mathrm{H}^{\mathrm{BM}} as a spectrum. When the coefficient ring is obvious, we abbreviate HBM(X/S,(n))\mathrm{H}^{\mathrm{BM}}(X/S,\Lambda(n)) by HBM(X/S,n)\mathrm{H}^{\mathrm{BM}}(X/S,n). We write HmBM(X/S,)\mathrm{H}^{\mathrm{BM}}_{m}(X/S,\mathcal{F}) for πmHBM(X/S,)\pi_{m}\mathrm{H}^{\mathrm{BM}}(X/S,\mathcal{F}), and call it the Borel-Moore homology. Note that πmHBM(X/S,n)\pi_{m}\mathrm{H}^{\mathrm{BM}}(X/S,n) coincides with (H)m,nBM(X/S)(\mathbb{H}\Lambda)^{\mathrm{BM}}_{m,n}(X/S) in [Deg18]. Assume we are given a closed subscheme ZXZ\subset X and denote the complement by UU. By localization sequence of 6-functor formalism, we have the long exact sequence

HmBM(Z/S,)HmBM(X/S,)HmBM(U/S,)Hm1BM(Z/S,).\cdots\longrightarrow\mathrm{H}^{\mathrm{BM}}_{m}(Z/S,\mathcal{F})\longrightarrow\mathrm{H}^{\mathrm{BM}}_{m}(X/S,\mathcal{F})\longrightarrow\mathrm{H}^{\mathrm{BM}}_{m}(U/S,\mathcal{F})\longrightarrow\mathrm{H}^{\mathrm{BM}}_{m-1}(Z/S,\mathcal{F})\longrightarrow\cdots.

2.3.  

We introduce the ppdh-topology as follows.

Definition.

We define ppdh-topology on Sch/k\mathrm{Sch}_{/k} to be the topology generated by the following two types of families:

  1. (1)

    {f:YX}\{f\colon Y\rightarrow X\}, where ff is finite surjective flat morphism of constant degree power of pp;

  2. (2)

    cdh-covering.

We call \ell^{\prime}dh-topology what is called \elldh-topology in [CD15, §5.2]. Obviously, cdh-topology is coarser than ppdh-topology, and ppdh-topology is coarser than \ell^{\prime}dh-topology for any p\ell\neq p.

Let SS be an object of Sch/k\mathrm{Sch}_{/k}. Recall that the theorem of Temkin [T], which is a refinement of Gabber’s prime-to-\ell alteration theorem, states as follows: there exists an alteration SSS^{\prime}\rightarrow S whose generic degree is some power of pp and SS^{\prime} is smooth. Without Temkin’s theorem, ppdh-topology might have been useless, but armed with the theorem, we can show the following statement as usual.

Lemma.

For any SSch/kS\in\mathrm{Sch}_{/k}, there exists a ppdh-covering f:TSf\colon T\rightarrow S such that TT is a smooth kk-scheme. We may even take ff to be proper.

Proof.

Even though the argument is standard, we recall a proof for the sake of completeness. We use the induction on the dimension of SS. Using Temkin’s theorem, take an alteration T1ST_{1}\rightarrow S whose generic degree is power to pp and T1T_{1} is smooth. By using Gruson-Raynaud’s flattening theorem, we may take a modification SSS^{\prime}\rightarrow S with center ZSZ\subset S such that the strict transform T2T_{2} of T1T_{1} is flat over SS^{\prime}. By construction T2ST_{2}\rightarrow S^{\prime} is finite surjective flat morphism whose degree is power to pp, and thus, {T2S}\{T_{2}\rightarrow S^{\prime}\} is a ppdh-covering. By induction hypothesis, we may find a proper ppdh-covering WZW\rightarrow Z such that WW is smooth. Because {Z,SS}\{Z,S^{\prime}\rightarrow S\} is a ppdh-covering, {W,T2S}\{W,T_{2}\rightarrow S\} is also a ppdh-covering. This covering factors through {W,T1S}\{W,T_{1}\rightarrow S\}, so the latter is a ppdh-covering as well. Thus, we may simply take T:=WT1T:=W\coprodop\displaylimits T_{1}. ∎

For any SSch/kS\in\mathrm{Sch}_{/k}, we may find a ppdh-hypercovering SSS_{\bullet}\rightarrow S such that SiS_{i} is kk-smooth by standard use of the lemma above and [SGA4, Exposé Vbis\mathrm{V}^{\mathrm{bis}}, Proposition 5.1.3].

2.4.  

We have the following ppdh-descent, which is a straightforward corollary of a \ell^{\prime}dh-descent result by S. Kelly.

Lemma.

Assume p1p^{-1}\in\Lambda. Then any object of 𝒟S\mathcal{D}_{S} satisfies ppdh-descent. In other words, if we are given a ppdh-hypercovering p:SSp_{\bullet}\colon S_{\bullet}\rightarrow S and 𝒟S\mathcal{F}\in\mathcal{D}_{S}, the canonical morphism limipipi\mathcal{F}\rightarrow\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F} in the \infty-category 𝒟S\mathcal{D}_{S} is an equivalence.

Proof.

Let 𝒞:=cofib(limipipi)\mathcal{C}:=\mathrm{cofib}\bigl{(}\mathcal{F}\rightarrow\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F}\bigr{)}. We wish to show that 𝒞0\mathcal{C}\simeq 0, and for this, it suffices to show that 𝒞Z[1/p]Z()0\mathcal{C}\otimes_{\mathbb{Z}[1/p]}\mathbb{Z}_{(\ell)}\simeq 0 for any prime p\ell\neq p (cf. [CD15, proof of Proposition 3.13]). To show this, we must show that for any compact object 𝒢𝒟S\mathcal{G}\in\mathcal{D}_{S}, we have Hom(𝒢,𝒞Z())0\mathrm{Hom}(\mathcal{G},\mathcal{C}\otimes\mathbb{Z}_{(\ell)})\simeq 0. We have

Hom(𝒢,𝒞Z())cofib[Hom(𝒢,Z())Hom(𝒢,(limipipi)Z())].\displaystyle\mathrm{Hom}(\mathcal{G},\mathcal{C}\otimes\mathbb{Z}_{(\ell)})\simeq\mathrm{cofib}\bigl{[}\mathrm{Hom}(\mathcal{G},\mathcal{F}\otimes\mathbb{Z}_{(\ell)})\rightarrow\mathrm{Hom}(\mathcal{G},(\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F})\otimes\mathbb{Z}_{(\ell)})\bigr{]}.

We may further compute as

Hom(𝒢,(limipipi)Z())\displaystyle\mathrm{Hom}\bigl{(}\mathcal{G},(\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F})\otimes\mathbb{Z}_{(\ell)}\bigr{)} Hom(𝒢,limipipi)Z()\displaystyle\simeq\mathrm{Hom}\left(\mathcal{G},\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F}\right)\otimes\mathbb{Z}_{(\ell)}
(limi(Hom(𝒢,pipi))Z()\displaystyle\simeq\left(\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{i\in\mathbf{\Delta}}(\mathrm{Hom}(\mathcal{G},p_{i*}p_{i}^{*}\mathcal{F})\right)\otimes\mathbb{Z}_{(\ell)}
limiHom(pi𝒢,pi)Z()\displaystyle\simeq\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{i\in\mathbf{\Delta}}\mathrm{Hom}\left(p_{i}^{*}\mathcal{G},p_{i}^{*}\mathcal{F}\right)\otimes\mathbb{Z}_{(\ell)}
limiHom(pi𝒢,pi(Z()))\displaystyle\simeq\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{i\in\mathbf{\Delta}}\mathrm{Hom}\left(p_{i}^{*}\mathcal{G},p_{i}^{*}\left(\mathcal{F}\otimes\mathbb{Z}_{(\ell)}\right)\right)
Hom(𝒢,limipipi(Z())),\displaystyle\simeq\mathrm{Hom}\left(\mathcal{G},\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\left(\mathcal{F}\otimes\mathbb{Z}_{(\ell)}\right)\right),

where the 1st1^{\text{st}} and 4th4^{\text{th}} equivalences follow from the compactness of 𝒢\mathcal{G} and pi𝒢p_{i}^{*}\mathcal{G} respectively. By [CD15, Theorem 5.10], Z()\mathcal{F}\otimes\mathbb{Z}_{(\ell)} admits \ell^{\prime}dh-descent, in particular, ppdh-descent. Thus, combining with the computations above, we have 𝒞Z()0\mathcal{C}\otimes\mathbb{Z}_{(\ell)}\simeq 0 as desired. ∎

Now, let 𝒢𝒟S\mathcal{G}\in\mathcal{D}_{S}. Then we have

Hom(𝒢,)Hom(𝒢,limipipi)limiHom(𝒢,pipi)limiHom(pi𝒢,pi).\displaystyle\mathrm{Hom}(\mathcal{G},\mathcal{F})\xrightarrow{\ \sim\ }\mathrm{Hom}\bigl{(}\mathcal{G},\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}p_{i*}p_{i}^{*}\mathcal{F}\bigr{)}\cong\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{Hom}\bigl{(}\mathcal{G},p_{i*}p_{i}^{*}\mathcal{F}\bigr{)}\cong\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{Hom}\bigl{(}p_{i}^{*}\mathcal{G},p_{i}^{*}\mathcal{F}\bigr{)}.

We write Homk:=πkHom\mathrm{Hom}^{k}:=\pi_{-k}\mathrm{Hom}. Assume that Homk(pi𝒢i,pii)0\mathrm{Hom}^{k}\bigl{(}p_{i}^{*}\mathcal{G}_{i},p_{i}^{*}\mathcal{F}_{i}\bigr{)}\cong 0 for any ii\in\mathbf{\Delta}. Then the complex of -indexed diagrams {Hom(pi𝒢i,pii)}i\bigl{\{}\mathrm{Hom}\bigl{(}p_{i}^{*}\mathcal{G}_{i},p_{i}^{*}\mathcal{F}_{i}\bigr{)}\bigr{\}}_{i\in\mathbf{\Delta}} belongs to D+(Ab)D^{+}(\mathrm{Ab}^{\mathbf{\Delta}}), and induces a spectral sequence

(2.1) E2p,q=RplimiHomq(pi𝒢,pi)Homp+q(𝒢,).E_{2}^{p,q}=\mathrm{R}^{p}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{Hom}^{q}(p_{i}^{*}\mathcal{G},p_{i}^{*}\mathcal{F})\Longrightarrow\mathrm{Hom}^{p+q}(\mathcal{G},\mathcal{F}).

3.  Main result and vanishing of higher homotopy

3.1.  

Let us recall the definition of bivariant theory after Fulton and MacPherson very briefly.

Definition.

A bivariant theory TT over kk is an assignment to each morphism f:XYf\colon X\rightarrow Y in Sch/k\mathrm{Sch}_{/k} a Z\mathbb{Z}-graded Abelian group T(f)T(f) equipped with three operations:

  1. (1)

    (Product) For composable morphisms f:XYf\colon X\rightarrow Y and g:YZg\colon Y\rightarrow Z, we have a homomorphism of graded groups :T(f)T(g)T(gf)\bullet\colon T(f)\otimes T(g)\rightarrow T(g\circ f).

  2. (2)

    (Pushforward) Assume we are given composable morphisms ff and gg as in (1). If, furthermore, ff is proper, we have the homomorphism f:T(gf)T(g)f_{*}\colon T(g\circ f)\rightarrow T(g).

  3. (3)

    (Pullback) Consider the following Cartesian diagram:

    (3.1) XgfXfYgY.\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 11.28056pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-8.3047pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.97711pt\raise 5.74306pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.38196pt\hbox{$\scriptstyle{g^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.33943pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.28056pt\raise-19.19443pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.30556pt\hbox{$\scriptstyle{f^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-26.99998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 19.93707pt\raise-19.19443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\square}$}}}}}\ignorespaces{}{\hbox{\kern 32.33943pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.87415pt\raise-19.19443pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.87415pt\raise-28.55554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-7.78389pt\raise-38.38885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Y^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.24934pt\raise-33.20135pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 32.3047pt\raise-38.38885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.3047pt\raise-38.38885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Y.}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

    Then we have the homomorphism g:T(f)T(f)g^{*}\colon T(f)\rightarrow T(f^{\prime}).

