This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Transmit Optimization for Multi-functional MIMO Systems Integrating Sensing, Communication, and Powering

Yilong Chen, Haocheng Hua, and Jie Xu J. Xu is the corresponding author. School of Science and Engineering and Future Network of Intelligence Institute,
The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
Email: yilongchen@link.cuhk.edu.cn, haochenghua@link.cuhk.edu.cn, xujie@cuhk.edu.cn
Abstract

This paper unifies integrated sensing and communication (ISAC) and simultaneous wireless information and power transfer (SWIPT), by investigating a new multi-functional multiple-input multiple-output (MIMO) system integrating wireless sensing, communication, and powering. In this system, one multi-antenna hybrid access point (H-AP) transmits wireless signals to communicate with one multi-antenna information decoding (ID) receiver, wirelessly charge one multi-antenna energy harvesting (EH) receiver, and perform radar sensing for a point target based on the echo signal at the same time. Under this setup, we aim to reveal the fundamental performance tradeoff limits of sensing, communication, and powering, in terms of the estimation Cramér-Rao bound (CRB), achievable communication rate, and harvested energy level, respectively. Towards this end, we define the achievable CRB-rate-energy (C-R-E) region and characterize its Pareto boundary by maximizing the achievable rate at the ID receiver, subject to the estimation CRB requirement for target sensing, the harvested energy requirement at the EH receiver, and the maximum transmit power constraint at the H-AP. We obtain the semi-closed-form optimal transmit covariance solution to the formulated problem by applying advanced convex optimization techniques. Numerical results show the optimal C-R-E region boundary achieved by our proposed design, as compared to the benchmark scheme based on time switching.

I Introduction

Future sixth-generation (6G) wireless networks need to incorporate billions of low-power Internet-of-things (IoT) devices and support their localization, sensing, communication, and control in a sustainable manner. Towards this end, simultaneous wireless information and power transfer (SWIPT) [1] and integrated sensing and communications (ISAC) [2] have emerged as two enabling techniques aiming to reuse radio signals to wirelessly charge massive IoT devices and provide sensing functionality, respectively. With their recent advancements, we envision that future 6G networks will integrate both SWIPT and ISAC to evolve towards new multi-functional wireless systems, which can provide sensing, communication, and powering capabilities at the same time. Such multi-functional wireless systems are expected to significantly enhance the utilization efficiency of scarce spectrum resources and densely deployed base station (BS) infrastructures, and facilitate the localization and powering of massive low-power devices to support emerging IoT applications.

In the literature, there have been extensive prior works investigating the transmit optimization for SWIPT (e.g., [3, 4]) and ISAC (e.g., [5, 6, 7, 8]) independently. For instance, the authors in [3] first studied a multiple-input multiple-output (MIMO) SWIPT system with one information decoding (ID) receiver and one energy harvesting (EH) receiver, in which the transmit covariance at the BS was designed to optimally balance the tradeoff between the communication rate versus the harvested energy level. This design was then extended to the broadcast channel with multiple ID receivers and multiple EH receivers (see, e.g., [4]). On the other hand, the works [5] and [6] considered the basic ISAC setup with one BS, one ID receiver, and one sensing target, in which the transmit strategies at the BS were optimized to balance the communication rate versus the estimation Cramér-Rao bound (CRB) as the sensing performance metric. Furthermore, the authors in [7] and [8] studied the ISAC system with multiple ID receivers and sensing targets, in which the transmit beamforming design at the BS was optimized to balance the communication and sensing performances.

Different from these prior works, this paper studies a multi-functional MIMO system unifying ISAC and SWIPT as shown in Fig. 1, in which one single multi-antenna hybrid access point (H-AP) transmits wireless signals to simultaneously deliver information to one multi-antenna ID receiver, provide energy supply to one multi-antenna EH receiver, and estimate a sensing target based on the echo signals. For such a multi-functional wireless system, how to design the transmit strategies at the multi-antenna H-AP is essential to optimize the performance tradeoffs among sensing, communication, and powering. This problem, however, is particularly challenging, since the MIMO sensing (e.g., [9, 10]), communication (e.g., [11]), and powering (e.g., [3]) are designed based on distinct objectives and follow different principles. This thus motivates our study in this work.

Refer to caption
Figure 1: A multi-functional MIMO system unifying SWIPT and ISAC.

In this paper, we consider the multi-functional MIMO system by focusing on the point target model for radar sensing, in which the H-AP aims to estimate the target angle. We aim to reveal the fundamental performance tradeoffs among sensing, communication, and powering, in terms of the angle estimation CRB, the achievable communication rate, and the harvested energy level. Towards this end, we characterize the complete CRB-rate-energy (C-R-E) region of this system, which is defined as the set of all C-R-E pairs that are simultaneously achievable. To find the points on the Pareto boundary surface of the C-R-E region, we propose to maximize the MIMO communication rate while ensuring the estimation CRB requirement for target sensing and the harvested energy requirement at the EH receiver, subject to the maximum transmit power constraint at the H-AP. We derive the well-structured optimal transmit covariance solution by using advanced convex optimization techniques. It is shown that the optimal transmit covariance follows the eigenmode transmission (EMT) structure based on a composite channel matrix, which can be generally divided into two parts, one for the triple roles of communication, sensing, and powering, and the other for sensing and powering only. Finally, numerical results validate the performance of our proposed design, in comparison to the benchmark scheme based on time switching.

Notations: Boldface letters are used for vectors (lower-case) and matrices (upper-case). For a square matrix 𝑨\boldsymbol{A}, tr(𝑨)\mathrm{tr}(\boldsymbol{A}) and det(𝑨)\det(\boldsymbol{A}) denote its trace and determinant, respectively, 𝑨𝟎\boldsymbol{A}\succeq\boldsymbol{0} means that 𝑨\boldsymbol{A} is positive semi-definite, and 𝑨𝟎\boldsymbol{A}\succ\boldsymbol{0} means that 𝑨\boldsymbol{A} is positive definite. For an arbitrary-size matrix 𝑨\boldsymbol{A}, rank(𝑨)\mathrm{rank}(\boldsymbol{A}), 𝑨\boldsymbol{A}^{\dagger}, 𝑨T\boldsymbol{A}^{T}, 𝑨H\boldsymbol{A}^{H}, and (𝑨)\mathcal{R}(\boldsymbol{A}) denote its rank, conjugate, transpose, conjugate transpose, and range space, respectively. For a vector 𝒂\boldsymbol{a}, 𝒂\|\boldsymbol{a}\| denotes its Euclidean norm. For a complex number aa, |a||a| denotes its magnitude. For a real number aa, (a)+max(a,0)(a)^{+}\triangleq\max(a,0). diag(a1,,aN)\mathrm{diag}(a_{1},\dots,a_{N}) denotes a diagonal matrix whose diagonal entries are a1,,aNa_{1},\dots,a_{N}. 𝑰N\boldsymbol{I}_{N} denotes the identity matrix with dimension N×NN\times N. M×N\mathbb{C}^{M\times N} and 𝕊N\mathbb{S}^{N}denote the spaces of M×NM\times N complex matrices and N×NN\times N Hermitian matrices. 𝔼[]\mathbb{E}[\cdot] denotes the statistic expectation. j=1j=\sqrt{-1}.

II System Model

This paper considers a multi-functional MIMO system as shown in Fig. 1, which consists of one H-AP, one EH receiver, one ID receiver, and one sensing target to be estimated. The H-AP is equipped with a uniform linear array (ULA) of M>1M>1 transmit antennas and NS>1N_{\text{S}}>1 receive antennas for sensing. The EH and ID receivers are equipped with NEH1N_{\text{EH}}\geq 1 and NID1N_{\text{ID}}\geq 1 receive antennas, respectively.

