This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University,
No.180, Siwangting Road, Yangzhou, 225009, P.R. China.

Tree level amplitudes from soft theorems

Abstract

We demonstrate that the tree level amplitudes and the explicit formulas of soft factors can be uniquely determined by soft theorems and the universality of soft factors. By imposing the soft theorems and the universality, as well as the assumption of double copy, we reconstruct single trace Yang-Mills-scalar amplitudes and pure Yang-Mills amplitudes, in the expanded formulas. The explicit formulas of soft factors for the bi-adjoint scalar and gluon are also determined. The expansions of Yang-Mills-scalar and Yang-Mills amplitudes can be extended to Einstein-Yang-Mills and gravitational amplitudes, and we use the expanded single trace Einstein-Yang-Mills amplitudes to reproduce the soft factors for the graviton.

Keywords:
Soft theorem, Soft factor, Amplitude, Expansion

1 Introduction

Among the investigations of scattering amplitudes in the past decade, one of the remarkable progresses is the study of soft theorems. Historically, soft theorems at tree level were derived using Feynman rules, originally discovered for photons in Low , and extended to gravitons in Weinberg . In 2014, soft theorems have been revived for gravity (GR) Cachazo:2014fwa and Yang-Mills (YM) theory Casali:2014xpa for tree level amplitudes, by applying Britto-Cachazo-Feng-Witten (BCFW) recursion relation Britto:2004ap ; Britto:2005fq . For GR, the soft theorem was generalized from the leading order to sub-leading and sub-sub-leading orders. For YM theory, the soft theorem was proven at the leading and sub-leading orders. These new results were generalized to arbitrary space-time dimensions Schwab:2014xua ; Afkhami-Jeddi:2014fia , via Cachazo-He-Yuan (CHY) formulas Cachazo:2013gna ; Cachazo:2013hca ; Cachazo:2013iea ; Cachazo:2014nsa ; Cachazo:2014xea . One of the motivations, which have caught researchers’ attention for studying soft theorems, is their equivalence to memory effects and asymptotic symmetries Strominger:2013jfa ; Strominger:2013lka ; He:2014laa ; Kapec:2014opa ; Strominger:2014pwa ; Pasterski:2015tva ; Barnich1 ; Barnich2 ; Barnich3 . Subsequently, the soft theorems and asymptotic symmetries for a variety of other theories including string theory, and the soft theorems at the loop level, have been further investigated in ZviScott ; HHW ; FreddyEllis ; Bianchi:2014gla ; Campiglia:2014yka ; Campiglia:2016efb ; Elvang:2016qvq ; Guerrieri:2017ujb ; Hamada:2017atr ; Mao:2017tey ; Li:2017fsb ; DiVecchia:2017gfi ; Bianchi:2016viy ; Chakrabarti:2017ltl ; Sen:2017nim ; Hamada:2018vrw . Meanwhile, the soft theorems were exploited in the construction of tree level amplitudes, such as using another type of soft behavior called the Adler zero to construct amplitudes of various effective theories, and the inverse soft theorem program, and so on Cheung:2014dqa ; Luo:2015tat ; Elvang:2018dco ; Cachazo:2016njl ; Rodina:2018pcb ; Boucher-Veronneau:2011rwd ; Nguyen:2009jk .

Soft theorems describe the universal behavior of scattering amplitudes when one or more external massless momenta are taken to near zero. This limit can be achieved by re-scaling the massless momenta via a soft parameter as kμτkμk^{\mu}\to\tau k^{\mu}, and taking the limit τ0\tau\to 0. Soft theorems then state the factorization of the amplitudes. For instance, the n+1n+1-point GR amplitude factorizes as

𝒜n+1(τ1Sh(0)+τ0Sh(1)+τSh(2)+)𝒜n,\displaystyle{\cal A}_{n+1}\,\to\,\Big{(}\tau^{-1}\,S^{(0)}_{h}+\tau^{0}\,S^{(1)}_{h}+\tau\,S^{(2)}_{h}+\cdots\Big{)}\,{\cal A}_{n}\,,~{}~{}~{}~{} (1)

where 𝒜n{\cal A}_{n} is the sub-amplitude of 𝒜n+1{\cal A}_{n+1}, which is generated from 𝒜n+1{\cal A}_{n+1} by removing the soft external graviton. The universal operators Sh(0)S^{(0)}_{h}, Sh(1)S^{(1)}_{h}, Sh(2)S^{(2)}_{h} are called soft factors, or soft operators, at leading, sub-leading, and sub-sub-leading orders. The factorization in (1) is intuitively natural. Roughly speaking, in the soft limit the soft particle can be thought as vanishing, leaving a lower-point amplitude with the soft external leg removed, and the universal soft factors carried by the soft particle. Due to this clear physical picture for soft theorems, it is interesting to ask, suppose we regard soft theorems as the basic principle, insist the universality of soft factors without knowing the explicit formulas of them, what constraints will be imposed on amplitudes, and soft factors themselves? This is the main motivation for the current paper.

In this paper, by imposing the soft theorems and the universality of soft factors, and assuming the double copy structure Kawai:1985xq ; Bern:2008qj ; Chiodaroli:2014xia ; Johansson:2015oia ; Johansson:2019dnu , we reconstruct single trace Yang-Mills-scalar (YMS) tree amplitudes and pure YM tree amplitudes, in the formulas of expanding these amplitudes to double color ordered bi-adjoint scalar (BAS) amplitudes, established in Fu:2017uzt ; Teng:2017tbo ; Du:2017kpo ; Du:2017gnh ; Feng:2019tvb . The leading soft factor for the BAS scalar, the leading and sub-leading soft factors for the gluon, are also determined. Through the double copy structure , the expansions of YMS and YM amplitudes can be extended to expansions of single trace Einstein-Yang-Mills (EYM) amplitudes and the pure GR amplitudes. Then, by using the expanded formulas of EYM amplitudes, we reproduce the soft factors for the graviton at leading, sub-leading, and sub-sub-leading orders.

It is worth to clarify some conventions which will be used in the remainder of this paper. First, when saying soft theorems, we mean the universal factorizations as in (1) (maybe only contains leading order, or leading and sub-leading orders), without knowing the formulas of soft factors. In other words, we insist the factorization property, regard it as a principle. Secondly, for latter convenience, from now on we absorb τa\tau^{a} in (1) into the soft factors. Thirdly, the soft factor may includes kinematic variables carried by other hard particles, such as momenta and polarization vectors. We say the soft operator acts on an external particle if this particle contributes the kinematic variables to the soft operator, and say the soft operator does not act on an external particle oppositely. As can be seen from our results, soft factors act on external particles which carry appropriate charges. Finally, when saying the universality of the soft operator, we mean it acts on external particles in universal manners. These manners of actions depend on the types of external particles, as will be further discussed in subsection.2.1 and subsection.3.1.

The remainder of this paper is organized as follows. In section.2, we give a brief introduction to the BAS tree amplitudes, and the expansions of other amplitudes to them. In section.3, we use the soft theorems and the universality of soft factors, to construct the single trace YMS tree amplitudes in the expanded formulas, as well as the soft factors for the scalar and gluon. In section.4, we use the similar technic to determine the pure YM tree amplitudes in the expanded formulas. Then, in section.5, we extend the expanded formulas to single trace EYM tree amplitudes and GR tree amplitudes, and figure out the soft factors for the graviton. Finally, we close with conclusion and discussion in section.6.

2 Brief review of BAS theory and expansions of amplitudes

For readers’ convenience, in this section we rapidly review the necessary background. In subsection.2.1, we review the tree level amplitudes of bi-adjoint scalar (BAS) theory. Some notations and technics which will be used in subsequent sections are also introduced. In subsection.2.2, we discuss the expansions of tree amplitudes to BAS amplitudes, including the choice of basis, as well as the double copy structure for coefficients.

2.1 Tree level BAS amplitudes

The BAS theory describes the bi-adjoint scalar field ϕaa¯\phi_{a\bar{a}} with the Lagrangian

BAS=12μϕaa¯μϕaa¯λ3!fabcfa¯b¯c¯ϕaa¯ϕbb¯ϕcc¯,\displaystyle{\cal L}_{BAS}={1\over 2}\,\partial_{\mu}\phi^{a\bar{a}}\,\partial^{\mu}\phi^{a\bar{a}}-{\lambda\over 3!}\,f^{abc}f^{\bar{a}\bar{b}\bar{c}}\,\phi^{a\bar{a}}\phi^{b\bar{b}}\phi^{c\bar{c}}\,, (2)

where the structure constant fabcf^{abc} and generator TaT^{a} satisfy

[Ta,Tb]=ifabcTc,\displaystyle[T^{a},T^{b}]=if^{abc}T^{c}\,, (3)

and the dual color algebra encoded by fa¯b¯c¯f^{\bar{a}\bar{b}\bar{c}} and Ta¯T^{\bar{a}} is analogous. The tree level amplitudes of this theory contain only propagators, and can be decomposed into double color ordered partial amplitudes via the standard technic. Each double color ordered partial amplitude is simultaneously planar with respect to two color orderings, arise from expanding the full nn-point amplitude to Tr(Taσ1Taσn)\mathop{\rm Tr}(T^{a_{\sigma_{1}}}\cdots T^{a_{\sigma_{n}}}) and Tr(Ta¯σ¯1Ta¯σ¯n)\mathop{\rm Tr}(T^{\bar{a}_{\bar{\sigma}_{1}}}\cdots T^{\bar{a}_{\bar{\sigma}_{n}}}) respectively, where σi\sigma_{i} and σ¯i\bar{\sigma}_{i} denote permutations among all external scalars.

To calculate double color ordered partial amplitudes, it is convenient to employ the diagrammatical method proposed by Cachazo, He and Yuan in Cachazo:2013iea . For a BAS amplitude whose double color-orderings are given, this method provides the corresponding Feynman diagrams as well as the overall sign directly. Let us consider the 55-point example 𝒜S(1,2,3,4,5|1,4,2,3,5){\cal A}_{S}(1,2,3,4,5|1,4,2,3,5). In Figure.1, the first diagram satisfies both two color orderings (1,2,3,4,5)(1,2,3,4,5) and (1,4,2,3,5)(1,4,2,3,5), while the second one satisfies the ordering (1,2,3,4,5)(1,2,3,4,5) but not (1,4,2,3,5)(1,4,2,3,5). Thus, the first diagram is allowed by the double color orderings (1,2,3,4,5|1,4,2,3,5)(1,2,3,4,5|1,4,2,3,5), while the second one is not. It is easy to see other diagrams are also forbidden by the ordering (1,4,2,3,5)(1,4,2,3,5), thus the first diagram in Figure.1 is the only diagram contributes to the amplitude 𝒜S(1,2,3,4,5|1,4,2,3,5){\cal A}_{S}(1,2,3,4,5|1,4,2,3,5).

Refer to caption
Refer to caption
Figure 1: Two 55-point diagrams

The Feynman diagrams contribute to a given BAS amplitude can be obtained via systematic diagrammatical rules. For the above example, one can draw a disk diagram as follows.

  • Draw points on the boundary of the disk according to the first ordering (1,2,3,4,5)(1,2,3,4,5).

  • Draw a loop of line segments which connecting the points according to the second ordering (1,4,2,3,5)(1,4,2,3,5).

The obtained disk diagram is shown in the first diagram in Figure.2. From the diagram, one can see that two orderings share the boundaries {1,5}\{1,5\} and {2,3}\{2,3\}. These co-boundaries indicate channels 1/s15{1/s_{15}} and 1/s23{1/s_{23}}, therefore the first Feynman diagram in Figure.1. Then the BAS amplitude 𝒜S(1,2,3,4,5|1,4,2,3,5){\cal A}_{S}(1,2,3,4,5|1,4,2,3,5) can be computed as

𝒜S(1,2,3,4,5|1,4,2,3,5)=1s231s51,\displaystyle{\cal A}_{S}(1,2,3,4,5|1,4,2,3,5)={1\over s_{23}}{1\over s_{51}}\,, (4)

up to an overall sign. The Mandelstam variable sijs_{i\cdots j} is defined as

sijKij2,Kija=ijka,\displaystyle s_{i\cdots j}\equiv K_{ij}^{2}\,,~{}~{}~{}~{}K_{ij}\equiv\sum_{a=i}^{j}\,k_{a}\,,~{}~{}~{}~{} (5)

where kak_{a} is the momentum carried by the external leg aa.

Refer to caption
Refer to caption
Figure 2: Diagram for 𝒜S(1,2,3,4,5|1,4,2,3,5){\cal A}_{S}(1,2,3,4,5|1,4,2,3,5) and 𝒜S(1,2,3,4,5|1,2,4,3,5){\cal A}_{S}(1,2,3,4,5|1,2,4,3,5).

As another example, let us consider the BAS amplitude 𝒜S(1,2,3,4,5|1,2,4,3,5){\cal A}_{S}(1,2,3,4,5|1,2,4,3,5). The corresponding disk diagram is shown in the second configuration in Figure.2, and one can see two orderings have co-boundaries {3,4}\{3,4\} and {5,1,2}\{5,1,2\}. The co-boundary {3,4}\{3,4\} indicates the channel 1/s34{1/s_{34}}. The co-boundary {5,1,2}\{5,1,2\} indicates the channel 1/s512{1/s_{512}} which is equivalent to 1/s341/s_{34}, as well as sub-channels 1/s12{1/s_{12}} and 1/s51{1/s_{51}}. Using the above decomposition, one can calculate 𝒜S(1,2,3,4,5|1,2,4,3,5){\cal A}_{S}(1,2,3,4,5|1,2,4,3,5) as

𝒜S(1,2,3,4,5|1,2,4,3,5)=1s34(1s12+1s51),\displaystyle{\cal A}_{S}(1,2,3,4,5|1,2,4,3,5)={1\over s_{34}}\Big{(}{1\over s_{12}}+{1\over s_{51}}\Big{)}\,, (6)

up to an overall sign.

The overall sign, determined by the color algebra, can be fixed by following rules.

  • Each polygon with odd number of vertices contributes a plus sign if its orientation is the same as that of the disk and a minus sign if opposite.

  • Each polygon with even number of vertices always contributes a minus sign.

  • Each intersection point contributes a minus sign.

We now apply these rules to previous examples. In the first diagram in Figure.2, the polygons are three triangles, namely 51A51A, A4BA4B and B23B23, which contribute ++, -, ++ respectively, while two intersection points AA and BB contribute two -. In the second one in Figure.2, the polygons are 512A512A and A43A43, which contribute two -, while the intersection point AA contributes -. Then we arrive at the full results

𝒜S(1,2,3,4,5|1,4,2,3,5)\displaystyle{\cal A}_{S}(1,2,3,4,5|1,4,2,3,5) =\displaystyle= 1s231s51,\displaystyle-{1\over s_{23}}{1\over s_{51}}\,,
𝒜S(1,2,3,4,5|1,2,4,3,5)\displaystyle{\cal A}_{S}(1,2,3,4,5|1,2,4,3,5) =\displaystyle= 1s34(1s12+1s51).\displaystyle-{1\over s_{34}}\Big{(}{1\over s_{12}}+{1\over s_{51}}\Big{)}\,. (7)

In the reminder of this paper, we adopt another convention for the overall sign. If the line segments form a convex polygon, and the orientation of the convex polygon is the same as that of the disk, then the overall sign is ++. For instance, the disk diagram in Figure.3 indicates the overall sign ++ under the new convention, while the old convention gives - according to the square formed by four line segments. Notice that the diagrammatical rules described previously still give the related sign between different disk diagrams. For example, two disk diagrams in Figure.2 shows that the relative sign between 𝒜S(1,2,3,4,5|1,4,2,3,5){\cal A}_{S}(1,2,3,4,5|1,4,2,3,5) and 𝒜S(1,2,3,4,5|1,2,4,3,5){\cal A}_{S}(1,2,3,4,5|1,2,4,3,5) is ++.

Refer to caption
Figure 3: The overall sign ++ under the new convention.

One application of the new convention, which is crucial in subsequent sections, is as follows. For the double color ordered BAS amplitude 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots), suppose we remove the external scalar pp, the overall sign for the resulted amplitude 𝒜S(,a,b,|,a,b,){\cal A}_{S}(\cdots,a,b,\cdots|\cdots,a,b,\cdots) is ++. Notice that in the notations above we do not require the full color orderings at the l.h.s and r.h.s of || to be the same. On the other hand, if we remove pp from 𝒜S(,a,p,b,,c,d,|,a,b,,c,p,d,){\cal A}_{S}(\cdots,a,p,b,\cdots,c,d,\cdots|\cdots,a,b,\cdots,c,p,d,\cdots), whose color orderings are the same as those for 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) except the positions of pp, the obtained amplitude 𝒜S(,a,b,|,a,b,){\cal A}_{S}(\cdots,a,b,\cdots|\cdots,a,b,\cdots) carries an overall -. We now give the interpretation to the above observation. One can change the color orderings for 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) and 𝒜S(,a,b,|,a,b,){\cal A}_{S}(\cdots,a,b,\cdots|\cdots,a,b,\cdots) simultaneously, to arrive at two convex polygons in disk diagrams in Figure.4. This procedure will not alter the relative sign. Each diagram in Figure.4 corresponds to an overall ++, due to our new convention. Thus, generating 𝒜S(,a,b,|,a,b,){\cal A}_{S}(\cdots,a,b,\cdots|\cdots,a,b,\cdots) from 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) will not create the overall -. Then, we change the color orderings for 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) and 𝒜S(,a,p,b,,c,d,|,a,b,,c,p,d,){\cal A}_{S}(\cdots,a,p,b,\cdots,c,d,\cdots|\cdots,a,b,\cdots,c,p,d,\cdots) simultaneously to get two configurations in Figure.5, where the line segments in first one again form a convex polygon. The relative sign between these two configurations in Figure.5 can be figured out via the diagrammatical rules. Suppose the number of points on the boundary is odd, the old convention indicates that the polygon carries a ++. In the second configuration, two intersection points contribute two -, the triangle carries the orientation opposite to the disk thus contributes -, and two convex polygons whose numbers of vertices are both odd or both even contribute ++. Consequently, there is a relative - between two configurations. If the number of points on the boundary is even, the first configuration carries -. The second configuration contains two convex polygons which carry the same orientations as the disk, and the numbers of their vertices are even for one polygon and odd for another one, thus the total number of - for the second configuration is 44. Again, there is a relative - between two configurations. For the first configuration, the new convention for overall sign implies that removing pp will not create -. Thus, for the second one, removing pp provides a - to the resulted amplitude.

