This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Trading Large Orders in the Presence of Multiple High-Frequency Anticipatory Traders

Ziyi Xu LMEQF, Department of Financial Mathematics,
School of Mathematical Sciences,
Peking University, Beijing 100871, China.
Xue Cheng chengxue@pku.edu.cn LMEQF, Department of Financial Mathematics,
School of Mathematical Sciences,
Peking University, Beijing 100871, China.
Abstract

We investigate a market with a normal-speed informed trader (IT) who may employ mixed strategy and multiple anticipatory high-frequency traders (HFTs) who are under different inventory pressures, in a three-period Kyle’s model. The pure- and mixed-strategy equilibria are considered and the results provide recommendations for IT’s randomization strategy with different numbers of HFTs. Some surprising results about investors’ profits arise: the improvement of anticipatory traders’ speed or a more precise prediction may harm themselves but help IT.

Keywords: High-frequency anticipatory trading; Multiple high-frequency traders; Mixed strategy; Randomization; Small informed trader; Round-Tripper

JEL Classification: G14, G17

1 Introduction

As mentioned in SEC’s technical report [1], highly automated exchange systems have changed the current market structure, of which high-frequency trading is a dominant component by any measure. So high-frequency traders (HFTs) have become counterparties of many investors and affected nearly all aspects of market performance. One important way for HFTs to make profits and interact with other traders is through anticipatory trading. As empirically found in Kirilenko et al. (2017) [2] and Hirschey (2020) [3], HFTs predict non-HFTs’ order flow and trade ahead of them. How other investors are affected by HFTs’ anticipatory trading and how they should respond to it are widely concerned issues in both research and industry.

Yang and Zhu (2020) [4] is the cornerstone of literature on randomizing large orders to counteract anticipatory trading, in which the back-runners learn information from past informed orders and utilize it in subsequent trading. While, informed traders may add endogenous noise into their orders to confuse back-runners, if the latters’ signal about order flow is sufficiently accurate. [4] theoretically proves that randomization is quite likely to happen and a series of empirical works have verified this: Sağlam (2020) [5] illustrates that large traders attempt to engage in encryption strategies; Gu et al. (2021) [6] shows that insiders will disguise their orders by splitting; Broggard et al. [7] (2022) proves that institutions use multiple brokers to mitigate information leakage; Chakrabarty et al. (2022) [8] finds evidence that investors employ hidden orders to conceal information.

As proved by Roşu (2019) [9] and Xu and Cheng (2023) [10], depending on HFTs’ different inventory aversion, they may adopt two different kinds of anticipatory strategies, which are respectively defined as Small-IT and Round-Tripper in [10]. Both Small-IT and Round-Tripper trade in the same direction as the predicted order in advance. But when the predicted order arrives, Round-Tripper trades in the opposite direction to provide liquidity back, since she is more restricted by inventory, while Small-IT continues to take liquidity away.

In this paper, we are concerned about the equilibrium among an informed large trader (IT), multiple anticipatory HFTs and some competitive and risk-neutral dealers, where IT may disguise her order by randomization and HFTs have to manage their inventories. Equilibria under various conditions are investigated and theoretical guidance for large trader’s response to HFTs is provided.

The interactions between IT and HFTs are modeled through a three-period Kyle’s model [11]. Specifically, IT trades twice in total, and after IT’s first trading, HFTs predict her second order and preempt this order by trading ahead. During the process, HFTs may play the role of Small-IT, Round-Tripper, or both and IT may randomize her orders. So the mixed-strategy or pure-strategy equilibrium exists, depending on model parameters.

Compared to back-runners in [4] who only trade once with IT’s second order, anticipatory traders in this paper are faster. Round-Trippers’ behavior is totally different from back-runners in the sense that they provide liquidity for IT’s second trade. In contrast, Small-ITs take liquidity as back-runners, but their higher trading speed makes IT more inclined to adopt a mixed strategy. To be specific, the parameter range for the existence of mixed-strategy equilibrium is expanded and IT should add more noise. Surprisingly, although anticipatory traders become faster, their profits may instead decrease while the profit of IT may actually increase, in the mixed-strategy region. In addition, we find that more accurate predictions may reduce HFTs’ but raise IT’s profit. A similar phenomenon appears in [4], the difference is that it becomes more common here: it happens for fewer anticipatory traders. Furthermore, it is theoretically proved that as the size of high-speed noise trading goes to zero, Small-ITs give up their speed advantage and the equilibrium converges to the one with back-runners.

When HFTs all play the role of Round-Tripper, the above phenomenon still exists. When there is little high-speed noise trading, the market does not provide enough shelter for IT, increasing HFTs’ signal accuracy forces her to trade passively, which causes less price impact for HFTs to make profits. When there is abundant high-speed noise trading, the market provides enough shelter for IT, in this case, a more accurate signal makes HFTs more willing to provide liquidity and thus may improve IT’s profit.

We also investigate the influences of the number of HFTs on the results. If there are no more than 33 HFTs and all of them play the role of Round-Tripper, IT will always take a pure strategy, regardless of HFT’s signal precision, when the market is active enough. If all HFTs act as Small-IT and they have precise signals, their number does not influence IT’s strategy: IT always takes mixed strategy. If there are both types of HFTs in the market, IT randomizes less with a higher proportion of Round-Tripper. But randomization is unnecessary only when there are no more than 33 HFTs and they are all Round-Trippers. Therefore, IT should take a mixed strategy as long as the number of HFTs is greater than 33.

Another interesting phenomenon found in the market with both types of HFTs is that, when the size of high-speed noise trading decreases to a certain extent, HFTs with little inventory constraint will become “inverse Round-Trippers”: they supply liquidity in preemptive trading and consume liquidity later.

As will be discussed in Section 2, compared with parallel literature, the contribution of this paper mainly lies in a systematical study of the equilibria between a large trader who can adopt a mixed strategy and multiple HFTs who bear inventory pressures, under a dynamic Kyle’s model. The influences of HFTs’ types, numbers, compositions, and trading speed are studied and suggestions for large trader’s randomization in the above specific situations are provided.

The paper is organized as follows. Section 2 illustrates some related literature. In Section 3, we set up the model. In Section 4, we discuss the equilibria with Small-ITs, Round-Trippers, or both. Section 5 concludes and all the proofs are displayed in the Appendix.

2 Related Literature

This paper considers the implementation of informed trader’s order randomization, as in Huddart, Hughes and Levine (2001) [12], Buffa (2013) [13] and Yang and Zhu (2020) [4]. But in this paper, the mixed strategy is used to disturb anticipatory HFTs, which is different from [12] and [13], where IT randomizes to respond to disclosure requirements. Compared to [4], where anticipatory traders (back-runners) have the same trading speed as IT, they (HFTs) race to trade ahead of IT in this paper and can manage their inventories.

This paper also relates to the theoretical studies on anticipatory trading, which include but are not limited to Brunnermeier and Pedersen (2005) [14], Li (2018) [15], Roşu (2019) [9], Baldauf and Mollner (2020) [16] and Xu and Cheng (2023) [10]. The most relevant one is [10], which only considers pure-strategy equilibrium and a single HFT. This paper considers pure- and mixed-strategy equilibria with multiple HFTs.

The comparison between Small-IT in this paper and back-runner in [4] illustrates that trading speed matters in anticipatory trading. Literature belongs to this topic includes Roşu (2019) [9] and Baldauf and Mollner (2020) [16]. [9] studies investors who differ in the speed of processing information. Only fast traders are able to use immediate information, hence, the latter’s order flow is predicted by the former’s. In [16], snipers and dealers are fast enough to implement aggressive and passive order anticipation. In this paper, Small-IT and Round-Tripper’s fast trading belongs to aggressive order anticipation, while the Round-Tripper’s liquidity provision can be seen as passive order anticipation.

This paper also relates to the modeling of high-frequency trading. For this topic, see Hoffmann (2014) [17], Budish, Cramton and Shim (2015) [18], Foucault, Hombert and Roşu (2016) [19], Baldauf and Mollner (2020) [16], and the comprehensive review in Menkveld (2016) [20].

3 The Model and Equilibrium

In this paper, we consider a four-time-points model, where t=0,1,2t=0,1,2 are ordinary trading times, while t=1+(1,2)t=1_{+}\in(1,2) is the time at which HFTs preempt normal-speed traders.

A risky asset is traded by four types of participants: competitive and risk-neutral dealers, a normal-speed large informed trader (IT), JJ HFTs with inventory aversion {γj}j=1J\{\gamma_{j}\}_{j=1}^{J} and noise traders.

The true value of the asset, vv, is assumed to be normally distributed as

vN(p0,σv2),v\sim N(p_{0},\sigma_{v}^{2}),

which will be revealed after t=2.t=2.

For IT, she receives the signal vv at t=0t=0. In order to reduce market impact, she splits the transaction into two child orders i1i_{1} and i2.i_{2}. i1i_{1} is submitted after t=0t=0 when she knows vv and is executed at t=1t=1. i2i_{2} is submitted after the execution of i1i_{1} and is completed at t=2.t=2.

For HFTs, after the transaction of i1i_{1}, they detect IT’s trading and get some information about it. The jj-th HFT is supposed to receive a signal:

i~1j=i1+εj,\tilde{i}_{1j}=i_{1}+\varepsilon_{j},

where εjN(0,σεj2)\varepsilon_{j}\sim N(0,\sigma_{\varepsilon j}^{2}) is independent of each other and other random variables. We assume σεj=σε,j=1,,J,\sigma_{\varepsilon j}=\sigma_{\varepsilon},j=1,...,J, which means that different HFTs have little difference in their ability to obtain information. In practice, the information leakage is hardly new. For example, in Sağlam (2020) [5], signals based on the pattern of child orders are employed to predict the transaction of large orders.

Due to the advantage of trading speed, HFTs can trade twice during (1,2](1,2], which are completed at t=1+t=1_{+} and t=2t=2 respectively. The corresponding orders of the jj-th HFT are denoted by x1jx_{1j} and x2j.x_{2j}.

Remark 1.

IT is slower than HFTs, in the sense that there may be delays in her executions. This can be from (1) the submission delay: IT sends the order during (1,1+)(1,1_{+}) but it does not arrive at the exchange until t=2t=2, as mentioned in Baldauf and Mollner (2020) [16]; (2) the information delay: IT receives information y1y_{1} which is used to decide i2i_{2} after t=1+t=1_{+}, as mentioned in Foucault, Hombert and Roşu (2016) [19]. Consequently, i2i_{2} can be submitted before or after t=1+,t=1_{+}, but it cannot be completed before t=2.t=2.

IT’s and HFTs’ orders are accompanied by noise orders, u1N(0,σ12),u1+N(0,σ1+2),u2N(0,σ22)u_{1}\sim N(0,\sigma_{1}^{2}),u_{1_{+}}\sim N(0,\sigma_{1_{+}}^{2}),u_{2}\sim N(0,\sigma_{2}^{2}), are independent of each other and other random variables. We naturally assume that σ1,σ1+,σ2>0.\sigma_{1},\sigma_{1_{+}},\sigma_{2}>0. The order flow at t=1,1+,2t=1,1_{+},2 are:

y1=i1+u1,\displaystyle y_{1}=i_{1}+u_{1},
y1+=j=1Jx1j+u1+,\displaystyle y_{1_{+}}=\sum_{j=1}^{J}x_{1j}+u_{1_{+}},
y2=i2+j=1Jx2j+u2.\displaystyle y_{2}=i_{2}+\sum_{j=1}^{J}x_{2j}+u_{2}.
Refer to caption
Figure 1: Timeline.

We now define the equilibrium.

Definition 1.

The equilibrium is defined as a collection of strategies of dealers, IT and HFTs:

{p1,p1+,p2,i1,i2,{x1j}j=1J,{x2j}j=1J},\{p_{1},p_{1_{+}},p_{2},i_{1},i_{2},\{x_{1j}\}_{j=1}^{J},\{x_{2j}\}_{j=1}^{J}\},

such that the following conditions are satisfied:

  1. 1.

    Given IT’s strategies i1,i2i_{1},i_{2} and HFTs’ strategies {x1j}j=1J,{x2j}j=1J\{x_{1j}\}_{j=1}^{J},\{x_{2j}\}_{j=1}^{J}, dealers set price according to the weak-efficiency rule:

    p1=𝔼(v|y1),\displaystyle p_{1}=\mathbb{E}(v|y_{1}),
    p1+=𝔼(v|y1,y1+),\displaystyle p_{1_{+}}=\mathbb{E}(v|y_{1},y_{1_{+}}),
    p2=𝔼(v|y1,y1+,y2).\displaystyle p_{2}=\mathbb{E}(v|y_{1},y_{1_{+}},y_{2}).
  2. 2.

    Given dealers’ pricing rule p1,p1+,p2p_{1},p_{1_{+}},p_{2} and HFTs’ strategies {x1j}j=1J,{x2j}j=1J\{x_{1j}\}_{j=1}^{J},\{x_{2j}\}_{j=1}^{J},

    1. (a)

      during (1,2),(1,2), IT maximizes the second-stage expected profit over all measurable strategies i2=i2(v,i1,y1):i_{2}=i_{2}(v,i_{1},y_{1}):

      i2=argmax𝔼(π2IT|v,i1,y1),i_{2}^{*}=\arg\max\mathbb{E}(\pi^{\text{IT}}_{2}|v,i_{1},y_{1}),

      where π2IT=(vp2)i2;\pi^{\text{IT}}_{2}=(v-p_{2})i_{2};

    2. (b)

      during (0,1),(0,1), in the mixed-strategy equilibrium, IT should be indifferent among all realizations of pure strategies, i.e., i1=i1(v),\forall i_{1}=i_{1}(v),

      𝔼(π1IT+π2IT|v)\mathbb{E}(\pi^{\text{IT}}_{1}+\pi^{\text{IT}}_{2}|v)

      are same, where π1IT=i1(vp1).\pi^{\text{IT}}_{1}=i_{1}(v-p_{1}). In the pure-strategy equilibrium, IT maximizes the total expected profit over all measurable strategies i1=i1(v):i_{1}=i_{1}(v):

      i1=argmax𝔼(π1IT+π2IT|v).i_{1}^{*}=\arg\max\mathbb{E}(\pi^{\text{IT}}_{1}+\pi^{\text{IT}}_{2}|v).
  3. 3.

    Given dealers’ pricing rule p1,p1+,p2p_{1},p_{1_{+}},p_{2} and IT’s strategies i1,i2,i_{1},i_{2},

    1. (a)

      during (1+,2),(1_{+},2), the jj-th HFT maximizes the second-stage expected profit with inventory penalty over all measurable strategies x2j=x2j(i~1j,y1,y1+)x_{2j}=x_{2j}(\tilde{i}_{1j},y_{1},y_{1_{+}}):

      x2j=argmax𝔼(π2jHFTγj(x1j+x2j)2|i~1j,y1,y1+),x_{2j}^{*}=\arg\max\mathbb{E}(\pi_{2j}^{\text{HFT}}-\gamma_{j}(x_{1j}+x_{2j})^{2}|\tilde{i}_{1j},y_{1},y_{1_{+}}),

      where π2jHFT=(vp2)x2j;\pi_{2j}^{\text{HFT}}=(v-p_{2})x_{2j};

    2. (b)

      during (1,1+),(1,1_{+}), the jj-th HFT maximizes the total expected profit with inventory penalty over all measurable strategies x1j=x1j(i~1j,y1)x_{1j}=x_{1j}(\tilde{i}_{1j},y_{1}):

      x1j=argmax𝔼(π1jHFT+π2jHFTγj(x1j+x2j)2|i~1j,y1),x_{1j}^{*}=\arg\max\mathbb{E}(\pi_{1j}^{\text{HFT}}+\pi_{2j}^{\text{HFT}}-\gamma_{j}(x_{1j}+x_{2j})^{2}|\tilde{i}_{1j},y_{1}),

      where π1jHFT=(vp1+)x1j.\pi_{1j}^{\text{HFT}}=(v-p_{1_{+}})x_{1j}.

To solve the equilibrium, we apply the conjecture and verify method. In the mixed-strategy equilibrium, we conjecture that market participants take the following strategies:

p1=p0+λ1y1,\displaystyle p_{1}=p_{0}+\lambda_{1}y_{1},
p1+=p1+λ1+y1+,\displaystyle p_{1_{+}}=p_{1}+\lambda_{1_{+}}y_{1_{+}},
p2=p1+λ21y1++λ22y2;\displaystyle p_{2}=p_{1}+\lambda_{21}y_{1_{+}}+\lambda_{22}y_{2};
i1=α1(vp0)+z,\displaystyle i_{1}=\alpha_{1}(v-p_{0})+z,
i2=α21(v𝔼(v|y1))+α22(i1𝔼(i1|y1));\displaystyle i_{2}=\alpha_{21}(v-\mathbb{E}(v|y_{1}))+\alpha_{22}(i_{1}-\mathbb{E}(i_{1}|y_{1}));
x1j=β1j(i~1j𝔼(i~1j|y1)),\displaystyle x_{1j}=\beta_{1j}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})),
x2j=β21j(i~1j𝔼(i~1j|y1))+β22j(kjx1k+u1+)+β23jx1j,\displaystyle x_{2j}=\beta_{21j}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}))+\beta_{22j}(\sum_{k\neq j}x_{1k}+u_{1_{+}})+\beta_{23j}x_{1j},

where zN(0,σz2)z\sim N(0,\sigma_{z}^{2}) is the endogenous noise added by IT, and σz=0\sigma_{z}=0 in the pure-strategy equilibrium.

For x2j,x_{2j}, the first term is HFT’s reliance on the signal i~1j\tilde{i}_{1j}. The second term is the adjustment to the information disclosed by other investors’ trading at t=1+t=1_{+}: y1+x1jy_{1_{+}}-x_{1j}. The last term is the adjustment to (1) the inventory penalty, since x1jx_{1j} has established some positions; (2) the information disclosed by HFT’s own trading. y1+y_{1_{+}} and y2y_{2} are both independent of y1,y_{1}, but y2y_{2} is not independent of y1+y_{1_{+}}, it is because the preemptive transaction of HFT has contained part of information in y2y_{2}.

Based on the conjecture, the jj-th HFT’s strategies can also be written as

x1j=β1j(i1𝔼(i1|y1))+β1jεj,\displaystyle x_{1j}=\beta_{1j}(i_{1}-\mathbb{E}(i_{1}|y_{1}))+\beta_{1j}\varepsilon_{j},
x2j=(β21j+β22jkjβ1k+β23jβ1j)(i1𝔼(i1|y1))+(β21j+β23jβ1j)εj+β22jkjβ1kεk+β22ju1+,\displaystyle x_{2j}=(\beta_{21j}+\beta_{22j}\sum_{k\neq j}\beta_{1k}+\beta_{23j}\beta_{1j})(i_{1}-\mathbb{E}(i_{1}|y_{1}))+(\beta_{21j}+\beta_{23j}\beta_{1j})\varepsilon_{j}+\beta_{22j}\sum_{k\neq j}\beta_{1k}\varepsilon_{k}+\beta_{22j}u_{1_{+}},

where β1j\beta_{1j} and β21j+β22jkjβ1k+β23jβ1j\beta_{21j}+\beta_{22j}\sum_{k\neq j}\beta_{1k}+\beta_{23j}\beta_{1j} represent the trading directions of x1jx_{1j} and x2jx_{2j}, respectively. If the coefficient is positive, we say that HFT tends to trade in the same direction as IT.

The parameters below will be useful in following sections:

θ1+=σ1+2/σ12,the relative size of time-1+ market;\displaystyle\theta_{1_{+}}=\sigma_{1_{+}}^{2}/\sigma_{1}^{2},\ \text{the relative size of time-}1_{+}\text{ market;} (1)
θ2=σ22/σ12,the relative size of time-2 market;\displaystyle\theta_{2}=\sigma_{2}^{2}/\sigma_{1}^{2},\ \text{the relative size of time-2 market;}
θε=σε2/σ12,signal accuracy;\displaystyle\theta_{\varepsilon}=\sigma_{\varepsilon}^{2}/\sigma_{1}^{2},\ \text{signal accuracy;}
Γj=γjσv/σ1,the dimensionless form of inventory aversion;\displaystyle\Gamma_{j}=\frac{\gamma_{j}}{\sigma_{v}/\sigma_{1}},\ \text{the dimensionless form of inventory aversion;}
Jj,the number of HFTs with inventory aversion Γj.\displaystyle J_{j},\ \text{the number of HFTs with inventory aversion }\Gamma_{j}.

Noise orders come from both normal- and high-speed investors, while noise orders at 1+1_{+} are mainly from fast traders. Therefore, θ1+\theta_{1_{+}} also measures the size of high-speed noise trading.

4 Main Results

Dealer’s quotes. Competitive and risk-neutral dealers set transaction prices as expectations of vv, conditioned on the order flow information.

At t=1,t=1, when IT’s order i1i_{1} is being executed, the transaction price is

p1=p0+λ1y1,p_{1}=p_{0}+\lambda_{1}y_{1},

where, by the linear conjecture and projection theorem,

λ1=σvσy1ρ(v,y1)=α1σv2α12σv2+σz2+σ12.\lambda_{1}=\frac{\sigma_{v}}{\sigma_{y_{1}}}\rho_{(v,y_{1})}=\frac{\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}. (2)

At t=1+,t=1_{+}, when HFTs’ orders {x1j}j=1J\{x_{1j}\}_{j=1}^{J} are being executed, the transaction price is

p1+=p1+λ1+y1+,p_{1_{+}}=p_{1}+\lambda_{1_{+}}y_{1_{+}},

where

λ1+=σvσy1+ρ(v,y1+)=α1σv2σ12j=1Jβ1j(α12σv2+σz2)[(j=1Jβ1j)2σ12+j=1Jβ1j2σε2+σ1+2]+σ12(j=1Jβ1j2σε2+σ1+2).\lambda_{1_{+}}=\frac{\sigma_{v}}{\sigma_{y_{1_{+}}}}\rho_{(v,y_{1_{+}})}=\frac{\alpha_{1}\sigma_{v}^{2}\sigma_{1}^{2}\sum_{j=1}^{J}\beta_{1j}}{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})[(\sum_{j=1}^{J}\beta_{1j})^{2}\sigma_{1}^{2}+\sum_{j=1}^{J}\beta_{1j}^{2}\sigma_{\varepsilon}^{2}+\sigma_{1_{+}}^{2}]+\sigma_{1}^{2}(\sum_{j=1}^{J}\beta_{1j}^{2}\sigma_{\varepsilon}^{2}+\sigma_{1_{+}}^{2})}. (3)

At t=2,t=2, when IT’s order i2i_{2} and HFTs’ orders {x2j}j=1J\{x_{2j}\}_{j=1}^{J} are being executed, the transaction price is

p2=p1+λ21y1++λ22y2,p_{2}=p_{1}+\lambda_{21}y_{1_{+}}+\lambda_{22}y_{2},

where

λ21=σvσy1+ρ(v,y1+)ρ(y1+,y2)ρ(v,y2)1ρ(y1+,y2)2,\lambda_{21}=\frac{\sigma_{v}}{\sigma_{y_{1_{+}}}}\frac{\rho_{(v,y_{1_{+}})}-\rho_{(y_{1_{+}},y_{2})}\rho_{(v,y_{2})}}{1-\rho^{2}_{(y_{1_{+}},y_{2})}}, (4)
λ22=σvσy2ρ(v,y2)ρ(v,y1+)ρ(y1+,y2)1ρ(y1+,y2)2,\lambda_{22}=\frac{\sigma_{v}}{\sigma_{y_{2}}}\frac{\rho_{(v,y_{2})}-\rho_{(v,y_{1_{+}})}\rho_{(y_{1_{+}},y_{2})}}{1-\rho^{2}_{(y_{1_{+}},y_{2})}}, (5)
κ1α21+α1[α21α1σv2+σ12(α22+j=1Jβ21j+β23jβ1j+β22jkjβ1k)]α12σv2+σz2+σ12,\displaystyle\kappa_{1}\triangleq\alpha_{21}+\frac{\alpha_{1}[-\alpha_{21}\alpha_{1}\sigma_{v}^{2}+\sigma_{1}^{2}(\alpha_{22}+\sum_{j=1}^{J}\beta_{21j}+\beta_{23j}\beta_{1j}+\beta_{22j}\sum_{k\neq j}\beta_{1k})]}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}},
κ2κ1α21α1,\displaystyle\kappa_{2}\triangleq\frac{\kappa_{1}-\alpha_{21}}{\alpha_{1}},
κ3α21α1σv2+(α12σv2+σz2)(α22+j=1Jβ21j+β23jβ1j+β22jkjβ1k)α12σv2+σz2+σ12,\displaystyle\kappa_{3}\triangleq\frac{\alpha_{21}\alpha_{1}\sigma_{v}^{2}+(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})(\alpha_{22}+\sum_{j=1}^{J}\beta_{21j}+\beta_{23j}\beta_{1j}+\beta_{22j}\sum_{k\neq j}\beta_{1k})}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}},
σy1+2=(α12σv2+σz2)σ12α12σv2+σz2+σ12(j=1Jβ1j)2+σε2j=1Jβ1j2+σ1+2,\displaystyle\sigma_{y_{1_{+}}}^{2}=\frac{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}(\sum_{j=1}^{J}\beta_{1j})^{2}+\sigma_{\varepsilon}^{2}\sum_{j=1}^{J}\beta_{1j}^{2}+\sigma_{1_{+}}^{2},
σy22=σv2κ12+σz2κ22+σ12κ32+σε2j=1J(β21j+β23jβ1j+β1jkjβ22k)2+σ1+2(j=1Jβ22j)2+σ22,\displaystyle\sigma_{y_{2}}^{2}=\sigma_{v}^{2}\kappa_{1}^{2}+\sigma_{z}^{2}\kappa_{2}^{2}+\sigma_{1}^{2}\kappa_{3}^{2}+\sigma_{\varepsilon}^{2}\sum_{j=1}^{J}(\beta_{21j}+\beta_{23j}\beta_{1j}+\beta_{1j}\sum_{k\neq j}\beta_{22k})^{2}+\sigma_{1_{+}}^{2}(\sum_{j=1}^{J}\beta_{22j})^{2}+\sigma_{2}^{2},
Cov(y1+,y2)=σv2σ12α1κ1j=1Jβ1j+σz2σ12j=1Jβ1j+(α12σv2+σz2)σ12κ3j=1Jβ1jα12σv2+σz2+σ12\displaystyle\text{Cov}(y_{1_{+}},y_{2})=\frac{\sigma_{v}^{2}\sigma_{1}^{2}\alpha_{1}\kappa_{1}\sum_{j=1}^{J}\beta_{1j}+\sigma_{z}^{2}\sigma_{1}^{2}\sum_{j=1}^{J}\beta_{1j}+(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}\kappa_{3}\sum_{j=1}^{J}\beta_{1j}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}
+σ1+2j=1Jβ22j+σε2j=1Jβ1j(β21j+β23jβ1j+β1jkjβ22k),\displaystyle\quad\quad\quad\quad+\sigma_{1_{+}}^{2}\sum_{j=1}^{J}\beta_{22j}+\sigma_{\varepsilon}^{2}\sum_{j=1}^{J}\beta_{1j}(\beta_{21j}+\beta_{23j}\beta_{1j}+\beta_{1j}\sum_{k\neq j}\beta_{22k}),
Cov(v,y1+)=σv2σ12α1j=1Jβ1jα12σv2+σz2+σ12,\displaystyle\text{Cov}(v,y_{1_{+}})=\frac{\sigma_{v}^{2}\sigma_{1}^{2}\alpha_{1}\sum_{j=1}^{J}\beta_{1j}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}},
Cov(v,y2)=σv2κ1,\displaystyle\text{Cov}(v,y_{2})=\sigma_{v}^{2}\kappa_{1},
ρ(y1+,y2)=Cov(y1+,y2)σy1+σy2,ρ(v,y1+)=Cov(v,y1+)σvσy1+,ρ(v,y2)=Cov(v,y2)σvσy2.\displaystyle\rho_{(y_{1_{+}},y_{2})}=\frac{\text{Cov}(y_{1_{+}},y_{2})}{\sigma_{y_{1_{+}}}\sigma_{y_{2}}},\rho_{(v,y_{1_{+}})}=\frac{\text{Cov}(v,y_{1_{+}})}{\sigma_{v}\sigma_{y_{1_{+}}}},\rho_{(v,y_{2})}=\frac{\text{Cov}(v,y_{2})}{\sigma_{v}\sigma_{y_{2}}}.

HFT’s strategies. Given dealers’ quotes p1,p1+,p2p_{1},p_{1_{+}},p_{2} and IT’s strategies i1,i2i_{1},i_{2}, the jj-th HFT’s objective function in period 2 is

𝔼(π2jHFTγj(x1j+x2j)2|i~1j,y1,y1+)\displaystyle\mathbb{E}\left(\left.\pi_{2j}^{\text{HFT}}-\gamma_{j}(x_{1j}+x_{2j})^{2}\right|\tilde{i}_{1j},y_{1},y_{1_{+}}\right)
=\displaystyle= (λ22+γj)x2j2+x2j𝔼(vp1λ21(x1j+kjx1k+u1+)λ22(i2+kjx2k)|i~1j𝔼(i~1j|y1),kjx1k+u1+).\displaystyle-(\lambda_{22}+\gamma_{j})x_{2j}^{2}+x_{2j}\mathbb{E}(v-p_{1}-\lambda_{21}(x_{1j}+\sum_{k\neq j}x_{1k}+u_{1_{+}})-\lambda_{22}(i_{2}+\sum_{k\neq j}x_{2k})|\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}),\sum_{k\neq j}x_{1k}+u_{1_{+}}).

It is maximized at x2j=β21j(i~1j𝔼(i~1j|y1))+β22j(kjx1k+u1+)+β23jx1j,x_{2j}=\beta_{21j}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}))+\beta_{22j}(\sum_{k\neq j}x_{1k}+u_{1_{+}})+\beta_{23j}x_{1j}, if the SOC

λ22+γj>0\lambda_{22}+\gamma_{j}>0 (6)

holds, where

β21j\displaystyle\beta_{21j} =12(λ22+γj){(1λ22α21)η21j\displaystyle=\frac{1}{2(\lambda_{22}+\gamma_{j})}\{(1-\lambda_{22}\alpha_{21})\eta_{21j} (7)
λ22[α22μ21j+kj(β21k+β23kβ1k)θ21jk+kjβ22klj,kβ1lθ21jl+kjβ22kδ21j]},\displaystyle-\lambda_{22}[\alpha_{22}\mu_{21j}+\sum_{k\neq j}(\beta_{21k}+\beta_{23k}\beta_{1k})\theta_{21jk}+\sum_{k\neq j}\beta_{22k}\sum_{l\neq j,k}\beta_{1l}\theta_{21jl}+\sum_{k\neq j}\beta_{22k}\delta_{21j}]\},
β22j\displaystyle\beta_{22j} =12(λ22+γj){(1λ22α21)η22jλ21\displaystyle=\frac{1}{2(\lambda_{22}+\gamma_{j})}\{(1-\lambda_{22}\alpha_{21})\eta_{22j}-\lambda_{21} (8)
λ22[α22μ22j+kj(β21k+β23kβ1k)θ22jk+kjβ22klj,kβ1lθ22jl+kjβ22kδ22j]},\displaystyle-\lambda_{22}[\alpha_{22}\mu_{22j}+\sum_{k\neq j}(\beta_{21k}+\beta_{23k}\beta_{1k})\theta_{22jk}+\sum_{k\neq j}\beta_{22k}\sum_{l\neq j,k}\beta_{1l}\theta_{22jl}+\sum_{k\neq j}\beta_{22k}\delta_{22j}]\},
β23j=λ21+2γj+λ22kjβ22k2(λ22+γj),\beta_{23j}=-\frac{\lambda_{21}+2\gamma_{j}+\lambda_{22}\sum_{k\neq j}\beta_{22k}}{2(\lambda_{22}+\gamma_{j})}, (9)
σ1j2=(α12σv2+σz2)σ12α12σv2+σz2+σ12+σε2,\displaystyle\sigma_{1j}^{2}=\frac{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}+\sigma_{\varepsilon}^{2}, (10)
σ2j2=(α12σv2+σz2)σ12α12σv2+σz2+σ12(kjβ1k)2+kjβ1kσε2+σ1+2,\displaystyle\sigma_{2j}^{2}=\frac{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}(\sum_{k\neq j}\beta_{1k})^{2}+\sum_{k\neq j}\beta_{1k}\sigma_{\varepsilon}^{2}+\sigma_{1_{+}}^{2},
σ12j=(α12σv2+σz2)σ12α12σv2+σz2+σ12kjβ1k,\displaystyle\sigma_{12j}=\frac{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\sum_{k\neq j}\beta_{1k},
Σj(σ1j2σ12jσ12jσ2j2),\displaystyle\Sigma_{j}\triangleq\begin{pmatrix}\sigma_{1j}^{2}&\sigma_{12j}\\ \sigma_{12j}&\sigma_{2j}^{2}\end{pmatrix},
(η21jη22j)=α1σv2σ12α12σv2+σz2+σ12(1kjβ1k)Σj1,\displaystyle\begin{pmatrix}\eta_{21j}&\eta_{22j}\end{pmatrix}=\frac{\alpha_{1}\sigma_{v}^{2}\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\begin{pmatrix}1&\sum_{k\neq j}\beta_{1k}\end{pmatrix}\Sigma_{j}^{-1},
(μ21jμ22j)=(α12σv2+σz2)σ12α12σv2+σz2+σ12(1kjβ1k)Σj1,\displaystyle\begin{pmatrix}\mu_{21j}&\mu_{22j}\end{pmatrix}=\frac{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\begin{pmatrix}1&\sum_{k\neq j}\beta_{1k}\end{pmatrix}\Sigma_{j}^{-1},
(θ21jkθ22jk)=σ12α12σv2+σz2+σ12(α12σv2+σz2σε2β1k+(α12σv2+σz2)kjβ1k)Σj1,\displaystyle\begin{pmatrix}\theta_{21jk}&\theta_{22jk}\end{pmatrix}=\frac{\sigma_{1}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\begin{pmatrix}\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}&\sigma_{\varepsilon}^{2}\beta_{1k}+(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})\sum_{k\neq j}\beta_{1k}\end{pmatrix}\Sigma_{j}^{-1},
(δ21jδ22j)=(0σ1+2)Σj1.\displaystyle\begin{pmatrix}\delta_{21j}&\delta_{22j}\end{pmatrix}=\begin{pmatrix}0&\sigma_{1_{+}}^{2}\end{pmatrix}\Sigma_{j}^{-1}.

HFT’s objective function at t=1+t=1_{+} is

𝔼(π1jHFT+π2jHFTγj(x1j+x2j)2|i~1j,y1)\displaystyle\mathbb{E}\left(\left.\pi_{1j}^{\text{HFT}}+\pi_{2j}^{\text{HFT}}-\gamma_{j}(x_{1j}+x_{2j})^{2}\right|\tilde{i}_{1j},y_{1}\right)
=\displaystyle= (λ1++γj)x1j2+(λ22+γj)𝔼(x2j2|i~1j,y1).\displaystyle-(\lambda_{1_{+}}+\gamma_{j})x_{1j}^{2}+(\lambda_{22}+\gamma_{j})\mathbb{E}(x_{2j}^{2}|\tilde{i}_{1j},y_{1}).

It is maximized at x1j=β1j(i~1j𝔼(i~1j|y1))x_{1j}=\beta_{1j}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})) if the SOC

λ1++γj(λ22+γj)β23j2>0\lambda_{1_{+}}+\gamma_{j}-(\lambda_{22}+\gamma_{j})\beta_{23j}^{2}>0 (11)

holds, where

β1j=ηλ1+μkjβ1k+2(λ22+γj)β23j(β21j+β22jkjβ1kμ)2[λ1++γj(λ22+γj)β23j2)],\beta_{1j}=\frac{\eta-\lambda_{1_{+}}\mu\sum_{k\neq j}\beta_{1k}+2(\lambda_{22}+\gamma_{j})\beta_{23j}(\beta_{21j}+\beta_{22j}\sum_{k\neq j}\beta_{1k}\mu)}{2[\lambda_{1_{+}}+\gamma_{j}-(\lambda_{22}+\gamma_{j})\beta_{23j}^{2})]}, (12)
η=α1σv2α12σv2+σz2+σ12σ12σ1j2,\displaystyle\eta=\frac{\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\frac{\sigma_{1}^{2}}{\sigma_{1j}^{2}},
μ=α12σv2+σz2α12σv2+σz2+σ12σ12σ1j2.\displaystyle\mu=\frac{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\frac{\sigma_{1}^{2}}{\sigma_{1j}^{2}}.

IT’s strategies. Given dealer’s quotes p1,p1+,p2p_{1},p_{1_{+}},p_{2} and HFT’s strategies {x1j}j=1J,{x2j}j=1J,\{x_{1j}\}_{j=1}^{J},\{x_{2j}\}_{j=1}^{J}, IT’s profit in period 2 is

𝔼(π2IT|v,i1,y1)=λ22i22+i2𝔼(vp1λ21j=1Jx1jλ22j=1Jx2j|v,i1,y1).\mathbb{E}\big{(}\left.\pi_{2}^{\text{IT}}\right|v,i_{1},y_{1}\big{)}=-\lambda_{22}i_{2}^{2}+i_{2}\mathbb{E}\big{(}v-p_{1}-\lambda_{21}\sum_{j=1}^{J}x_{1j}-\lambda_{22}\sum_{j=1}^{J}x_{2j}|v,i_{1},y_{1}\big{)}.

It is maximized at i2=α21(v𝔼(v|y1))+α22(i1𝔼(i1|y1))i_{2}=\alpha_{21}(v-\mathbb{E}(v|y_{1}))+\alpha_{22}(i_{1}-\mathbb{E}(i_{1}|y_{1})) if the SOC

λ22>0\lambda_{22}>0 (13)

holds, where

α21=12λ22,\alpha_{21}=\frac{1}{2\lambda_{22}}, (14)
α22=λ21j=1Jβ1j+λ22(j=1Jβ21j+β23jβ1j+β22jkjβ1k)2λ22.\alpha_{22}=-\frac{\lambda_{21}\sum_{j=1}^{J}\beta_{1j}+\lambda_{22}(\sum_{j=1}^{J}\beta_{21j}+\beta_{23j}\beta_{1j}+\beta_{22j}\sum_{k\neq j}\beta_{1k})}{2\lambda_{22}}. (15)

IT’s objective function in period 1 is

𝔼(π1IT+π2IT|v)=\displaystyle\mathbb{E}\left(\left.\pi_{1}^{\text{IT}}+\pi_{2}^{\text{IT}}\right|v\right)= [λ1λ22(α22σ12α21α1σv2α12σv2+σz2+σ12)2]i12\displaystyle-[\lambda_{1}-\lambda_{22}\left(\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\right)^{2}]i_{1}^{2}
+[1+2λ22α21α22σ12α21α1σv2α12σv2+σz2+σ12]i1(vp0)\displaystyle+[1+2\lambda_{22}\alpha_{21}\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}]i_{1}(v-p_{0})
+σ12(α12σv2+σz2+σ12)2[α21α1σv2+α22(α12σv2+σz2)].\displaystyle+\frac{\sigma_{1}^{2}}{(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2})^{2}}[\alpha_{21}\alpha_{1}\sigma_{v}^{2}+\alpha_{22}(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})].