We consider a quasi-static narrowband channel model, in which the wireless channels remain unchanged over the interested transmission block consisting of LL symbols, where LL is assumed to be sufficiently large. Let 𝑯EHNEH×M\boldsymbol{H}_{\text{EH}}\in\mathbb{C}^{N_{\text{EH}}\times M} and 𝑯IDNID×M\boldsymbol{H}_{\text{ID}}\in\mathbb{C}^{N_{\text{ID}}\times M} denote the channel matrices from the H-AP to the EH receiver and the ID receiver, respectively. Let 𝑯SNS×M\boldsymbol{H}_{\text{S}}\in\mathbb{C}^{N_{\text{S}}\times M} denote the target response matrix from the H-AP transmitter to the sensing target to the H-AP receiver, which will be specified later. It is assumed that the H-AP perfectly knows the information of 𝑯EH\boldsymbol{H}_{\text{EH}} and 𝑯ID\boldsymbol{H}_{\text{ID}}, and the ID receiver perfectly knows 𝑯ID\boldsymbol{H_{\text{ID}}} to facilitate the transmit optimization, as commonly assumed in the literature [3, 4].

At each symbol l{1,,L}l\in\{1,\dots,L\}, let 𝒙(l)M×1\boldsymbol{x}(l)\in\mathbb{C}^{M\times 1} denote the transmitted signal at the H-AP. The transmitted signal over the whole block is expressed as

𝑿=[𝒙(1),,𝒙(L)]M×L.\boldsymbol{X}=\big{[}\boldsymbol{x}(1),\dots,\boldsymbol{x}(L)\big{]}\in\mathbb{C}^{M\times L}. (1)

Without loss of optimality, we consider the capacity-achieving Gaussian signaling, such that 𝒙(l)\boldsymbol{x}(l)’s are assumed to be circularly symmetric complex Gaussian (CSCG) random vectors with zero mean and covariance matrix 𝑺=𝔼[𝒙(l)𝒙(l)H]𝟎\boldsymbol{S}=\mathbb{E}\big{[}\boldsymbol{x}(l)\boldsymbol{x}(l)^{H}\big{]}\succeq\boldsymbol{0}. As LL is sufficiently large, the sample covariance matrix 1L𝑿𝑿H\frac{1}{L}\boldsymbol{X}\boldsymbol{X}^{H} is approximated as the statistical covariance matrix 𝑺\boldsymbol{S}, i.e., 1L𝑿𝑿H𝑺\frac{1}{L}\boldsymbol{X}\boldsymbol{X}^{H}\approx\boldsymbol{S}, which is the optimization variable to be designed111This approximation has been widely adopted in MIMO radar and MIMO ISAC systems [12, 6].. Suppose that the H-AP is subject to a maximum transmit power budget PP. We thus have 𝔼[𝒙(l)2]=tr(𝑺)P\mathbb{E}\big{[}\|\boldsymbol{x}(l)\|^{2}\big{]}=\mathrm{tr}(\boldsymbol{S})\leq P.

First, we consider the radar sensing with a point target. Let α\alpha denote the complex reflection coefficient, and θ\theta denote the angle of departure/arrival (AoD/AoA). The echo signal received by the H-AP receiver is

𝒀S=𝑯S𝑿+𝒁S=α𝑨(θ)𝑿+𝒁S,\boldsymbol{Y}_{\text{S}}=\boldsymbol{H}_{\text{S}}\boldsymbol{X}+\boldsymbol{Z}_{\text{S}}=\alpha\boldsymbol{A}(\theta)\boldsymbol{X}+\boldsymbol{Z}_{\text{S}}, (2)

where 𝑨(θ)𝒂r(θ)𝒂tT(θ)\boldsymbol{A}(\theta)\triangleq\boldsymbol{a}_{r}(\theta)\boldsymbol{a}_{t}^{T}(\theta), with 𝒂r(θ)NS×1\boldsymbol{a}_{r}(\theta)\in\mathbb{C}^{N_{\text{S}}\times 1} and 𝒂t(θ)M×1\boldsymbol{a}_{t}(\theta)\in\mathbb{C}^{M\times 1} denoting the receive and transmit array steering vectors, and 𝒁SNS×L\boldsymbol{Z}_{\text{S}}\in\mathbb{C}^{N_{\text{S}}\times L} denotes the additive white Gaussian noise (AWGN) at the H-AP receiver that is a CSCG random matrix with independent and identically distributed (i.i.d.) entries each with zero mean and variance σS2\sigma_{\text{S}}^{2}. By choosing the center of the ULA antennas as the reference point and assuming half-wavelength spacing between adjacent antennas, we have

𝒂t(θ)\displaystyle\boldsymbol{a}_{t}(\theta) =[ejM12πsinθ,ejM32πsinθ,,ejM12πsinθ]T,\displaystyle=\big{[}e^{-j\frac{M-1}{2}\pi\sin\theta},e^{-j\frac{M-3}{2}\pi\sin\theta},\dots,e^{j\frac{M-1}{2}\pi\sin\theta}\big{]}^{T}, (3)
𝒂r(θ)\displaystyle\boldsymbol{a}_{r}(\theta) =[ejNS12πsinθ,ejNS32πsinθ,,ejNS12πsinθ]T.\displaystyle=\big{[}e^{-j\frac{N_{\text{S}}-1}{2}\pi\sin\theta},e^{-j\frac{N_{\text{S}}-3}{2}\pi\sin\theta},\dots,e^{j\frac{N_{\text{S}}-1}{2}\pi\sin\theta}\big{]}^{T}.

The objective of sensing is to estimate θ\theta and α\alpha as the unknown parameters from the received echo signal 𝒀S\boldsymbol{Y}_{\text{S}} in (2), in which the transmitted signal 𝑿\boldsymbol{X} is known by the H-AP. In this case, the CRB for estimating θ\theta is adopted as the sensing performance metric222As the target information contained in α\alpha is hard to extract, in this paper we focus on the CRB for estimating θ\theta, similarly as in prior works [12, 13]., which is given by [10]

CRB(𝑺)=σS22|α|2Ltr(𝑨H𝑨𝑺)tr(𝑨˙H𝑨˙𝑺)tr(𝑨H𝑨𝑺)|tr(𝑨˙H𝑨𝑺)|2,\mathrm{CRB}(\boldsymbol{S})=\frac{\sigma_{\text{S}}^{2}}{2|\alpha|^{2}L}\frac{\mathrm{tr}(\!\boldsymbol{A}^{H}\!\boldsymbol{A}\boldsymbol{S})}{\mathrm{tr}(\!\boldsymbol{\dot{A}}^{H}\!\boldsymbol{\dot{A}}\boldsymbol{S})\mathrm{tr}(\!\boldsymbol{A}^{H}\!\boldsymbol{A}\boldsymbol{S})-|\mathrm{tr}(\!\boldsymbol{\dot{A}}^{H}\!\boldsymbol{A}\boldsymbol{S})|^{2}}, (4)

where we define 𝑨𝑨(θ)\boldsymbol{A}\triangleq\boldsymbol{A}(\theta) and 𝑨˙𝑨(θ)θ\boldsymbol{\dot{A}}\triangleq\frac{\partial\boldsymbol{A}(\theta)}{\partial\theta}.

Next, we consider the point-to-point MIMO communication from the H-AP to the ID receiver. The received signal by the ID receiver at symbol ll is given by

𝒚ID(l)=𝑯ID𝒙(l)+𝒛ID(l),\boldsymbol{y}_{\text{ID}}(l)=\boldsymbol{H}_{\text{ID}}\boldsymbol{x}(l)+\boldsymbol{z}_{\text{ID}}(l), (5)

where 𝒛ID(l)NID×1\boldsymbol{z}_{\text{ID}}(l)\in\mathbb{C}^{N_{\text{ID}}\times 1} denotes the AWGN at the ID receiver that is a CSCG random vector with zero mean and covariance matrix σID2𝑰NID\sigma_{\text{ID}}^{2}\boldsymbol{I}_{N_{\text{ID}}}. With the capacity-achieving Gaussian signaling, the achievable data rate (in bps/Hz) is [11]

R(𝑺)=log2det(𝑰NID+1σID2𝑯ID𝑺𝑯IDH).{R}(\boldsymbol{S})=\log_{2}\det\Big{(}\boldsymbol{I}_{N_{\text{ID}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{H}_{\text{ID}}\boldsymbol{S}\boldsymbol{H}_{\text{ID}}^{H}\Big{)}. (6)

Then, we consider the WPT from the H-AP to the EH receiver, where the EH receiver uses the rectifiers to convert the received radio frequency (RF) signals into direct current (DC) signals for energy harvesting. In general, the harvested DC power is monotonically increasing with respect to the received RF power. As a result, we use the received RF power (energy over a unit time period, in Watt) at the EH receiver as the powering performance metric [1], i.e.,