These operations are subject to (more or less straightforward) compatibility conditions. Among these compatibility conditions, let us recall the projection formula for the later use. We consider the diagram (3.1) such that gg is proper, and a morphism h:YZh\colon Y\rightarrow Z. Assume we are given αT(f)\alpha\in T(f) and βT(hg)\beta\in T(h\circ g). Then we have αg(β)=g(gαβ)\alpha\bullet g_{*}(\beta)=g^{\prime}_{*}(g^{*}\alpha\bullet\beta).

Given bivariant theories TT, TT^{\prime}, a morphism of theories TTT\rightarrow T^{\prime} is a collection of homomorphisms T(f)T(f)T(f)\rightarrow T^{\prime}(f) for any morphism ff in Sch/k\mathrm{Sch}_{/k} compatible with the operations above. We refer to [FM81, §2.2] for details.(1)(1)(1) In our situation, “confined maps” are “proper morphisms” and any Cartesian squares are “independent squares”.

Definition 3.2.

Let TT be a bivariant theory over kk. An A1\mathbb{A}^{1}-orientation of TT is an element ηT1(A1Spec(k))\eta\in T^{1}(\mathbb{A}^{1}\rightarrow\mathrm{Spec}(k)), where T1T^{1} is the degree 11 part. Let TT^{\prime} be another bivariant theory endowed with an A1\mathbb{A}^{1}-orientation η\eta^{\prime}. A morphism of bivariant theories F:TTF\colon T\rightarrow T^{\prime} is said to be compatible with the orientation if F(A1Spec(k))(η)=ηF(\mathbb{A}^{1}\rightarrow\mathrm{Spec}(k))(\eta)=\eta^{\prime}.

Remark.

Fulton and MacPherson called an orientation a rule to assign an element of T(f)T(f) to each ff in a compatible manner. Since our A1\mathbb{A}^{1}-orientation can be regarded as a part of this data, we named it after Fulton and MacPherson’s. This has a priori nothing to do with orientation of motivic spectra.

3.3.  

Our Borel-Moore homology HaBM(X/S,(b))\mathrm{H}^{\mathrm{BM}}_{a}(X/S,\Lambda(b)) defines a bivariant theory (in an extended sense because it is bigraded), cf. [Deg18, §1.2.8]. By associating the graded group kH2kBM(X/S,(k))\bigoplusop\displaylimits_{k}\mathrm{H}^{\mathrm{BM}}_{2k}(X/S,\Lambda(k)) to XSX\rightarrow S, we define the bivariant theory denoted by H2BM(X/S,())\mathrm{H}^{\mathrm{BM}}_{2*}(X/S,\Lambda(*)). This bivariant theory has a canonical orientation as follows. Let q:AS1Sq\colon\mathbb{A}^{1}_{S}\rightarrow S be the projection. Then we have a morphism

q!q(1)S[2]q!q!adjS,Sq_{!}q^{*}{}_{S}(1)[2]\cong q_{!}q^{!}{}_{S}\xrightarrow{\ \mathrm{adj}\ }{}_{S},

where the isomorphism is defined using [CD19, Theorem 2.4.50.3] and the canonical identification of MThA1(Tq)\mathrm{MTh}_{\mathbb{A}^{1}}(T_{q}) with (1)A1[2]{}_{\mathbb{A}^{1}}(1)[2], where MTh\mathrm{MTh} is the motivic Thom spectrum defined in [CD19, Definition 2.4.12]. The class of the above morphism in H2BM(X/S,(1))π0HomD(S)(q!q(1)S[2],)S\mathrm{H}^{\mathrm{BM}}_{2}(X/S,\Lambda(1))\cong\pi_{0}\mathrm{Hom}_{D(S)}(q_{!}q^{*}{}_{S}(1)[2],{}_{S}) is the canonical orientation of H2BM(X/S,())\mathrm{H}^{\mathrm{BM}}_{2*}(X/S,\Lambda(*)).

3.4.  

Let us introduce another main player of this paper, z(,)z(-,-), from [SV]. Let f:XSf\colon X\rightarrow S be a morphism, and d0d\geq 0 be an integer. Recall that Suslin and Voevodsky(2)(2)(2)In fact, Suslin and Voevodsky used the notation z(X/S,d)z(X/S,d) as a presheaf on Sch/S\mathrm{Sch}_{/S}. Our z(X/S,d)z(X/S,d) is the global sections of it. introduced Abelian groups zequi(f,d)z_{\mathrm{equi}}(f,d) and z(f,d)z(f,d), or zequi(X/S,d)z_{\mathrm{equi}}(X/S,d) and z(X/S,d)z(X/S,d) if no confusion may arise. We do not recall the precise definition of these groups, but content ourselves with giving ideas of how these groups are defined. Both groups are certain subgroups of the free Abelian group Z(X)Z(X) generated by integral subscheme of XX. If we are given an element wZ(X)w\in Z(X) we may consider the “support” denoted by Supp(w)\mathrm{Supp}(w) in an obvious manner. Naively thinking, we wish to define z(X/S,d)z(X/S,d) as a subgroup of Z(X)Z(X) consisting of ww such that Supp(w)S\mathrm{Supp}(w)\rightarrow S is equidimensional of dimension dd over generic points of SS. However, if we defined z(X/S,d)z(X/S,d) in this way, the association z(XT/T,d)z(X_{T}/T,d) to TT would not be functorial. In order to achieve this functoriality, Suslin and Voevodsky introduces an ingenious compatibility conditions. We do not recall these compatibility conditions, but here is an illuminating example: Let ZXZ\subset X be a closed immersion such that the morphism ZSZ\rightarrow S is flat. Then the associated cycle [Z][Z], called a flat cycle, belongs to z(X/S,d)z(X/S,d). Now, the group zequi(X/S,d)z_{\mathrm{equi}}(X/S,d) is a subgroup of z(X/S,d)z(X/S,d). The element ww belongs to zequi(X/S,d)z_{\mathrm{equi}}(X/S,d) if and only if the morphism Supp(w)S\mathrm{Supp}(w)\rightarrow S is equidimensional (of relative dimension dd). By the compatibility conditions we mentioned above, if we are given a morphism SSS^{\prime}\rightarrow S, we have the pullback homomorphism z(equi)(X/S,d)z(equi)(X×SS/S,d)z_{(\mathrm{equi})}(X/S,d)\rightarrow z_{(\mathrm{equi})}(X\times_{S}S^{\prime}/S^{\prime},d). This enables us to define presheaves z¯(equi)(X/S,d)\underline{z}_{(\mathrm{equi})}(X/S,d) on Sch/S\mathrm{Sch}_{/S}. Then z¯(X/S,d)\underline{z}(X/S,d) is a cdh-sheaf, and the cdh-sheafification of z¯equi(X/S,d)\underline{z}_{\mathrm{equi}}(X/S,d) coincides with z¯(X/S,d)\underline{z}(X/S,d). Furthermore, flat cycles generate z¯(X/S,d)\underline{z}(X/S,d) cdh-locally, and can be thought of as a building pieces (cf. [SV, Theorem 4.2.11]). The following theorem compactly summarizes some aspects of [SV].

Theorem (cf. [SV]).

The assignments z(f,):=kz(f,k)z(f,*):=\bigoplusop\displaylimits_{k}z(f,k) and zequi(f,):=kzequi(f,k)z_{\mathrm{equi}}(f,*):=\bigoplusop\displaylimits_{k}z_{\mathrm{equi}}(f,k) to a morphism ff can be promoted to a bivariant theories with A1\mathbb{A}^{1}-orientation.

Proof.

Given any morphism α:TS\alpha\colon T\rightarrow S, the pullback homomorphism

α:z(equi)(X/S,d)z(equi)(XT/T,d)\alpha\colon z_{(\mathrm{equi})}(X/S,d)\longrightarrow z_{(\mathrm{equi})}(X_{T}/T,d)

is then defined in [SV, right after Lemma 3.3.9]. Given a proper morphism XYX\rightarrow Y, the pushforward homomorphism

β:z(equi)(X/S,d)z(equi)(Y/S,d)\beta_{*}\colon z_{(\mathrm{equi})}(X/S,d)\longrightarrow z_{(\mathrm{equi})}(Y/S,d)

is defined in [SV, Corollary 3.6.3]. Given a sequence of morphisms X𝑓Y𝑔ZX\xrightarrow{f}Y\xrightarrow{g}Z and integers d,e0d,e\geq 0, the homomorphism

Cor:z(equi)(X/Y,d)×z(equi)(Y/Z,e)z(equi)(X/Z,d+e)\mathrm{Cor}\colon z_{(\mathrm{equi})}(X/Y,d)\times z_{(\mathrm{equi})}(Y/Z,e)\longrightarrow z_{(\mathrm{equi})}(X/Z,d+e)

is defined in [SV, Corollary 3.7.5]. We may endow with A1\mathbb{A}^{1}-orientation by taking η:=[A1]\eta:=[\mathbb{A}^{1}]. The compatibility conditions for these operations have also been proven in [SV]. ∎

3.5.  

Our main theorem is as follows.

Theorem.

Recall that the base field kk is a perfect field of characteristic p>0p>0, and let :=Z[1/p]\Lambda:=\mathbb{Z}[1/p]. Then, there exists a unique map of bivariant theories compatible with A1\mathbb{A}^{1}-orientation:

τ:zequi(,)H2BM(,()).\tau\colon z_{\mathrm{equi}}(-,*)\longrightarrow\mathrm{H}^{\mathrm{BM}}_{2*}(-,\Lambda(*)).

A proof of this theorem is given at the end of Section 5. Let us introduce a notation. Let f:XSf\colon X\rightarrow S be a flat morphism of relative dimension dd. Then [X][X] is an element of zequi(f,d)z_{\mathrm{equi}}(f,d). If we are given τ\tau as above, we have τ([X])H2dBM(f,(d))\tau([X])\in\mathrm{H}^{\mathrm{BM}}_{2d}(f,\Lambda(d)). This element is denoted by Trfτ\mathrm{Tr}^{\tau}_{f}.

Remark 3.6.
  1. (1)

    Our theorem produces trace maps only for motivic Eilenberg-MacLane spectrum, and the reader might think that our theorem is too restrictive. However, this is not the case since the motivic Eilenberg-MacLane spectrum is universal among “absolute 𝒮\mathcal{SH}-spectrum E\mathbb{E} with orientation which is -linear and whose associated formal group law is additive” by [Deg18, Remark 2.2.15]. More precisely, if we are given such an absolute 𝒮\mathcal{SH}-spectrum E\mathbb{E}, we have a unique map ϕ:HE\phi\colon\mathbb{H}\Lambda\rightarrow\mathbb{E}. Associated to this map, we may consider the composition zequi(,())𝜏H2BM(,())ϕH2BM(,E())z_{\mathrm{equi}}(-,\Lambda(*))\xrightarrow{\tau}\mathrm{H}^{\mathrm{BM}}_{2*}(-,\Lambda(*))\xrightarrow{\phi}\mathrm{H}^{\mathrm{BM}}_{2*}(-,\mathbb{E}(*)), where the last object is the Borel-Moore homology associated with E\mathbb{E}, and we get trace maps for E\mathbb{E}.

  2. (2)

    Choose E\mathbb{E} to be the \ell-adic étale absolute spectrum He´tQ\mathbb{H}_{\mathrm{\acute{e}t}}\mathbb{Q}_{\ell} for p\ell\neq p. By construction above, we have zequi(X/S,d)He´t,2dBM(X/S,d)z_{\mathrm{equi}}(X/S,d)\rightarrow\mathrm{H}^{\mathrm{BM}}_{\mathrm{\acute{e}t},2d}(X/S,d), where He´t,BM(X/S,)\mathrm{H}^{\mathrm{BM}}_{\mathrm{\acute{e}t},*}(X/S,*) is the \ell-adic Borel-Moore homology. If ff is a flat morphism of dimension dd, the image of [X]zequi(X/S,d)[X]\in z_{\mathrm{equi}}(X/S,d) by this morphism is denoted by Trfe´t\mathrm{Tr}^{\mathrm{\acute{e}t}}_{f}. This element of He´t,2dBM(X/S,d)\mathrm{H}^{\mathrm{BM}}_{\mathrm{\acute{e}t},2d}(X/S,d), considered as a morphism c(X/S,(d)S[2d])S\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S}(d)[2d])\rightarrow{}_{S}, coincides with the trace map defined in [SGA4, Exposé XVIII, Thórème 2.9]. Thus, the morphism τ\tau can be seen as a generalization of the trace map of loc. cit., at least when the base field is perfect.