In the mixed-strategy equilibrium, σz>0\sigma_{z}>0, we have

λ1λ22(α22σ12α21α1σv2α12σv2+σz2+σ12)2=0,\lambda_{1}-\lambda_{22}\left(\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\right)^{2}=0, (16)
1+2λ22α21α22σ12α21α1σv2α12σv2+σz2+σ12=0.1+2\lambda_{22}\alpha_{21}\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}=0. (17)

In the pure-strategy equilibrium, σz=0,\sigma_{z}=0, it is maximized at i1=α1(vp0)i_{1}=\alpha_{1}(v-p_{0}) if the SOC

λ1λ22(α22σ12α21α1σv2α12σv2+σz2+σ12)2>0\lambda_{1}-\lambda_{22}\left(\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\right)^{2}>0 (18)

holds, where

α1=1+2λ22α21α22σ12α21α1σv2α12σv2+σz2+σ122[λ1λ22(α22σ12α21α1σv2α12σv2+σz2+σ12)2].\alpha_{1}=\frac{1+2\lambda_{22}\alpha_{21}\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}}{2[\lambda_{1}-\lambda_{22}\left(\frac{\alpha_{22}\sigma_{1}^{2}-\alpha_{21}\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}\right)^{2}]}. (19)

Equilibrium. The mixed-strategy equilibrium is determined by an equality-inequality system, which consists of (2), (3), (4), (5), (7), (8), (9), (12), (14), (15), (16), (17) and SOCs (6), (11), (13). The pure-strategy equilibrium is determined by the system which consists of (2), (3), (4), (5), (7), (8), (9), (12), (14), (15), (19) and SOCs (6), (11), (13) (18).

Given asset’s volatility σv\sigma_{v} and time-1 size of noise trading σ1\sigma_{1}, the equilibrium only depends on the following dimensionless variables:

Λ1=λ1σv/σ1,Λ1+=λ1+σv/σ1,Λ21=λ21σv/σ1,Λ22=λ22σv/σ1,\displaystyle\Lambda_{1}=\frac{\lambda_{1}}{\sigma_{v}/\sigma_{1}},\Lambda_{1_{+}}=\frac{\lambda_{1_{+}}}{\sigma_{v}/\sigma_{1}},\Lambda_{21}=\frac{\lambda_{21}}{\sigma_{v}/\sigma_{1}},\Lambda_{22}=\frac{\lambda_{22}}{\sigma_{v}/\sigma_{1}}, (20)
A1=α1σ1/σv,θz=σz2σ12,A21=α21σ1/σv,α22,\displaystyle A_{1}=\frac{\alpha_{1}}{\sigma_{1}/\sigma_{v}},\theta_{z}=\frac{\sigma_{z}^{2}}{\sigma_{1}^{2}},A_{21}=\frac{\alpha_{21}}{\sigma_{1}/\sigma_{v}},\alpha_{22},
{β1j,β21j,β22j,β23j}j=1J.\displaystyle\{\beta_{1j},\beta_{21j},\beta_{22j},\beta_{23j}\}_{j=1}^{J}.

4.1 Small-IT and Round-Tripper

In this section, we assume that there is only one HFT and investigate the anticipatory strategies she takes. We are going to show that in equilibrium, HFT may perform the role of Small-IT or Round-Tripper, which will be defined later. The equilibrium conditions are simplified in Theorem 1:

Theorem 1 (Simplification of the equilibrium with an HFT).

The mixed-strategy equilibrium is characterized by system (22), (23), (24) and (25); the pure-strategy equilibrium is characterized by system (26), (27) and (28).

If HFT tends to trade in the same direction as IT in both transactions, then she appears to invest in assets and accumulate positions. So we call her Small-IT. In contrast, if she tends to first trade in the same direction and then in the opposite direction as IT, then she appears to exploit price impact and control inventories. We call her Round-Tripper.

These two notions are also mentioned in Xu and Cheng (2023) [10]. Actually, the current case, where HFT predicts IT’s future order through the past order flow and IT may take mixed strategies, is an extension of [10].

Theorem 2.

For any θ1+,θ2>0,θε0,\theta_{1_{+}},\theta_{2}>0,\theta_{\varepsilon}\geq 0, there exists a critical Γ¯,\bar{\Gamma}, if Γ[0,Γ¯),\Gamma\in[0,\bar{\Gamma}), HFT will play the role of Small-IT; if Γ[Γ¯,],\Gamma\in[\bar{\Gamma},\infty], HFT will play the role of Round-Tripper.

As long as Γ[0,Γ¯)\Gamma\in[0,\bar{\Gamma}) or Γ[Γ¯,]\Gamma\in[\bar{\Gamma},\infty], the role played by HFT remains unchanged. Given such continuity of Γs\Gamma^{\prime}s impact, without loss of generality, we assume Γ\Gamma to be 0 for HFTs who accumulate positions and to be \infty for HFTs who control inventories. In the market considered below, there are J10J_{1}\geq 0 HFTs with Γ=0\Gamma=0 and J20J_{2}\geq 0 HFTs with Γ=.\Gamma=\infty.

We focus on the equilibrium with multiple anticipatory HFTs who may deal with inventory in two different ways, rather than the continuous change of Γ\Gamma. In fact, this setting matches the empirical finding of Kirilenko et al. (2017) [2]: in the real market, fast traders may act as “opportunistic traders” or “high-frequency traders”, both of them trade at a high speed, while the former adjusts holdings less frequently and with larger fluctuations.

What’s more, it is verified that Γ=\Gamma=\infty is equivalent to require HFT to clear positions in period 2:

Proposition 1.

If Γ=,\Gamma=\infty,

β21=β22=0,β23=1.\beta_{21}=\beta_{22}=0,\ \beta_{23}=-1.

The equilibrium is the same as that where HFT maximizes:

x1=argmax𝔼(x1(p2p1+)|i~1,y1).x_{1}^{*}=\arg\max\mathbb{E}(x_{1}(p_{2}-p_{1_{+}})|\tilde{i}_{1},y_{1}). (21)

In Section 4.2 - 4.4, we will investigate three kinds of markets, where HFTs are all Small-ITs, or all Round-Trippers, or both. In each case, a simplification theorem for equilibrium is provided and the equilibrium is solved through numerical methods.

4.2 A market with Small-ITs

In this section, we assume that J1=J1J_{1}=J\geq 1 and J2=0J_{2}=0. All HFTs play the role of Small-IT and in equilibrium, the jj-th HFT takes the following strategy:

x1j=β11(i~1j𝔼(i~1j|y1)),\displaystyle x_{1j}=\beta_{11}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})),
x2j=β21(i~1j𝔼(i~1j|y1))+β22(kjx1k+u1+)+β23x1j.\displaystyle x_{2j}=\beta_{21}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}))+\beta_{22}(\sum_{k\neq j}x_{1k}+u_{1_{+}})+\beta_{23}x_{1j}.
Theorem 3 (Simplification of the equilibrium with Small-ITs).

The mixed-strategy equilibrium is characterized by system (30) and (31); the pure-strategy equilibrium is characterized by system (32) and (33).

Next, we investigate the equilibrium through numerical methods. It is reasonable to assume that θ1+(0,1],θ2=1,\theta_{1_{+}}\in(0,1],\theta_{2}=1, since as shown in (20), θ1+\theta_{1_{+}} represents the size of high-speed noise trading relative to aggregate noise trading, while θ2\theta_{2} represents the relative size of aggregate noise trading at different times. What’s more, according to van Kervel and Menkveld (2019) [21], we set J10.J\leq 10.

The trading behavior of Smalll-ITs is quite similar to the back-runners in Yang and Zhu (2020) [4], they both steal IT’s private information to construct their own positions. The only difference is that Small-ITs trade at a higher frequency: they race to trade in front of IT’s future order i2i_{2}.

We do comparative static analyses on θε\theta_{\varepsilon} in different markets distinguished by θ1+\theta_{1_{+}} and JJ. In Figure 2 - 13, the blue and orange (green and red) lines represent different situations in mixed-strategy and pure-strategy equilibrium when IT meets Small-IT (back-runner).

Refer to caption
(a) θ1+=104\theta_{1_{+}}=10^{-4}
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 2: J=1,J=1, IT’s mixed strategy.
Refer to caption
(a) θ1+=104\theta_{1_{+}}=10^{-4}
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 3: J=1,J=1, IT’s profit.
Refer to caption
(a) θ1+=104\theta_{1_{+}}=10^{-4}
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 4: J=1,J=1, anticipatory trader’s profit.

θ1+=104\theta_{1_{+}}=10^{-4} stands for a market with little high-speed noise trading, where Small-IT’s fast trading x1x_{1} would bring her large costs. This almost forces her to give up the speed competition. Consequently, in (a) of Figure 2 - 4, investors’ performances are nearly the same as those in [4]. It actually holds for all J10J\leq 10. From (b) and (c) of Figure 2, IT increases the intensity θz\theta_{z} of randomization and expands the mixed-strategy region. This indicates that when the opponents’ trading speed improves, it is optimal for IT to apply significantly more sophisticated randomization to disturb them.

As displayed in Figure 3, we find surprisingly that when equilibria with Small-IT and back-runner are both in the mixed-strategy region, the improvement of anticipatory trader’s speed promotes IT’s profit instead. On the one hand, Small-IT’s additional same-direction trading x1x_{1} definitely increases IT’s cost, and the growth of θz\theta_{z} also makes IT unable to implement her investment accurately. However, on the other hand, a larger θz\theta_{z} makes it more difficult for Small-IT to detect vv from the signal i~1.\tilde{i}_{1}. As a result, she trades more conservatively in period 2. When the second effect goes beyond the former one, IT profits more with a Small-IT. When equilibria with a Small-IT and a back-runner are both within the pure-strategy region, expectedly, the improvement of anticipatory trader’s speed lowers IT’s profit.

As for anticipatory trader’s profit shown in Figure 4, she is benefited by the higher speed.

Comparing Figure 3 and 4, as θε\theta_{\varepsilon} grows, IT’s profit increases since with higher exogenous noise θε\theta_{\varepsilon}, she doesn’t need to add too much endogenous noise, which helps her exploit private information more precisely; in contrast, the anticipatory trader receives a less accurate signal and her profit decreases.

Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 5: J=2,J=2, IT’s mixed strategy.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 6: J=2,J=2, IT’s profit.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 7: J=2,J=2, anticipatory traders’ profit.

When J=2,J=2, with the promotion of anticipatory trader’s speed, IT’s intensity of randomization and the mixed-strategy region still grows, as shown in Figure 5; her profit with Small-ITs is still higher when signals are precise, as shown in Figure 6.

Variations appear in Figure 7 for anticipatory traders’ profit. From (a) in Figure 7, we find that if both θ1+\theta_{1_{+}} and θε\theta_{\varepsilon} are small, i.e., high-speed noise trading is not active and anticipatory traders’ signal are of high accuracy, the improvement of trading speed will reduce anticipatory traders’ profit. The former condition makes Small-ITs’ preemptive trading bring significant transaction costs to each other. And the latter condition makes IT add greater noise. Both of the above circumstances are bad for anticipatory traders.

An interesting result is presented by the blue lines in (b) and (c) of Figure 7: Small-IT’s profit increases with θε\theta_{\varepsilon} when θε\theta_{\varepsilon} is not large. It is because, with a larger θε\theta_{\varepsilon}, Small-IT is less disturbed by the endogenous noise added by IT, which outweighs the disadvantage of more exogenous noise. A similar pattern appears for back-runners in [4] when J4J\geq 4, compared to J=2J=2 here. The improvement of anticipatory traders’ speed drives IT to decrease θz\theta_{z} more sharply when θε\theta_{\varepsilon} increases, as displayed by (b) and (c) in Figure 5, and thus the pattern appears with a smaller number of anticipatory traders.

In Figure 7, when θ1+=0.01,\theta_{1_{+}}=0.01, this pattern does not appear. In fact, it holds for J3,J\geq 3, as shown in (a) of Figure 10. The reason is that a smaller θ1+\theta_{1_{+}} suppresses the activity of Small-IT, θz\theta_{z}’s sensitivity to θε\theta_{\varepsilon} needs to be amplified by a larger number of Small-ITs.

When J=3J=3, as displayed in Figure 9, in the mixed-strategy equilibrium with Small-ITs, IT’s profit first decreases with θε\theta_{\varepsilon} then increases with it. In [4], it appears when J6J\geq 6. It is also because the growth of anticipatory traders’ speed makes the intensity of randomization more sensitive to changes in signal noise.

Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 8: J=3,J=3, IT’s mixed strategy.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 9: J=3,J=3, IT’s profit.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 10: J=3,J=3, anticipatory traders’ profit.

The case J=10J=10 is displayed to verify the reached conclusions. When IT’s past trading is leaked and her future trading is anticipated by faster traders: (1) IT mixes more and may profit more in the mixed-strategy region, but profits less in the pure-strategy region; (2) anticipatory trader profits more in the pure-strategy region, but in the mixed-strategy region, if both θ1+\theta_{1_{+}} and θε\theta_{\varepsilon} are relatively small, anticipatory trader may profit less; (3) the phenomena that IT’s profit first decreases with θε\theta_{\varepsilon} and anticipatory trader’s profit first increases with θε\theta_{\varepsilon} appear for smaller JJ compared to [4].

Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 11: J=10,J=10, IT’s mixed strategy.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 12: J=10,J=10, IT’s profit.
Refer to caption
(a) θ1+=0.01\theta_{1_{+}}=0.01
Refer to caption
(b) θ1+=0.1\theta_{1_{+}}=0.1
Refer to caption
(c) θ1+=1\theta_{1_{+}}=1
Figure 13: J=10,J=10, anticipatory traders’ profit.

4.3 A market with Round-Trippers

In this section, we assume that J2=J1J_{2}=J\geq 1 and J1=0.J_{1}=0. It is proved in Theorem 4 that HFTs are all Round-Trippers who take liquidity first and later provide equal liquidity back. The jj-th HFT takes the following strategy:

x1j=β12(i~1j𝔼(i~1j|y1)),\displaystyle x_{1j}=\beta_{12}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})),
x2j=x1j.\displaystyle x_{2j}=-x_{1j}.
Theorem 4 (Simplification of the equilibrium with Round-Trippers).

The mixed-strategy equilibrium is characterized by system (34) and (35); the pure-strategy equilibrium is characterized by system (36) and (37). What’s more, β12>0.\beta_{12}>0.

Next, the equilibrium is solved and studied by numerical experiments. Given the number of Round-Trippers JJ, the equilibrium is only decided by market noise θ1+\theta_{1_{+}} and signal noise θε\theta_{\varepsilon}. Therefore, we analyze how these two parameters affect investors’ strategy and profits and show them in 3D graphs.

IT’s strategy.

Refer to caption
(a) J=1J=1
Refer to caption
(b) J=5J=5
Refer to caption
(c) J=10J=10
Figure 14: IT’s mixed strategy.
  • Given J1J\geq 1 and θ1+>0,\theta_{1_{+}}>0, there exists a θ¯ε0,\underline{\theta}_{\varepsilon}\geq 0, if θε>θ¯ε,\theta_{\varepsilon}>\underline{\theta}_{\varepsilon}, θz=0.\theta_{z}=0.

  • Given J1J\geq 1 and θε0,\theta_{\varepsilon}\geq 0, there exists a θ¯1+>0,\underline{\theta}_{1_{+}}>0, if θ1+>θ¯1+,\theta_{1_{+}}>\underline{\theta}_{1_{+}}, θz=0.\theta_{z}=0.

  • Given J1,J\geq 1, there exists a θ¯1+,\bar{\theta}_{1_{+}}, if θ1+>θ¯1+\theta_{1_{+}}>\bar{\theta}_{1_{+}}, θz=0\theta_{z}=0 for any θε0.\theta_{\varepsilon}\geq 0. Given J3,J\leq 3, θ¯1+(0,1).\bar{\theta}_{1_{+}}\in(0,1).

Refer to caption
Figure 15: The critical θ¯1+\bar{\theta}_{1_{+}} such that IT always takes pure strategy.

The third conclusion is further demonstrated in Figure 15, where the dotted area represents cases with θ¯1+1,\bar{\theta}_{1_{+}}\leq 1, which may occur in the actual markets. The critical θ¯1+\bar{\theta}_{1_{+}} falls into this region when J3.J\leq 3. That is to say, when the number of Round-Trippers is small and the market is quite active, even if IT’s intention is detected by Round-Trippers perfectly, she does not need to randomize orders. But when there is a large number of Round-Trippers, it is better for IT to adopt the mixed strategy to protect herself.

IT’s profit.

Refer to caption
(a) J=1J=1
Refer to caption
(b) J=5J=5
Refer to caption
(c) J=10J=10
Figure 16: IT’s profit. The grey plane represents IT’s profit without Round-Trippers.

Given J1J\geq 1 and θ1+>0,\theta_{1_{+}}>0,

  • there exists a θ~ε0,\tilde{\theta}_{\varepsilon}\geq 0, if θε>θ~ε,\theta_{\varepsilon}>\tilde{\theta}_{\varepsilon}, IT’s profit is higher than that without Round-Trippers;

  • there exists a θ^εθ~ε,\hat{\theta}_{\varepsilon}\geq\tilde{\theta}_{\varepsilon}, if θε>θ^ε,\theta_{\varepsilon}>\hat{\theta}_{\varepsilon}, IT’s profit decreases with θε.\theta_{\varepsilon}.

Given J1J\geq 1 and θε0,\theta_{\varepsilon}\geq 0,

  • there exists a θ~1+>0,\tilde{\theta}_{1_{+}}>0, if θ1+>θ~1+,\theta_{1_{+}}>\tilde{\theta}_{1_{+}}, IT’s profit is higher than that without Round-Trippers;

  • IT’s profit always increases with θ1+.\theta_{1_{+}}.

We plot the critical θ~ε\sqrt{\tilde{\theta}_{\varepsilon}} and θ^ε\sqrt{\hat{\theta}_{\varepsilon}} against θ1+\sqrt{\theta_{1_{+}}} in Figure 17. Only in the dotted region, IT is benefited by Round-Trippers and her profit increases when Round-Trippers receive a less accurate signal.

Refer to caption
(a) J=1J=1
Refer to caption
(b) J=5J=5
Refer to caption
(c) J=10J=10
Figure 17: The critical θ~ε\tilde{\theta}_{\varepsilon}^{\prime} and θ^ε\hat{\theta}_{\varepsilon}^{\prime}.

From Figure 17, if high-speed noise trading is scarce, IT is benefited only when the signal of Round-Tripper is inaccurate to σε\sigma_{\varepsilon} is larger than 2σ12\sigma_{1}, which is almost impossible. So with few high-speed noise orders, Round-Trippers basically harm IT. Otherwise, with the increase of signal noise, IT will be benefited. If high-speed noise trading is quite active, Round-Trippers benefit IT even if they predict perfectly. What’s more, the growth of θε\theta_{\varepsilon} may lead Round-Trippers unwilling to provide liquidity, which brings a decrease in IT’s profit.

HFT’s profit. Round-Tripper’s profit always increases with θ1+.\theta_{1_{+}}. Given J1J\geq 1, there exists a θ^1+(0,1],\hat{\theta}_{1_{+}}\in(0,1],

  • if θ1+<θ^1+,\theta_{1_{+}}<\hat{\theta}_{1_{+}}, Round-Tripper’s profit first increases with θε\theta_{\varepsilon} then decreases with it;

  • if θ1+θ^1+,\theta_{1_{+}}\geq\hat{\theta}_{1_{+}}, Round-Tripper’s profit decreases with it.

  • If J5,θ^1+=1.J\geq 5,\hat{\theta}_{1_{+}}=1.

Refer to caption
(a) J=1J=1
Refer to caption
(b) J=5J=5
Refer to caption
(c) J=10J=10
Figure 18: HFT’s profit.

When θε\theta_{\varepsilon} is relatively small and it grows, IT adds less noise to the order and trades more aggressively, as a result, Round-Tripper receives signals of higher precision and makes more profit from the market impact. Hence, a less accurate signal instead helps Round-Tripper profit more. When there are more than 55 Round-Trippers in the market, the aforementioned two effects are more obvious and Round-Tripper’s profit is bound to increase first, regardless of the market condition.

4.4 A market with both types of HFTs

In this section, we assume that J11J_{1}\geq 1 and J21,J_{2}\geq 1, there are J=J1+J2J=J_{1}+J_{2} HFTs in total. In equilibrium, HFTs take following strategies: for jJ1,j\leq J_{1},

x1j=β11(i~1j𝔼(i~1j|y1)),\displaystyle x_{1j}=\beta_{11}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})),
x2j=β21(i~1j𝔼(i~1j|y1))+β22(kjx1k+u1+)+β23x1j;\displaystyle x_{2j}=\beta_{21}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}))+\beta_{22}(\sum_{k\neq j}x_{1k}+u_{1_{+}})+\beta_{23}x_{1j};

for jJ1+1,j\geq J_{1}+1,

x1j=β12(i~1j𝔼(i~1j|y1)),\displaystyle x_{1j}=\beta_{12}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1})),
x2j=x1j.\displaystyle x_{2j}=-x_{1j}.
Theorem 5 (Simplification of the equilibrium with both types of HFTs).

The mixed-strategy equilibrium is characterized by system (38), (39) and (40); the pure-strategy equilibrium is characterized by system (41), (42) and (43).

Refer to caption
(a) J=2J=2
Refer to caption
(b) J=5J=5
Refer to caption
(c) J=10J=10
Figure 19: IT’s mixed strategy with different JJ and different proportions J1J\frac{J_{1}}{J} of Small-IT.

As before, we solve systems in Theorem 5 using numerical methods and obtain some new interesting results. Given θ1+=1\theta_{1_{+}}=1, we show IT’s mixed strategy with different numbers of HFTs and different proportions of Small-IT in Figure 19. When J=2J=2 and HFTs are all Round-Trippers, IT always take a pure strategy, as mentioned in Section 4.3. However, as long as there are Small-ITs, IT has to adopt the mixed strategy to protect herself.

IT expands the mixed-strategy area and increases the intensity of endogenous noise, as the proportion of Small-IT increases: if IT needs to randomize when there are 0%0\% Small-ITs, so she does with other proportions. For the case with 0%0\% Small-ITs, which has been studied in Section 4.3, when J>3J>3, it is better for IT to randomize. To sum up, regardless of the specific strategies used by HFTs, IT is suggested to disguise the orders when there are more than 33 HFTs.

Refer to caption
(a) IT’s profit
Refer to caption
(b) Small-IT’s profit
Refer to caption
(c) Round-Tripper’s profit
Figure 20: J=10,J=10, with different proportions J1J\frac{J_{1}}{J} of Small-IT.

In the following discussion, J=10J=10 is taken as an example. Profits of investors are analyzed in Figure 20. From (a), in general, IT profits more and is more likely to be benefited with more Round-Trippers, except for the cases where HFTs’ signals are of high accuracy. It is because IT adds more endogenous noise to protect herself when there are fewer Round-Trippers, so her profit is higher and it first decreases with θε.\theta_{\varepsilon}.

For Small-ITs’ profit displayed in (b) of Figure 20, we find that an individual Small-IT profits more with a higher proportion of Round-Trippers. On the one hand, Small-IT receives a more precise signal since IT mixes less. On the other hand, she benefits from the growing liquidity provided by Round-Trippers.

From (c) of Figure 20, the trend of Round-Tripper’s profit with relatively small θε\theta_{\varepsilon}s is different, when there are Small-ITs or not. Without Small-ITs, as θε\theta_{\varepsilon} grows, IT adds less endogenous noise and trades more aggressively, both of which are advantageous for Round-Trippers, so the profit increases. However, with Small-ITs, the advantage of less endogenous noise is shared by them. As a result, Round-Tripper’s profit decreases. Round-Tripper’s profit increases with θε\theta_{\varepsilon} when IT takes pure strategy: the increase of signal noise enables IT to trade more confidently and generates a large price impact.

Refer to caption
(a) Direction of x11x_{11}
Refer to caption
(b) Direction of x21x_{21}
Refer to caption
(c) IT’s randomization
Refer to caption
(d) IT’s profit
Refer to caption
(e) Profit of type-1 HFT
Refer to caption
(f) Round-Tripper’s profit
Figure 21: J1=1,J2=9,θε=0.J_{1}=1,J_{2}=9,\theta_{\varepsilon}=0.

Another noteworthy phenomenon is that HFTs with no inventory constraints do not always play the role of Small-IT. In the presence of both kinds of HFTs, when the size of high-speed noise trading θ1+\theta_{1_{+}} decreases, Small-IT may change her role to a kind of “inverse Round-Tripper”: trade in the opposite direction as IT at t=1+t=1_{+} and same direction at t=2t=2. (a) and (b) of figure 21 illustrate this. The reason is that HFTs’ fast trading brings higher transaction costs with a smaller θ1+\theta_{1_{+}}. Consider the case that IT is going to buy at t=2t=2, since Round-Tripper must clear all positions at the end, the only profitable strategy is “buy low & sell high”. However, other HFTs are free to adjust positions, in order to avoid large price impact, they choose to provide liquidity for Round-Trippers first and then buy back.

Figure 22 shows the critical value of θ1+\theta_{1_{+}} for “inverse Round-Tripper”. The value becomes smaller as the number of Round-Trippers grows. It should be noted that when J1J_{1} is large, the critical θ1+\theta_{1_{+}} is close to zero but still strictly positive.

Refer to caption
Figure 22: The critical θ1+\theta_{1_{+}} for “inverse Round-Tripper”, J=10J=10 and θε=0\theta_{\varepsilon}=0.

As for the existence of equilibrium, we find that when both kinds of HFTs exist, there is another critical value of θ1+\theta_{1_{+}}, when θ1+\theta_{1_{+}} is smaller than this critical value, the equilibrium does not exist. It is illustrated in Figure 23.

Refer to caption
Figure 23: The critical θ1+\theta_{1_{+}} for equilibrium existence, J=10J=10 and θε=0\theta_{\varepsilon}=0.

4.5 Equilibrium in the case θ1+0\theta_{1_{+}}\rightarrow 0

In this section, we investigate the limit equilibrium when θ1+0\theta_{1_{+}}\rightarrow 0, that is, there is little high-speed noise trading. From Figure 23, the limit equilibrium does not exist with both-type HFTs, so we only consider the cases with Small-ITs or Round-Trippers, both of which have analytical results.

Proposition 2.

When J1=J1J_{1}=J\geq 1, J2=0J_{2}=0 and θ1+0\theta_{1_{+}}\rightarrow 0 (all of the below is almost-sure convergence):

x1j0,x2jβ21(i~1j𝔼(i~1j|y1));\displaystyle x_{1j}\rightarrow 0,\ x_{2j}\rightarrow\beta_{21}(\tilde{i}_{1j}-\mathbb{E}(\tilde{i}_{1j}|y_{1}));
i1α1(vp0)+z,i2α21(v𝔼(v|y1))+α22(i1𝔼(i1|y1));\displaystyle i_{1}\rightarrow\alpha_{1}(v-p_{0})+z,\ i_{2}\rightarrow\alpha_{21}(v-\mathbb{E}(v|y_{1}))+\alpha_{22}(i_{1}-\mathbb{E}(i_{1}|y_{1}));
p1p0+λ1y1,p1+p0+λ1y1,p2p1+λ22y2.\displaystyle p_{1}\rightarrow p_{0}+\lambda_{1}y_{1},\ p_{1_{+}}\rightarrow p_{0}+\lambda_{1}y_{1},\ p_{2}\rightarrow p_{1}+\lambda_{22}y_{2}.

In the mixed-strategy equilibrium,

θz=J4θεJ+2+4θε11+4θεJ+θ2(J+2+4θεJ+1)2>0,\displaystyle\theta_{z}=\frac{J-4\theta_{\varepsilon}}{J+2+4\theta_{\varepsilon}}-\frac{1}{1+\frac{4\theta_{\varepsilon}}{J}+\theta_{2}\left(\frac{J+2+4\theta_{\varepsilon}}{J+1}\right)^{2}}>0,
A1=11+4θεJ+θ2(J+2+4θεJ+1)2,\displaystyle A_{1}=\frac{1}{\sqrt{1+\frac{4\theta_{\varepsilon}}{J}+\theta_{2}\left(\frac{J+2+4\theta_{\varepsilon}}{J+1}\right)^{2}}},
A21=J+1J+2+4θε1+4θεJ+θ2(J+2+4θεJ+1)2,\displaystyle A_{21}=\frac{J+1}{J+2+4\theta_{\varepsilon}}\sqrt{1+\frac{4\theta_{\varepsilon}}{J}+\theta_{2}\left(\frac{J+2+4\theta_{\varepsilon}}{J+1}\right)^{2}},
α22=J+1J+2+4θε,\displaystyle\alpha_{22}=-\frac{J+1}{J+2+4\theta_{\varepsilon}},
β21=2(J+1)J(J+2+4θε),\displaystyle\beta_{21}=\frac{2(J+1)}{J(J+2+4\theta_{\varepsilon})},
Λ1=Λ22=J+2+4θε2(J+1)1+4θεJ+θ2(J+2+4θεJ+1)2.\displaystyle\Lambda_{1}=\Lambda_{22}=\frac{J+2+4\theta_{\varepsilon}}{2(J+1)\sqrt{1+\frac{4\theta_{\varepsilon}}{J}+\theta_{2}\left(\frac{J+2+4\theta_{\varepsilon}}{J+1}\right)^{2}}}.

In the pure-strategy equilibrium, θz=0,\theta_{z}=0, A1A_{1} solves (49) and

Λ1=A11+A12,\displaystyle\Lambda_{1}=\frac{A_{1}}{1+A_{1}^{2}},
Λ22=A12J[A12(θε+1)+θε]+[2(A12+1)θε+A12]2(A12+1)θ2[A12(4θε+J+2)+4θε]2,\displaystyle\Lambda_{22}=\sqrt{\frac{A_{1}^{2}J[A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}]+[2(A_{1}^{2}+1)\theta_{\varepsilon}+A_{1}^{2}]^{2}}{(A_{1}^{2}+1)\theta_{2}[A_{1}^{2}(4\theta_{\varepsilon}+J+2)+4\theta_{\varepsilon}]^{2}}},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
β21=2A1A21A12(4θε+J+2)+4θε,\displaystyle\beta_{21}=\frac{2A_{1}A_{21}}{A_{1}^{2}(4\theta_{\varepsilon}+J+2)+4\theta_{\varepsilon}},
α22=Jβ212.\displaystyle\alpha_{22}=-\frac{J\beta_{21}}{2}.
Remark 2.

The mixed-strategy (pure-strategy) equilibrium in Proposition 2 is just the same as the one with back-runners in Proposition 3 (Proposition 4) in Yang and Zhu (2020) [4]. That is because, when there is little high-speed noise trading, Small-ITs nearly give up their speed advantage and become back-runners who only trade along with IT in period 2.

Proposition 3.

When J2=J1J_{2}=J\geq 1, J1=0J_{1}=0 and θ1+0\theta_{1_{+}}\rightarrow 0, HFTs tend to take no action, therefore, the time-1+1_{+} price tends to be the same as the time-11 price, (all of the below is almost-sure convergence):

x1j0,x2j0;\displaystyle x_{1j}\rightarrow 0,\ x_{2j}\rightarrow 0;
i1α1(vp0)+z,i2α21(v𝔼(v|y1))+α22(i1𝔼(i1|y1));\displaystyle i_{1}\rightarrow\alpha_{1}(v-p_{0})+z,\ i_{2}\rightarrow\alpha_{21}(v-\mathbb{E}(v|y_{1}))+\alpha_{22}(i_{1}-\mathbb{E}(i_{1}|y_{1}));
p1p0+λ1y1,p1+p0+λ1y1,p2p0+λ1y1+λ22y2.\displaystyle p_{1}\rightarrow p_{0}+\lambda_{1}y_{1},\ p_{1_{+}}\rightarrow p_{0}+\lambda_{1}y_{1},\ p_{2}\rightarrow p_{0}+\lambda_{1}y_{1}+\lambda_{22}y_{2}.

For any θε0,\theta_{\varepsilon}\geq 0, there exists ζ=ζ(θε,J)\zeta=\zeta(\theta_{\varepsilon},J) such that

limθ1+0β12θ1+=ζ(θε,J).\lim_{\theta_{1_{+}}\rightarrow 0}\frac{\beta_{12}}{\sqrt{\theta_{1_{+}}}}=\zeta(\theta_{\varepsilon},J).

In the mixed-strategy equilibrium, (A1,θz)+×+(A_{1},\theta_{z})\in\mathbb{R}^{+}\times\mathbb{R}^{+} solves:

0=\displaystyle 0= A18(θεJζ2+1)+A16(3θz+2)(θεJζ2+1)(θz+1)2(θεJθzζ2+θεJζ2+J2θzζ2+θz+1)\displaystyle A_{1}^{8}(\theta_{\varepsilon}J\zeta^{2}+1)+A_{1}^{6}(3\theta_{z}+2)(\theta_{\varepsilon}J\zeta^{2}+1)-(\theta_{z}+1)^{2}(\theta_{\varepsilon}J\theta_{z}\zeta^{2}+\theta_{\varepsilon}J\zeta^{2}+J^{2}\theta_{z}\zeta^{2}+\theta_{z}+1)
+\displaystyle+ A14[4θ2(θεJζ2+J2ζ2+1)+θz(3θεJθzζ2+3θεJζ2J2ζ2+3θz+3)]\displaystyle A_{1}^{4}[4\theta_{2}(\theta_{\varepsilon}J\zeta^{2}+J^{2}\zeta^{2}+1)+\theta_{z}(3\theta_{\varepsilon}J\theta_{z}\zeta^{2}+3\theta_{\varepsilon}J\zeta^{2}-J^{2}\zeta^{2}+3\theta_{z}+3)]
+\displaystyle+ A12{4θ2(θεJθzζ2+θεJζ2+J2θzζ2+θz+1)+(θz+1)[θz(θεJζ2+2J2ζ2+1)\displaystyle A_{1}^{2}\{4\theta_{2}(\theta_{\varepsilon}J\theta_{z}\zeta^{2}+\theta_{\varepsilon}J\zeta^{2}+J^{2}\theta_{z}\zeta^{2}+\theta_{z}+1)+(\theta_{z}+1)[-\theta_{z}(\theta_{\varepsilon}J\zeta^{2}+2J^{2}\zeta^{2}+1)
+\displaystyle+ θz2(θεJζ2+1)2(θεJζ2+1)]},\displaystyle\theta_{z}^{2}(\theta_{\varepsilon}J\zeta^{2}+1)-2(\theta_{\varepsilon}J\zeta^{2}+1)]\},
0=\displaystyle 0= A18(θεJζ2+1)+3A16(θεJθzζ2+θz)+A14[4θ2(θεJζ2+J2ζ2+1)+(3θz2+θz2)(θεJζ2+1)]\displaystyle A_{1}^{8}(\theta_{\varepsilon}J\zeta^{2}+1)+3A_{1}^{6}(\theta_{\varepsilon}J\theta_{z}\zeta^{2}+\theta_{z})+A_{1}^{4}[4\theta_{2}(\theta_{\varepsilon}J\zeta^{2}+J^{2}\zeta^{2}+1)+(3\theta_{z}^{2}+\theta_{z}-2)(\theta_{\varepsilon}J\zeta^{2}+1)]
+\displaystyle+ A12[4θ2(θεJθzζ2+θεJζ2+J2θzζ2J2ζ2+θz+1)+θz(θz+1)2(θεJζ2+1)]\displaystyle A_{1}^{2}[4\theta_{2}(\theta_{\varepsilon}J\theta_{z}\zeta^{2}+\theta_{\varepsilon}J\zeta^{2}+J^{2}\theta_{z}\zeta^{2}-J^{2}\zeta^{2}+\theta_{z}+1)+\theta_{z}(\theta_{z}+1)^{2}(\theta_{\varepsilon}J\zeta^{2}+1)]
+\displaystyle+ (θz+1)3(θεJζ2+1).\displaystyle(\theta_{z}+1)^{3}(\theta_{\varepsilon}J\zeta^{2}+1).

If it is solved,

Λ1=A1A12+θz+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+\theta_{z}+1},
Λ22=Λ1,\displaystyle\Lambda_{22}=\Lambda_{1},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=A12+θz+12.\displaystyle\alpha_{22}=-\frac{A_{1}^{2}+\theta_{z}+1}{2}.

In the pure-strategy equilibrium, θz=0,\theta_{z}=0, (Λ22,A1,α22)(\Lambda_{22},A_{1},\alpha_{22}) solves

0=\displaystyle 0= 2A14Λ22+2A12α22Λ224A1α222Λ222+A12(α22+1)Λ22,\displaystyle 2A_{1}^{4}\Lambda_{22}+2A_{1}^{2}\alpha_{22}\Lambda_{22}-4A_{1}\alpha_{22}^{2}\Lambda_{22}^{2}+A_{1}-2(\alpha_{22}+1)\Lambda_{22},
0=\displaystyle 0= 4A12Λ222(α222θεJζ2+α222+θεJθ2ζ2+J2θ2ζ2+θ2)+(4Λ222θ21)(θεJζ2+1),\displaystyle 4A_{1}^{2}\Lambda_{22}^{2}(\alpha_{22}^{2}\theta_{\varepsilon}J\zeta^{2}+\alpha_{22}^{2}+\theta_{\varepsilon}J\theta_{2}\zeta^{2}+J^{2}\theta_{2}\zeta^{2}+\theta_{2})+(4\Lambda_{22}^{2}\theta_{2}-1)(\theta_{\varepsilon}J\zeta^{2}+1),
0=\displaystyle 0= α22+2A1J2Λ22θ2ζ24A12Λ222(α222θεJζ2+α222+θεJθ2ζ2+J2θ2ζ2+θ2)+4A1α22Λ22(θεJζ2+1)+(4Λ222θ2+1)(θεJζ2+1),\displaystyle\alpha_{22}+\frac{2A_{1}J^{2}\Lambda_{22}\theta_{2}\zeta^{2}}{4A_{1}^{2}\Lambda_{22}^{2}(\alpha_{22}^{2}\theta_{\varepsilon}J\zeta^{2}+\alpha_{22}^{2}+\theta_{\varepsilon}J\theta_{2}\zeta^{2}+J^{2}\theta_{2}\zeta^{2}+\theta_{2})+4A_{1}\alpha_{22}\Lambda_{22}(\theta_{\varepsilon}J\zeta^{2}+1)+(4\Lambda_{22}^{2}\theta_{2}+1)(\theta_{\varepsilon}J\zeta^{2}+1)},
0<\displaystyle 0< Λ22,\displaystyle\Lambda_{22},
0<\displaystyle 0< 4A13Λ22A12+4A1(α22+1)Λ224α222Λ222.\displaystyle 4A_{1}^{3}\Lambda_{22}-A_{1}^{2}+4A_{1}(\alpha_{22}+1)\Lambda_{22}-4\alpha_{22}^{2}\Lambda_{22}^{2}.