E(𝑺)=tr(𝑯EH𝑺𝑯EHH).{E}(\boldsymbol{S})=\mathrm{tr}(\boldsymbol{H}_{\text{EH}}\boldsymbol{S}\boldsymbol{H}_{\text{EH}}^{H}). (7)

Our objective is to reveal the fundamental performance tradeoff among the estimation CRB CRB(𝑺)\mathrm{CRB}(\boldsymbol{S}) in (4), the achievable rate R(𝑺){R}(\boldsymbol{S}) in (6), and the received (unit-time) energy E(𝑺){E}(\boldsymbol{S}) in (7). Towards this end, we characterize the C-R-E region that is defined as all the C-R-E pairs simultaneously achievable in the multi-functional wireless MIMO system, i.e.,

𝒞{(CRB^,R^,E^)|\displaystyle\mathcal{C}\triangleq\big{\{}(\widehat{\mathrm{CRB}},\widehat{{R}},\widehat{{E}})| CRB^CRB(𝑺),R^R(𝑺),\displaystyle\widehat{\mathrm{CRB}}\geq\mathrm{CRB}(\boldsymbol{S}),\widehat{{R}}\leq{R}(\boldsymbol{S}), (8)
E^E(𝑺),tr(𝑺)P,𝑺𝟎}.\displaystyle\widehat{{E}}\leq{E}(\boldsymbol{S}),\mathrm{tr}(\boldsymbol{S})\leq P,\boldsymbol{S}\succeq\boldsymbol{0}\big{\}}.

III C-R-E Region Characterization

This section characterizes the C-R-E region of the multi-functional MIMO system 𝒞\mathcal{C} in (8), by finding its Pareto boundary, which corresponds to the set of points at which improving one performance metric will inevitably result in the deterioration of another. The complete Pareto boundary corresponds to a surface in a three-dimensional (3D) space as shown in Fig. 2, which is surrounded by three vertices corresponding to rate maximization (R-max), energy maximization (E-max), and CRB minimization (C-min), respectively, as well as three edges corresponding to the optimal C-R, R-E, and C-E tradeoffs, respectively.

Refer to caption
Figure 2: The Pareto boundary of an example C-R-E region.

III-A Finding Three Vertices of Pareto Boundary

This subsection finds the three vertices of the C-R-E region 𝒞\mathcal{C}. First, we find the R-max vertex (CRBID,Rmax,EID)(\mathrm{CRB}_{\text{ID}},{R}_{\mathrm{max}},{E}_{\text{ID}}) by optimizing the transmit covariance 𝑺\boldsymbol{S} to maximize the communication rate R(𝑺){R}(\boldsymbol{S}), i.e., max𝑺𝟎R(𝑺),s.t.tr(𝑺)P\max_{\boldsymbol{S}\succeq\boldsymbol{0}}{R}(\boldsymbol{S}),\ \mathrm{s.t.}\ \mathrm{tr}(\boldsymbol{S})\leq P. This corresponds to a sole MIMO communication system. It has been established in [11] that the optimal transmit covariance solution to this problem, denoted by 𝑺ID\boldsymbol{S}_{\text{ID}}, can be obtained by the EMT over the ID channel (i.e., performing the singular value decomposition (SVD) to decompose 𝑯ID\boldsymbol{H}_{\text{ID}}) together with the water-filling power allocation. Accordingly, the maximum communication rate is Rmax=R(𝑺ID){R}_{\mathrm{max}}={R}(\boldsymbol{S}_{\text{ID}}), and the corresponding harvested energy level and estimation CRB are EID=E(𝑺ID){E}_{\text{ID}}={E}(\boldsymbol{S}_{\text{ID}}) and CRBID=CRB(𝑺ID)\mathrm{CRB}_{\text{ID}}=\mathrm{CRB}(\boldsymbol{S}_{\text{ID}}), respectively.

Next, we consider the E-max vertex (CRBEH,REH,Emax)(\mathrm{CRB}_{\text{EH}},{R}_{\text{EH}},{E}_{\mathrm{max}}), which can be found by optimizing 𝑺\boldsymbol{S} to maximize the harvested energy level E(𝑺){E}(\boldsymbol{S}), i.e., max𝑺𝟎E(𝑺),s.t.tr(𝑺)P\max_{\boldsymbol{S}\succeq\boldsymbol{0}}{E}(\boldsymbol{S}),\ \mathrm{s.t.}\ \mathrm{tr}(\boldsymbol{S})\leq P. This corresponds to a sole MIMO WPT system. It has been shown in [3] that the optimal solution is a rank-one matrix that can be obtained based on the strongest eigenmode transmission, denoted by 𝑺EH=P𝒗max𝒗maxH\boldsymbol{S}_{\text{EH}}=\sqrt{P}\boldsymbol{v}_{\max}\boldsymbol{v}_{\max}^{H}, with 𝒗max\boldsymbol{v}_{\max} being the dominant right singular vector of 𝑯EH\boldsymbol{H}_{\mathrm{EH}}. The maximum harvested energy level is hence Emax=E(𝑺EH){E}_{\mathrm{max}}={E}(\boldsymbol{S}_{\text{EH}}), and the corresponding communication rate and estimation CRB are REH=R(𝑺EH){R}_{\text{EH}}={R}(\boldsymbol{S}_{\text{EH}}) and CRBEH=CRB(𝑺EH)\mathrm{CRB}_{\text{EH}}=\mathrm{CRB}(\boldsymbol{S}_{\text{EH}}), respectively.

Finally, we consider the C-min vertex (CRBmin,RS,ES)(\mathrm{CRB}_{\mathrm{min}},{R}_{\text{S}},{E}_{\text{S}}), which can be found by optimizing 𝑺\boldsymbol{S} to minimize the estimation CRB CRB(𝑺)\mathrm{CRB}(\boldsymbol{S}), i.e., min𝑺𝟎CRB(𝑺),s.t.tr(𝑺)P\min_{\boldsymbol{S}\succeq\boldsymbol{0}}\mathrm{CRB}(\boldsymbol{S}),\ \mathrm{s.t.}\ \mathrm{tr}(\boldsymbol{S})\leq P. This corresponds to a sole MIMO radar sensing system. The optimal solution 𝑺S\boldsymbol{S}_{\text{S}} has been derived in closed form in [9], where 𝑺S=PM𝒂t(θ)𝒂t(θ)T\boldsymbol{S}_{\text{S}}=\frac{P}{M}\boldsymbol{a}_{t}(\theta)^{\dagger}\boldsymbol{a}_{t}(\theta)^{T} holds if NS>MN_{\text{S}}>M. Thus, the minimum CRB is CRBmin=CRB(𝑺S)\mathrm{CRB}_{\mathrm{min}}=\mathrm{CRB}(\boldsymbol{S}_{\text{S}}), and the corresponding communication rate and harvested energy level are RS=R(𝑺S){R}_{\text{S}}={R}(\boldsymbol{S}_{\text{S}}) and ES=E(𝑺S){E}_{\text{S}}={E}(\boldsymbol{S}_{\text{S}}), respectively.

III-B Finding Three Edges of Pareto Boundary

This subsection finds the three edges on the Pareto boundary of the C-R-E region 𝒞\mathcal{C}. First, we find the C-R edge connecting the C-min vertex (CRBmin,RS,ES)(\mathrm{CRB}_{\mathrm{min}},{R}_{\text{S}},{E}_{\text{S}}) and the R-max vertex (CRBID,Rmax,EID)(\mathrm{CRB}_{\text{ID}},{R}_{\mathrm{max}},{E}_{\text{ID}}), by optimizing 𝑺\boldsymbol{S} to maximize the communication rate R(𝑺){R}(\boldsymbol{S}) subject to a maximum estimation CRB constraint, i.e., max𝑺𝟎R(𝑺),s.t.CRB(𝑺)CRBC-R,tr(𝑺)P\max_{\boldsymbol{S}\succeq\boldsymbol{0}}{R}(\boldsymbol{S}),\mathrm{s.t.}\mathrm{CRB}(\boldsymbol{S})\leq\mathrm{CRB}_{\text{C-R}},\mathrm{tr}(\boldsymbol{S})\leq P, where the CRB threshold CRBC-R\mathrm{CRB}_{\text{C-R}} ranges from CRBmin\mathrm{CRB}_{\mathrm{min}} to CRBID\mathrm{CRB}_{\text{ID}} in order to get different C-R tradeoff points on the edge. This corresponds to the CRB-constrained rate maximization problem for the MIMO ISAC system without WPT, for which the optimal solution has been derived in [6] in semi-closed-form, denoted by 𝑺C-R\boldsymbol{S}_{\text{C-R}}.