  3. (3)

    When XSX\rightarrow S is a g.c.i. morphism, Déglise defined a similar map in [Deg18, Theorem 1]. In fact, our map can be considered as a generalization of [Deg18] (even though we only consider over a field), or rather, is built upon Déglise’s map.

  4. (4)

    The theorem also holds in the case where p=0p=0 and =Z\Lambda=\mathbb{Z}. Furthermore, in the case where p>0p>0 and if we assume the existence of the resolution of singularities, we may, in fact, take =Z\Lambda=\mathbb{Z} in the theorem. The proof works with obvious changes, and the detail is left to the reader.

  5. (5)

    The theorem, in fact, holds for any field kk, not necessarily perfect. In fact, let l:=kperfl:=k^{\mathrm{perf}} be the perfection. The compact support cohomology c(X/S)\mathcal{H}_{\mathrm{c}}^{*}(X/S) is compatible with arbitrary base change. Thus, by [EK20, Corollary 2.1.5], or alternatively [CD15, Proposition 8.1], the pullback homomorphism HpBM(X/S,(q))HpBM(Xl/Sl,(q))\mathrm{H}^{\mathrm{BM}}_{p}(X/S,\Lambda(q))\rightarrow\mathrm{H}^{\mathrm{BM}}_{p}(X_{l}/S_{l},\Lambda(q)) is an isomorphism since p1p^{-1}\in\Lambda. Using this isomorphism, the trace map for H2BM(Xl/Sl,())\mathrm{H}^{\mathrm{BM}}_{2*}(X_{l}/S_{l},\Lambda(*)), constructed above, induces the trace map for H2BM(X/S,())\mathrm{H}^{\mathrm{BM}}_{2*}(X/S,\Lambda(*)) as well.

3.7.  

Before going to the next section, let us show the most important property to construct the trace map, namely the vanishing of suitable higher homotopies. For a morphism f:XSf\colon X\rightarrow S, we put dim(f):=max{dim(f1(s))sS}\dim(f):=\max\bigl{\{}\dim(f^{-1}(s))\mid s\in S\bigr{\}}.

Proposition.

For a morphism f:XSf\colon X\rightarrow S in Sch/k\mathrm{Sch}_{/k} and an integer dd such that dim(f)d\dim(f)\leq d, we have

H2m+nBM(X/S,(m))=0\mathrm{H}^{\mathrm{BM}}_{2m+n}(X/S,\Lambda(m))=0

in one of the following cases:

  1. (1)

    for any m>dm>d and any nn,

  2. (2)

    when m=dm=d and for any n>0n>0.

Proof.

First, assume that S=Spec(k)S=\mathrm{Spec}(k). We claim that

HnBM(X,m):=πnHBM(X/Spec(k),(m))=0\mathrm{H}^{\mathrm{BM}}_{n}(X,m):=\pi_{n}\mathrm{H}^{\mathrm{BM}}(X/\mathrm{Spec}(k),\Lambda(m))=0

if m>d=dim(X)m>d=\dim(X) or m=dm=d and n>2mn>2m. Assume XX is smooth of equidimension dd. Then we know that HnBM(X,(m))H2dn(X,(dm))CHdm(X,n2m;)\mathrm{H}^{\mathrm{BM}}_{n}(X,\Lambda(m))\cong\mathrm{H}_{\mathcal{M}}^{2d-n}(X,\Lambda(d-m))\cong\mathrm{CH}^{d-m}(X,n-2m;\Lambda), where H\mathrm{H}_{\mathcal{M}} is the motivic cohomology and the last isomorphism follows by [CD19, Example 11.2.3]. Thus the claim follows(3)(3)(3) In fact, this holds also for n<0n<0 by [Har77, III 2.5, II Ex. 1.16 (a)]. because CH0(X,i;)Hi(X,(0))Hzari(X,)=0\mathrm{CH}^{0}(X,i;\Lambda)\cong\mathrm{H}_{\mathcal{M}}^{-i}(X,\Lambda(0))\cong\mathrm{H}_{\mathrm{zar}}^{-i}(X,\Lambda)=0 for i>0i>0. In general, we proceed by the induction on the dimension of XX. We may assume XX is reduced. There exists ZXZ\subset X such that XZX\setminus Z is smooth and dim(Z)<d\dim(Z)<d since kk is assumed perfect. We have the exact sequence

HnBM(Z,(m))HnBM(X,(m))HnBM(XZ,(m))Hn1BM(Z,(m)).\cdots\longrightarrow\mathrm{H}^{\mathrm{BM}}_{n}(Z,\Lambda(m))\longrightarrow\mathrm{H}^{\mathrm{BM}}_{n}(X,\Lambda(m))\longrightarrow\mathrm{H}^{\mathrm{BM}}_{n}(X\setminus Z,\Lambda(m))\longrightarrow\mathrm{H}^{\mathrm{BM}}_{n-1}(Z,\Lambda(m))\longrightarrow\cdots.

Assume dmd\leq m. Then HnBM(Z,(m))=0\mathrm{H}^{\mathrm{BM}}_{n}(Z,\Lambda(m))=0 for any nn since dim(Z)<dm\dim(Z)<d\leq m and the induction hypothesis. Thus HnBM(X,(m))HnBM(U,(m))\mathrm{H}^{\mathrm{BM}}_{n}(X,\Lambda(m))\cong\mathrm{H}^{\mathrm{BM}}_{n}(U,\Lambda(m)), and the claim follows by the smooth case we have already treated. We next assume that SS is smooth over kk. We may assume that SS is of equidimension ee. Let π:SSpec(k)\pi\colon S\rightarrow\mathrm{Spec}(k) be the structural morphism. Then we have

Hom(c(X/S,)Sm,[n]S)\displaystyle\mathrm{Hom}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S})\!\left<m\right>,{}_{S}[-n]\bigr{)} Hom(c(X/S,)Sm,π[n])\displaystyle\cong\mathrm{Hom}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S})\!\left<m\right>,\pi^{*}\Lambda[-n]\bigr{)}
Hom(c(X/S,)Sm,π!e[n])\displaystyle\cong\mathrm{Hom}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S})\!\left<m\right>,\pi^{!}\Lambda\left<-e\right>[-n]\bigr{)}
Hom(c(X)m+e,[n]).\displaystyle\cong\mathrm{Hom}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X)\!\left<m+e\right>,\Lambda[-n]\bigr{)}.

Since dim(X)dim(S)+d=e+d\dim(X)\leq\dim(S)+d=e+d, we get the vanishing by the S=Spec(k)S=\mathrm{Spec}(k) case.

Finally, we treat the general case. We take a ppdh-hypercovering SSS_{\bullet}\rightarrow S so that SiS_{i} is smooth. Let ,𝒢D(S)\mathcal{F},\mathcal{G}\in D(S). Then by ppdh-descent spectral sequence (2.1), we have

E2p,q=RplimHomq(,𝒢)Homp+q(,𝒢).E_{2}^{p,q}=\mathrm{R}^{p}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{\mathbf{\Delta}}\mathrm{Hom}^{q}(\mathcal{F}_{\bullet},\mathcal{G}_{\bullet})\Longrightarrow\mathrm{Hom}^{p+q}(\mathcal{F},\mathcal{G}).

If E2p,q=0E_{2}^{p,q}=0 for q<0q<0, then Homi(𝒢,)=0\mathrm{Hom}^{i}(\mathcal{G},\mathcal{F})=0 for i<0i<0. Thus, we get the claim by applying this to =c(X/S,)Sm\mathcal{F}=\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S})\!\left<m\right> and 𝒢=\mathcal{G}=\Lambda. ∎

Remark.

Consider the case where pp may not be invertible in . If SS is smooth, then the proposition holds. If we further assume the resolution of singularities, the proposition also holds for any ff.

4.  Construction of the trace map when the base is smooth

Let f:XSf\colon X\rightarrow S be a flat morphism. When SS is smooth, we will construct a map which is supposed to be the same as Trfτ\mathrm{Tr}_{f}^{\tau} in this section.

4.1.  

For a scheme ZZ, we often denote dim(Z)\dim(Z) by dZd_{Z}. Let f:XSf\colon X\rightarrow S be (any) separated morphism of finite type such that SS is smooth equidimensional, and put df:=dXdSd_{f}:=d_{X}-d_{S}. In this case, let us construct a morphism tf:f!dfXSt_{f}\colon f_{!}{}_{X}\!\left<d_{f}\right>\rightarrow{}_{S}, which we will show to be equal to Trf\mathrm{Tr}_{f} when ff is flat.

Let us start to construct tft_{f}. Considering componentwise, it suffices to construct the morphism when SS is connected. For any separated scheme XX of finite type over kk, we have the canonical isomorphism

γX:H2nBM(X,(n))CHn(X;)\gamma_{X}\colon\mathrm{H}^{\mathrm{BM}}_{2n}(X,\Lambda(n))\xrightarrow{\ \sim\ }\mathrm{CH}_{n}(X;\Lambda)

by [Jin16, Corollary 3.9]. We have

H2dfBM(X/S,(df))H2dXBM(X,(dX))γXCHdX(X;),\displaystyle\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X/S,\Lambda(d_{f}))\cong\mathrm{H}^{\mathrm{BM}}_{2d_{X}}(X,\Lambda(d_{X}))\xrightarrow[\sim]{\ \gamma_{X}\ }\mathrm{CH}_{d_{X}}(X;\Lambda),

where the first isomorphism follows since gdg!g^{*}\!\left<d\right>\xrightarrow{\sim}g^{!} for any equidimensional smooth morphism gg of relative dimension dd. Let X=iIXiX=\bigcupop\displaylimits_{i\in I}X_{i} be the irreducible components, and let III^{\prime}\subset I be the subset of ii such that dim(Xi)=dX\dim(X_{i})=d_{X}. Let ξi\xi_{i} be the generic point of XiX_{i}. The element in H2dBM(X/S,(d))\mathrm{H}^{\mathrm{BM}}_{2d}(X/S,\Lambda(d)) corresponding via the isomorphism above to the element iIlg(𝒪X,ξi)[Xi,red]CHdX(X;)\sumop\displaylimits_{i\in I^{\prime}}\mathrm{lg}(\mathcal{O}_{X,\xi_{i}})\cdot[X_{i,\mathrm{red}}]\in\mathrm{CH}_{d_{X}}(X;\Lambda) on the right hand side is defined to be tft_{f}.

Let us end this paragraph with a simple observation. Let UXU\subset X be an open dense subscheme. Then the restriction map H2dfBM(X/S,(df))H2dfBM(U/S,(df))\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X/S,\Lambda(d_{f}))\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(U/S,\Lambda(d_{f})) is an isomorphism. Indeed, we have H2dhBM(X/Z,(dh))CHdX(X;)rX\mathrm{H}^{\mathrm{BM}}_{2d_{h}}(X/Z,\Lambda(d_{h}))\cong\mathrm{CH}_{d_{X}}(X;\Lambda)\cong{}^{\oplus r_{X}}, where rXr_{X} is the set of irreducible components of XX of dimension dXd_{X} by the computation above. Since rXr_{X} and rUr_{U} are the same, we get the claim.

4.2.  

By the setup 2.1, we may apply [Deg18, Introduction, Theorem 1]. In particular, for a morphism between smooth schemes f:XYf\colon X\rightarrow Y we have the fundamental class η¯fH2dfBM(X/Y,(df))\overline{\eta}_{f}\in\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X/Y,\Lambda(d_{f})). When Y=Spec(k)Y=\mathrm{Spec}(k), we sometimes denote η¯f\overline{\eta}_{f} by η¯X\overline{\eta}_{X}. As we expect, we have the following comparison.

Lemma.

Assume f:XYf\colon X\rightarrow Y is a morphism between smooth equidimensional schemes. Then tf=η¯ft_{f}=\overline{\eta}_{f} in H2dfBM(X/Y,(df))\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X/Y,\Lambda(d_{f})).