If it is solved,

Λ1=A1A12+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+1},
A21=12Λ22.\displaystyle A_{21}=\frac{1}{2\Lambda_{22}}.

5 Conclusion

This paper models the interactions between a normal-speed informed trader and multiple high-frequency anticipatory traders who can predict the former’s future order through trading history and trade ahead of her as well. HFTs may play the role of Small-IT or Round-Tripper, according to their inventory aversion. To counteract HFTs’ detection, IT may add endogenous noise into her order and take a mixed strategy. By analyzing the market participants’ optimization and the equilibria under various conditions, this paper provides suggestions on IT’s randomization: (1) with the promotion of anticipatory traders’ speed, IT should widen the range of randomization and increase its intensity; (2) when there are more than 33 HFTs, IT should better take a mixed strategy, regardless of the specific roles of HFTs; (3) only when high-speed noise trading is quite active and there are no more than 33 HFTs who are all Round-Trippers, randomization is unnecessary.

Appendix

Proof of Theorem 1. The mixed-strategy equilibrium can be simplified to the following system of (A1,θz,β11):(A_{1},\theta_{z},\beta_{11}):

0<\displaystyle 0< 16Γ+(16A1β11)(A12(β112(θε+1)+θ1+)+β112(θεθz+θε+θz)+θ1+(θz+1))((A12+θz+1)(4A15(θε+1)Γ\displaystyle 6\Gamma+(6A_{1}\beta_{11})(A_{1}^{2}(\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}})+\beta_{11}^{2}(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+\theta_{1_{+}}(\theta_{z}+1))-((A_{1}^{2}+\theta_{z}+1)(4A_{1}^{5}(\theta_{\varepsilon}+1)\Gamma (22)
+\displaystyle+ A14(θε(8β11Γ2+4)+8β11Γ2+3)+4A13Γ(2β11(θε+1)+2θε(θz+1)+2θz+1)+A12(4θε(θz+1)(4β11Γ2+1)\displaystyle A_{1}^{4}(\theta_{\varepsilon}(8\beta_{11}\Gamma^{2}+4)+8\beta_{11}\Gamma^{2}+3)+4A_{1}^{3}\Gamma(2\beta_{11}(\theta_{\varepsilon}+1)+2\theta_{\varepsilon}(\theta_{z}+1)+2\theta_{z}+1)+A_{1}^{2}(4\theta_{\varepsilon}(\theta_{z}+1)(4\beta_{11}\Gamma^{2}+1)
+\displaystyle+ 8β11Γ2(2θz+1)+3θz1)+4A1Γ(2β11+θz+1)(θεθz+θε+θz)+8β11Γ2(θz+1)(θεθz+θε+θz))2)\displaystyle 8\beta_{11}\Gamma^{2}(2\theta_{z}+1)+3\theta_{z}-1)+4A_{1}\Gamma(2\beta_{11}+\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+8\beta_{11}\Gamma^{2}(\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}))^{2})
/\displaystyle/ (β112(A12(θε+1)+θεθz+θε+θz)2(A12Γ+A1+Γθz+Γ)(2A12Γ+A1+2Γ(θz+1))2),\displaystyle(\beta_{11}^{2}(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})^{2}(A_{1}^{2}\Gamma+A_{1}+\Gamma\theta_{z}+\Gamma)(2A_{1}^{2}\Gamma+A_{1}+2\Gamma(\theta_{z}+1))^{2}),
0<\displaystyle 0< A1,\displaystyle A_{1},
0<\displaystyle 0< θz,\displaystyle\theta_{z},
0=\displaystyle 0= β11(A1(8(A12(θε+1)+θεθz+θε+θz)((A12+θz+1)2(4A15(θε+1)Γ+A14(θε(8β11Γ2+4)+8β11Γ2+3)\displaystyle\beta_{11}-(A_{1}(8(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})-((A_{1}^{2}+\theta_{z}+1)^{2}(4A_{1}^{5}(\theta_{\varepsilon}+1)\Gamma+A_{1}^{4}(\theta_{\varepsilon}(8\beta_{11}\Gamma^{2}+4)+8\beta_{11}\Gamma^{2}+3)
+\displaystyle+ 4A13Γ(2β11(θε+1)+2θε(θz+1)+2θz+1)+A12(4θε(θz+1)(4β11Γ2+1)+8β11Γ2(2θz+1)+3θz1)\displaystyle 4A_{1}^{3}\Gamma(2\beta_{11}(\theta_{\varepsilon}+1)+2\theta_{\varepsilon}(\theta_{z}+1)+2\theta_{z}+1)+A_{1}^{2}(4\theta_{\varepsilon}(\theta_{z}+1)(4\beta_{11}\Gamma^{2}+1)+8\beta_{11}\Gamma^{2}(2\theta_{z}+1)+3\theta_{z}-1)
+\displaystyle+ 4A1Γ(2β11+θz+1)(θεθz+θε+θz)+8β11Γ2(θz+1)(θεθz+θε+θz)))/(β11(A12Γ+A1+Γθz+Γ)(2A12Γ+A1\displaystyle 4A_{1}\Gamma(2\beta_{11}+\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+8\beta_{11}\Gamma^{2}(\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})))/(\beta_{11}(A_{1}^{2}\Gamma+A_{1}+\Gamma\theta_{z}+\Gamma)(2A_{1}^{2}\Gamma+A_{1}
+\displaystyle+ 2Γ(θz+1)))))/((A12(θε+1)+θεθz+θε+θz)2((16A1β11)/(A12(β112(θε+1)+θ1+)+β112(θεθz+θε+θz)+θ1+(θz+1))\displaystyle 2\Gamma(\theta_{z}+1)))))/((A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})^{2}((6A_{1}\beta_{11})/(A_{1}^{2}(\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}})+\beta_{11}^{2}(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+\theta_{1_{+}}(\theta_{z}+1))
\displaystyle- ((A12+θz+1)(4A15(θε+1)Γ+A14(θε(8β11Γ2+4)+8β11Γ2+3)+4A13Γ(2β11(θε+1)+2θε(θz+1)+2θz+1)\displaystyle((A_{1}^{2}+\theta_{z}+1)(4A_{1}^{5}(\theta_{\varepsilon}+1)\Gamma+A_{1}^{4}(\theta_{\varepsilon}(8\beta_{11}\Gamma^{2}+4)+8\beta_{11}\Gamma^{2}+3)+4A_{1}^{3}\Gamma(2\beta_{11}(\theta_{\varepsilon}+1)+2\theta_{\varepsilon}(\theta_{z}+1)+2\theta_{z}+1)
+\displaystyle+ A12(4θε(θz+1)(4β11Γ2+1)+8β11Γ2(2θz+1)+3θz1)+4A1Γ(2β11+θz+1)(θεθz+θε+θz)+8β11Γ2(θz+1)\displaystyle A_{1}^{2}(4\theta_{\varepsilon}(\theta_{z}+1)(4\beta_{11}\Gamma^{2}+1)+8\beta_{11}\Gamma^{2}(2\theta_{z}+1)+3\theta_{z}-1)+4A_{1}\Gamma(2\beta_{11}+\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+8\beta_{11}\Gamma^{2}(\theta_{z}+1)
(θεθz+θε+θz))2)/(β112(A12(θε+1)+θεθz+θε+θz)2(A12Γ+A1+Γθz+Γ)(2A12Γ+A1+2Γ(θz+1))2)+16Γ)),\displaystyle(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}))^{2})/(\beta_{11}^{2}(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})^{2}(A_{1}^{2}\Gamma+A_{1}+\Gamma\theta_{z}+\Gamma)(2A_{1}^{2}\Gamma+A_{1}+2\Gamma(\theta_{z}+1))^{2})+6\Gamma)),
0=\displaystyle 0= 4(θε+1)Γ2(θεβ112+θ1+)A114+4Γ(2θε(θε+1)β112+2θεθ1++θ1+)A113+(4θε((6θz+4)Γ2+θε(6θz+5)Γ2+θε+1)β112\displaystyle 4(\theta_{\varepsilon}+1)\Gamma^{2}(\theta_{\varepsilon}\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{14}+4\Gamma(2\theta_{\varepsilon}(\theta_{\varepsilon}+1)\beta_{11}^{2}+2\theta_{\varepsilon}\theta_{1_{+}}+\theta_{1_{+}})A_{1}^{13}+(4\theta_{\varepsilon}((6\theta_{z}+4)\Gamma^{2}+\theta_{\varepsilon}(6\theta_{z}+5)\Gamma^{2}+\theta_{\varepsilon}+1)\beta_{11}^{2}
+\displaystyle+ 16(θε+1)Γ2θ1+β11+θ1+(8(3θz+2)Γ2+4θε((6θz+5)Γ2+1)+1))A112+4Γ(2θε(5θz+θε(5θz+4)+3)β112\displaystyle 6(\theta_{\varepsilon}+1)\Gamma^{2}\theta_{1_{+}}\beta_{11}+\theta_{1_{+}}(8(3\theta_{z}+2)\Gamma^{2}+4\theta_{\varepsilon}((6\theta_{z}+5)\Gamma^{2}+1)+1))A_{1}^{12}+4\Gamma(2\theta_{\varepsilon}(5\theta_{z}+\theta_{\varepsilon}(5\theta_{z}+4)+3)\beta_{11}^{2}
+\displaystyle+ 2(θε+1)θ1+β11+θ1+(5θz+2θε(5θz+4)+2))A111+4((((15θz2+24θz+4θ1++4θ2+9)Γ2+4θz+3)θε2+((15θz2+18θz\displaystyle 2(\theta_{\varepsilon}+1)\theta_{1_{+}}\beta_{11}+\theta_{1_{+}}(5\theta_{z}+2\theta_{\varepsilon}(5\theta_{z}+4)+2))A_{1}^{11}+4((((5\theta_{z}^{2}+4\theta_{z}+4\theta_{1_{+}}+4\theta_{2}+9)\Gamma^{2}+4\theta_{z}+3)\theta_{\varepsilon}^{2}+((5\theta_{z}^{2}+8\theta_{z}
+\displaystyle+ 8θ1++8θ2+5)Γ2+4θz+2)θε+Γ2(4θ1++4θ2θz))β112+4Γ2θ1+(5θz+θε(5θz+4)+3)β11+θ1+\displaystyle 8\theta_{1_{+}}+8\theta_{2}+5)\Gamma^{2}+4\theta_{z}+2)\theta_{\varepsilon}+\Gamma^{2}(4\theta_{1_{+}}+4\theta_{2}-\theta_{z}))\beta_{11}^{2}+4\Gamma^{2}\theta_{1_{+}}(5\theta_{z}+\theta_{\varepsilon}(5\theta_{z}+4)+3)\beta_{11}+\theta_{1_{+}}
((15θz2+19θz+4θ2+5)Γ2+θz+θε((15θz2+24θz+4θ2+9)Γ2+4θz+3)))A110+8Γ(((10θz2+15θz+4θ2+5)θε2\displaystyle((5\theta_{z}^{2}+9\theta_{z}+4\theta_{2}+5)\Gamma^{2}+\theta_{z}+\theta_{\varepsilon}((5\theta_{z}^{2}+4\theta_{z}+4\theta_{2}+9)\Gamma^{2}+4\theta_{z}+3)))A_{1}^{10}+8\Gamma(((0\theta_{z}^{2}+5\theta_{z}+4\theta_{2}+5)\theta_{\varepsilon}^{2}
+\displaystyle+ 2(5θz2+5θz+4θ2+1)θε+4θ2θz)β112+θ1+(4θz+θε(4θz+2)+1)β11+θ1+(5θz2+3θz+4θ2\displaystyle 2(5\theta_{z}^{2}+5\theta_{z}+4\theta_{2}+1)\theta_{\varepsilon}+4\theta_{2}-\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(4\theta_{z}+\theta_{\varepsilon}(4\theta_{z}+2)+1)\beta_{11}+\theta_{1_{+}}(5\theta_{z}^{2}+3\theta_{z}+4\theta_{2}
+\displaystyle+ θε(10θz2+15θz+4θ2+5)1))A19+2(2(((θz+1)(20θz2+25θz+16θ1++16θ2+5)Γ2+6θz2+4θ2+8θz+2)θε2\displaystyle\theta_{\varepsilon}(0\theta_{z}^{2}+5\theta_{z}+4\theta_{2}+5)-1))A_{1}^{9}+2(2(((\theta_{z}+1)(0\theta_{z}^{2}+5\theta_{z}+6\theta_{1_{+}}+6\theta_{2}+5)\Gamma^{2}+6\theta_{z}^{2}+4\theta_{2}+8\theta_{z}+2)\theta_{\varepsilon}^{2}
+\displaystyle+ 2((4θ1+(4θz+3)+4θ2(4θz+3)+5θz(2θz2+3θz+1))Γ2+3θz2+4θ2+2θz)θε+4θ2θz+Γ2(8θ1+(2θz+1)\displaystyle 2((4\theta_{1_{+}}(4\theta_{z}+3)+4\theta_{2}(4\theta_{z}+3)+5\theta_{z}(2\theta_{z}^{2}+3\theta_{z}+1))\Gamma^{2}+3\theta_{z}^{2}+4\theta_{2}+2\theta_{z})\theta_{\varepsilon}+4\theta_{2}-\theta_{z}+\Gamma^{2}(8\theta_{1_{+}}(2\theta_{z}+1)
+\displaystyle+ 8θ2(2θz+1)θz(5θz+4)))β112+8Γ2θ1+(10θz2+12θz+2θε(5θz2+8θz+3)+3)β11+θ1+(40Γ2θz3\displaystyle 8\theta_{2}(2\theta_{z}+1)-\theta_{z}(5\theta_{z}+4)))\beta_{11}^{2}+8\Gamma^{2}\theta_{1_{+}}(0\theta_{z}^{2}+2\theta_{z}+2\theta_{\varepsilon}(5\theta_{z}^{2}+8\theta_{z}+3)+3)\beta_{11}+\theta_{1_{+}}(0\Gamma^{2}\theta_{z}^{3}
+\displaystyle+ 70Γ2θz2+3θz2+30Γ2θz2θz+8θ2((4θz+3)Γ2+1)+2θε((θz+1)(20θz2+25θz+16θ2+5)Γ2\displaystyle 0\Gamma^{2}\theta_{z}^{2}+3\theta_{z}^{2}+0\Gamma^{2}\theta_{z}-2\theta_{z}+8\theta_{2}((4\theta_{z}+3)\Gamma^{2}+1)+2\theta_{\varepsilon}((\theta_{z}+1)(0\theta_{z}^{2}+5\theta_{z}+6\theta_{2}+5)\Gamma^{2}
+\displaystyle+ 6θz2+4θ2+8θz+2)3))A18+8Γ((2(θz+1)(6θ2+5θz(θz+1))θε2+2(5θz3+5θz2θz+4θ2(3θz+2)1)θε\displaystyle 6\theta_{z}^{2}+4\theta_{2}+8\theta_{z}+2)-3))A_{1}^{8}+8\Gamma((2(\theta_{z}+1)(6\theta_{2}+5\theta_{z}(\theta_{z}+1))\theta_{\varepsilon}^{2}+2(5\theta_{z}^{3}+5\theta_{z}^{2}-\theta_{z}+4\theta_{2}(3\theta_{z}+2)-1)\theta_{\varepsilon}
+\displaystyle+ 4θ2(3θz+1)θz(4θz+3))β112+θ1+(6(θε+1)θz2+(6θε+3)θz1)β11+θ1+((θz+1)(5(2θε+1)θz2+(10θε3)θz4)\displaystyle 4\theta_{2}(3\theta_{z}+1)-\theta_{z}(4\theta_{z}+3))\beta_{11}^{2}+\theta_{1_{+}}(6(\theta_{\varepsilon}+1)\theta_{z}^{2}+(6\theta_{\varepsilon}+3)\theta_{z}-1)\beta_{11}+\theta_{1_{+}}((\theta_{z}+1)(5(2\theta_{\varepsilon}+1)\theta_{z}^{2}+(0\theta_{\varepsilon}-3)\theta_{z}-4)
+\displaystyle+ 4θ2(3θz+3θε(θz+1)+2)))A17+4(((θz+1)((θz+1)(15θz2+10θz+24θ1++24θ25)Γ2+2(2θz2+θz+4θ21))θε2\displaystyle 4\theta_{2}(3\theta_{z}+3\theta_{\varepsilon}(\theta_{z}+1)+2)))A_{1}^{7}+4(((\theta_{z}+1)((\theta_{z}+1)(5\theta_{z}^{2}+0\theta_{z}+4\theta_{1_{+}}+4\theta_{2}-5)\Gamma^{2}+2(2\theta_{z}^{2}+\theta_{z}+4\theta_{2}-1))\theta_{\varepsilon}^{2}
+\displaystyle+ (4θz3+16θ2θz6θz+8θ2+Γ2(θz+1)(24θ1+(2θz+1)+24θ2(2θz+1)+5(3θz3+θz23θz1))2)θε\displaystyle(4\theta_{z}^{3}+6\theta_{2}\theta_{z}-6\theta_{z}+8\theta_{2}+\Gamma^{2}(\theta_{z}+1)(4\theta_{1_{+}}(2\theta_{z}+1)+4\theta_{2}(2\theta_{z}+1)+5(3\theta_{z}^{3}+\theta_{z}^{2}-3\theta_{z}-1))-2)\theta_{\varepsilon}
+\displaystyle+ θz(8θ23θz2)+2Γ2(θz(5θz2+8θz+3)+2θ1+(6θz2+6θz+1)+2θ2(6θz2+6θz+1)))β112+4Γ2θ1+(θz+1)\displaystyle\theta_{z}(8\theta_{2}-3\theta_{z}-2)+2\Gamma^{2}(-\theta_{z}(5\theta_{z}^{2}+8\theta_{z}+3)+2\theta_{1_{+}}(6\theta_{z}^{2}+6\theta_{z}+1)+2\theta_{2}(6\theta_{z}^{2}+6\theta_{z}+1)))\beta_{11}^{2}+4\Gamma^{2}\theta_{1_{+}}(\theta_{z}+1)
(10θz2+8θz+2θε(5θz2+7θz+2)+1)β11+θ1+(θz33θz2+8θ2θz6θz+4θ2+Γ2(θz+1)(15θz3+15θz2+24θ2θz5θz\displaystyle(0\theta_{z}^{2}+8\theta_{z}+2\theta_{\varepsilon}(5\theta_{z}^{2}+7\theta_{z}+2)+1)\beta_{11}+\theta_{1_{+}}(\theta_{z}^{3}-3\theta_{z}^{2}+8\theta_{2}\theta_{z}-6\theta_{z}+4\theta_{2}+\Gamma^{2}(\theta_{z}+1)(5\theta_{z}^{3}+5\theta_{z}^{2}+4\theta_{2}\theta_{z}-5\theta_{z}
+\displaystyle+ 12θ25)+θε(θz+1)((θz+1)(15θz2+10θz+24θ25)Γ2+2(2θz2+θz+4θ21))2))A16+4Γ(2(θε2(5θz2+12θ25)\displaystyle 2\theta_{2}-5)+\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}+1)(5\theta_{z}^{2}+0\theta_{z}+4\theta_{2}-5)\Gamma^{2}+2(2\theta_{z}^{2}+\theta_{z}+4\theta_{2}-1))-2))A_{1}^{6}+4\Gamma(2(\theta_{\varepsilon}^{2}(5\theta_{z}^{2}+2\theta_{2}-5)
(θz+1)2+θε(5θz35θz213θz+8θ2(3θz+1)3)(θz+1)+θz(6θz2+12θ2θz9θz+8θ23))β112+2θ1+(θz+1)\displaystyle(\theta_{z}+1)^{2}+\theta_{\varepsilon}(5\theta_{z}^{3}-5\theta_{z}^{2}-3\theta_{z}+8\theta_{2}(3\theta_{z}+1)-3)(\theta_{z}+1)+\theta_{z}(-6\theta_{z}^{2}+2\theta_{2}\theta_{z}-9\theta_{z}+8\theta_{2}-3))\beta_{11}^{2}+2\theta_{1_{+}}(\theta_{z}+1)
(4θz2θz+2θε(2θz2+θz1)1)β11+θ1+(θz+1)(5θz39θz221θz+8θ2(3θz+1)+2θε(θz+1)(5θz2+12θ25)\displaystyle(4\theta_{z}^{2}-\theta_{z}+2\theta_{\varepsilon}(2\theta_{z}^{2}+\theta_{z}-1)-1)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)(5\theta_{z}^{3}-9\theta_{z}^{2}-1\theta_{z}+8\theta_{2}(3\theta_{z}+1)+2\theta_{\varepsilon}(\theta_{z}+1)(5\theta_{z}^{2}+2\theta_{2}-5)
\displaystyle- 7))A15+(4(θε2((θz+1)(6θz23θz+16θ1++16θ29)Γ2+θz2+4θ22θz3)(θz+1)2+θε(θz35θz2+(8θ27)θz\displaystyle 7))A_{1}^{5}+(4(\theta_{\varepsilon}^{2}((\theta_{z}+1)(6\theta_{z}^{2}-3\theta_{z}+6\theta_{1_{+}}+6\theta_{2}-9)\Gamma^{2}+\theta_{z}^{2}+4\theta_{2}-2\theta_{z}-3)(\theta_{z}+1)^{2}+\theta_{\varepsilon}(\theta_{z}^{3}-5\theta_{z}^{2}+(8\theta_{2}-7)\theta_{z}
+\displaystyle+ 2Γ2(θz+1)(3θz36θz2+16θ2θz11θz+4θ2+4θ1+(4θz+1)2)1)(θz+1)+θz(2(θz+1)(5θz2+8θ2θz7θz\displaystyle 2\Gamma^{2}(\theta_{z}+1)(3\theta_{z}^{3}-6\theta_{z}^{2}+6\theta_{2}\theta_{z}-1\theta_{z}+4\theta_{2}+4\theta_{1_{+}}(4\theta_{z}+1)-2)-1)(\theta_{z}+1)+\theta_{z}(2(\theta_{z}+1)(-5\theta_{z}^{2}+8\theta_{2}\theta_{z}-7\theta_{z}
+\displaystyle+ 4θ2+θ1+(8θz+4)2)Γ23θz2+4(θ21)θz1))β112+16Γ2θ1+(θz+1)2(θz(5θz+2)+θε(5θz2+6θz+1))β11\displaystyle 4\theta_{2}+\theta_{1_{+}}(8\theta_{z}+4)-2)\Gamma^{2}-3\theta_{z}^{2}+4(\theta_{2}-1)\theta_{z}-1))\beta_{11}^{2}+6\Gamma^{2}\theta_{1_{+}}(\theta_{z}+1)^{2}(\theta_{z}(5\theta_{z}+2)+\theta_{\varepsilon}(5\theta_{z}^{2}+6\theta_{z}+1))\beta_{11}
+\displaystyle+ θ1+(θz+1)(θz313θz2+16θ2θz17θz+8Γ2(θz+1)(3θz3θz26θz+θ2(8θz+2)2)+4θε(θz+1)((θz+1)\displaystyle\theta_{1_{+}}(\theta_{z}+1)(\theta_{z}^{3}-3\theta_{z}^{2}+6\theta_{2}\theta_{z}-7\theta_{z}+8\Gamma^{2}(\theta_{z}+1)(3\theta_{z}^{3}-\theta_{z}^{2}-6\theta_{z}+\theta_{2}(8\theta_{z}+2)-2)+4\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}+1)
(6θz23θz+16θ29)Γ2+θz2+4θ22θz3)3))A14+4Γ(θz+1)(2(θzθε+θε+θz)(4θz2+(4θ25)θz\displaystyle(6\theta_{z}^{2}-3\theta_{z}+6\theta_{2}-9)\Gamma^{2}+\theta_{z}^{2}+4\theta_{2}-2\theta_{z}-3)-3))A_{1}^{4}+4\Gamma(\theta_{z}+1)(2(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(-4\theta_{z}^{2}+(4\theta_{2}-5)\theta_{z}
+\displaystyle+ θε(θz+1)(θz23θz+4θ24)1)β112+2θ1+(θzθε+θε+θz)(θz21)β11+θ1+(θz+1)(θz38θz2+(8θ211)θz\displaystyle\theta_{\varepsilon}(\theta_{z}+1)(\theta_{z}^{2}-3\theta_{z}+4\theta_{2}-4)-1)\beta_{11}^{2}+2\theta_{1_{+}}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(\theta_{z}^{2}-1)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)(\theta_{z}^{3}-8\theta_{z}^{2}+(8\theta_{2}-1)\theta_{z}
+\displaystyle+ 2θε(θz+1)(θz23θz+4θ24)2))A13+4(θz+1)2((θzθε+θε+θz)((5θz2+(4θ1++4θ26)θz1)Γ2θz\displaystyle 2\theta_{\varepsilon}(\theta_{z}+1)(\theta_{z}^{2}-3\theta_{z}+4\theta_{2}-4)-2))A_{1}^{3}+4(\theta_{z}+1)^{2}((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})((-5\theta_{z}^{2}+(4\theta_{1_{+}}+4\theta_{2}-6)\theta_{z}-1)\Gamma^{2}-\theta_{z}
+\displaystyle+ θε(θz+1)(Γ2(θz24θz+4θ1++4θ25)1))β112+4Γ2θ1+θz(θz+1)(θzθε+θε+θz)β11+θ1+(θz+1)\displaystyle\theta_{\varepsilon}(\theta_{z}+1)(\Gamma^{2}(\theta_{z}^{2}-4\theta_{z}+4\theta_{1_{+}}+4\theta_{2}-5)-1))\beta_{11}^{2}+4\Gamma^{2}\theta_{1_{+}}\theta_{z}(\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)
((θz34θz2+4θ2θz6θz1)Γ2θz+θε(θz+1)(Γ2(θz24θz+4θ25)1)))A128Γ(θz+1)3(θzθε+θε+θz)\displaystyle((\theta_{z}^{3}-4\theta_{z}^{2}+4\theta_{2}\theta_{z}-6\theta_{z}-1)\Gamma^{2}-\theta_{z}+\theta_{\varepsilon}(\theta_{z}+1)(\Gamma^{2}(\theta_{z}^{2}-4\theta_{z}+4\theta_{2}-5)-1)))A_{1}^{2}-8\Gamma(\theta_{z}+1)^{3}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})
((θzθε+θε+θz)β112+θ1+(θz+1))A14Γ2(θz+1)4(θzθε+θε+θz)((θzθε+θε+θz)β112+θ1+(θz+1)),\displaystyle((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1))A_{1}-4\Gamma^{2}(\theta_{z}+1)^{4}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1)),
0=\displaystyle 0= 2(θ1+(A12+θz+1)2(4(θε+1)ΓA14+(4θε+3)A13+4Γ(θεβ11+β11+2θε+2θεθz+2θz+1)A12\displaystyle-2(\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)^{2}(4(\theta_{\varepsilon}+1)\Gamma A_{1}^{4}+(4\theta_{\varepsilon}+3)A_{1}^{3}+4\Gamma(\theta_{\varepsilon}\beta_{11}+\beta_{11}+2\theta_{\varepsilon}+2\theta_{\varepsilon}\theta_{z}+2\theta_{z}+1)A_{1}^{2} (23)
+\displaystyle+ (3θz+4θε(θz+1)1)A1+4Γ(β11+θz+1)(θzθε+θε+θz))2A14+16β112θ2((θε+1)A12+θε+θεθz+θz)2\displaystyle(3\theta_{z}+4\theta_{\varepsilon}(\theta_{z}+1)-1)A_{1}+4\Gamma(\beta_{11}+\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z}))^{2}A_{1}^{4}+6\beta_{11}^{2}\theta_{2}((\theta_{\varepsilon}+1)A_{1}^{2}+\theta_{\varepsilon}+\theta_{\varepsilon}\theta_{z}+\theta_{z})^{2}
(ΓA12+A1+Γ+Γθz)2(2ΓA12+A1+2Γ(θz+1))2A12+4β112θε(A12+θz+1)2(ΓA12+A1+Γ+Γθz)2((2θε+1)A13\displaystyle(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})^{2}(2\Gamma A_{1}^{2}+A_{1}+2\Gamma(\theta_{z}+1))^{2}A_{1}^{2}+4\beta_{11}^{2}\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)^{2}(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})^{2}((2\theta_{\varepsilon}+1)A_{1}^{3}
+\displaystyle+ 4β11(θε+1)ΓA12+(θz+2θε(θz+1)1)A1+4β11Γ(θzθε+θε+θz))2A12+4β112θz(ΓA12+A1+Γ+Γθz)2\displaystyle 4\beta_{11}(\theta_{\varepsilon}+1)\Gamma A_{1}^{2}+(\theta_{z}+2\theta_{\varepsilon}(\theta_{z}+1)-1)A_{1}+4\beta_{11}\Gamma(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z}))^{2}A_{1}^{2}+4\beta_{11}^{2}\theta_{z}(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})^{2}
(4(θε+1)ΓA14+(4θε+3)A13+4Γ(θεβ11+β11+2θε+2θεθz+2θz+1)A12+(3θz+4θε(θz+1)1)A1\displaystyle(4(\theta_{\varepsilon}+1)\Gamma A_{1}^{4}+(4\theta_{\varepsilon}+3)A_{1}^{3}+4\Gamma(\theta_{\varepsilon}\beta_{11}+\beta_{11}+2\theta_{\varepsilon}+2\theta_{\varepsilon}\theta_{z}+2\theta_{z}+1)A_{1}^{2}+(3\theta_{z}+4\theta_{\varepsilon}(\theta_{z}+1)-1)A_{1}
+\displaystyle+ 4Γ(β11+θz+1)(θε(θz+1)+θz))2A12+4β112(ΓA12+A1+Γ+Γθz)2(2(θε+1)ΓA16+(3θε+2)A15+2Γ(3θzθε+θε\displaystyle 4\Gamma(\beta_{11}+\theta_{z}+1)(\theta_{\varepsilon}(\theta_{z}+1)+\theta_{z}))^{2}A_{1}^{2}+4\beta_{11}^{2}(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})^{2}(2(\theta_{\varepsilon}+1)\Gamma A_{1}^{6}+(3\theta_{\varepsilon}+2)A_{1}^{5}+2\Gamma(3\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}
+\displaystyle+ 2β11(θε+1)+3θz)A14+2(3θzθε+θε+2θz1)A13+2Γ(3θz2+4β11θz+θε(3θz2+4β11θz+2θz+2β111)1)A12\displaystyle 2\beta_{11}(\theta_{\varepsilon}+1)+3\theta_{z})A_{1}^{4}+2(3\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+2\theta_{z}-1)A_{1}^{3}+2\Gamma(3\theta_{z}^{2}+4\beta_{11}\theta_{z}+\theta_{\varepsilon}(3\theta_{z}^{2}+4\beta_{11}\theta_{z}+2\theta_{z}+2\beta_{11}-1)-1)A_{1}^{2}
+\displaystyle+ (2(θz1)θz+θε(3θz2+2θz1))A1+2Γ(θzθε+θε+θz)(θz2+2β11θz1))2A12+4β112(ΓA12+A1+Γ+Γθz)2\displaystyle(2(\theta_{z}-1)\theta_{z}+\theta_{\varepsilon}(3\theta_{z}^{2}+2\theta_{z}-1))A_{1}+2\Gamma(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(\theta_{z}^{2}+2\beta_{11}\theta_{z}-1))^{2}A_{1}^{2}+4\beta_{11}^{2}(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})^{2}
(2(θε+1)ΓA16+(3θε+2)A15+2Γ(θzθε+θε+2β11(θε+1)+θz)A14+(θz+2θε(θz+1)2)A13\displaystyle(2(\theta_{\varepsilon}+1)\Gamma A_{1}^{6}+(3\theta_{\varepsilon}+2)A_{1}^{5}+2\Gamma(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+2\beta_{11}(\theta_{\varepsilon}+1)+\theta_{z})A_{1}^{4}+(\theta_{z}+2\theta_{\varepsilon}(\theta_{z}+1)-2)A_{1}^{3}
+\displaystyle+ 2Γ(θz2+2(β111)θz+θε(2β11θz1)(θz+1)1)A12(θz+1)(θzθε+θε+θz)A1\displaystyle 2\Gamma(-\theta_{z}^{2}+2(\beta_{11}-1)\theta_{z}+\theta_{\varepsilon}(2\beta_{11}-\theta_{z}-1)(\theta_{z}+1)-1)A_{1}^{2}-(\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})A_{1}
\displaystyle- 2Γ(θz+1)2(θzθε+θε+θz))2)+4(A12+θz+1)(ΓA12+A1+Γ+Γθz)(2(θε+1)ΓA16+(3θε+2)A15+2Γ(θzθε+θε\displaystyle 2\Gamma(\theta_{z}+1)^{2}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z}))^{2})+4(A_{1}^{2}+\theta_{z}+1)(\Gamma A_{1}^{2}+A_{1}+\Gamma+\Gamma\theta_{z})(2(\theta_{\varepsilon}+1)\Gamma A_{1}^{6}+(3\theta_{\varepsilon}+2)A_{1}^{5}+2\Gamma(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}
+\displaystyle+ 2β11(θε+1)+θz)A14+(θz+2θε(θz+1)2)A13+2Γ(θz2+2(β111)θz+θε(2β11θz1)(θz+1)1)A12\displaystyle 2\beta_{11}(\theta_{\varepsilon}+1)+\theta_{z})A_{1}^{4}+(\theta_{z}+2\theta_{\varepsilon}(\theta_{z}+1)-2)A_{1}^{3}+2\Gamma(-\theta_{z}^{2}+2(\beta_{11}-1)\theta_{z}+\theta_{\varepsilon}(2\beta_{11}-\theta_{z}-1)(\theta_{z}+1)-1)A_{1}^{2}
\displaystyle- (θz+1)(θzθε+θε+θz)A12Γ(θz+1)2(θzθε+θε+θz))(4β112(θε+1)Γ2A18+4(θε+1)Γ((θε+2)β112+θ1+)A17\displaystyle(\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})A_{1}-2\Gamma(\theta_{z}+1)^{2}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z}))(4\beta_{11}^{2}(\theta_{\varepsilon}+1)\Gamma^{2}A_{1}^{8}+4(\theta_{\varepsilon}+1)\Gamma((\theta_{\varepsilon}+2)\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{7}
+\displaystyle+ (8(θε+1)2Γ2β113+4(θε2+2(2θzΓ2+Γ2+1)θε+Γ2+4Γ2θz+1)β112+(4θε+3)θ1+)A16+4Γ(2(θε+1)2β113\displaystyle(8(\theta_{\varepsilon}+1)^{2}\Gamma^{2}\beta_{11}^{3}+4(\theta_{\varepsilon}^{2}+2(2\theta_{z}\Gamma^{2}+\Gamma^{2}+1)\theta_{\varepsilon}+\Gamma^{2}+4\Gamma^{2}\theta_{z}+1)\beta_{11}^{2}+(4\theta_{\varepsilon}+3)\theta_{1_{+}})A_{1}^{6}+4\Gamma(2(\theta_{\varepsilon}+1)^{2}\beta_{11}^{3}
+\displaystyle+ (3(θz+1)θε2+(9θz+4)θε+6θz)β112+(θε+1)θ1+β11+θ1+(3θz+3θε(θz+1)+2))A15\displaystyle(3(\theta_{z}+1)\theta_{\varepsilon}^{2}+(9\theta_{z}+4)\theta_{\varepsilon}+6\theta_{z})\beta_{11}^{2}+(\theta_{\varepsilon}+1)\theta_{1_{+}}\beta_{11}+\theta_{1_{+}}(3\theta_{z}+3\theta_{\varepsilon}(\theta_{z}+1)+2))A_{1}^{5}
+\displaystyle+ 2(4(θε+1)Γ2(3θz+3θε(θz+1)+1)β113+2(2(θz+1)θε2+6Γ2θz2θε+(6Γ2+4)θzθε+θε+2θz\displaystyle 2(4(\theta_{\varepsilon}+1)\Gamma^{2}(3\theta_{z}+3\theta_{\varepsilon}(\theta_{z}+1)+1)\beta_{11}^{3}+2(2(\theta_{z}+1)\theta_{\varepsilon}^{2}+6\Gamma^{2}\theta_{z}^{2}\theta_{\varepsilon}+(6\Gamma^{2}+4)\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+2\theta_{z}
+\displaystyle+ Γ2(6θz2+3θz1)1)β112+θ1+(3θz+4θε(θz+1)+1))A14+4Γ(4(θε+1)(θzθε+θε+θz)β113+(6θz2+3θε2(θz+1)2\displaystyle\Gamma^{2}(6\theta_{z}^{2}+3\theta_{z}-1)-1)\beta_{11}^{2}+\theta_{1_{+}}(3\theta_{z}+4\theta_{\varepsilon}(\theta_{z}+1)+1))A_{1}^{4}+4\Gamma(4(\theta_{\varepsilon}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{3}+(6\theta_{z}^{2}+3\theta_{\varepsilon}^{2}(\theta_{z}+1)^{2}
+\displaystyle+ θε(9θz2+8θz1)2)β112+θ1+(2θz+2θε(θz+1)+1)β11+θ1+(θz+1)(3θz+3θε(θz+1)+1))A13+(8Γ2(3θε2(θz+1)2\displaystyle\theta_{\varepsilon}(9\theta_{z}^{2}+8\theta_{z}-1)-2)\beta_{11}^{2}+\theta_{1_{+}}(2\theta_{z}+2\theta_{\varepsilon}(\theta_{z}+1)+1)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)(3\theta_{z}+3\theta_{\varepsilon}(\theta_{z}+1)+1))A_{1}^{3}+(8\Gamma^{2}(3\theta_{\varepsilon}^{2}(\theta_{z}+1)^{2}
+\displaystyle+ θz(3θz+2)+θε(6θz2+8θz+2))β113+4((4θz3+3θz22θz1)Γ2+θε2(θz+1)2+(θz1)θz+θε(2θz2+θz1)\displaystyle\theta_{z}(3\theta_{z}+2)+\theta_{\varepsilon}(6\theta_{z}^{2}+8\theta_{z}+2))\beta_{11}^{3}+4((4\theta_{z}^{3}+3\theta_{z}^{2}-2\theta_{z}-1)\Gamma^{2}+\theta_{\varepsilon}^{2}(\theta_{z}+1)^{2}+(\theta_{z}-1)\theta_{z}+\theta_{\varepsilon}(2\theta_{z}^{2}+\theta_{z}-1)
(2(θz+1)Γ2+1))β112+θ1+(θz+1)(3θz+4θε(θz+1)1))A12+4Γ(θzθε+θε+θz)(2(θzθε+θε+θz)β113+(θz+1)\displaystyle(2(\theta_{z}+1)\Gamma^{2}+1))\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1)(3\theta_{z}+4\theta_{\varepsilon}(\theta_{z}+1)-1))A_{1}^{2}+4\Gamma(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(2(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{3}+(\theta_{z}+1)
(θzθε+θε+2θz2)β112+θ1+(θz+1)β11+θ1+(θz+1)2)A1+4β112Γ2(θz+1)(θzθε+θε+θz)(θz2\displaystyle(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+2\theta_{z}-2)\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)^{2})A_{1}+4\beta_{11}^{2}\Gamma^{2}(\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(\theta_{z}^{2}
+\displaystyle+ 2β11(θzθε+θε+θz)1))+(2ΓA12+A1+2Γ(θz+1))(4(θε+1)ΓA14+(4θε+3)A13\displaystyle 2\beta_{11}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})-1))+(2\Gamma A_{1}^{2}+A_{1}+2\Gamma(\theta_{z}+1))(4(\theta_{\varepsilon}+1)\Gamma A_{1}^{4}+(4\theta_{\varepsilon}+3)A_{1}^{3}
+\displaystyle+ 4Γ(θεβ11+β11+2θε+2θεθz+2θz+1)A12+(3θz+4θε(θz+1)1)A1+4Γ(β11+θz+1)(θzθε+θε+θz))(4(θε+1)\displaystyle 4\Gamma(\theta_{\varepsilon}\beta_{11}+\beta_{11}+2\theta_{\varepsilon}+2\theta_{\varepsilon}\theta_{z}+2\theta_{z}+1)A_{1}^{2}+(3\theta_{z}+4\theta_{\varepsilon}(\theta_{z}+1)-1)A_{1}+4\Gamma(\beta_{11}+\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z}))(4(\theta_{\varepsilon}+1)
Γ2(θεβ112+θ1+)A114+4Γ(2θε(θε+1)β112+2θεθ1++θ1+)A113+(4θε((6θz+2)Γ2+θε(6θz+3)Γ2+θε+1)β112\displaystyle\Gamma^{2}(\theta_{\varepsilon}\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{14}+4\Gamma(2\theta_{\varepsilon}(\theta_{\varepsilon}+1)\beta_{11}^{2}+2\theta_{\varepsilon}\theta_{1_{+}}+\theta_{1_{+}})A_{1}^{13}+(4\theta_{\varepsilon}((6\theta_{z}+2)\Gamma^{2}+\theta_{\varepsilon}(6\theta_{z}+3)\Gamma^{2}+\theta_{\varepsilon}+1)\beta_{11}^{2}
+\displaystyle+ 16(θε+1)Γ2θ1+β11+θ1+(8(3θz+1)Γ2+4θε((6θz+3)Γ2+1)+1))A112+4Γ(2θε(5θz+θε(5θz+2)+1)β112\displaystyle 6(\theta_{\varepsilon}+1)\Gamma^{2}\theta_{1_{+}}\beta_{11}+\theta_{1_{+}}(8(3\theta_{z}+1)\Gamma^{2}+4\theta_{\varepsilon}((6\theta_{z}+3)\Gamma^{2}+1)+1))A_{1}^{12}+4\Gamma(2\theta_{\varepsilon}(5\theta_{z}+\theta_{\varepsilon}(5\theta_{z}+2)+1)\beta_{11}^{2}
+\displaystyle+ 2(θε+1)θ1+β11+θ1+(5θz+2θε(5θz+2)1))A111+4((((15θz2+16θz+4θ1++4θ2+1)Γ2+4θz+1)θε2\displaystyle 2(\theta_{\varepsilon}+1)\theta_{1_{+}}\beta_{11}+\theta_{1_{+}}(5\theta_{z}+2\theta_{\varepsilon}(5\theta_{z}+2)-1))A_{1}^{11}+4((((5\theta_{z}^{2}+6\theta_{z}+4\theta_{1_{+}}+4\theta_{2}+1)\Gamma^{2}+4\theta_{z}+1)\theta_{\varepsilon}^{2}
+\displaystyle+ ((15θz2+12θz+8θ1++8θ21)Γ2+4θz)θε+Γ2(4θ1++4θ2+θz))β112+4Γ2θ1+(5θz+θε(5θz+3)+2)β11\displaystyle((5\theta_{z}^{2}+2\theta_{z}+8\theta_{1_{+}}+8\theta_{2}-1)\Gamma^{2}+4\theta_{z})\theta_{\varepsilon}+\Gamma^{2}(4\theta_{1_{+}}+4\theta_{2}+\theta_{z}))\beta_{11}^{2}+4\Gamma^{2}\theta_{1_{+}}(5\theta_{z}+\theta_{\varepsilon}(5\theta_{z}+3)+2)\beta_{11}
+\displaystyle+ θ1+((15θz2+11θz+4θ21)Γ2+θε(15θz2+16θz+4θ2+1)Γ2+θε+4θεθz+θz1))A110\displaystyle\theta_{1_{+}}((5\theta_{z}^{2}+1\theta_{z}+4\theta_{2}-1)\Gamma^{2}+\theta_{\varepsilon}(5\theta_{z}^{2}+6\theta_{z}+4\theta_{2}+1)\Gamma^{2}+\theta_{\varepsilon}+4\theta_{\varepsilon}\theta_{z}+\theta_{z}-1))A_{1}^{10}
+\displaystyle+ 8Γ(((10θz2+9θz+4θ21)θε2+2(5θz2+3θz+4θ21)θε+4θ2+θz)β112+θ1+(4(θε+1)θz1)β11+θ1+(5θz2θz+4θ2\displaystyle 8\Gamma(((0\theta_{z}^{2}+9\theta_{z}+4\theta_{2}-1)\theta_{\varepsilon}^{2}+2(5\theta_{z}^{2}+3\theta_{z}+4\theta_{2}-1)\theta_{\varepsilon}+4\theta_{2}+\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(4(\theta_{\varepsilon}+1)\theta_{z}-1)\beta_{11}+\theta_{1_{+}}(5\theta_{z}^{2}-\theta_{z}+4\theta_{2}
+\displaystyle+ θε(10θz2+9θz+4θ21)3))A19+2(2(((θz+1)(20θz2+15θz+16θ1++16θ25)Γ2+6θz2+4θ2+4θz2)θε2\displaystyle\theta_{\varepsilon}(0\theta_{z}^{2}+9\theta_{z}+4\theta_{2}-1)-3))A_{1}^{9}+2(2(((\theta_{z}+1)(0\theta_{z}^{2}+5\theta_{z}+6\theta_{1_{+}}+6\theta_{2}-5)\Gamma^{2}+6\theta_{z}^{2}+4\theta_{2}+4\theta_{z}-2)\theta_{\varepsilon}^{2}
+\displaystyle+ 2((10θz3+15θz2+3θz+4θ1+(4θz+3)+4θ2(4θz+3)2)Γ2+3θz2+4θ2+θz1)θε+4θ2+θz+Γ2(8θ1+(2θz+1)\displaystyle 2((0\theta_{z}^{3}+5\theta_{z}^{2}+3\theta_{z}+4\theta_{1_{+}}(4\theta_{z}+3)+4\theta_{2}(4\theta_{z}+3)-2)\Gamma^{2}+3\theta_{z}^{2}+4\theta_{2}+\theta_{z}-1)\theta_{\varepsilon}+4\theta_{2}+\theta_{z}+\Gamma^{2}(8\theta_{1_{+}}(2\theta_{z}+1)
+\displaystyle+ 8θ2(2θz+1)+θz(5θz+4)))β112+16Γ2θ1+(θz(5θz+4)+θε(5θz2+6θz+1))β11+θ1+(2(20θz3+25θz2+θz\displaystyle 8\theta_{2}(2\theta_{z}+1)+\theta_{z}(5\theta_{z}+4)))\beta_{11}^{2}+6\Gamma^{2}\theta_{1_{+}}(\theta_{z}(5\theta_{z}+4)+\theta_{\varepsilon}(5\theta_{z}^{2}+6\theta_{z}+1))\beta_{11}+\theta_{1_{+}}(2(0\theta_{z}^{3}+5\theta_{z}^{2}+\theta_{z}
+\displaystyle+ 4θ2(4θz+3)4)Γ2+3θz2+8θ24θz+2θε((θz+1)(20θz2+15θz+16θ25)Γ2+6θz2+4θ2+4θz2)1))A18\displaystyle 4\theta_{2}(4\theta_{z}+3)-4)\Gamma^{2}+3\theta_{z}^{2}+8\theta_{2}-4\theta_{z}+2\theta_{\varepsilon}((\theta_{z}+1)(0\theta_{z}^{2}+5\theta_{z}+6\theta_{2}-5)\Gamma^{2}+6\theta_{z}^{2}+4\theta_{2}+4\theta_{z}-2)-1))A_{1}^{8}
+\displaystyle+ 8Γ((2(θz+1)(5θz2+3θz+6θ22)θε2+2(5θz3+7θz2+θz+4θ2(3θz+2)1)θε+4θ2(3θz+1)+θz(4θz+3))β112\displaystyle 8\Gamma((2(\theta_{z}+1)(5\theta_{z}^{2}+3\theta_{z}+6\theta_{2}-2)\theta_{\varepsilon}^{2}+2(5\theta_{z}^{3}+7\theta_{z}^{2}+\theta_{z}+4\theta_{2}(3\theta_{z}+2)-1)\theta_{\varepsilon}+4\theta_{2}(3\theta_{z}+1)+\theta_{z}(4\theta_{z}+3))\beta_{11}^{2}
+\displaystyle+ θ1+(6θz23θz+6θε(θz21)5)β11+θ1+(5θz3+θz25θz+4θ2(3θz+2)+2θε(θz+1)(5θz2+3θz+6θ22)1))A17\displaystyle\theta_{1_{+}}(6\theta_{z}^{2}-3\theta_{z}+6\theta_{\varepsilon}(\theta_{z}^{2}-1)-5)\beta_{11}+\theta_{1_{+}}(5\theta_{z}^{3}+\theta_{z}^{2}-5\theta_{z}+4\theta_{2}(3\theta_{z}+2)+2\theta_{\varepsilon}(\theta_{z}+1)(5\theta_{z}^{2}+3\theta_{z}+6\theta_{2}-2)-1))A_{1}^{7}
+\displaystyle+ 4(((θz+1)((θz+1)(15θz2+10θz+24θ1++24θ25)Γ2+2(2θz2+θz+4θ21))θε2+((θz+1)(15θz3+25θz2+48θ2θz\displaystyle 4(((\theta_{z}+1)((\theta_{z}+1)(5\theta_{z}^{2}+0\theta_{z}+4\theta_{1_{+}}+4\theta_{2}-5)\Gamma^{2}+2(2\theta_{z}^{2}+\theta_{z}+4\theta_{2}-1))\theta_{\varepsilon}^{2}+((\theta_{z}+1)(5\theta_{z}^{3}+5\theta_{z}^{2}+8\theta_{2}\theta_{z}
+\displaystyle+ 9θz+24θ2+24θ1+(2θz+1)1)Γ2+2(2θz+1)(θz2+θz+4θ2))θε+θz(8θ2+3θz+2)+2Γ2(θz(5θz2+8θz+3)\displaystyle 9\theta_{z}+4\theta_{2}+4\theta_{1_{+}}(2\theta_{z}+1)-1)\Gamma^{2}+2(2\theta_{z}+1)(\theta_{z}^{2}+\theta_{z}+4\theta_{2}))\theta_{\varepsilon}+\theta_{z}(8\theta_{2}+3\theta_{z}+2)+2\Gamma^{2}(\theta_{z}(5\theta_{z}^{2}+8\theta_{z}+3)
+\displaystyle+ 2θ1+(6θz2+6θz+1)+2θ2(6θz2+6θz+1)))β112+8Γ2θ1+(θz+1)(5θz2+θz+θε(5θz2+4θz1)1)β11\displaystyle 2\theta_{1_{+}}(6\theta_{z}^{2}+6\theta_{z}+1)+2\theta_{2}(6\theta_{z}^{2}+6\theta_{z}+1)))\beta_{11}^{2}+8\Gamma^{2}\theta_{1_{+}}(\theta_{z}+1)(5\theta_{z}^{2}+\theta_{z}+\theta_{\varepsilon}(5\theta_{z}^{2}+4\theta_{z}-1)-1)\beta_{11}
+\displaystyle+ θ1+(θz3+8θ2θz+2θz+4θ2+Γ2(θz+1)(15θz3+15θz2+24θ2θzθz+12θ21)+θε(θz+1)((θz+1)\displaystyle\theta_{1_{+}}(\theta_{z}^{3}+8\theta_{2}\theta_{z}+2\theta_{z}+4\theta_{2}+\Gamma^{2}(\theta_{z}+1)(5\theta_{z}^{3}+5\theta_{z}^{2}+4\theta_{2}\theta_{z}-\theta_{z}+2\theta_{2}-1)+\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}+1)
(15θz2+10θz+24θ25)Γ2+2(2θz2+θz+4θ21))+3))A16+4Γ(2(θε2(5θz2+4θz+12θ21)(θz+1)2\displaystyle(5\theta_{z}^{2}+0\theta_{z}+4\theta_{2}-5)\Gamma^{2}+2(2\theta_{z}^{2}+\theta_{z}+4\theta_{2}-1))+3))A_{1}^{6}+4\Gamma(2(\theta_{\varepsilon}^{2}(5\theta_{z}^{2}+4\theta_{z}+2\theta_{2}-1)(\theta_{z}+1)^{2}
+\displaystyle+ θε((5θz+1)(θz+1)2+8θ2(3θz+1))(θz+1)+θz(6θz2+9θz+4θ2(3θz+2)+3))β112+2θ1+(θz+1)(4θz27θz\displaystyle\theta_{\varepsilon}((5\theta_{z}+1)(\theta_{z}+1)^{2}+8\theta_{2}(3\theta_{z}+1))(\theta_{z}+1)+\theta_{z}(6\theta_{z}^{2}+9\theta_{z}+4\theta_{2}(3\theta_{z}+2)+3))\beta_{11}^{2}+2\theta_{1_{+}}(\theta_{z}+1)(4\theta_{z}^{2}-7\theta_{z}
+\displaystyle+ 4θε(θz2θz2)3)β11+θ1+(θz+1)(5θz3+3θz2+3θz+8θ2(3θz+1)+2θε(θz+1)(5θz2+4θz+12θ21)+5))A15\displaystyle 4\theta_{\varepsilon}(\theta_{z}^{2}-\theta_{z}-2)-3)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)(5\theta_{z}^{3}+3\theta_{z}^{2}+3\theta_{z}+8\theta_{2}(3\theta_{z}+1)+2\theta_{\varepsilon}(\theta_{z}+1)(5\theta_{z}^{2}+4\theta_{z}+2\theta_{2}-1)+5))A_{1}^{5}
+\displaystyle+ (4(θε2((θz+1)(6θz2+7θz+16θ1++16θ2+1)Γ2+(θz+1)2+4θ2)(θz+1)2+θε(θz3+5θz2+(8θ2+5)θz\displaystyle(4(\theta_{\varepsilon}^{2}((\theta_{z}+1)(6\theta_{z}^{2}+7\theta_{z}+6\theta_{1_{+}}+6\theta_{2}+1)\Gamma^{2}+(\theta_{z}+1)^{2}+4\theta_{2})(\theta_{z}+1)^{2}+\theta_{\varepsilon}(\theta_{z}^{3}+5\theta_{z}^{2}+(8\theta_{2}+5)\theta_{z}
+\displaystyle+ 2Γ2(θz+1)(3θz3+9θz2+16θ2θz+7θz+4θ2+4θ1+(4θz+1)+1)+1)(θz+1)+θz(2(θz+1)(5θz2+7θz+θ1+(8θz+4)\displaystyle 2\Gamma^{2}(\theta_{z}+1)(3\theta_{z}^{3}+9\theta_{z}^{2}+6\theta_{2}\theta_{z}+7\theta_{z}+4\theta_{2}+4\theta_{1_{+}}(4\theta_{z}+1)+1)+1)(\theta_{z}+1)+\theta_{z}(2(\theta_{z}+1)(5\theta_{z}^{2}+7\theta_{z}+\theta_{1_{+}}(8\theta_{z}+4)
+\displaystyle+ θ2(8θz+4)+2)Γ2+3θz2+4(θ2+1)θz+1))β112+16Γ2θ1+(θz+1)2(5θz22θz+θε(5θz2+2θz3)1)β11\displaystyle\theta_{2}(8\theta_{z}+4)+2)\Gamma^{2}+3\theta_{z}^{2}+4(\theta_{2}+1)\theta_{z}+1))\beta_{11}^{2}+6\Gamma^{2}\theta_{1_{+}}(\theta_{z}+1)^{2}(5\theta_{z}^{2}-2\theta_{z}+\theta_{\varepsilon}(5\theta_{z}^{2}+2\theta_{z}-3)-1)\beta_{11}
+\displaystyle+ θ1+(θz+1)(θz3+7θz2+16θ2θz+15θz+8Γ2(θz+1)(3θz3+4θz2+2θz+θ2(8θz+2)+1)+4θε(θz+1)((θz+1)\displaystyle\theta_{1_{+}}(\theta_{z}+1)(\theta_{z}^{3}+7\theta_{z}^{2}+6\theta_{2}\theta_{z}+5\theta_{z}+8\Gamma^{2}(\theta_{z}+1)(3\theta_{z}^{3}+4\theta_{z}^{2}+2\theta_{z}+\theta_{2}(8\theta_{z}+2)+1)+4\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}+1) (24)
(6θz2+7θz+16θ2+1)Γ2+(θz+1)2+4θ2)+9))A14+4Γ(θz+1)(2(θzθε+θε+θz)(4θz2+(4θ2+5)θz+θε(θz+1)\displaystyle(6\theta_{z}^{2}+7\theta_{z}+6\theta_{2}+1)\Gamma^{2}+(\theta_{z}+1)^{2}+4\theta_{2})+9))A_{1}^{4}+4\Gamma(\theta_{z}+1)(2(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(4\theta_{z}^{2}+(4\theta_{2}+5)\theta_{z}+\theta_{\varepsilon}(\theta_{z}+1)
(θz2+3θz+4θ2+2)+1)β112+2θ1+(θzθε+θε+θz)(θz22θz3)β11+θ1+(θz+1)(θz3+5θz2+(8θ2+7)θz\displaystyle(\theta_{z}^{2}+3\theta_{z}+4\theta_{2}+2)+1)\beta_{11}^{2}+2\theta_{1_{+}}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(\theta_{z}^{2}-2\theta_{z}-3)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)(\theta_{z}^{3}+5\theta_{z}^{2}+(8\theta_{2}+7)\theta_{z}
+\displaystyle+ 2θε(θz+1)(θz2+3θz+4θ2+2)+3))A13+4(θz+1)2((θzθε+θε+θz)((5θz2+(4θ1++4θ2+6)θz+1)Γ2+θz\displaystyle 2\theta_{\varepsilon}(\theta_{z}+1)(\theta_{z}^{2}+3\theta_{z}+4\theta_{2}+2)+3))A_{1}^{3}+4(\theta_{z}+1)^{2}((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})((5\theta_{z}^{2}+(4\theta_{1_{+}}+4\theta_{2}+6)\theta_{z}+1)\Gamma^{2}+\theta_{z}
+\displaystyle+ θε(θz+1)((θz2+4θz+4θ1++4θ2+3)Γ2+1))β112+4Γ2θ1+(θzθε+θε+θz)(θz21)β11+θ1+(θz+1)((θz3+4θz2\displaystyle\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}^{2}+4\theta_{z}+4\theta_{1_{+}}+4\theta_{2}+3)\Gamma^{2}+1))\beta_{11}^{2}+4\Gamma^{2}\theta_{1_{+}}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})(\theta_{z}^{2}-1)\beta_{11}+\theta_{1_{+}}(\theta_{z}+1)((\theta_{z}^{3}+4\theta_{z}^{2}
+\displaystyle+ 4(θ2+1)θz+1)Γ2+θz+θε(θz+1)((θz2+4θz+4θ2+3)Γ2+1)))A12+8Γ(θz+1)3(θzθε+θε+θz)\displaystyle 4(\theta_{2}+1)\theta_{z}+1)\Gamma^{2}+\theta_{z}+\theta_{\varepsilon}(\theta_{z}+1)((\theta_{z}^{2}+4\theta_{z}+4\theta_{2}+3)\Gamma^{2}+1)))A_{1}^{2}+8\Gamma(\theta_{z}+1)^{3}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})
((θzθε+θε+θz)β112+θ1+(θz+1))A1+4Γ2(θz+1)4(θzθε+θε+θz)((θzθε+θε+θz)β112+θ1+(θz+1))).\displaystyle((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1))A_{1}+4\Gamma^{2}(\theta_{z}+1)^{4}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})((\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+\theta_{z})\beta_{11}^{2}+\theta_{1_{+}}(\theta_{z}+1))).