Refer to caption
Figure 4: Two convex polygons correspond to 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) and 𝒜S(,a,b,|,a,b,){\cal A}_{S}(\cdots,a,b,\cdots|\cdots,a,b,\cdots).
Refer to caption
Figure 5: Disk diagrams for 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) and 𝒜S(,a,p,b,|,c,p,d,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,c,p,d,\cdots).

Then, we discuss which propagators can contribute to a double color ordered BAS amplitude with fixed color orderings. In the diagrammatical rules, this question is answered by the co-boundaries of the disk diagram. One can also deduce the following new rule which will be used latter. For the set α\alpha of successive points on the boundary of disk, let us call line segments connecting two points in α\alpha as internal lines, and line segments connecting one point in α\alpha and another one in α¯\bar{\alpha} as external lines, where α¯\bar{\alpha} is the complementary set of α\alpha. The new rule is, the set α\alpha contributes the propagator 1/sα1/s_{\alpha} to the BAS partial amplitude if and only if it has two external lines. This rule is manifestly equivalent to requiring the co-boundary.

When considering the soft limit, the 22-point channels play the central role. Since the partial BAS amplitude carries two color orderings, if the 22-point channel contributes 1/sab1/s_{ab} to the amplitude, external legs aa and bb must be adjacent to each other in both two orderings. Suppose the first color ordering is (,a,b,)(\cdots,a,b,\cdots), then 1/sab1/s_{ab} is allowed by this ordering. To denote if it is allowed by another one, we introduce the symbol δab\delta_{ab} whose ordering of two subscripts aa and bb is determined by the first color ordering111The Kronecker symbol will not appear in this paper except in the third footnote, thus we hope the notation δab\delta_{ab} will not confuse the readers.. The value of δab\delta_{ab} is δab=1\delta_{ab}=1 if another color ordering is (,a,b,)(\cdots,a,b,\cdots), δab=1\delta_{ab}=-1 if another color ordering is (,b,a,)(\cdots,b,a,\cdots), due to the ani-symmetry of the structure constant, i.e., fabc=fbacf^{abc}=-f^{bac}, and δab=0\delta_{ab}=0 otherwise. The value of δab\delta_{ab} is consistent with our new convention of the overall sign, as can be seen in Figure.6. The first configuration in Figure.6 gives δab=1\delta_{ab}=1, due to the convention that the overall sign corresponds to a convex polygon is ++. The second configuration carries a relative sign - when comparing with the first one, as can be figured out via the diagrammatical rules, thus implies δab=1\delta_{ab}=-1. From the definition, it is straightforward to see δab=δba\delta_{ab}=-\delta_{ba}. The symbol δab\delta_{ab} will be used frequently latter.

Refer to caption
Figure 6: Disk diagrams for 𝒜S(,a,p,b,|,a,p,b,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,a,p,b,\cdots) and 𝒜S(,a,p,b,|,c,p,d,){\cal A}_{S}(\cdots,a,p,b,\cdots|\cdots,c,p,d,\cdots).

Before ending this subsection, we determine the leading order soft factor for the BAS scalar. Consider the double color ordered BAS amplitude 𝒜S(1,,n|σ){\cal A}_{S}(1,\cdots,n|\sigma), which carries two color orderings (1,,n)(1,\cdots,n) and σ\sigma. We re-scale kik_{i} as kiτkik_{i}\to\tau k_{i}, and expand the amplitude in τ\tau. The leading order contribution manifestly aries from 22-point channels 1/s1(i+1)1/s_{1(i+1)} and 1/s(i1)i1/s_{(i-1)i} which provide the 1/τ1/\tau order contributions, namely,

𝒜S(0)(1,,n|σ)\displaystyle{\cal A}^{(0)}_{S}(1,\cdots,n|\sigma) =\displaystyle= 1τ(δi(i+1)si(i+1)+δ(i1)is(i1)i)𝒜S(1,,i1,,i+1,,n|σi)\displaystyle{1\over\tau}\Big{(}{\delta_{i(i+1)}\over s_{i(i+1)}}+{\delta_{(i-1)i}\over s_{(i-1)i}}\Big{)}\,{\cal A}_{S}(1,\cdots,i-1,\not{i},i+1,\cdots,n|\sigma\setminus i) (8)
=\displaystyle= Ss(0)(i)𝒜S(1,,i1,,i+1,,n|σi),\displaystyle S^{(0)}_{s}(i)\,{\cal A}_{S}(1,\cdots,i-1,\not{i},i+1,\cdots,n|\sigma\setminus i)\,,~{}~{}~{}

where \not{i} stands for removing the leg ii, σ1\sigma\setminus 1 means the color ordering generated from σ\sigma by eliminating ii. The leading soft operator Ss(0)(i)S^{(0)}_{s}(i) for the scalar ii is extracted as

Ss(0)(i)=1τ(δi(i+1)si(i+1)+δ(i1)is(i1)i),\displaystyle S^{(0)}_{s}(i)={1\over\tau}\,\Big{(}{\delta_{i(i+1)}\over s_{i(i+1)}}+{\delta_{(i-1)i}\over s_{(i-1)i}}\Big{)}\,,~{}~{}~{}~{} (9)

which acts on external scalars which are adjacent to ii in two color orderings. This operator serves as one of starting points in subsection.3.1.

It is worth to take (9) as the instance, to give further explanations for the universality of soft operator. The operator (9) acts on external BAS scalars which are adjacent to ii in either of two color orderings, we assume such manner is universal. For amplitudes contain other types of particles, such as scalars coupled to gluons, the leading soft factor Ss(0)(i)S^{(0)}_{s}(i) for scalar still acts on external scalars in the manner described by (9), i.e., it always acts on external BAS scalars which are adjacent to ii in both of two color orderings. On the other hand, it is possible Ss(0)(i)S^{(0)}_{s}(i) also acts on other types of external particles such as gluons. This possibility can not be studied in the current case, since the pure BAS amplitudes only include external BAS scalars. One may wonder the action of soft operator should depend on theories defined by Lagrangians, rather than types of external particles. For amplitudes under consideration in the current paper, this puzzle can be solved via the following argument. Let us take the single trace YMS amplitudes as the example. One can regard the pure BAS and pure YM amplitudes as special cases of general single trace YMS amplitudes222For the multiple trace YMS amplitudes, such point of view is not valid, since the BAS amplitude is single trace., thus the soft behavior of pure BAS amplitude when one external scalar being soft can be obtained by acting the soft operator for the single trace YMS amplitudes to the pure BAS one. The soft operator can be split into two parts, one acts on external scalars, another one acts on external gluons. The second part annihilates the pure BAS amplitude which does not include any external gluon, thus the effective part is only the first one. The first part must be equal to (9), otherwise the action of the first part can not reproduce the result (8). Therefore, for the single trace YMS case, the leading soft operator for the scalar always acts on external scalars in the manner showed in (9), without regarding whether the amplitude contains external gluons. Similar discussion shows that the soft factors for the gluon for the single trace YMS amplitudes can be applied to pure YM ones, by removing the part which acts on external scalars. One can also regard the YM and GR amplitudes as special cases of single trace EYM amplitudes and obtain the similar conclusion, the discussion is analogous.

2.2 Expanding tree level amplitudes to BAS basis

Tree level amplitudes which contain only massless particles can be expanded to double color ordered BAS amplitudes, due to the observation that each Feynman diagram for pure propagators can be mapped to at least one disk diagram whose polygons are all triangles. An illustrative example is given in Figure.7. Since each tree amplitude can be expanded by tree Feynman diagrams, and each Feynman diagram contributes propagators together with a numerator without any pole, one can conclude that each tree amplitude can be expanded to double color ordered BAS amplitudes, with coefficients which are polynomials depend on Lorentz invariants created by external kinematical variables. To realize the expansion, one need to find the basis consists of BAS amplitudes. Such basis can be determined by the well known Kleiss-Kuijf (KK) relation Kleiss:1988ne

𝒜S(1,α,n,β|σ)=()|β|𝒜S(1,α\shuffleβT,n|σ),\displaystyle{\cal A}_{S}(1,\alpha,n,\beta|\sigma)=(-)^{|\beta|}\,{\cal A}_{S}(1,\alpha\shuffle\beta^{T},n|\sigma)\,,~{}~{}~{} (10)

which is based on the color algebra. Here α\alpha and β\beta are two ordered subsets of external scalars, and βT\beta^{T} stands for the ordered set generated from β\beta by reversing the original ordering. The BAS amplitude 𝒜S(1,α,n,β|σ){\cal A}_{S}(1,\alpha,n,\beta|\sigma) at the l.h.s of (10) carries two color orderings, one is (1,α,n,β)(1,\alpha,n,\beta), another one is denoted by σ\sigma. The symbol \shuffle\shuffle means summing over all possible shuffles of two ordered subsets β1{\beta}_{1} and β2{\beta}_{2}, i.e., all permutations in the set β1β2{\beta}_{1}\cup{\beta}_{2} while preserving the orderings of β1{\beta}_{1} and β2{\beta}_{2}. For instance, suppose β1={1,2}{\beta}_{1}=\{1,2\} and β2={3,4}{\beta}_{2}=\{3,4\}, then

β1\shuffleβ2={1,2,3,4}+{1,3,2,4}+{1,3,4,2}+{3,1,2,4}+{3,1,4,2}+{3,4,1,2}.\displaystyle{\beta}_{1}\shuffle{\beta}_{2}=\{1,2,3,4\}+\{1,3,2,4\}+\{1,3,4,2\}+\{3,1,2,4\}+\{3,1,4,2\}+\{3,4,1,2\}\,.~{}~{}~{}~{} (11)

The analogous KK relation holds for another color ordering σ\sigma. The KK relation implies that different double color ordered BAS amplitudes are not independent, thus the basis can be chosen as BAS amplitudes 𝒜S(1,σ1,n|1,σ2,n){\cal A}_{S}(1,\sigma_{1},n|1,\sigma_{2},n), with 11 and nn are fixed at two ends in each color ordering. We call such basis the KK BAS basis. Based on the discussion above, the KK BAS basis can provide any structure of propagators, thus any amplitude can be expanded to this basis, with coefficients which contain no pole333The well known Bern-Carrasco-Johansson (BCJ) relation Bern:2008qj ; Chiodaroli:2014xia ; Johansson:2015oia ; Johansson:2019dnu implies the relations among BAS amplitudes in the KK basis, and the independent BAS amplitudes can be obtained by fixing three legs at three particular positions in the color orderings. However, in the BCJ relation, coefficients of BAS amplitudes depend on Mandelstam variables, this character leads to poles in coefficients when expanding to BCJ basis. We hope all poles are contributed by propagators in amplitudes, and the coefficients contain no pole, thus chose the KK basis..

Refer to caption
Refer to caption
Figure 7: Map between Feynman diagram and disk diagram.

In this paper, we will consider the expansions of single trace YMS amplitudes, YM amplitudes, single trace EYM amplitudes, and GR amplitudes. We now discuss them one by one. In the single trace YMS amplitude 𝒜YS(1,σ1,n;p1,,pm|1,σ2,n){\cal A}_{YS}(1,\sigma_{1},n;p_{1},\cdots,p_{m}|1,\sigma_{2},n), the external scalars encoded by i{1,,n}i\in\{1,\cdots,n\} are included in two color orderings, one is (1,σ1,n)(1,\sigma_{1},n) among only scalars, another one is (1,σ2,n)(1,\sigma_{2},n) among all external legs. The external gluons labeled by pjp_{j} with j{1,,m}j\in\{1,\cdots,m\} belong to the color ordering (1,σ2,n)(1,\sigma_{2},n), while p1,,pmp_{1},\cdots,p_{m} at the l.h.s of || and r.h.s of ; are un-ordered. Here we fixed 11 and nn at two ends in each color ordering, due to the KK relation. The amplitude 𝒜YS(1,σ1,n;p1,,pm|1,σ2,n){\cal A}_{YS}(1,\sigma_{1},n;p_{1},\cdots,p_{m}|1,\sigma_{2},n) can be expanded to KK BAS basis as

𝒜YS(1,σ1,n;p1,,pm|1,σ2,n)=σ3𝒞(σ1,σ3,ϵi,ki)𝒜S(1,σ3,n|1,σ2,n),\displaystyle{\cal A}_{YS}(1,\sigma_{1},n;p_{1},\cdots,p_{m}|1,\sigma_{2},n)=\sum_{\sigma_{3}}\,{\cal C}(\sigma_{1},\sigma_{3},\epsilon_{i},k_{i})\,{\cal A}_{S}(1,\sigma_{3},n|1,\sigma_{2},n)\,,~{}~{}~{} (12)

where σ3\sigma_{3} are permutations among external legs in {2,,n1}{p1,,pm}\{2,\cdots,n-1\}\cup\{p_{1},\cdots,p_{m}\}. The double copy structure Kawai:1985xq ; Bern:2008qj ; Chiodaroli:2014xia ; Johansson:2015oia ; Johansson:2019dnu indicates that the coefficient 𝒞(σ1,σ3,ϵ,k){\cal C}(\sigma_{1},\sigma_{3},\epsilon,k) depends on polarization vectors ϵi\epsilon_{i} of external gluons, momenta kik_{i} of all external particles, permutations σ3\sigma_{3} and σ1\sigma_{1}, but is independent of the permutation σ2\sigma_{2}444Originally, the double copy means the GR amplitude can be factorized as 𝒜G=𝒜Y×𝒮×𝒜Y{\cal A}_{G}={\cal A}_{Y}\times{\cal S}\times{\cal A}_{Y}, where the kernel 𝒮{\cal S} is obtained by inverting propagators. Our assumption that the coefficients depend on only one color ordering is equivalent to the original version, as can be observed from (13) and (15).. Thus, suppose we replace (1,σ2,n)(1,\sigma_{2},n) by the more general ordering σ\sigma among all external legs, without fixing 11 and nn at any position, the expansion in (12) still holds.

The nn-point YM amplitude 𝒜Y(σ){\cal A}_{Y}(\sigma), where σ\sigma is the color ordering among nn external gluons, can be expanded to BAS KK basis as

𝒜Y(σ)=σ1𝒞^(σ1,ϵi,ki)𝒜S(1,σ1,n|σ).\displaystyle{\cal A}_{Y}(\sigma)=\sum_{\sigma_{1}}\,\hat{\cal C}(\sigma_{1},\epsilon_{i},k_{i})\,{\cal A}_{S}(1,\sigma_{1},n|\sigma)\,.~{}~{}~{} (13)

Again, σ\sigma is the color ordering among all external legs, without fixing any one at particular position. The coefficient 𝒞^(σ1,ϵi,ki)\hat{\cal C}(\sigma_{1},\epsilon_{i},k_{i}) depends on polarization vectors and momenta of external gluons, as well as the permutation σ1\sigma_{1}, but is independent of the color ordering σ\sigma, as implied by the double copy structure.

It is natural to image another type of coefficients 𝒞^(σ,ϵi,ki)\hat{\cal C}(\sigma,\epsilon_{i},k_{i}), which depend on the color ordering σ\sigma rather than σ1\sigma_{1}, thus one can generalize the expansions (12) and (13) to

𝒜EY(1,σ1,n;p1,,pm)=σ3σ2𝒞(σ1,σ3,ϵi,ki)𝒜S(1,σ3,n|1,σ2,n)𝒞^(σ2,ϵ~i,ki),\displaystyle{\cal A}_{EY}(1,\sigma_{1},n;p_{1},\cdots,p_{m})=\sum_{\sigma_{3}}\,\sum_{\sigma_{2}}\,{\cal C}(\sigma_{1},\sigma_{3},\epsilon_{i},k_{i})\,{\cal A}_{S}(1,\sigma_{3},n|1,\sigma_{2},n)\,\hat{\cal C}(\sigma_{2},\widetilde{\epsilon}_{i},k_{i})\,,~{}~{}~{} (14)

and

𝒜G(1,,n)=σ1σ2𝒞^(σ1,ϵi,ki)𝒜S(1,σ1,n|1,σ2,n)𝒞^(σ2,ϵ~i,ki).\displaystyle{\cal A}_{G}(1,\cdots,n)=\sum_{\sigma_{1}}\,\sum_{\sigma_{2}}\,\hat{\cal C}(\sigma_{1},\epsilon_{i},k_{i})\,{\cal A}_{S}(1,\sigma_{1},n|1,\sigma_{2},n)\,\hat{\cal C}(\sigma_{2},\widetilde{\epsilon}_{i},k_{i})\,.~{}~{}~{} (15)

The external particle ii which carries both polarization vectors ϵi\epsilon_{i} and ϵ~i\widetilde{\epsilon}_{i} is interpreted as the graviton, whose polarization tensor εi\varepsilon_{i} can be decomposed as εiμν=ϵiμϵ~iν\varepsilon_{i}^{\mu\nu}=\epsilon_{i}^{\mu}\widetilde{\epsilon}_{i}^{\nu}. Thus, (14) is the expansion of the EYM amplitude 𝒜EY(1,σ1,n;p1,,pm){\cal A}_{EY}(1,\sigma_{1},n;p_{1},\cdots,p_{m}), which contains nn external gluons encoded by i{1,,n}i\in\{1,\cdots,n\}, and mm external gravitons encoded by pjp_{j} with j{1,,m}j\in\{1,\cdots,m\}. The expansion (15) is the expansion of the nn-point GR amplitude 𝒜G(1,,n){\cal A}_{G}(1,\cdots,n). Notice that in this paper we focus on gravitons of Einstein gravity. In such case, polarization vectors ϵ~i\widetilde{\epsilon}_{i} are the same as ϵi\epsilon_{i}. However, we still use notations ϵi\epsilon_{i} and ϵ~i\widetilde{\epsilon}_{i} to manifest the double copy structure.

