This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Transition density estimates for subordinated reflected Brownian motion on simple nested fractals

Hubert Balsam
Abstract

In this paper we prove matching upper and lower bounds for the transition density function of the subordinate reflected Brownian motion on fractals.
Mathematics Subject Classification (2010): Primary 60J35, 60J75, Secondary 60B99.
Keywords and phrases: relativistic stable process, α\alpha-stable process, transition density.

00footnotetext: H. Balsam, Department of Mathematics, Computer Science and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
e-mail: h.balsam@mimuw.edu.pl

1 Introduction

Stochastic processes on fractals, more generally on irregular sets, have been studied for over 40 years. The Brownian motion is the first process constructed in various spaces, such as the Sierpiński carpet [2], the Sierpiński gasket [3], post critically-finite sets [9], as well as on more general sets [16, 11, 9, 6].

Suposse that the Brownian motion on an unbounded nested fractal 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} has been constructed. For M+M\in\mathbb{Z_{+}}, we construct the reflected Brownian motion on those compact fractals 𝒦M\mathcal{K}^{\left\langle M\right\rangle} that obey the good labeling property (see Section 2.3 for the definitions of 𝒦,𝒦M\mathcal{K}^{\left\langle\infty\right\rangle},\mathcal{K}^{\left\langle M\right\rangle} and the good labeling property). This has been achieved in [7] via a suitable projection procedure. The reflected Brownian motion on 𝒦M\mathcal{K}^{\langle M\rangle} is a conservative diffusion process, whose transition density function satisfies (see [12]):

c1tddwec2(|xy|t1/dw)dwdJ1\displaystyle c_{1}t^{-\frac{d}{d_{w}}}\cdot{\rm e}^{-c_{2}\left(\frac{|x-y|}{t^{1/d_{w}}}\right)^{\frac{d_{w}}{{d_{J}-1}}}}\leq gM(t,x,y)\displaystyle g_{M}(t,x,y)\leq c3tddwec4(|xy|t1/dw)dwdJ1 if t<LMdw,x,y𝒦M\displaystyle c_{3}t^{-\frac{d}{d_{w}}}\cdot{\rm e}^{-c_{4}\left(\frac{|x-y|}{t^{1/d_{w}}}\right)^{\frac{d_{w}}{{d_{J}-1}}}}\mbox{ if }t<L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle}
c5LMd\displaystyle c_{5}L^{-Md}\leq gM(t,x,y)\displaystyle g_{M}(t,x,y)\leq c6LMd if tLMdw,x,y𝒦M,\displaystyle c_{6}L^{-Md}\mbox{ if }t\geq L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle},

where LL is the scaling factor of 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} and 𝒦M,\mathcal{K}^{\left\langle M\right\rangle}, parameters d,dw,dJd,d_{w},d_{J} depend on the geometry of the fractal, c1,c6>0c_{1},\ldots c_{6}>0 are absolute constants. It is worth noting that when the time is large, then this transition density is comparable with LMdL^{-Md}, which means that the process is roughly uniformly distributed over the MM- complex.

In this paper we would like to obtain estimates on the transition density function for the subordinate reflected Brownian motion on 𝒦M.\mathcal{K}^{\left\langle M\right\rangle}. We will consider two classes of subordinate processes: α\alpha-stable processes and α\alpha-stable relativistic processes. When 𝒦M\mathcal{K}^{\left\langle M\right\rangle} is the Sierpiński gasket, it has been proven in [8] that the subordination and the reflection commute, and this property holds in present case too. Therefore it convenient to understand the subordinate reflected process as the process subordinate to the reflected Brownian motion via the given subordinator (stable or relativistic). In this paper, we prove the following result. For the transition density of the α\alpha-stable reflected Brownian motion on 𝒦M\mathcal{K}^{\left\langle M\right\rangle}, denoted pSM(t,x,y)p^{M}_{S}(t,x,y) (Theorem 3.1): there exist positive constants B1,B2,B3,B4,B_{1},B_{2},B_{3},B_{4}, such that for M+M\in\mathbb{Z}_{+} and x,y𝒦Mx,y\in\mathcal{K}^{\left\langle M\right\rangle}

B1pS(t,x,y)pSM(t,x,y)\displaystyle B_{1}p_{S}(t,x,y)\leq p^{M}_{S}(t,x,y)\leq B2pS(t,x,y)\displaystyle B_{2}p_{S}(t,x,y) if t<LαMdw\displaystyle\rm{if}\textrm{ $t<L^{\alpha Md_{w}}$}
B3LMdpSM(t,x,y)\displaystyle B_{3}L^{-Md}\leq p^{M}_{S}(t,x,y)\leq B4LMd\displaystyle B_{4}L^{-Md} if tLαMdw.\displaystyle\rm{if}\textrm{ $t\geq L^{\alpha Md_{w}}.$}

In the case of subordination via the relativistic subordinator i.e. the relativistic α\alpha-stable Brownian motion, we get that for any M+M\in\mathbb{Z}_{+}, the transition density of the reflected relativistic α\alpha-stable process, denoted pRM(t,x,y)p_{R}^{M}(t,x,y) on 𝒦M,\mathcal{K}^{\langle M\rangle}, satisfies (Theorem 4.1):

  1. 1)

    for tLMdw,x,y𝒦Mt\geq L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle} there exist constants C1,C2C_{1},C_{2} such that

    C1LMdpRM(t,x,y)C2LMdC_{1}L^{-Md}\leq p^{M}_{R}(t,x,y)\leq C_{2}L^{-Md} (1.1)
  2. 2)

    for t<LMdw,x,y𝒦Mt<L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle} there exists constant H1H_{1} such that

    pR(t,x,y)pRM(t,x,y)pR(t,H1x,H1y).p_{R}(t,x,y)\leq p_{R}^{M}(t,x,y)\leq p_{R}(t,H_{1}x,H_{1}y).

Taking into account the estimates on the relativistic stable process on 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} from [1] (cf. formulas (2.18),(2.19),(2.20) below) we get that there exist constants C3,C12>0C_{3},\ldots C_{12}>0 such that

  1. 1)

    for 1t<LMdw,x,y𝒦M1\leq t<L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle}

    C3td/dwexp{C4min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}pRM(t,x,y)C5td/dwexp{C6min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}C_{3}t^{-d/d_{w}}\exp\left\{-C_{4}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\}\leq p^{M}_{R}(t,x,y)\\ \leq C_{5}t^{-d/d_{w}}\exp\left\{-C_{6}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\} (1.2)
  2. 2)

    for t(0,1),|xy|1t\in(0,1),|x-y|\geq 1

    C7teC8|xy|dwdJpRM(t,x,y)C9teC10|xy|dwdJC_{7}t{\rm e}^{-C_{8}|x-y|^{\frac{d_{w}}{d_{J}}}}\leq p^{M}_{R}(t,x,y)\leq C_{9}t{\rm e}^{-C_{10}|x-y|^{\frac{d_{w}}{d_{J}}}} (1.3)
  3. 3)

    for t(0,1),|xy|<1t\in(0,1),|x-y|<1

    C11tdαdw((t1αdw|xy|)d+αdw1)pRM(t,x,y)C12tdαdw((t1αdw|xy|)d+αdw1).C_{11}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right)\leq p^{M}_{R}(t,x,y)\leq C_{12}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right). (1.4)

And again, these results show that those processes initially behave similarly to the ’original’ ones and in large times they are almost uniformly distributed over entire MM-complex.

The paper is organized as follows. In Section 2 we provide definitions and notations regarding unbounded simple nested fractals, subordination and reflected Brownian motion. Section 3 contains the proof of the estimates of the transition density for subordinated reflected Brownian motion via the α\alpha-stable subordinator, and Section 4 - via the relativistic subordinator.

2 Preliminaries

Notation. Throughout the paper, upper- and lowercase, numbered constants, Ai,Ki,Ci,ciA_{i},K_{i},C_{i},c_{i} denote constants whose values, once fixed, will not change. Constants that are not numbered, i.e. c,C,c,C,c,C,c^{\prime},C^{\prime},\ldots can change their value inside the proofs. For two functions defined on a common domain, fgf\asymp g means that there is an absolute(independent of t,x,y,Mt,x,y,M) constant C>0C>0 s.t. 1Cf()g()Cf()\frac{1}{C}f(\cdot)\leq g(\cdot)\leq Cf(\cdot) , also fgf\gtrsim g means that there is an absolute constant C>0C>0 s.t. f()Cg().f(\cdot)\geq Cg(\cdot).