If it is solved,

Λ1\displaystyle\Lambda_{1} =A11+A12+θz,\displaystyle=\frac{A_{1}}{1+A_{1}^{2}+\theta_{z}}, (25)
Λ1+\displaystyle\Lambda_{1_{+}} =A1β11A12[β112(θε+1)+θ1+]+β112(θεθz+θε+θz)+θ1+(θz+1),\displaystyle=\frac{A_{1}\beta_{11}}{A_{1}^{2}[\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}}]+\beta_{11}^{2}(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+\theta_{1_{+}}(\theta_{z}+1)},
Λ21\displaystyle\Lambda_{21} =A1{4A14(θε+1)Γ+A13(4θε+3)+4A12Γ(β11θε+β11+2θεθz+2θε+2θz+1)\displaystyle=A_{1}\{4A_{1}^{4}(\theta_{\varepsilon}+1)\Gamma+A_{1}^{3}(4\theta_{\varepsilon}+3)+4A_{1}^{2}\Gamma(\beta_{11}\theta_{\varepsilon}+\beta_{11}+2\theta_{\varepsilon}\theta_{z}+2\theta_{\varepsilon}+2\theta_{z}+1)
+A1[4θε(θz+1)+3θz1]+4Γ(β11+θz+1)(θεθz+θε+θz)}\displaystyle+A_{1}[4\theta_{\varepsilon}(\theta_{z}+1)+3\theta_{z}-1]+4\Gamma(\beta_{11}+\theta_{z}+1)(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})\}
/{2β11[A12(θε+1)+θεθz+θε+θz][2A12Γ+A1+2Γ(θz+1)]},\displaystyle\quad/\{2\beta_{11}[A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}][2A_{1}^{2}\Gamma+A_{1}+2\Gamma(\theta_{z}+1)]\},
Λ22\displaystyle\Lambda_{22} =Λ1,\displaystyle=\Lambda_{1},
A21\displaystyle A_{21} =12Λ22,\displaystyle=\frac{1}{2\Lambda_{22}},
α22\displaystyle\alpha_{22} =1+A12+θz2,\displaystyle=-\frac{1+A_{1}^{2}+\theta_{z}}{2},
β21\displaystyle\beta_{21} =A1(A12+θz+1)24[A12(θε+1)+θεθz+θε+θz](A12Γ+A1+Γθz+Γ),\displaystyle=\frac{A_{1}(A_{1}^{2}+\theta_{z}+1)^{2}}{4[A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}](A_{1}^{2}\Gamma+A_{1}+\Gamma\theta_{z}+\Gamma)},
β22\displaystyle\beta_{22} =Λ212(Γ+Λ22),\displaystyle=-\frac{\Lambda_{21}}{2(\Gamma+\Lambda_{22})},
β23\displaystyle\beta_{23} =2Γ+Λ212(Γ+Λ22).\displaystyle=-\frac{2\Gamma+\Lambda_{21}}{2(\Gamma+\Lambda_{22})}.

The pure-strategy equilibrium can be simplified to the following system of (Λ21,Λ22,A1,β11)(\Lambda_{21},\Lambda_{22},A_{1},\beta_{11}):

0=\displaystyle 0= 2(A12+1)(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22\displaystyle 2(A_{1}^{2}+1)(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22} (26)
+\displaystyle+ 2Γ(Λ21+Λ22))A12θε(Γ+Λ22))(2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle 2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))(-2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A132β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}^{3}-2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A1\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}
\displaystyle- 2(A12+1)2β11θε(β11(4(θε+1)Γ+2θεΛ21+Λ21)A12A1+2β11θε(2Γ+Λ21))Λ22(Γ+Λ22)\displaystyle 2(A_{1}^{2}+1)^{2}\beta_{11}\theta_{\varepsilon}(\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma+2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}-A_{1}+2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))\Lambda_{22}(\Gamma+\Lambda_{22})
\displaystyle- (A12+1)2Λ21Λ22((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))θ1+)+A1(A12+1)β11(4(A12+1)2θε(β11(4(θε+1)Γ\displaystyle(A_{1}^{2}+1)^{2}\Lambda_{21}\Lambda_{22}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))\theta_{1_{+}})+A_{1}(A_{1}^{2}+1)\beta_{11}(4(A_{1}^{2}+1)^{2}\theta_{\varepsilon}(-\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma
+\displaystyle+ 2θεΛ21+Λ21)A12+A12β11θε(2Γ+Λ21))2Λ222(Γ+Λ22)2+4A12(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle 2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}+A_{1}-2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))^{2}\Lambda_{22}^{2}(\Gamma+\Lambda_{22})^{2}+4A_{1}^{2}(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))2(Γ+Λ22)2+4(β11((3θε+2)Λ21Λ22\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}+4(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))2(Γ+Λ22)2\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}
+\displaystyle+ 4(A12+1)2Λ222((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ2(Γ+Λ22)2+(A12+1)2Λ212Λ222((4(θε+1)Γ\displaystyle 4(A_{1}^{2}+1)^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{2}(\Gamma+\Lambda_{22})^{2}+(A_{1}^{2}+1)^{2}\Lambda_{21}^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma
+\displaystyle+ (4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ1+)+Λ21((2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{1_{+}})+\Lambda_{21}((2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A13+2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}^{3}+2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A1\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}
+\displaystyle+ 2(A12+1)2β11θε(β11(4(θε+1)Γ+2θεΛ21+Λ21)A12A1+2β11θε(2Γ+Λ21))Λ22(Γ+Λ22)+(A12+1)2Λ21Λ22\displaystyle 2(A_{1}^{2}+1)^{2}\beta_{11}\theta_{\varepsilon}(\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma+2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}-A_{1}+2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))\Lambda_{22}(\Gamma+\Lambda_{22})+(A_{1}^{2}+1)^{2}\Lambda_{21}\Lambda_{22}
((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))θ1+)2(A12+1)(((θε+1)β112+θ1+)A12+β112θε+θ1+)(4(A12+1)2θε\displaystyle((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))\theta_{1_{+}})^{2}-(A_{1}^{2}+1)(((\theta_{\varepsilon}+1)\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{2}+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}})(4(A_{1}^{2}+1)^{2}\theta_{\varepsilon}
(β11(4(θε+1)Γ+2θεΛ21+Λ21)A12+A12β11θε(2Γ+Λ21))2Λ222(Γ+Λ22)2+4A12(β11((3θε+2)Λ21Λ22\displaystyle(-\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma+2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}+A_{1}-2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))^{2}\Lambda_{22}^{2}(\Gamma+\Lambda_{22})^{2}+4A_{1}^{2}(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))2(Γ+Λ22)2\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}
+\displaystyle+ 4(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A1\displaystyle 4(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}
\displaystyle- 2θε(Γ+Λ22))2(Γ+Λ22)2+4(A12+1)2Λ222((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ2(Γ+Λ22)2\displaystyle 2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}+4(A_{1}^{2}+1)^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{2}(\Gamma+\Lambda_{22})^{2}
+\displaystyle+ (A12+1)2Λ212Λ222((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ1+)),\displaystyle(A_{1}^{2}+1)^{2}\Lambda_{21}^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{1_{+}})),
0=\displaystyle 0= 4(A12+1)2((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle-4(A_{1}^{2}+1)^{2}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))(((θε+1)β112+θ1+)A12+β112θε+θ1+)\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))(((\theta_{\varepsilon}+1)\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{2}+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}})
(Γ+Λ22)22A1(A12+1)β11((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))(2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22\displaystyle(\Gamma+\Lambda_{22})^{2}-2A_{1}(A_{1}^{2}+1)\beta_{11}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))(-2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A13\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22\displaystyle 2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A12(A12+1)2β11θε(β11(4(θε+1)Γ+2θεΛ21+Λ21)A12A1\displaystyle 2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}-2(A_{1}^{2}+1)^{2}\beta_{11}\theta_{\varepsilon}(\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma+2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}-A_{1}
+\displaystyle+ 2β11θε(2Γ+Λ21))Λ22(Γ+Λ22)(A12+1)2Λ21Λ22((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))θ1+)(Γ+Λ22)\displaystyle 2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))\Lambda_{22}(\Gamma+\Lambda_{22})-(A_{1}^{2}+1)^{2}\Lambda_{21}\Lambda_{22}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))\theta_{1_{+}})(\Gamma+\Lambda_{22})
+\displaystyle+ (2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22\displaystyle(2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A13+2β11(Γ+Λ22)(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle 2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}^{3}+2\beta_{11}(\Gamma+\Lambda_{22})(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))A1+2(A12+1)2β11θε\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))A_{1}+2(A_{1}^{2}+1)^{2}\beta_{11}\theta_{\varepsilon}
(β11(4(θε+1)Γ+2θεΛ21+Λ21)A12A1+2β11θε(2Γ+Λ21))Λ22(Γ+Λ22)+(A12+1)2Λ21Λ22((4(θε+1)Γ\displaystyle(\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma+2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}-A_{1}+2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))\Lambda_{22}(\Gamma+\Lambda_{22})+(A_{1}^{2}+1)^{2}\Lambda_{21}\Lambda_{22}((4(\theta_{\varepsilon}+1)\Gamma
+\displaystyle+ (4θε+3)Λ22)A12+4θε(Γ+Λ22))θ1+)2(A12+1)(((θε+1)β112+θ1+)A12+β112θε+θ1+)(4(A12+1)2θε(β11(4(θε+1)Γ\displaystyle(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))\theta_{1_{+}})^{2}-(A_{1}^{2}+1)(((\theta_{\varepsilon}+1)\beta_{11}^{2}+\theta_{1_{+}})A_{1}^{2}+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}})(4(A_{1}^{2}+1)^{2}\theta_{\varepsilon}(-\beta_{11}(4(\theta_{\varepsilon}+1)\Gamma
+\displaystyle+ 2θεΛ21+Λ21)A12+A12β11θε(2Γ+Λ21))2Λ222(Γ+Λ22)2+4A12(β11((3θε+2)Λ21Λ22+2(θε+1)Γ(Λ21+Λ22))A13\displaystyle 2\theta_{\varepsilon}\Lambda_{21}+\Lambda_{21})A_{1}^{2}+A_{1}-2\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21}))^{2}\Lambda_{22}^{2}(\Gamma+\Lambda_{22})^{2}+4A_{1}^{2}(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}+2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}
\displaystyle- 2(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))2(Γ+Λ22)2+4(β11((3θε+2)Λ21Λ22\displaystyle 2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}+4(\beta_{11}((3\theta_{\varepsilon}+2)\Lambda_{21}\Lambda_{22}
+\displaystyle+ 2(θε+1)Γ(Λ21+Λ22))A132(θε+1)(Γ+Λ22)A12+β11θε(3Λ21Λ22+2Γ(Λ21+Λ22))A12θε(Γ+Λ22))2(Γ+Λ22)2\displaystyle 2(\theta_{\varepsilon}+1)\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}^{3}-2(\theta_{\varepsilon}+1)(\Gamma+\Lambda_{22})A_{1}^{2}+\beta_{11}\theta_{\varepsilon}(3\Lambda_{21}\Lambda_{22}+2\Gamma(\Lambda_{21}+\Lambda_{22}))A_{1}-2\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}(\Gamma+\Lambda_{22})^{2}
+\displaystyle+ 4(A12+1)2Λ222((4(θε+1)Γ+(4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ2(Γ+Λ22)2+(A12+1)2Λ212Λ222((4(θε+1)Γ\displaystyle 4(A_{1}^{2}+1)^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{2}(\Gamma+\Lambda_{22})^{2}+(A_{1}^{2}+1)^{2}\Lambda_{21}^{2}\Lambda_{22}^{2}((4(\theta_{\varepsilon}+1)\Gamma
+\displaystyle+ (4θε+3)Λ22)A12+4θε(Γ+Λ22))2θ1+),\displaystyle(4\theta_{\varepsilon}+3)\Lambda_{22})A_{1}^{2}+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}\theta_{1_{+}}),
0=\displaystyle 0= A1(2A12β11(θε+1)(2Γ(Λ21Λ22)+Λ21Λ22)+A1Λ22+2β11θε(2Γ(Λ21Λ22)+Λ21Λ22)(A12+1)Λ22(A12(4(θε+1)Γ+(4θε+3)Λ22)+4θε(Γ+Λ22))A1A12Λ22+Λ22+2)\displaystyle A_{1}-(-\frac{2A_{1}^{2}\beta_{11}(\theta_{\varepsilon}+1)(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})+A_{1}\Lambda_{22}+2\beta_{11}\theta_{\varepsilon}(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})}{(A_{1}^{2}+1)\Lambda_{22}(A_{1}^{2}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))}-\frac{A_{1}}{A_{1}^{2}\Lambda_{22}+\Lambda_{22}}+2)
/\displaystyle/ (4(A1A12+1((A13(4(θε+1)Γ+(4θε+3)Λ22)+2A12β11(θε+1)(2Γ(Λ21Λ22)+Λ21Λ22)+A1(4θε(Γ+Λ22)+Λ22)\displaystyle(4(\frac{A_{1}}{A_{1}^{2}+1}-((A_{1}^{3}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+2A_{1}^{2}\beta_{11}(\theta_{\varepsilon}+1)(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})+A_{1}(4\theta_{\varepsilon}(\Gamma+\Lambda_{22})+\Lambda_{22})
+\displaystyle+ 2β11θε(2Γ(Λ21Λ22)+Λ21Λ22))2)/(4(A12+1)2Λ22(A12(4(θε+1)Γ+(4θε+3)Λ22)+4θε(Γ+Λ22))2))),\displaystyle 2\beta_{11}\theta_{\varepsilon}(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22}))^{2})/(4(A_{1}^{2}+1)^{2}\Lambda_{22}(A_{1}^{2}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}))),
0=\displaystyle 0= (A1(A12(β112(θε+1)+θ1+)+β112θε+θ1+)(A13β11(θε+1)(2Γ+Λ21)(2Γ(Λ21Λ22)+Λ21Λ22)\displaystyle(A_{1}(A_{1}^{2}(\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}})+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}})(A_{1}^{3}\beta_{11}(\theta_{\varepsilon}+1)(2\Gamma+\Lambda_{21})(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})
\displaystyle- 2A12(Γ+Λ22)(2(θε+1)Γ(θε+1)Λ21+(4θε+3)Λ22)+A1β11θε(2Γ+Λ21)(2Γ(Λ21Λ22)+Λ21Λ22)\displaystyle 2A_{1}^{2}(\Gamma+\Lambda_{22})(2(\theta_{\varepsilon}+1)\Gamma-(\theta_{\varepsilon}+1)\Lambda_{21}+(4\theta_{\varepsilon}+3)\Lambda_{22})+A_{1}\beta_{11}\theta_{\varepsilon}(2\Gamma+\Lambda_{21})(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})
\displaystyle- 2θε(Γ+Λ22)(2ΓΛ21+4Λ22)))/((A12(θε+1)+θε)(A12(4(θε+1)Γ+(4θε+3)Λ22)+4θε(Γ+Λ22))\displaystyle 2\theta_{\varepsilon}(\Gamma+\Lambda_{22})(2\Gamma-\Lambda_{21}+4\Lambda_{22})))/((A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon})(A_{1}^{2}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))
(A12(β112(θε+1)+θ1+)((4Γ(Λ21Λ22)+Λ212))+4A1β11(Γ+Λ22)(β112θε+θ1+)(4Γ(Λ21Λ22)+Λ212)))+β11,\displaystyle(A_{1}^{2}(\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}})(-(4\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}^{2}))+4A_{1}\beta_{11}(\Gamma+\Lambda_{22})-(\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}})(4\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}^{2})))+\beta_{11},
0<\displaystyle 0< Λ22,\displaystyle\Lambda_{22}, (27)
0<\displaystyle 0< A1/(A12+1)((A13(4(θε+1)Γ+(4θε+3)Λ22)+2A12β11(θε+1)(2Γ(Λ21Λ22)+Λ21Λ22)+A1(4θε(Γ+Λ22)+Λ22)\displaystyle A_{1}/(A_{1}^{2}+1)-((A_{1}^{3}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+2A_{1}^{2}\beta_{11}(\theta_{\varepsilon}+1)(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22})+A_{1}(4\theta_{\varepsilon}(\Gamma+\Lambda_{22})+\Lambda_{22})
+\displaystyle+ 2β11θε(2Γ(Λ21Λ22)+Λ21Λ22))2)/(4(A12+1)2Λ22(A12(4(θε+1)Γ+(4θε+3)Λ22)+4θε(Γ+Λ22))2),\displaystyle 2\beta_{11}\theta_{\varepsilon}(2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22}))^{2})/(4(A_{1}^{2}+1)^{2}\Lambda_{22}(A_{1}^{2}(4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22})+4\theta_{\varepsilon}(\Gamma+\Lambda_{22}))^{2}),
0<\displaystyle 0< 4A1β11A12(β112(θε+1)+θ1+)+β112θε+θ1+(2Γ+Λ21)2Γ+Λ22+4Γ.\displaystyle\frac{4A_{1}\beta_{11}}{A_{1}^{2}(\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}})+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}}}-\frac{(2\Gamma+\Lambda_{21})^{2}}{\Gamma+\Lambda_{22}}+4\Gamma.