One can sum over σ2\sigma_{2} in (14) and (15) via the expanded formulas of YM amplitudes in (13), resulted in

𝒜EY(1,σ1,n;p1,,pm)=σ3𝒞(σ1,σ3,ϵi,ki)𝒜YM(1,σ3,n),\displaystyle{\cal A}_{EY}(1,\sigma_{1},n;p_{1},\cdots,p_{m})=\sum_{\sigma_{3}}\,{\cal C}(\sigma_{1},\sigma_{3},\epsilon_{i},k_{i})\,{\cal A}_{YM}(1,\sigma_{3},n)\,,~{}~{}~{} (16)

and

𝒜G({1,,n})=σ1𝒞^(σ1,ϵi,ki)𝒜YM(1,σ1,n).\displaystyle{\cal A}_{G}(\{1,\cdots,n\})=\sum_{\sigma_{1}}\,\hat{\cal C}(\sigma_{1},\epsilon_{i},k_{i})\,{\cal A}_{YM}(1,\sigma_{1},n)\,.~{}~{}~{} (17)

These are the expansions of EYM and GR amplitudes to YM KK basis, which bears strong similarity with expansions (12) and (13), respectively.

The explicit formulas of 𝒞(σ1,σ3,ϵi,ki){\cal C}(\sigma_{1},\sigma_{3},\epsilon_{i},k_{i}) and 𝒞^(σ1,ϵi,ki)\hat{\cal C}(\sigma_{1},\epsilon_{i},k_{i}) were computed via different methods in Fu:2017uzt ; Teng:2017tbo ; Du:2017kpo ; Du:2017gnh ; Feng:2019tvb . In this paper, we shall reconstruct them by using the constraints from the soft theorems and the universality of soft factors.

3 Expanded YMS amplitudes, and soft factors for scalar and gluon

In this section, by imposing soft theorems and the universality of soft factors, we reconstruct the expansions of single trace YMS amplitudes to KK BAS basis, as well as the soft factors for the scalar and gluon. The process is as follows. In subsection.3.1, we derive the expansion of the YMS amplitude with only one external gluon, and generalize the leading soft factor for the BAS scalar to the YMS case. In subsection.3.2, we derive the leading and sub-leading soft factors for the gluon from the expansion of YMS amplitude obtained in subsection.3.1. Then, in subsection.3.3, we use the universal soft factors for the scalar and gluon to determine the expansion of YMS amplitude with two external gluons. Finally, in subsection.3.4, we develop a recursive method, which leads to the expansion of general YMS amplitudes. As can be seen, the constraints from soft theorems and universality play the central role throughout the whole process.

3.1 Expanded YMS amplitude with one gluon and soft factor for scalar

We start by considering the single trace YMS amplitude 𝒜YS(1,,n;p|σ){\cal A}_{YS}(1,\cdots,n;p|\sigma), which contains nn external scalars labeled by i{1,,n}i\in\{1,\cdots,n\}, and a gluon labeled by pp. Here σ\sigma denotes an arbitrary color ordering among all external particles including the gluon, while another color ordering (1,,n)(1,\cdots,n) includes only scalars. Based on the discussions in subsection.2.2, we know that the amplitude 𝒜YS(1,,n;p|σ){\cal A}_{YS}(1,\cdots,n;p|\sigma) can be expanded to BAS amplitudes as

𝒜YS(1,,n;p|σ)=i=1n1(ϵpPi)𝒜S(1,,i,p,i+1,,n|σ).\displaystyle{\cal A}_{YS}(1,\cdots,n;p|\sigma)=\sum_{i=1}^{n-1}\,(\epsilon_{p}\cdot P_{i})\,{\cal A}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma)\,.~{}~{}~{}~{} (18)

We express the coefficients as ϵpPi\epsilon_{p}\cdot P_{i}, since the amplitude 𝒜YS(1,,n;p|σ){\cal A}_{YS}(1,\cdots,n;p|\sigma) is a Lorentz invariant which is linear in the polarization vector ϵp\epsilon_{p}. The double copy structure indicates that PiP_{i} are independent of the color ordering σ\sigma. In dd dimensional space-time, the coupling constants of BAS and YM theories have mass dimensions 3d/23-d/2 and 2d/22-d/2 respectively, thus the mass dimension of PiP_{i} must be 11. It means PiP_{i} are combinations of external momenta. Our aim is to determine the combinatory momenta PiP_{i} via the soft theorem.

Let us re-scale the external momentum of the leg 11 as k1τk1,k_{1}\to\tau k_{1}, and expand 𝒜YS(1,,n;p|σ){\cal A}_{YS}(1,\cdots,n;p|\sigma) in τ\tau. The leading order term is given by

𝒜YS(0)(1,,n;p|σ)=i=1n1(ϵpPi(0))𝒜S(0)(1,,i,p,i+1,,n|σ),\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma)=\sum_{i=1}^{n-1}\,(\epsilon_{p}\cdot P^{(0)}_{i})\,{\cal A}^{(0)}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma)\,,~{}~{}~{}~{} (19)

where Pi(0)P^{(0)}_{i} are leading order contributions of PiP_{i}. The leading order terms of 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma) are determined by the leading soft factor for the BAS scalar in (9), namely,

𝒜S(0)(1,,i,p,i+1,,n|σ)\displaystyle{\cal A}^{(0)}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma) =\displaystyle= 1τ(δ12s12+δn1sn1)𝒜S(,2,,i,p,i+1,,n|σ1),fori2,\displaystyle{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}\,{\cal A}_{S}(\not{1},2,\cdots,i,p,i+1,\cdots,n|\sigma\setminus 1)\,,~{}~{}{\rm for}~{}i\geq 2\,,
𝒜S(0)(1,p,2,,n|σ)\displaystyle{\cal A}^{(0)}_{S}(1,p,2,\cdots,n|\sigma) =\displaystyle= 1τ(δ1ps1p+δn1sn1)𝒜S(,p,2,,n|σ1),fori=1.\displaystyle{1\over\tau}\,\Big{(}{\delta_{1p}\over s_{1p}}+{\delta_{n1}\over s_{n1}}\Big{)}\,{\cal A}_{S}(\not{1},p,2,\cdots,n|\sigma\setminus 1)\,,~{}~{}{\rm for}~{}i=1\,.~{}~{}~{}~{} (20)

Here \not{1} means removing the particle 11, and σ1\sigma\setminus 1 stands for the color ordering obtained from σ\sigma by removing 11. Substituting (20) into (19), we get

𝒜YS(0)(1,,n;p|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma) =\displaystyle= 1τ(δ1ps1p+δn1sn1)(ϵpP1(0))𝒜S(,p,2,,n|σ1)\displaystyle{1\over\tau}\,\Big{(}{\delta_{1p}\over s_{1p}}+{\delta_{n1}\over s_{n1}}\Big{)}\,(\epsilon_{p}\cdot P^{(0)}_{1})\,{\cal A}_{S}(\not{1},p,2,\cdots,n|\sigma\setminus 1) (21)
+1τ(δ12s12+δn1sn1)j=2n1(ϵpPj(0))𝒜S(,,j,p,j+1,,n|σ1).\displaystyle+{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}\,\sum_{j=2}^{n-1}\,(\epsilon_{p}\cdot P^{(0)}_{j})\,{\cal A}_{S}(\not{1},\cdots,j,p,j+1,\cdots,n|\sigma\setminus 1)\,.~{}~{}~{}~{}

Since the color ordering σ\sigma is general, non of δn1\delta_{n1}, δ12\delta_{12} and δ1p\delta_{1p} can be fixed to be 0.

The soft theorem requires the factorization

𝒜YS(0)(1,,n;p|σ)=Ss(0)(1)𝒜YS(,,n;p|σ1),\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma)=S^{(0)}_{s}(1)\,{\cal A}_{YS}(\not{1},\cdots,n;p|\sigma\setminus 1)\,,~{}~{}~{}~{} (22)

where Ss(0)(1)S^{(0)}_{s}(1) is the universal leading soft factor for the scalar 11. In subsection.2.1, we have derived this factor, which is given in (9). However, as discussed previously, since the operator (9) is derived from the pure BAS amplitude, it can not tell us whther the operator Ss(0)(1)S^{(0)}_{s}(1) acts on external gluons. The universality of soft factor requires that Ss(0)(1)S^{(0)}_{s}(1) always acts on external BAS scalars in the manner described by (9), therefore the form of Ss(0)(1)S^{(0)}_{s}(1) in (22) should be

Ss(0)(1)=1τ(δ12s12+δn1sn1)+𝒮s(1;p),\displaystyle S^{(0)}_{s}(1)={1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}+{\cal S}_{s}(1;p)\,,~{}~{} (23)

where 𝒮s(1;p){\cal S}_{s}(1;p) stands for the operator acts on external gluon pp.

To determine 𝒮s(1;p){\cal S}_{s}(1;p), we use the KK relation to expand 𝒜S(p,2,,n|σ1){\cal A}_{S}(p,2,\cdots,n|\sigma\setminus 1) in the first line of (21) as

𝒜S(p,2,,n|σ1)=𝒜S(2,{3,,n1}\shufflep,n|σ1),\displaystyle{\cal A}_{S}(p,2,\cdots,n|\sigma\setminus 1)=-{\cal A}_{S}(2,\{3,\cdots,n-1\}\shuffle p,n|\sigma\setminus 1)\,, (24)

this manipulation turns (21) to

𝒜YS(0)(1,,n;p|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma) (25)
=\displaystyle= 1τj=2n1[(ϵpPj(0))δ12s12+(ϵp(Pj(0)P1(0)))δn1sn1(ϵpP1(0))δ1ps1p]𝒜S(2,,j,p,j+1,,n|σ1).\displaystyle{1\over\tau}\,\sum_{j=2}^{n-1}\,\Big{[}\big{(}\epsilon_{p}\cdot P^{(0)}_{j}\big{)}\,{\delta_{12}\over s_{12}}+\big{(}\epsilon_{p}\cdot(P^{(0)}_{j}-P^{(0)}_{1})\big{)}\,{\delta_{n1}\over s_{n1}}-\big{(}\epsilon_{p}\cdot P^{(0)}_{1}\big{)}\,{\delta_{1p}\over s_{1p}}\Big{]}\,{\cal A}_{S}(2,\cdots,j,p,j+1,\cdots,n|\sigma\setminus 1)\,.~{}~{}~{}~{}

From (25), we see that the condition (23) can be satisfied if and only if P1(0)=0P^{(0)}_{1}=0, therefore 𝒮s(1;p)=0{\cal S}_{s}(1;p)=0. Hence, we get the soft factor

Ss(0)(1)=1τ(δ12s12+δn1sn1),\displaystyle S^{(0)}_{s}(1)={1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}\,,~{}~{}~{} (26)

which is the generalization of (9) to the current case. Since 𝒮s(1;p)=0{\cal S}_{s}(1;p)=0, the contribution from external gluon is excluded. Consequently, P1P_{1} is the combination of external momenta which vanishes at the leading order, thus is proportional to k1k_{1}. We can take P1=k1P_{1}=k_{1} via an overall re-scaling of the amplitude.

The phenomenon that the soft factor for the BAS scalar does not act on the gluon can be understood from the Feynman diagram point of view. If one removes the soft scalar from the gluon-scalar-scalar interaction vertex to get the lower-point amplitude, the remaining diagram means the gluon can be turned to a scalar without any interaction, as can be seen in Figure.8. This picture is physically unacceptable. Thus, such diagram can never contribute to the soft factor.

Refer to caption
Figure 8: Removing the soft scalar from the gluon-scalar-scalar vertex. The gray line stands for the soft scalar.

The vanishing of P1(0)P^{(0)}_{1} indicates that 𝒜YS(0)(1,,n;p|σ){\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma) only comes from the second line at the r.h.s of (21), thus the soft theorem (22) together with the soft factor in (26) impose

Ss(0)(1)𝒜YS(,,n;p|σ1)\displaystyle S^{(0)}_{s}(1)\,{\cal A}_{YS}(\not{1},\cdots,n;p|\sigma\setminus 1) (27)
=\displaystyle= Ss(0)(1)(j=2n1(ϵpPj(0))𝒜S(,,j,p,j+1,,n|σ1)),\displaystyle S^{(0)}_{s}(1)\,\Big{(}\sum_{j=2}^{n-1}\,(\epsilon_{p}\cdot P^{(0)}_{j})\,{\cal A}_{S}(\not{1},\cdots,j,p,j+1,\cdots,n|\sigma\setminus 1)\Big{)}\,,~{}~{}~{}~{}

which implies the expansion

𝒜YS(2,,n;p|σ1)=j=2n1(ϵpPj(0))𝒜S(2,,j,p,j+1,,n|σ1),\displaystyle{\cal A}_{YS}(2,\cdots,n;p|\sigma\setminus 1)=\sum_{j=2}^{n-1}\,(\epsilon_{p}\cdot P^{(0)}_{j})\,{\cal A}_{S}(2,\cdots,j,p,j+1,\cdots,n|\sigma\setminus 1)\,,~{}~{}~{}~{} (28)

Comparing the expansion in (28) with that in (18), we see that for general nn they are totally the same, up to a relabeling. This observation is based on the condition that the coefficients are independent of the color ordering σ\sigma, which arises from the double copy structure. Thus, the solution P1=k1P_{1}=k_{1} indicates P2(0)=k2P^{(0)}_{2}=k_{2} in (28), therefore

P2=k2+αk1.\displaystyle P_{2}=k_{2}+\alpha k_{1}\,.~{}~{}~{}~{} (29)

To fix the parameter α\alpha, we consider the soft behavior of the the external scalar 22. After taking k2τk2k_{2}\to\tau k_{2} and expanding (18) in τ\tau, the leading order term is given as

𝒜YS(0)(1,,n;p|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma) =\displaystyle= 1τ(δp2sp2+δ23s23)(ϵpP1(0))𝒜S(1,p,,,n|σ2)\displaystyle{1\over\tau}\,\Big{(}{\delta_{p2}\over s_{p2}}+{\delta_{23}\over s_{23}}\Big{)}\,(\epsilon_{p}\cdot P_{1}^{(0)})\,{\cal A}_{S}(1,p,\not{2},\cdots,n|\sigma\setminus 2) (30)
+1τ(δ12s12+δ2ps2p)(ϵpP2(0))𝒜S(1,,p,,n|σ2)\displaystyle+{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{2p}\over s_{2p}}\Big{)}\,(\epsilon_{p}\cdot P_{2}^{(0)})\,{\cal A}_{S}(1,\not{2},p,\cdots,n|\sigma\setminus 2)
+1τ(δ12s12+δ23s23)i=3n1(ϵpPi(0))𝒜S(1,,,i,p,i+1,,n|σ2).\displaystyle+{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{23}\over s_{23}}\Big{)}\,\sum_{i=3}^{n-1}\,(\epsilon_{p}\cdot P_{i}^{(0)})\,{\cal A}_{S}(1,\not{2},\cdots,i,p,i+1,\cdots,n|\sigma\setminus 2)\,.~{}~{}~{}~{}

The soft theorem (22) together with the universality of leading order soft factor in (9) indicate that

𝒜YS(0)(1,,n;p|σ)=1τ(δ12s12+δ23s23)𝒜YS(1,,,n;p|σ2).\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma)={1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{23}\over s_{23}}\Big{)}\,{\cal A}_{YS}(1,\not{2},\cdots,n;p|\sigma\setminus 2)\,.~{}~{} (31)

Expanding 𝒜YS(1,3,,n;p|σ2){\cal A}_{YS}(1,3,\cdots,n;p|\sigma\setminus 2) in (31) via the expansion (18) (with a relabeling), and using the solution P1=k1P_{1}=k_{1}, one can observe that the combination of first two lines at the r.h.s of (30) gives

1τ(δp2sp2+δ23s23)(ϵpP1(0))𝒜S(1,p,,,n|σ2)\displaystyle{1\over\tau}\,\Big{(}{\delta_{p2}\over s_{p2}}+{\delta_{23}\over s_{23}}\Big{)}\,(\epsilon_{p}\cdot P_{1}^{(0)})\,{\cal A}_{S}(1,p,\not{2},\cdots,n|\sigma\setminus 2) (32)
+1τ(δ12s12+δ2ps2p)(ϵpP2(0))𝒜S(1,,p,,n|σ2)\displaystyle+{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{2p}\over s_{2p}}\Big{)}\,(\epsilon_{p}\cdot P_{2}^{(0)}){\cal A}_{S}(1,\not{2},p,\cdots,n|\sigma\setminus 2)
=\displaystyle= 1τ(δ12s12+δ23s23)(ϵpk1)𝒜S(1,p,3,,n|σ2),\displaystyle{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{23}\over s_{23}}\Big{)}\,(\epsilon_{p}\cdot k_{1})\,{\cal A}_{S}(1,p,3,\cdots,n|\sigma\setminus 2)\,,

which means

(δp2sp2+δ23s23)(ϵpP1(0))+(δ12s12+δ2ps2p)(ϵpP2(0))=(δ12s12+δ23s23)(ϵpk1).\displaystyle\Big{(}{\delta_{p2}\over s_{p2}}+{\delta_{23}\over s_{23}}\Big{)}\,(\epsilon_{p}\cdot P_{1}^{(0)})+\Big{(}{\delta_{12}\over s_{12}}+{\delta_{2p}\over s_{2p}}\Big{)}\,(\epsilon_{p}\cdot P_{2}^{(0)})=\Big{(}{\delta_{12}\over s_{12}}+{\delta_{23}\over s_{23}}\Big{)}\,(\epsilon_{p}\cdot k_{1})\,.~{}~{}~{}~{} (33)

For k2τk2k_{2}\to\tau k_{2}, we have P1(0)=k1P_{1}^{(0)}=k_{1} and P2(0)=αk1P_{2}^{(0)}=\alpha k_{1}. Then, we find the solution to (33) is α=1\alpha=1. Here we have used the property δab=δba\delta_{ab}=-\delta_{ba}.