Proof.

Assume Y=Spec(k)Y=\mathrm{Spec}(k). In this case, ff is smooth. Then by [Deg18, Theorem 2.5.3], the fundamental class η¯f\overline{\eta}_{f} is equal to the one constructed in [Deg18, Proposition 2.3.11], which is nothing but the one we constructed above by [Jin16, Proposition 3.12]. Let us treat the general case. For a kk-scheme ZZ, denote by pZp_{Z} the structural morphism. Unwinding the definition, our tft_{f} is the unique dotted map so that the following diagram on the right is commutative:

dfX\textstyle{{}_{X}\!\left<d_{f}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpXadj\scriptstyle{t^{\mathrm{adj}}_{p_{X}}}f!Y\textstyle{f^{!}{}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f!η¯Y\scriptstyle{f^{!}\overline{\eta}_{Y}}f!dfX\textstyle{f_{!}{}_{X}\!\left<d_{f}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f!tpXadj\scriptstyle{f_{!}t^{\mathrm{adj}}_{p_{X}}}Yη¯Y\scriptstyle{\overline{\eta}_{Y}}f!pY!dY,\textstyle{f^{!}p_{Y}^{!}\Lambda\!\left<-d_{Y}\right>,}f!pX!dYX\textstyle{f_{!}p_{X}^{!}{}_{X}\!\left<-d_{Y}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}adjf\scriptstyle{\mathrm{adj}_{f}}pY!dY.\textstyle{p_{Y}^{!}\Lambda\!\left<-d_{Y}\right>.}

Here, tgadjt^{\mathrm{adj}}_{g} denotes the morphism given by taking adjoint to tgt_{g}. Equivalently, tft_{f} is the unique dotted map so that the diagram above on the left is commutative. Thus, it suffices to check that the diagram replacing the dotted arrow by η¯f\overline{\eta}_{f} commutes. From what we have checked, tpZadj=η¯pZadjt^{\mathrm{adj}}_{p_{Z}}=\overline{\eta}_{p_{Z}}^{\mathrm{adj}} for any smooth scheme ZZ. Thus, the desired commutativity follows by the associativity property of fundamental class (cf. [Deg18, Introduction, Theorem 1.2]). ∎

Lemma 4.3.
  1. (1)

    Assume we are given morphisms X𝑓Y𝑔ZX\xrightarrow{f}Y\xrightarrow{g}Z such that YY and ZZ are smooth and equidimensional. Let the composition be hh. We have tgtf=tht_{g}\bullet t_{f}=t_{h} in H2dhBM(X/Z,(dh))\mathrm{H}^{\mathrm{BM}}_{2d_{h}}(X/Z,\Lambda(d_{h})).

  2. (2)

    Consider the Cartesian diagram (3.1). Assume further that YY and YY^{\prime} are smooth equidimensional and ff is flat. The map g:H2dfBM(X/Y,(df))H2dfBM(X/Y,(df))g^{*}\colon\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X/Y,\Lambda(d_{f}))\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d_{f}}(X^{\prime}/Y^{\prime},\Lambda(d_{f})) sends tft_{f} to tft_{f^{\prime}}.

  3. (3)

    Consider a proper morphism f:XYf\colon X\rightarrow Y and a morphism g:YZg\colon Y\rightarrow Z such that ZZ is smooth and equidimensional. Put h:=gfh:=g\circ f. Then the map f:H2dhBM(X/Z,(dh))H2dhBM(Y/Z,(dh))f_{*}\colon\mathrm{H}^{\mathrm{BM}}_{2d_{h}}(X/Z,\Lambda(d_{h}))\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d_{h}}(Y/Z,\Lambda(d_{h})) sends tht_{h} to deg(X/Y)tg\deg(X/Y)\cdot t_{g} when th=tgt_{h}=t_{g} and 0 otherwise.

Proof.

Let us check the claim (1) of the lemma. By construction of tft_{f}, we may assume that XX is reduced. By §4.1, we may shrink XX by its dense open subscheme since H2dhBM(X/Z,(dh))\mathrm{H}^{\mathrm{BM}}_{2d_{h}}(X/Z,\Lambda(d_{h})) remains the same. Thus, we may assume that XX is smooth as well. In this case, we get the compatibility by Lemma Lemma and [Deg18, Introduction, Theorem 1.2]. The final claim (3) is just a reformulation of [Jin16, Proposition 3.11]. Let us check the claim (2) of the lemma. Since YY, YY^{\prime} are smooth, we may factor gg into a regular immersion followed by a smooth morphism. Thus, it suffices to check the case where gg is a regular immersion and a smooth morphism separately. In both cases, consider the following diagram:

f!dfX\textstyle{f^{\prime}_{!}{}_{X^{\prime}}\!\left<d_{f}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}tpXadj\scriptstyle{t^{\mathrm{adj}}_{p_{X^{\prime}}}}\scriptstyle{\clubsuit}gf!dfX\textstyle{g^{*}f_{!}{}_{X}\!\left<d_{f}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpXadj\scriptstyle{t^{\mathrm{adj}}_{p_{X}}}gf!pX!dY\textstyle{g^{*}f_{!}p_{X}^{!}\Lambda\!\left<-d_{Y}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}adjf\scriptstyle{\mathrm{adj}_{f}}f!gpX!dY\textstyle{f^{\prime}_{!}g^{\prime*}p_{X}^{!}\Lambda\!\left<-d_{Y}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η¯gadj\scriptstyle{\overline{\eta}^{\mathrm{adj}}_{g^{\prime}}}f!g!pX!dY\textstyle{f^{\prime}_{!}g^{\prime!}p_{X}^{!}\Lambda\!\left<-d_{Y^{\prime}}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}adjf\scriptstyle{\mathrm{adj}_{f^{\prime}}}gY\textstyle{g^{*}{}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpYadj\scriptstyle{t^{\mathrm{adj}}_{p_{Y}}}tpYadj\scriptstyle{t^{\mathrm{adj}}_{p_{Y^{\prime}}}}gpY!dY\textstyle{g^{*}p_{Y}^{!}\Lambda\!\left<-d_{Y}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η¯gadj\scriptstyle{\overline{\eta}^{\mathrm{adj}}_{g}}g!pY!dY.\textstyle{g^{!}p_{Y}^{!}\Lambda\!\left<-d_{Y^{\prime}}\right>.}

The map gtfg^{*}t_{f} is the unique straight dotted arrow redering the left small square diagram commutes, and tft_{f^{\prime}} is the unique bent dotted arrow rendering the outer largest diagram commutes. Since ff is flat, ff is transversal to gg in the sense of [Deg18, Example 3.1.2]. This implies that f(η¯g)=η¯gf^{*}(\overline{\eta}_{g})=\overline{\eta}_{g^{\prime}} by [Deg18, Introduction, Theorem 1.3]. By taking the adjoint, this implies that the right square is commutative. Since YY, YY^{\prime} are assumed to be smooth, we have tpYadj=η¯pYadjt^{\mathrm{adj}}_{p_{Y}}=\overline{\eta}^{\mathrm{adj}}_{p_{Y}} and tpYadj=η¯pYadjt^{\mathrm{adj}}_{p_{Y^{\prime}}}=\overline{\eta}^{\mathrm{adj}}_{p_{Y^{\prime}}} by the previous lemma. Since gg, pYp_{Y}, pYp_{Y^{\prime}} are gci morphism, the bottom semicircular diagram is commutative by [Deg18, Introduction, Theorem 1.2]. In order to check the equality in the claim, it remains to check that the \clubsuit-marked diagram commutes.

When gg is smooth, the verification is easy, so we leave it to the reader. Assume gg is a regular immersion. In [Jin16, Definition 2.31], Jin defines a morphism Rf(g):c(X)c(X)cR_{f}(g)\colon\mathcal{H}_{\mathrm{c}}^{*}(X^{\prime})\rightarrow\mathcal{H}_{\mathrm{c}}^{*}(X)\!\left<c\right> where c=dim(Y)dim(Y)c=\dim(Y)-\dim(Y^{\prime}). By construction, this is defined as the composition

pX!pX!Xg!fpX!Yfg!η¯gYpX!fcY.p_{X^{\prime}!}{}_{X^{\prime}}\cong p_{X!}g^{\prime}_{!}f^{\prime*}{}_{Y^{\prime}}\cong p_{X!}f^{*}g_{!}{}_{Y^{\prime}}\xrightarrow{\ \overline{\eta}_{g}\ }p_{X!}f^{*}{}_{Y}\left<c\right>.

Applying [Deg18, Introduction, Theorem 1.3], this is the same as pX!η¯gp_{X!}\overline{\eta}_{g^{\prime}}. Now, since g!([X])=[X]g^{!}([X])=[X^{\prime}] in CHdX(X)\mathrm{CH}_{d_{X^{\prime}}}(X^{\prime}) by the flatness of ff, [Jin16, Proposition 3.15] implies that the following diagram on the left commutes:

c(X)\textstyle{\mathcal{H}_{\mathrm{c}}^{*}(X^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpX\scriptstyle{t_{p_{X^{\prime}}}}Rf(g)=pX!η¯g\scriptstyle{R_{f}(g)=p_{X!}\overline{\eta}_{g^{\prime}}}c(X)c\textstyle{\mathcal{H}_{\mathrm{c}}^{*}(X)\!\left<c\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpX\scriptstyle{t_{p_{X}}}dX,\textstyle{\Lambda\!\left<-d_{X^{\prime}}\right>,}      gpXdX\textstyle{g^{\prime*}p_{X}^{*}\Lambda\!\left<d_{X^{\prime}}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η¯g\scriptstyle{\overline{\eta}_{g^{\prime}}}tpX\scriptstyle{t_{p_{X}}}g!pXdX\textstyle{g^{\prime!}p_{X}^{*}\Lambda\!\left<d_{X}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tpX\scriptstyle{t_{p_{X}}}gpX!c\textstyle{g^{\prime*}p_{X}^{!}\Lambda\!\left<c\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η¯g\scriptstyle{\overline{\eta}_{g^{\prime}}}g!pX!.\textstyle{g^{\prime!}p_{X}^{!}\Lambda.}

Taking the adjunction, the verification is reduced to the commutativity of the right diagram above. This follows by the following commutative diagram:

gpXdX\textstyle{g^{\prime*}p_{X}^{*}\Lambda\!\left<d_{X^{\prime}}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g(tpX)\scriptstyle{g^{*}(t_{p_{X}})}η¯gid\scriptstyle{\overline{\eta}_{g^{\prime}}\otimes\mathrm{id}}g!XgpXdX\textstyle{g^{\prime!}{}_{X}\otimes g^{\prime*}p_{X}^{*}\Lambda\!\left<d_{X}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}proj\scriptstyle{\mathrm{proj}}idg(tpX)\scriptstyle{\mathrm{id}\otimes g^{\prime*}(t_{p_{X}})}g!pXdX\textstyle{g^{\prime!}p_{X}^{*}\Lambda\!\left<d_{X}\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g!(tpX)\scriptstyle{g^{\prime!}(t_{p_{X}})}gpX!c\textstyle{g^{\prime*}p_{X}^{!}\Lambda\!\left<c\right>\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η¯gid\scriptstyle{\overline{\eta}_{g^{\prime}}\otimes\mathrm{id}}g!XgpX!\textstyle{g^{\prime!}{}_{X}\otimes g^{\prime*}p_{X}^{!}\Lambda\ignorespaces\ignorespaces\ignorespaces\ignorespaces}proj\scriptstyle{\mathrm{proj}}g!pX!.\textstyle{g^{\prime!}p_{X}^{!}\Lambda.}

Here, proj\mathrm{proj} are the morphisms induced by the projection formula (or more precisely [Deg18, (1.2.8.a)]), and we conclude the proof. ∎

Lemma 4.4.

Assume we have a morphism of bivariant theories τ\tau in Theorem 3.5. Then for a flat morphism f:XSf\colon X\rightarrow S such that SS is smooth and equidimensional, we must have an equality Trfτ=tf\mathrm{Tr}^{\tau}_{f}=t_{f}.

Proof.