If it is solved,

Λ1\displaystyle\Lambda_{1} =A11+A12,\displaystyle=\frac{A_{1}}{1+A_{1}^{2}}, (28)
Λ1+\displaystyle\Lambda_{1_{+}} =A1β11A12[β112(θε+1)+θ1+]+β112θε+θ1+,\displaystyle=\frac{A_{1}\beta_{11}}{A_{1}^{2}[\beta_{11}^{2}(\theta_{\varepsilon}+1)+\theta_{1_{+}}]+\beta_{11}^{2}\theta_{\varepsilon}+\theta_{1_{+}}},
A21\displaystyle A_{21} =12Λ22,\displaystyle=\frac{1}{2\Lambda_{22}},
α22\displaystyle\alpha_{22} =2A12β11(θε+1)[2Γ(Λ21Λ22)+Λ21Λ22]+A1Λ22+2β11θε[2Γ(Λ21Λ22)+Λ21Λ22]2Λ22{A12[4(θε+1)Γ+(4θε+3)Λ22]+4θε(Γ+Λ22)},\displaystyle=-\frac{2A_{1}^{2}\beta_{11}(\theta_{\varepsilon}+1)[2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22}]+A_{1}\Lambda_{22}+2\beta_{11}\theta_{\varepsilon}[2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22}]}{2\Lambda_{22}\{A_{1}^{2}[4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22}]+4\theta_{\varepsilon}(\Gamma+\Lambda_{22})\}},
β21\displaystyle\beta_{21} =A12β11[2Γ(Λ21Λ22)+Λ21Λ22]2(Γ+Λ22)+A1A12[4(θε+1)Γ+(4θε+3)Λ22]+4θε(Γ+Λ22),\displaystyle=\frac{\frac{A_{1}^{2}\beta_{11}[2\Gamma(\Lambda_{21}-\Lambda_{22})+\Lambda_{21}\Lambda_{22}]}{2(\Gamma+\Lambda_{22})}+A_{1}}{A_{1}^{2}[4(\theta_{\varepsilon}+1)\Gamma+(4\theta_{\varepsilon}+3)\Lambda_{22}]+4\theta_{\varepsilon}(\Gamma+\Lambda_{22})},
β22\displaystyle\beta_{22} =Λ212(Γ+Λ22),\displaystyle=-\frac{\Lambda_{21}}{2(\Gamma+\Lambda_{22})},
β23\displaystyle\beta_{23} =2Γ+Λ212(Γ+Λ22).\displaystyle=-\frac{2\Gamma+\Lambda_{21}}{2(\Gamma+\Lambda_{22})}.

Proof of Proposition 1. β21,β22,β23\beta_{21},\beta_{22},\beta_{23} follows

β21=(1λ22α21)η21λ22α22μ212(λ22+γ),\displaystyle\beta_{21}=\frac{(1-\lambda_{22}\alpha_{21})\eta_{21}-\lambda_{22}\alpha_{22}\mu_{21}}{2(\lambda_{22}+\gamma)}, (29)
β22=(1λ22α21)η22λ22α22μ22λ212(λ22+γ),\displaystyle\beta_{22}=\frac{(1-\lambda_{22}\alpha_{21})\eta_{22}-\lambda_{22}\alpha_{22}\mu_{22}-\lambda_{21}}{2(\lambda_{22}+\gamma)},
β23=λ21+2γ2(λ22+γ),\displaystyle\beta_{23}=-\frac{\lambda_{21}+2\gamma}{2(\lambda_{22}+\gamma)},

where (η21,η22),(μ21,μ22)(\eta_{21},\eta_{22}),(\mu_{21},\mu_{22}) are calculated through (10) for J1=1,J2=0.J_{1}=1,J_{2}=0. Substitute (29) into

β11=η+2(λ22+γ)β23β212(λ1++γ(λ22+γ)β232),\beta_{11}=\frac{\eta+2(\lambda_{22}+\gamma)\beta_{23}\beta_{21}}{2(\lambda_{1_{+}}+\gamma-(\lambda_{22}+\gamma)\beta_{23}^{2})},

if γ=\gamma=\infty, we have

β11=λ22(α21η+α22μ)2(λ1++λ22λ21),\beta_{11}=\frac{\lambda_{22}(\alpha_{21}\eta+\alpha_{22}\mu)}{2(\lambda_{1_{+}}+\lambda_{22}-\lambda_{21})},

which is exactly the equation for β11\beta_{11} where x1=β11(i~1𝔼(i~1|y1))x_{1}^{*}=\beta_{11}(\tilde{i}_{1}-\mathbb{E}(\tilde{i}_{1}|y_{1})) satisfies (21). What’s more, by (29), we have

β21=β22=0,β23=1.\beta_{21}=\beta_{22}=0,\ \beta_{23}=-1.

Proof of Theorem 3. The mixed-strategy equilibrium can be simplified to the following system of (A1,θz,β11,β21,β22,β23):(A_{1},\theta_{z},\beta_{11},\beta_{21},\beta_{22},\beta_{23}):

0=\displaystyle 0= J(θε(A12+θz+1)(A18+(3θzβ21J)A16+A14(4θ1+β2228β23θ1+β22+3θz2+4β232θ1++4θ2+θz\displaystyle J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{8}+(3\theta_{z}-\beta_{21}J)A_{1}^{6}+A_{1}^{4}(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+3\theta_{z}^{2}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+\theta_{z} (30)
\displaystyle- β21(2θzJ+J)2)+(β21J(4(2J3)θ1+β2228β23(J3)θ1+β22θz212β232θ1+4θ2+1)\displaystyle\beta_{21}(2\theta_{z}J+J)-2)+(\beta_{21}J(4(2J-3)\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}(J-3)\theta_{1_{+}}\beta_{22}-\theta_{z}^{2}-2\beta_{23}^{2}\theta_{1_{+}}-4\theta_{2}+1)
+\displaystyle+ (θz+1)(4θ1+β2228β23θ1+β22+θz2+4β232θ1++4θ2+θz))A12+(θz+1)2(β21J+θz+1))\displaystyle(\theta_{z}+1)(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+\theta_{z}^{2}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+\theta_{z}))A_{1}^{2}+(\theta_{z}+1)^{2}(\beta_{21}J+\theta_{z}+1))
+\displaystyle+ J(4((J2)θ1+β222+β23(J4)θ1+β22+2β232θ1++θ2)A16+(4θ1+(2β21J2(3β21+2θz+1)J+4θz+1)β222\displaystyle J(4(-(J-2)\theta_{1_{+}}\beta_{22}^{2}+\beta_{23}(J-4)\theta_{1_{+}}\beta_{22}+2\beta_{23}^{2}\theta_{1_{+}}+\theta_{2})A_{1}^{6}+(4\theta_{1_{+}}(2\beta_{21}J^{2}-(3\beta_{21}+2\theta_{z}+1)J+4\theta_{z}+1)\beta_{22}^{2}
\displaystyle- 4β23θ1+(2β21J2(6β21+2θz+1)J+8θz+2)β224β21Jθ2+β21Jθz+8θ2θz\displaystyle 4\beta_{23}\theta_{1_{+}}(2\beta_{21}J^{2}-(6\beta_{21}+2\theta_{z}+1)J+8\theta_{z}+2)\beta_{22}-4\beta_{21}J\theta_{2}+\beta_{21}J\theta_{z}+8\theta_{2}\theta_{z}
+\displaystyle+ 4β232A14θ1+(3β21J+4θz+1))+2(2θ1+((J2)θz2+(2β21J2+3β21J+J1)θz+1)β222\displaystyle 4\beta_{23}^{2}A_{1}^{4}\theta_{1_{+}}(-3\beta_{21}J+4\theta_{z}+1))+2(-2\theta_{1_{+}}((J-2)\theta_{z}^{2}+(-2\beta_{21}J^{2}+3\beta_{21}J+J-1)\theta_{z}+1)\beta_{22}^{2}
+\displaystyle+ 2β22β23θ1+((J4)θz2+(2β21J2+6β21J+J2)θz+2)+β21Jθz2+2θ2θz22θ2+β21Jθz2β21Jθ2θz\displaystyle 2\beta_{22}\beta_{23}\theta_{1_{+}}((J-4)\theta_{z}^{2}+(-2\beta_{21}J^{2}+6\beta_{21}J+J-2)\theta_{z}+2)+\beta_{21}J\theta_{z}^{2}+2\theta_{2}\theta_{z}^{2}-2\theta_{2}+\beta_{21}J\theta_{z}-2\beta_{21}J\theta_{2}\theta_{z}
+\displaystyle+ 2β232θ1+(2θz23β21Jθz+θz1))A12+β21Jθz(θz+1)2))β112\displaystyle 2\beta_{23}^{2}\theta_{1_{+}}(2\theta_{z}^{2}-3\beta_{21}J\theta_{z}+\theta_{z}-1))A_{1}^{2}+\beta_{21}J\theta_{z}(\theta_{z}+1)^{2}))\beta_{11}^{2}
\displaystyle- Jθ1+(β23(5A18+(8β21θε+2J)+15θz+4)A16+(12Jθε+J)β2128(4θzJ+J+2(θz+1))β21\displaystyle J\theta_{1_{+}}(\beta_{23}(5A_{1}^{8}+(-8\beta_{21}\theta_{\varepsilon}+2J)+5\theta_{z}+4)A_{1}^{6}+(2J\theta_{\varepsilon}+J)\beta_{21}^{2}-8(4\theta_{z}J+J+2(\theta_{z}+1))\beta_{21}
+\displaystyle+ 15θz2+4θ2+9θz6)A14+(12J(θzθε+θε+Jθz)β2128(θz+1)(θzθε+θεJ+2Jθz)β21\displaystyle 5\theta_{z}^{2}+4\theta_{2}+9\theta_{z}-6)A_{1}^{4}+(2J(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J\theta_{z})\beta_{21}^{2}-8(\theta_{z}+1)(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}-J+2J\theta_{z})\beta_{21}
+\displaystyle+ (θz+1)(5θz2+θz+4θ24))A12+(θz+1)3)+β22((J5)A18+(8β21θε4β21(J4)J15θz+J(3θz+2)4)A16\displaystyle(\theta_{z}+1)(5\theta_{z}^{2}+\theta_{z}+4\theta_{2}-4))A_{1}^{2}+(\theta_{z}+1)^{3})+\beta_{22}((J-5)A_{1}^{8}+(8\beta_{21}\theta_{\varepsilon}-4\beta_{21}(J-4)J-5\theta_{z}+J(3\theta_{z}+2)-4)A_{1}^{6}
+\displaystyle+ (4(J3)Jθε+J)β212+4(4θε(θz+1)J(2θzJ+J8θz2))β21+4(J1)θ2+3(θz+1)((J5)θz+2))A14\displaystyle(4(J-3)J\theta_{\varepsilon}+J)\beta_{21}^{2}+4(4\theta_{\varepsilon}(\theta_{z}+1)-J(2\theta_{z}J+J-8\theta_{z}-2))\beta_{21}+4(J-1)\theta_{2}+3(\theta_{z}+1)((J-5)\theta_{z}+2))A_{1}^{4}
+\displaystyle+ (4(J3)J(θzθε+θε+Jθz)β212+4(θz+1)(2θε(θz+1)J((J4)θz+2))β21\displaystyle(4(J-3)J(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J\theta_{z})\beta_{21}^{2}+4(\theta_{z}+1)(2\theta_{\varepsilon}(\theta_{z}+1)-J((J-4)\theta_{z}+2))\beta_{21}
+\displaystyle+ (θz+1)(5θz2θz4θ2+J(θz2θz+4θ22)+4))A12(J+1)(θz+1)3))β11β113(β23+β22(J1))\displaystyle(\theta_{z}+1)(-5\theta_{z}^{2}-\theta_{z}-4\theta_{2}+J(\theta_{z}^{2}-\theta_{z}+4\theta_{2}-2)+4))A_{1}^{2}-(J+1)(\theta_{z}+1)^{3}))\beta_{11}-\beta_{11}^{3}(\beta_{23}+\beta_{22}(J-1))
J2(J((4θ1+β2228β23θ1+β22+4β232θ1++4θ2θz)A142θz(2θ1+β222+4β23θ1+β222β232θ1+2θ2\displaystyle J^{2}(J((4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}-\theta_{z})A_{1}^{4}-2\theta_{z}(-2\theta_{1_{+}}\beta_{22}^{2}+4\beta_{23}\theta_{1_{+}}\beta_{22}-2\beta_{23}^{2}\theta_{1_{+}}-2\theta_{2}
+\displaystyle+ θz+1)A12θz(θz+1)2)+θε(A12+θz+1)(A16+(2θz+1)A14+(4θ1+β2228β23θ1+β22+θz2+4β232θ1++4θ21)A12\displaystyle\theta_{z}+1)A_{1}^{2}-\theta_{z}(\theta_{z}+1)^{2})+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+(2\theta_{z}+1)A_{1}^{4}+(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+\theta_{z}^{2}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}-1)A_{1}^{2}
\displaystyle- (θz+1)2))+θ1+(A12β21J+θz+1)(A18+(3θz4β21J)A16+(4Jθε+J)β2128Jθzβ21+3θz2+4θ2+θz2)A14\displaystyle(\theta_{z}+1)^{2}))+\theta_{1_{+}}(A_{1}^{2}-\beta_{21}J+\theta_{z}+1)(A_{1}^{8}+(3\theta_{z}-4\beta_{21}J)A_{1}^{6}+(4J\theta_{\varepsilon}+J)\beta_{21}^{2}-8J\theta_{z}\beta_{21}+3\theta_{z}^{2}+4\theta_{2}+\theta_{z}-2)A_{1}^{4}
+\displaystyle+ (4J(θzθε+θε+Jθz)β2124J(θz21)β21+(θz+1)(θz2+θz+4θ2))A12+(θz+1)3),\displaystyle(4J(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J\theta_{z})\beta_{21}^{2}-4J(\theta_{z}^{2}-1)\beta_{21}+(\theta_{z}+1)(\theta_{z}^{2}+\theta_{z}+4\theta_{2}))A_{1}^{2}+(\theta_{z}+1)^{3}),
0=\displaystyle 0= 4A12β11Jθ1+(β22β23)(A14+A12(2β21θε+J)+2θz+1)2β21θεθz+θε+Jθz)+θz(θz+1))\displaystyle 4A_{1}^{2}\beta_{11}J\theta_{1_{+}}(\beta_{22}-\beta_{23})(A_{1}^{4}+A_{1}^{2}(-2\beta_{21}\theta_{\varepsilon}+J)+2\theta_{z}+1)-2\beta_{21}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+J\theta_{z})+\theta_{z}(\theta_{z}+1))
+\displaystyle+ β112J(J(A14(4β222θ1+8β22β23θ1++4β232θ1++4θ2θz)2A12θz(2β222θ1++4β22β23θ1+2β232θ1+2θ2+θz+1)\displaystyle\beta_{11}^{2}J(J(A_{1}^{4}(4\beta_{22}^{2}\theta_{1_{+}}-8\beta_{22}\beta_{23}\theta_{1_{+}}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}-\theta_{z})-2A_{1}^{2}\theta_{z}(-2\beta_{22}^{2}\theta_{1_{+}}+4\beta_{22}\beta_{23}\theta_{1_{+}}-2\beta_{23}^{2}\theta_{1_{+}}-2\theta_{2}+\theta_{z}+1)
\displaystyle- θz(θz+1)2)+θε(A12+θz+1)(A16+A14(2θz+1)+A12(4β222θ1+8β22β23θ1++4β232θ1++4θ2+θz21)(θz+1)2))\displaystyle\theta_{z}(\theta_{z}+1)^{2})+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+A_{1}^{4}(2\theta_{z}+1)+A_{1}^{2}(4\beta_{22}^{2}\theta_{1_{+}}-8\beta_{22}\beta_{23}\theta_{1_{+}}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+\theta_{z}^{2}-1)-(\theta_{z}+1)^{2}))
+\displaystyle+ θ1+(A18+A16(4β21J+3θz+2)+A14(4β212Jθε+J)4β21(2Jθz+J)+4θ2+3θz(θz+1))\displaystyle\theta_{1_{+}}(A_{1}^{8}+A_{1}^{6}(-4\beta_{21}J+3\theta_{z}+2)+A_{1}^{4}(4\beta_{21}^{2}J\theta_{\varepsilon}+J)-4\beta_{21}(2J\theta_{z}+J)+4\theta_{2}+3\theta_{z}(\theta_{z}+1))
+\displaystyle+ A12(4β212Jθεθz+θε+Jθz)4β21Jθz(θz+1)+(θz+1)(4θ2+θz2θz2))(θz+1)3),\displaystyle A_{1}^{2}(4\beta_{21}^{2}J\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+J\theta_{z})-4\beta_{21}J\theta_{z}(\theta_{z}+1)+(\theta_{z}+1)(4\theta_{2}+\theta_{z}^{2}-\theta_{z}-2))-(\theta_{z}+1)^{3}),
0=\displaystyle 0= 2A1β11β22(J1)θ1+(A12+θz)(J2)+A15(β112θε(J1)+θ1+)+θε+1)θ1+)\displaystyle 2A_{1}\beta_{11}\beta_{22}(J-1)\theta_{1_{+}}(A_{1}^{2}+\theta_{z})(J-2)^{+}-A_{1}^{5}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)+\theta_{1_{+}})+\theta_{\varepsilon}+1)\theta_{1_{+}})
+\displaystyle+ 2A13(β112θε(J1)(2β21θε+J)θz1)+β11(J1)θ1+(β22(J)+β22+β23)+θ1+(β21(2θε+J+1)θz1))\displaystyle 2A_{1}^{3}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)(2\beta_{21}\theta_{\varepsilon}+J)-\theta_{z}-1)+\beta_{11}(J-1)\theta_{1_{+}}(\beta_{22}(-J)+\beta_{22}+\beta_{23})+\theta_{1_{+}}(\beta_{21}(2\theta_{\varepsilon}+J+1)-\theta_{z}-1))
+\displaystyle+ A1(β112θε(J1)(4β21θεθz+θε+Jθz)(θz+1)2)+2β11(J1)θ1+θz(β22(J)+β22+β23)\displaystyle A_{1}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)(4\beta_{21}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+J\theta_{z})-(\theta_{z}+1)^{2})+2\beta_{11}(J-1)\theta_{1_{+}}\theta_{z}(\beta_{22}(-J)+\beta_{22}+\beta_{23})
+\displaystyle+ θ1+(4β21θε(θz+1)+2β21(J+1)θz(θz+1)2))\displaystyle\theta_{1_{+}}(4\beta_{21}\theta_{\varepsilon}(\theta_{z}+1)+2\beta_{21}(J+1)\theta_{z}-(\theta_{z}+1)^{2}))
+\displaystyle+ θ1+θεθz+θε+θz)),\displaystyle\theta_{1_{+}}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})),
0=\displaystyle 0= 2A1β113β22θε(J1)J(J2)+(θε(A12+θz+1)+J(A12+θz))+A15(β112θε(J1)(2θε+J)+2θε+1)θ1+)\displaystyle 2A_{1}\beta_{11}^{3}\beta_{22}\theta_{\varepsilon}(J-1)J(J-2)^{+}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}))+A_{1}^{5}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)(2\theta_{\varepsilon}+J)+2\theta_{\varepsilon}+1)\theta_{1_{+}})
+\displaystyle+ θ1+)2A13(β113β22θε(J3)(J1)Jθε+J)β112θε(J1)(2θε(θz+1)+Jθz)β11θε+1)Jθ1+(2β22β23)\displaystyle\theta_{1_{+}})-2A_{1}^{3}(\beta_{11}^{3}\beta_{22}\theta_{\varepsilon}(J-3)(J-1)J\theta_{\varepsilon}+J)-\beta_{11}^{2}\theta_{\varepsilon}(J-1)(2\theta_{\varepsilon}(\theta_{z}+1)+J\theta_{z})-\beta_{11}\theta_{\varepsilon}+1)J\theta_{1_{+}}(2\beta_{22}-\beta_{23})
+\displaystyle+ θ1+(β21θεJ+β21J2θε+1)θz2θε1))+2θ1+θεθz+θε+θz)+θ1+)\displaystyle\theta_{1_{+}}(\beta_{21}\theta_{\varepsilon}J+\beta_{21}J-2\theta_{\varepsilon}+1)\theta_{z}-2\theta_{\varepsilon}-1))+2\theta_{1_{+}}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})+\theta_{1_{+}})
+\displaystyle+ A1(2β113β22θε(J3)(J1)J(θzθε+J)+θε)+β112θε(J1)(θz+1)(2θε(θz+1)+J(θz1))\displaystyle A_{1}(-2\beta_{11}^{3}\beta_{22}\theta_{\varepsilon}(J-3)(J-1)J(\theta_{z}\theta_{\varepsilon}+J)+\theta_{\varepsilon})+\beta_{11}^{2}\theta_{\varepsilon}(J-1)(\theta_{z}+1)(2\theta_{\varepsilon}(\theta_{z}+1)+J(\theta_{z}-1))
+\displaystyle+ 2β11Jθ1+(2β22β23)θεθz+θε+θz)2θ1+θεθz+θε+θz)(β21Jθz1))+θ1+θεθz+θε+θz)),\displaystyle 2\beta_{11}J\theta_{1_{+}}(2\beta_{22}-\beta_{23})\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})-2\theta_{1_{+}}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})(\beta_{21}J-\theta_{z}-1))+\theta_{1_{+}}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})),
0=\displaystyle 0= A13+A1(β11β23Jβ21J+θz+1),\displaystyle A_{1}^{3}+A_{1}(\beta_{11}\beta_{23}J-\beta_{21}J+\theta_{z}+1),
0=\displaystyle 0= β11A1β112(J1)J(A12+θz)β112J(θε(A12+θz+1)+J(A12+θz))+θ1+(A12+θz+1)+β11β22(J1)θz+β21θεθz+θε+θz))A12+θz+1+A12(A12θε+1)+θεθz+θε+θz)(A1β11Jβ112J(θε(A12+θz+1)+J(A12+θz))+θ1+(A12+θz+1)A1β232A12+θz+1),\displaystyle\beta_{11}-\frac{-\frac{A_{1}\beta_{11}^{2}(J-1)J(A_{1}^{2}+\theta_{z})}{\beta_{11}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)}+\frac{\beta_{11}\beta_{22}(J-1)\theta_{z}+\beta_{21}\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}))}{A_{1}^{2}+\theta_{z}+1}+A_{1}}{2(A_{1}^{2}\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})(\frac{A_{1}\beta_{11}J}{\beta_{11}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)}-\frac{A_{1}\beta_{23}^{2}}{A_{1}^{2}+\theta_{z}+1})},
0<\displaystyle 0< A1β11Jβ112J(θε(A12+θz+1)+J(A12+θz))+θ1+(A12+θz+1)A1β232A12+θz+1,\displaystyle\frac{A_{1}\beta_{11}J}{\beta_{11}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)}-\frac{A_{1}\beta_{23}^{2}}{A_{1}^{2}+\theta_{z}+1},
0<\displaystyle 0< A1,\displaystyle A_{1},
0<\displaystyle 0< θz.\displaystyle\theta_{z}.

If it is solved,

Λ1=A1A12+θz+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+\theta_{z}+1}, (31)
Λ1+=A1β11Jβ112J[θε(A12+θz+1)+J(A12+θz)]+θ1+(A12+θz+1),\displaystyle\Lambda_{1_{+}}=\frac{A_{1}\beta_{11}J}{\beta_{11}^{2}J[\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z})]+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)},
Λ21=A1A1J[β11(β22(J1)+β23)+β21]A12+θz+1β11J,\displaystyle\Lambda_{21}=\frac{A_{1}-\frac{A_{1}J[\beta_{11}(\beta_{22}(J-1)+\beta_{23})+\beta_{21}]}{A_{1}^{2}+\theta_{z}+1}}{\beta_{11}J},
Λ22=Λ1,\displaystyle\Lambda_{22}=\Lambda_{1},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=A12+θz+12.\displaystyle\alpha_{22}=-\frac{A_{1}^{2}+\theta_{z}+1}{2}.

The pure-strategy equilibrium can be simplified to the following system of (Λ21,Λ22,A1,β11,β21,β22):(\Lambda_{21},\Lambda_{22},A_{1},\beta_{11},\beta_{21},\beta_{22}):

0=\displaystyle 0= A12β114θεJ3Λ21(Λ22(β22(J1)Λ22+Λ21))2β112J(4θε(Λ222(β22Λ22(2(A12+1)(J+1)Λ212θ1+\displaystyle-A_{1}^{2}\beta_{11}^{4}\theta_{\varepsilon}J^{3}\Lambda_{21}(\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))^{2}-\beta_{11}^{2}J(4\theta_{\varepsilon}(\Lambda_{22}^{2}(\beta_{22}\Lambda_{22}(2(A_{1}^{2}+1)(J+1)\Lambda_{21}^{2}\theta_{1_{+}} (32)
\displaystyle- 2A1β21(J1)JΛ22+J1)+Λ21(4(A12+1)Λ222θ2+A1(β21JΛ22(A1β21JΛ222)+A1Λ212θ1+)+Λ212θ1+)\displaystyle 2A_{1}\beta_{21}(J-1)J\Lambda_{22}+J-1)+\Lambda_{21}(4(A_{1}^{2}+1)\Lambda_{22}^{2}\theta_{2}+A_{1}(\beta_{21}J\Lambda_{22}(A_{1}\beta_{21}J\Lambda_{22}-2)+A_{1}\Lambda_{21}^{2}\theta_{1_{+}})+\Lambda_{21}^{2}\theta_{1_{+}})
+\displaystyle+ (A12+1)β222(J+1)2Λ21Λ222θ1+))+A12JΛ21(θ1+(Λ22(3β22JΛ22+β22Λ22+3Λ21))2+16Λ224θ2)\displaystyle(A_{1}^{2}+1)\beta_{22}^{2}(J+1)^{2}\Lambda_{21}\Lambda_{22}^{2}\theta_{1_{+}}))+A_{1}^{2}J\Lambda_{21}(\theta_{1_{+}}(\Lambda_{22}(3\beta_{22}J\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21}))^{2}+6\Lambda_{22}^{4}\theta_{2})
+\displaystyle+ 4β11JΛ22(β21Λ22(4(A12+1)θεΛ21Λ22θ1+(β22(J+1)Λ22+Λ21)\displaystyle 4\beta_{11}J\Lambda_{22}(\beta_{21}\Lambda_{22}(4(A_{1}^{2}+1)\theta_{\varepsilon}\Lambda_{21}\Lambda_{22}\theta_{1_{+}}(\beta_{22}(J+1)\Lambda_{22}+\Lambda_{21})
+\displaystyle+ A12JΛ21θ1+(Λ22(3β22JΛ22+β22Λ22+3Λ21))2θεΛ22)+2A1β212θεJΛ222Λ22\displaystyle A_{1}^{2}J\Lambda_{21}\theta_{1_{+}}(\Lambda_{22}(3\beta_{22}J\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21}))-2\theta_{\varepsilon}\Lambda_{22})+2A_{1}\beta_{21}^{2}\theta_{\varepsilon}J\Lambda_{22}^{2}\Lambda_{22}
+\displaystyle+ A1θ1+(β22JΛ22+Λ21)(Λ22(3β22JΛ22+β22Λ22+3Λ21))+4A1Λ222θ2Λ22)\displaystyle A_{1}\theta_{1_{+}}(\beta_{22}J\Lambda_{22}+\Lambda_{21})(\Lambda_{22}(3\beta_{22}J\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21}))+4A_{1}\Lambda_{22}^{2}\theta_{2}\Lambda_{22})
\displaystyle- 4θ1+Λ222(Λ21Λ22(4(A12+1)Λ22θ2+β21J(A1(A1β21Λ22(4θε+J)+2)+4β21θεΛ22))\displaystyle 4\theta_{1_{+}}\Lambda_{22}^{2}(\Lambda_{21}\Lambda_{22}(4(A_{1}^{2}+1)\Lambda_{22}\theta_{2}+\beta_{21}J(A_{1}(A_{1}\beta_{21}\Lambda_{22}(4\theta_{\varepsilon}+J)+2)+4\beta_{21}\theta_{\varepsilon}\Lambda_{22}))
+\displaystyle+ 2β22JΛ22(A1β21JΛ22+1)+Λ21)\displaystyle 2\beta_{22}J\Lambda_{22}(A_{1}\beta_{21}J\Lambda_{22}+1)+\Lambda_{21})
\displaystyle- 2A1β113θεJ2(Λ22(β22(J1)Λ22+Λ21))(Λ222(2A1β21JΛ21+β22(J)+β22)Λ21Λ22),\displaystyle 2A_{1}\beta_{11}^{3}\theta_{\varepsilon}J^{2}(\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))(\Lambda_{22}^{2}(2A_{1}\beta_{21}J\Lambda_{21}+\beta_{22}(-J)+\beta_{22})-\Lambda_{21}\Lambda_{22}),
0=\displaystyle 0= A12β114θεJ3(Λ22(β22(J1)Λ22+Λ21))24A12β113β21θεJ3Λ22Λ22(Λ22(β22(J1)Λ22+Λ21))\displaystyle-A_{1}^{2}\beta_{11}^{4}\theta_{\varepsilon}J^{3}(\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))^{2}-4A_{1}^{2}\beta_{11}^{3}\beta_{21}\theta_{\varepsilon}J^{3}\Lambda_{22}\Lambda_{22}(\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))
\displaystyle- β112J(4θε(+Λ222(A12(β212J2Λ222+θ1+(β22(J+1)Λ22+Λ21)2+4Λ222θ2)+θ1+(β22(J+1)Λ22+Λ21)2+4Λ222θ21))\displaystyle\beta_{11}^{2}J(4\theta_{\varepsilon}(+\Lambda_{22}^{2}(A_{1}^{2}(\beta_{21}^{2}J^{2}\Lambda_{22}^{2}+\theta_{1_{+}}(\beta_{22}(J+1)\Lambda_{22}+\Lambda_{21})^{2}+4\Lambda_{22}^{2}\theta_{2})+\theta_{1_{+}}(\beta_{22}(J+1)\Lambda_{22}+\Lambda_{21})^{2}+4\Lambda_{22}^{2}\theta_{2}-1))
+\displaystyle+ A12J(θ1+(Λ22(3β22JΛ22+β22Λ22+3Λ21))2+16Λ222θ2Λ222))+4β11β21JΛ22θ1+Λ22(Λ22(4(A12+1)θεΛ21+3A12JΛ21)\displaystyle A_{1}^{2}J(\theta_{1_{+}}(\Lambda_{22}(3\beta_{22}J\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21}))^{2}+6\Lambda_{22}^{2}\theta_{2}\Lambda_{22}^{2}))+4\beta_{11}\beta_{21}J\Lambda_{22}\theta_{1_{+}}\Lambda_{22}(\Lambda_{22}(4(A_{1}^{2}+1)\theta_{\varepsilon}\Lambda_{21}+3A_{1}^{2}J\Lambda_{21})
+\displaystyle+ β22Λ222(4(A12+1)θε(J+1)+A12J(3J+1)))4θ1+Λ222(Λ222(β212J(4(A12+1)θε+A12J)+4(A12+1)θ2)1),\displaystyle\beta_{22}\Lambda_{22}^{2}(4(A_{1}^{2}+1)\theta_{\varepsilon}(J+1)+A_{1}^{2}J(3J+1)))-4\theta_{1_{+}}\Lambda_{22}^{2}(\Lambda_{22}^{2}(\beta_{21}^{2}J(4(A_{1}^{2}+1)\theta_{\varepsilon}+A_{1}^{2}J)+4(A_{1}^{2}+1)\theta_{2})-1),
0=\displaystyle 0= (4A12Λ222+2A1Λ22+β11J(Λ22(β22(J1)Λ22+Λ21))+2Λ22(β21J2)Λ22)\displaystyle(-4A_{1}^{2}\Lambda_{22}^{2}+2A_{1}\Lambda_{22}+\beta_{11}J(\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))+2\Lambda_{22}(\beta_{21}J-2)\Lambda_{22})
/\displaystyle/ (8(A12+1)Λ222(A1A12+1(2A1Λ22+J(β11Λ22(β22(J1)Λ22+Λ21)+2β21Λ222))216(A12+1)2Λ223))+A1,\displaystyle(8(A_{1}^{2}+1)\Lambda_{22}^{2}(\frac{A_{1}}{A_{1}^{2}+1}-\frac{(2A_{1}\Lambda_{22}+J(\beta_{11}\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21})+2\beta_{21}\Lambda_{22}^{2}))^{2}}{16(A_{1}^{2}+1)^{2}\Lambda_{22}^{3}}))+A_{1},
0=\displaystyle 0= 4A12β11β22(J1)Λ22θ1+Λ22(J2)++Λ22(β22(J1)Λ22+Λ21))+2β112β21θε(J1)Λ22(4θεΛ22+J3Λ22)\displaystyle 4A_{1}^{2}\beta_{11}\beta_{22}(J-1)\Lambda_{22}\theta_{1_{+}}\Lambda_{22}(J-2)^{+}+\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}))+2\beta_{11}^{2}\beta_{21}\theta_{\varepsilon}(J-1)\Lambda_{22}(4\theta_{\varepsilon}\Lambda_{22}+J3\Lambda_{22})
\displaystyle- β11θ1+(Λ22(β22(7J213J+6)Λ22+(3J2)Λ21))+2β21θ1+Λ22(Λ22(4θε+J+2)))2A1Λ22(β112θε(J1)+θ1+)\displaystyle\beta_{11}\theta_{1_{+}}(\Lambda_{22}(\beta_{22}(7J^{2}-3J+6)\Lambda_{22}+(3J-2)\Lambda_{21}))+2\beta_{21}\theta_{1_{+}}\Lambda_{22}(\Lambda_{22}(4\theta_{\varepsilon}+J+2)))-2A_{1}\Lambda_{22}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)+\theta_{1_{+}})
+\displaystyle+ 8β21θεΛ222(β112θε(J1)+θ1+),\displaystyle 8\beta_{21}\theta_{\varepsilon}\Lambda_{22}^{2}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)+\theta_{1_{+}}),
0=\displaystyle 0= 4β112β22θε(J1)Λ222(J2)+(A12θε+A12J+θε)+A12(β112θε(J1)(β22(Λ222((113J)J2θε(J5)))\displaystyle 4\beta_{11}^{2}\beta_{22}\theta_{\varepsilon}(J-1)\Lambda_{22}^{2}(J-2)^{+}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J+\theta_{\varepsilon})+A_{1}^{2}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)(\beta_{22}(\Lambda_{22}^{2}((1-3J)J-2\theta_{\varepsilon}(J-5)))
+\displaystyle+ Λ21Λ22(2θε+J))+2β11β21θε(J1)Λ22(2θε+J)Λ22+4(θε+1)θ1+Λ22(β22(JΛ22+Λ22)+Λ21))\displaystyle\Lambda_{21}\Lambda_{22}(2\theta_{\varepsilon}+J))+2\beta_{11}\beta_{21}\theta_{\varepsilon}(J-1)\Lambda_{22}(2\theta_{\varepsilon}+J)\Lambda_{22}+4(\theta_{\varepsilon}+1)\theta_{1_{+}}\Lambda_{22}(\beta_{22}(J\Lambda_{22}+\Lambda_{22})+\Lambda_{21}))
\displaystyle- 2A1β11θε(J1)Λ22+2θε(β112θε(J1)(Λ22Λ21β22(J5)Λ222)\displaystyle 2A_{1}\beta_{11}\theta_{\varepsilon}(J-1)\Lambda_{22}+2\theta_{\varepsilon}(\beta_{11}^{2}\theta_{\varepsilon}(J-1)(\Lambda_{22}\Lambda_{21}-\beta_{22}(J-5)\Lambda_{22}^{2})
+\displaystyle+ 2β11β21θε(J1)Λ222+2θ1+Λ22(β22(J+1)Λ22+Λ21)),\displaystyle 2\beta_{11}\beta_{21}\theta_{\varepsilon}(J-1)\Lambda_{22}^{2}+2\theta_{1_{+}}\Lambda_{22}(\beta_{22}(J+1)\Lambda_{22}+\Lambda_{21})),
0=\displaystyle 0= β112((β22(J1)Λ22+Λ21)(A12(β11β22(J1)+β21(θε+1))+β21θε)A13β112(J1)Jβ112J(A12θε+A12J+θε)+(A12+1)θ1++A1)(A12(θε+1)+θε)(4A1β11Jβ112J(A12θε+A12J+θε)+(A12+1)θ1+(β22(J1)Λ22+Λ21)2Λ22),\displaystyle\beta_{11}-\frac{2(-(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21})(A_{1}^{2}(\beta_{11}\beta_{22}(J-1)+\beta_{21}(\theta_{\varepsilon}+1))+\beta_{21}\theta_{\varepsilon})-\frac{A_{1}^{3}\beta_{11}^{2}(J-1)J}{\beta_{11}^{2}J(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}+A_{1})}{(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon})(\frac{4A_{1}\beta_{11}J}{\beta_{11}^{2}J(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}-\frac{(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21})^{2}}{\Lambda_{22}})},
0<\displaystyle 0< Λ22,\displaystyle\Lambda_{22},
0<\displaystyle 0< A1A12+1(2A1Λ22+J(β11Λ22(β22(J1)Λ22+Λ21)+2β21Λ222))216(A12+1)2Λ223,\displaystyle\frac{A_{1}}{A_{1}^{2}+1}-\frac{(2A_{1}\Lambda_{22}+J(\beta_{11}\Lambda_{22}(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21})+2\beta_{21}\Lambda_{22}^{2}))^{2}}{16(A_{1}^{2}+1)^{2}\Lambda_{22}^{3}},
0<\displaystyle 0< 4A1β11Jβ112J(A12θε+A12J+θε)+(A12+1)θ1+(β22(J1)Λ22+Λ21)2Λ22.\displaystyle\frac{4A_{1}\beta_{11}J}{\beta_{11}^{2}J(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}-\frac{(\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21})^{2}}{\Lambda_{22}}.