Until now, we have found P1=k1P_{1}=k_{1} and P2=k1+k2P_{2}=k_{1}+k_{2}. Taking the soft limit of other external scalars successively, and applying the same method, we get

Pi=j=1ikj.\displaystyle P_{i}=\sum_{j=1}^{i}\,k_{j}\,.~{}~{}~{}~{} (34)

Consequently, the YMS amplitude with one external gluon can be expanded as

𝒜YS(1,,n;p|σ)=(ϵpXp)𝒜S(1,{2,,n1}\shufflep,n|σ).\displaystyle{\cal A}_{YS}(1,\cdots,n;p|\sigma)=(\epsilon_{p}\cdot X_{p})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma)\,.~{}~{}~{}~{} (35)

The combinatory momentum XpX_{p} is defined as the summation of momenta of legs at the l.h.s of pp in the color ordering. The shuffle \shuffle\shuffle is explained in (11).

3.2 Soft factors for gluon

Form the expansion in (35), one can determine the leading and sub-leading soft factors for the gluon. Let us take kpτkpk_{p}\to\tau k_{p}, and expand (35) in τ\tau. The leading order term is given as

𝒜YS(0)(1,,n;p|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma) =\displaystyle= i=1n11τ(δipsip+δp(i+1)sp(i+1))(ϵpPi)𝒜S(1,,i,,i+1,,n|σp)\displaystyle\sum_{i=1}^{n-1}\,{1\over\tau}\,\Big{(}{\delta_{ip}\over s_{ip}}+{\delta_{p(i+1)}\over s_{p(i+1)}}\Big{)}\,(\epsilon_{p}\cdot P_{i})\,{\cal A}_{S}(1,\cdots,i,\not{p},i+1,\cdots,n|\sigma\setminus p) (36)
=\displaystyle= 1τi=1n1[j=in1(δjpsjp+δp(j+1)sp(j+1))](ϵpki)𝒜S(1,,n|σp)\displaystyle{1\over\tau}\,\sum_{i=1}^{n-1}\,\Big{[}\sum_{j=i}^{n-1}\,\Big{(}{\delta_{jp}\over s_{jp}}+{\delta_{p(j+1)}\over s_{p(j+1)}}\Big{)}\Big{]}\,(\epsilon_{p}\cdot k_{i})\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)
=\displaystyle= 1τ[i=1n1(δipsip+δpnspn)(ϵpki)]𝒜S(1,,n|σp)\displaystyle{1\over\tau}\,\Big{[}\sum_{i=1}^{n-1}\,\Big{(}{\delta_{ip}\over s_{ip}}+{\delta_{pn}\over s_{pn}}\Big{)}\,(\epsilon_{p}\cdot k_{i})\Big{]}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)
=\displaystyle= 1τ[j=1nδjpsjp(ϵpkj)]𝒜S(1,,n|σp),\displaystyle{1\over\tau}\,\Big{[}\sum_{j=1}^{n}\,{\delta_{jp}\over s_{jp}}\,(\epsilon_{p}\cdot k_{j})\Big{]}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,,~{}~{}~{}~{}

where we have used (34) to get the second equality, δab=δba\delta_{ab}=-\delta_{ba} to get the third one, and the momentum conservation to get the last one. The soft theorem imposes

𝒜YS(0)(1,,n;p|σ)=Sg(0)(p)𝒜S(1,,n|σp).\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p|\sigma)=S^{(0)}_{g}(p)\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,.~{}~{}~{}~{} (37)

Comparing (37)with the last line at the r.h.s in (36), we find that the leading order soft factor for the gluon is

Sg(0)(p)=1τj=1nδjp(ϵpkj)sjp.\displaystyle S^{(0)}_{g}(p)={1\over\tau}\,\sum_{j=1}^{n}\,{\delta_{jp}\,(\epsilon_{p}\cdot k_{j})\over s_{jp}}\,.~{}~{}~{}~{} (38)

There is still an ambiguity that if the operators Sg(0)(p)S^{(0)}_{g}(p) acts on all external legs, or only on external scalars. This question can not be answered by considering the YMS amplitudes with only one external gluon, and will be solved in the next subsection.

Now we turn to the sub-leading order. The leading order is the 1/τ1/\tau order, thus the sub-leading order should be τ0\tau^{0}. To find the τ0\tau^{0} term 𝒜YS(1)(1,,n;p|σ){\cal A}^{(1)}_{YS}(1,\cdots,n;p|\sigma), we classify the corresponding Feynman diagrams into two types, and consider them one by one.

The first case, the gluon is coupled to an external scalar ii of the pure BAS amplitude 𝒜S(1,,n|σp){\cal A}_{S}(1,\cdots,n|\sigma\setminus p). Collecting all such diagrams together yields

Bi(τ)\displaystyle B_{i}(\tau) =\displaystyle=  1τsipMi(τ)\displaystyle{\,1\over\tau s_{ip}}\,M_{i}(\tau) (39)
=\displaystyle=  1τsip(Mi(0)+ττMi(τ)|τ=0+),\displaystyle{\,1\over\tau s_{ip}}\,\big{(}M_{i}(0)+\tau\,{\partial\over\partial\tau}\,M_{i}(\tau)\big{|}_{\tau=0}+\cdots\big{)}\,,~{}~{}~{}~{}

the first term in the second line describes the leading order soft behavior, therefore

Mi(0)=δip(ϵpki)𝒜S(1,,n|σp).\displaystyle M_{i}(0)=\delta_{ip}\,(\epsilon_{p}\cdot k_{i})\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,.~{}~{}~{}~{} (40)

The τ0\tau^{0} contribution of Bi(τ)B_{i}(\tau) arises from the second term in the second line at the r.h.s of (39). In the current case, τ\tau enters Mi(τ)M_{i}(\tau) only through the combination ki+τkpk_{i}+\tau k_{p}, this observation indicates

τMi(τ)=1τkpkpMi(τ)=kpkiMi(τ),\displaystyle{\partial\over\partial\tau}\,M_{i}(\tau)={1\over\tau}\,k_{p}\cdot{\partial\over\partial k_{p}}\,M_{i}(\tau)=k_{p}\cdot{\partial\over\partial k_{i}}\,M_{i}(\tau)\,, (41)

thus

τMi(τ)|τ=0\displaystyle{\partial\over\partial\tau}\,M_{i}(\tau)\big{|}_{\tau=0} =\displaystyle= kpkiMi(0)\displaystyle k_{p}\cdot{\partial\over\partial k_{i}}\,M_{i}(0) (42)
=\displaystyle= δip(ϵpki)kpki𝒜S(1,,n|σp),\displaystyle\delta_{ip}\,(\epsilon_{p}\cdot k_{i})\,k_{p}\cdot{\partial\over\partial k_{i}}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,,~{}~{}~{}~{}

where we have used (40) to get the second equality. Substituting (42) into (39), and summing over all external scalars ii, we find the τ0\tau^{0} term contributed by the first type of Feynman diagrams is given by

B0=i=1nδip(ϵpki)sipkpki𝒜S(1,,n|σp).\displaystyle B^{0}=\sum_{i=1}^{n}\,{\delta_{ip}\,(\epsilon_{p}\cdot k_{i})\over s_{ip}}\,k_{p}\cdot{\partial\over\partial k_{i}}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,.~{}~{}~{}~{} (43)
Refer to caption
Figure 9: The second type of Feynman diagram which contributes to the sub-leading soft operator. The gray wave line denotes the soft gluon.

The second case, the gluon is coupled to an internal propagator of the BAS amplitude 𝒜S(1,,n|σp){\cal A}_{S}(1,\cdots,n|\sigma\setminus p), as shown in Figure.9. In the expansion (35), each BAS amplitude carries two color orderings ({1,,n}\shufflep)(\{1,\cdots,n\}\shuffle p) and σ\sigma. Suppose pp is coupled to the propagator 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j} with i<ji<j, only 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma) and 𝒜S(1,,j,p,j+1,,n|σ){\cal A}_{S}(1,\cdots,j,p,j+1,\cdots,n|\sigma) in the expansion (35) can carry the correct color orderings. However, this is a necessary condition rather than a sufficient one. As discussed in subsection.2.1, if the propagator 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j} is contained in the BAS amplitude, then the set of points {i+1,,j}\{i+1,\cdots,j\} localized on the boundary of disk has only two external lines. It means the Feynman diagram in Figure.9 requires one of two configurations in Figure.10 to be satisfied. In Figure.10, kk and hh can be either k=i,h=jk=i,h=j or k=j,h=ik=j,h=i. The orientations of two disks are the same, and can be either clockwise or anti-clockwise, determined by the color ordering σ\sigma. For general σ\sigma, 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdots,n|\sigma) and 𝒜S(1,,j,p,j+1,,n|σ){\cal A}_{S}(1,\cdots,j,p,j+1,\cdots,n|\sigma) can ensure neither of two configurations in Figure.10. This problem will be solved in (47). For now, we just assume that 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j} is contained in 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdot,n|\sigma) and 𝒜S(1,,j,p,j+1,,n|σ){\cal A}_{S}(1,\cdots,j,p,j+1,\cdot,n|\sigma), and pp is coupled to this propagator.

Refer to caption
Figure 10: Disk diagram for the case pp is coupled to 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j}.

With the assumption pp is coupled to 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j}, let us work out the τ0\tau^{0} contribution. Collecting contributions from 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdot,n|\sigma) and 𝒜S(1,,j,p,j+1,,n|σ){\cal A}_{S}(1,\cdots,j,p,j+1,\cdot,n|\sigma) gives

Dij(τ)\displaystyle D_{ij}(\tau) =\displaystyle= sign(±)(a=i+1jδap)(ϵpK(i+1)j)NL1s(i+1)(i+2)(j1)j1s(i+1)(i+2)(j1)jpNR(τ),\displaystyle{\rm sign}(\pm)\,\Big{(}\sum_{a=i+1}^{j}\,\delta_{ap}\Big{)}\,\big{(}\epsilon_{p}\cdot K_{(i+1)j}\big{)}\,N_{L}\,{1\over s_{(i+1)(i+2)\cdots(j-1)j}}\,{1\over s_{(i+1)(i+2)\cdots(j-1)jp}}\,N_{R}(\tau)\,,~{}~{}~{}~{} (44)

where

s(i+1)(i+2)(j1)jp=s(i+1)(i+2)(j1)jp+2τK(i+1)jkp,\displaystyle s_{(i+1)(i+2)\cdots(j-1)jp}=s_{(i+1)(i+2)\cdots(j-1)jp}+2\tau K_{(i+1)j}\cdot k_{p}\,, (45)

with K(i+1)jK_{(i+1)j} defined in (5). Two building blocks NLN_{L} and NRN_{R} are denoted in Figure.9. We use a=i+1jδap\sum_{a=i+1}^{j}\,\delta_{ap} to ensure that one of legs in {i+1,,j}\{i+1,\cdots,j\} is adjacent to pp in the color ordering σ\sigma, as required by Figure.10. The factor ϵpK(i+1)j\epsilon_{p}\cdot K_{(i+1)j} arises as follows. Two cases 𝒜S(1,,i,p,i+1,,n|σ){\cal A}_{S}(1,\cdots,i,p,i+1,\cdot,n|\sigma) and 𝒜S(1,,j,p,j+1,,n|σ){\cal A}_{S}(1,\cdots,j,p,j+1,\cdot,n|\sigma) correspond to two configurations of Feynman diagrams in Figure.11. For either of two configurations, XpX_{p} is the summation of external momenta of bold lines, and we denote XpX_{p} for two configurations as Xp;1X_{p;1} and Xp;2X_{p;2}, respectively. Since two configurations related to each other by swapping the external line pp and propagator 1/s(i+1)(i+2)(j1)j1/s_{(i+1)(i+2)\cdots(j-1)j}, the antisymmetry of structure constant fabcf^{abc} indicates a relative - between two cases. Thus we get ϵp(Xp;1Xp;2)=±ϵpK(i+1)j\epsilon_{p}\cdot(X_{p;1}-X_{p;2})=\pm\epsilon_{p}\cdot K_{(i+1)j}, where the combinatory momentum K(i+1)jK_{(i+1)j} can be observed from Figure.11. The overall sign denoted by sign(±){\rm sign}(\pm) will be treated soon. In (44), the τ0\tau^{0} contribution is just the leading order term obtained by taking τ=0\tau=0, thus we get

Dij0\displaystyle D^{0}_{ij} =\displaystyle= sign(±)(a=i+1jδap)ϵpK(i+1)js(i+1)(i+2)(j1)j2NLNR(0)\displaystyle{\rm sign}(\pm)\,\Big{(}\sum_{a=i+1}^{j}\,\delta_{ap}\Big{)}\,{\epsilon_{p}\cdot K_{(i+1)j}\over s^{2}_{(i+1)(i+2)\cdots(j-1)j}}\,N_{L}\,N_{R}(0) (46)
=\displaystyle= sign(±)2(a=i+1jδapϵpka1s(b+1)(b+2)(a1)a)NLNR(0).\displaystyle-{{\rm sign}(\pm)\over 2}\,\Big{(}\sum_{a=i+1}^{j}\,\delta_{ap}\,\epsilon_{p}\cdot{\partial\over\partial k_{a}}\,{1\over s_{(b+1)(b+2)\cdots(a-1)a}}\Big{)}\,N_{L}\,N_{R}(0).~{}~{}~{}~{}

Here a subtle point is that the Mandelstam variable s(i+1)(i+2)(j1)js_{(i+1)(i+2)\cdots(j-1)j} defined in (5) contains ka2k_{a}^{2}. Although ka2k_{a}^{2} vanish due to the on-shell condition, they contribute 2kaμ2k_{a}^{\mu} when taking the derivative of kaμk_{a\mu}. Summing over DijD_{ij} provides the τ0\tau^{0} contribution for the second case,

D0\displaystyle D^{0} =\displaystyle= i{1,,n}j{1,,n}iDij0\displaystyle\sum_{i\in\{1,\cdots,n\}}\,\sum_{j\in\{1,\cdots,n\}\setminus i}\,D^{0}_{ij} (47)
=\displaystyle= 12a=1nδapϵpka𝒜S(1,,n|σp)\displaystyle-{1\over 2}\,\sum_{a=1}^{n}\,\delta_{ap}\,\epsilon_{p}\cdot{\partial\over\partial k_{a}}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)
=\displaystyle= a=1nδap(kpka)sapϵpka𝒜S(1,,n|σp).\displaystyle-\sum_{a=1}^{n}\,{\delta_{ap}\,(k_{p}\cdot k_{a})\over s_{ap}}\,\epsilon_{p}\cdot{\partial\over\partial k_{a}}\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,.~{}~{}~{}~{}

The equivalence between s(i+1)(i+2)(j1)js_{(i+1)(i+2)\cdots(j-1)j} and s(j+1)(j+2)(i1)is_{(j+1)(j+2)\cdots(i-1)i} turns the summation of aa from a=i+1j\sum_{a=i+1}^{j} to a=1n\sum_{a=1}^{n}. The overall sign sign(±){\rm sign}(\pm) in (44) and (46) is absorbed by 𝒜S(1,,n|σp){\cal A}_{S}(1,\cdots,n|\sigma\setminus p), based on our convention that removing the external leg pp from 𝒜S(1,,k,p,k+1,,n|σ){\cal A}_{S}(1,\cdots,k,p,k+1,\cdots,n|\sigma) generates 𝒜S(1,,k,,k+1,,n|σp){\cal A}_{S}(1,\cdots,k,\not{p},k+1,\cdots,n|\sigma\setminus p), without any relative sign, as interpreted in subsection.2.1. When taking the derivative, one need not to worry about if one of two configurations in Figure.10 is satisfied, since the un-allowed propagators will not contribute.

Refer to caption
Figure 11: Two allowed configurations. The leg 11 is at left, and the orderings in diagrams are clockwise.