Next, we find the R-E edge connecting the R-max vertex (CRBID,Rmax,EID)(\mathrm{CRB}_{\text{ID}},{R}_{\mathrm{max}},{E}_{\text{ID}}) and the E-max vertex (CRBEH,REH,Emax)(\mathrm{CRB}_{\text{EH}},{R}_{\text{EH}},{E}_{\mathrm{max}}). Towards this end, we optimize 𝑺\boldsymbol{S} to maximize the communication rate R(𝑺){R}(\boldsymbol{S}) subject to a minimum harvested energy constraint, i.e., max𝑺𝟎R(𝑺),s.t.E(𝑺)ER-E,tr(𝑺)P\max_{\boldsymbol{S}\succeq\boldsymbol{0}}{R}(\boldsymbol{S}),\mathrm{s.t.}{E}(\boldsymbol{S})\geq{E}_{\text{R-E}},\mathrm{tr}(\boldsymbol{S})\leq P, where the energy threshold ER-E{E}_{\text{R-E}} ranges from EID{E}_{\text{ID}} to Emax{E}_{\mathrm{max}} in order to get different R-E tradeoff points on the edge. This corresponds to the energy-constrained rate maximization problem for the MIMO SWIPT system without radar sensing, whose optimal transmit covariance solution has been obtained in [3] as 𝑺R-E\boldsymbol{S}_{\text{R-E}} in semi-closed-form.

Then, we find the C-E edge to connect the C-min vertex (CRBmin,RS,ES)(\mathrm{CRB}_{\mathrm{min}},{R}_{\text{S}},{E}_{\text{S}}) and the E-max vertex (CRBEH,REH,Emax)(\mathrm{CRB}_{\text{EH}},{R}_{\text{EH}},{E}_{\mathrm{max}}). To achieve this, we optimize 𝑺\boldsymbol{S} to maximize the harvested energy level E(𝑺){E}(\boldsymbol{S}) subject to a maximum estimation CRB constraint, i.e., max𝑺𝟎E(𝑺),s.t.CRB(𝑺)CRBC-E,tr(𝑺)P\max_{\boldsymbol{S}\succeq\boldsymbol{0}}{E}(\boldsymbol{S}),\mathrm{s.t.}\mathrm{CRB}(\boldsymbol{S})\leq\mathrm{CRB}_{\text{C-E}},\mathrm{tr}(\boldsymbol{S})\leq P, where the CRB threshold CRBC-E\mathrm{CRB}_{\text{C-E}} ranges from CRBmin\mathrm{CRB}_{\mathrm{min}} to CRBEH\mathrm{CRB}_{\text{EH}} in order to get different C-E tradeoff points on the edge. This corresponds to the case when there are only sensing and WPT in our integrated system. The optimization problem can be reformulated into a convex form, as the CRB constraint CRB(𝑺)CRBC-E\mathrm{CRB}(\boldsymbol{S})\leq\mathrm{CRB}_{\text{C-E}} is equivalent to the convex semi-definite constraint [tr(𝑨˙H𝑨˙𝑺)σS22|α|2LCRBC-Etr(𝑨˙H𝑨𝑺)tr(𝑨˙H𝑨𝑺)tr(𝑨H𝑨𝑺)]𝟎\begin{bmatrix}\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{\dot{A}}\boldsymbol{S})-\frac{\sigma_{\text{S}}^{2}}{2|\alpha|^{2}L\mathrm{CRB}_{\text{C-E}}}&\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S})^{\dagger}\\ \mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S})&\mathrm{tr}(\boldsymbol{A}^{H}\boldsymbol{A}\boldsymbol{S})\end{bmatrix}\succeq\boldsymbol{0} based on the Schur complement [12]. Therefore, the optimal solution 𝑺C-E\boldsymbol{S}_{\text{C-E}} in this case can be found by standard convex optimization techniques333Note that we can obtain a well-structured optimal solution to this problem by the Lagrangian duality method. However, we omit the derivation here as it will be similar to that for the more general problem (P1) in Section IV..

III-C Characterizing Complete Pareto Boundary Surface

With the vertices and edges obtained, it remains to find the interior points on the Pareto boundary surface to characterize the complete C-R-E region 𝒞\mathcal{C}. Towards this end, we optimize the transmit covariance 𝑺\boldsymbol{S} to maximize the communication rate R(𝑺){R}(\boldsymbol{S}) in (6), subject to a maximum estimation CRB constraint ΓS\Gamma_{\text{S}} and a minimum harvested energy constraint ΓEH\Gamma_{\text{EH}}. Mathematically, the CRB-and-energy-constrained rate maximization problem is formulated as

(P1):max𝑺𝟎\displaystyle(\text{P1}):\max_{\boldsymbol{S}\succeq\boldsymbol{0}} log2det(𝑰NID+1σID2𝑯ID𝑺𝑯IDH)\displaystyle\ \log_{2}\det\Big{(}\boldsymbol{I}_{N_{\text{ID}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{H}_{\text{ID}}\boldsymbol{S}\boldsymbol{H}_{\text{ID}}^{H}\Big{)} (9a)
s.t.\displaystyle\mathrm{s.t.} tr(𝑯EH𝑺𝑯EHH)ΓEH\displaystyle\ \mathrm{tr}(\boldsymbol{H}_{\text{EH}}\boldsymbol{S}\boldsymbol{H}_{\text{EH}}^{H})\geq\Gamma_{\text{EH}} (9b)
CRB(𝑺)ΓS\displaystyle\ \mathrm{CRB}(\boldsymbol{S})\leq\Gamma_{\text{S}} (9c)
tr(𝑺)P.\displaystyle\ \mathrm{tr}(\boldsymbol{S})\leq P. (9d)

By exhausting ΓEH\Gamma_{\text{EH}} and ΓS\Gamma_{\text{S}} enclosed by the projection of the three edges on the C-E plane, we can obtain all the Pareto boundary surface points. In particular, let R(ΓEH,ΓS)R^{\star}(\Gamma_{\text{EH}},\Gamma_{\text{S}}) denote the optimal value of problem (P1) with given ΓEH\Gamma_{\text{EH}} and ΓS\Gamma_{\text{S}}. Then we have one Pareto boundary point of the C-R-E region 𝒞\mathcal{C} as (ΓS,R(ΓEH,ΓS),ΓEH)\big{(}\Gamma_{\text{S}},R^{\star}(\Gamma_{\text{EH}},\Gamma_{\text{S}}),\Gamma_{\text{EH}}\big{)}.

IV Optimal Solution to Problem (P1)

In this section, we present the optimal solution to problem (P1). Notice that (P1) is not convex due to the estimation CRB constraint in (9c). Fortunately, based on the Schur complement, constraint (9c) is equivalent to

[tr(𝑨˙H𝑨˙𝑺)1ΓS,1tr(𝑨˙H𝑨𝑺)tr(𝑨˙H𝑨𝑺)tr(𝑨H𝑨𝑺)]𝟎,\begin{bmatrix}\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{\dot{A}}\boldsymbol{S})-\frac{1}{\Gamma_{\text{S},1}}&\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S})^{\dagger}\\ \mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S})&\mathrm{tr}(\boldsymbol{A}^{H}\boldsymbol{A}\boldsymbol{S})\end{bmatrix}\succeq\boldsymbol{0}, (10)

where ΓS,12|α|2LσS2ΓS\Gamma_{\text{S},1}\triangleq\frac{2|\alpha|^{2}L}{\sigma_{\text{S}}^{2}}\Gamma_{\text{S}}. Thus, by replacing constraint (9c) as that in (10), (P1) is reformulated in a convex form, and can be optimally solved by using the Lagrangian duality method.