2.1 Unbounded simple nested fractals

The introductory part of this section follows the exposition of [11, 13, 14]. Consider a collection of similitudes Ψi:22\Psi_{i}:\mathbb{R}^{2}\to\mathbb{R}^{2} with a common scaling factor L>1,L>1, and a common isometry part U,U, i.e. Ψi(x)=(1/L)U(x)+νi,\Psi_{i}(x)=(1/L)U(x)+\nu_{i}, where νi2\nu_{i}\in\mathbb{R}^{2}, i{1,,N}.i\in\{1,...,N\}. We shall assume ν1=0\nu_{1}=0. Then there exists a unique nonempty compact set 𝒦0\mathcal{K}^{\left\langle 0\right\rangle} (called the fractal generated by the system (Ψi)i=1N(\Psi_{i})_{i=1}^{N}) such that 𝒦0=i=1NΨi(𝒦0)\mathcal{K}^{\left\langle 0\right\rangle}=\bigcup_{i=1}^{N}\Psi_{i}\left(\mathcal{K}^{\left\langle 0\right\rangle}\right). As L>1L>1, each similitude has exactly one fixed point and there are exactly NN fixed points of the transformations Ψ1,,ΨN\Psi_{1},...,\Psi_{N}. Let FF be the collection of those fixed points.

Definition 2.1 (Essential fixed points)

A fixed point xFx\in F is an essential fixed point if there exists another fixed point yFy\in F and two different similitudes Ψi\Psi_{i}, Ψj\Psi_{j} such that Ψi(x)=Ψj(y)\Psi_{i}(x)=\Psi_{j}(y). The set of all essential fixed points for transformations Ψ1,,ΨN\Psi_{1},...,\Psi_{N} is denoted by V00V_{0}^{\left\langle 0\right\rangle}, let K=#V00K=\#V^{\left\langle 0\right\rangle}_{0}.

Example 2.1

The Sierpiński triangle (Figure 1) is constructed by 3 similitudes

Ψ1(x,y)=(x2,y2), Ψ2(x,y)=(x2,y2)+(12,12), Ψ3(x,y)=(x2,y2)+(14,34)\Psi_{1}(x,y)=(\frac{x}{2},\frac{y}{2}),\mbox{ }\Psi_{2}(x,y)=(\frac{x}{2},\frac{y}{2})+(\frac{1}{2},\frac{1}{2}),\mbox{ }\Psi_{3}(x,y)=(\frac{x}{2},\frac{y}{2})+(\frac{1}{4},\frac{\sqrt{3}}{4})

with scale factor L=2.L=2. The fixed points viv_{i} of the Ψi\Psi_{i}^{\prime}s for i=1,2,3i=1,2,3 are essential fixed points. For example, the vertex v1v_{1} is an essential fixed point, because Ψ3(v1)=Ψ1(v3)=w\Psi_{3}(v_{1})=\Psi_{1}(v_{3})=w.

Refer to caption
Figure 1: Essential fixed points of the Sierpiński triangle.
Definition 2.2 (Simple nested fractal)

The fractal 𝒦0\mathcal{K}^{\left\langle 0\right\rangle} generated by the system (Ψi)i=1N(\Psi_{i})_{i=1}^{N} is called a simple nested fractal (SNF) if the following conditions are met.

  1. 1.

    #V002.\#V_{0}^{\left\langle 0\right\rangle}\geq 2.

  2. 2.

    (Open Set Condition) There exists an open set U2U\subset\mathbb{R}^{2} such that for iji\neq j one hasΨi(U)Ψj(U)=\Psi_{i}(U)\cap\Psi_{j}(U)=\emptyset and i=1NΨi(U)U\bigcup_{i=1}^{N}\Psi_{i}(U)\subseteq U.

  3. 3.

    (Nesting) Ψi(𝒦0)Ψj(𝒦0)=Ψi(V00)Ψj(V00)\Psi_{i}\left(\mathcal{K}^{\left\langle 0\right\rangle}\right)\cap\Psi_{j}\left(\mathcal{K}^{\left\langle 0\right\rangle}\right)=\Psi_{i}\left(V_{0}^{\left\langle 0\right\rangle}\right)\cap\Psi_{j}\left(V_{0}^{\left\langle 0\right\rangle}\right) for iji\neq j.

  4. 4.

    (Symmetry) For x,yV00,x,y\in V_{0}^{\left\langle 0\right\rangle}, let Sx,yS_{x,y} denote the symmetry with respect to the line bisecting the segment [x,y]\left[x,y\right]. Then

    i{1,,M}x,yV00j{1,,M}Sx,y(Ψi(V00))=Ψj(V00).\forall i\in\{1,...,M\}\ \forall x,y\in V_{0}^{\left\langle 0\right\rangle}\ \exists j\in\{1,...,M\}\ S_{x,y}\left(\Psi_{i}\left(V_{0}^{\left\langle 0\right\rangle}\right)\right)=\Psi_{j}\left(V_{0}^{\left\langle 0\right\rangle}\right). (2.1)
  5. 5.

    (Connectivity) On the set V10:=iΨi(V00)V_{-1}^{\left\langle 0\right\rangle}:=\bigcup_{i}\Psi_{i}\left(V_{0}^{\left\langle 0\right\rangle}\right) we define the graph structure E1E_{-1} as follows:
    (x,y)E1(x,y)\in E_{-1} if and only if x,yΨi(𝒦0)x,y\in\Psi_{i}\left(\mathcal{K}^{\left\langle 0\right\rangle}\right) for some ii.
    Then the graph (V10,E1)(V_{-1}^{\left\langle 0\right\rangle},E_{-1}) is required to be connected.

If 𝒦0\mathcal{K}^{\left\langle 0\right\rangle} is a simple nested fractal, then we let

𝒦M=LM𝒦0,M,\mathcal{K}^{\left\langle M\right\rangle}=L^{M}\mathcal{K}^{\left\langle 0\right\rangle},\quad M\in\mathbb{Z}, (2.2)

and

𝒦=M=0𝒦M.\mathcal{K}^{\left\langle\infty\right\rangle}=\bigcup_{M=0}^{\infty}\mathcal{K}^{\left\langle M\right\rangle}. (2.3)

The set 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} is the unbounded simple nested fractal (USNF) we shall be working with (see [13]). Its fractal (Hausdorff) dimension is equal to d=logNlogLd=\frac{\log N}{\log L}. The Hausdorff measure in dimension dd will be denoted by μ\mu. It will be normalized to have μ(𝒦0)=1\mu\left(\mathcal{K}^{\left\langle 0\right\rangle}\right)=1.

The remaining notions are collected in a single definition.

Definition 2.3

Let M.M\in\mathbb{Z}.

  • (1)

    MM-complex: every set Δ𝒦\Delta\subset\mathcal{K}^{\left\langle\infty\right\rangle} of the form

    Δ=𝒦M+νΔ,\Delta=\mathcal{K}^{\left\langle M\right\rangle}+\nu_{\Delta}, (2.4)

    where νΔ=j=M+1JLjνij,\nu_{\Delta}=\sum_{j=M+1}^{J}L^{j}\nu_{i_{j}}, for some JM+1J\geq M+1, νij{ν1,,νN}\nu_{i_{j}}\in\left\{\nu_{1},...,\nu_{N}\right\}.

  • (2)

    Vertices of 𝒦M\mathcal{K}^{\left\langle M\right\rangle}:

    VMM=V(𝒦M)=LMV00.V^{\left\langle M\right\rangle}_{M}=V\left(\mathcal{K}^{\left\langle M\right\rangle}\right)=L^{M}V^{\left\langle 0\right\rangle}_{0}.
  • (3)

    Vertices of all 0-complexes inside the unbounded nested fractal:

    V0=M=0V0M.V^{\left\langle\infty\right\rangle}_{0}=\bigcup_{M=0}^{\infty}V^{\left\langle M\right\rangle}_{0}.
  • (4)

    Vertices of MM-complexes from the unbounded fractal:

    VM=LMV0V^{\left\langle\infty\right\rangle}_{M}=L^{M}V^{\left\langle\infty\right\rangle}_{0}

To define the reflected process, we need the good labeling property introduced in [8]. We briefly sketch this idea.