The soft theorem requires

𝒜YS(1)(1,,n;p|σ)=Sg(1)(p)𝒜S(1,,n|σp).\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p|\sigma)=S^{(1)}_{g}(p)\,{\cal A}_{S}(1,\cdots,n|\sigma\setminus p)\,. (48)

Combining (43) and (47) together, we find

Sg(1)(p)=i=1nδipsipkifpki,\displaystyle S^{(1)}_{g}(p)=-\sum_{i=1}^{n}\,{\delta_{ip}\over s_{ip}}\,k_{i}\cdot f_{p}\cdot{\partial\over\partial k_{i}}\,,~{}~{}~{}~{} (49)

where faμνf_{a}^{\mu\nu} is the field strength tensor defined as faμνkaμϵaνϵaμkaνf_{a}^{\mu\nu}\equiv k^{\mu}_{a}\epsilon^{\nu}_{a}-\epsilon^{\mu}_{a}k^{\nu}_{a}. At this step, there are two ambiguities. First, if the sub-leading soft operator Sg(1)(p)S^{(1)}_{g}(p) acts on all external legs, or only on external scalars. Secondly, suppose Sg(1)(p)S^{(1)}_{g}(p) also acts on external gluons, it is not clear that if it acts only on external momenta, or on all Lorentz vectors including polarization vectors. Such ambiguities will be clarified in the next subsection, by considering the YMS amplitude with two external gluons.

3.3 Expanded YMS amplitudes with two gluons

In the previous two subsections, we have figured out the expansion of YMS amplitudes with one external gluon to BAS amplitudes. The leading soft factor for the scalar, the leading and sub-leading soft factors for the gluon, are also obtained. In this subsection, we show that by imposing the soft theorem, and the universality of soft factors in (9), (38) and (49), one can find the expansion of the YMS amplitudes with two external gluons. The soft factors for the gluon provided in (38) and (49) have some ambiguities, as pointed out in the previous subsection. These ambiguities will also be solved in this subsection.

Consider the expansion of the YMS amplitude 𝒜YS(1,,n;p,q|σ){\cal A}_{YS}(1,\cdots,n;p,q|\sigma), which contains nn external scalars encoded by i{1,,n}i\in\{1,\cdots,n\}, and two gluons labeled by pp and qq. The Lorentz invariance, the linearity in ϵp\epsilon_{p} and ϵq\epsilon_{q}, together with the counting of mass dimension, indicate that 𝒜YS(1,,n;p,q|σ){\cal A}_{YS}(1,\cdots,n;p,q|\sigma) can be expanded as follows,

𝒜YS(1,,n;p,q|σ)\displaystyle{\cal A}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= (ϵp𝒳p)(ϵq𝒳q)𝒜S(1,{2,,n1}\shufflep\shuffleq,n|σ)\displaystyle(\epsilon_{p}\cdot{\cal X}_{p})\,(\epsilon_{q}\cdot{\cal X}_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p\shuffle q,n|\sigma) (50)
+(ϵpϵq)𝒵pq𝒜S(1,{2,,n1}\shufflep\shuffleq,n|σ),\displaystyle+(\epsilon_{p}\cdot\epsilon_{q})\,{\cal Z}_{pq}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p\shuffle q,n|\sigma)\,,~{}~{}~{}~{}

where 𝒳p{\cal X}_{p} and 𝒳q{\cal X}_{q} are the combinations of external momenta, while 𝒵pq{\cal Z}_{pq} are the combinations of the contractions of external momenta. We first use the soft factor for the scalar to fix 𝒳p{\cal X}_{p} and 𝒳q{\cal X}_{q}, the method is similar to that used in subsection.3.1. Taking k1τk1k_{1}\to\tau k_{1} and expanding in τ\tau gives

𝒜YS(0)(1,,n;p,q|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= 1τ(δ1ps1p+δn1sn1)(ϵp𝒳p(0))(ϵq𝒳q(0))𝒜S(,p,{2,,n1}\shuffleq,n|σ1)\displaystyle{1\over\tau}\,\Big{(}{\delta_{1p}\over s_{1p}}+{\delta_{n1}\over s_{n1}}\Big{)}(\epsilon_{p}\cdot{\cal X}^{(0)}_{p})\,(\epsilon_{q}\cdot{\cal X}^{(0)}_{q})\,\,{\cal A}_{S}(\not{1},p,\{2,\cdots,n-1\}\shuffle q,n|\sigma\setminus 1) (51)
+1τ(δ1qs1q+δn1sn1)(ϵp𝒳p(0))(ϵq𝒳q(0))𝒜S(,q,{2,,n1}\shufflep,n|σ1)\displaystyle+{1\over\tau}\,\Big{(}{\delta_{1q}\over s_{1q}}+{\delta_{n1}\over s_{n1}}\Big{)}\,(\epsilon_{p}\cdot{\cal X}^{(0)}_{p})\,(\epsilon_{q}\cdot{\cal X}^{(0)}_{q})\,{\cal A}_{S}(\not{1},q,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus 1)
+1τ(δ12s12+δn1sn1)(ϵp𝒳p(0))(ϵq𝒳q(0))𝒜S(,2,{3,,n1}\shufflep\shuffleq,n|σ1)\displaystyle+{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}\,(\epsilon_{p}\cdot{\cal X}^{(0)}_{p})\,(\epsilon_{q}\cdot{\cal X}^{(0)}_{q})\,{\cal A}_{S}(\not{1},2,\{3,\cdots,n-1\}\shuffle p\shuffle q,n|\sigma\setminus 1)
+ϵpϵqterms.\displaystyle+\epsilon_{p}\cdot\epsilon_{q}\,{\rm terms}\,.~{}~{}~{}~{}

The soft theorem imposes

𝒜YS(0)(1,,n;p,q|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= Ss(0)(1)𝒜YS(0)(,,n;p,q|σ1)\displaystyle S^{(0)}_{s}(1)\,{\cal A}^{(0)}_{YS}(\not{1},\cdots,n;p,q|\sigma\setminus 1) (52)
=\displaystyle= 1τ(δ12s12+δn1sn1)𝒜YS(0)(,,n;p,q|σ1),\displaystyle{1\over\tau}\,\Big{(}{\delta_{12}\over s_{12}}+{\delta_{n1}\over s_{n1}}\Big{)}\,{\cal A}^{(0)}_{YS}(\not{1},\cdots,n;p,q|\sigma\setminus 1)\,,~{}~{}~{}

where we have used the universality of Ss(0)(1)S^{(0)}_{s}(1) in (9). From the second line at the r.h.s of (52) we see that poles s1ps_{1p} and s1qs_{1q} can not enter 𝒜YS(0)(1,,n;p,q|σ){\cal A}^{(0)}_{YS}(1,\cdots,n;p,q|\sigma), thus the first and second lines at the r.h.s of (51) must vanish. Thus, for the color orderings (1,p,,n)(1,p,\cdots,n), the combinatory momentum 𝒳p{\cal X}_{p} is given as

𝒳p|1,p,,n=k1.\displaystyle{\cal X}_{p}\big{|}_{1,p,\cdots,n}=k_{1}\,.~{}~{}~{}~{} (53)

Similarly, for the color orderings (1,q,,n)(1,q,\cdots,n), the combinatory momentum 𝒳q{\cal X}_{q} is

𝒳q|1,q,,n=k1.\displaystyle{\cal X}_{q}\big{|}_{1,q,\cdots,n}=k_{1}\,.~{}~{}~{}~{} (54)

Solutions (53) and (54) fixes 𝒳p(0)|,2,p,,n{\cal X}^{(0)}_{p}\big{|}_{\not{1},2,p,\cdots,n} and 𝒳q(0)|,2,p,,n{\cal X}^{(0)}_{q}\big{|}_{\not{1},2,p,\cdots,n} to be

𝒳p(0)|,2,p,,n=k2,𝒳q(0)|,2,p,,n=k2,\displaystyle{\cal X}^{(0)}_{p}\big{|}_{\not{1},2,p,\cdots,n}=k_{2}\,,~{}~{}~{}~{}{\cal X}^{(0)}_{q}\big{|}_{\not{1},2,p,\cdots,n}=k_{2}\,, (55)

which indicates

𝒳p|1,2,p,,n=k2+α1k1,𝒳q|1,2,p,,n=k2+α2k2,\displaystyle{\cal X}_{p}\big{|}_{1,2,p,\cdots,n}=k_{2}+\alpha_{1}k_{1}\,,~{}~{}~{}~{}{\cal X}_{q}\big{|}_{1,2,p,\cdots,n}=k_{2}+\alpha_{2}k_{2}\,, (56)

the reason is the same as that for obtaining (29) in subsection.3.1. Similar as in subsection.3.1, one can consider the leading order soft behavior of the external scalar 22 to fix α1\alpha_{1} and α2\alpha_{2} as α1=α2=1\alpha_{1}=\alpha_{2}=1. Taking the soft limit of external scalars successively, and repeating the same procedure, we arrive at

𝒳p|1,,i,p,i+1,,q,,n=a=1ika,𝒳q|1,,j,q,j+1,,p,,n=b=1jkb.\displaystyle{\cal X}_{p}\big{|}_{1,\cdots,i,p,i+1,\cdots,q,\cdots,n}=\sum_{a=1}^{i}\,k_{a}\,,~{}~{}~{}~{}{\cal X}_{q}\big{|}_{1,\cdots,j,q,j+1,\cdots,p,\cdots,n}=\sum_{b=1}^{j}\,k_{b}\,. (57)

We still need to workout 𝒳q|1,,p,,q,,n{\cal X}_{q}\big{|}_{1,\cdots,p,\cdots,q,\cdots,n} and 𝒳p|1,,q,,p,,n{\cal X}_{p}\big{|}_{1,\cdots,q,\cdots,p,\cdots,n}. This goal can be achieved by considering the soft behavior of external scalars n,n1,n2,n,n-1,n-2,\cdots successively and applying the same method, resulted in

𝒳q|1,,p,,i,q,i+1,,n=a=i+1nka=kp+kq+a=1ikakp+a=1ika,\displaystyle{\cal X}_{q}\big{|}_{1,\cdots,p,\cdots,i,q,i+1,\cdots,n}=-\sum_{a=i+1}^{n}\,k_{a}=k_{p}+k_{q}+\sum_{a^{\prime}=1}^{i}\,k_{a^{\prime}}\doteq k_{p}+\sum_{a^{\prime}=1}^{i}\,k_{a^{\prime}}\,,
𝒳p|1,,q,,j,p,j+1,,n=b=j+1nkb=kp+kq+b=1jkbkq+b=1jkb.\displaystyle{\cal X}_{p}\big{|}_{1,\cdots,q,\cdots,j,p,j+1,\cdots,n}=-\sum_{b=j+1}^{n}\,k_{b}=k_{p}+k_{q}+\sum_{b^{\prime}=1}^{j}\,k_{b^{\prime}}\doteq k_{q}+\sum_{b^{\prime}=1}^{j}\,k_{b^{\prime}}\,. (58)

Here \doteq in the first line means objects at two sides are equivalent to each other when contracting with kqk_{q}, while \doteq in the second line means the equivalence when contracting with kpk_{p}. Consequently, we find

𝒳p=Xp,𝒳q=Xq,\displaystyle{\cal X}_{p}=X_{p}\,,~{}~{}~{}~{}~{}~{}~{}~{}{\cal X}_{q}=X_{q}\,,~{}~{}~{}~{} (59)

where the combinatory momentum XpX_{p} is defined at the end of subsection.3.1.

The first line at the r.h.s of (50) has been fixed by the solution (59), now we need to determine 𝒵pq{\cal Z}_{pq} in the second line. To do so, we consider the sub-leading order soft behavior of the gluon qq, by employing the sub-leading soft operator (49). As mentioned in the previous subsection, the sub-leading soft operator (49) has some ambiguities. Fortunately, such ambiguities can be solved by the solution (59). To start, we regroup the first line at the r.h.s of (50) as

(ϵpXp)(ϵqXq)𝒜S(1,{2,,n1}\shufflep\shuffleq,n|σ)\displaystyle(\epsilon_{p}\cdot X_{p})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p\shuffle q,n|\sigma) (60)
=\displaystyle= (ϵpYp)(ϵqXq)𝒜S(1,{2,,n1}\shufflep\shuffleq,n|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p\shuffle q,n|\sigma)
+(ϵpkq)(ϵqXq)𝒜S(1,{2,,n1}\shuffle{q,p},n|σ)\displaystyle+(\epsilon_{p}\cdot k_{q})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)
=\displaystyle= (ϵpYp)𝒜YS(1,{2,,n1}\shuffleq,n;p|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle q,n;p|\sigma)
+(ϵpkq)(ϵqXq)𝒜S(1,{2,,n1}\shuffle{q,p},n|σ),\displaystyle+(\epsilon_{p}\cdot k_{q})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)\,,

since the Lorentz invariant ϵpkq\epsilon_{p}\cdot k_{q} contributes τ\tau when considering the soft behavior of the gluon qq. The combinatory momentum YpY_{p} is defined as the summation of momenta of only scalars at the l.h.s of pp in the color ordering. Then, we take kqτkqk_{q}\to\tau k_{q} and expand (50) in τ\tau to get

𝒜YS(1)(1,,n;p,q|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= (ϵpYp)𝒜YS(1)(1,{2,,n1}\shufflep,n;q|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) (61)
+τ(ϵpkq)(ϵqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,p},n|σ)\displaystyle+\tau\,(\epsilon_{p}\cdot k_{q})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)
+ϵpϵqterms.\displaystyle+\epsilon_{p}\cdot\epsilon_{q}\,{\rm terms}\,.~{}~{}~{}~{}

The soft theorem requires

𝒜YS(1)(1,,n;p,q|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= Sg(1)(q)𝒜YS(1,,n;p|σq)\displaystyle S^{(1)}_{g}(q)\,{\cal A}_{YS}(1,\cdots,n;p|\sigma\setminus q) (62)
=\displaystyle= Sg(1)(q)[(ϵpXp)𝒜S(1,{2,,n1}\shufflep,n|σq)]\displaystyle S^{(1)}_{g}(q)\,\big{[}(\epsilon_{p}\cdot X_{p})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q)\big{]}
=\displaystyle= [Sg(1)(q)(ϵpXp)]𝒜S(1,{2,,n1}\shufflep,n|σq)\displaystyle\big{[}S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p})\big{]}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q)
+(ϵpXp)[Sg(1)(q)𝒜S(1,{2,,n1}\shufflep,n|σq)],\displaystyle+(\epsilon_{p}\cdot X_{p})\,\big{[}S^{(1)}_{g}(q)\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q)\big{]}\,,~{}~{}~{}~{}

where we have used the expansion (35) to get the second equality, and the Leibnitz’s rule to get the third. Comparing (62) with (61) gives

[Sg(1)(q)(ϵpXp)]𝒜S(1,{2,,n1}\shufflep,n|σq)\displaystyle\big{[}S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p})\big{]}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q) (63)
=\displaystyle= τ(ϵpkq)(ϵqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,p},n|σ)+ϵpϵqterms,\displaystyle\tau\,(\epsilon_{p}\cdot k_{q})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)+\epsilon_{p}\cdot\epsilon_{q}\,{\rm terms}\,,~{}~{}~{}~{}

since the soft theorem ensures

𝒜YS(1)(1,{2,,n1}\shufflep,n;q|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) =\displaystyle= Sg(1)(q)𝒜YS(1,{2,,n1}\shufflep,n|σq),\displaystyle S^{(1)}_{g}(q)\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q)\,, (64)

and Yp=XpY_{p}=X_{p} for pure BAS amplitudes. Thus one can figure out the second and third lines at the r.h.s of (61) by computing Sg(1)(q)(ϵpXp)S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p}). Using the formula of Sg(1)(q)S^{(1)}_{g}(q) in (49), it is straightforward to get

ϵp(Sg(1)(q)Xp)\displaystyle\epsilon_{p}\cdot\big{(}S^{(1)}_{g}(q)\,X_{p}\big{)} =\displaystyle= i=1jδiqsiq(ϵpfqki),forXp=i=1jki.\displaystyle\sum_{i=1}^{j}\,{\delta_{iq}\over s_{iq}}\,(\epsilon_{p}\cdot f_{q}\cdot k_{i})\,,~{}~{}~{}~{}{\rm for}~{}X_{p}=\sum_{i=1}^{j}\,k_{i}\,. (65)

The above result does not contain the pole spqs_{pq}, which is manifestly included in 𝒜S(0)(1,{2,,n1}\shuffle{q,p},n|σ){\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma) in (63). This problem can be solved only if Sg(1)(q)S^{(1)}_{g}(q) also acts on the polarization vector ϵp\epsilon_{p}. In other words, the correct universal formula of Sg(1)(q)S^{(1)}_{g}(q) is

Sg(1)(q)\displaystyle S^{(1)}_{g}(q) =\displaystyle= VaδaqsaqVafqVa\displaystyle-\sum_{V_{a}}\,{\delta_{aq}\over s_{aq}}\,V_{a}\cdot f_{q}\cdot{\partial\over\partial V_{a}} (66)
=\displaystyle= aδaqsaq(ϵqJakq),\displaystyle\sum_{a}\,{\delta_{aq}\over s_{aq}}\,(\epsilon_{q}\cdot J_{a}\cdot k_{q})\,,~{}~{}~{}~{}

where aa denotes an external leg which can be either a scalar or a gluon, and VaV_{a} denotes the Lorentz vector carried by the leg aa which can be either a momentum or a polarization vector. In the first line at the r.h.s, the summation is over all VaV_{a}. In the second line, the summation is over all external legs aa, and JaμνJ_{a}^{\mu\nu} stands for the angular momentum operator for the leg aa555The angular momentum operator JaμνJ_{a}^{\mu\nu} acts on Lorentz vector kaρk^{\rho}_{a} with the orbital part of the generator and on ϵaρ\epsilon^{\rho}_{a} with the spin part of the generator in the vector representation as follows, Jaμνkaρ=ka[μkaρka,ν],Jaμνϵaρ=(ηνρδσμημρδσν)ϵaσ.\displaystyle J_{a}^{\mu\nu}\,k_{a}^{\rho}=k_{a}^{[\mu}\,{\partial k_{a}^{\rho}\over\partial k_{a,\nu]}}\,,~{}~{}~{}~{}J_{a}^{\mu\nu}\,\epsilon_{a}^{\rho}=\big{(}\eta^{\nu\rho}\,\delta^{\mu}_{\sigma}-\eta^{\mu\rho}\,\delta^{\nu}_{\sigma}\big{)}\,\epsilon^{\sigma}_{a}\,. (67) These actions can be summarized as in the first line at the r.h.s of (66), due to the observation that the amplitude is linear in each polarization vector.. Now the ambiguity for the formula (49) has been clarified. Notice that the universality of the soft factor Sg(1)(q)S^{(1)}_{g}(q) has been used implicitly when generating (49) to (66).