Let λ0\lambda\geq 0, ν0\nu\geq 0, and 𝒁[z1z2z2z3]𝟎\boldsymbol{Z}\triangleq\begin{bmatrix}z_{1}&z_{2}\\ z_{2}^{\dagger}&z_{3}\end{bmatrix}\succeq\boldsymbol{0} denote the dual variables associated with the constraints in (9b), (9d), and (10), respectively. The Lagrangian of problem (P1) is

(𝑺,λ,ν,𝒁)=\displaystyle\mathcal{L}(\boldsymbol{S},\lambda,\nu,\boldsymbol{Z})= log2det(𝑰NID+1σID2𝑯ID𝑺𝑯IDH)\displaystyle\log_{2}\det\Big{(}\boldsymbol{I}_{N_{\text{ID}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{H}_{\text{ID}}\boldsymbol{S}\boldsymbol{H}_{\text{ID}}^{H}\Big{)} (11)
\displaystyle- tr(𝑫𝑺)λΓEH+νPz1ΓS,1,\displaystyle\mathrm{tr}(\boldsymbol{D}\boldsymbol{S})-\lambda\Gamma_{\text{EH}}+\nu P-\frac{z_{1}}{\Gamma_{\text{S},1}},

where 𝑫ν𝑰Mλ𝑯EHH𝑯EHz1𝑨˙H𝑨˙z2𝑨˙H𝑨z2𝑨H𝑨˙z3𝑨H𝑨\boldsymbol{D}\triangleq\nu\boldsymbol{I}_{M}-\lambda\boldsymbol{H}_{\text{EH}}^{H}\boldsymbol{H}_{\text{EH}}-z_{1}\boldsymbol{\dot{A}}^{H}\boldsymbol{\dot{A}}-z_{2}\boldsymbol{\dot{A}}^{H}\boldsymbol{A}-z_{2}^{\dagger}\boldsymbol{A}^{H}\boldsymbol{\dot{A}}-z_{3}\boldsymbol{A}^{H}\boldsymbol{A}.

Accordingly, the dual function of (P1) is defined as

g(λ,ν,𝒁)=max𝑺𝟎(𝑺,λ,ν,𝒁).g(\lambda,\nu,\boldsymbol{Z})=\max_{\boldsymbol{S}\succeq\boldsymbol{0}}\ \mathcal{L}(\boldsymbol{S},\lambda,\nu,\boldsymbol{Z}). (12)

We have the following lemma, which can be verified similarly as in [6, Lemma 1].

Lemma 1

In order for the dual function g(λ,ν,𝐙)g(\lambda,\nu,\boldsymbol{Z}) to be bounded from above, it must hold that

𝑫𝟎and(𝑯IDH)(𝑫).\boldsymbol{D}\succeq\boldsymbol{0}~{}{\text{and}}~{}\mathcal{R}(\boldsymbol{H}_{\text{ID}}^{H})\subseteq\mathcal{R}(\boldsymbol{D}). (13)

Based on Lemma 1, the dual problem of (P1) is defined as

(D1):minλ0,ν0,𝒁𝟎g(λ,ν,𝒁),s.t.(13).(\text{D}1):\min_{\lambda\geq 0,\nu\geq 0,\boldsymbol{Z}\succeq\boldsymbol{0}}\ g(\lambda,\nu,\boldsymbol{Z}),\ \mathrm{s.t.}\ \eqref{D1-constraint}. (14)

Since problem (P1) is reformulated in a convex form and satisfies Slater’s condition, strong duality holds between (P1) and its dual problem (D1) [14]. Therefore, we can solve (P1) by equivalently solving (D1). In the following, we first obtain the dual function g(λ,ν,𝒁)g(\lambda,\nu,\boldsymbol{Z}) with given dual variables, then search over λ0\lambda\geq 0, ν0\nu\geq 0, and 𝒁𝟎\boldsymbol{Z}\succeq\boldsymbol{0} to minimize g(λ,ν,𝒁)g(\lambda,\nu,\boldsymbol{Z}).

IV-A Finding Dual Function g(λ,ν,𝐙)g(\lambda,\nu,\boldsymbol{Z})

First, we find the dual function g(λ,ν,𝒁)g(\lambda,\nu,\boldsymbol{Z}) under given λ0\lambda\geq 0, ν0\nu\geq 0, and 𝒁𝟎\boldsymbol{Z}\succeq\boldsymbol{0} satisfying (13). By dropping the constant terms λΓEH+νPz1ΓS,1-\lambda\Gamma_{\text{EH}}+\nu P-\frac{z_{1}}{\Gamma_{\text{S},1}}, problem (12) is equivalent to

max𝑺𝟎log2det(𝑰NID+1σID2𝑯ID𝑺𝑯IDH)tr(𝑫𝑺).\max_{\boldsymbol{S}\succeq\boldsymbol{0}}\ \log_{2}\det\Big{(}\boldsymbol{I}_{N_{\text{ID}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{H}_{\text{ID}}\boldsymbol{S}\boldsymbol{H}_{\text{ID}}^{H}\Big{)}-\mathrm{tr}(\boldsymbol{D}\boldsymbol{S}). (15)

Suppose that rank(𝑫)=rp\mathrm{rank}(\boldsymbol{D})=r_{\text{p}}, the eigenvalue decomposition (EVD) of 𝑫\boldsymbol{D} is expressed as

𝑫=[𝑸null¯𝑸null][𝚺null¯𝟎𝟎𝟎][𝑸null¯𝑸null]H,\boldsymbol{D}=\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}\begin{bmatrix}\boldsymbol{\Sigma}^{\overline{\mathrm{null}}}&\boldsymbol{0}\\ \boldsymbol{0}&\boldsymbol{0}\end{bmatrix}\begin{bmatrix}{\boldsymbol{Q}^{\overline{\mathrm{null}}}}\ {\boldsymbol{Q}^{\mathrm{null}}}\end{bmatrix}^{H}, (16)

where 𝚺null¯=diag(σp,1,,σp,rp)\boldsymbol{\Sigma}^{\overline{\mathrm{null}}}=\mathrm{diag}(\sigma_{\text{p},1},\dots,\sigma_{\text{p},r_{\text{p}}}), and 𝑸null¯M×rp{\boldsymbol{Q}^{\overline{\mathrm{null}}}}\in\mathbb{C}^{M\times r_{\text{p}}} and 𝑸nullM×(Mrp){\boldsymbol{Q}^{\mathrm{null}}}\in\mathbb{C}^{M\times(M-r_{\text{p}})} denote the eigenvectors corresponding to the rpr_{\text{p}} non-zero eigenvalues σp,1,,σp,rp\sigma_{\text{p},1},\dots,\sigma_{\text{p},r_{\text{p}}}, and the remaining MrpM-r_{\text{p}} zero eigenvalues, respectively. Without loss of generality, we express 𝑺\boldsymbol{S} as

𝑺=[𝑸null¯𝑸null][𝑺11𝑺10𝑺10H𝑺00][𝑸null¯𝑸null]H,\boldsymbol{S}=\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}\begin{bmatrix}\boldsymbol{S}_{11}&\boldsymbol{S}_{10}\\ \boldsymbol{S}_{10}^{H}&\boldsymbol{S}_{00}\end{bmatrix}\begin{bmatrix}{\boldsymbol{Q}^{\overline{\mathrm{null}}}}\ {\boldsymbol{Q}^{\mathrm{null}}}\end{bmatrix}^{H}, (17)

where 𝑺11𝕊rp\boldsymbol{S}_{11}\in\mathbb{S}^{r_{\text{p}}}, 𝑺00𝕊Mrp\boldsymbol{S}_{00}\in\mathbb{S}^{M-r_{\text{p}}}, and 𝑺10rp×(Mrp)\boldsymbol{S}_{10}\in\mathbb{C}^{r_{\text{p}}\times(M-r_{\text{p}})} are variables to be optimized.