2.2 Good labelling and projections

This section follows Section 3 of ([8]).

Recall that KK is the number of essential fixed points, consider set of labels 𝒜:={a1,a2,a3,,aK}\mathcal{A}:=\left\{a_{1},a_{2},a_{3},...,a_{K}\right\} and a function lM:VM𝒜.l_{M}:V^{\left\langle\infty\right\rangle}_{M}\to\mathcal{A}. From [8, Proposition 2.1] we have that there exist exactly KK different rotations RiR_{i} around the barycenter of 𝒦M\mathcal{K}^{\langle M\rangle}, mapping V(𝒦M)V(\mathcal{K}^{\left\langle M\right\rangle}) onto V(𝒦M).V(\mathcal{K}^{\left\langle M\right\rangle}). Let us denote them as {R1,,RK}=:M.\{R_{1},...,R_{K}\}=:\mathcal{R}_{M}.

Definition 2.4

We say fractal that the fractal 𝒦\mathcal{K}^{\langle\infty\rangle} has Good Labeling Property(GLP) if for some MM\in\mathbb{Z} there exist a function M:VM𝒜\ell_{M}:V^{\left\langle\infty\right\rangle}_{M}\to\mathcal{A} such that:

  • (1)

    The restriction of M\ell_{M} to VMMV^{\left\langle M\right\rangle}_{M} is a bijection onto 𝒜\mathcal{A}.

  • (2)

    For every MM-complex Δ\Delta represented as

    Δ=𝒦M+νΔ,\Delta=\mathcal{K}^{\left\langle M\right\rangle}+\nu_{\Delta},

    where νΔ=j=M+1JLjνij,\nu_{\Delta}=\sum_{j=M+1}^{J}L^{j}\nu_{i_{j}}, with some JM+1J\geq M+1 and νij{ν1,,νN}\nu_{i_{j}}\in\left\{\nu_{1},...,\nu_{N}\right\} (cf. Def. (1)), there exists a rotation RΔMR_{\Delta}\in\mathcal{R}_{M} such that

    M(v)=M(RΔ(vνΔ)),vV(ΔM).\ell_{M}(v)=\ell_{M}\left(R_{\Delta}\left(v-\nu_{\Delta}\right)\right),\quad v\in V\left(\Delta_{M}\right). (2.5)

Now for the fractal 𝒦\mathcal{K}^{\langle\infty\rangle} having the GLP we define a projection map πM:𝒦𝒦M\pi_{M}:\mathcal{K}^{\left\langle\infty\right\rangle}\rightarrow\mathcal{K}^{\left\langle M\right\rangle} as

πM(x):=RΔM(xνΔM),x𝒦,\pi_{M}(x):=R_{\Delta_{M}}\left(x-\nu_{\Delta_{M}}\right),\quad x\in\mathcal{K}^{\langle\infty\rangle},

where ΔM=𝒦M+j=M+1JLjνij\Delta_{M}=\mathcal{K}^{\left\langle M\right\rangle}+\sum_{j=M+1}^{J}L^{j}\nu_{i_{j}} is an MM-complex containing xx represented as in definition (2.5). More information regarding GLP and projections can be found in [7].

2.3 Stochastic processes on USNFs

2.3.1 Brownian motion on the unbounded fractal

Let Z=(Zt,𝐏x)t0,x𝒦Z=(Z_{t},\mathbf{P}^{x})_{t\geq 0,\,x\in\mathcal{K}^{\left\langle\infty\right\rangle}} be the Brownian motion on the USNF 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} [10, 11]. It is a strong Markov, Feller process with transition probability densities g(t,x,y)g(t,x,y) with respect to the dd-dimensional Hausdorff measure μ\mu on 𝒦\mathcal{K}^{\left\langle\infty\right\rangle}, which are jointly continuous on (0,)×𝒦×𝒦,(0,\infty)\times\mathcal{K}^{\left\langle\infty\right\rangle}\times\mathcal{K}^{\left\langle\infty\right\rangle}, satisfy the scaling property

g(t,x,y)=Ldfg(Ldwt,Lx,Ly),t>0,x,y𝒦.g(t,x,y)=L^{d_{f}}g(L^{d_{w}}t,Lx,Ly),\quad t>0,\ \ x,y\in\mathcal{K}^{\left\langle\infty\right\rangle}.

and satisfy the subgaussian estimate

K1tds/2exp(K2(|xy|dwt)1dJ1)g(t,x,y)K3tds/2exp(K4(|xy|dwt)1dJ1),t>0,x,y𝒦,K_{1}t^{-d_{s}/2}\exp\left(-K_{2}\left(\frac{\left|x-y\right|^{d_{w}}}{t}\right)^{\frac{1}{d_{J}-1}}\right)\leq g(t,x,y)\\ \leq K_{3}t^{-d_{s}/2}\exp\left(-K_{4}\left(\frac{\left|x-y\right|^{d_{w}}}{t}\right)^{\frac{1}{d_{J}-1}}\right),\quad t>0,\ \ x,y\in\mathcal{K}^{\left\langle\infty\right\rangle}, (2.6)

where dwd_{w} is the walk dimension of 𝒦,\mathcal{K}^{\left\langle\infty\right\rangle}, ds=2d/dwd_{s}=2d/d_{w} is its spectral dimension, and dJ>1d_{J}>1 is the so-called chemical exponent of 𝒦\mathcal{K}^{\left\langle\infty\right\rangle}. Constants K1,K2,K3,K4K_{1},K_{2},K_{3},K_{4} are absolute. Typically dwdJd_{w}\neq d_{J}, but sometimes (e.g. for the Sierpiński gasket) one has dw=dJd_{w}=d_{J}, see [9, Theorems 5.2, 5.5].

2.3.2 Reflected Brownian motions

Suppose now that the unbounded fractal 𝒦\mathcal{K}^{\langle\infty\rangle} has the GLP. For an arbitrary MM\in\mathbb{Z} the reflected Brownian motion on 𝒦M\mathcal{K}^{\left\langle M\right\rangle} is defined canonically by (see [10])

ZtM=πM(Zt),Z_{t}^{M}=\pi_{M}(Z_{t}), (2.7)

where πM:𝒦𝒦M\pi_{M}:\mathcal{K}^{\left\langle\infty\right\rangle}\to\mathcal{K}^{\left\langle M\right\rangle} is the projection from in Section 3.
Its transition density gM(t,x,y):(0,)×𝒦×𝒦M(0,)g_{M}(t,x,y):(0,\infty)\times\mathcal{K}^{\left\langle\infty\right\rangle}\times\mathcal{K}^{\left\langle M\right\rangle}\rightarrow(0,\infty) is given by

gM(t,x,y){ΣyπM1(y)g(t,x,y) if y𝒦MVMMΣyπM1(y)rank(y) if yVMM,g_{M}(t,x,y)\asymp\left\{\begin{array}[]{ll}\Sigma_{y^{\prime}\in\pi^{-1}_{M}(y)}g(t,x,y^{\prime})&\mbox{ if }y\in\mathcal{K}^{\left\langle M\right\rangle}\char 92\relax V_{M}^{\left\langle M\right\rangle}\\ &\\ \Sigma_{y^{\prime}\in\pi^{-1}_{M}(y)}\cdot{\rm rank}(y^{\prime})&\mbox{ if }y\in V_{M}^{\left\langle M\right\rangle},\\ \end{array}\right. (2.8)

where rank(y0){\rm rank}(y_{0}) is the number of MM-complexes meeting at the point y0VMy_{0}\in V_{M}.
It has been proven in [12] that the transition density of this process satisfies (Theorem 3.1 from [12]):

c1(fc2(t,|xy|)hc3(t,M))gM(t,x,y)c4(fc5(t,|xy|)hc6(t,M)),\displaystyle c_{1}(f_{c_{2}}(t,|x-y|)\vee h_{c_{3}}(t,M))\leq g_{M}(t,x,y)\leq c_{4}(f_{c_{5}}(t,|x-y|)\vee h_{c_{6}}(t,M)), (2.9)

where c1,c2c_{1},c_{2}c6c_{6} are certain nonnegative constants independent of MM, and

fc(t,r)\displaystyle f_{c}(t,r) =\displaystyle= tddwec(rt1/dw)dwdJ1,\displaystyle t^{-\frac{d}{d_{w}}}\cdot{\rm e}^{-c\left(\frac{r}{t^{1/d_{w}}}\right)^{\frac{d_{w}}{{d_{J}-1}}}},
hc(t,M)\displaystyle h_{c}(t,M) =\displaystyle= LdM(LMt1/dw1)ddwdJ1ec(LMt1/dw1)dwdJ1.\displaystyle L^{-dM}\left(\frac{L^{M}}{t^{1/d_{w}}}\vee 1\right)^{d-\frac{d_{w}}{d_{J}-1}}\cdot{\rm e}^{-c\left(\frac{L^{M}}{t^{1/d_{w}}}\vee 1\right)^{\frac{d_{w}}{{d_{J}-1}}}}.