Using the soft operator in (66), we immediately get

Sg(1)(q)(ϵpXp)\displaystyle S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p}) =\displaystyle= δpqspq(ϵpfqXp)+i=1jδiqsiq(ϵpfqki)\displaystyle-{\delta_{pq}\over s_{pq}}\,(\epsilon_{p}\cdot f_{q}\cdot X_{p})+\sum_{i=1}^{j}\,{\delta_{iq}\over s_{iq}}\,(\epsilon_{p}\cdot f_{q}\cdot k_{i}) (68)
=\displaystyle= i=1j(δiqsiqδpqspq)(ϵpfqki)\displaystyle\sum_{i=1}^{j}\,\Big{(}{\delta_{iq}\over s_{iq}}-{\delta_{pq}\over s_{pq}}\Big{)}\,(\epsilon_{p}\cdot f_{q}\cdot k_{i})
=\displaystyle= i=1j[l=ij1(δlqslq+δq(l+1)sq(l+1))+δjqsjq+δqpspq](ϵpfqki)\displaystyle\sum_{i=1}^{j}\,\Big{[}\sum_{l=i}^{j-1}\,\Big{(}{\delta_{lq}\over s_{lq}}+{\delta_{q(l+1)}\over s_{q(l+1)}}\Big{)}+{\delta_{jq}\over s_{jq}}+{\delta_{qp}\over s_{pq}}\Big{]}\,(\epsilon_{p}\cdot f_{q}\cdot k_{i})
=\displaystyle= l=1j(δlqslq+δq(l+1)sq(l+1))[ϵpfq(i=1lki)],\displaystyle\sum_{l=1}^{j}\,\Big{(}{\delta_{lq}\over s_{lq}}+{\delta_{q(l+1)}\over s_{q(l+1)}}\Big{)}\,\Big{[}\epsilon_{p}\cdot f_{q}\cdot\Big{(}\sum_{i=1}^{l}\,k_{i}\Big{)}\Big{]},~{}~{}~{}~{}

where δab=δba\delta_{ab}=-\delta_{ba} has been used to get the third equality. In the last line, δq(j+1)\delta_{q(j+1)} and sq(j+1)s_{q(j+1)} should be understood as j+1=pj+1=p. The reason for organizing Sg(1)(q)(ϵpXp)S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p}) in the above way is as follows. Both (ϵpfqXp)(\epsilon_{p}\cdot f_{q}\cdot X_{p}) and (ϵpfqki)(\epsilon_{p}\cdot f_{q}\cdot k_{i}) carry τ\tau automatically when taking kqτkqk_{q}\to\tau k_{q}, but 𝒜YS(1)(1,,n;p,q|σ){\cal A}^{(1)}_{YS}(1,\cdots,n;p,q|\sigma) is at the τ0\tau^{0} order, thus the BAS amplitudes in the expansion provide the leading order contributions to cancel τ\tau. In order to extract such leading order contributions, we rewrite Sg(1)(q)(ϵpXp)S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p}) to manifest the factors

δlqslq+δq(l+1)sq(l+1),\displaystyle{\delta_{lq}\over s_{lq}}+{\delta_{q(l+1)}\over s_{q(l+1)}}\,, (69)

which are proportional to the leading order soft factors for scalars given in (9). With Sg(1)(q)(ϵpXp)S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p}) expressed in (68), we have

[Sg(1)(q)(ϵpXp)]𝒜S(1,{2,,n1}\shufflep,n|σq)\displaystyle\Big{[}S^{(1)}_{g}(q)\,(\epsilon_{p}\cdot X_{p})\Big{]}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle p,n|\sigma\setminus q) (70)
=\displaystyle= j=1n1l=1j(δlqslq+δq(l+1)sq(l+1))[ϵpfq(i=1lki)]𝒜S(1,,j,p,j+1,,n|σq)\displaystyle\sum_{j=1}^{n-1}\,\sum_{l=1}^{j}\,\Big{(}{\delta_{lq}\over s_{lq}}+{\delta_{q(l+1)}\over s_{q(l+1)}}\Big{)}\,\Big{[}\epsilon_{p}\cdot f_{q}\cdot\Big{(}\sum_{i=1}^{l}\,k_{i}\Big{)}\Big{]}\,{\cal A}_{S}(1,\cdots,j,p,j+1,\cdots,n|\sigma\setminus q)
=\displaystyle= j=1n1l=1jτ[ϵpfq(i=1lki)]𝒜S(0)(1,,l,q,l+1,,j,p,j+1,,n|σ)\displaystyle\sum_{j=1}^{n-1}\,\sum_{l=1}^{j}\,\tau\,\Big{[}\epsilon_{p}\cdot f_{q}\cdot\Big{(}\sum_{i=1}^{l}\,k_{i}\Big{)}\Big{]}\,{\cal A}^{(0)}_{S}(1,\cdots,l,q,l+1,\cdots,j,p,j+1,\cdots,n|\sigma)
=\displaystyle= τ(ϵpfqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,p},n|σ).\displaystyle\tau\,(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)\,.~{}~{}~{}~{}

The second equality is obtained by employing the soft theorem

𝒜S(0)(1,,l,q,l+1,,j,p,j+1,,n|σ)\displaystyle{\cal A}^{(0)}_{S}(1,\cdots,l,q,l+1,\cdots,j,p,j+1,\cdots,n|\sigma) (71)
=\displaystyle= 1τ(δlqslq+δq(l+1)sq(l+1))𝒜S(1,,j,p,j+1,,n|σq),\displaystyle{1\over\tau}\,\Big{(}{\delta_{lq}\over s_{lq}}+{\delta_{q(l+1)}\over s_{q(l+1)}}\Big{)}\,{\cal A}_{S}(1,\cdots,j,p,j+1,\cdots,n|\sigma\setminus q)\,,

with the universal soft factor for the scalar in (9). The third one is obtained via the definition of XqX_{q} and \shuffle\shuffle. Now the unknown ϵpϵq\epsilon_{p}\cdot\epsilon_{q} terms in and (63) and (61) have been fixed by (70). Substituting (70) and (63) into (61), we obtain the sub-leading order soft behavior

𝒜YS(1)(1,,n;p,q|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= (ϵpYp)𝒜YS(1)(1,{2,,n1}\shufflep,n;q|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) (72)
+τ(ϵpfqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,p},n|σ),\displaystyle+\tau\,(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)\,,~{}~{}~{}~{}

which indicates the expansion

𝒜YS(1,,n;p,q|σ)\displaystyle{\cal A}_{YS}(1,\cdots,n;p,q|\sigma) =\displaystyle= (ϵpYp)𝒜YS(1,{2,,n1}\shufflep,n;q|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) (73)
+(ϵpfqXq)𝒜S(1,{2,,n1}\shuffle{q,p},n|σ).\displaystyle+(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma)\,.~{}~{}~{}~{}

This is the recursive expansion found in Fu:2017uzt 666In Fu:2017uzt , the recursive expansion is for the single trace EYM amplitudes. As will be seen in section.5, the recursive expansion for EYM amplitudes is extremely similar as that for YMS ones.. One can get the expansion of 𝒜YS(1,,n;p,q|σ){\cal A}_{YS}(1,\cdots,n;p,q|\sigma) to BAS basis by expanding 𝒜YS(1,{2,,n1}\shufflep,n;q|σ){\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) via (35).

One may wonder if 𝒵pq{\cal Z}_{pq} in (50) contain terms at τ2\tau^{2} order when taking kqτkqk_{q}\to\tau k_{q}, these terms can not be detected by considering the sub-leading order soft contribution of the gluon qq. Such possibility can be excluded via the following argument. The mass dimension of each 𝒵pq{\cal Z}_{pq} is 22, thus 𝒵pq{\cal Z}_{pq} should be the combination of the contractions of external momenta. Since the on-shell condition imposes kq2=0k_{q}^{2}=0, 𝒵pq{\cal Z}_{pq} can not include the τ2\tau^{2} term.

As can be seen in Fu:2017uzt , with the solution (59) on hand, the second line at the r.h.s of (73) can be fixed by imposing the gauge invariance condition to the gluon qq. In our method, this condition has not been used. Indeed, the gauge invariance of qq is ensured by the gauge invariance of the soft operator (66). When replacing ϵq\epsilon_{q} by kqk_{q}, the operator (66) vanishes due to the antisymmetry of JaμνJ_{a}^{\mu\nu}.

Before ending this subsection, let us solve the ambiguity of the leading order soft factor Sg(0)(a)S^{(0)}_{g}(a) in (38). From the expansion (73), one can find the leading order soft behavior of 𝒜YS(1,,n;p,q|σ){\cal A}_{YS}(1,\cdots,n;p,q|\sigma) as

𝒜YS(0)(1,,n;p,q|σ)\displaystyle{\cal A}^{(0)}_{YS}(1,\cdots,n;p,q|\sigma) (74)
=\displaystyle= 1τi=1n1[j{1,,n1}i(δjqsjq+δq(j+1)sq(j+1))(ϵpYp)(ϵqXq)𝒜S(1,,j,,j+1,,i,p,i+1,,n|σ)\displaystyle{1\over\tau}\,\sum_{i=1}^{n-1}\,\Big{[}\sum_{j\in\{1,\cdots,n-1\}\setminus i}\,\Big{(}{\delta_{jq}\over s_{jq}}+{\delta_{q(j+1)}\over s_{q(j+1)}}\Big{)}\,(\epsilon_{p}\cdot Y_{p})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\cdots,j,\not{q},j+1,\cdots,i,p,i+1,\cdots,n|\sigma)
+(δiqsiq+δqpsqp)(ϵpYp)(ϵqXq)𝒜S(1,,i,,p,i+1,,n|σ)\displaystyle+\Big{(}{\delta_{iq}\over s_{iq}}+{\delta_{qp}\over s_{qp}}\Big{)}\,(\epsilon_{p}\cdot Y_{p})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\cdots,i,\not{q},p,i+1,\cdots,n|\sigma)
+(δpqspq+δq(i+1)sq(i+1))(ϵpYp)(ϵqXq)𝒜S(1,,i,p,,i+1,,n|σ)]\displaystyle+\Big{(}{\delta_{pq}\over s_{pq}}+{\delta_{q(i+1)}\over s_{q(i+1)}}\Big{)}\,(\epsilon_{p}\cdot Y_{p})\,(\epsilon_{q}\cdot X_{q})\,{\cal A}_{S}(1,\cdots,i,p,\not{q},i+1,\cdots,n|\sigma)\Big{]}
=\displaystyle= 1τ[δpq(ϵqkp)spq+δqn(ϵqkp)sqn+j=1n1(δjq(ϵqkj)sjq+δqn(ϵqkj)sqn)]𝒜YS(1,,n;p|σ)\displaystyle{1\over\tau}\,\Big{[}{\delta_{pq}\,(\epsilon_{q}\cdot k_{p})\over s_{pq}}+{\delta_{qn}\,(\epsilon_{q}\cdot k_{p})\over s_{qn}}+\sum_{j=1}^{n-1}\,\Big{(}{\delta_{jq}\,(\epsilon_{q}\cdot k_{j})\over s_{jq}}+{\delta_{qn}\,(\epsilon_{q}\cdot k_{j})\over s_{qn}}\Big{)}\Big{]}\,{\cal A}_{YS}(1,\cdots,n;p|\sigma)
=\displaystyle= 1τ(δpq(ϵqkp)spq+j=1nδjq(ϵqkj)sjq)𝒜YS(1,,n;p|σ).\displaystyle{1\over\tau}\,\Big{(}{\delta_{pq}\,(\epsilon_{q}\cdot k_{p})\over s_{pq}}+\sum_{j=1}^{n}\,{\delta_{jq}\,(\epsilon_{q}\cdot k_{j})\over s_{jq}}\Big{)}\,{\cal A}_{YS}(1,\cdots,n;p|\sigma)\,.~{}~{}~{}~{}

The first equality is obtained by expanding 𝒜YS(1,{2,,n1}\shufflep,n;q|σ){\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma) and applying the soft theorem to get the leading order contributions of BAS amplitudes. The second arises from δab=δba\delta_{ab}=-\delta_{ba}, and the expansion of 𝒜YS(1,,n;p){\cal A}_{YS}(1,\cdots,n;p) in (35). The last one uses momentum conservation. From (74), one can extract the soft factor Sg(0)(q)S^{(0)}_{g}(q) as

Sg(0)(q)=1τaσδaq(ϵqka)saq,\displaystyle S^{(0)}_{g}(q)={1\over\tau}\,\sum_{a\in\sigma}\,{\delta_{aq}\,(\epsilon_{q}\cdot k_{a})\over s_{aq}}\,,~{}~{}~{}~{} (75)

the summation is over all external legs aa included in the color ordering σ\sigma, thus the ambiguity has been clarified. Notice that the operator (75) is gauge invariant. After taking ϵpkp\epsilon_{p}\to k_{p}, the Lorentz invariants kqkak_{q}\cdot k_{a} in the numerators and saqs_{aq} in the denominators cancel each other, remaining the summation over δaq\delta_{aq}, which vanishes due to the definition.

3.4 General expansion of YMS amplitudes

In the previous subsection, the recursive expansion (73) was observed from the sub-leading order soft behavior of the YMS amplitude 𝒜YS(1,,n;p,q|σ){\cal A}_{YS}(1,\cdots,n;p,q|\sigma) provided in (72), while (72) was obtained by acting the sub-leading soft operator on the YMS amplitude 𝒜YS(1,,n;p|σq){\cal A}_{YS}(1,\cdots,n;p|\sigma\setminus q). Such process suggests a recursive pattern, which leads to the general recursive expansion of YMS amplitudes, with arbitrary number of external gluons.