If it is solved,

Λ1=A1A12+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+1}, (33)
Λ1+=A1β11Jβ112J[θε(A12+1)+JA12]+θ1+(A12+1),\displaystyle\Lambda_{1_{+}}=\frac{A_{1}\beta_{11}J}{\beta_{11}^{2}J[\theta_{\varepsilon}(A_{1}^{2}+1)+JA_{1}^{2}]+\theta_{1_{+}}(A_{1}^{2}+1)},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=β11JΛ21+JΛ22[β21+β23β11+(J1)β22β11]2Λ22,\displaystyle\alpha_{22}=-\frac{\beta_{11}J\Lambda_{21}+J\Lambda_{22}[\beta_{21}+\beta_{23}\beta_{11}+(J-1)\beta_{22}\beta_{11}]}{2\Lambda_{22}},
β23=β22(J1)Λ22+Λ212Λ22.\displaystyle\beta_{23}=-\frac{\beta_{22}(J-1)\Lambda_{22}+\Lambda_{21}}{2\Lambda_{22}}.

Proof of Theorem 4. The mixed-strategy equilibrium can be simplified to the following system of (A1,θz,β12)(+,+,+):(A_{1},\theta_{z},\beta_{12})\in(\mathbb{R}^{+},\mathbb{R}^{+},\mathbb{R}^{+}):

0\displaystyle 0 =β123J2(J(A14(4θ1++4θ2θz)2A12θz(2θ1+2θ2+θz+1)θz(θz+1)2)\displaystyle=\beta_{12}^{3}J^{2}(J(A_{1}^{4}(4\theta_{1_{+}}+4\theta_{2}-\theta_{z})-2A_{1}^{2}\theta_{z}(-2\theta_{1_{+}}-2\theta_{2}+\theta_{z}+1)-\theta_{z}(\theta_{z}+1)^{2}) (34)
+θε(A12+θz+1)(A16+A14(2θz+1)+A12(4θ1++4θ2+θz21)(θz+1)2))\displaystyle+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+A_{1}^{4}(2\theta_{z}+1)+A_{1}^{2}(4\theta_{1_{+}}+4\theta_{2}+\theta_{z}^{2}-1)-(\theta_{z}+1)^{2}))
+β122J(A12+θz+1)(4A12J(θ1+(2A12+2θz1)+θ2(A12+θz1))\displaystyle+\beta_{12}^{2}J(A_{1}^{2}+\theta_{z}+1)(4A_{1}^{2}J(\theta_{1_{+}}(2A_{1}^{2}+2\theta_{z}-1)+\theta_{2}(A_{1}^{2}+\theta_{z}-1))
+θε(A12+θz+1)(A16+A14(2θz1)+A12(4θ1++4θ2+θz21)+(θz+1)2))\displaystyle+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+A_{1}^{4}(2\theta_{z}-1)+A_{1}^{2}(4\theta_{1_{+}}+4\theta_{2}+\theta_{z}^{2}-1)+(\theta_{z}+1)^{2}))
+β12Jθ1+(A12+θz+1)(5A16+A14(10θz1)+A12(4θ2+5θz25)+(θz+1)2)\displaystyle+\beta_{12}J\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)(5A_{1}^{6}+A_{1}^{4}(0\theta_{z}-1)+A_{1}^{2}(4\theta_{2}+5\theta_{z}^{2}-5)+(\theta_{z}+1)^{2})
+θ1+(A12+θz+1)2(A16+A14(2θz1)+A12(4θ2+θz21)+(θz+1)2),\displaystyle+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)^{2}(A_{1}^{6}+A_{1}^{4}(2\theta_{z}-1)+A_{1}^{2}(4\theta_{2}+\theta_{z}^{2}-1)+(\theta_{z}+1)^{2}),
0\displaystyle 0 =4A12β12Jθ1+(A14+2A12θz+A12+θz2+θz)+β122J(J(A14(4θ1++4θ2θz)\displaystyle=4A_{1}^{2}\beta_{12}J\theta_{1_{+}}(A_{1}^{4}+2A_{1}^{2}\theta_{z}+A_{1}^{2}+\theta_{z}^{2}+\theta_{z})+\beta_{12}^{2}J(J(A_{1}^{4}(4\theta_{1_{+}}+4\theta_{2}-\theta_{z})
\displaystyle- 2A12θz(2θ1+2θ2+θz+1)θz(θz+1)2)+θε(A12+θz+1)(A16+A14(2θz+1)\displaystyle 2A_{1}^{2}\theta_{z}(-2\theta_{1_{+}}-2\theta_{2}+\theta_{z}+1)-\theta_{z}(\theta_{z}+1)^{2})+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+A_{1}^{4}(2\theta_{z}+1)
+\displaystyle+ A12(4θ1++4θ2+θz21)(θz+1)2))\displaystyle A_{1}^{2}(4\theta_{1_{+}}+4\theta_{2}+\theta_{z}^{2}-1)-(\theta_{z}+1)^{2}))
+θ1+(A12+θz+1)(A16+A14(2θz+1)+A12(4θ2+θz21)(θz+1)2),\displaystyle+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{6}+A_{1}^{4}(2\theta_{z}+1)+A_{1}^{2}(4\theta_{2}+\theta_{z}^{2}-1)-(\theta_{z}+1)^{2}),
0\displaystyle 0 =A14θ1+(4θε+J+2)+2A12θ1+(4θε(θz+1)+Jθz+J+2θz+1)+β122(A14J(θε+J)(4θε+J+2)\displaystyle=A_{1}^{4}\theta_{1_{+}}(4\theta_{\varepsilon}+J+2)+2A_{1}^{2}\theta_{1_{+}}(4\theta_{\varepsilon}(\theta_{z}+1)+J\theta_{z}+J+2\theta_{z}+1)+\beta_{12}^{2}(A_{1}^{4}J(\theta_{\varepsilon}+J)(4\theta_{\varepsilon}+J+2)
+A12J(8θε2(θz+1)+2θε(5Jθz+J+2θz+1)+J(J+2)(2θz1))\displaystyle+A_{1}^{2}J(8\theta_{\varepsilon}^{2}(\theta_{z}+1)+2\theta_{\varepsilon}(5J\theta_{z}+J+2\theta_{z}+1)+J(J+2)(2\theta_{z}-1))
+J(4θε2(θz+1)2+θε(θz+1)(J(5θz3)+2θz)+J(J+2)(θz1)θz))\displaystyle+J(4\theta_{\varepsilon}^{2}(\theta_{z}+1)^{2}+\theta_{\varepsilon}(\theta_{z}+1)(J(5\theta_{z}-3)+2\theta_{z})+J(J+2)(\theta_{z}-1)\theta_{z}))
+θ1+(θz+1)(4θε(θz+1)+Jθz+J+2θz),\displaystyle+\theta_{1_{+}}(\theta_{z}+1)(4\theta_{\varepsilon}(\theta_{z}+1)+J\theta_{z}+J+2\theta_{z}),
0\displaystyle 0 <A1,\displaystyle<A_{1},
0\displaystyle 0 <A1(β122J(θε(A12+θz+1)+J(A12+θz1))+θ1+(A12+θz+1))β12J(β122J(θε(A12+θz+1)+J(A12+θz))+θ1+(A12+θz+1)),\displaystyle<-\frac{A_{1}(\beta_{12}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}-1))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1))}{\beta_{12}J(\beta_{12}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1))},
0\displaystyle 0 <θz.\displaystyle<\theta_{z}.

If it is solved:

Λ1=A1A12+θz+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+\theta_{z}+1}, (35)
Λ1+=A1β12Jβ122J[θε(A12+θz+1)+J(A12+θz)]+θ1+(A12+θz+1),\displaystyle\Lambda_{1_{+}}=\frac{A_{1}\beta_{12}J}{\beta_{12}^{2}J[\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z})]+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)},
Λ22=Λ1,\displaystyle\Lambda_{22}=\Lambda_{1},
Λ21=Λ22+A1β12J,\displaystyle\Lambda_{21}=\Lambda_{22}+\frac{A_{1}}{\beta_{12}J},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=A2+θz+12.\displaystyle\alpha_{22}=-\frac{A^{2}+\theta_{z}+1}{2}.

Now we prove that β12>0.\beta_{12}>0. By the third equality in (34), we have

f(θz)\displaystyle f(\theta_{z}) =A14J(θε+J)(4θε+J+2)+θz(8A12θε2J+10A12θεJ2+4A12θεJ+2A12J2(J+2)\displaystyle=A_{1}^{4}J(\theta_{\varepsilon}+J)(4\theta_{\varepsilon}+J+2)+\theta_{z}(8A_{1}^{2}\theta_{\varepsilon}^{2}J+0A_{1}^{2}\theta_{\varepsilon}J^{2}+4A_{1}^{2}\theta_{\varepsilon}J+2A_{1}^{2}J^{2}(J+2)
+8θε2J+2θεJ2+2θεJJ2(J+2))+8A12θε2J+2A12θεJ2+2A12θεJA12J2(J+2)\displaystyle+8\theta_{\varepsilon}^{2}J+2\theta_{\varepsilon}J^{2}+2\theta_{\varepsilon}J-J^{2}(J+2))+8A_{1}^{2}\theta_{\varepsilon}^{2}J+2A_{1}^{2}\theta_{\varepsilon}J^{2}+2A_{1}^{2}\theta_{\varepsilon}J-A_{1}^{2}J^{2}(J+2)
+θz2(4θε2J+5θεJ2+2θεJ+J2(J+2))+4θε2J3θεJ2<0,\displaystyle+\theta_{z}^{2}(4\theta_{\varepsilon}^{2}J+5\theta_{\varepsilon}J^{2}+2\theta_{\varepsilon}J+J^{2}(J+2))+4\theta_{\varepsilon}^{2}J-3\theta_{\varepsilon}J^{2}<0,

Denote it as f(θz)=aθz2+bθz+c,f(\theta_{z})=a\theta_{z}^{2}+b\theta_{z}+c, we have

b2a(1A12)=16θε2+6θε(2J+1)+J(J+2)2(4θε2+θε(5J+2)+J(J+2))<0,\displaystyle-\frac{b}{2a}-(1-A_{1}^{2})=-\frac{16\theta_{\varepsilon}^{2}+6\theta_{\varepsilon}(2J+1)+J(J+2)}{2(4\theta_{\varepsilon}^{2}+\theta_{\varepsilon}(5J+2)+J(J+2))}<0,
f(1A12)=4θεJ(1+4θε+J)>0.\displaystyle f(1-A_{1}^{2})=4\theta_{\varepsilon}J(1+4\theta_{\varepsilon}+J)>0.

Thus, we must have the equilibrium value θz<1A12,\theta_{z}<1-A_{1}^{2}, i.e., A12+θz<1.A_{1}^{2}+\theta_{z}<1.

Also by the third equality, we can express β122\beta_{12}^{2} through A1,θzA_{1},\theta_{z}. Substitute into the second inequality,

β122J(θε(A12+θz+1)+J(A12+θz1))+θ1+(A12+θz+1)\displaystyle\beta_{12}^{2}J(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J(A_{1}^{2}+\theta_{z}-1))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)
=\displaystyle= J2θ1+((A12+θz)21)f(θz)/J<0,\displaystyle\frac{J^{2}\theta_{1_{+}}((A_{1}^{2}+\theta_{z})^{2}-1)}{-f(\theta_{z})/J}<0,

so this inequality holds if and only if β12>0.\beta_{12}>0.

The pure-strategy equilibrium conditions can be simplified to the following system of (Λ21,Λ22,A1,β12)(+,+,+,+):(\Lambda_{21},\Lambda_{22},A_{1},\beta_{12})\in(\mathbb{R}^{+},\mathbb{R}^{+},\mathbb{R}^{+},\mathbb{R}^{+}):

0\displaystyle 0 =2A14Λ22+β12(A12J(Λ22Λ21)+J(Λ21Λ22))A1β122J2(Λ21Λ22)2+A12Λ22,\displaystyle=2A_{1}^{4}\Lambda_{22}+\beta_{12}(A_{1}^{2}J(\Lambda_{22}-\Lambda_{21})+J(\Lambda_{21}-\Lambda_{22}))-A_{1}\beta_{12}^{2}J^{2}(\Lambda_{21}-\Lambda_{22})^{2}+A_{1}-2\Lambda_{22}, (36)
0\displaystyle 0 =β122(A13(J)(3θε+J+2)3A1θεJ)+A13θ1++β123(A14J(θε+J)(4θε+J+2)(Λ21Λ22)\displaystyle=\beta_{12}^{2}(A_{1}^{3}(-J)(3\theta_{\varepsilon}+J+2)-3A_{1}\theta_{\varepsilon}J)+A_{1}^{3}\theta_{1_{+}}+\beta_{12}^{3}(A_{1}^{4}J(\theta_{\varepsilon}+J)(4\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})
+A12θεJ(8θε+5J+2)(Λ21Λ22)+4θε2J(Λ21Λ22))+β12(A14θ1+(4θε+J+2)(Λ21Λ22)\displaystyle+A_{1}^{2}\theta_{\varepsilon}J(8\theta_{\varepsilon}+5J+2)(\Lambda_{21}-\Lambda_{22})+4\theta_{\varepsilon}^{2}J(\Lambda_{21}-\Lambda_{22}))+\beta_{12}(A_{1}^{4}\theta_{1_{+}}(4\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})
+A12θ1+(8θε+J+2)(Λ21Λ22)+4θεθ1+(Λ21Λ22))+A1θ1+,\displaystyle+A_{1}^{2}\theta_{1_{+}}(8\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})+4\theta_{\varepsilon}\theta_{1_{+}}(\Lambda_{21}-\Lambda_{22}))+A_{1}\theta_{1_{+}},
0\displaystyle 0 =β122(A13(J)(3θε+J+2)3A1θεJ)+A13θ1++β123(A14J(θε+J)(4θε+J+2)(Λ21Λ22)\displaystyle=\beta_{12}^{2}(A_{1}^{3}(-J)(3\theta_{\varepsilon}+J+2)-3A_{1}\theta_{\varepsilon}J)+A_{1}^{3}\theta_{1_{+}}+\beta_{12}^{3}(A_{1}^{4}J(\theta_{\varepsilon}+J)(4\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})
+A12θεJ(8θε+5J+2)(Λ21Λ22)+4θε2J(Λ21Λ22))+β12(A14θ1+(4θε+J+2)(Λ21Λ22)\displaystyle+A_{1}^{2}\theta_{\varepsilon}J(8\theta_{\varepsilon}+5J+2)(\Lambda_{21}-\Lambda_{22})+4\theta_{\varepsilon}^{2}J(\Lambda_{21}-\Lambda_{22}))+\beta_{12}(A_{1}^{4}\theta_{1_{+}}(4\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})
+A12θ1+(8θε+J+2)(Λ21Λ22)+4θεθ1+(Λ21Λ22))+A1θ1+,\displaystyle+A_{1}^{2}\theta_{1_{+}}(8\theta_{\varepsilon}+J+2)(\Lambda_{21}-\Lambda_{22})+4\theta_{\varepsilon}\theta_{1_{+}}(\Lambda_{21}-\Lambda_{22}))+A_{1}\theta_{1_{+}},
0\displaystyle 0 =A12β124θεJ3(Λ21Λ22)2+β122J(θε(4(A12+1)Λ222(θ1++θ2)1)\displaystyle=A_{1}^{2}\beta_{12}^{4}\theta_{\varepsilon}J^{3}(\Lambda_{21}-\Lambda_{22})^{2}+\beta_{12}^{2}J(\theta_{\varepsilon}(4(A_{1}^{2}+1)\Lambda_{22}^{2}(\theta_{1_{+}}+\theta_{2})-1)
+A12J(Λ212θ1++2Λ21Λ22θ1++Λ222(θ1++4θ2)))+θ1+(4(A12+1)Λ222θ21),\displaystyle+A_{1}^{2}J(\Lambda_{21}^{2}\theta_{1_{+}}+2\Lambda_{21}\Lambda_{22}\theta_{1_{+}}+\Lambda_{22}^{2}(\theta_{1_{+}}+4\theta_{2})))+\theta_{1_{+}}(4(A_{1}^{2}+1)\Lambda_{22}^{2}\theta_{2}-1),
0\displaystyle 0 <Λ22,\displaystyle<\Lambda_{22},
0\displaystyle 0 <β122(θεJ(Λ22Λ21)A12J(θε+J)(Λ21Λ22))+A12θ1+((Λ21Λ22))+A1β12J+θ1+(Λ22Λ21),\displaystyle<\beta_{12}^{2}(\theta_{\varepsilon}J(\Lambda_{22}-\Lambda_{21})-A_{1}^{2}J(\theta_{\varepsilon}+J)(\Lambda_{21}-\Lambda_{22}))+A_{1}^{2}\theta_{1_{+}}(-(\Lambda_{21}-\Lambda_{22}))+A_{1}\beta_{12}J+\theta_{1_{+}}(\Lambda_{22}-\Lambda_{21}),
0\displaystyle 0 <4A13Λ22+A12+2A1β12J(Λ22Λ21)+4A1Λ22β122J2(Λ21Λ22)2.\displaystyle<4A_{1}^{3}\Lambda_{22}+A_{1}^{2}+2A_{1}\beta_{12}J(\Lambda_{22}-\Lambda_{21})+4A_{1}\Lambda_{22}-\beta_{12}^{2}J^{2}(\Lambda_{21}-\Lambda_{22})^{2}.

If it is solved:

Λ1=A1A12+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+1}, (37)
Λ1+=A1β12Jβ122J(A12θε+A12J+θε)+θ1+(A12+1),\displaystyle\Lambda_{1_{+}}=\frac{A_{1}\beta_{12}J}{\beta_{12}^{2}J(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J+\theta_{\varepsilon})+\theta_{1_{+}}(A_{1}^{2}+1)},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=β12J(Λ21Λ22)2Λ22.\displaystyle\alpha_{22}=-\frac{\beta_{12}J(\Lambda_{21}-\Lambda_{22})}{2\Lambda_{22}}.

By SOC (18), we have Λ1>0,\Lambda_{1}>0, so A1>0.A_{1}>0. By the second equality in (36), we have

Λ22=\displaystyle\Lambda_{22}= (A14β12Λ21(4θε+J+2)(β122J(θε+J)+θ1+)A13(θ1+β122J(3θε+J+2))\displaystyle-(-A_{1}^{4}\beta_{12}\Lambda_{21}(4\theta_{\varepsilon}+J+2)(\beta_{12}^{2}J(\theta_{\varepsilon}+J)+\theta_{1_{+}})-A_{1}^{3}(\theta_{1_{+}}-\beta_{12}^{2}J(3\theta_{\varepsilon}+J+2))
A12β12Λ21(β122θεJ(8θε+5J+2)+θ1+(8θε+J+2))A1(θ1+3β122θεJ)4β12θεΛ21(β122θεJ+θ1+))\displaystyle-A_{1}^{2}\beta_{12}\Lambda_{21}(\beta_{12}^{2}\theta_{\varepsilon}J(8\theta_{\varepsilon}+5J+2)+\theta_{1_{+}}(8\theta_{\varepsilon}+J+2))-A_{1}(\theta_{1_{+}}-3\beta_{12}^{2}\theta_{\varepsilon}J)-4\beta_{12}\theta_{\varepsilon}\Lambda_{21}(\beta_{12}^{2}\theta_{\varepsilon}J+\theta_{1_{+}}))
/(A14β12(4θε+J+2)(β122J(θε+J)+θ1+)A12β12(β122θεJ(8θε+5J+2)+θ1+(8θε+J+2))\displaystyle/(-A_{1}^{4}\beta_{12}(4\theta_{\varepsilon}+J+2)(\beta_{12}^{2}J(\theta_{\varepsilon}+J)+\theta_{1_{+}})-A_{1}^{2}\beta_{12}(\beta_{12}^{2}\theta_{\varepsilon}J(8\theta_{\varepsilon}+5J+2)+\theta_{1_{+}}(8\theta_{\varepsilon}+J+2))
4β12θε(β122θεJ+θ1+)).\displaystyle-4\beta_{12}\theta_{\varepsilon}(\beta_{12}^{2}\theta_{\varepsilon}J+\theta_{1_{+}})).

Substitute it into the second inequality, we have

A1(A12+1)(β122θεJ+θ1+)β12(A12(4θε+J+2)+4θε)>0,\frac{A_{1}(A_{1}^{2}+1)(\beta_{12}^{2}\theta_{\varepsilon}J+\theta_{1_{+}})}{\beta_{12}(A_{1}^{2}(4\theta_{\varepsilon}+J+2)+4\theta_{\varepsilon})}>0,

consequently, β12>0.\beta_{12}>0. By (4), we know that Λ21\Lambda_{21} has the same sign with

β12J(A1(α22β12θε+θ2)+A21β12θε),\beta_{12}J(A_{1}(\alpha_{22}\beta_{12}\theta_{\varepsilon}+\theta_{2})+A_{21}\beta_{12}\theta_{\varepsilon}),

If α22>0,\alpha_{22}>0, we have Λ21>0.\Lambda_{21}>0. If not, by (15),

α22=β12J(Λ21Λ22)2Λ22.\alpha_{22}=-\frac{\beta_{12}J(\Lambda_{21}-\Lambda_{22})}{2\Lambda_{22}}.

then α22<0\alpha_{22}<0 implies Λ21>Λ22>0,\Lambda_{21}>\Lambda_{22}>0, so we have Λ21>0.\Lambda_{21}>0.

Proof of Theorem 5. The mixed-strategy equilibrium can be simplified to the following system of
(A1,θz,β21,β11,β22,β23,β12):(A_{1},\theta_{z},\beta_{21},\beta_{11},\beta_{22},\beta_{23},\beta_{12}):