This estimate can be also written as (Corollary 3.1 of [12]):

c1fc2(t,|xy|)\displaystyle c_{1}f_{c_{2}}(t,|x-y|)\leq gM(t,x,y)\displaystyle g_{M}(t,x,y)\leq c3fc4(t,|xy|) if t<LMdw,x,y𝒦M\displaystyle c_{3}f_{c_{4}}(t,|x-y|)\mbox{ if }t<L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle} (2.10)
c5LMd\displaystyle c_{5}L^{-Md}\leq gM(t,x,y)\displaystyle g_{M}(t,x,y)\leq c6LMdiftLMdw,x,y𝒦M.\displaystyle c_{6}L^{-Md}\quad\mbox{if}\quad t\geq L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle}.

2.3.3 Subordinated reflected Brownian motion

A subordinator S=(St,𝐏)t0S=(S_{t},{\bf P})_{t\geq 0} is an increasing Lévy process on [0,)[0,\infty) such that S0=0S_{0}=0 (see [4]). The Laplace transform of its distribution ηt\eta_{t} is given by

0eλsηt(ds)=etϕ(λ),λ>0.\int_{0}^{\infty}{\rm e}^{-\lambda s}\eta_{t}({\rm d}s)={\rm e}^{-t\phi(\lambda)},\qquad\lambda>0.

The function ϕ:(0,),\phi:(0,\infty)\rightarrow\mathbb{R}, called the Laplace exponent of S, can be expressed as(Lévy-Khintchine formula):

ϕ(λ)=aλ+0(1eλx)ν(dx)\phi(\lambda)=a\lambda+\int_{0}^{\infty}(1-{\rm e}^{-\lambda x})\nu({\rm d}x)

where aa\in\mathbb{R} is the drift coefficient of S,S, and ν\nu is the Lévy measure of S,S, i.e. a nonnegative, σ\sigma-finite, Borel measure on (0,)(0,\infty) such that:

0(1x)ν(dx)<.\int_{0}^{\infty}(1\land x)\nu({\rm d}x)<\infty. (2.11)

We will work with two classes of subordinators: α\alpha-stable subordinators, with

ϕS(λ)=λα,λ>0,α(0,1)\phi^{S}(\lambda)=\lambda^{\alpha},\qquad\lambda>0,\ \alpha\in(0,1) (2.12)

and relativistic α\alpha-stable subordinators, with

ϕmR(λ)=(λ+m1/α)αm,λ,m>0.\phi^{R}_{m}(\lambda)=(\lambda+m^{1/\alpha})^{\alpha}-m,\qquad\lambda,m>0. (2.13)

Denoting by ηt()\eta_{t}(\cdot) the density of the α\alpha- stable subordinator and by ηt,m()\eta_{t,m}(\cdot) the density of the relativistic α\alpha-stable subordinator, we have (see [15, p. 3]):

ηt,m(s):=em1/αs+mtηt(s),m>0,α(0,1),s,t>0.\eta_{t,m}(s):={\rm e}^{-m^{1/\alpha}s+mt}\eta_{t}(s),\qquad m>0,\ \alpha\in(0,1),\quad s,t>0. (2.14)

2.3.4 Subordinated processes

Assume that (Zt,𝐏x)x𝒦,t0(Z_{t},{\bf P}_{x})_{x\in\mathcal{K}^{\left\langle\infty\right\rangle},t\geq 0} and (ZtM,𝐏x)x𝒦M,t0(Z^{M}_{t},{\bf P}_{x})_{x\in\mathcal{K}^{\left\langle M\right\rangle},t\geq 0} is the Brownian motion on 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} and 𝒦M\mathcal{K}^{\left\langle M\right\rangle} respectively, and let SS be a subordinator independent of ZZ. We define the subordinate Brownian motion X=(Xt)t0X=(X_{t})_{t\geq 0} and the the subordinate reflected Brownian motion XM=(XtM)t0X^{M}=(X^{M}_{t})_{t\geq 0} by

Xt:=ZSt,t0,X_{t}:=Z_{S_{t}},\quad t\geq 0,

and

XtM:=ZStM,t0X^{M}_{t}:=Z^{M}_{S_{t}},\quad t\geq 0

respectively. These processes are càdlàg Markov processes with transition densities given by:

p(t,x,y)=0g(u,x,y)ηt(du),t>0,x,y,𝒦,p(t,x,y)=\int_{0}^{\infty}g(u,x,y)\eta_{t}({\rm d}u),\quad t>0,\ x,y,\in\mathcal{K}^{\left\langle\infty\right\rangle}, (2.15)

and

pM(t,x,y)=0gM(u,x,y)ηt(du),t>0,x,y,𝒦M.p_{M}(t,x,y)=\int_{0}^{\infty}g_{M}(u,x,y)\eta_{t}({\rm d}u),\quad t>0,\ x,y,\in\mathcal{K}^{\left\langle M\right\rangle}. (2.16)

Papers [1] and [5] were devoted to obtaining estimates for α\alpha-stable and relativistic processes on dd-sets. Nested fractals fall within this cathegory. More precisely, since 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} is a dd-set carrying a fractional diffusion (Zt,𝐏x)x𝒦,t0(Z_{t},{\bf P}_{x})_{x\in\mathcal{K}^{\left\langle\infty\right\rangle},t\geq 0} and (Xt)t0(X_{t})_{t\geq 0} is defined by subordination, then the following estimates hold true:

  1. (1)

    For the α\alpha- stable process on 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} (see [5]):

    pS(t,x,y)tdαdw((t1αdw|xy|)d+αdw1),x,y𝒦.p_{S}(t,x,y)\asymp t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right),\ x,y\in\mathcal{K}^{\left\langle\infty\right\rangle}. (2.17)
  2. (2)

    For the relativistic α\alpha- stable process on 𝒦\mathcal{K}^{\left\langle\infty\right\rangle} (see [1]) there exist constants A1,A10>0A_{1},\ldots A_{10}>0 such that:

    • (a)

      for t1,x,y𝒦t\geq 1,\ x,y\in\mathcal{K}^{\left\langle\infty\right\rangle}

      A1td/dwexp{A2min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}pR(t,x,y)A3td/dwexp{A4min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}A_{1}t^{-d/d_{w}}\exp\left\{-A_{2}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\}\leq p_{R}(t,x,y)\\ \leq A_{3}t^{-d/d_{w}}\exp\left\{-A_{4}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\} (2.18)
    • (b)

      for t(0,1),|xy|1t\in(0,1),|x-y|\geq 1

      A5teA6|xy|dwdJpR(t,x,y)A7teA8|xy|dwdJA_{5}t{\rm e}^{-A_{6}|x-y|^{\frac{d_{w}}{d_{J}}}}\leq p_{R}(t,x,y)\leq A_{7}t{\rm e}^{-A_{8}|x-y|^{\frac{d_{w}}{d_{J}}}} (2.19)
    • (c)

      for t(0,1),|xy|<1t\in(0,1),|x-y|<1

      A9tdαdw((t1αdw|xy|)d+αdw1)pR(t,x,y)A10tdαdw((t1αdw|xy|)d+αdw1).A_{9}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right)\leq p_{R}(t,x,y)\leq A_{10}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right). (2.20)

Therefore one already has estimates for stable and relativistic processes on the infinite fractal 𝒦.\mathcal{K}^{\left\langle\infty\right\rangle}. Now we are ready to formulate and prove corresponding estimates for the reflected processes on 𝒦M\mathcal{K}^{\left\langle M\right\rangle}.