To give an example, we now derive the expansion of YMS amplitude 𝒜YS(1,,n;p,q,r|σ){\cal A}_{YS}(1,\cdots,n;p,q,r|\sigma) from the expansion of 𝒜YS(1,,n;p,q|σr){\cal A}_{YS}(1,\cdots,n;p,q|\sigma\setminus r), using the recursive pattern. We take krτkrk_{r}\to\tau k_{r} and expand 𝒜YS(1,,n;p,q,r|σ){\cal A}_{YS}(1,\cdots,n;p,q,r|\sigma) in τ\tau, the sub-leading order contribution is determined by the soft theorem as

𝒜YS(1)(1,,n;p,q,r|σ)=Sg(1)(r)𝒜YS(1,,n;p,q|σr).\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q,r|\sigma)=S^{(1)}_{g}(r)\,{\cal A}_{YS}(1,\cdots,n;p,q|\sigma\setminus r)\,.~{}~{}~{}~{} (76)

Substituting the expansion of 𝒜YS(1,,n;p,q|σr){\cal A}_{YS}(1,\cdots,n;p,q|\sigma\setminus r) in (73) into (76), we get

𝒜YS(1)(1,,n;p,q,r|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q,r|\sigma) =\displaystyle= (ϵpYp)[Sg(1)(r)𝒜YS(1,{2,,n1}\shufflep,n;q|σr)]\displaystyle(\epsilon_{p}\cdot Y_{p})\,\Big{[}S^{(1)}_{g}(r)\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma\setminus r)\Big{]} (77)
+(ϵpfqXq)[Sg(1)(r)𝒜S(1,{2,,n1}\shuffle{q,p},n|σr)]\displaystyle+(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,\Big{[}S^{(1)}_{g}(r)\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r)\Big{]}
+[Sg(1)(r)(ϵpYp)]𝒜YS(1,{2,,n1}\shufflep,n;q|σr)\displaystyle+\Big{[}S^{(1)}_{g}(r)\,(\epsilon_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma\setminus r)
+[Sg(1)(r)(ϵpfqXq)]𝒜S(1,{2,,n1}\shuffle{q,p},n|σr),\displaystyle+\Big{[}S^{(1)}_{g}(r)\,(\epsilon_{p}\cdot f_{q}\cdot X_{q})\Big{]}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r)\,,~{}~{}~{}~{}

where the Leibnitz’s rule has been used since the universal sub-leading soft operator for the gluon in (66) includes the first order derivative of Lorentz vectors. The first and second lines at the r.h.s of (77) can be recognized as

(ϵpYp)[Sg(1)(r)𝒜YS(1,{2,,n1}\shufflep,n;q|σr)]\displaystyle(\epsilon_{p}\cdot Y_{p})\,\Big{[}S^{(1)}_{g}(r)\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma\setminus r)\Big{]} (78)
=\displaystyle= (ϵpYp)𝒜YS(1)(1,{2,,n1}\shufflep,n;q,r|σ),\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q,r|\sigma)\,,~{}~{}~{}~{}

and

(ϵpfqXq)[Sg(1)(r)𝒜S(1,{2,,n1}\shuffle{q,p},n|σr)]\displaystyle(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,\Big{[}S^{(1)}_{g}(r)\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r)\Big{]} (79)
=\displaystyle= (ϵpfqXq)𝒜YS(1)(1,{2,,n1}\shuffle{q,p},n;r|σ),\displaystyle(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n;r|\sigma)\,,~{}~{}~{}~{}

due to the soft theorem. The third line can be organized as

[Sg(1)(r)(ϵpYp)]𝒜YS(1,{2,,n1}\shufflep,n;q|σr)\displaystyle\Big{[}S^{(1)}_{g}(r)\,(\epsilon_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q|\sigma\setminus r) (80)
=\displaystyle= τ(ϵpfrYr)𝒜YS(0)(1,{2,,n1}\shuffle{r,p},n;q|σ),\displaystyle\tau\,(\epsilon_{p}\cdot f_{r}\cdot Y_{r})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{r,p\},n;q|\sigma)\,,~{}~{}~{}~{}

via the manipulation similar to that in (68) and (70). Now we turn to the last line at the r.h.s of (77). Using the universal formula of Sg(1)(r)S^{(1)}_{g}(r) in (66), we have

Sg(1)(r)(ϵpfqXq)=H1+H2,\displaystyle S^{(1)}_{g}(r)\,(\epsilon_{p}\cdot f_{q}\cdot X_{q})=H_{1}+H_{2}\,, (81)

where

H1\displaystyle H_{1} =\displaystyle= δpr(ϵpfrfqXq)spr+δqr(ϵpfrfqXq)sqr\displaystyle-{\delta_{pr}\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\over s_{pr}}+{\delta_{qr}\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\over s_{qr}}
H2\displaystyle H_{2} =\displaystyle= δqr(ϵpfqfrXq)sqr+i=1jδir(ϵpfqfrki)sir,\displaystyle-{\delta_{qr}\,(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot X_{q})\over s_{qr}}+\sum_{i=1}^{j}\,{\delta_{ir}\,(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot k_{i})\over s_{ir}}\,,~{}~{}~{}~{} (82)

with Xq=i=1jkiX_{q}=\sum_{i=1}^{j}\,k_{i}. Let us consider H1H_{1} first. Based on the similar reason as that discussed below (68), we use δab=δba\delta_{ab}=-\delta_{ba} to reorganize H1H_{1} which corresponds to the color ordering (1,,i,q,i+1,,j,p,j+1,,n)(1,\cdots,i,q,i+1,\cdots,j,p,j+1,\cdots,n) as follows

H1=[(δqrsqr+δrisri)+(δjrsjr+δrpsrp)+k=ij1(δkrskr+δr(k+1)sr(k+1))](ϵpfrfqXq).\displaystyle H_{1}=\Big{[}\Big{(}{\delta_{qr}\over s_{qr}}+{\delta_{ri}\over s_{ri}}\Big{)}+\Big{(}{\delta_{jr}\over s_{jr}}+{\delta_{rp}\over s_{rp}}\Big{)}+\sum_{k=i}^{j-1}\,\Big{(}{\delta_{kr}\over s_{kr}}+{\delta_{r(k+1)}\over s_{r(k+1)}}\Big{)}\Big{]}\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\,.~{}~{}~{}~{} (83)

Using (83) and the leading soft operator (9) for the scalar, we find

H1𝒜S(1,{2,,n1}\shuffle{q,p},n|σr)\displaystyle H_{1}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r) (84)
=\displaystyle= τ(ϵpfrfqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,r,p},n|σ).\displaystyle\tau\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,r,p\},n|\sigma)\,.~{}~{}

The form of H2H_{2} in (82) is similar as the first line at the r.h.s of (68), with ϵμ\epsilon^{\mu} replaced by (ϵf)μ(\epsilon\cdot f)^{\mu}. Thus, one can perform the same manipulation as in (68) and (70) to get

H2𝒜S(1,{2,,n1}\shuffle{q,p},n|σr)\displaystyle H_{2}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r) (85)
=\displaystyle= τ(ϵpfqfrXr)𝒜S(0)(1,{2,,n1}\shuffle{r,q,p},n|σ).\displaystyle\tau\,(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot X_{r})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{r,q,p\},n|\sigma)\,.~{}~{}

Combining (84) and (85) together gives

[Sg(1)(r)(ϵpfqXq)]𝒜S(1,{2,,n1}\shuffle{q,p},n|σr)\displaystyle\Big{[}S^{(1)}_{g}(r)\,(\epsilon_{p}\cdot f_{q}\cdot X_{q})\Big{]}\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n|\sigma\setminus r) (86)
=\displaystyle= τ(ϵpfrfqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,r,p},n|σ)\displaystyle\tau\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,r,p\},n|\sigma)
+τ(ϵpfqfrXr)𝒜S(0)(1,{2,,n1}\shuffle{r,q,p},n|σ).\displaystyle+\tau\,(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot X_{r})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{r,q,p\},n|\sigma)\,.~{}~{}

Putting four pieces (78), (79), (80) and (86) together, we finally get

𝒜YS(1)(1,,n;p,q,r|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\cdots,n;p,q,r|\sigma) =\displaystyle= (ϵpYp)𝒜YS(1)(1,{2,,n1}\shufflep,n;q,r|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q,r|\sigma) (87)
+(ϵpfqXq)𝒜YS(1)(1,{2,,n1}\shuffle{q,p},n;r|σ)\displaystyle+(\epsilon_{p}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n;r|\sigma)
+τ(ϵpfrYr)𝒜YS(0)(1,{2,,n1}\shuffle{r,p},n;q|σ)\displaystyle+\tau\,(\epsilon_{p}\cdot f_{r}\cdot Y_{r})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{r,p\},n;q|\sigma)
+τ(ϵpfrfqXq)𝒜S(0)(1,{2,,n1}\shuffle{q,r,p},n|σ)\displaystyle+\tau\,(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot X_{q})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,r,p\},n|\sigma)
+τ(ϵpfqfrXr)𝒜S(0)(1,{2,,n1}\shuffle{r,q,p},n|σ),\displaystyle+\tau\,(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot X_{r})\,{\cal A}^{(0)}_{S}(1,\{2,\cdots,n-1\}\shuffle\{r,q,p\},n|\sigma)\,,~{}~{}~{}~{}

and subsequently

𝒜YS(1,,n;p,q,r|σ)\displaystyle{\cal A}_{YS}(1,\cdots,n;p,q,r|\sigma) =\displaystyle= (ϵpYp)𝒜YS(1,{2,,n1}\shufflep,n;q,r|σ)\displaystyle(\epsilon_{p}\cdot Y_{p})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p,n;q,r|\sigma) (88)
+(ϵpfqYq)𝒜YS(1,{2,,n1}\shuffle{q,p},n;r|σ)\displaystyle+(\epsilon_{p}\cdot f_{q}\cdot Y_{q})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n;r|\sigma)
+(ϵpfrYr)𝒜YS(1,{2,,n1}\shuffle{r,p},n;q|σ)\displaystyle+(\epsilon_{p}\cdot f_{r}\cdot Y_{r})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{r,p\},n;q|\sigma)
+(ϵpfrfqYq)𝒜S(1,{2,,n1}\shuffle{q,r,p},n|σ)\displaystyle+(\epsilon_{p}\cdot f_{r}\cdot f_{q}\cdot Y_{q})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{q,r,p\},n|\sigma)
+(ϵpfqfrYr)𝒜S(1,{2,,n1}\shuffle{r,q,p},n|σ).\displaystyle+(\epsilon_{p}\cdot f_{q}\cdot f_{r}\cdot Y_{r})\,{\cal A}_{S}(1,\{2,\cdots,n-1\}\shuffle\{r,q,p\},n|\sigma)\,.~{}~{}~{}~{}

In the expansion (88), we used YaY_{a} for a=p,q,ra=p,q,r in each coefficient, due to the following reason. In (87), replacing all XaX_{a} by YaY_{a} yields no difference, since XqX_{q} is equivalent to YqY_{q} in (73). One can replace XqX_{q} in (73) by YqY_{q}, and follow the procedure from (77) to (87), to get the equivalent formula of (87), with XaYaX_{a}\to Y_{a}. But XqX_{q} is not equivalent to YqY_{q} in the second line at the r.h.s of (88). Suppose we choose XqX_{q} instead of YqY_{q} in this line, the sub-leading order contribution of such term is no longer the second line at the r.h.s of (87), since for the cases rr is inserted at the l.h.s of qq in the color ordering, XqX_{q} include krk_{r} which automatically carries τ\tau. Indeed, the τkr\tau k_{r} contributions in XqX_{q} are collected into the fourth and fifth lines at the r.h.s of (87), and correspond to fourth and fifth lines in (88). In the fourth and fifth lines in (88), YaY_{a} are equivalent to XaX_{a}.

The expansion of general YMS amplitudes with arbitrary number of external gluons can be achieved via the same recursive method, resulted in

𝒜YS(1,,n;p1,pm|σ)=αC(α)𝒜YS(1,{2,,n1}\shuffle{α,p1},n;{p2,,pm}α|σ),\displaystyle{\cal A}_{YS}(1,\cdots,n;p_{1}\cdots,p_{m}|\sigma)=\sum_{\vec{\alpha}}\,C(\vec{\alpha})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{\vec{\alpha},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\alpha|\sigma)\,,~{}~{}~{}~{} (89)

where each α={ai}\alpha=\{a_{i}\} with i{1,,k},km1i\in\{1,\cdots,k\},\,k\leq m-1 is a subset of {p2,,pm}\{p_{2},\cdots,p_{m}\}, and α={a1,,ak}\vec{\alpha}=\{a_{1},\cdots,a_{k}\} is ordered. For α={p2,,pm}\alpha=\{p_{2},\cdots,p_{m}\}, the YMS amplitudes at the r.h.s are reduced to BAS ones. The summation is over all ordered sets α\vec{\alpha}, rather than un-ordered α\alpha. The coefficients C(α)C(\vec{\alpha}) are given as

C(α)=ϵp1fakfak1fa1Ya1.\displaystyle C(\vec{\alpha})=\epsilon_{p_{1}}\cdot f_{a_{k}}\cdot f_{a_{k-1}}\cdots f_{a_{1}}\cdot Y_{a_{1}}\,.~{}~{}~{}~{} (90)

To derive the general version (89), the following identities are useful,

(Sg(1)(a)kb)V=δbasba(kbfaV),(Sg(1)(a)ϵb)V=δbasba(ϵbfaV),\displaystyle\big{(}S^{(1)}_{g}(a)\,k_{b}\big{)}\cdot V=-{\delta_{ba}\over s_{ba}}\,(k_{b}\cdot f_{a}\cdot V)\,,~{}~{}~{}~{}\big{(}S^{(1)}_{g}(a)\,\epsilon_{b}\big{)}\cdot V=-{\delta_{ba}\over s_{ba}}\,(\epsilon_{b}\cdot f_{a}\cdot V)\,,~{}~{}~{}~{} (91)

where VV is an arbitrary Lorentz vector, and

V1(Sg(1)(a)fb)V2=δbasbaV1(fafbfbfa)V2,\displaystyle V_{1}\cdot\big{(}S^{(1)}_{g}(a)\,f_{b}\big{)}\cdot V_{2}={\delta_{ba}\over s_{ba}}\,V_{1}\cdot(f_{a}\cdot f_{b}-f_{b}\cdot f_{a})\cdot V_{2}\,,~{}~{}~{}~{} (92)

for two arbitrary Lorentz vectors V1V_{1} and V2V_{2}. The above identities can be proved directly through the definition of Sg(1)(a)S^{(1)}_{g}(a) in (66). The expansion of general YMS amplitudes to BAS basis can be obtained by substituting the recursive expansion (89) iteratively, as discussed in Fu:2017uzt .

4 Expanded YM amplitudes

In this section, we derive the expansion of pure YM amplitudes, by applying the universal sub-leading soft operator for the gluon given in (66). The method used in the previous section can not be applied to the YM case directly, since one can not take the set of external scalars to be empty. To handle this difficult, in subsection.4.1, we develop another recursive pattern which generates the general expansion of YMS amplitudes via the soft operator (66). Using the new recursive method, the expansion of YM amplitudes is determined in subsection.4.2.

4.1 Another recursive pattern for YMS amplitudes

In this subsection, we discuss another recursive pattern, which generates the coefficients of YMS amplitudes in the recursive expansion (89).

Suppose we know the first term in the recursive expansion (89), namely,

𝒜YS(1,,n;p1,,pm|σ)=(ϵp1Yp1)𝒜YS(1,{2,,n1}\shufflep1,n;p2,,pm|σ)+,\displaystyle{\cal A}_{YS}(1,\cdots,n;p_{1},\cdots,p_{m}|\sigma)=(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;p_{2},\cdots,p_{m}|\sigma)+\cdots\,,~{}~{}~{}~{} (93)

then the sub-leading order soft behavior of the external gluon pip_{i} with i{2,,m}i\in\{2,\cdots,m\} is given by

𝒜YS(1)(1,,n;p1,,pm|σ)\displaystyle{\cal A}_{YS}^{(1)}(1,\cdots,n;p_{1},\cdots,p_{m}|\sigma) =\displaystyle= Sg(1)(pi)𝒜YS(1,,n;{p1,,pm}pi|σpi)\displaystyle S^{(1)}_{g}(p_{i})\,{\cal A}_{YS}(1,\cdots,n;\{p_{1},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i}) (94)
=\displaystyle= Sg(1)(pi)[(ϵp1Yp1)𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi)\displaystyle S^{(1)}_{g}(p_{i})\,\Big{[}(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i})
+],\displaystyle+\cdots\Big{]}\,,~{}~{}~{}~{}

due to the soft theorem. The second equality is obtained by substituting the expanded formula (93) into the first line at the r.h.s. By applying the definition of Sg(1)(pi)S^{(1)}_{g}(p_{i}) in (66), we have

𝒜YS(1)(1,,n;p1,,pm|σ)\displaystyle{\cal A}_{YS}^{(1)}(1,\cdots,n;p_{1},\cdots,p_{m}|\sigma) (95)
=\displaystyle= (ϵp1Yp1)[Sg(1)(pi)𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi)]\displaystyle(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,\Big{[}S^{(1)}_{g}(p_{i})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i})\Big{]}
+[Sg(1)(pi)(ϵp1Yp1)]𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi)\displaystyle+\Big{[}S^{(1)}_{g}(p_{i})\,(\epsilon_{p_{1}}\cdot Y_{p_{1}})\Big{]}\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i})
+\displaystyle+\cdots
=\displaystyle= (ϵp1Yp1)𝒜YS(1)(1,{2,,n1}\shufflep1,n;p2,,pm|σ)\displaystyle(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;p_{2},\cdots,p_{m}|\sigma)
+τ(ϵp1fpiYpi)𝒜YS(0)(1,{2,,n1}\shuffle{pi,p1},n;{p2,,pm}pi|σ)\displaystyle+\tau\,(\epsilon_{p_{1}}\cdot f_{p_{i}}\cdot Y_{p_{i}})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{i},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma)
+,\displaystyle+\cdots\,,~{}~{}~{}~{}

where the second equality uses

𝒜YS(1)(1,{2,,n1}\shufflep1,n;p2,,pm|σ)\displaystyle{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;p_{2},\cdots,p_{m}|\sigma) (96)
=\displaystyle= Sg(1)(pi)𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi),\displaystyle S^{(1)}_{g}(p_{i})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i})\,,

imposed by the soft theorem, as well as

[Sg(1)(pi)(ϵp1Yp1)]𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi)\displaystyle\Big{[}S^{(1)}_{g}(p_{i})\,(\epsilon_{p_{1}}\cdot Y_{p_{1}})\Big{]}\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i}) (97)
=\displaystyle= τ(ϵp1fpiYpi)𝒜YS(0)(1,{2,,n1}\shuffle{pi,p1},n;{p2,,pm}pi|σ),\displaystyle\tau\,(\epsilon_{p_{1}}\cdot f_{p_{i}}\cdot Y_{p_{i}})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{i},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma)\,,

obtained by using the manipulation similar to that in (68) and (70). The formula in (95) indicates new terms in the expansion (93), turns (93) to be

𝒜YS(1,,n;p1,,pm|σ)\displaystyle{\cal A}_{YS}(1,\cdots,n;p_{1},\cdots,p_{m}|\sigma) (98)
=\displaystyle= (ϵp1Yp1)𝒜YS(1,{2,,n1}\shufflep1,n;p2,,pm|σ)\displaystyle(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;p_{2},\cdots,p_{m}|\sigma)
+i{2,,m}(ϵp1fpiYpi)𝒜YS(1,{2,,n1}\shuffle{pi,p1},n;{p2,,pm}pi|σ)\displaystyle+\sum_{i\in\{2,\cdots,m\}}\,(\epsilon_{p_{1}}\cdot f_{p_{i}}\cdot Y_{p_{i}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{i},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma)
+.\displaystyle+\cdots\,.~{}~{}~{}~{}