0=\displaystyle 0= (A1(A12β11β22J12β21J1+β11β22J1β11β23J1+β12J2β12β22J1J2+θz+1))/((β11J1+β12J2)(A12+θz+1))\displaystyle(A_{1}(A_{1}^{2}-\beta_{11}\beta_{22}J_{1}^{2}-\beta_{21}J_{1}+\beta_{11}\beta_{22}J_{1}-\beta_{11}\beta_{23}J_{1}+\beta_{12}J_{2}-\beta_{12}\beta_{22}J_{1}J_{2}+\theta_{z}+1))/((\beta_{11}J_{1}+\beta_{12}J_{2})(A_{1}^{2}+\theta_{z}+1)) (38)
\displaystyle- (A1(2(β23+β22(J11))J1(J1θz(A12+θz+1)+θε(A14+2β12(β22β231)J2A12+(θz+1)2))β112\displaystyle(A_{1}(-2(\beta_{23}+\beta_{22}(J_{1}-1))J_{1}(J_{1}\theta_{z}(A_{1}^{2}+\theta_{z}+1)+\theta_{\varepsilon}(-A_{1}^{4}+2\beta_{12}(\beta_{22}-\beta_{23}-1)J_{2}A_{1}^{2}+(\theta_{z}+1)^{2}))\beta_{11}^{2}
+\displaystyle+ J1(θzA14+2(2(β22β231)θε(β22J11)J2β122+(2J1β22+β22β23+1)J2θzβ12+θz2+2β222J1θ1+\displaystyle J_{1}(\theta_{z}A_{1}^{4}+2(2(\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}(\beta_{22}J_{1}-1)J_{2}\beta_{12}^{2}+(-2J_{1}\beta_{22}+\beta_{22}-\beta_{23}+1)J_{2}\theta_{z}\beta_{12}+\theta_{z}^{2}+2\beta_{22}^{2}J_{1}\theta_{1_{+}}
\displaystyle- 2β22β23J1θ1++2θ2+θz)A12(2β12(β23+β22(2J11)1)J2θz1)θz(θz+1)+2β21(θε(A14\displaystyle 2\beta_{22}\beta_{23}J_{1}\theta_{1_{+}}+2\theta_{2}+\theta_{z})A_{1}^{2}-(2\beta_{12}(\beta_{23}+\beta_{22}(2J_{1}-1)-1)J_{2}-\theta_{z}-1)\theta_{z}(\theta_{z}+1)+2\beta_{21}(\theta_{\varepsilon}(A_{1}^{4}
+\displaystyle+ 2β12(2β23+β22(J12)+1)J2A12(θz+1)2)J1θz(A12+θz+1)))β112β22J1θ1+(A14+2β21J1A12+(θz+1)2)\displaystyle 2\beta_{12}(2\beta_{23}+\beta_{22}(J_{1}-2)+1)J_{2}A_{1}^{2}-(\theta_{z}+1)^{2})-J_{1}\theta_{z}(A_{1}^{2}+\theta_{z}+1)))\beta_{11}-2\beta_{22}J_{1}\theta_{1_{+}}(-A_{1}^{4}+2\beta_{21}J_{1}A_{1}^{2}+(\theta_{z}+1)^{2})
+\displaystyle+ β12J2(θzA14+2(2θεJ1β212J1θzβ21+θz2+2β22J1θ1++2θ2+θz)A12(2β21J1θz1)θz(θz+1))2β122(β22J11)J2\displaystyle\beta_{12}J_{2}(\theta_{z}A_{1}^{4}+2(2\theta_{\varepsilon}J_{1}\beta_{21}^{2}-J_{1}\theta_{z}\beta_{21}+\theta_{z}^{2}+2\beta_{22}J_{1}\theta_{1_{+}}+2\theta_{2}+\theta_{z})A_{1}^{2}-(2\beta_{21}J_{1}-\theta_{z}-1)\theta_{z}(\theta_{z}+1))-2\beta_{12}^{2}(\beta_{22}J_{1}-1)J_{2}
(J2θz(A12+θz+1)+θε(A14+2β21J1A12+(θz+1)2))))/(4β12J2θ1+(A14+(2θz2β21J1)A12+θz22β21J1θz1)A12\displaystyle(J_{2}\theta_{z}(A_{1}^{2}+\theta_{z}+1)+\theta_{\varepsilon}(-A_{1}^{4}+2\beta_{21}J_{1}A_{1}^{2}+(\theta_{z}+1)^{2}))))/(4\beta_{12}J_{2}\theta_{1_{+}}(A_{1}^{4}+(2\theta_{z}-2\beta_{21}J_{1})A_{1}^{2}+\theta_{z}^{2}-2\beta_{21}J_{1}\theta_{z}-1)A_{1}^{2}
+\displaystyle+ θ1+(A18+(3θz4β21J1)A16+(4J1(θε+J1)β2128J1θzβ21+3θz2+4θ2+θz2)A14+(4J1(θzθε+θε+J1θz)β212\displaystyle\theta_{1_{+}}(A_{1}^{8}+(3\theta_{z}-4\beta_{21}J_{1})A_{1}^{6}+(4J_{1}(\theta_{\varepsilon}+J_{1})\beta_{21}^{2}-8J_{1}\theta_{z}\beta_{21}+3\theta_{z}^{2}+4\theta_{2}+\theta_{z}-2)A_{1}^{4}+(4J_{1}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J_{1}\theta_{z})\beta_{21}^{2}
\displaystyle- 4J1(θz21)β21+(θz+1)(θz2+θz+4θ2))A12+(θz+1)3)+β122J2(4A12β212J1(A12+θz+1)θε2+(A18+(3θz4β21J1)A16\displaystyle 4J_{1}(\theta_{z}^{2}-1)\beta_{21}+(\theta_{z}+1)(\theta_{z}^{2}+\theta_{z}+4\theta_{2}))A_{1}^{2}+(\theta_{z}+1)^{3})+\beta_{12}^{2}J_{2}(4A_{1}^{2}\beta_{21}^{2}J_{1}(A_{1}^{2}+\theta_{z}+1)\theta_{\varepsilon}^{2}+(A_{1}^{8}+(3\theta_{z}-4\beta_{21}J_{1})A_{1}^{6}
+\displaystyle+ (4J1(J1+J2)β2128J1θzβ21+3θz2+4θ1++4θ2+θz2)A14+(4J1(J1+J2)θzβ2124J1(θz21)β21+(θz+1)(θz2+θz\displaystyle(4J_{1}(J_{1}+J_{2})\beta_{21}^{2}-8J_{1}\theta_{z}\beta_{21}+3\theta_{z}^{2}+4\theta_{1_{+}}+4\theta_{2}+\theta_{z}-2)A_{1}^{4}+(4J_{1}(J_{1}+J_{2})\theta_{z}\beta_{21}^{2}-4J_{1}(\theta_{z}^{2}-1)\beta_{21}+(\theta_{z}+1)(\theta_{z}^{2}+\theta_{z}
+\displaystyle+ 4θ1++4θ2))A12+(θz+1)3)θε+J2((4θ1++4θ2+θz)A14+2θz(2θ1++2θ2+θz+1)A12+θz(θz+1)2))+β112J1(4A12β122\displaystyle 4\theta_{1_{+}}+4\theta_{2}))A_{1}^{2}+(\theta_{z}+1)^{3})\theta_{\varepsilon}+J_{2}((4\theta_{1_{+}}+4\theta_{2}+\theta_{z})A_{1}^{4}+2\theta_{z}(2\theta_{1_{+}}+2\theta_{2}+\theta_{z}+1)A_{1}^{2}+\theta_{z}(\theta_{z}+1)^{2}))+\beta_{11}^{2}J_{1}(4A_{1}^{2}\beta_{12}^{2}
(β22+β23+1)2J2(A12+θz+1)θε2+(A18+(4β12(β22+β23+1)J2+3θz)A16+(4θ1+β2228β23θ1+β22+3θz2\displaystyle(-\beta_{22}+\beta_{23}+1)^{2}J_{2}(A_{1}^{2}+\theta_{z}+1)\theta_{\varepsilon}^{2}+(A_{1}^{8}+(4\beta_{12}(-\beta_{22}+\beta_{23}+1)J_{2}+3\theta_{z})A_{1}^{6}+(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+3\theta_{z}^{2}
+\displaystyle+ 4β122(β22+β23+1)2J2(J1+J2)+4β232θ1++4θ2+8β12(β22+β23+1)J2θz+θz2)A14+(4β122J2(J1+J2)θz\displaystyle 4\beta_{12}^{2}(-\beta_{22}+\beta_{23}+1)^{2}J_{2}(J_{1}+J_{2})+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+8\beta_{12}(-\beta_{22}+\beta_{23}+1)J_{2}\theta_{z}+\theta_{z}-2)A_{1}^{4}+(4\beta_{12}^{2}J_{2}(J_{1}+J_{2})\theta_{z}
(β22+β23+1)24β12(β22β231)J2(θz21)+(θz+1)(4θ1+β2228β23θ1+β22+θz2+4β232θ1++4θ2+θz))A12\displaystyle(-\beta_{22}+\beta_{23}+1)^{2}-4\beta_{12}(\beta_{22}-\beta_{23}-1)J_{2}(\theta_{z}^{2}-1)+(\theta_{z}+1)(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+\theta_{z}^{2}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+\theta_{z}))A_{1}^{2}
+\displaystyle+ (θz+1)3)θε+J1((4θ1+β2228β23θ1+β22+4β232θ1++4θ2+θz)A14+2θz(2θ1+β2224β23θ1+β22+2β232θ1++2θ2+θz+1)A12\displaystyle(\theta_{z}+1)^{3})\theta_{\varepsilon}+J_{1}((4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}+\theta_{z})A_{1}^{4}+2\theta_{z}(2\theta_{1_{+}}\beta_{22}^{2}-4\beta_{23}\theta_{1_{+}}\beta_{22}+2\beta_{23}^{2}\theta_{1_{+}}+2\theta_{2}+\theta_{z}+1)A_{1}^{2}
+\displaystyle+ θz(θz+1)2))+2β11J1(2((β22β231)θεJ2β122+β21θεJ2β12+(β22β23)θ1+)A16+(4(β22β231)θε\displaystyle\theta_{z}(\theta_{z}+1)^{2}))+2\beta_{11}J_{1}(2((\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{2}\beta_{12}^{2}+\beta_{21}\theta_{\varepsilon}J_{2}\beta_{12}+(\beta_{22}-\beta_{23})\theta_{1_{+}})A_{1}^{6}+(-4(\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}
J2(β21(θε+J1+J2)θz)β122+J2(4β22θ1+4β23θ1++4θ2+4β21θεθz+θz)β124(β22β23)θ1+(β21(θε+J1)θz))A14\displaystyle J_{2}(\beta_{21}(\theta_{\varepsilon}+J_{1}+J_{2})-\theta_{z})\beta_{12}^{2}+J_{2}(4\beta_{22}\theta_{1_{+}}-4\beta_{23}\theta_{1_{+}}+4\theta_{2}+4\beta_{21}\theta_{\varepsilon}\theta_{z}+\theta_{z})\beta_{12}-4(\beta_{22}-\beta_{23})\theta_{1_{+}}(\beta_{21}(\theta_{\varepsilon}+J_{1})-\theta_{z}))A_{1}^{4}
+\displaystyle+ 2((β22β231)θεJ2(θz2+2β21((J1+J2)θz+θε(θz+1))+1)β122+J2(θz(2β22θ1+2β23θ1++2θ2+θz+1)\displaystyle 2(-(\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{2}(-\theta_{z}^{2}+2\beta_{21}((J_{1}+J_{2})\theta_{z}+\theta_{\varepsilon}(\theta_{z}+1))+1)\beta_{12}^{2}+J_{2}(\theta_{z}(2\beta_{22}\theta_{1_{+}}-2\beta_{23}\theta_{1_{+}}+2\theta_{2}+\theta_{z}+1)
+\displaystyle+ β21θε(θz21))β12(β22β23)θ1+(θz2+2β21(θzθε+θε+J1θz)+1))A12+β12J2θz(θz+1)2)),\displaystyle\beta_{21}\theta_{\varepsilon}(\theta_{z}^{2}-1))\beta_{12}-(\beta_{22}-\beta_{23})\theta_{1_{+}}(-\theta_{z}^{2}+2\beta_{21}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J_{1}\theta_{z})+1))A_{1}^{2}+\beta_{12}J_{2}\theta_{z}(\theta_{z}+1)^{2})),
0=\displaystyle 0= 4β12J2θ1+(A12+θz)(A122β21J1+θz+1)A12+θ1+(A18+(4β21J1+3θz+2)A16+(4J1(θε+J1)β2124(2θzJ1+J1)β21\displaystyle 4\beta_{12}J_{2}\theta_{1_{+}}(A_{1}^{2}+\theta_{z})(A_{1}^{2}-2\beta_{21}J_{1}+\theta_{z}+1)A_{1}^{2}+\theta_{1_{+}}(A_{1}^{8}+(-4\beta_{21}J_{1}+3\theta_{z}+2)A_{1}^{6}+(4J_{1}(\theta_{\varepsilon}+J_{1})\beta_{21}^{2}-4(2\theta_{z}J_{1}+J_{1})\beta_{21}
+\displaystyle+ 4θ2+3θz(θz+1))A14+(4J1(θzθε+θε+J1θz)β2124J1θz(θz+1)β21+(θz+1)(θz2θz+4θ22))A12(θz+1)3)\displaystyle 4\theta_{2}+3\theta_{z}(\theta_{z}+1))A_{1}^{4}+(4J_{1}(\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}+J_{1}\theta_{z})\beta_{21}^{2}-4J_{1}\theta_{z}(\theta_{z}+1)\beta_{21}+(\theta_{z}+1)(\theta_{z}^{2}-\theta_{z}+4\theta_{2}-2))A_{1}^{2}-(\theta_{z}+1)^{3})
+\displaystyle+ β122J2(4A12β212J1(A12+θz+1)θε2+(A18+(4β21J1+3θz+2)A16+(4J1(J1+J2)β2124(2θzJ1+J1)β21+3θz2+4θ1+\displaystyle\beta_{12}^{2}J_{2}(4A_{1}^{2}\beta_{21}^{2}J_{1}(A_{1}^{2}+\theta_{z}+1)\theta_{\varepsilon}^{2}+(A_{1}^{8}+(-4\beta_{21}J_{1}+3\theta_{z}+2)A_{1}^{6}+(4J_{1}(J_{1}+J_{2})\beta_{21}^{2}-4(2\theta_{z}J_{1}+J_{1})\beta_{21}+3\theta_{z}^{2}+4\theta_{1_{+}}
+\displaystyle+ 4θ2+3θz)A14+(θz3+4β21J1θz(β21J11θz)+4β212J1J2θz3θz+4θ1+(θz+1)+4θ2(θz+1)2)A12(θz+1)3)θε\displaystyle 4\theta_{2}+3\theta_{z})A_{1}^{4}+(\theta_{z}^{3}+4\beta_{21}J_{1}\theta_{z}(\beta_{21}J_{1}-1-\theta_{z})+4\beta_{21}^{2}J_{1}J_{2}\theta_{z}-3\theta_{z}+4\theta_{1_{+}}(\theta_{z}+1)+4\theta_{2}(\theta_{z}+1)-2)A_{1}^{2}-(\theta_{z}+1)^{3})\theta_{\varepsilon}
+\displaystyle+ J2((4θ1++4θ2θz)A142θz(2θ1+2θ2+θz+1)A12θz(θz+1)2))+2β11J1(2((β22β231)θεJ2β122+β21θεJ2β12\displaystyle J_{2}((4\theta_{1_{+}}+4\theta_{2}-\theta_{z})A_{1}^{4}-2\theta_{z}(-2\theta_{1_{+}}-2\theta_{2}+\theta_{z}+1)A_{1}^{2}-\theta_{z}(\theta_{z}+1)^{2}))+2\beta_{11}J_{1}(2((\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{2}\beta_{12}^{2}+\beta_{21}\theta_{\varepsilon}J_{2}\beta_{12}
+\displaystyle+ (β22β23)θ1+)A16+(2(β22β231)θεJ2(2β21(θε+J1+J2)2θz1)β122+J2(4β22θ1+4β23θ1++4θ2θz+2β21\displaystyle(\beta_{22}-\beta_{23})\theta_{1_{+}})A_{1}^{6}+(-2(\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{2}(2\beta_{21}(\theta_{\varepsilon}+J_{1}+J_{2})-2\theta_{z}-1)\beta_{12}^{2}+J_{2}(4\beta_{22}\theta_{1_{+}}-4\beta_{23}\theta_{1_{+}}+4\theta_{2}-\theta_{z}+2\beta_{21}
(2θzθε+θε))β122(β22β23)θ1+(2β21(θε+J1)2θz1))A142((β22β231)θεJ2(2β21((J1+J2)θz+θε(θz+1))\displaystyle(2\theta_{z}\theta_{\varepsilon}+\theta_{\varepsilon}))\beta_{12}-2(\beta_{22}-\beta_{23})\theta_{1_{+}}(2\beta_{21}(\theta_{\varepsilon}+J_{1})-2\theta_{z}-1))A_{1}^{4}-2((\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{2}(2\beta_{21}((J_{1}+J_{2})\theta_{z}+\theta_{\varepsilon}(\theta_{z}+1))
\displaystyle- θz(θz+1))β122+J2θz(2β22θ1++2β23θ1+2θ2+θzβ21θε(θz+1)+1)β12+(β22β23)θ1+(2β21((θz+1)θε\displaystyle\theta_{z}(\theta_{z}+1))\beta_{12}^{2}+J_{2}\theta_{z}(-2\beta_{22}\theta_{1_{+}}+2\beta_{23}\theta_{1_{+}}-2\theta_{2}+\theta_{z}-\beta_{21}\theta_{\varepsilon}(\theta_{z}+1)+1)\beta_{12}+(\beta_{22}-\beta_{23})\theta_{1_{+}}(2\beta_{21}((\theta_{z}+1)\theta_{\varepsilon}
+\displaystyle+ J1θz)θz(θz+1)))A12β12J2θz(θz+1)2)+β112J1(4A12β122(β22+β23+1)2J2(A12+θz+1)θε2+(A18\displaystyle J_{1}\theta_{z})-\theta_{z}(\theta_{z}+1)))A_{1}^{2}-\beta_{12}J_{2}\theta_{z}(\theta_{z}+1)^{2})+\beta_{11}^{2}J_{1}(4A_{1}^{2}\beta_{12}^{2}(-\beta_{22}+\beta_{23}+1)^{2}J_{2}(A_{1}^{2}+\theta_{z}+1)\theta_{\varepsilon}^{2}+(A_{1}^{8}
+\displaystyle+ (4β12(β22+β23+1)J2+3θz+2)A16+(4θ1+β2228β23θ1+β22+3θz2+4β122(β22+β23+1)2J2(J1+J2)+4β232θ1++4θ2\displaystyle(4\beta_{12}(-\beta_{22}+\beta_{23}+1)J_{2}+3\theta_{z}+2)A_{1}^{6}+(4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+3\theta_{z}^{2}+4\beta_{12}^{2}(-\beta_{22}+\beta_{23}+1)^{2}J_{2}(J_{1}+J_{2})+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}
+\displaystyle+ 3θz4β12(β22β231)J2(2θz+1))A14+(θz3+4β12J2θz2+4β122J22θz+4β12J2θz+4β122J1J2θz+4θ2θz\displaystyle 3\theta_{z}-4\beta_{12}(\beta_{22}-\beta_{23}-1)J_{2}(2\theta_{z}+1))A_{1}^{4}+(\theta_{z}^{3}+4\beta_{12}J_{2}\theta_{z}^{2}+4\beta_{12}^{2}J_{2}^{2}\theta_{z}+4\beta_{12}J_{2}\theta_{z}+4\beta_{12}^{2}J_{1}J_{2}\theta_{z}+4\theta_{2}\theta_{z}
+\displaystyle+ 4β12β23J2(2β12(J1+J2)+θz+1)θz3θz+4θ2+4β222(J2(J1+J2)θzβ122+θ1+(θz+1))+4β232(J2(J1+J2)θzβ122\displaystyle 4\beta_{12}\beta_{23}J_{2}(2\beta_{12}(J_{1}+J_{2})+\theta_{z}+1)\theta_{z}-3\theta_{z}+4\theta_{2}+4\beta_{22}^{2}(J_{2}(J_{1}+J_{2})\theta_{z}\beta_{12}^{2}+\theta_{1_{+}}(\theta_{z}+1))+4\beta_{23}^{2}(J_{2}(J_{1}+J_{2})\theta_{z}\beta_{12}^{2}
+\displaystyle+ θ1+(θz+1))4β22(β12J2θz(2β12(J1+J2)+θz+1)+2β23(J2(J1+J2)θzβ122+θ1+(θz+1)))2)A12(θz+1)3)θε\displaystyle\theta_{1_{+}}(\theta_{z}+1))-4\beta_{22}(\beta_{12}J_{2}\theta_{z}(2\beta_{12}(J_{1}+J_{2})+\theta_{z}+1)+2\beta_{23}(J_{2}(J_{1}+J_{2})\theta_{z}\beta_{12}^{2}+\theta_{1_{+}}(\theta_{z}+1)))-2)A_{1}^{2}-(\theta_{z}+1)^{3})\theta_{\varepsilon}
+\displaystyle+ J1((4θ1+β2228β23θ1+β22+4β232θ1++4θ2θz)A142θz(2θ1+β222+4β23θ1+β222β232θ1+2θ2+θz+1)A12θz(θz+1)2)),\displaystyle J_{1}((4\theta_{1_{+}}\beta_{22}^{2}-8\beta_{23}\theta_{1_{+}}\beta_{22}+4\beta_{23}^{2}\theta_{1_{+}}+4\theta_{2}-\theta_{z})A_{1}^{4}-2\theta_{z}(-2\theta_{1_{+}}\beta_{22}^{2}+4\beta_{23}\theta_{1_{+}}\beta_{22}-2\beta_{23}^{2}\theta_{1_{+}}-2\theta_{2}+\theta_{z}+1)A_{1}^{2}-\theta_{z}(\theta_{z}+1)^{2})),
0=\displaystyle 0= β11(((A12+θz)(β11(J11)+β12J2)(β11J1+β12J2))/(β112J1(θε(A12+θz+1)+J1(A12+θz))\displaystyle\beta_{11}-(-((A_{1}^{2}+\theta_{z})(\beta_{11}(J_{1}-1)+\beta_{12}J_{2})(\beta_{11}J_{1}+\beta_{12}J_{2}))/(\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z}))
+\displaystyle+ 2β11β12J1J2(A12+θz)+β122J2(θε(A12+θz+1)+J2(A12+θz))+θ1+(A12+θz+1))\displaystyle 2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{12}^{2}J_{2}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1))
+\displaystyle+ 2β23(A12(β11β22(J11)+β12β22J2+β21(θε+1))+β22θz(β11(J11)+β12J2)+β21(θεθz+θε+θz))A12+θz+1+1)\displaystyle\frac{2\beta_{23}(A_{1}^{2}(\beta_{11}\beta_{22}(J_{1}-1)+\beta_{12}\beta_{22}J_{2}+\beta_{21}(\theta_{\varepsilon}+1))+\beta_{22}\theta_{z}(\beta_{11}(J_{1}-1)+\beta_{12}J_{2})+\beta_{21}(\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z}))}{A_{1}^{2}+\theta_{z}+1}+1)
/\displaystyle/ (2(A12(θε+1)+θεθz+θε+θz)((β11J1+β12J2)/(β112J1(θε(A12+θz+1)+J1(A12+θz))+2β11β12J1J2(A12+θz)\displaystyle(2(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})((\beta_{11}J_{1}+\beta_{12}J_{2})/(\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z}))+2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})
+\displaystyle+ β122J2(θε(A12+θz+1)+J2(A12+θz))+θ1+(A12+θz+1))(β232)/(A12+θz+1))),\displaystyle\beta_{12}^{2}J_{2}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1))-(\beta_{23}^{2})/(A_{1}^{2}+\theta_{z}+1))),
0=\displaystyle 0= 2β11β22(J11)(A12+θz)(J12)+(β11β12θεJ2+β122(θε)J2θ1+)+A14β122θεJ2+A14θ1++2β11(J11)(A12+θz)\displaystyle 2\beta_{11}\beta_{22}(J_{1}-1)(A_{1}^{2}+\theta_{z})(J_{1}-2)^{+}(\beta_{11}\beta_{12}\theta_{\varepsilon}J_{2}+\beta_{12}^{2}(-\theta_{\varepsilon})J_{2}-\theta_{1_{+}})+A_{1}^{4}\beta_{12}^{2}\theta_{\varepsilon}J_{2}+A_{1}^{4}\theta_{1_{+}}+2\beta_{11}(J_{1}-1)(A_{1}^{2}+\theta_{z}) (39)
(β122θεJ2(β22(J1)+β22+β23+1)3β12β21θεJ2θ1+(β22(J1)+β22+β23))4A12β122β21θε2J22A12β122β21θεJ1J2\displaystyle(-\beta_{12}^{2}-\theta_{\varepsilon}J_{2}(\beta_{22}(-J_{1})+\beta_{22}+\beta_{23}+1)-3\beta_{12}\beta_{21}\theta_{\varepsilon}J_{2}-\theta_{1_{+}}(\beta_{22}(-J_{1})+\beta_{22}+\beta_{23}))-4A_{1}^{2}\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{2}-2A_{1}^{2}\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{1}J_{2}
\displaystyle- 4A12β122β21θεJ222A12β122β21θεJ2+2A12β122θεJ2θz+2A12β122θεJ2+2A12β12J2θ1+4A12β21θεθ1+2A12β21J1θ1+2A12β21θ1+\displaystyle 4A_{1}^{2}\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}^{2}-2A_{1}^{2}\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}+2A_{1}^{2}\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}+2A_{1}^{2}\beta_{12}^{2}\theta_{\varepsilon}J_{2}+2A_{1}^{2}\beta_{12}J_{2}\theta_{1_{+}}-4A_{1}^{2}\beta_{21}\theta_{\varepsilon}\theta_{1_{+}}-2A_{1}^{2}\beta_{21}J_{1}\theta_{1_{+}}-2A_{1}^{2}\beta_{21}\theta_{1_{+}}
+\displaystyle+ 2A12θ1+θz+2A12θ1++β112θε(J11)(A14+2A12(β12J2(β22(J1)+β22+β23+1)2β21(θε+J1)+θz+1)2β12β22J1J2θz\displaystyle 2A_{1}^{2}\theta_{1_{+}}\theta_{z}+2A_{1}^{2}\theta_{1_{+}}+\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)(A_{1}^{4}+2A_{1}^{2}(\beta_{12}J_{2}(\beta_{22}(-J_{1})+\beta_{22}+\beta_{23}+1)-2\beta_{21}(\theta_{\varepsilon}+J_{1})+\theta_{z}+1)-2\beta_{12}\beta_{22}J_{1}J_{2}\theta_{z}
+\displaystyle+ 2β12β22J2θz+2β12β23J2θz+2β12J2θz4β21θεθz4β21θε4β21J1θz+θz2+2θz+1)4β122β21θε2J2θz4β122β21θε2J2\displaystyle 2\beta_{12}\beta_{22}J_{2}\theta_{z}+2\beta_{12}\beta_{23}J_{2}\theta_{z}+2\beta_{12}J_{2}\theta_{z}-4\beta_{21}\theta_{\varepsilon}\theta_{z}-4\beta_{21}\theta_{\varepsilon}-4\beta_{21}J_{1}\theta_{z}+\theta_{z}^{2}+2\theta_{z}+1)-4\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{2}\theta_{z}-4\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{2}
\displaystyle- 2β122β21θεJ1J2θz4β122β21θεJ22θz2β122β21θεJ2θz+β122θεJ2θz2+2β122θεJ2θz+β122θεJ2+2β12J2θ1+θz\displaystyle 2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{1}J_{2}\theta_{z}-4\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}^{2}\theta_{z}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}\theta_{z}+\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}+\beta_{12}^{2}\theta_{\varepsilon}J_{2}+2\beta_{12}J_{2}\theta_{1_{+}}\theta_{z}
\displaystyle- 4β21θεθ1+θz4β21θεθ1+2β21J1θ1+θz2β21θ1+θz+θ1+θz2+2θ1+θz+θ1+,\displaystyle 4\beta_{21}\theta_{\varepsilon}\theta_{1_{+}}\theta_{z}-4\beta_{21}\theta_{\varepsilon}\theta_{1_{+}}-2\beta_{21}J_{1}\theta_{1_{+}}\theta_{z}-2\beta_{21}\theta_{1_{+}}\theta_{z}+\theta_{1_{+}}\theta_{z}^{2}+2\theta_{1_{+}}\theta_{z}+\theta_{1_{+}},
0=\displaystyle 0= β122θεJ22A14+2β122θε2J2A14+2β122θεJ2A14+2θεθ1+A14+2θ1+A14+2β123β22θεJ23A12+2β123β22θε2J22A122β122β21θεJ22A12\displaystyle\beta_{12}^{2}\theta_{\varepsilon}J_{2}^{2}A_{1}^{4}+2\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}A_{1}^{4}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}A_{1}^{4}+2\theta_{\varepsilon}\theta_{1_{+}}A_{1}^{4}+2\theta_{1_{+}}A_{1}^{4}+2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}J_{2}^{3}A_{1}^{2}+2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}^{2}J_{2}^{2}A_{1}^{2}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}^{2}A_{1}^{2}
+\displaystyle+ 2β123β22θεJ22A12+4β122θε2J2A12+2β122θεJ2A122β122β21θε2J1J2A122β122β21θεJ1J2A12+4θεθ1+A122β21J1θ1+A12\displaystyle 2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}J_{2}^{2}A_{1}^{2}+4\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}A_{1}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}A_{1}^{2}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{1}J_{2}A_{1}^{2}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{1}J_{2}A_{1}^{2}+4\theta_{\varepsilon}\theta_{1_{+}}A_{1}^{2}-2\beta_{21}J_{1}\theta_{1_{+}}A_{1}^{2}
\displaystyle- 2β21θεJ1θ1+A12+2β12J2θ1+A12+2β12β22J2θ1+A12+2β12θεJ2θ1+A12+2β12β22θεJ2θ1+A12+2θ1+A12+2β122θεJ22θzA12+4β122θε2J2θzA12\displaystyle 2\beta_{21}\theta_{\varepsilon}J_{1}\theta_{1_{+}}A_{1}^{2}+2\beta_{12}J_{2}\theta_{1_{+}}A_{1}^{2}+2\beta_{12}\beta_{22}J_{2}\theta_{1_{+}}A_{1}^{2}+2\beta_{12}\theta_{\varepsilon}J_{2}\theta_{1_{+}}A_{1}^{2}+2\beta_{12}\beta_{22}\theta_{\varepsilon}J_{2}\theta_{1_{+}}A_{1}^{2}+2\theta_{1_{+}}A_{1}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}^{2}\theta_{z}A_{1}^{2}+4\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}\theta_{z}A_{1}^{2}
+\displaystyle+ 4β122θεJ2θzA12+4θεθ1+θzA12+4θ1+θzA12+2β123β22θε2J22β122θεJ22+β122θεJ22θz2+2β122θε2J2θz2+2β122θεJ2θz2\displaystyle 4\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}A_{1}^{2}+4\theta_{\varepsilon}\theta_{1_{+}}\theta_{z}A_{1}^{2}+4\theta_{1_{+}}\theta_{z}A_{1}^{2}+2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}^{2}J_{2}^{2}-\beta_{12}^{2}\theta_{\varepsilon}J_{2}^{2}+\beta_{12}^{2}\theta_{\varepsilon}J_{2}^{2}\theta_{z}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}\theta_{z}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}^{2}
+\displaystyle+ 2θεθ1+θz2+2θ1+θz2+2β122θε2J22β122β21θε2J1J2+2θεθ1+2β21θεJ1θ1++2β12θεJ2θ1++2β12β22θεJ2θ1++2β123β22θεJ23θz\displaystyle 2\theta_{\varepsilon}\theta_{1_{+}}\theta_{z}^{2}+2\theta_{1_{+}}\theta_{z}^{2}+2\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{1}J_{2}+2\theta_{\varepsilon}\theta_{1_{+}}-2\beta_{21}\theta_{\varepsilon}J_{1}\theta_{1_{+}}+2\beta_{12}\theta_{\varepsilon}J_{2}\theta_{1_{+}}+2\beta_{12}\beta_{22}\theta_{\varepsilon}J_{2}\theta_{1_{+}}+2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}J_{2}^{3}\theta_{z}
+\displaystyle+ 2β123β22θε2J22θz2β122β21θεJ22θz+2β123β22θεJ22θz+4β122θε2J2θz+2β122θεJ2θz2β122β21θε2J1J2θz2β122β21θεJ1J2θz\displaystyle 2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}^{2}J_{2}^{2}\theta_{z}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}^{2}\theta_{z}+2\beta_{12}^{3}\beta_{22}\theta_{\varepsilon}J_{2}^{2}\theta_{z}+4\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}\theta_{z}+2\beta_{12}^{2}\theta_{\varepsilon}J_{2}\theta_{z}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}^{2}J_{1}J_{2}\theta_{z}-2\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{1}J_{2}\theta_{z}
+\displaystyle+ 4θεθ1+θz2β21J1θ1+θz2β21θεJ1θ1+θz+2β12J2θ1+θz+2β12β22J2θ1+θz+2β12θεJ2θ1+θz+2β12β22θεJ2θ1+θz+2θ1+θz\displaystyle 4\theta_{\varepsilon}\theta_{1_{+}}\theta_{z}-2\beta_{21}J_{1}\theta_{1_{+}}\theta_{z}-2\beta_{21}\theta_{\varepsilon}J_{1}\theta_{1_{+}}\theta_{z}+2\beta_{12}J_{2}\theta_{1_{+}}\theta_{z}+2\beta_{12}\beta_{22}J_{2}\theta_{1_{+}}\theta_{z}+2\beta_{12}\theta_{\varepsilon}J_{2}\theta_{1_{+}}\theta_{z}+2\beta_{12}\beta_{22}\theta_{\varepsilon}J_{2}\theta_{1_{+}}\theta_{z}+2\theta_{1_{+}}\theta_{z}
\displaystyle- 2β113β22θεJ1(J124J1+3)(J1(A12+θz)+θε(A12+θz+1))+β11(2θεJ2(A12(β22J2J12+(β23+1)(θε+1)J1\displaystyle 2\beta_{11}^{3}\beta_{22}\theta_{\varepsilon}J_{1}(J_{1}^{2}-4J_{1}+3)(J_{1}(A_{1}^{2}+\theta_{z})+\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1))+\beta_{11}(2\theta_{\varepsilon}J_{2}(-A_{1}^{2}(\beta_{22}J_{2}J_{1}^{2}+(\beta_{23}+1)(\theta_{\varepsilon}+1)J_{1}
\displaystyle- 2β22(θε+3J2+1)J1+(3β22+β23+1)J2)(β22J2J12+(6J2β222β22+β23+1)J1+(3β22+β23+1)J2)θz\displaystyle 2\beta_{22}(\theta_{\varepsilon}+3J_{2}+1)J_{1}+(3\beta_{22}+\beta_{23}+1)J_{2})-(\beta_{22}J_{2}J_{1}^{2}+(-6J_{2}\beta_{22}-2\beta_{22}+\beta_{23}+1)J_{1}+(3\beta_{22}+\beta_{23}+1)J_{2})\theta_{z}
+\displaystyle+ (2β22β231)θεJ1(θz+1))β122+θεJ2(A12+θz+1)((2J13)A12+2β21θε(J11)2J1+2J1θz3θz+1)β12\displaystyle(2\beta_{22}-\beta_{23}-1)\theta_{\varepsilon}J_{1}(\theta_{z}+1))\beta_{12}^{2}+\theta_{\varepsilon}J_{2}(A_{1}^{2}+\theta_{z}+1)((2J_{1}-3)A_{1}^{2}+2\beta_{21}\theta_{\varepsilon}(J_{1}-1)-2J_{1}+2J_{1}\theta_{z}-3\theta_{z}+1)\beta_{12}
+\displaystyle+ 2(2β22β23)J1θ1+((θε+1)A12+θε+θεθz+θz))+β112θε(J11)(2θε(A12+θz+1)(A12+β12(J1β22+2β22+β23+1)J2\displaystyle 2(2\beta_{22}-\beta_{23})J_{1}\theta_{1_{+}}((\theta_{\varepsilon}+1)A_{1}^{2}+\theta_{\varepsilon}+\theta_{\varepsilon}\theta_{z}+\theta_{z}))+\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)(2\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)(A_{1}^{2}+\beta_{12}(-J_{1}\beta_{22}+2\beta_{22}+\beta_{23}+1)J_{2}
+\displaystyle+ θz+1)+J1(A14+2(β12β22(72J1)J2+θz)A12+θz2+2β12β22(72J1)J2θz1))+2β11β22θε(J11)\displaystyle\theta_{z}+1)+J_{1}(A_{1}^{4}+2(\beta_{12}\beta_{22}(7-2J_{1})J_{2}+\theta_{z})A_{1}^{2}+\theta_{z}^{2}+2\beta_{12}\beta_{22}(7-2J_{1})J_{2}\theta_{z}-1))+2\beta_{11}\beta_{22}\theta_{\varepsilon}(J_{1}-1)
(β11J1+β12J2)(β11J1(A12+θz)+β12J2(A12+θz)+β11θε(A12+θz+1))(J12)+,\displaystyle(\beta_{11}J_{1}+\beta_{12}J_{2})(\beta_{11}J_{1}(A_{1}^{2}+\theta_{z})+\beta_{12}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{11}\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1))(J_{1}-2)^{+},
0=\displaystyle 0= A12+β11β23J1β12β22J2+2β12β23J2+β12J2β21J1+θz+12β11J1+2β12J2,\displaystyle\frac{A_{1}^{2}+\beta_{11}\beta_{23}J_{1}-\beta_{12}\beta_{22}J_{2}+2\beta_{12}\beta_{23}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1}{2\beta_{11}J_{1}+2\beta_{12}J_{2}},
0=\displaystyle 0= β12(A1(((A12+θz)((2(β11J1+β12(J21))((A12+θz+1)2(β11J1+β12J2)2(θε(A12+θz+1)2(β112J1+β122J2)\displaystyle\beta_{12}-(A_{1}(((A_{1}^{2}+\theta_{z})(-(2(\beta_{11}J_{1}+\beta_{12}(J_{2}-1))((A_{1}^{2}+\theta_{z}+1)^{2}(\beta_{11}J_{1}+\beta_{12}J_{2})^{2}-(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)^{2}(\beta_{11}^{2}J_{1}+\beta_{12}^{2}J_{2})
+\displaystyle+ (A12+θz)2(β11J1+β12J2)2+(A12+θz)(β11J1+β12J2)2+θ1+(A12+θz+1)2)(A12β11β22J12+β11β22J1β11β23J1\displaystyle(A_{1}^{2}+\theta_{z})^{2}(\beta_{11}J_{1}+\beta_{12}J_{2})^{2}+(A_{1}^{2}+\theta_{z})(\beta_{11}J_{1}+\beta_{12}J_{2})^{2}+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)^{2})(A_{1}^{2}-\beta_{11}\beta_{22}J_{1}^{2}+\beta_{11}\beta_{22}J_{1}-\beta_{11}\beta_{23}J_{1}
\displaystyle- β12β22J1J2+β12J2β21J1+θz+1)))/(θε(A12+θz+1)2(β112J1+β122J2)+(A12+θz)2(β11J1+β12J2)2\displaystyle\beta_{12}\beta_{22}J_{1}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1)))/(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)^{2}(\beta_{11}^{2}J_{1}+\beta_{12}^{2}J_{2})+(A_{1}^{2}+\theta_{z})^{2}(\beta_{11}J_{1}+\beta_{12}J_{2})^{2}
+\displaystyle+ (A12+θz)(β11J1+β12J2)2+θ1+(A12+θz+1)2)β12J2(A12+β11J1(β22β231)β21J1+θz+1)\displaystyle(A_{1}^{2}+\theta_{z})(\beta_{11}J_{1}+\beta_{12}J_{2})^{2}+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)^{2})-\beta_{12}J_{2}(A_{1}^{2}+\beta_{11}J_{1}(\beta_{22}-\beta_{23}-1)-\beta_{21}J_{1}+\theta_{z}+1)
\displaystyle- β11J1(A12β12β22J2+β12β23J2+β12J2β21J1+θz+1)+2J1(β11J1+β12J2)(β11(β22(J11)+β23)\displaystyle\beta_{11}J_{1}(A_{1}^{2}-\beta_{12}\beta_{22}J_{2}+\beta_{12}\beta_{23}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1)+2J_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})(\beta_{11}(\beta_{22}(J_{1}-1)+\beta_{23})
+\displaystyle+ β12β22(J21)+β21)β21J1(β11J1+β12J2)2β12(J21)(β11J1+β12J2)))\displaystyle\beta_{12}\beta_{22}(J_{2}-1)+\beta_{21})-\beta_{21}J_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})-2\beta_{12}(J_{2}-1)(\beta_{11}J_{1}+\beta_{12}J_{2})))
/\displaystyle/ ((A12+θz+1)(β11J1+β12J2))+1))/(4(A12(θε+1)+θεθz+θε+θz)\displaystyle((A_{1}^{2}+\theta_{z}+1)(\beta_{11}J_{1}+\beta_{12}J_{2}))+1))/(4(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon}\theta_{z}+\theta_{\varepsilon}+\theta_{z})
(A1(β11J1+β12J2)β112J1(θε(A12+θz+1)+J1(A12+θz))+2β11β12J1J2(A12+θz)+β122J2(θε(A12+θz+1)+J2(A12+θz))+θ1+(A12+θz+1)\displaystyle(\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z}))+2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{12}^{2}J_{2}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)}
\displaystyle- A1(A12β11β22J12+β11β22J1β11β23J1β12β22J1J2+β12J2β21J1+θz+1)(A12+θz+1)(β11J1+β12J2)+A1A1β22J1A12+θz+1)),\displaystyle\frac{A_{1}(A_{1}^{2}-\beta_{11}\beta_{22}J_{1}^{2}+\beta_{11}\beta_{22}J_{1}-\beta_{11}\beta_{23}J_{1}-\beta_{12}\beta_{22}J_{1}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1)}{(A_{1}^{2}+\theta_{z}+1)(\beta_{11}J_{1}+\beta_{12}J_{2})}+\frac{A_{1}-A_{1}\beta_{22}J_{1}}{A_{1}^{2}+\theta_{z}+1})),
0<\displaystyle 0< (β11J1+β12J2)/(β112J1(θε(A12+θz+1)+J1(A12+θz))+2β11β12J1J2(A12+θz)+β122J2(θε(A12+θz+1)+J2(A12+θz))\displaystyle(\beta_{11}J_{1}+\beta_{12}J_{2})/(\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z}))+2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{12}^{2}J_{2}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z}))
+\displaystyle+ θ1+(A12+θz+1))β232A12+θz+1,\displaystyle\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1))-\frac{\beta_{23}^{2}}{A_{1}^{2}+\theta_{z}+1},
0<\displaystyle 0< A1(β11J1+β12J2)β112J1(θε(A12+θz+1)+J1(A12+θz))+2β11β12J1J2(A12+θz)+β122J2(θε(A12+θz+1)+J2(A12+θz))+θ1+(A12+θz+1)\displaystyle\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z}))+2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{12}^{2}J_{2}(\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z}))+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)}
\displaystyle- A1(A12β11β22J12+β11β22J1β11β23J1β12β22J1J2+β12J2β21J1+θz+1)(A12+θz+1)(β11J1+β12J2)+A1A1β22J1A12+θz+1,\displaystyle\frac{A_{1}(A_{1}^{2}-\beta_{11}\beta_{22}J_{1}^{2}+\beta_{11}\beta_{22}J_{1}-\beta_{11}\beta_{23}J_{1}-\beta_{12}\beta_{22}J_{1}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1)}{(A_{1}^{2}+\theta_{z}+1)(\beta_{11}J_{1}+\beta_{12}J_{2})}+\frac{A_{1}-A_{1}\beta_{22}J_{1}}{A_{1}^{2}+\theta_{z}+1},
0<\displaystyle 0< A1,\displaystyle A_{1},
0<\displaystyle 0< θz.\displaystyle\theta_{z}.

If it is solved,

Λ1=\displaystyle\Lambda_{1}= A1A12+θz+1,\displaystyle\frac{A_{1}}{A_{1}^{2}+\theta_{z}+1}, (40)
Λ1+=\displaystyle\Lambda_{1_{+}}= A1(β11J1+β12J2)/{β112J1[θε(A12+θz+1)+J1(A12+θz)]\displaystyle A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})/\{\beta_{11}^{2}J_{1}[\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{1}(A_{1}^{2}+\theta_{z})]
+\displaystyle+ 2β11β12J1J2(A12+θz)+β122J2[θε(A12+θz+1)+J2(A12+θz)]+θ1+(A12+θz+1)},\displaystyle 2\beta_{11}\beta_{12}J_{1}J_{2}(A_{1}^{2}+\theta_{z})+\beta_{12}^{2}J_{2}[\theta_{\varepsilon}(A_{1}^{2}+\theta_{z}+1)+J_{2}(A_{1}^{2}+\theta_{z})]+\theta_{1_{+}}(A_{1}^{2}+\theta_{z}+1)\},
Λ21=\displaystyle\Lambda_{21}= A1(A12β11β22J12+β11β22J1β11β23J1β12β22J1J2+β12J2β21J1+θz+1)(A12+θz+1)(β11J1+β12J2),\displaystyle\frac{A_{1}(A_{1}^{2}-\beta_{11}\beta_{22}J_{1}^{2}+\beta_{11}\beta_{22}J_{1}-\beta_{11}\beta_{23}J_{1}-\beta_{12}\beta_{22}J_{1}J_{2}+\beta_{12}J_{2}-\beta_{21}J_{1}+\theta_{z}+1)}{(A_{1}^{2}+\theta_{z}+1)(\beta_{11}J_{1}+\beta_{12}J_{2})},
Λ22=\displaystyle\Lambda_{22}= Λ1,\displaystyle\Lambda_{1},
A21=\displaystyle A_{21}= 12Λ22,\displaystyle\frac{1}{2\Lambda_{22}},
α22=\displaystyle\alpha_{22}= A12+θz+12.\displaystyle-\frac{A_{1}^{2}+\theta_{z}+1}{2}.

The pure-strategy equilibrium can be simplified to the following system of (Λ21,Λ22,A1,β11,β21,β22,β12):(\Lambda_{21},\Lambda_{22},A_{1},\beta_{11},\beta_{21},\beta_{22},\beta_{12}):