3 Transition density estimate for the reflected α\alpha-stable Brownian motion on 𝒦M\mathcal{K}^{\left\langle M\right\rangle}.

We stand with the simpler case of the reflected α\alpha-stable Brownian motion, obtained by the subordination of the reflected Brownian motion on 𝒦.\mathcal{K}^{\left\langle\infty\right\rangle}. Let M+M\in\mathbb{Z_{+}} be fixed. We have the following.

Theorem 3.1

Let XtX_{t} be the α\alpha-stable reflected process on 𝒦M\mathcal{K}^{\left\langle M\right\rangle}, with density function pSM(,,)p^{M}_{S}(\cdot,\cdot,\cdot) given by (2.16). Then there exist constants B1,B2,B3,B4>0B_{1},B_{2},B_{3},B_{4}>0 independent of MM such that

B1pS(t,x,y)pSM(t,x,y)\displaystyle B_{1}p_{S}(t,x,y)\leq p^{M}_{S}(t,x,y)\leq B2pS(t,x,y)\displaystyle B_{2}p_{S}(t,x,y) if t<LαMdw\displaystyle\rm{if}\textrm{ $t<L^{\alpha Md_{w}}$}
B3LMdpSM(t,x,y)\displaystyle B_{3}L^{-Md}\leq p^{M}_{S}(t,x,y)\leq B4LMd\displaystyle B_{4}L^{-Md} if tLαMdw.\displaystyle\rm{if}\textrm{ $t\geq L^{\alpha Md_{w}}.$}

Proof.
Before we begin, observe that for any c>0c>0 the function fc(t,r)=tddwec(rt1/dw)dwdJ1f_{c}(t,r)=t^{-\frac{d}{d_{w}}}\cdot{\rm e}^{-c\left(\frac{r}{t^{1/d_{w}}}\right)^{\frac{d_{w}}{{d_{J}-1}}}} is monotone decreasing in rr, therefore, since for x,y𝒦M,|xy|LM,x,y\in\mathcal{K}^{\left\langle M\right\rangle},|x-y|\leq L^{M}, we have for any c>0c>0

fc(t,|xy|)fc(t,LM)f_{c}(t,|x-y|)\geq f_{c}(t,L^{M})

and also for any given constants c1,c2,c3>0,c1<c2c_{1},c_{2},c_{3}>0,c_{1}<c_{2} there exists constants c(c1,c2,c3),c(c1,c2,c3)c(c_{1},c_{2},c_{3}),c^{\prime}(c_{1},c_{2},c_{3}) such that for all s[c1LMdw,c2LMdw]s\in[c_{1}L^{Md_{w}},c_{2}L^{Md_{w}}] and x,y𝒦Mx,y\in\mathcal{K}^{\left\langle M\right\rangle} we have:

c(c1,c2,c3)LMdfc3(s,|xy|)c(c1,c2,c3)LMd.c(c_{1},c_{2},c_{3})L^{-Md}\leq f_{c_{3}}(s,|x-y|)\leq c^{\prime}(c_{1},c_{2},c_{3})L^{-Md}. (3.1)

Indeed:

fc3(s,|xy|)(c1LMdw)ddw=c1ddwLMdf_{c_{3}}(s,|x-y|)\leq(c_{1}\cdot L^{Md_{w}})^{-\frac{d}{d_{w}}}=c_{1}^{-\frac{d}{d_{w}}}L^{-Md}

and given that xxd/dwx\mapsto x^{-d/d_{w}} is decreasing and xec(rx1/dw)dwdJ1x\mapsto{\rm e}^{-c\left(\frac{r}{x^{1/d_{w}}}\right)^{\frac{d_{w}}{{d_{J}-1}}}} is increasing (for x>0x>0) we get:

fc3(s,|xy|)(c2LMdw)ddwfc3(c1LMdw,LM)=c2ddwec3c1dwdJ1LMd.f_{c_{3}}(s,|x-y|)\geq(c_{2}L^{Md_{w}})^{\frac{-d}{d_{w}}}f_{c_{3}}(c_{1}L^{Md_{w}},L^{M})=c_{2}^{\frac{-d}{d_{w}}}{\rm e}^{-c_{3}c_{1}^{\frac{-d_{w}}{d_{J}-1}}}L^{-Md}.

We now pass to the actual estimate.
CASE 1. tLαMdw.t\geq L^{\alpha Md_{w}}. Let

B5=(c4K2)dJ1dw.B_{5}=(\frac{c_{4}}{K_{2}})^{\frac{d_{J}-1}{d_{w}}}.

Using (2.10) we have (recall that c3,c4c_{3},c_{4} do not depend on MM):

pSM(t,x,y)\displaystyle p^{M}_{S}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt(ds)\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t}({\rm d}s)
\displaystyle\leq c30LMdwfc4(s,|xy|)ηt(s)ds+c6LMdwLMdηt(s)ds\displaystyle c_{3}\int_{0}^{L^{Md_{w}}}f_{c_{4}}(s,|x-y|)\eta_{t}(s){\rm d}s+c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s
\displaystyle\leq c3c10g(s,B5|xy|)ηt(s)ds+c60LMdηt(s)ds\displaystyle\frac{c_{3}}{c_{1}}\int_{0}^{\infty}g(s,B_{5}|x-y|)\eta_{t}(s){\rm d}s+c_{6}\int_{0}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s
\displaystyle\leq cpS(t,B5x,B5y)+c6LMd\displaystyle cp_{S}(t,B_{5}x,B_{5}y)+c_{6}L^{-Md}

as 0ηt(s)ds=1.
\int_{0}^{\infty}\eta_{t}(s){\rm d}s=1.\vskip 12.0pt plus 4.0pt minus 4.0pt

Given tLαMdwt\geq L^{\alpha Md_{w}} we get from (2.17):

pS(t,B5x,B5y)ctdαdw(B511)cLMdp_{S}(t,B_{5}x,B_{5}y)\leq c\cdot t^{\frac{-d}{\alpha d_{w}}}\cdot(B_{5}^{-1}\wedge 1)\leq c\cdot L^{-Md}

which means that

pSM(t,x,y)cLMd.p^{M}_{S}(t,x,y)\leq c\cdot L^{-Md}.

In [5, formula (10), p.4] we have that:

ηt(u)ctu1αfort>0,u>u0t1/α. Without loss of generality u01.\eta_{t}(u)\geqslant ctu^{-1-\alpha}\qquad{\rm for}\ t>0,\ u>u_{0}t^{1/\alpha}.\mbox{ Without loss of generality }u_{0}\geq 1.

Due to tLαMdwt\geq L^{\alpha Md_{w}} we have u0t1/αu0LMdwLMdwu_{0}t^{1/\alpha}\geq u_{0}L^{Md_{w}}\geq L^{Md_{w}} so using the subordination and (2.10):

pSM(t,x,y)=0gM(u,x,y)ηt(u)duc3u0t1/αLMdηt(u)ducLMdu0t1/αtu1αdu=cLMdp^{M}_{S}(t,x,y)=\int_{0}^{\infty}g_{M}(u,x,y)\eta_{t}(u){\rm d}u\geq c_{3}\int_{u_{0}t^{1/\alpha}}^{\infty}L^{-Md}\eta_{t}(u){\rm d}u\geq cL^{-Md}\int_{u_{0}t^{1/\alpha}}^{\infty}tu^{-1-\alpha}{\rm d}u=cL^{-Md}

which implies that for tLαMdwt\geq L^{\alpha Md_{w}} the proof is done.
CASE 2. t<LαMdw.t<L^{\alpha Md_{w}}. Firstly, let us note that for any constant A>0A>0 there exists a constant C(A)C(A) such that

1C(A)pS(t,x,y)pS(t,Ax,Ay)C(A)pS(t,x,y).\frac{1}{C(A)}p_{S}(t,x,y)\leq p_{S}(t,Ax,Ay)\leq C(A)p_{S}(t,x,y).

Let

B6=(c2K2)dJ1dw.B_{6}=(\frac{c_{2}}{K_{2}})^{\frac{d_{J}-1}{d_{w}}}.