First, consider the case where X=SX=S. Since τ\tau preserves the product structure, τ(idS)\tau(\mathrm{id}_{S}) must send the unit element 𝟏=[S]zequi(S/S,0)\mathbf{1}=[S]\in z_{\mathrm{equi}}(S/S,0) to 𝟏=idH0BM(S/S,0)\mathbf{1}=\mathrm{id}\in\mathrm{H}^{\mathrm{BM}}_{0}(S/S,0). By [Jin16, Proposition 3.12], tidt_{\mathrm{id}} is equal to id\mathrm{id} as well, and the claim follows in this case. When ff is an open immersion, we may argue similarly.

Now, let f:XSf\colon X\rightarrow S be a finite étale morphism such that SS is smooth and equidimensional of dimension dd. We may assume XX and SS are integral, and the degree of ff is nn. By f:zequi(X/S,0)zequi(S/S,0)f_{*}\colon z_{\mathrm{equi}}(X/S,0)\rightarrow z_{\mathrm{equi}}(S/S,0), [X][X] is sent to n[S]n\cdot[S] in zequi(S/S,0)z_{\mathrm{equi}}(S/S,0) by definition of ff_{*}. This implies that f(Trfτ)=nidf_{*}(\mathrm{Tr}^{\tau}_{f})=n\cdot\mathrm{id} where f:H0BM(X/S,(0))H0BM(S/S,(0))f_{*}\colon\mathrm{H}^{\mathrm{BM}}_{0}(X/S,\Lambda(0))\rightarrow\mathrm{H}^{\mathrm{BM}}_{0}(S/S,\Lambda(0)). On the other hand, we have the following commutative diagram by [Jin16, Proposition 3.11]:

\scriptstyle{\sim}n\scriptstyle{n\cdot}CHd(X;)\textstyle{\mathrm{CH}_{d}(X;\Lambda)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γX\scriptstyle{\gamma_{X}}\scriptstyle{\sim}f\scriptstyle{f_{*}}H2dBM(X,(d))\textstyle{\mathrm{H}^{\mathrm{BM}}_{2d}(X,\Lambda(d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f_{*}}\scriptstyle{\sim}H0BM(X/S,(0))\textstyle{\mathrm{H}^{\mathrm{BM}}_{0}(X/S,\Lambda(0))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f_{*}}\scriptstyle{\sim}CHd(S;)\textstyle{\mathrm{CH}_{d}(S;\Lambda)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γS\scriptstyle{\gamma_{S}}\scriptstyle{\sim}H2dBM(S,(d))\textstyle{\mathrm{H}^{\mathrm{BM}}_{2d}(S,\Lambda(d))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}H0BM(S/S,(0)).\textstyle{\mathrm{H}^{\mathrm{BM}}_{0}(S/S,\Lambda(0)).}

This implies that, since =Z[1/p]\Lambda=\mathbb{Z}[1/p] is torsion free, the left vertical map is injective, and so is the right vertical map. Thus Trfτ\mathrm{Tr}^{\tau}_{f} is characterized by the property that fTrfτ=n𝟏f_{*}\mathrm{Tr}^{\tau}_{f}=n\cdot\mathbf{1}, and it suffices to check that ftf=n𝟏f_{*}t_{f}=n\cdot\mathbf{1}. By definition, γX([X])=tf\gamma_{X}([X])=t_{f}, and the commutative diagram again implies that ftf=n𝟏f_{*}t_{f}=n\cdot\mathbf{1}. Thus tf=Trfτt_{f}=\mathrm{Tr}^{\tau}_{f} in this case.

Consider the case where S=Spec(k)S=\mathrm{Spec}(k) . We may assume that XX is integral, and we may shrink XX by its open dense subscheme since H2dXBM(X,(dX))\mathrm{H}^{\mathrm{BM}}_{2d_{X}}(X,\Lambda(d_{X})) does not change by §4.1. Then we may assume that ff can be factored into X𝑔AdfSpec(k)X\xrightarrow{g}\mathbb{A}^{d_{f}}\rightarrow\mathrm{Spec}(k) where the first morphism is étale. By shrinking XX further, we may assume we have the factorization XgVAdfX\xrightarrow{g^{\prime}}V\hookrightarrow\mathbb{A}^{d_{f}} of gg where gg^{\prime} is finite étale. Since the trace map is assumed to preserve A1\mathbb{A}^{1}-orientation, we must have Trpτ=tp\mathrm{Tr}^{\tau}_{p}=t_{p} where p:A1Spec(k)p\colon\mathbb{A}^{1}\rightarrow\mathrm{Spec}(k) by [Jin16, Proposition 3.12]. Thus, by Lemma 4.3-(1), we have Trfτ=tf\mathrm{Tr}^{\tau}_{f}=t_{f}.

Finally, let us treat the general case. Let UXU\subset X be an open dense subscheme such that UredU_{\mathrm{red}} is smooth over kk. Let ee be the dimension of SS. We have an isomorphism F:H2dBM(X/S,(d))H2(d+e)BM(U,(d+e))F\colon\mathrm{H}^{\mathrm{BM}}_{2d}(X/S,\Lambda(d))\simeq\mathrm{H}^{\mathrm{BM}}_{2(d+e)}(U,\Lambda(d+e)), again, by §4.1. By construction, this morphism sends xx to η¯Sx\overline{\eta}_{S}\bullet x. In view of Lemma Lemma, this is equal to tSxt_{S}\bullet x. Now, we have

F(Trfτ)=Trf|UτtS=Trf|UτTrSτ=TrUτ=tU=tf|UtS=F(tf)\displaystyle F(\mathrm{Tr}^{\tau}_{f})=\mathrm{Tr}^{\tau}_{f|_{U}}\bullet t_{S}=\mathrm{Tr}^{\tau}_{f|_{U}}\bullet\mathrm{Tr}^{\tau}_{S}=\mathrm{Tr}^{\tau}_{U}=t_{U}=t_{f|_{U}}\bullet t_{S}=F(t_{f})

where the 2nd2^{\text{nd}} equality follows by what we have already proven, the 3rd3^{\text{rd}} by the transitivity of the trace map, the 4th4^{\text{th}} by what we have already proven, and the 5th5^{\text{th}} by Lemma 4.3-(1). Thus, we conclude the proof. ∎

5.  Construction of the trace map

In this section, we prove the main result.

5.1.  

Let f:XSf\colon X\rightarrow S be a morphism. To a morphism TST\rightarrow S, we associate

H¯BM(X/S,n)(T):=Hom𝒟S(c(X/S,(n)S),(T/S,)S)HBM(XT/T,n),\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n)(T):=\mathrm{Hom}_{\mathcal{D}_{S}}\bigl{(}\mathcal{H}_{\mathrm{c}}^{*}(X/S,{}_{S}(n)),\mathcal{H}^{*}(T/S,{}_{S})\bigr{)}\simeq\mathrm{H}^{\mathrm{BM}}(X_{T}/T,n),

which defines a presheaf of spectra H¯BM(X/S,n)\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n) on Sch/S\mathrm{Sch}_{/S}. We denote by H¯mBM(X/S,n)\underline{\mathrm{H}}^{\mathrm{BM}}_{m}(X/S,n) the Abelian presheaf πmH¯BM(X/S,n)\pi_{m}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n) on Sch/S\mathrm{Sch}_{/S}. Here, πm\pi_{m} is taken as a presheaf and do not consider any topology.

Lemma 5.2.
  1. (1)

    The spectra-valued presheaf H¯BM(X/S,n)\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n) on Sch/S\mathrm{Sch}_{/S} is a spectra-valued sheaf on the \infty-topos 𝒮hv(Sch/S,pdh)\mathcal{S}\mathrm{hv}(\mathrm{Sch}_{/S,p\mathrm{dh}})^{\wedge}, where Sch/S,pdh\mathrm{Sch}_{/S,p\mathrm{dh}} denotes the ppdh-site and ()(\cdot)^{\wedge} denotes the hypercompletion.

  2. (2)

    Let us assume that dim(f)d\dim(f)\leq d. We the have (T,π~2dH¯BM(X/S,d))π2dHBM(XT/T,d)\Gamma\bigl{(}T,\widetilde{\pi}_{2d}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d)\bigr{)}\cong\pi_{2d}\mathrm{H}^{\mathrm{BM}}(X_{T}/T,d), and πiH¯BM(X/S,d)=0\pi_{i}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d)=0 for i>2di>2d. Here, π~n\widetilde{\pi}_{n} is the functor πn\pi_{n} in the \infty-topos 𝒮hv(Spdh)\mathcal{S}\mathrm{hv}(S_{p\mathrm{dh}})^{\wedge}, in other words, the ppdh-sheafification of πn\pi_{n}.

Proof.

Let us show the claim (1) of the lemma. Let TTT_{\bullet}\rightarrow T be a ppdh-hypercovering of q:TSSch/Sq\colon T\rightarrow S\in\mathrm{Sch}_{/S}. We must show that the canonical map

H¯BM(X/S,n)(T)limiH¯BM(X/S,n)(Ti)\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n)(T)\rightarrow\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,n)(T_{i})

is an equivalence in 𝒟T\mathcal{D}_{T}. By Lemma 2.4 applied to =T𝒟T\mathcal{F}={}_{T}\in\mathcal{D}_{T}, we have the equivalence Tlimi(Ti/T,)T{}_{T}\xrightarrow{\sim}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathcal{H}^{*}(T_{i}/T,{}_{T}). By applying qq_{*}, taking into account that qq_{*} commutes with arbitrary limit by the existence of a left adjoint, we have an equivalence (T/S,)Slimi(Ti/S,)S\mathcal{H}^{*}(T/S,{}_{S})\xrightarrow{\sim}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathcal{H}^{*}(T_{i}/S,{}_{S}). Thus, the claim follows by definition. Let us show the claim (2) of the lemma. The Abelian sheaf π~iH¯BM(X/S,d)\widetilde{\pi}_{i}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d) is the ppdh-sheafification of the Abelian presheaf associating πiH¯BM(X/S,d)(T)\pi_{i}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d)(T) to TSch/ST\in\mathrm{Sch}_{/S}. Since πiH¯BM(X/S,d)(T)HiBM(XT/T,d)\pi_{i}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d)(T)\cong\mathrm{H}^{\mathrm{BM}}_{i}(X_{T}/T,d), this vanishes if i>2di>2d by Proposition Proposition. Furthermore, since lim\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits is left exact, 1 and the vanishing for i>2di>2d imply that π2dH¯BM(X/S,d)\pi_{2d}\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d) is already a ppdh-sheaf on Sch/S\mathrm{Sch}_{/S}, and the claim follows. ∎

5.3.  

Let XSX\rightarrow S be a morphism. Let us recall the Abelian group Hilb(X/S,r)\mathrm{Hilb}(X/S,r) for an integer r0r\geq 0 from [SV, §3.2]. This is the set of closed subschemes in XX which are flat over SS. We denote by Hilb(X/S,r)\Lambda\mathrm{Hilb}(X/S,r) the free -module generated by Hilb(X/S,r)\mathrm{Hilb}(X/S,r).

Now, assume that SS is smooth. For a (flat) morphism g:ZSg\colon Z\rightarrow S in Hilb(X/S,r)\mathrm{Hilb}(X/S,r), we constructed tgH2rBM(Z/S,(r))t_{g}\in\mathrm{H}^{\mathrm{BM}}_{2r}(Z/S,\Lambda(r)) in §4.1 when SS is equidimensional. Even if SS is not equidimensional, by considering componentwise, we define the element tgt_{g}. By associating to ZZ the image of tgt_{g} via the map H2rBM(Z/S,(r))H2rBM(X/S,(r))\mathrm{H}^{\mathrm{BM}}_{2r}(Z/S,\Lambda(r))\rightarrow\mathrm{H}^{\mathrm{BM}}_{2r}(X/S,\Lambda(r)), we have the map Hilb(X/S,r)H2rBM(X/S,(r))\mathrm{Hilb}(X/S,r)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2r}(X/S,\Lambda(r)). This yields the map Hilb(X/S,r)H2rBM(X/S,(r))\Lambda\mathrm{Hilb}(X/S,r)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2r}(X/S,\Lambda(r)). Now, let IX/SHilb(X/S,r)I_{X/S}\subset\Lambda\mathrm{Hilb}(X/S,r) be the submodule consisting of elements λiZiHilb(X/S,r)\sumop\displaylimits\lambda_{i}Z_{i}\in\Lambda\mathrm{Hilb}(X/S,r) such that the associated cycle λi[Zi]=0\sumop\displaylimits\lambda_{i}[Z_{i}]=0 (cf. the paragraph before Theorem 4.2.11 in [SV]).(4)(4)(4) In [Kel13, §2.1], Kelly pointed out a problem in the definition of the map cycl\mathrm{cycl} of [SV] used in the definition of IX/SI_{X/S} above. Note that we may employ Kelly’s definition of cycl\mathrm{cycl} to define IX/SI_{X/S}, but we get the same ideal, and it does not affect our arguments. Since tgt_{g} only depends on the underlying subset and its length, the above constructed map factors through II, and defines a map

T(X/S,r):Hilb(X/S,r)/IX/SH2rBM(X/S,(r))T(X/S,r)\colon\Lambda\mathrm{Hilb}(X/S,r)/I_{X/S}\rightarrow\mathrm{H}^{\mathrm{BM}}_{2r}(X/S,\Lambda(r))
Lemma 5.4.