0=\displaystyle 0= 4A12θεJ23Λ21(Λ21+(β22J11)Λ22)2β124+4A1θεJ22(Λ21+(β22J11)Λ22)(Λ21(3A1β11J1Λ212)\displaystyle 4A_{1}^{2}\theta_{\varepsilon}J_{2}^{3}\Lambda_{21}(\Lambda_{21}+(\beta_{22}J_{1}-1)\Lambda_{22})^{2}\beta_{12}^{4}+4A_{1}\theta_{\varepsilon}J_{2}^{2}(\Lambda_{21}+(\beta_{22}J_{1}-1)\Lambda_{22})(\Lambda_{21}(3A_{1}\beta_{11}J_{1}\Lambda_{21}-2) (41)
+\displaystyle+ (2β22J1+A1(β11(3J1β22+β224)2β21)Λ21J1+2)Λ22)β123+J2(4J2Λ21(4θ2Λ222\displaystyle(-2\beta_{22}J_{1}+A_{1}(\beta_{11}(3J_{1}\beta_{22}+\beta_{22}-4)-2\beta_{21})\Lambda_{21}J_{1}+2)\Lambda_{22})\beta_{12}^{3}+J_{2}(4J_{2}\Lambda_{21}(4\theta_{2}\Lambda_{22}^{2}
+\displaystyle+ (Λ21+β22J1Λ22+Λ22)2θ1+)A12+4(A12+1)J1Λ21(β11θε(Λ21+(J1β22+β222)Λ22)2β21θεΛ22)2\displaystyle(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22}+\Lambda_{22})^{2}\theta_{1_{+}})A_{1}^{2}+4(A_{1}^{2}+1)J_{1}\Lambda_{21}(\beta_{11}\theta_{\varepsilon}(\Lambda_{21}+(J_{1}\beta_{22}+\beta_{22}-2)\Lambda_{22})-2\beta_{21}\theta_{\varepsilon}\Lambda_{22})^{2}
+\displaystyle+ θε(9A12β112J12Λ213+6A1β11J1(A1J1(β11(3J1β22+β224)2β21)Λ222)Λ212+(Λ22(Λ22(J1(4J2(β11(1β22)+2β21)2\displaystyle\theta_{\varepsilon}(9A_{1}^{2}\beta_{11}^{2}J_{1}^{2}\Lambda_{21}^{3}+6A_{1}\beta_{11}J_{1}(A_{1}J_{1}(\beta_{11}(3J_{1}\beta_{22}+\beta_{22}-4)-2\beta_{21})\Lambda_{22}-2)\Lambda_{21}^{2}+(\Lambda_{22}(\Lambda_{22}(J_{1}(4J_{2}(\beta_{11}(1-\beta_{22})+2\beta_{21})^{2}
+\displaystyle+ J1(β11(3J1β22+β224)2β21)2)+16(θ1++θ2))A124J1(β11(6J1β22+β227)2β21)A1\displaystyle J_{1}(\beta_{11}(3J_{1}\beta_{22}+\beta_{22}-4)-2\beta_{21})^{2})+6(\theta_{1_{+}}+\theta_{2}))A_{1}^{2}-4J_{1}(\beta_{11}(6J_{1}\beta_{22}+\beta_{22}-7)-2\beta_{21})A_{1}
+\displaystyle+ 16Λ22(θ1++θ2))+4)Λ21+4(β22J11)Λ22(A1J1(2β21β11(3J1β22+β224))Λ22+2)))β122\displaystyle 6\Lambda_{22}(\theta_{1_{+}}+\theta_{2}))+4)\Lambda_{21}+4(\beta_{22}J_{1}-1)\Lambda_{22}(A_{1}J_{1}(2\beta_{21}-\beta_{11}(3J_{1}\beta_{22}+\beta_{22}-4))\Lambda_{22}+2)))\beta_{12}^{2}
\displaystyle- 4A1J2(A1(β221)θεJ12Λ21Λ22(Λ21+β22(J11)Λ22)β113+θεJ1Λ22(Λ21(β22+2A1β21J1Λ211)\displaystyle 4A_{1}J_{2}(A_{1}(\beta_{22}-1)\theta_{\varepsilon}J_{1}^{2}\Lambda_{21}\Lambda_{22}(\Lambda_{21}+\beta_{22}(J_{1}-1)\Lambda_{22})\beta_{11}^{3}+\theta_{\varepsilon}J_{1}\Lambda_{22}(-\Lambda_{21}(\beta_{22}+2A_{1}\beta_{21}J_{1}\Lambda_{21}-1)
\displaystyle- (β221)β22(J11)Λ222A1β21(β22(J12)+1)J1Λ21Λ22)β112J1(4A1β212θεJ1Λ21Λ222\displaystyle(\beta_{22}-1)\beta_{22}(J_{1}-1)\Lambda_{22}-2A_{1}\beta_{21}(\beta_{22}(J_{1}-2)+1)J_{1}\Lambda_{21}\Lambda_{22})\beta_{11}^{2}-J_{1}(4A_{1}\beta_{21}^{2}\theta_{\varepsilon}J_{1}\Lambda_{21}\Lambda_{22}^{2}
\displaystyle- 2β21θε(Λ21+β22(J12)Λ22+Λ22)Λ22+A1Λ21(8θ2Λ222+(Λ21+β22J1Λ22+Λ22)(3Λ21+β22Λ22+3β22J1Λ22)θ1+))β11\displaystyle 2\beta_{21}\theta_{\varepsilon}(\Lambda_{21}+\beta_{22}(J_{1}-2)\Lambda_{22}+\Lambda_{22})\Lambda_{22}+A_{1}\Lambda_{21}(8\theta_{2}\Lambda_{22}^{2}+(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22}+\Lambda_{22})(3\Lambda_{21}+\beta_{22}\Lambda_{22}+3\beta_{22}J_{1}\Lambda_{22})\theta_{1_{+}}))\beta_{11}
+\displaystyle+ 2(2β212θεJ1Λ222+2θ2Λ222+A1β21J1Λ21(Λ21+β22J1Λ22+Λ22)θ1+Λ22+(Λ21+β22J1Λ22)(Λ21+β22J1Λ22+Λ22)θ1+))β12\displaystyle 2(2\beta_{21}^{2}\theta_{\varepsilon}J_{1}\Lambda_{22}^{2}+2\theta_{2}\Lambda_{22}^{2}+A_{1}\beta_{21}J_{1}\Lambda_{21}(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22}+\Lambda_{22})\theta_{1_{+}}\Lambda_{22}+(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22})(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22}+\Lambda_{22})\theta_{1_{+}}))\beta_{12}
\displaystyle- 2A1J1(θεJ1(Λ21+β22(J11)Λ22)2β113+4β21θεJ1Λ22(Λ21+β22(J11)Λ22)β112+2(2β212θεJ1Λ222+4θ2Λ222\displaystyle 2A_{1}J_{1}(\theta_{\varepsilon}J_{1}(\Lambda_{21}+\beta_{22}(J_{1}-1)\Lambda_{22})^{2}\beta_{11}^{3}+4\beta_{21}\theta_{\varepsilon}J_{1}\Lambda_{22}(\Lambda_{21}+\beta_{22}(J_{1}-1)\Lambda_{22})\beta_{11}^{2}+2(2\beta_{21}^{2}\theta_{\varepsilon}J_{1}\Lambda_{22}^{2}+4\theta_{2}\Lambda_{22}^{2}
+\displaystyle+ (Λ21+β22J1Λ22)(3Λ21+β22Λ22+3β22J1Λ22)θ1+)β114β21Λ22(Λ21+β22J1Λ22)θ1+)\displaystyle(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22})(3\Lambda_{21}+\beta_{22}\Lambda_{22}+3\beta_{22}J_{1}\Lambda_{22})\theta_{1_{+}})\beta_{11}-4\beta_{21}\Lambda_{22}(\Lambda_{21}+\beta_{22}J_{1}\Lambda_{22})\theta_{1_{+}})
+\displaystyle+ A12Λ21(θεJ13(Λ21+β22(J11)Λ22)2β114+4β21θεJ13Λ22(Λ21+β22(J11)Λ22)β113+J1(4β212θεJ12Λ222+16(θε+J1)θ2Λ222\displaystyle A_{1}^{2}\Lambda_{21}(\theta_{\varepsilon}J_{1}^{3}(\Lambda_{21}+\beta_{22}(J_{1}-1)\Lambda_{22})^{2}\beta_{11}^{4}+4\beta_{21}\theta_{\varepsilon}J_{1}^{3}\Lambda_{22}(\Lambda_{21}+\beta_{22}(J_{1}-1)\Lambda_{22})\beta_{11}^{3}+J_{1}(4\beta_{21}^{2}\theta_{\varepsilon}J_{1}^{2}\Lambda_{22}^{2}+6(\theta_{\varepsilon}+J_{1})\theta_{2}\Lambda_{22}^{2}
+\displaystyle+ (J1(3Λ21+β22Λ22+3β22J1Λ22)2+4θε(Λ21+β22(J1+1)Λ22)2)θ1+)β1124β21J1Λ22(J1(3Λ21+β22Λ22+3β22J1Λ22)\displaystyle(J_{1}(3\Lambda_{21}+\beta_{22}\Lambda_{22}+3\beta_{22}J_{1}\Lambda_{22})^{2}+4\theta_{\varepsilon}(\Lambda_{21}+\beta_{22}(J_{1}+1)\Lambda_{22})^{2})\theta_{1_{+}})\beta_{11}^{2}-4\beta_{21}J_{1}\Lambda_{22}(J_{1}(3\Lambda_{21}+\beta_{22}\Lambda_{22}+3\beta_{22}J_{1}\Lambda_{22})
+\displaystyle+ 4θε(Λ21+β22(J1+1)Λ22))θ1+β11+4Λ222θ1+(J1(4θε+J1)β212+4θ2))+4(θεJ1(θ1+Λ213\displaystyle 4\theta_{\varepsilon}(\Lambda_{21}+\beta_{22}(J_{1}+1)\Lambda_{22}))\theta_{1_{+}}\beta_{11}+4\Lambda_{22}^{2}\theta_{1_{+}}(J_{1}(4\theta_{\varepsilon}+J_{1})\beta_{21}^{2}+4\theta_{2}))+4(\theta_{\varepsilon}J_{1}(\theta_{1_{+}}\Lambda_{21}^{3}
+\displaystyle+ Λ22(β22(J1+(J1+1)Λ21(2Λ21+β22(J1+1)Λ22)θ1+1)+4Λ21Λ22θ2))β112\displaystyle\Lambda_{22}(\beta_{22}(J_{1}+(J_{1}+1)\Lambda_{21}(2\Lambda_{21}+\beta_{22}(J_{1}+1)\Lambda_{22})\theta_{1_{+}}-1)+4\Lambda_{21}\Lambda_{22}\theta_{2}))\beta_{11}^{2}
+\displaystyle+ 2β21θεJ1Λ22(12Λ21(Λ21+β22(J1+1)Λ22)θ1+)β11+θ1+(4Λ21(θεJ1β212+θ2)Λ222+2β22J1Λ22+Λ21)),\displaystyle 2\beta_{21}\theta_{\varepsilon}J_{1}\Lambda_{22}(1-2\Lambda_{21}(\Lambda_{21}+\beta_{22}(J_{1}+1)\Lambda_{22})\theta_{1_{+}})\beta_{11}+\theta_{1_{+}}(4\Lambda_{21}(\theta_{\varepsilon}J_{1}\beta_{21}^{2}+\theta_{2})\Lambda_{22}^{2}+2\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21})),
0=\displaystyle 0= A12β114θεJ13(β22(J11)Λ22+Λ21)2+4A12β113θεJ12Λ22(β22(J11)Λ22+Λ21)(β21J1β12(β221)J2)\displaystyle A_{1}^{2}\beta_{11}^{4}\theta_{\varepsilon}J_{1}^{3}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})^{2}+4A_{1}^{2}\beta_{11}^{3}\theta_{\varepsilon}J_{1}^{2}\Lambda_{22}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})(\beta_{21}J_{1}-\beta_{12}(\beta_{22}-1)J_{2})
+\displaystyle+ β112J1(θε(A12(β122J2(Λ222(J1(3β22J1+β224)2+4(β221)2J2)+6J1Λ21Λ22(3β22J1+β224)+9J1Λ212)\displaystyle\beta_{11}^{2}J_{1}(\theta_{\varepsilon}(A_{1}^{2}(\beta_{12}^{2}J_{2}(\Lambda_{22}^{2}(J_{1}(3\beta_{22}J_{1}+\beta_{22}-4)^{2}+4(\beta_{22}-1)^{2}J_{2})+6J_{1}\Lambda_{21}\Lambda_{22}(3\beta_{22}J_{1}+\beta_{22}-4)+9J_{1}\Lambda_{21}^{2})
+\displaystyle+ 8β12β21J1J2Λ22(β22(J12)Λ22+Λ21+Λ22)+4(β212J12Λ222+θ1+(β22(J1+1)Λ22+Λ21)2+4Λ222θ2))\displaystyle 8\beta_{12}\beta_{21}J_{1}J_{2}\Lambda_{22}(\beta_{22}(J_{1}-2)\Lambda_{22}+\Lambda_{21}+\Lambda_{22})+4(\beta_{21}^{2}J_{1}^{2}\Lambda_{22}^{2}+\theta_{1_{+}}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21})^{2}+4\Lambda_{22}^{2}\theta_{2}))
+\displaystyle+ 4θ1+(β22(J1+1)Λ22+Λ21)2+16Λ222θ24)+4(A12+1)β122θε2J2(Λ22(β22J1+β222)+Λ21)2\displaystyle 4\theta_{1_{+}}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21})^{2}+6\Lambda_{22}^{2}\theta_{2}-4)+4(A_{1}^{2}+1)\beta_{12}^{2}\theta_{\varepsilon}^{2}J_{2}(\Lambda_{22}(\beta_{22}J_{1}+\beta_{22}-2)+\Lambda_{21})^{2}
+\displaystyle+ A12J1(θ1+(β22(3J1+1)Λ22+3Λ21)2+16Λ222θ2))+4β11J1(A12(β123θεJ22(Λ22(β22J11)+Λ21)\displaystyle A_{1}^{2}J_{1}(\theta_{1_{+}}(\beta_{22}(3J_{1}+1)\Lambda_{22}+3\Lambda_{21})^{2}+6\Lambda_{22}^{2}\theta_{2}))+4\beta_{11}J_{1}(A_{1}^{2}(\beta_{12}^{3}\theta_{\varepsilon}J_{2}^{2}(\Lambda_{22}(\beta_{22}J_{1}-1)+\Lambda_{21})
(Λ22(3β22J1+β224)+3Λ21)β122β21θεJ2Λ22(4θε(Λ22(β22J1+β222)+Λ21)+J1Λ22(3β22J1+β224)\displaystyle(\Lambda_{22}(3\beta_{22}J_{1}+\beta_{22}-4)+3\Lambda_{21})-\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}\Lambda_{22}(4\theta_{\varepsilon}(\Lambda_{22}(\beta_{22}J_{1}+\beta_{22}-2)+\Lambda_{21})+J_{1}\Lambda_{22}(3\beta_{22}J_{1}+\beta_{22}-4)
+\displaystyle+ 4(β221)J2Λ22+3J1Λ21)+β12J2(4β212θεJ1Λ222+θ1+(β22J1Λ22+Λ21+Λ22)(3β22J1Λ22+β22Λ22+3Λ21)+8Λ222θ2)\displaystyle 4(\beta_{22}-1)J_{2}\Lambda_{22}+3J_{1}\Lambda_{21})+\beta_{12}J_{2}(4\beta_{21}^{2}\theta_{\varepsilon}J_{1}\Lambda_{22}^{2}+\theta_{1_{+}}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}+\Lambda_{22})(3\beta_{22}J_{1}\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21})+8\Lambda_{22}^{2}\theta_{2})
\displaystyle- β21Λ22θ1+(4θε(β22(J1+1)Λ22+Λ21)+J1(3β22J1Λ22+β22Λ22+3Λ21)))\displaystyle\beta_{21}\Lambda_{22}\theta_{1_{+}}(4\theta_{\varepsilon}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21})+J_{1}(3\beta_{22}J_{1}\Lambda_{22}+\beta_{22}\Lambda_{22}+3\Lambda_{21})))
+\displaystyle+ 4β21θεΛ22(β122θεJ2(Λ22(β22J1+β222)+Λ21)θ1+(β22(J1+1)Λ22+Λ21)))+4(A12β124θεJ23(Λ22(β22J11)+Λ21)2\displaystyle 4\beta_{21}\theta_{\varepsilon}\Lambda_{22}(-\beta_{12}^{2}\theta_{\varepsilon}J_{2}(\Lambda_{22}(\beta_{22}J_{1}+\beta_{22}-2)+\Lambda_{21})-\theta_{1_{+}}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21})))+4(A_{1}^{2}\beta_{12}^{4}\theta_{\varepsilon}J_{2}^{3}(\Lambda_{22}(\beta_{22}J_{1}-1)+\Lambda_{21})^{2}
\displaystyle- 2A12β123β21θεJ1J22Λ22(Λ22(β22J11)+Λ21)+β122J2(4(A12+1)β212θε2J1Λ222\displaystyle 2A_{1}^{2}\beta_{12}^{3}\beta_{21}\theta_{\varepsilon}J_{1}J_{2}^{2}\Lambda_{22}(\Lambda_{22}(\beta_{22}J_{1}-1)+\Lambda_{21})+\beta_{12}^{2}J_{2}(4(A_{1}^{2}+1)\beta_{21}^{2}\theta_{\varepsilon}^{2}J_{1}\Lambda_{22}^{2}
+\displaystyle+ θε(Λ222(A12(β212J1(J1+4J2)+4(θ1++θ2))+4(θ1++θ2))1)+A12J2(θ1+(β22J1Λ22+Λ21+Λ22)2+4Λ222θ2))\displaystyle\theta_{\varepsilon}(\Lambda_{22}^{2}(A_{1}^{2}(\beta_{21}^{2}J_{1}(J_{1}+4J_{2})+4(\theta_{1_{+}}+\theta_{2}))+4(\theta_{1_{+}}+\theta_{2}))-1)+A_{1}^{2}J_{2}(\theta_{1_{+}}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}+\Lambda_{22})^{2}+4\Lambda_{22}^{2}\theta_{2}))
\displaystyle- 2A12β12β21J1J2Λ22θ1+(β22J1Λ22+Λ21+Λ22)+θ1+(Λ222(β212J1(4(A12+1)θε+A12J1)+4(A12+1)θ2)1)),\displaystyle 2A_{1}^{2}\beta_{12}\beta_{21}J_{1}J_{2}\Lambda_{22}\theta_{1_{+}}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}+\Lambda_{22})+\theta_{1_{+}}(\Lambda_{22}^{2}(\beta_{21}^{2}J_{1}(4(A_{1}^{2}+1)\theta_{\varepsilon}+A_{1}^{2}J_{1})+4(A_{1}^{2}+1)\theta_{2})-1)),
0=\displaystyle 0= (A12+1)(2(A12+1)Λ22+A1+12β11J1(β22(J11)Λ22+Λ21)+(β12J2(Λ22(β22J11)+Λ21)+β21J1Λ22))4A1(A12+1)Λ2214(2A1+β11J1(β22(J11)Λ22+Λ21)+2(β12J2(β22J1Λ22+Λ21Λ22)+β21J1Λ22))2+A1,\displaystyle\frac{(A_{1}^{2}+1)(-2(A_{1}^{2}+1)\Lambda_{22}+A_{1}+\frac{1}{2}\beta_{11}J_{1}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})+(\beta_{12}J_{2}(\Lambda_{22}(\beta_{22}J_{1}-1)+\Lambda_{21})+\beta_{21}J_{1}\Lambda_{22}))}{4A_{1}(A_{1}^{2}+1)\Lambda_{22}-\frac{1}{4}(2A_{1}+\beta_{11}J_{1}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})+2(\beta_{12}J_{2}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}-\Lambda_{22})+\beta_{21}J_{1}\Lambda_{22}))^{2}}+A_{1},
0=\displaystyle 0= 4A12β11β22(J11)Λ22(J12)+(β11β12θεJ2+β122(θε)J2θ1+)+A12(β113(θε)(J11)J1(β22(J11)Λ22+Λ21)\displaystyle-4A_{1}^{2}\beta_{11}\beta_{22}(J_{1}-1)\Lambda_{22}(J_{1}-2)^{+}(\beta_{11}\beta_{12}\theta_{\varepsilon}J_{2}+\beta_{12}^{2}(-\theta_{\varepsilon})J_{2}-\theta_{1_{+}})+A_{1}^{2}(\beta_{11}^{3}(-\theta_{\varepsilon})(J_{1}-1)J_{1}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})
+\displaystyle+ 2β112θε(J11)Λ22(β12J2(β22(2J13)1)+β21(4θε+3J1))β11(β122θεJ2((J11)Λ22(7β22J16β224)\displaystyle 2\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)\Lambda_{22}(\beta_{12}J_{2}(\beta_{22}(2J_{1}-3)-1)+\beta_{21}(4\theta_{\varepsilon}+3J_{1}))-\beta_{11}(\beta_{12}^{2}\theta_{\varepsilon}J_{2}((J_{1}-1)\Lambda_{22}(7\beta_{22}J_{1}-6\beta_{22}-4)
+\displaystyle+ (3J12)Λ21)12β12β21θε(J11)J2Λ22+θ1+(β22(7J1213J1+6)Λ22+(3J12)Λ21))\displaystyle(3J_{1}-2)\Lambda_{21})-2\beta_{12}\beta_{21}\theta_{\varepsilon}(J_{1}-1)J_{2}\Lambda_{22}+\theta_{1_{+}}(\beta_{22}(7J_{1}^{2}-3J_{1}+6)\Lambda_{22}+(3J_{1}-2)\Lambda_{21}))
+\displaystyle+ 2(β123(θε)J22(Λ22(β22J11)+Λ21)+β122β21θεJ2Λ22(4θε+J1+4J2+2)β12J2θ1+(β22J1Λ22+Λ21+Λ22)\displaystyle 2(\beta_{12}^{3}(-\theta_{\varepsilon})J_{2}^{2}(\Lambda_{22}(\beta_{22}J_{1}-1)+\Lambda_{21})+\beta_{12}^{2}\beta_{21}\theta_{\varepsilon}J_{2}\Lambda_{22}(4\theta_{\varepsilon}+J_{1}+4J_{2}+2)-\beta_{12}J_{2}\theta_{1_{+}}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}+\Lambda_{22})
+\displaystyle+ β21Λ22θ1+(4θε+J1+2)))2A1(β112θε(J11)+β122θεJ2+θ1+)+8β21θεΛ22(β112θε(J11)+β122θεJ2+θ1+),\displaystyle\beta_{21}\Lambda_{22}\theta_{1_{+}}(4\theta_{\varepsilon}+J_{1}+2)))-2A_{1}(\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)+\beta_{12}^{2}\theta_{\varepsilon}J_{2}+\theta_{1_{+}})+8\beta_{21}\theta_{\varepsilon}\Lambda_{22}(\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)+\beta_{12}^{2}\theta_{\varepsilon}J_{2}+\theta_{1_{+}}),
0=\displaystyle 0= 4β11β22θε(J11)Λ22(J12)+(β11(A12θε+A12J1+θε)+A12β12J2)+A12(β112θε(J11)(2θε(Λ21β22(J15)Λ22)\displaystyle 4\beta_{11}\beta_{22}\theta_{\varepsilon}(J_{1}-1)\Lambda_{22}(J_{1}-2)^{+}(\beta_{11}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+A_{1}^{2}\beta_{12}J_{2})+A_{1}^{2}(\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)(2\theta_{\varepsilon}(\Lambda_{21}-\beta_{22}(J_{1}-5)\Lambda_{22})
+\displaystyle+ J1(β22(113J1)Λ22+Λ21))+β11θε(β12J2((3J14)Λ21(J11)Λ22(β22(J114)+2))+2β21(J11)Λ22(2θε+J1))\displaystyle J_{1}(\beta_{22}(1-3J_{1})\Lambda_{22}+\Lambda_{21}))+\beta_{11}\theta_{\varepsilon}(\beta_{12}J_{2}((3J_{1}-4)\Lambda_{21}-(J_{1}-1)\Lambda_{22}(\beta_{22}(J_{1}-4)+2))+2\beta_{21}(J_{1}-1)\Lambda_{22}(2\theta_{\varepsilon}+J_{1}))
+\displaystyle+ 2(β122θεJ2(Λ22(β22(2θε(J1+1)+J1J2+2J1+2J2+2)2θεJ22)+Λ21(2θε+J2+2))+β12β21θε(J12)J2Λ22\displaystyle 2(\beta_{12}^{2}\theta_{\varepsilon}J_{2}(\Lambda_{22}(\beta_{22}(2\theta_{\varepsilon}(J_{1}+1)+J_{1}J_{2}+2J_{1}+2J_{2}+2)-2\theta_{\varepsilon}-J_{2}-2)+\Lambda_{21}(2\theta_{\varepsilon}+J_{2}+2))+\beta_{12}\beta_{21}\theta_{\varepsilon}(J_{1}-2)J_{2}\Lambda_{22}
+\displaystyle+ 2(θε+1)θ1+(β22(J1+1)Λ22+Λ21)))+2A1θε(β11(J11)+β12J2)+2θε(β112θε(J11)(Λ21β22(J15)Λ22)\displaystyle 2(\theta_{\varepsilon}+1)\theta_{1_{+}}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21})))+2A_{1}\theta_{\varepsilon}(\beta_{11}(J_{1}-1)+\beta_{12}J_{2})+2\theta_{\varepsilon}(\beta_{11}^{2}\theta_{\varepsilon}(J_{1}-1)(\Lambda_{21}-\beta_{22}(J_{1}-5)\Lambda_{22})
+\displaystyle+ 2β11β21θε(J11)Λ22+2(β122θεJ2(Λ22(β22J1+β221)+Λ21)+θ1+(β22(J1+1)Λ22+Λ21))),\displaystyle 2\beta_{11}\beta_{21}\theta_{\varepsilon}(J_{1}-1)\Lambda_{22}+2(\beta_{12}^{2}\theta_{\varepsilon}J_{2}(\Lambda_{22}(\beta_{22}J_{1}+\beta_{22}-1)+\Lambda_{21})+\theta_{1_{+}}(\beta_{22}(J_{1}+1)\Lambda_{22}+\Lambda_{21}))),
0=\displaystyle 0= β11((β22(J11)Λ22+Λ21)(A12(β11β22(J11)+β12β22J2+β21(θε+1))+β21θε)\displaystyle\beta_{11}-(-(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})(A_{1}^{2}(\beta_{11}\beta_{22}(J_{1}-1)+\beta_{12}\beta_{22}J_{2}+\beta_{21}(\theta_{\varepsilon}+1))+\beta_{21}\theta_{\varepsilon}) (42)
\displaystyle- A13(β11(J11)+β12J2)(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1++A1)\displaystyle\frac{A_{1}^{3}(\beta_{11}(J_{1}-1)+\beta_{12}J_{2})(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}+A_{1})
/\displaystyle/ (2(A12(θε+1)+θε)(A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+\displaystyle(2(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon})(\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}
\displaystyle- (β22(J11)Λ22+Λ21)24Λ22)),\displaystyle\frac{(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})^{2}}{4\Lambda_{22}})),
0=\displaystyle 0= β12(A1(A1(4(β11J1+β12(J21))(Λ21\displaystyle\beta_{12}-(A_{1}(A_{1}(4(\beta_{11}J_{1}+\beta_{12}(J_{2}-1))(\Lambda_{21}
\displaystyle- A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+)+β11J1(β22(J11)Λ223Λ21)\displaystyle\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}})+\beta_{11}J_{1}(\beta_{22}(J_{1}-1)\Lambda_{22}-3\Lambda_{21})
\displaystyle- 2β12(J2(β22J1Λ22+Λ21+Λ22)+2Λ22(β22J11))+2β21J1Λ22)+2))/(8(A12(θε+1)+θε)\displaystyle 2\beta_{12}(J_{2}(-\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}+\Lambda_{22})+2\Lambda_{22}(\beta_{22}J_{1}-1))+2\beta_{21}J_{1}\Lambda_{22})+2))/(8(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon})
(A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+β22J1Λ22Λ21+Λ22)),\displaystyle(\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}-\beta_{22}J_{1}\Lambda_{22}-\Lambda_{21}+\Lambda_{22})),
0<\displaystyle 0< A1A12+1(2A1+β11J1(β22(J11)Λ22+Λ21)+2(β12J2(β22J1Λ22+Λ21Λ22)+β21J1Λ22))216(A12+1)2Λ22,\displaystyle\frac{A_{1}}{A_{1}^{2}+1}-\frac{(2A_{1}+\beta_{11}J_{1}(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})+2(\beta_{12}J_{2}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}-\Lambda_{22})+\beta_{21}J_{1}\Lambda_{22}))^{2}}{16(A_{1}^{2}+1)^{2}\Lambda_{22}},
0<\displaystyle 0< A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+(β22(J11)Λ22+Λ21)24Λ22,\displaystyle\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}-\frac{(\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21})^{2}}{4\Lambda_{22}},
0<\displaystyle 0< A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+β22J1Λ22Λ21+Λ22,\displaystyle\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}}-\beta_{22}J_{1}\Lambda_{22}-\Lambda_{21}+\Lambda_{22},
0<\displaystyle 0< Λ22.\displaystyle\Lambda_{22}.

If it is solved,

Λ1=A1A12+1,\displaystyle\Lambda_{1}=\frac{A_{1}}{A_{1}^{2}+1}, (43)
Λ1+=A1(β11J1+β12J2)β112J1(A12θε+A12J1+θε)+2A12β11β12J1J2+β122J2(A12θε+A12J2+θε)+(A12+1)θ1+,\displaystyle\Lambda_{1_{+}}=\frac{A_{1}(\beta_{11}J_{1}+\beta_{12}J_{2})}{\beta_{11}^{2}J_{1}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{1}+\theta_{\varepsilon})+2A_{1}^{2}\beta_{11}\beta_{12}J_{1}J_{2}+\beta_{12}^{2}J_{2}(A_{1}^{2}\theta_{\varepsilon}+A_{1}^{2}J_{2}+\theta_{\varepsilon})+(A_{1}^{2}+1)\theta_{1_{+}}},
A21=12Λ22,\displaystyle A_{21}=\frac{1}{2\Lambda_{22}},
α22=β11J1[β22(J11)Λ22+Λ21]+2[β12J2(β22J1Λ22+Λ21Λ22)+β21J1Λ22]4Λ22,\displaystyle\alpha_{22}=-\frac{\beta_{11}J_{1}[\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21}]+2[\beta_{12}J_{2}(\beta_{22}J_{1}\Lambda_{22}+\Lambda_{21}-\Lambda_{22})+\beta_{21}J_{1}\Lambda_{22}]}{4\Lambda_{22}},
β23=β22(J11)Λ22+Λ212Λ22.\displaystyle\beta_{23}=-\frac{\beta_{22}(J_{1}-1)\Lambda_{22}+\Lambda_{21}}{2\Lambda_{22}}.

Proof of Proposition 2. Through some numerical experiments, we find that β10,\beta_{1}\rightarrow 0, and the convergence rate

β11O(θ1+a), 0<a1.\beta_{11}\sim O(\theta_{1_{+}}^{a}),\ 0<a\leq 1.

Then we derive the exact value of aa. Substitute (9) into (11), it becomes

4λ1+λ22>λ212+4λ21λ22β22(J1)+λ222β222(J1)2.4\lambda_{1_{+}}\lambda_{22}>\lambda_{21}^{2}+4\lambda_{21}\lambda_{22}\beta_{22}(J-1)+\lambda_{22}^{2}\beta_{22}^{2}(J-1)^{2}. (44)

If 12<a<1,\frac{1}{2}<a<1,

λ1+O(β11θ1+),λ21O(β11θ1+),λ22O(1),\lambda_{1_{+}}\sim O(\frac{\beta_{11}}{\theta_{1_{+}}}),\ \lambda_{21}\geq O(\frac{\beta_{11}}{\theta_{1_{+}}}),\ \lambda_{22}\sim O(1),

so the SOC (44) fails if θ1+\theta_{1_{+}} is small enough.

If a=12,a=\frac{1}{2},

λ1+O(1θ1+),λ21O(1θ1+),λ22O(1),\lambda_{1_{+}}\sim O(\frac{1}{\sqrt{\theta_{1_{+}}}}),\ \lambda_{21}\geq O(\frac{1}{\sqrt{\theta_{1_{+}}}}),\ \lambda_{22}\sim O(1),

so the SOC (44) can fail either.

If 0<a<12,0<a<\frac{1}{2},

λ1+O(1β11),λ21O(1β11),λ22O(1),\lambda_{1_{+}}\sim O(\frac{1}{\sqrt{\beta_{11}}}),\ \lambda_{21}\geq O(\frac{1}{\sqrt{\beta_{11}}}),\ \lambda_{22}\sim O(1),

so the SOC (44) can fail either.

Consequently, we must have β11O(θ1+).\beta_{11}\sim O(\theta_{1_{+}}). Actually, (44) requires that λ21\lambda_{21} converges to a finite value, which implies

β22β110,β23β110.\beta_{22}\beta_{11}\rightarrow 0,\beta_{23}\beta_{11}\rightarrow 0.

The limit equilibrium conditions are given by

λ1=α1σv2α12σv2+σz2+σ12,\displaystyle\lambda_{1}=\frac{\alpha_{1}\sigma_{v}^{2}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}, (45)
λ22=σv2x1σv2x12+σz2κ22+σ12x32+σε2Jβ212+σ22,\displaystyle\lambda_{22}=\frac{\sigma_{v}^{2}x_{1}}{\sigma_{v}^{2}x_{1}^{2}+\sigma_{z}^{2}\kappa_{2}^{2}+\sigma_{1}^{2}x_{3}^{2}+\sigma_{\varepsilon}^{2}J\beta_{21}^{2}+\sigma_{2}^{2}},

where

x1=α21+α1α12σv2+σz2+σ12(α21α1σv2+(α22+Jβ21)σ12),\displaystyle x_{1}=\alpha_{21}+\frac{\alpha_{1}}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}(-\alpha_{21}\alpha_{1}\sigma_{v}^{2}+(\alpha_{22}+J\beta_{21})\sigma_{1}^{2}),
x2=x1α21α1,\displaystyle x_{2}=\frac{x_{1}-\alpha_{21}}{\alpha_{1}},
x3=α21α1σv2+(α22+Jβ21)(α12σv2+σz2)α12σv2+σz2+σ12.\displaystyle x_{3}=\frac{\alpha_{21}\alpha_{1}\sigma_{v}^{2}+(\alpha_{22}+J\beta_{21})(\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2})}{\alpha_{1}^{2}\sigma_{v}^{2}+\sigma_{z}^{2}+\sigma_{1}^{2}}.

And

β21=(1λ22α21)ηλ22(α22+(J1)β21)μ2(λ22+γ).\beta_{21}=\frac{(1-\lambda_{22}\alpha_{21})\eta-\lambda_{22}(\alpha_{22}+(J-1)\beta_{21})\mu}{2(\lambda_{22}+\gamma)}. (46)
α21=12λ22\alpha_{21}=\frac{1}{2\lambda_{22}} (47)
α22=Jβ212.\alpha_{22}=-\frac{J\beta_{21}}{2}. (48)

In period 1, the mixed-strategy equilibrium conditions are still (16) and (17). The pure-strategy equilibrium conditions are still (19) and (18).

In mixed-strategy equilibrium, substitute (45) and (48) into (47), we have

θz=4A12β212θεJ+A12β212J2+4A12θ24A212+4β212θεJ+4θ24A2124β212θεJβ212J24θ2.\theta_{z}=\frac{4A_{1}^{2}\beta_{21}^{2}\theta_{\varepsilon}J+A_{1}^{2}\beta_{21}^{2}J^{2}+4A_{1}^{2}\theta_{2}-4A_{21}^{2}+4\beta_{21}^{2}\theta_{\varepsilon}J+4\theta_{2}}{4A_{21}^{2}-4\beta_{21}^{2}\theta_{\varepsilon}J-\beta_{21}^{2}J^{2}-4\theta_{2}}.

Then (17) becomes

A1=4A2124β212θεJβ212J2+2β21J4θ24A21.A_{1}=\frac{4A_{21}^{2}-4\beta_{21}^{2}\theta_{\varepsilon}J-\beta_{21}^{2}J^{2}+2\beta_{21}J-4\theta_{2}}{4A_{21}}.

(16) becomes

A21=12β212J(4θε+J)+4θ2.A_{21}=\frac{1}{2}\sqrt{\beta_{21}^{2}J(4\theta_{\varepsilon}+J)+4\theta_{2}}.

We have represented all variables in β21\beta_{21}, (46) becomes:

β21J(J+2+4θε)2(J+1)=0.\beta_{21}J(J+2+4\theta_{\varepsilon})-2(J+1)=0.

Then other variables can be calculated directely.

In pure-strategy equilibrium, σz=0.\sigma_{z}=0. Substitute (45) and (48) into (46), we have

β21=2A1A21A12(4θε+J+2)+4θε.\beta_{21}=\frac{2A_{1}A_{21}}{A_{1}^{2}(4\theta_{\varepsilon}+J+2)+4\theta_{\varepsilon}}.

Then from (48),

A21=12(A12+1)θ2(A12(4θε+J+2)+4θε)2A12J(A12(θε+1)+θε)+(2(A12+1)θε+A12)2.A_{21}=\frac{1}{2}\sqrt{\frac{(A_{1}^{2}+1)\theta_{2}(A_{1}^{2}(4\theta_{\varepsilon}+J+2)+4\theta_{\varepsilon})^{2}}{A_{1}^{2}J(A_{1}^{2}(\theta_{\varepsilon}+1)+\theta_{\varepsilon})+(2(A_{1}^{2}+1)\theta_{\varepsilon}+A_{1}^{2})^{2}}}.

We have represented all variables in A1,A_{1}, substitute them into (19), the system for A1A_{1} is as below:

0=\displaystyle 0= A114(J+4θε+Jθε+4θε2+1)(J+4θε+2)2\displaystyle A_{1}^{14}(J+4\theta_{\varepsilon}+J\theta_{\varepsilon}+4\theta_{\varepsilon}^{2}+1)(J+4\theta_{\varepsilon}+2)^{2} (49)
+\displaystyle+ A112(J+4θε+2)(3J+4θε+4Jθε+40θε2+48θε3+12Jθε2J22)\displaystyle A_{1}^{12}(J+4\theta_{\varepsilon}+2)(-3J+4\theta_{\varepsilon}+4J\theta_{\varepsilon}+0\theta_{\varepsilon}^{2}+8\theta_{\varepsilon}^{3}+2J\theta_{\varepsilon}^{2}-J^{2}-2)
+\displaystyle+ A110(64θε464θε4θ224J2θε288Jθε4Jθ2192θε2128θε38J32θεθ2160Jθε2\displaystyle A_{1}^{10}(4\theta_{\varepsilon}^{4}-4\theta_{\varepsilon}-4\theta_{2}-4J^{2}\theta_{\varepsilon}^{2}-8J\theta_{\varepsilon}-4J\theta_{2}-92\theta_{\varepsilon}^{2}-28\theta_{\varepsilon}^{3}-8J-2\theta_{\varepsilon}\theta_{2}-60J\theta_{\varepsilon}^{2}
\displaystyle- 32J2θε48Jθε32J3θεJ2θ296θε2θ2128θε3θ264θε4θ25J2J34J2θε2θ224Jθεθ2\displaystyle 2J^{2}\theta_{\varepsilon}-8J\theta_{\varepsilon}^{3}-2J^{3}\theta_{\varepsilon}-J^{2}\theta_{2}-6\theta_{\varepsilon}^{2}\theta_{2}-28\theta_{\varepsilon}^{3}\theta_{2}-4\theta_{\varepsilon}^{4}\theta_{2}-5J^{2}-J^{3}-4J^{2}\theta_{\varepsilon}^{2}\theta_{2}-4J\theta_{\varepsilon}\theta_{2}
\displaystyle- 48Jθε2θ24J2θεθ232Jθε3θ24)\displaystyle 8J\theta_{\varepsilon}^{2}\theta_{2}-4J^{2}\theta_{\varepsilon}\theta_{2}-2J\theta_{\varepsilon}^{3}\theta_{2}-4)
+\displaystyle+ A18(8J24J2θε24Jθ2192θε2512θε3320θε432θεθ2160Jθε2192Jθε32J2θ2192θε2θ2\displaystyle A_{1}^{8}(8J-4J^{2}\theta_{\varepsilon}^{2}-4J\theta_{2}-92\theta_{\varepsilon}^{2}-12\theta_{\varepsilon}^{3}-20\theta_{\varepsilon}^{4}-2\theta_{\varepsilon}\theta_{2}-60J\theta_{\varepsilon}^{2}-92J\theta_{\varepsilon}^{3}-2J^{2}\theta_{2}-92\theta_{\varepsilon}^{2}\theta_{2}
\displaystyle- 384θε3θ2256θε4θ2+5J2+J316J2θε2θ248Jθεθ2144Jθε2θ212J2θεθ2128Jθε3θ2+4)\displaystyle 84\theta_{\varepsilon}^{3}\theta_{2}-56\theta_{\varepsilon}^{4}\theta_{2}+5J^{2}+J^{3}-6J^{2}\theta_{\varepsilon}^{2}\theta_{2}-8J\theta_{\varepsilon}\theta_{2}44J\theta_{\varepsilon}^{2}\theta_{2}-2J^{2}\theta_{\varepsilon}\theta_{2}-28J\theta_{\varepsilon}^{3}\theta_{2}+4)
+\displaystyle+ A16(32θε+12J2θε2+44Jθε+96θε2128θε3320θε4+80Jθε2+16J2θε48Jθε3+J3θεJ2θ2\displaystyle A_{1}^{6}(2\theta_{\varepsilon}+2J^{2}\theta_{\varepsilon}^{2}+4J\theta_{\varepsilon}+6\theta_{\varepsilon}^{2}-28\theta_{\varepsilon}^{3}-20\theta_{\varepsilon}^{4}+0J\theta_{\varepsilon}^{2}+6J^{2}\theta_{\varepsilon}-8J\theta_{\varepsilon}^{3}+J^{3}\theta_{\varepsilon}-J^{2}\theta_{2}
\displaystyle- 96θε2θ2384θε3θ2384θε4θ224J2θε2θ224Jθεθ2144Jθε2θ212J2θεθ2192Jθε3θ2)\displaystyle 6\theta_{\varepsilon}^{2}\theta_{2}-84\theta_{\varepsilon}^{3}\theta_{2}-84\theta_{\varepsilon}^{4}\theta_{2}-4J^{2}\theta_{\varepsilon}^{2}\theta_{2}-4J\theta_{\varepsilon}\theta_{2}-44J\theta_{\varepsilon}^{2}\theta_{2}-2J^{2}\theta_{\varepsilon}\theta_{2}-92J\theta_{\varepsilon}^{3}\theta_{2})
+\displaystyle+ A14(4θε(24θε20Jθε64θε216θε324Jθε23J2θε+J2θ2\displaystyle A_{1}^{4}(-4\theta_{\varepsilon}(-4\theta_{\varepsilon}-0J\theta_{\varepsilon}-4\theta_{\varepsilon}^{2}-6\theta_{\varepsilon}^{3}-4J\theta_{\varepsilon}^{2}-3J^{2}\theta_{\varepsilon}+J^{2}\theta_{2}
+\displaystyle+ 32θε2θ2+64θε3θ2+12Jθεθ2+32Jθε2θ2+4J2θεθ2))\displaystyle 2\theta_{\varepsilon}^{2}\theta_{2}+4\theta_{\varepsilon}^{3}\theta_{2}+2J\theta_{\varepsilon}\theta_{2}+2J\theta_{\varepsilon}^{2}\theta_{2}+4J^{2}\theta_{\varepsilon}\theta_{2}))
+\displaystyle+ A12(4θε2(32θε12Jθε48θε2+J2θ2+16θε2θ2+8Jθεθ2))+64θε4,\displaystyle A_{1}^{2}(-4\theta_{\varepsilon}^{2}(-2\theta_{\varepsilon}-2J\theta_{\varepsilon}-8\theta_{\varepsilon}^{2}+J^{2}\theta_{2}+6\theta_{\varepsilon}^{2}\theta_{2}+8J\theta_{\varepsilon}\theta_{2}))+4\theta_{\varepsilon}^{4},
0<\displaystyle 0< Λ112A21(A1A21α22A12+1)2.\displaystyle\Lambda_{1}-\frac{1}{2A_{21}}(\frac{A_{1}A_{21}-\alpha_{22}}{A_{1}^{2}+1})^{2}.

References

  • [1] Securities and Exchange Commission. Concept release on equity market structure. Technical report, Securities and Exchange Commission, 2010.
  • [2] Andrei Kirilenko, Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun. The flash crash: High frequency trading in an electronic market. The Journal of Finance, 72(3), 2017.
  • [3] Nicholas Hirschey. Do high-frequency traders anticipate buying and selling pressure? Management Science, 67(6):3321–3345, 2021.
  • [4] Liyan Yang and Haoxiang Zhu. Back-running: Seeking and hiding fundamental information in order flows. The Review of Financial Studies, 33(4):1484–1533, 2020.
  • [5] Mehmet Sağlam. Order anticipation around predictable trades. Financial Management, 49(1):33–67, 2020.
  • [6] Dingwei Gu, Xin Liu, Hanwen Sun, and Huainan Zhao. Strategic insider trading: Disguising order flows to escape trading competition. Journal of Corporate Finance, 67:101891, 2021.
  • [7] Jonathan Brogaard, Dan Li, Matthew Ma, Ryan Riordan, and Bart Zhou Yueshen. Preventing information leakage. Available at SSRN 3353501, 2022.
  • [8] Bidisha Chakrabarty, Terrence Hendershott, Samarpan Nawn, and Roberto Pascual. Order exposure in high frequency markets. Available at SSRN 3074049, 2022.
  • [9] Ioanid Roşu. Fast and slow informed trading. Journal of Financial Markets, 43:1–30, 2019.
  • [10] Ziyi Xu and Xue Cheng. The effects of high-frequency anticipatory trading: Small informed trader vs. round-tripper. arXiv preprint arXiv:2304.13985, 2023.
  • [11] Albert S Kyle. Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, pages 1315–1335, 1985.
  • [12] Steven Huddart, John S Hughes, and Carolyn B Levine. Public disclosure and dissimulation of insider trades. Econometrica, 69(3):665–681, 2001.
  • [13] Andrea M Buffa. Insider trade disclosure, market efficiency, and liquidity. Market Efficiency, and Liquidity (May 2013), 2013.
  • [14] Markus K Brunnermeier and Lasse Heje Pedersen. Predatory trading. The Journal of Finance, 60(4):1825–1863, 2005.
  • [15] Wei Li. High frequency trading with speed hierarchies. Available at SSRN 2365121, 2018.
  • [16] Markus Baldauf and Joshua Mollner. High-frequency trading and market performance. The Journal of Finance, 75(3):1495–1526, 2020.
  • [17] Peter Hoffmann. A dynamic limit order market with fast and slow traders. Journal of Financial Economics, 113(1):156–169, 2014.
  • [18] Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms race: Frequent batch auctions as a market design response. The Quarterly Journal of Economics, 130(4):1547–1621, 2015.
  • [19] Thierry Foucault, Johan Hombert, and Ioanid Roşu. News trading and speed. The Journal of Finance, 71(1):335–382, 2016.
  • [20] Albert J Menkveld. The economics of high-frequency trading: Taking stock. Annual Review of Financial Economics, 8:1–24, 2016.
  • [21] Vincent Van Kervel and Albert J Menkveld. High-frequency trading around large institutional orders. The Journal of Finance, 74(3):1091–1137, 2019.