From (2.9):

pSM(t,x,y)\displaystyle p^{M}_{S}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt(s)ds\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t}(s){\rm d}s (3.2)
\displaystyle\geq c10fc2(s,|xy|)ηt(s)ds\displaystyle c_{1}\int_{0}^{\infty}f_{c_{2}}(s,|x-y|)\eta_{t}(s){\rm d}s
\displaystyle\geq c0g(s,B6x,B6y)ηt(s)ds\displaystyle c\int_{0}^{\infty}g(s,B_{6}x,B_{6}y)\eta_{t}(s){\rm d}s
=\displaystyle= cpS(t,B6x,B6y)\displaystyle cp_{S}(t,B_{6}x,B_{6}y)
\displaystyle\geq C(B6)pS(t,x,y)\displaystyle C(B_{6})p_{S}(t,x,y)

so it is enough to show that

pSM(t,x,y)cpS(t,x,y), with some c independent of M.p^{M}_{S}(t,x,y)\leq cp_{S}(t,x,y),\mbox{ with some $c$ independent of $M.$}

Using (2.10) we have:

pSM(t,x,y)\displaystyle p^{M}_{S}(t,x,y) \displaystyle\leq c30LMdwfc4(s,|xy|)ηt(s)ds+c6LMdwLMdηt(s)ds\displaystyle c_{3}\int_{0}^{L^{Md_{w}}}f_{c_{4}}(s,|x-y|)\eta_{t}(s){\rm d}s+c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s
\displaystyle\leq c30fc4(s,|xy|)ηt(s)ds+c6LMdwLMdηt(s)ds\displaystyle c_{3}\int_{0}^{\infty}f_{c_{4}}(s,|x-y|)\eta_{t}(s){\rm d}s+c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s

so that

pM,S(t,x,y)cpS(t,x,y)+c6LMdwLMdηt(s)ds.p_{M,S}(t,x,y)\leq cp_{S}(t,x,y)+c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s. (3.3)

In [5, formula (9), p.4] we have that ηt(u)ctu1α, for t,u>0,\eta_{t}(u)\leq ctu^{-1-\alpha},\ \mbox{ for }t,u>0, so:

I1:=c6LMdwLMdηt(s)dsctLM(d+αdw)cLMdI_{1}:=c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t}(s){\rm d}s\leq ctL^{-M(d+\alpha d_{w})}\leq cL^{-Md}

but, if t1αdw|xy|,t^{\frac{1}{\alpha d_{w}}}\geq|x-y|, then

pS(t,x,y)ctdαdwcLMdcI1.p_{S}(t,x,y)\geq ct^{\frac{-d}{\alpha d_{w}}}\geq cL^{-Md}\geq cI_{1}.

On the other hand, if t1αdw<|xy|t^{\frac{1}{\alpha d_{w}}}<|x-y| then (as x,y𝒦Mx,y\in\mathcal{K}^{\left\langle M\right\rangle} i.e |xy|LM)|x-y|\leq L^{M}):

pS(t,x,y)ct|xy|d+αdwctLM(d+αdw)cI1,p_{S}(t,x,y)\geq c\cdot\frac{t}{|x-y|^{d+\alpha d_{w}}}\geq ctL^{-M(d+\alpha d_{w})}\geq cI_{1},

which means that I1pS(t,x,y).I_{1}\lesssim p_{S}(t,x,y). From (3.3) we get pSM(t,x,y)pS(t,x,y)p^{M}_{S}(t,x,y)\lesssim p_{S}(t,x,y) and returning to (3.2) we have pM,S(t,x,y)pS(t,x,y).p_{M,S}(t,x,y)\asymp p_{S}(t,x,y). The proof is done. \Box

4 Transition density estimate for the α\alpha-stable relativistic reflected Brownian motion

In this section we provide the estimate of the density transition of the reflected Brownian motion obtained via the relativistic subordinator, i.e. pM(t,x,y)=0gM(s,x,y)ηt,m(ds)p_{M}(t,x,y)=\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t,m}({\rm d}s) where ηt,m\eta_{t,m} is given by (2.14).

Theorem 4.1

Let XtX_{t} be the relativistic α\alpha-stable reflected process on 𝒦M\mathcal{K}^{\left\langle M\right\rangle}, with density function pRM(,,)p^{M}_{R}(\cdot,\cdot,\cdot). Then

  1. 1)

    for tLMdw,x,y𝒦Mt\geq L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle} there exist constants C1,C2>0C_{1},C_{2}>0 such that

    C1LMdpRM(t,x,y)C2LMd.C_{1}L^{-Md}\leq p_{R}^{M}(t,x,y)\leq C_{2}L^{-Md}. (4.1)
  2. 2)

    for t<LMdw,t<L^{Md_{w}}, there exists constant H2H_{2} such that

    pR(t,x,y)pRM(t,x,y)pR(t,H2x,H2y).p_{R}(t,x,y)\leq p_{R}^{M}(t,x,y)\leq p_{R}(t,H_{2}x,H_{2}y).

This statement means that there exist constants C3,C12>0C_{3},\ldots C_{12}>0 such that

  1. 1)

    for 1t<LMdw,x,y𝒦M1\leq t<L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle}

    C3td/dwexp{C4min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}pRM(t,x,y)C5td/dwexp{C6min(|xy|dwdJ,(|xy|t1dw)dwdJ1)}C_{3}t^{-d/d_{w}}\exp\left\{-C_{4}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\}\leq p_{R}^{M}(t,x,y)\\ \leq C_{5}t^{-d/d_{w}}\exp\left\{-C_{6}\min\left(|x-y|^{\frac{d_{w}}{d_{J}}},\left({|x-y|}{t^{-\frac{1}{d_{w}}}}\right)^{\frac{d_{w}}{d_{J}-1}}\right)\right\} (4.2)
  2. 2)

    for t(0,1),|xy|1t\in(0,1),|x-y|\geq 1

    C7teC8|xy|dwdJpRM(t,x,y)C9teC10|xy|dwdJC_{7}t{\rm e}^{-C_{8}|x-y|^{\frac{d_{w}}{d_{J}}}}\leq p_{R}^{M}(t,x,y)\leq C_{9}t{\rm e}^{-C_{10}|x-y|^{\frac{d_{w}}{d_{J}}}} (4.3)
  3. 3)

    for t(0,1),|xy|<1t\in(0,1),|x-y|<1

    C11tdαdw((t1αdw|xy|)d+αdw1)pRM(t,x,y)C12tdαdw((t1αdw|xy|)d+αdw1).C_{11}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right)\leq p_{R}^{M}(t,x,y)\leq C_{12}t^{\frac{-d}{\alpha d_{w}}}\left(\left(\frac{t^{\frac{1}{\alpha d_{w}}}}{|x-y|}\right)^{d+\alpha d_{w}}\wedge 1\right). (4.4)

Proof. Let

H1=(c4K2)dJ1dw,H2:=(c4K4)dJ1dw.H_{1}=(\frac{c_{4}}{K_{2}})^{\frac{d_{J}-1}{d_{w}}},\ H_{2}:=\left(\frac{c_{4}}{K_{4}}\right)^{\frac{d_{J}-1}{d_{w}}}.

These constants will be needed later.
CASE 1. tLMdw.t\geq L^{Md_{w}}. Using (2.10) we have:

pRM(t,x,y)\displaystyle p^{M}_{R}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt,m(s)ds\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t,m}(s){\rm d}s
\displaystyle\leq c30LMdwfc4(s,|xy|)ηt,m(s)ds+c6LMdwLMdηt,m(s)ds\displaystyle c_{3}\int_{0}^{L^{Md_{w}}}f_{c_{4}}(s,|x-y|)\eta_{t,m}(s){\rm d}s+c_{6}\int_{L^{Md_{w}}}^{\infty}L^{-Md}\eta_{t,m}(s){\rm d}s
\displaystyle\leq c3emt0fc4(s,|xy|)em1αsηt(s)ds+c6emt0LMdem1αsηt(s)ds\displaystyle c_{3}{\rm e}^{mt}\int_{0}^{\infty}f_{c_{4}}(s,|x-y|){\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s+c_{6}{\rm e}^{mt}\int_{0}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s
=:\displaystyle=: c3I2+c6emtLMdI3.\displaystyle c_{3}I_{2}+c_{6}{\rm e}^{mt}L^{-Md}I_{3}.