Let h:TSh\colon T\rightarrow S be a morphism between smooth kk-schemes. Then we have the following commutative diagram of Abelian groups

Hilb(X/S,r)\textstyle{\Lambda\mathrm{Hilb}(X/S,r)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T(X/S,r)\scriptstyle{T(X/S,r)}h\scriptstyle{h^{*}}H2rBM(X/S,(r))\textstyle{\mathrm{H}^{\mathrm{BM}}_{2r}(X/S,\Lambda(r))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h^{*}}Hilb(XT/T,r)\textstyle{\Lambda\mathrm{Hilb}(X_{T}/T,r)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T(XT/T,r)\scriptstyle{T(X_{T}/T,r)}H2rBM(XT/T,(r))\textstyle{\mathrm{H}^{\mathrm{BM}}_{2r}(X_{T}/T,\Lambda(r))}
Proof.

This follows immediately from Lemma 4.3-(2). ∎

5.5.  

Let f:XSf\colon X\rightarrow S be a morphism. Let 𝒵(X/S,r)\mathcal{Z}(X/S,r) be the presheaf of Abelian groups on Sch/S\mathrm{Sch}_{/S} which sends TT to Hilb(XT/T,r)/IXT/T\Lambda\mathrm{Hilb}(X_{T}/T,r)/I_{X_{T}/T}, and z¯(X/S,r)\underline{z}(X/S,r) be the presheaf which sends TT to z(XT/T,r)z(X_{T}/T,r). Consider the (geometric) morphism of sites Sch/S,pdh𝑎Sch/S,cdh𝑏Sch/S\mathrm{Sch}_{/S,p\mathrm{dh}}\xrightarrow{a}\mathrm{Sch}_{/S,\mathrm{cdh}}\xrightarrow{b}\mathrm{Sch}_{/S}. Then we have

(5.1) (ba)(𝒵(X/S,r))a(b𝒵(X/S,r))az¯(X/S,(r))z¯(X/S,(r)),(b\circ a)^{*}\bigl{(}\mathcal{Z}(X/S,r)\bigr{)}\cong a^{*}\bigl{(}b^{*}\mathcal{Z}(X/S,r)\bigr{)}\cong a^{*}\underline{z}(X/S,\Lambda(r))\cong\underline{z}(X/S,\Lambda(r)),

where the 2nd2^{\text{nd}} isomorphism follows by [SV, Theorem 4.2.11], the last isomorphism follows since z(X/S,(r))z(X/S,\Lambda(r)) is an h-sheaf by [SV, Theorem 4.2.2] and, in particular, a ppdh-sheaf.

Now, a ppdh-hypercovering SSS_{\bullet}\rightarrow S is said to be good if SiS_{i} is smooth for any ii. Let HR(S)\mathrm{HR}(S) be the (ordinary) category of ppdh-hypercoverings of SS (cf. [SGA4, Exposé V, §7.3.1]). Denote by HRg(S)\mathrm{HR}^{\mathrm{g}}(S) the full subcategory of HR(S)\mathrm{HR}(S) consisting of good ppdh-covers. Recall that HR(S)op\mathrm{HR}(S)^{\mathrm{op}} is filtered (cf. [SGA4, Exposé V, Théorème 7.3.2]). For any SHR(S)S_{\bullet}\in\mathrm{HR}(S), we can take SHRg(S)S^{\prime}_{\bullet}\in\mathrm{HR}^{\mathrm{g}}(S) and a morphism SSS^{\prime}_{\bullet}\rightarrow S_{\bullet} by [SGA4, Exposé Vbis\mathrm{V}^{\mathrm{bis}}, Proposition 5.1.3] and 2.3, which implies that HRg(S)op\mathrm{HR}^{\mathrm{g}}(S)^{\mathrm{op}} is cofinal in HR(S)op\mathrm{HR}(S)^{\mathrm{op}} (cf. [SGA4, Exposé I, Proposition 8.1.3]). Put X:=X×SSX_{\bullet}:=X\times_{S}S_{\bullet}. Thus we have the isomorphisms

z(X/S,(r))z¯(X/S,(r))(S)\displaystyle z(X/S,\Lambda(r))\cong\underline{z}(X/S,\Lambda(r))(S) limSHR(S)oplimi𝒵(X/S,r)(Si)\displaystyle\xrightarrow{\ \sim\ }\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{S_{\bullet}\in\mathrm{HR}(S)^{\mathrm{op}}}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathcal{Z}(X/S,r)(S_{i})
limSHRg(S)oplimiHilb(Xi/Si,r)/I,\displaystyle\xleftarrow{\ \sim\ }\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{S_{\bullet}\in\mathrm{HR}^{\mathrm{g}}(S)^{\mathrm{op}}}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\Lambda\mathrm{Hilb}(X_{i}/S_{i},r)/I,

where the 2nd2^{\text{nd}} isomorphism holds by [SGA4, Exposé V, Théorème 7.4.1] and (5.1).

Let Ab\mathrm{Ab}_{\mathbf{\Delta}} be the category of simplicial Abelian groups. Consider the functors

𝒵(,r),H2rBM(,(r)):HRg(S)opAb,\mathcal{Z}(-,r),\,\mathrm{H}^{\mathrm{BM}}_{2r}(-,\Lambda(r))\colon\mathrm{HR}^{\mathrm{g}}(S)^{\mathrm{op}}\rightarrow\mathrm{Ab}_{\mathbf{\Delta}},

defined by sending SS_{\bullet} to 𝒵(X/S,r)\mathcal{Z}(X_{\bullet}/S_{\bullet},r) and H2rBM(X/S,(r))\mathrm{H}^{\mathrm{BM}}_{2r}(X_{\bullet}/S_{\bullet},\Lambda(r)) respectively. By Lemma 5.4, we have the map of functors 𝒵(,r)H2rBM(,(r))\mathcal{Z}(-,r)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2r}(-,\Lambda(r)). Now, assume:

dim(f1(s))d\dim(f^{-1}(s))\leq d for any sSs\in S.

By Lemma 5.2-(2), we also have the descent isomorphism H2dBM(X/S,d)limiH2dBM(Xi/Si,d)\mathrm{H}^{\mathrm{BM}}_{2d}(X/S,d)\xrightarrow{\sim}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{H}^{\mathrm{BM}}_{2d}(X_{i}/S_{i},d) of Abelian groups. Combining everything together, we have a map

trf:z(X/S,d)\displaystyle\mathrm{tr}_{f}\colon z(X/S,d) limSHRg(S)limi𝒵(,d)\displaystyle\cong\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{S_{\bullet}\in\mathrm{HR}^{\mathrm{g}}(S)}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathcal{Z}(-,d)
limSHRg(S)limiH2dBM(,d)H2dBM(X/S,d).\displaystyle\rightarrow\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{S_{\bullet}\in\mathrm{HR}^{\mathrm{g}}(S)}\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{H}^{\mathrm{BM}}_{2d}(-,d)\cong\mathrm{H}^{\mathrm{BM}}_{2d}(X/S,d).
Lemma 5.6.
  1. (1)

    Consider the Cartesian diagram (3.1). Assume dim(f1(y))d\dim(f^{-1}(y))\leq d for any point yy of YY, in which case the same property holds for ff^{\prime}. Then we have gtrf=trfgg^{*}\circ\mathrm{tr}_{f}=\mathrm{tr}_{f^{\prime}}\circ g^{\prime*}.

  2. (2)

    Let X𝑔XfYX\xrightarrow{g}X^{\prime}\xrightarrow{f^{\prime}}Y be morphisms and put f:=fgf:=f^{\prime}\circ g. We assume that for any yYy\in Y, dim(f()1(y))d\dim(f^{(\prime)-1}(y))\leq d and gg is proper. Then we have trfg=gtrf\mathrm{tr}_{f^{\prime}}\circ g_{*}=g_{*}\circ\mathrm{tr}_{f}.

Proof.

Let us check the claim (1) of the lemma. Take a good ppdh hypercovering α:YY\alpha\colon Y_{\bullet}\rightarrow Y. Then we are able to find a good ppdh-hypercovering α:YY\alpha^{\prime}\colon Y^{\prime}_{\bullet}\rightarrow Y^{\prime} which fits into the following diagram, not necessarily Cartesian:

Y\textstyle{Y^{\prime}_{\bullet}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha^{\prime}}Y\textstyle{Y_{\bullet}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}Y\textstyle{Y^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y.\textstyle{Y.}

Consider the following diagram:

z(X/Y,d)\textstyle{z(X/Y,d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}limiz(XYi/Yi,d)\textstyle{\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}z(X_{Y_{i}}/Y_{i},d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr\scriptstyle{\mathrm{Tr}}limiH2dBM(XYi/Yi,d)\textstyle{\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{H}^{\mathrm{BM}}_{2d}(X_{Y_{i}}/Y_{i},d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2dBM(X/Y,d)\textstyle{\mathrm{H}^{\mathrm{BM}}_{2d}(X/Y,d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}z(X/Y,d)\textstyle{z(X^{\prime}/Y^{\prime},d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}limiz(XYi/Yi,d)\textstyle{\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}z(X^{\prime}_{Y^{\prime}_{i}}/Y^{\prime}_{i},d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr\scriptstyle{\mathrm{Tr}}limiH2dBM(XYi/Yi,d)\textstyle{\mathop{\underleftarrow{\,\mathrm{lim}}\,}\nolimits_{i\in\mathbf{\Delta}}\mathrm{H}^{\mathrm{BM}}_{2d}(X^{\prime}_{Y^{\prime}_{i}}/Y^{\prime}_{i},d)}H2dBM(X/Y,d).\textstyle{\mathrm{H}^{\mathrm{BM}}_{2d}(X^{\prime}/Y^{\prime},d).\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}

Both external squares are commutative by the functoriality of z(,d)z(-,d) and HBM(,d)\mathrm{H}^{\mathrm{BM}}(-,d), and the middle as well by 4.3-(2). The claim (2) follows immediately from Lemma 4.3-(3). ∎

5.7.  Proof of Theorem 3.5


First, let us construct a morphism zequi(,d)H2dBM(,d)z_{\mathrm{equi}}(-,d)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d}(-,d). Let f:YTf\colon Y\rightarrow T be a morphism, and wzequi(Y/T,d)w\in z_{\mathrm{equi}}(Y/T,d). Let WW be the support of ww, and i:WYi\colon W\hookrightarrow Y be the closed immersion. Then ww is the image of an element wzequi(W/T,d)w^{\prime}\in z_{\mathrm{equi}}(W/T,d) via the morphism iz:zequi(W/T,d)zequi(Y/T,d)i^{z}_{*}\colon z_{\mathrm{equi}}(W/T,d)\rightarrow z_{\mathrm{equi}}(Y/T,d). Since wzequi(Y/T,d)w\in z_{\mathrm{equi}}(Y/T,d), the dimension of each fiber of fif\circ i is d\leq d. Thus, we have already constructed the morphism trfi:zequi(W/T,d)H2dBM(W/T,d)\mathrm{tr}_{f\circ i}\colon z_{\mathrm{equi}}(W/T,d)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d}(W/T,d). We define τY/T(w):=iHtrfi(w)\tau_{Y/T}(w):=i^{\mathrm{H}}_{*}\circ\mathrm{tr}_{f\circ i}(w^{\prime}), where iH:H2dBM(W/T,d)H2dBM(Y/T,d)i^{\mathrm{H}}_{*}\colon\mathrm{H}^{\mathrm{BM}}_{2d}(W/T,d)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d}(Y/T,d) is the pushforward. This defines a map τY/Z:zequi(Y/T,d)H2dBM(Y/T,d)\tau_{Y/Z}\colon z_{\mathrm{equi}}(Y/T,d)\rightarrow\mathrm{H}^{\mathrm{BM}}_{2d}(Y/T,d). In view of Lemma 5.6-(2), this map is in fact a homomorphism of Abelian groups. This map is compatible with base change and pushforward by Lemmas 5.6-(1) and 5.6-(2). The uniqueness of the map follows by Lemma 4.4 and construction.