According to Lemma 1, we only need to deal with problem (15) for the case with 𝑯ID(𝑸null¯𝑺10𝑸nullH+𝑸null𝑺10H𝑸null¯H+𝑸null𝑺00𝑸nullH)𝑯IDH=𝟎\boldsymbol{H}_{\text{ID}}(\boldsymbol{Q}^{\overline{\mathrm{null}}}\boldsymbol{S}_{10}{\boldsymbol{Q}^{\mathrm{null}}}^{H}+\boldsymbol{Q}^{\mathrm{null}}\boldsymbol{S}_{10}^{H}{\boldsymbol{Q}^{\overline{\mathrm{null}}}}^{H}+\boldsymbol{Q}^{\mathrm{null}}\boldsymbol{S}_{00}{\boldsymbol{Q}^{\mathrm{null}}}^{H})\boldsymbol{H}_{\text{ID}}^{H}=\boldsymbol{0}. Therefore, (15) can be simplified as the optimization of 𝑺11\boldsymbol{S}_{11} in the following.

max𝑺11𝟎\displaystyle\max_{\boldsymbol{S}_{11}\succeq\boldsymbol{0}} log2det(𝑰NID+1σID2𝑯ID𝑸null¯𝑺11𝑸null¯H𝑯IDH)\displaystyle\log_{2}\det\Big{(}\boldsymbol{I}_{N_{\text{ID}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{H}_{\text{ID}}\boldsymbol{Q}^{\overline{\mathrm{null}}}\boldsymbol{S}_{11}{\boldsymbol{Q}^{\overline{\mathrm{null}}}}^{H}\boldsymbol{H}_{\text{ID}}^{H}\Big{)} (18)
tr(𝚺null¯𝑺11).\displaystyle-\mathrm{tr}(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}}\boldsymbol{S}_{11}).

Suppose that rank(𝑯ID𝑸null¯(𝚺null¯)12)=r~p\mathrm{rank}\big{(}\boldsymbol{H}_{\text{ID}}\boldsymbol{Q}^{\overline{\mathrm{null}}}(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}\big{)}=\widetilde{r}_{\text{p}}. Then we have the SVD as 𝑯ID𝑸null¯(𝚺null¯)12=𝑼p𝚲p𝑽pH\boldsymbol{H}_{\text{ID}}\boldsymbol{Q}^{\overline{\mathrm{null}}}(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}=\boldsymbol{U}_{\text{p}}\boldsymbol{\Lambda}_{\text{p}}\boldsymbol{V}_{\text{p}}^{H}, where 𝑼pNID×NID\boldsymbol{U}_{\text{p}}\in\mathbb{C}^{N_{\text{ID}}\times N_{\text{ID}}}, 𝚲pH𝚲p=diag(λp,12,,λp,r~p2,0,,0)\boldsymbol{\Lambda}_{\text{p}}^{H}\boldsymbol{\Lambda}_{\text{p}}=\mathrm{diag}(\lambda_{\text{p},1}^{2},\dots,\lambda_{\text{p},\widetilde{r}_{\text{p}}}^{2},0,\dots,0), and 𝑽prp×rp\boldsymbol{V}_{\text{p}}\in\mathbb{C}^{r_{\text{p}}\times r_{\text{p}}}. Substituting 𝑺11=(𝚺null¯)12𝑽p𝑺~11𝑽pH(𝚺null¯)12\boldsymbol{S}_{11}=(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}\boldsymbol{V}_{\text{p}}\boldsymbol{\widetilde{S}}_{11}\boldsymbol{V}_{\text{p}}^{H}(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}, (18) is re-expressed as

max𝑺~11𝟎log2det(𝑰rp+1σID2𝚲pH𝚲p𝑺~11)tr(𝑺~11).\max_{\boldsymbol{\widetilde{S}}_{11}\succeq\boldsymbol{0}}\ \log_{2}\det\Big{(}\boldsymbol{I}_{r_{\text{p}}}+\frac{1}{\sigma_{\text{ID}}^{2}}\boldsymbol{\Lambda}_{\text{p}}^{H}\boldsymbol{\Lambda}_{\text{p}}\boldsymbol{\widetilde{S}}_{11}\Big{)}-\mathrm{tr}(\boldsymbol{\widetilde{S}}_{11}). (19)

As shown in [3], the optimal solution to problem (19) is given by 𝑺~11=diag(p~1,,p~r~p,0,,0)\boldsymbol{\widetilde{S}}_{11}^{*}=\mathrm{diag}(\widetilde{p}_{1},\dots,\widetilde{p}_{\widetilde{r}_{\text{p}}},0,\dots,0), where

p~k=(1ln2σID2λp,k2)+,k{1,,r~p}.\widetilde{p}_{k}=(\frac{1}{\ln 2}-\frac{\sigma_{\text{ID}}^{2}}{\lambda_{\text{p},k}^{2}})^{+},\forall k\in\{1,\dots,\widetilde{r}_{\text{p}}\}. (20)

As a result, the optimal solution to problem (15) is given by 𝑺=[𝑸null¯𝑸null][𝑺11𝑺10𝑺10H𝑺00][𝑸null¯𝑸null]H\boldsymbol{S}^{*}=\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}\begin{bmatrix}\boldsymbol{S}_{11}^{*}&\boldsymbol{S}_{10}^{*}\\ {\boldsymbol{S}_{10}^{*}}^{H}&\boldsymbol{S}_{00}^{*}\end{bmatrix}\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}^{H}, where

𝑺11=(𝚺null¯)12𝑽p𝑺~11𝑽pH(𝚺null¯)12,\boldsymbol{S}_{11}^{*}=(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}\boldsymbol{V}_{\text{p}}\boldsymbol{\widetilde{S}}_{11}^{*}\boldsymbol{V}_{\text{p}}^{H}(\boldsymbol{\Sigma}^{\overline{\mathrm{null}}})^{-\frac{1}{2}}, (21)

and 𝑺10\boldsymbol{S}_{10}^{*} and 𝑺00𝟎\boldsymbol{S}_{00}^{*}\succeq\boldsymbol{0} can be chosen arbitrarily such that 𝑺𝟎\boldsymbol{S}^{*}\succeq\boldsymbol{0}444Note that 𝑺10\boldsymbol{S}_{10}^{*} and 𝑺00\boldsymbol{S}_{00}^{*} are non-unique here, and as a result, we need an additional step to determine them for solving the primal problem (P1) later. Here, we can simply choose 𝑺10=𝟎\boldsymbol{S}_{10}^{*}=\boldsymbol{0} and 𝑺00=𝟎\boldsymbol{S}_{00}^{*}=\boldsymbol{0} for obtaining the dual function g(λ,ν,𝒁)g(\lambda,\nu,\boldsymbol{Z}) only..

IV-B Solving Dual Problem (D1)