We have I2pR(t,H1x,H1y)I_{2}\leq p_{R}(t,H_{1}x,H_{1}y) and since tLMdw1t\geq L^{Md_{w}}\geq 1 we get from (2.18)

I2cLMd.I_{2}\leq cL^{-Md}.

The integral I3I_{3} is the Laplace transform of ηt\eta_{t} evaluated at the at the point m1α,m^{\frac{1}{\alpha}}, so

I3=etϕS(m1α)=emt.I_{3}={\rm e}^{-t\phi^{S}(m^{\frac{1}{\alpha}})}={\rm e}^{-mt}.

Altogether, there is a universal constant a1a_{1} such that

pRM(t,x,y)a1LMd, for tLMdw,x,y𝒦M.p^{M}_{R}(t,x,y)\leq a_{1}L^{-Md},\mbox{ for }t\geq L^{Md_{w}},\ x,y\in\mathcal{K}^{\left\langle M\right\rangle}. (4.5)

The upper bound is done.
Now the lower bound. In the course of the proof of Theorem 3.1 in [1], p.193, we have proven that for any m>0m>0 there exist constants L1=L1(m),L2=L2(m)>1,a=a(m)L_{1}=L_{1}(m),L_{2}=L_{2}(m)>1,a=a(m) such that

L1tL2tem1/αsηt(s)dsaemt, for t>0.\int_{L_{1}t}^{L_{2}t}{\rm e}^{-m^{1/\alpha}s}\eta_{t}(s){\rm d}s\geq a{\rm e}^{-mt},\mbox{ for }t>0.

Clearly

pRM(t,x,y)\displaystyle p^{M}_{R}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt,m(s)ds\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t,m}(s){\rm d}s
\displaystyle\geq emtL1tL2tgM(s,x,y)em1αsηt(s)ds\displaystyle{\rm e}^{mt}\int_{L_{1}t}^{L_{2}t}g_{M}(s,x,y){\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s

We have two posibilities: (1)LMdwL1t;(2)L1t<LMdw<L2t.(1)\ L^{Md_{w}}\leq L_{1}t;\ (2)\ L_{1}t<L^{Md_{w}}<L_{2}t.
\bullet If LMdwL1t<L2tL^{Md_{w}}\leq L_{1}t<L_{2}t, then from (2.10) and (2.18):

pRM(t,x,y)c5LMdemtL1tL2tem1αsηt(s)dsc5a(m)LMd.p^{M}_{R}(t,x,y)\geq c_{5}L^{-Md}{\rm e}^{mt}\int_{L_{1}t}^{L_{2}t}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s\geq c_{5}a(m)L^{-Md}.

\bullet If L1t<LMdwL2tL_{1}t<L^{Md_{w}}\leq L_{2}t which, in light of the assumption tLMdwt\geq L^{Md_{w}} requires L1<1,L_{1}<1, then from (2.10) and (2.18):

pRM(t,x,y)cemt(L1tLMdwfA2(s,|xy|)em1/αsηt(s)ds+LMdwL2tLMdem1/αsηt(s)ds),p^{M}_{R}(t,x,y)\geq c{\rm e}^{mt}\left(\int_{L_{1}t}^{L^{Md_{w}}}f_{A_{2}}(s,|x-y|){\rm e}^{-m^{1/\alpha}s}\eta_{t}(s){\rm d}s+\int_{L^{Md_{w}}}^{L_{2}t}L^{-Md}{\rm e}^{-m^{1/\alpha}s}\eta_{t}(s){\rm d}s\right),

but if tLMdwt\geq L^{Md_{w}} and L1t<LMdwL_{1}t<L^{Md_{w}} i.e. L1t[L1LMdw,LMdw]L_{1}t\in[L_{1}L^{Md_{w}},L^{Md_{w}}] then there exists L3(t)[L1,1)L_{3}(t)\in[L_{1},1) such that L1t=L3LMdw.L_{1}t=L_{3}L^{Md_{w}}. From (3.1) with c1=L3(t),c2=1,c3=A2c_{1}=L_{3}(t),c_{2}=1,c_{3}=A_{2} we get:

fA2(s,|xy|)eA2L3(t)dwdJ1LMdeA2L1dwdJ1LMdf_{A_{2}}(s,|x-y|)\geq{\rm e}^{-A_{2}L_{3}(t)^{\frac{-d_{w}}{d_{J}-1}}}L^{-Md}\geq{\rm e}^{-A_{2}L_{1}^{\frac{-d_{w}}{d_{J}-1}}}L^{-Md}

and further

pRM(t,x,y)\displaystyle p^{M}_{R}(t,x,y) \displaystyle\geq cemt(L1tLMdwLMdem1/αsηt(s)ds+LMdwL2tLMdem1/αsηt(s)ds)\displaystyle c{\rm e}^{mt}\left(\int_{L_{1}t}^{L^{Md_{w}}}L^{-Md}{\rm e}^{-m^{1/\alpha}s}\eta_{t}(s){\rm d}s+\int_{L^{Md_{w}}}^{L_{2}t}L^{-Md}{\rm e}^{-m^{1/\alpha}s}\eta_{t}(s){\rm d}s\right)
=\displaystyle= cLMdemtL1tL2tem1αsηt(s)ds\displaystyle cL^{-Md}{\rm e}^{mt}\int_{L_{1}t}^{L_{2}t}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s
\displaystyle\geq ca(m)LMd\displaystyle c\cdot a(m)L^{-Md}

So we have just shown that

pRM(t,x,y)cLMdp^{M}_{R}(t,x,y)\geq cL^{-Md}

so that for tLMdwt\geq L^{Md_{w}} the proof is complete.

CASE 2. t<LMdw.t<L^{Md_{w}}. From (2.8) we have:

pRM(t,x,y)\displaystyle p^{M}_{R}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt,m(s)ds\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t,m}(s){\rm d}s
\displaystyle\geq 0ΣyπM1(y)g(s,x,y)ηt,m(s)ds\displaystyle\int_{0}^{\infty}\Sigma_{y^{\prime}\in\pi^{-1}_{M}(y)}g(s,x,y^{\prime})\eta_{t,m}(s){\rm d}s
\displaystyle\geq 0g(s,x,y)ηt,m(s)ds=pR(t,x,y)\displaystyle\int_{0}^{\infty}g(s,x,y)\eta_{t,m}(s){\rm d}s=p_{R}(t,x,y)

so it will be enough to show the upper bound if we show that it holds

pRM(t,x,y)cpR(t,H2x,H2y).p^{M}_{R}(t,x,y)\leq c\cdot p_{R}(t,H_{2}x,H_{2}y).

Let

K:=2m1α+1.K:=2m^{-\frac{1}{\alpha}+1}.

Observe that, given (3.1) we can adjust the estimate in (2.10) in such a way that the threshold is KLMdwKL^{Md_{w}} (KK remains fixed) and this only requires changes in constants. For simplicity, assume that the constants in (2.10) work for this threshold.
Since for sKLMdws\geq KL^{Md_{w}}, it holds that gM(s,x,y)cLMdg_{M}(s,x,y)\leq cL^{-Md}, so we have from (2.10) and (3.1):

pRM(t,x,y)\displaystyle p^{M}_{R}(t,x,y) =\displaystyle= 0gM(s,x,y)ηt,m(s)ds\displaystyle\int_{0}^{\infty}g_{M}(s,x,y)\eta_{t,m}(s){\rm d}s
\displaystyle\leq emt0KLMdwgM(s,x,y)em1αsηt(s)ds+cemtKLMdwLMdem1αsηt(s)ds\displaystyle{\rm e}^{mt}\int_{0}^{K\cdot L^{Md_{w}}}g_{M}(s,x,y){\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s+c{\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s
\displaystyle\leq c30fc4(s,|xy|)ηt,m(s)ds+cemtKLMdwLMdem1αsηt(s)ds\displaystyle c_{3}\int_{0}^{\infty}f_{c_{4}}(s,|x-y|)\eta_{t,m}(s){\rm d}s+c{\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s
\displaystyle\leq c3emt0fc4(s,|xy|)em1αsηt(s)ds+c6emtKLMdwLMdem1αsηt(s)ds\displaystyle c_{3}{\rm e}^{mt}\int_{0}^{\infty}f_{c_{4}}(s,|x-y|){\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s+c_{6}{\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s
\displaystyle\leq cpR(t,H2x,H2y)+cemtKLMdwLMdem1αsηt(s)ds.\displaystyle cp_{R}(t,H_{2}x,H_{2}y)+c{\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s.