It remains to show the compatibility with respect to the product structure. Let X𝑓Y𝑔ZX\xrightarrow{f}Y\xrightarrow{g}Z be morphisms, and xzequi(X/Y,d)x\in z_{\mathrm{equi}}(X/Y,d), yzequi(Y/Z,e)y\in z_{\mathrm{equi}}(Y/Z,e). By definition, we may assume that ZZ is smooth, and Supp(x)X\mathrm{Supp}(x)\subset X and Supp(y)Y\mathrm{Supp}(y)\subset Y are flat over ZZ. By projection formula of bivariant theories (cf. §3.1), we may assume that Y=Supp(y)Y=\mathrm{Supp}(y) (with reduced induced scheme structure). Then, by the compatibility with pushforward, we may replace XX by Supp(x)\mathrm{Supp}(x). In this situation, we are allowed to shrink ZZ by its open dense subscheme because HBM(X/Z,d+e)\mathrm{H}^{\mathrm{BM}}(X/Z,d+e) does not change by §4.1, we may further assume that y=[Y]y=[Y]. Now, for an open immersion j:UXj\colon U\subset X, we have restriction morphisms zequi(X/Z,n)zequi(U/Z,n)z_{\mathrm{equi}}(X/Z,n)\rightarrow z_{\mathrm{equi}}(U/Z,n) and HBM(X/Z,n)HBM(U/Z,n)\mathrm{H}^{\mathrm{BM}}(X/Z,n)\rightarrow\mathrm{H}^{\mathrm{BM}}(U/Z,n) and we may check easily that these are compatible with τX/Z\tau_{X/Z}. Since f:XYf\colon X\rightarrow Y is dominant, we may take open dense subschemes UXU\subset X and VYV\subset Y such that f(U)Vf(U)\subset V, UVU\rightarrow V is flat, and VV is smooth. The compatibility with open immersion allows us to replace XX by UU. Since τU/Y(x)τY/Z(y)=τU/V(x)τV/Z(y|V)\tau_{U/Y}(x)\bullet\tau_{Y/Z}(y)=\tau_{U/V}(x)\bullet\tau_{V/Z}(y|_{V}), it suffices to show the claim for UVZU\rightarrow V\rightarrow Z, and in this case, we have already treated in Lemma 4.3-(1) together with Lemma 4.4. ∎

6.  \infty-enhancement of the trace map

In this section, we upgrade the trace map to the \infty-categorical setting.

6.1.  

Let Ar~\widetilde{\mathrm{Ar}} be the category of morphisms XSX\rightarrow S in Sch/k\mathrm{Sch}_{/k} whose morphisms from YTY\rightarrow T to XSX\rightarrow S consists of diagrams of the form

(6.1) YXTαXTTgS\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.01389pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-7.01389pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.95667pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.01389pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X_{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 74.13358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.04791pt\raise 4.50694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\alpha}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.0139pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 40.57373pt\raise-27.95667pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 61.121pt\raise-18.89499pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\square}$}}}}}\ignorespaces{}{\hbox{\kern 74.13358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 81.66829pt\raise-27.95667pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.61632pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 33.95741pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 56.45714pt\raise-32.60248pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 75.31413pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 75.31413pt\raise-37.78998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{S}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

where α\alpha is proper. The composition is defined in an evident manner, and we refer to [Abe22a, §5.2] for the detail. We often denote an object corresponding to XSX\rightarrow S in Ar~\widetilde{\mathrm{Ar}} by X/SX/S. For Y/TAr~Y/T\in\widetilde{\mathrm{Ar}}, let Cov(Y/T)\mathrm{Cov}(Y/T) be the set of families {YTi/TiY/T}iI\{Y_{T_{i}}/T_{i}\rightarrow Y/T\}_{i\in I} where {TiT}\{T_{i}\rightarrow T\} is a cdh-covering. The category Ar~\widetilde{\mathrm{Ar}} does not admits pullbacks in general, but each morphism (YTi/Ti)(Y/T)(Y_{T_{i}}/T_{i})\rightarrow(Y/T) is quarrable, in other words, for any morphism (Y/T)(Y/T)(Y^{\prime}/T^{\prime})\rightarrow(Y/T), the pullback (YTi/Ti)×(Y/T)(Y/T)(Y/T)(Y_{T_{i}}/T_{i})\times_{(Y/T)}(Y^{\prime}/T^{\prime})\rightarrow(Y^{\prime}/T^{\prime}) exists. Indeed, we can check easily that (YTi/Ti)×(Y/T)(Y/T)(Y×TTi/T×TTi)(Y_{T_{i}}/T_{i})\times_{(Y^{\prime}/T^{\prime})}(Y/T)\cong(Y^{\prime}\times_{T}T_{i}/T^{\prime}\times_{T}T_{i}). Thus, this family defines a pretopology on Ar~\widetilde{\mathrm{Ar}} in the sense of [SGA4, Exposé II, §1.3].

Now, fixing (Y/T)Ar~(Y/T)\in\widetilde{\mathrm{Ar}}, we have the functor ιY/T:Sch/TAr~\iota_{Y/T}\colon\mathrm{Sch}_{/T}\rightarrow\widetilde{\mathrm{Ar}} sending TTT^{\prime}\rightarrow T to (Y×TT/T)(Y\times_{T}T^{\prime}/T^{\prime}). This functor commutes with pullbacks. Putting the cdh-topology on Sch/T\mathrm{Sch}_{/T}, the functor ιX/T\iota_{X/T} is cocontinuous (cf. [SGA4, Exposé III, §2.1]) by [SGA4, Exposé II, §1.4].

6.2.  

By associating the Abelian group z(Y/T,n)z(Y/T,n) to YTY\rightarrow T, we have a functor zSV(n):Ar~op𝒮pz^{\mathrm{SV}}(n)\colon\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathcal{S}\mathrm{p}^{\heartsuit}. Then zSV(n)z^{\mathrm{SV}}(n) is an Abelian sheaf on Ar~\widetilde{\mathrm{Ar}}. Indeed, we must show the Čech descent with respect to the elements of Cov(Y/T)\mathrm{Cov}(Y/T) by [SGA4, Exposé II, §2.2]. This is exactly the contents of [SV, §4.2.9]. We define z(n)z(n) to be the sheafification of zSV(n)z^{\mathrm{SV}}(n) regarded as a spectra-valued presheaf on Ar~\widetilde{\mathrm{Ar}}.

Now, by [ES21, Lemma C.3], we have the following commutative diagram of geometric morphisms of \infty-topoi

(6.2) 𝒮hv(Sch/T,cdh)ιY/Ts𝒮hv(Ar~)𝒫(Sch/T)ιY/T𝒫(Ar~).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 30.98631pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-30.98631pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}\mathrm{hv}(\mathrm{Sch}_{/T,\mathrm{cdh}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 45.95865pt\raise 6.1875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.6875pt\hbox{$\scriptstyle{\iota^{\mathrm{s}}_{Y/T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.98631pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 70.98631pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}\mathrm{hv}(\widetilde{\mathrm{Ar}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 88.70857pt\raise-30.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-21.35573pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{P}(\mathrm{Sch}_{/T})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.73433pt\raise-35.24306pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.25694pt\hbox{$\scriptstyle{\iota_{Y/T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 74.25021pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 74.25021pt\raise-41.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{P}(\widetilde{\mathrm{Ar}}).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

Note that, since local objects (with respect to a localization) are stable under taking limits by definition, (ιY/Ts)(\iota^{\mathrm{s}}_{Y/T})^{*} is commutes with limits by [ES21, Lemma C.3], which justifies that ιY/Ts\iota^{\mathrm{s}}_{Y/T} is a geometric morphism. Moreover, by [Lur18, Proposition 20.6.1.3], the functor (ιY/Ts)(\iota^{\mathrm{s}}_{Y/T})^{*} is given by composing with ιY/T\iota_{Y/T}. In particular, z(n)ιY/Tz(n)\circ\iota_{Y/T} is the (cdh-)sheafification of zSV(n)ιY/Tz^{\mathrm{SV}}(n)\circ\iota_{Y/T}.

6.3.  

Assume we are given a morphism F:(Y/T)(X/S)F\colon(Y/T)\rightarrow(X/S) in Ar~\widetilde{\mathrm{Ar}} as in (6.1). Then we have the morphism of spectra

F:HBM(X/S,d)[2d]gHBM(XT/T,d)[2d]αHBM(Y/T,d)[2d].F^{*}\colon\mathrm{H}^{\mathrm{BM}}(X/S,d)[-2d]\xrightarrow{\ g^{*}\ }\mathrm{H}^{\mathrm{BM}}(X_{T}/T,d)[-2d]\xrightarrow{\ \alpha_{*}\ }\mathrm{H}^{\mathrm{BM}}(Y/T,d)[-2d].

With this morphism, we can check easily that the association HBM(X/S,d)[2d]\mathrm{H}^{\mathrm{BM}}(X/S,d)[-2d] to X/SAr~X/S\in\widetilde{\mathrm{Ar}} yields a functor H:Ar~oph𝒮pH\colon\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathrm{h}\mathcal{S}\mathrm{p}. It is natural to expect that this morphism can be lifted to a functor of \infty-categories Ar~op𝒮p\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathcal{S}\mathrm{p}. We put the existence as an assumption as follows:

Assume we are given a functor BM(d):Ar~op𝒮p\mathcal{H}^{\mathrm{BM}}(d)\colon\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathcal{S}\mathrm{p} between \infty-categories whose induced functor between homotopy categories coincides with HH above.

We constructed such a functor in [Abe22a, Example 6.8], and also in [Abe22b, §C.3] using a slightly different method. Now, we have the following \infty-enhancement of the trace map.

Theorem 6.4.

There exists essentially uniquely a morphism of spectra-valued sheaves τ:z(d)BM(d)\tau^{{\dagger}}\colon z(d)\rightarrow\mathcal{H}^{\mathrm{BM}}(d) on Ar~\widetilde{\mathrm{Ar}} for any dd such that the composition

zequi(,d)⸦⟶z(,d)π0z(d)π0(τ)π0BM(d)H2dBM(,d)z_{\mathrm{equi}}(-,d)\lhook\joinrel\longrightarrow z(-,d)\cong\pi_{0}z(d)\xrightarrow{\ \pi_{0}(\tau^{{\dagger}})\ }\pi_{0}\mathcal{H}^{\mathrm{BM}}(d)\cong\mathrm{H}^{\mathrm{BM}}_{2d}(-,d)

coincides with the morphism τ\tau of Theorem 3.5.

Proof.