Next, we solve dual problem (D1), which is convex but not necessarily differentiable. Therefore, we can solve (D1) by applying subgradient-based methods such as the ellipsoid method [14]. First, for the objective function g(λ,ν,𝒁)g(\lambda,\nu,\boldsymbol{Z}), the subgradient at (λ,ν,z1,z2,z3)(\lambda,\nu,z_{1},z_{2},z_{3}) is [tr(𝑯EHH𝑯EH𝑺)ΓEH,Ptr(𝑺),tr(𝑨˙H𝑨˙𝑺)1ΓS,1,tr(𝑨˙H𝑨𝑺+𝑨H𝑨˙𝑺)+jtr(𝑨˙H𝑨𝑺𝑨H𝑨˙𝑺),tr(𝑨H𝑨𝑺)]T\big{[}\mathrm{tr}(\boldsymbol{H}_{\text{EH}}^{H}\boldsymbol{H}_{\text{EH}}\boldsymbol{S}^{*})-\Gamma_{\text{EH}},P-\mathrm{tr}(\boldsymbol{S}^{*}),\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{\dot{A}}\boldsymbol{S}^{*})-\frac{1}{\Gamma_{\text{S},1}},\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S}^{*}+\boldsymbol{A}^{H}\boldsymbol{\dot{A}}\boldsymbol{S}^{*})+j\mathrm{tr}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}\boldsymbol{S}^{*}-\boldsymbol{A}^{H}\boldsymbol{\dot{A}}\boldsymbol{S}^{*}),\mathrm{tr}(\boldsymbol{A}^{H}\boldsymbol{A}\boldsymbol{S}^{*})\big{]}^{T}. Then, let 𝒒1\boldsymbol{q}_{1} denote the eigenvector corresponding to the minimum eigenvalue of 𝑫\boldsymbol{D}. Since constraint 𝑫𝟎\boldsymbol{D}\succeq\boldsymbol{0} is equivalent to 𝒒1H𝑫𝒒10\boldsymbol{q}_{1}^{H}\boldsymbol{D}\boldsymbol{q}_{1}\geq 0, the subgradient of constraint 𝑫𝟎\boldsymbol{D}\succeq\boldsymbol{0} at (λ,ν,z1,z2,z3)(\lambda,\nu,z_{1},z_{2},z_{3}) is [𝒒1H𝑯EHH𝑯EH𝒒1,1,𝒒1H𝑨˙H𝑨˙𝒒1,𝒒1H(𝑨˙H𝑨+𝑨H𝑨˙)𝒒1+j𝒒1H(𝑨˙H𝑨𝑨H𝑨˙)𝒒1,𝒒1H𝑨H𝑨𝒒1]T\big{[}\boldsymbol{q}_{1}^{H}\boldsymbol{H}_{\text{EH}}^{H}\boldsymbol{H}_{\text{EH}}\boldsymbol{q}_{1},-1,\boldsymbol{q}_{1}^{H}\boldsymbol{\dot{A}}^{H}\boldsymbol{\dot{A}}\boldsymbol{q}_{1},\boldsymbol{q}_{1}^{H}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}+\boldsymbol{A}^{H}\boldsymbol{\dot{A}})\boldsymbol{q}_{1}+j\boldsymbol{q}_{1}^{H}(\boldsymbol{\dot{A}}^{H}\boldsymbol{A}-\boldsymbol{A}^{H}\boldsymbol{\dot{A}})\boldsymbol{q}_{1},\boldsymbol{q}_{1}^{H}\boldsymbol{A}^{H}\boldsymbol{A}\boldsymbol{q}_{1}\big{]}^{T}. Furthermore, let 𝒒2=[q2,1,q2,2]T\boldsymbol{q}_{2}=[q_{2,1},q_{2,2}]^{T} denote the eigenvector corresponding to the minimum eigenvalue of 𝒁\boldsymbol{Z}. The subgradient of constraint 𝒁𝟎\boldsymbol{Z}\succeq\boldsymbol{0} at (λ,ν,z1,z2,z3)(\lambda,\nu,z_{1},z_{2},z_{3}) is [0,0,|q2,1|2,(q2,1q2,2+q2,2q2,1)j(q2,1q2,2q2,2q2,1),|q2,2|2]T\big{[}0,0,-|q_{2,1}|^{2},-(q_{2,1}^{\dagger}q_{2,2}+q_{2,2}^{\dagger}q_{2,1})-j(q_{2,1}^{\dagger}q_{2,2}-q_{2,2}^{\dagger}q_{2,1}),-|q_{2,2}|^{2}\big{]}^{T}. With these derived subgradients, the ellipsoid method can be implemented efficiently, based on which we can obtain the optimal dual solution to (D1) as λ\lambda^{*}, ν\nu^{*}, and 𝒁\boldsymbol{Z}^{*}.

IV-C Optimal Solution to Primal Problem (P1)

Now, we present the optimal solution to primal problem (P1). With optimal dual variables λ\lambda^{*}, ν\nu^{*}, and 𝒁\boldsymbol{Z}^{*} at hand, the corresponding unique optimal solution 𝑺11\boldsymbol{S}_{11}^{*} to problem (15) can be directly used for constructing the optimal primal solution to (P1), denoted by 𝑺11opt\boldsymbol{S}_{11}^{\mathrm{opt}}. However, as indicated in Section IV-A, the optimal solutions of 𝑺10\boldsymbol{S}_{10}^{*} and 𝑺00\boldsymbol{S}_{00}^{*} to (15) are not unique. As a result, with given 𝑺11opt\boldsymbol{S}_{11}^{\mathrm{opt}}, we need to find the optimal solutions of 𝑺10\boldsymbol{S}_{10} and 𝑺00\boldsymbol{S}_{00}, denoted by 𝑺10opt\boldsymbol{S}_{10}^{\mathrm{opt}} and 𝑺00opt\boldsymbol{S}_{00}^{\mathrm{opt}}, by solving one additional feasibility problem. We have the following proposition.

Proposition 1

The optimal solution to problem (P1) is

𝑺opt=[𝑸null¯𝑸null][𝑺11opt𝑺10opt𝑺10optH𝑺00opt][𝑸null¯𝑸null]H,\boldsymbol{S}^{\mathrm{opt}}=\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}\begin{bmatrix}\boldsymbol{S}_{11}^{\mathrm{opt}}&\boldsymbol{S}_{10}^{\mathrm{opt}}\\ {\boldsymbol{S}_{10}^{\mathrm{opt}}}^{H}&\boldsymbol{S}_{00}^{\mathrm{opt}}\end{bmatrix}\begin{bmatrix}\boldsymbol{Q}^{\overline{\mathrm{null}}}\ \boldsymbol{Q}^{\mathrm{null}}\end{bmatrix}^{H}, (22)

where 𝐒11opt\boldsymbol{S}_{11}^{\mathrm{opt}} is given by (21) based on λ\lambda^{*}, ν\nu^{*}, and 𝐙\boldsymbol{Z}^{*}, and 𝐒10opt\boldsymbol{S}_{10}^{\mathrm{opt}} and 𝐒00opt\boldsymbol{S}_{00}^{\mathrm{opt}} are obtained by solving the following feasibility problem.

find\displaystyle\mathrm{find} 𝑺10and𝑺00\displaystyle\ \boldsymbol{S}_{10}\ \text{and}\ \boldsymbol{S}_{00} (23)
s.t.\displaystyle\mathrm{s.t.} (9b),(9d),(10),and(17).\displaystyle\ \eqref{Ra},\ \eqref{Rc},\ \eqref{Rb-reformulation},\ \text{and}\ \eqref{S_p}.
Remark 1

We have the following interesting observations from Proposition 1. First, the optimal transmit covariance solution 𝐒opt\boldsymbol{S}^{\mathrm{opt}} follows the EMT structure based on the composite channel 𝐃\boldsymbol{D} consisting of ID, EH, and sensing channels (see (16)), together with the water-filling-like power allocation (see (20)). Next, it is observed that 𝐒opt\boldsymbol{S}^{\mathrm{opt}} is divided into two parts, i.e., 𝐒11opt\boldsymbol{S}_{11}^{\mathrm{opt}} for the triple roles of communication, sensing, and powering; and 𝐒10opt\boldsymbol{S}_{10}^{\mathrm{opt}} and 𝐒00opt\boldsymbol{S}_{00}^{\mathrm{opt}} for sensing and powering only. Notice that based on extensive simulations, for the cases with randomly generated channels, we have 𝐃𝟎\boldsymbol{D}\succ\boldsymbol{0} and 𝐒opt=𝐐null¯𝐒11opt𝐐null¯H\boldsymbol{S}^{\mathrm{opt}}=\boldsymbol{Q}^{\overline{\mathrm{null}}}\boldsymbol{S}_{11}^{\mathrm{opt}}{\boldsymbol{Q}^{\overline{\mathrm{null}}}}^{H}, i.e., only 𝐒11opt\boldsymbol{S}_{11}^{\mathrm{opt}} is needed; by contrast, in some special cases (e.g., 𝐇ID\boldsymbol{H}_{\text{ID}} and 𝐇EH\boldsymbol{H}_{\text{EH}} being orthogonal to 𝐀\boldsymbol{A}), it could happen that 𝐃\boldsymbol{D} is rank-deficient, and 𝐒10opt\boldsymbol{S}_{10}^{\mathrm{opt}} and 𝐒00opt\boldsymbol{S}_{00}^{\mathrm{opt}} are also needed.

V Numerical Results

This section evaluates the performance of our proposed optimal design. In the simulation, the H-AP is equipped with a ULA of M=10M=10 and NS=16N_{\text{S}}=16 antennas with half-wavelength spacing between consecutive antennas. The target angle is θ=π3\theta=\frac{\pi}{3}, and the reflection coefficient is set as α=108\alpha=10^{-8}, accounting for a round-trip path loss of 160160 dB. The ID channel and the EH channel are set as 𝑯ID=αID𝑯^ID\boldsymbol{H}_{\text{ID}}=\alpha_{\text{ID}}\widehat{\boldsymbol{H}}_{\text{ID}} and 𝑯EH=αEH𝑯^EH\boldsymbol{H}_{\text{EH}}=\alpha_{\text{EH}}\widehat{\boldsymbol{H}}_{\text{EH}}, where αID2\alpha_{\text{ID}}^{2} and αEH2\alpha_{\text{EH}}^{2} correspond to the path loss of 120120 dB and 6060 dB, respectively, and 𝑯^ID\widehat{\boldsymbol{H}}_{\text{ID}} and 𝑯^EH\widehat{\boldsymbol{H}}_{\text{EH}} correspond to the normalized channel accounting for the small-scale fading. The transmission frame length is set as L=256L=256. The noise powers at the sensing receiver and the ID receiver, i.e., σS2\sigma_{\text{S}}^{2} and σID2\sigma_{\text{ID}}^{2}, are set to be 80-80 dBm.