Let

I4:=emtKLMdwLMdem1αsηt(s)ds.I_{4}:={\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}L^{-Md}{\rm e}^{-m^{\frac{1}{\alpha}}s}\eta_{t}(s){\rm d}s.

Due to the fact ηt(u)ctu1α,t,u>0\eta_{t}(u)\leq ctu^{-1-\alpha},t,u>0 [5, formula (9), p.4] then:

I4\displaystyle I_{4} \displaystyle\leq cLMdemtKLMdwem1αsts1αds\displaystyle cL^{-Md}{\rm e}^{mt}\int_{K\cdot L^{Md_{w}}}^{\infty}{\rm e}^{-m^{\frac{1}{\alpha}}s}ts^{-1-\alpha}{\rm d}s
\displaystyle\leq cLMdt(LMdw)α+1emt2m1α+1LMdwem1αsds\displaystyle cL^{-Md}\cdot\frac{t}{(L^{Md_{w}})^{\alpha+1}}{\rm e}^{mt}\int_{2m^{-\frac{1}{\alpha}+1}\cdot L^{Md_{w}}}^{\infty}{\rm e}^{-m^{\frac{1}{\alpha}}s}{\rm d}s
=\displaystyle= cLMdt(LMdw)α+1emte2mLMdw\displaystyle cL^{-Md}\cdot\frac{t}{(L^{Md_{w}})^{\alpha+1}}{\rm e}^{mt}{\rm e}^{-2mL^{Md_{w}}}
\displaystyle\leq cLMdt(LMdw)α+1emLMdw.\displaystyle cL^{-Md}\cdot\frac{t}{(L^{Md_{w}})^{\alpha+1}}{\rm e}^{-mL^{Md_{w}}}.

As t<LMdwt<L^{Md_{w}}, we have t(LMdw)α+11\frac{t}{(L^{Md_{w}})^{\alpha+1}}\leq 1, so that

I4cLMdemLMdw,I_{4}\leq cL^{-Md}e^{-mL^{Md_{w}}},

and further since |xy|LM|x-y|\leq L^{M} and dJ>1d_{J}>1, we conclude with:
\bullet for t1t\geq 1

pR(t,H2x,H2y)\displaystyle p_{R}(t,H_{2}x,H_{2}y) \displaystyle\geq ctddweK6(c4K4)dJ1dJ|xy|dwdJ\displaystyle ct^{-\frac{d}{d_{w}}}{\rm e}^{-K_{6}\left(\frac{c_{4}}{K_{4}}\right)^{\frac{d_{J}-1}{d_{J}}}|x-y|^{\frac{d_{w}}{d_{J}}}}
\displaystyle\geq cLMdeK6(c4K4)dJ1dJ(LM)dwdJcI4\displaystyle cL^{-Md}{\rm e}^{-K_{6}\left(\frac{c_{4}}{K_{4}}\right)^{\frac{d_{J}-1}{d_{J}}}(L^{M})^{\frac{d_{w}}{d_{J}}}}\geq cI_{4}

for MM0M\geq M_{0} where M0=M0(c4,K4,K6,m,dw,dJ)M_{0}=M_{0}(c_{4},K_{4},K_{6},m,d_{w},d_{J}) is an integer.
\bullet for t(0,1),H2|xy|1t\in(0,1),H_{2}|x-y|\geq 1, we have:

pR(t,H2x,H2y)\displaystyle p_{R}(t,H_{2}x,H_{2}y) \displaystyle\geq cteK10(c4K4)dJ1dJ|xy|dwdJ\displaystyle cte^{-K_{10}\left(\frac{c_{4}}{K_{4}}\right)^{\frac{d_{J}-1}{d_{J}}}|x-y|^{\frac{d_{w}}{d_{J}}}}
\displaystyle\geq ct1eK10(c4K4)dJ1dJ(LM)dwdJcI4\displaystyle ct\cdot 1\cdot{\rm e}^{-K_{10}\left(\frac{c_{4}}{K_{4}}\right)^{\frac{d_{J}-1}{d_{J}}}(L^{M})^{\frac{d_{w}}{d_{J}}}}\geq cI_{4}

again, for MM0M\geq M_{0}^{\prime} where M0:=M0(c4,K4,K10,m,dw,dJ)M_{0}^{\prime}:=M_{0}^{\prime}(c_{4},K_{4},K_{10},m,d_{w},d_{J}) is an integer.
\bullet for t(0,1),H2|xy|<1t\in(0,1),H_{2}|x-y|<1, we have:

pR(t,H2x,H2y)\displaystyle p_{R}(t,H_{2}x,H_{2}y) \displaystyle\geq ct((H1|xy|)dαdwtdαdwαdw)\displaystyle ct((H_{1}|x-y|)^{-d-\alpha d_{w}}\wedge t^{\frac{-d-\alpha d_{w}}{\alpha d_{w}}})
\displaystyle\geq ct1cI4\displaystyle ct\cdot 1\geq cI_{4}

which completes the proof of the theorem. \Box

Acknowledgements

Thank you to my supervisor Katarzyna Pietruska-Pałuba for providing guidance throughout this paper and many valuable remarks.

References

  • [1] Balsam H., Pietruska-Pałuba K.,Transition density estimates for relativistic α\alpha-stable processes on metric spaces. PMS (2020), Vol. 40, Fasc. 2, pages 183 - 204.
  • [2] Barlow, M. T., Bass, R. F., The construction of Brownian motion on the Sierpiński carpet. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 225–257.
  • [3] Barlow, M. T., Perkins, E. A., Brownian motion on the Sierpiński gasket. Prob. Th. Rel. Fields 79 (1988), no. 4, 543–623.
  • [4] Bertoin, J., Subordinators: examples and applications, in: École d’Été de Probabilités de St. Flour XXVII, P. Bernard (ed.), Lecture Notes in Mathematics no. 1717, Springer, 1999, pp. 4–79.
  • [5] Bogdan, K., Stós, A., Sztonyk, P., Harnack inequality for stable processes on dd-sets, Studia Math. 158 (2), (2003), 163–198.
  • [6] M. Fukushima, Dirichlet forms, diffusion processes, and spectral dimensions for nested fractals. In: Ideas and methods in stochastic analysis, stochastics and applications, 151–161. Cambridge Univ. Press., Cambridge, 1992.
  • [7] K. Kaleta, M. Olszewski, K. Pietruska-Pałuba: Reflected Brownian motion on simple nested fractals, Fractals 27 (6), 2019, 1950104 1-29.
  • [8] K. Kaleta, K. Pietruska-Pałuba: Integrated density of states for Poisson-Schrödinger perturbations of subordinate Brownian motions on the Sierpiński gasket, Stochastic Process. Appl. 125 (4), 2015, 1244-1281.
  • [9] T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields 96 (1993), no. 2, 205–224.
  • [10] S. Kusuoka, Dirichlet forms on fractals and products of random matrices. Publ. RIMS Kyoto Univ., 25, 659–680 (1989).
  • [11] T. Lindstrom, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv+128 pp.
  • [12] Olszewski M., Estimates of the transition densities for the reflected Brownian motion on simple nested fractals. PMS (2019), Vol. 39, Fasc. 2, pages 423 - 440.
  • [13] K. Pietruska-Pałuba, The Wiener Sausage Asymptotics on Simple Nested Fractals, Stochastic Analysis and Applications, 23:1 (2005), 111-135.
  • [14] K. Pietruska-Pałuba, A. Stos, Poincaré inequality and Hajlasz-Sobolev spaces on nested fractals, Studia Math. 218(1) (2013), 1–28.
  • [15] Ryznar, M., Estimates of Green function for relativistic α\alpha-stable process. Potential Anal. 17 (2002), 1–23.
  • [16] Sturm, K.-T., Diffusion processes and heat kernels on metric spaces, Ann. Probab. 26 (1998), 1–55.