Let π0zequi(d)π0z(d)\pi_{0}z_{\mathrm{equi}}(d)\subset\pi_{0}z(d) be the subsheaf so that the value at XSX\rightarrow S is zequi(X/S,d)z_{\mathrm{equi}}(X/S,d). Note that π0zequi(d)\pi_{0}z_{\mathrm{equi}}(d) is just a notation and not π0\pi_{0} of some presheaf zequi(d)z_{\mathrm{equi}}(d). We first define the trace map for π0zequi(d)\pi_{0}z_{\mathrm{equi}}(d). Let Ar~d\widetilde{\mathrm{Ar}}_{d} be the full subcategory of Ar~\widetilde{\mathrm{Ar}} consisting of objects f:XSf\colon X\rightarrow S such that dim(f)d\dim(f)\leq d. First, let us construct the map after restricting to Ar~d\widetilde{\mathrm{Ar}}_{d}. We have already constructed the map of spectra-valued presheaves

(6.3) π0zequi(d)|Ar~d𝜏π0BM(d)|Ar~dτ0BM(d)|Ar~dBM(d)|Ar~d.\pi_{0}z_{\mathrm{equi}}(d)|_{\widetilde{\mathrm{Ar}}_{d}}\xrightarrow{\ \tau\ }\pi_{0}\mathcal{H}^{\mathrm{BM}}(d)|_{\widetilde{\mathrm{Ar}}_{d}}\xleftarrow{\ \sim\ }\tau_{\geq 0}\mathcal{H}^{\mathrm{BM}}(d)|_{\widetilde{\mathrm{Ar}}_{d}}\longrightarrow\mathcal{H}^{\mathrm{BM}}(d)|_{\widetilde{\mathrm{Ar}}_{d}}.

Here, the equivalence follows by Lemma 5.2-(2) since we are restricting the functor to Ar~d\widetilde{\mathrm{Ar}}_{d}. Now, let the category App\mathrm{App} be the full subcategory of Fun(,1Ar~)\mathrm{Fun}({}^{1},\widetilde{\mathrm{Ar}}) spanned by the morphisms h:(X/S)(Y/T)h\colon(X/S)\rightarrow(Y/T) in Ar~\widetilde{\mathrm{Ar}} such that (Y/T)(Y/T) belongs to Ar~d\widetilde{\mathrm{Ar}}_{d}. We have functors s,t:AppAr~s,t\colon\mathrm{App}\rightarrow\widetilde{\mathrm{Ar}} where ss is the evaluation at {0}1\{0\}\in{}^{1}, and tt is at {1}\{1\}. Namely, for hh above, we have s(h)=(X/S)s(h)=(X/S) and t(h)=(Y/T)t(h)=(Y/T). By [Lur09, Corollary 2.4.7.12], ss is a Cartesian fibration. Note that we have the natural transform sts\rightarrow t and this induces the morphism of functors ϕ:topsop\phi\colon\mathcal{F}\circ t^{\mathrm{op}}\rightarrow\mathcal{F}\circ s^{\mathrm{op}} for any functor :Ar~op𝒮p\mathcal{F}\colon\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathcal{S}\mathrm{p}. From now on, we abbreviate top\mathcal{F}\circ t^{\mathrm{op}}, sop\mathcal{F}\circ s^{\mathrm{op}} by t\mathcal{F}\circ t, s\mathcal{F}\circ s to avoid heavy notations. By (6.3), we have the map π0zequi(d)tBM(d)t\pi_{0}z_{\mathrm{equi}}(d)\circ t\rightarrow\mathcal{H}^{\mathrm{BM}}(d)\circ t of spectra-valued presheaves on App\mathrm{App}. Now, we have the following diagram of \infty-categories

Appop\textstyle{\mathrm{App}^{\mathrm{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}sop\scriptstyle{s^{\mathrm{op}}}F\scriptstyle{F}𝒮p\textstyle{\mathcal{S}\mathrm{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ar~op\textstyle{\widetilde{\mathrm{Ar}}^{\mathrm{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{{}^{0},}

where FF is either π0zequi(d)t\pi_{0}z_{\mathrm{equi}}(d)\circ t or BM(d)t\mathcal{H}^{\mathrm{BM}}(d)\circ t. Since ss is a Cartesian fibration, sops^{\mathrm{op}} is a coCartesian fibration. Since the \infty-category 𝒮p\mathcal{S}\mathrm{p} is presentable, any left Kan extension exists by [Lur09, Proposition 4.3.2.15]. We denote by LKE(F):Ar~op𝒮p\mathrm{LKE}(F)\colon\widetilde{\mathrm{Ar}}^{\mathrm{op}}\rightarrow\mathcal{S}\mathrm{p} a left Kan extension of the above diagram. We have the following diagram of spectra-valued presheaves:

LKE(π0zequi(d)t)\textstyle{\mathrm{LKE}(\pi_{0}z_{\mathrm{equi}}(d)\circ t)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LKE(BM(d)t)\textstyle{\mathrm{LKE}(\mathcal{H}^{\mathrm{BM}}(d)\circ t)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π0zequi(d)\textstyle{\pi_{0}z_{\mathrm{equi}}(d)}BM(d).\textstyle{\mathcal{H}^{\mathrm{BM}}(d).}

Here, the vertical morphisms are defined by taking the adjoint to ϕ\phi. We claim that the left vertical map is equivalent. For this, it suffices to show that π0zequi(d)\pi_{0}z_{\mathrm{equi}}(d) is in fact a left Kan extension of π0zequi(d)t\pi_{0}z_{\mathrm{equi}}(d)\circ t. Let (X/S)Ar~(X/S)\in\widetilde{\mathrm{Ar}}, and we denote by AppX/S\mathrm{App}_{X/S} the fiber of ss over (X/S)(X/S). Since sops^{\mathrm{op}} is a coCartesian fibration, by invoking [Lur09, Proposition 4.3.3.10], it suffices to show that (π0zequi(d))(X/S)\bigl{(}\pi_{0}z_{\mathrm{equi}}(d)\bigr{)}(X/S) is a left Kan extension of (π0zequi(d)t)|AppX/Sop\bigl{(}\pi_{0}z_{\mathrm{equi}}(d)\circ t\bigr{)}|_{\mathrm{App}^{\mathrm{op}}_{X/S}} along the canonical map AppX/Sop{X/S}\mathrm{App}^{\mathrm{op}}_{X/S}\rightarrow{\{X/S\}} for any X/SX/S. This amounts to showing that the morphism of spectra (namely the colimit is the “derived colimit”)

limDAppX/Sopzequi(t(D)/S,d)zequi(X/S,d)\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{D\in\mathrm{App}^{\mathrm{op}}_{X/S}}z_{\mathrm{equi}}\bigl{(}t(D)/S,d\bigr{)}\longrightarrow z_{\mathrm{equi}}(X/S,d)

is an equivalence. Let C(X/S)C(X/S) be the category of closed immersions ZXZ\hookrightarrow X such that the composition ZSZ\rightarrow S is in Ar~d\widetilde{\mathrm{Ar}}_{d}. The category AppX/Sop\mathrm{App}^{\mathrm{op}}_{X/S} is filtered and the inclusion C(X/S)AppX/SopC(X/S)\hookrightarrow\mathrm{App}^{\mathrm{op}}_{X/S} cofinal. Thus, the colimit is t-exact by [Lur18, Proposition 1.3.2.7], and it suffices to show the morphism limZC(X/S)zequi(Z/S,d)zequi(X/S,d)\mathop{\,\underrightarrow{\mathrm{lim}\,}}\nolimits_{Z\in C(X/S)}z_{\mathrm{equi}}\bigl{(}Z/S,d\bigr{)}\rightarrow z_{\mathrm{equi}}(X/S,d) of Abelian groups is an isomorphism. This follows by definition. Thus we have the map π0zequi(d)BM(d)\pi_{0}z_{\mathrm{equi}}(d)\rightarrow\mathcal{H}^{\mathrm{BM}}(d) of spectra-valued presheaves.

Finally, let us extend this map to the required map. The \infty-presheaf BM(d)\mathcal{H}^{\mathrm{BM}}(d) on Ar~\widetilde{\mathrm{Ar}} is in fact an \infty-sheaf. Indeed, let BM(d)LBM(d)\mathcal{H}^{\mathrm{BM}}(d)\rightarrow L\mathcal{H}^{\mathrm{BM}}(d) be the localization morphism. We must show that this morphism is an equivalence. Recall that for an \infty-category 𝒞\mathcal{C}, a simplicial set SS, and a morphism α:FG\alpha\colon F\rightarrow G in Fun(S,𝒞)\mathrm{Fun}(S,\mathcal{C}), α\alpha is an equivalence if and only if α(s)\alpha(s) is an equivalence for any vertex ss of SS. We believe that this is well-known, but a (fairly) indirectly way to see this is by applying [Lur09, Corollary 5.1.2.3] to the diagram ()0Fun(S,𝒞)({}^{0})^{\triangleright}\rightarrow\mathrm{Fun}(S,\mathcal{C}) given by α\alpha. Now, let (Y/T)Ar~(Y/T)\in\widetilde{\mathrm{Ar}}. Since the verification is pointwise by the recalled fact, it suffices to show that BM(d)ιY/T(LBM(d))ιY/T\mathcal{H}^{\mathrm{BM}}(d)\circ\iota_{Y/T}\rightarrow(L\mathcal{H}^{\mathrm{BM}}(d))\circ\iota_{Y/T} is an equivalence. By (6.2), this morphism can be identified with ιY/TBM(d)L(ιY/TBM(d))\iota^{*}_{Y/T}\mathcal{H}^{\mathrm{BM}}(d)\rightarrow L\bigl{(}\iota_{Y/T}^{*}\mathcal{H}^{\mathrm{BM}}(d)\bigr{)}, which is an equivalence since ιX/TBM(d)H¯BM(X/S,d)\iota^{*}_{X/T}\mathcal{H}^{\mathrm{BM}}(d)\simeq\underline{\mathrm{H}}^{\mathrm{BM}}(X/S,d) is already a cdh-sheaf (cf. Lemma 5.2-(1)). Thus, by taking the sheafification to the morphism π0zequi(d)BM(d)\pi_{0}z_{\mathrm{equi}}(d)\rightarrow\mathcal{H}^{\mathrm{BM}}(d), we get the morphism z(d)BM(d)z(d)\rightarrow\mathcal{H}^{\mathrm{BM}}(d). The essential uniqueness follows by construction, and the detail is left to the reader. ∎

References

  • [Abe22a] T. Abe, Enhanced bivariant homology theory attached to six functor formalism, J. Topology 15 (2022), 1675–1754.
  • [Abe22b] by same author, Ramification theory from homotopical point of view, I, preprint arXiv:2206.02401 (2022).
  • [CD15] D.-C. Cisinski and F. Déglise, Integral mixed motives in equal characteristic, Doc. Math. Extra Vol., Alexander S. Merkurjev’s Sixtieth Birthday (2015), 145–194.
  • [CD19] by same author, Triangulated categories of mixed motives, Springer Monographs in Math., Cham: Springer, 2019.
  • [Deg18] F. Déglise, Bivariant theories in motivic stable homotopy, Doc. Math. 23 (2018), 997–1076.
  • [EK20] E. Elmanto and A. Khan, Perfection in motivic homotopy theory, Proc. London Math. Soc. (3) 120 (2020), no. 1, 28–38.
  • [ES21] E. Elmanto and J. Shah, Scheiderer motives and equivariant higher topos theory, Adv. Math. 382 (2021), article id. 107651.
  • [FM81] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Am. Mat. Soc. 243 (1981).
  • [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, New York-Heidelberg-Berlin: Springer-Verlag, 1977.
  • [Jin16] F. Jin, Borel-Moore motivic homology and weight structure on mixed motives, Math. Z. 283 (2016), no. 3-4, 1149–1183.
  • [Kel13] S. Kelly, Triangulated categories of motives in positive characteristic, preprint arXiv:1305.5349 (2013).
  • [Kha16] A. Khan, Motivic homotopy theory in derived algebraic geometry, Ph.D. thesis (2016). Available from www.preschema.com/thesis/.
  • [Lur09] J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton, NJ: Princeton University Press, 2009.
  • [Lur18] by same author, Spectral algebraic geometry, preprint (2018). Available from the author’s webpage https://www.math.ias.edu/ lurie/papers/SAG-rootfile.pdf
  • [SGA4] A. Grothendieck et al., Théorie des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Mathematics, vol. 269, 270, and 305, Berlin-Heidelberg-New York: Springer-Verlag, 1972–1973
  • [SV] A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, in Cycles, transfers, and motivic homology theories, Ann. Math. Studies, vol. 143, pp. 10–86, Princeton, NJ: Princeton University Press, 2000.
  • [T] M. Temkin, Tame distillation and desingularization by pp-alterations, Ann. Math. 186 (2017), no. 1, 97–126.