Refer to caption
Figure 3: Pareto boundary for the C-R-E region with NID=NEH=1N_{\text{ID}}=N_{\text{EH}}=1 and P=50P=50 dBm.

Fig. 3 shows the Pareto boundary of the C-R-E region with NID=NEH=1N_{\text{ID}}=N_{\text{EH}}=1 and P=50P=50 dBm. In this figure, we consider the line-of-sight (LoS) channels for the ID and EH channels, i.e., 𝑯^ID=𝒂tT(θID)\widehat{\boldsymbol{H}}_{\text{ID}}=\boldsymbol{a}_{t}^{T}(\theta_{\text{ID}}) and 𝑯^EH=𝒂tT(θEH)\widehat{\boldsymbol{H}}_{\text{EH}}=\boldsymbol{a}_{t}^{T}(\theta_{\text{EH}}). Furthermore, we set θ=0\theta=0, sinθID=2γM\sin\theta_{\text{ID}}=\frac{2\gamma}{M}, and sinθEH=4γM\sin\theta_{\text{EH}}=\frac{4\gamma}{M}. We consider three cases with γ=0\gamma=0, 0.40.4, and 11, which correspond to the cases when the sensing, ID, and EH channels are identical, correlated, and orthogonal, respectively. It is observed that when γ=0\gamma=0, the Pareto boundary is a point, which means that the R-max, E-max, and C-min strategies are identical, and thus the three performance metrics are optimized at the same time. In is also observed that when γ=1\gamma=1, optimizing one metric (e.g., E-max) leads to poor performances for the other two metrics (e.g., zero rate and highest CRB), thus showing that the three objectives are competing. Furthermore, when γ=0.4\gamma=0.4, the C-R-E region boundary is observed to lie between those with γ=1\gamma=1 and γ=0\gamma=0, thus showing the C-R-E tradeoff when the channels are correlated.

Next, we evaluate the performance of our proposed design as compared to the benchmark scheme based on time switching. In this scheme, the transmission duration is divided into three portions, tID0t_{\text{ID}}\geq 0, tEH0t_{\text{EH}}\geq 0, and tS0t_{\text{S}}\geq 0, with tID+tEH+tS=1t_{\text{ID}}+t_{\text{EH}}+t_{\text{S}}=1, during which the H-AP employs the transmit covariance matrices 𝑺ID\boldsymbol{S}_{\text{ID}}, 𝑺EH\boldsymbol{S}_{\text{EH}}, and 𝑺S\boldsymbol{S}_{\text{S}}, respectively. The corresponding communication rate, harvested energy, and estimation CRB in this scheme are expressed as RTS(tID,tEH,tS)=tIDR(𝑺ID){R}_{\text{TS}}(t_{\text{ID}},t_{\text{EH}},t_{\text{S}})=t_{\text{ID}}{R}(\boldsymbol{S}_{\text{ID}}), ETS(tID,tEH,tS)=tIDE(𝑺ID)+tEHE(𝑺EH)+tSE(𝑺S){E}_{\text{TS}}(t_{\text{ID}},t_{\text{EH}},t_{\text{S}})=t_{\text{ID}}{E}(\boldsymbol{S}_{\text{ID}})+t_{\text{EH}}{E}(\boldsymbol{S}_{\text{EH}})+t_{\text{S}}{E}(\boldsymbol{S}_{\text{S}}), and CRBTS(tID,tEH,tS)=CRB(tID𝑺ID+tEH𝑺EH+tS𝑺S)\mathrm{CRB}_{\text{TS}}(t_{\text{ID}},t_{\text{EH}},t_{\text{S}})=\mathrm{CRB}(t_{\text{ID}}\boldsymbol{S}_{\text{ID}}+t_{\text{EH}}\boldsymbol{S}_{\text{EH}}+t_{\text{S}}\boldsymbol{S}_{\text{S}}), respectively. Then, we optimize tIDt_{\text{ID}}, tEHt_{\text{EH}}, and tSt_{\text{S}} to achieve different C-R-E tradeoffs.

Refer to caption
Figure 4: The communication rate R{R} versus the CRB constraint ΓS\Gamma_{\text{S}} with NID=NEH=4N_{\text{ID}}=N_{\text{EH}}=4 and P=40P=40 dBm.

Fig. 4 shows the obtained communication rate R{R} by (P1) versus the estimation CRB constraint ΓS\Gamma_{\text{S}}, in which two EH constraints ΓEH=0.5Emax\Gamma_{\text{EH}}=0.5{E}_{\mathrm{max}} (high ΓEH\Gamma_{\text{EH}} case) and ΓEH=0.05Emax\Gamma_{\text{EH}}=0.05{E}_{\mathrm{max}} (low ΓEH\Gamma_{\text{EH}} case) are considered. Here, we set NID=NEH=4N_{\text{ID}}=N_{\text{EH}}=4 and P=40P=40 dBm, and generate 𝑯^ID\widehat{\boldsymbol{H}}_{\text{ID}} and 𝑯^EH\widehat{\boldsymbol{H}}_{\text{EH}} as CSCG random matrices with each element being zero mean and unit variance. It is observed that under each EH constraint, our proposed optimal design outperforms the time switching scheme. For the case when ΓEH\Gamma_{\text{EH}} is high, the performance gap is observed to be significant over the whole regime of ΓS\Gamma_{\text{S}}. By contrast, for the case when ΓEH\Gamma_{\text{EH}} is low, the time switching scheme is observed to perform close to the optimal design when ΓS\Gamma_{\text{S}} becomes large. This is due to the fact that both schemes can achieve the R-max vertex with the maximum communication rate in this case.

VI Conclusion

This paper studied the fundamental C-R-E tradeoff performance limits for a new multi-functional MIMO system integrating triple functions of sensing, communication, and powering. We characterized the Pareto boundary of the so-called C-R-E region, by optimally solving a new MIMO communication rate maximization problem subject to both energy harvesting and estimation CRB constraints. It was shown that the resultant C-R-E tradeoff highly depends on the correlations of the ID, EH, and sensing channels, and the proposed optimal design significantly outperforms the benchmark scheme based on time switching.

References

  • [1] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, “Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 4–33, Jan. 2019.
  • [2] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  • [3] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013.
  • [4] J. Xu, L. Liu, and R. Zhang, “Multiuser MISO beamforming for simultaneous wireless information and power transfer,” IEEE Trans. Signal Process., vol. 62, no. 18, pp. 4798–4810, Sep. 2014.
  • [5] Y. Xiong, F. Liu, Y. Cui, W. Yuan, and T. X. Han, “Flowing the information from Shannon to Fisher: Towards the fundamental tradeoff in ISAC,” arXiv preprint arXiv:2204.06938, 2022.
  • [6] H. Hua, T. X. Han, and J. Xu, “MIMO integrated sensing and communication: CRB-rate tradeoff,” arXiv preprint arXiv:2209.12721, 2022.
  • [7] X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, Jun. 2020.
  • [8] H. Hua, J. Xu, and T. X. Han, “Optimal transmit beamforming for integrated sensing and communication,” arXiv preprint arXiv:2104.11871, 2021.
  • [9] J. Li, L. Xu, P. Stoica, K. W. Forsythe, and D. W. Bliss, “Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 218–232, Jan. 2008.
  • [10] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883, Oct. 2006.
  • [11] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.
  • [12] F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, Dec. 2021.
  • [13] X. Song, J. Xu, F. Liu, T. X. Han, and Y. C. Eldar, “Intelligent reflecting surface enabled sensing: Cramér-Rao bound optimization,” arXiv preprint arXiv:2207.05611, 2022.
  • [14] S. Boyd and L. Vandenberghe, Convex Optimization.   Cambridge University Press, 2004.