Substituting the expanded formula in (98) into the first line at the r.h.s of (94), one see that the soft theorem imposes

𝒜YS(1)(1,,n;p1,,pm|σ)\displaystyle{\cal A}_{YS}^{(1)}(1,\cdots,n;p_{1},\cdots,p_{m}|\sigma) (99)
=\displaystyle= Sg(1)(pi)[(ϵp1Yp1)𝒜YS(1,{2,,n1}\shufflep1,n;{p2,,pm}pi|σpi)\displaystyle S^{(1)}_{g}(p_{i})\,\Big{[}(\epsilon_{p_{1}}\cdot Y_{p_{1}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle p_{1},n;\{p_{2},\cdots,p_{m}\}\setminus p_{i}|\sigma\setminus p_{i})
+j{2,,m}i(ϵp1fpjYpj)𝒜YS(1,{2,,n1}\shuffle{pj,p1},n;{p2,,pm}{pi,pj}|σpi)\displaystyle+\sum_{j\in\{2,\cdots,m\}\setminus i}\,(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma\setminus p_{i})
+].\displaystyle+\cdots\Big{]}\,.~{}~{}~{}~{}

To continue the recursive process, we use the definition of Sg(1)(pi)S^{(1)}_{g}(p_{i}) to get

Sg(1)(pi)[(ϵp1fpjYpj)𝒜YS(1,{2,,n1}\shuffle{pj,p1},n;{p2,,pm}{pi,pj}|σpi)]\displaystyle S^{(1)}_{g}(p_{i})\,\Big{[}(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma\setminus p_{i})\Big{]} (100)
=\displaystyle= (ϵp1fpjYpj)[Sg(1)(pi)𝒜YS(1,{2,,n1}\shuffle{pj,p1},n;{p2,,pm}{pi,pj}|σpi)]\displaystyle(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,\Big{[}S^{(1)}_{g}(p_{i})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma\setminus p_{i})\Big{]}
+[Sg(1)(pi)(ϵp1fpjYpj)]𝒜YS(1,{2,,n1}\shuffle{pj,p1},n;{p2,,pm}{pi,pj}|σpi)\displaystyle+\Big{[}S^{(1)}_{g}(p_{i})\,(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\Big{]}\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma\setminus p_{i})
=\displaystyle= (ϵp1fpjYpj)𝒜YS(1)(1,{2,,n1}\shuffle{pj,p1},n;{p2,,pm}pj|σ)\displaystyle(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,{\cal A}^{(1)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus p_{j}|\sigma)
+τ(ϵp1fpifpjYpj)𝒜YS(0)(1,{2,,n1}\shuffle{pj,pi,p1},n;{p2,,pm}{pi,pj}|σ)\displaystyle+\tau\,(\epsilon_{p_{1}}\cdot f_{p_{i}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{i},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma)
+τ(ϵp1fpjfpiYpi)𝒜YS(0)(1,{2,,n1}\shuffle{pi,pj,p1},n;{p2,,pm}{pi,pj}|σ),\displaystyle+\tau\,(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot f_{p_{i}}\cdot Y_{p_{i}})\,{\cal A}^{(0)}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{i},p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma)\,,

which adds new terms

i,j{2,,m}ij(ϵp1fpifpjYpj)𝒜YS(1,{2,,n1}\shuffle{pj,pi,p1},n;{p2,,pm}{pi,pj}|σ)\displaystyle\sum_{\begin{subarray}{c}i,j\in\{2,\cdots,m\}\\ i\neq j\end{subarray}}\,(\epsilon_{p_{1}}\cdot f_{p_{i}}\cdot f_{p_{j}}\cdot Y_{p_{j}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{j},p_{i},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma)
+i,j{2,,m}ij(ϵp1fpjfpiYpi)𝒜YS(1,{2,,n1}\shuffle{pi,pj,p1},n;{p2,,pm}{pi,pj}|σ)\displaystyle+\sum_{\begin{subarray}{c}i,j\in\{2,\cdots,m\}\\ i\neq j\end{subarray}}\,(\epsilon_{p_{1}}\cdot f_{p_{j}}\cdot f_{p_{i}}\cdot Y_{p_{i}})\,{\cal A}_{YS}(1,\{2,\cdots,n-1\}\shuffle\{p_{i},p_{j},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\{p_{i},p_{j}\}|\sigma) (101)

to the expansion (98).

Repeating the above procedure, one can arrive at the recursive expansion of YMS amplitudes given in (89). The above method requires knowing the first term in the expansion which includes YMS amplitudes with m1m-1 external gluons, and generates the remaining terms from the first one. For the YMS case, this method is not efficient, since it is not easy to obtain the first term. However, as will be seen in the next subsection, for the pure YM case, the first term can be fixed via the simple argument, thus the above method yields the recursive expansion of YM amplitudes to YMS ones.

4.2 Expansion of YM amplitudes

This subsection devotes to derive the expansion of color ordered YM amplitudes by employing the recursive method described in the previous subsection.

Let us consider the nn-point YM amplitude 𝒜Y(σ){\cal A}_{Y}(\sigma) which carries the color ordering σ\sigma. For convenience, from now on we use i{1,,n}i\in\{1,\cdots,n\} to denote external gluons rather than scalars. To apply the recursive method introduced in the previous subsection, the first step is to find the first term in the expansion, which consists of YMS amplitudes with the minimum number of external scalars. Suppose 𝒜Y(σ){\cal A}_{Y}(\sigma) can be expanded to YMS amplitudes, the minimum number of scalars carried by YMS amplitudes should be 22. The reason is the YMS amplitude with only one external scalar does not exist, as can be seen from the Feynman rules, and can also be understood via the leading order soft operator for the scalar given in (9). For the YMS amplitude 𝒜YS(p;1,,n|σ){\cal A}_{YS}(p;1,\cdots,n|\sigma^{\prime}), where pp denotes the only external scalar and σ\sigma^{\prime} stands for the overall color ordering among all external legs, one can take the scalar pp to be the soft particle, to obtain a soft factor times the YM amplitude 𝒜Y(σp){\cal A}_{Y}(\sigma^{\prime}\setminus p). However, since the soft operator in (9) only acts on external scalars, the above soft behavior is forbidden by the universality of the soft factor. This observation implies that the YMS amplitude 𝒜YS(p;1,,n|σ){\cal A}_{YS}(p;1,\cdots,n|\sigma^{\prime}) can not exist. Thus, the first term in the recursive expansion for 𝒜Y(σ){\cal A}_{Y}(\sigma) consists of YMS amplitudes with two external scalars. The KK relation shows that both the YM and YMS amplitudes can be expanded to BAS amplitudes 𝒜S(1,σ1,n;σ){\cal A}_{S}(1,\sigma_{1},n;\sigma) with 11 and nn fixed at two ends in the color ordering, where σ1\sigma_{1} denotes the permutation among n2n-2 legs in {2,,n1}\{2,\cdots,n-1\}. It means the YMS amplitude contained in the first term can be fixed as 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma).

Then we need to figure out the coefficient of 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma). In 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma), the coupling constants for all vertices are the coupling constant of YM theory, thus the mass dimension of 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma) is the same as that of the YM amplitude 𝒜Y(σ){\cal A}_{Y}(\sigma). Consequently, the coefficient of 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma) has mass dimension 0. On the other hand, the YM amplitude is linear in polarization vectors ϵ1\epsilon_{1} and ϵ2\epsilon_{2}, but these polarization vectors are not included in 𝒜YS(1,n;2,,n1|σ){\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma). To summarize, the coefficient is a Lorentz invariant, with mass dimension 0, linear in both ϵ1\epsilon_{1} and ϵn\epsilon_{n}, and does not contain any pole. There is only one candidate ϵ1ϵn\epsilon_{1}\cdot\epsilon_{n} which satisfies all of above requirements. The discussion mentioned above fixes the first term in the recursive expansion to be

(ϵnϵ1)𝒜YS(1,n;2,,n1|σ),\displaystyle(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma)\,, (102)

namely,

𝒜Y(σ)=(ϵnϵ1)𝒜YS(1,n;2,,n1|σ)+,\displaystyle{\cal A}_{Y}(\sigma)=(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma)+\cdots\,,~{}~{} (103)

Now we can use the recursive method to figure out the remaining terms in (103). Taking kiτkik_{i}\to\tau k_{i} for one external gluon ii and expanding in τ\tau, the soft theorem gives

𝒜Y(1)(σ)\displaystyle{\cal A}^{(1)}_{Y}(\sigma) =\displaystyle= Sg(1)(i)𝒜Y(σi)\displaystyle S^{(1)}_{g}(i)\,{\cal A}_{Y}(\sigma\setminus i) (104)
=\displaystyle= Sg(1)(i)[(ϵnϵ1)𝒜YS(1,n;{2,,n1}i|σi)+],\displaystyle S^{(1)}_{g}(i)\,\Big{[}(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,n;\{2,\cdots,n-1\}\setminus i|\sigma\setminus i)+\cdots\Big{]}\,,

where we have substituted (103) into the first line at the r.h.s to get the second. By applying the definition of the soft operator Sg(1)(i)S^{(1)}_{g}(i), we find

Sg(1)(i)[(ϵnϵ1)𝒜YS(1,n;{2,,n1}i|σi)]\displaystyle S^{(1)}_{g}(i)\,\Big{[}(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,n;\{2,\cdots,n-1\}\setminus i|\sigma\setminus i)\Big{]} (105)
=\displaystyle= (ϵnϵ1)[Sg(1)(i)𝒜YS(1,n;{2,,n1}i|σi)]+[Sg(1)(i)(ϵnϵ1)]𝒜YS(1,n;{2,,n1}i|σi)\displaystyle(\epsilon_{n}\cdot\epsilon_{1})\,\Big{[}S^{(1)}_{g}(i)\,{\cal A}_{YS}(1,n;\{2,\cdots,n-1\}\setminus i|\sigma\setminus i)\Big{]}+\Big{[}S^{(1)}_{g}(i)\,(\epsilon_{n}\cdot\epsilon_{1})\Big{]}\,{\cal A}_{YS}(1,n;\{2,\cdots,n-1\}\setminus i|\sigma\setminus i)
=\displaystyle= (ϵnϵ1)𝒜YS(1)(1,n;2,,n1|σ)+τ(ϵnfiϵ1)𝒜YS(0)(1,i,n;{2,,n1}i|σ),\displaystyle(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}^{(1)}_{YS}(1,n;2,\cdots,n-1|\sigma)+\tau\,(\epsilon_{n}\cdot f_{i}\cdot\epsilon_{1})\,{\cal A}^{(0)}_{YS}(1,i,n;\{2,\cdots,n-1\}\setminus i|\sigma)\,,~{}~{}~{}

where the soft theorem and the second identity in (91) have been used to get the last line. The result in (105) detects new terms in (103), leads to

𝒜Y(σ)\displaystyle{\cal A}_{Y}(\sigma) =\displaystyle= (ϵnϵ1)𝒜YS(1,n;2,,n1|σ)\displaystyle(\epsilon_{n}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,n;2,\cdots,n-1|\sigma) (106)
+i{2,,n1}(ϵnfiϵ1)𝒜YS(1,i,n;{2,,n1}i|σ).\displaystyle+\sum_{i\in\{2,\cdots,n-1\}}\,(\epsilon_{n}\cdot f_{i}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,i,n;\{2,\cdots,n-1\}\setminus i|\sigma)\,.~{}~{}

One can continue the recursive process by substituting (106) into the first line of (105), and computing

Sg(1)(i)[(ϵnfjϵ1)𝒜YS(1,j,n;{2,,n1}{i,j}|σi)].\displaystyle S^{(1)}_{g}(i)\,\Big{[}(\epsilon_{n}\cdot f_{j}\cdot\epsilon_{1})\,{\cal A}_{YS}(1,j,n;\{2,\cdots,n-1\}\setminus\{i,j\}|\sigma\setminus i)\Big{]}\,. (107)

Repeating the same procedure, the full recursive expansion for the YM amplitude is found to be

𝒜Y(σ)=αC^(α)𝒜YS(1,a1,,ak,n;{2,,n1}α|σ),\displaystyle{\cal A}_{Y}(\sigma)=\sum_{\vec{\alpha}}\,\hat{C}(\vec{\alpha})\,{\cal A}_{YS}(1,a_{1},\cdots,a_{k},n;\{2,\cdots,n-1\}\setminus\alpha|\sigma)\,,~{}~{}~{}~{} (108)

where α={ai}\alpha=\{a_{i}\} with i{1,,k},kn2i\in\{1,\cdots,k\},\,k\leq n-2 is a subset of {2,,n1}\{2,\cdots,n-1\}, and α={a1,,ak}\vec{\alpha}=\{a_{1},\cdots,a_{k}\} is ordered. The summation is over all ordered set α\vec{\alpha}, and the coefficients C^(α)\hat{C}(\vec{\alpha}) are

C^(α)=ϵnfakfak1fa1ϵ1.\displaystyle\hat{C}(\vec{\alpha})=\epsilon_{n}\cdot f_{a_{k}}\cdot f_{a_{k-1}}\cdots f_{a_{1}}\cdot\epsilon_{1}\,.~{}~{} (109)

By substituting the recursive expansion of YMS amplitudes (89) into (108) iteratively, one can get the expansion of YM amplitudes to the BAS basis.

In the end of this subsection, we notice that for the pure YM amplitude 𝒜Y(σ){\cal A}_{Y}(\sigma) which carries only one color ordering σ\sigma, the soft factors (75) and (66) for the gluon are simplified to

Sg(0)(a)\displaystyle S^{(0)}_{g}(a) =\displaystyle= 1τ(ϵaka1sa(a1)ϵaka+1sa(a+1)),\displaystyle{1\over\tau}\,\Big{(}{\epsilon_{a}\cdot k_{a-1}\over s_{a(a-1)}}-{\epsilon_{a}\cdot k_{a+1}\over s_{a(a+1)}}\Big{)}\,,
Sg(1)(a)\displaystyle S^{(1)}_{g}(a) =\displaystyle= ϵaJa1kasa(a1)ϵaJa+1kasa(a+1),\displaystyle{\epsilon_{a}\cdot J_{a-1}\cdot k_{a}\over s_{a(a-1)}}-{\epsilon_{a}\cdot J_{a+1}\cdot k_{a}\over s_{a(a+1)}}\,,~{}~{}~{} (110)

which are the same as operators derived in Casali:2014xpa ; Schwab:2014xua . Here a1a-1 and a+1a+1 denote external legs adjacent to aa in the color ordering σ\sigma.

5 Expanded EYM and GR amplitudes, and soft factors for graviton

In this section, we study the expansions of single trace EYM and GR amplitudes, as well as the soft factors for the graviton. In subsection.5.1, we point out that the expansions of EYM and GR amplitudes to the KK YM basis can be generated from the expansions of YMS and YM amplitudes directly, via the double copy structure. As an alternative method, we also use the soft theorem and the universality of soft factor to derive the expansion of the EYM amplitude with one external graviton. In subsection.5.2, we use the expanded EYM amplitude, and the soft theorem, to determine the soft factors for the graviton, at leading, sub-leading, and sub-sub-leading orders.

5.1 Expanded EYM and GR amplitudes

In section.3 and section.4, we found the recursive expansions for single trace YMS and pure YM amplitudes, provided in (89) and (108), respectively. Such recursive expansions can be generalized to single trace EYM and pure GR amplitudes directly, based on the double copy structure. As discussed in subsection.2.2, the double copy indicates the EYM and GR amplitudes can be expanded to YM ones, with the coefficients the same as expanding the YMS and YM amplitudes to BAS ones. It means we have the analogous recursive expansions

𝒜EY(1,,n;p1,pm)=αC(α)𝒜EY(1,{2,,n1}\shuffle{α,p1},n;{p2,,pm}α),\displaystyle{\cal A}_{EY}(1,\cdots,n;p_{1}\cdots,p_{m})=\sum_{\vec{\alpha}}\,C(\vec{\alpha})\,{\cal A}_{EY}(1,\{2,\cdots,n-1\}\shuffle\{\vec{\alpha},p_{1}\},n;\{p_{2},\cdots,p_{m}\}\setminus\alpha)\,,~{}~{}~{}~{} (111)

and

𝒜G(1,,n)=αC^(α)𝒜EY(1,a1,,ak,n;{2,,n1}α),\displaystyle{\cal A}_{G}(1,\cdots,n)=\sum_{\vec{\alpha}}\,\hat{C}(\vec{\alpha})\,{\cal A}_{EY}(1,a_{1},\cdots,a_{k},n;\{2,\cdots,n-1\}\setminus\alpha)\,,~{}~{}~{}~{} (112)

with coefficients C(α)C(\vec{\alpha}) and C^(α)\hat{C}(\vec{\alpha}) in (90) and (109) respectively. In the notation 𝒜EY(;){\cal A}_{EY}(\cdots;\cdots), legs at the l.h.s of ; are gluons, while those at the r.h.s are gravitons. The external gluons are color ordered, and the gravitons carry no color ordering. The recursive expansions in (111) and (112) can also be derived via our method used in section.3 and section.4. However, since one can not conclude the existence of these recursive expansions without assuming the double copy structure, such derivation can not give new understanding than getting expansions from the double copy structure directly. Thus, in this subsection, we only give the simplest example, the derivation of the expansion for EYM amplitude 𝒜EY(1,,n;p){\cal A}_{EY}(1,\cdots,n;p), which contains nn external gluons, and only one external graviton encoded by pp. We also clarify that the soft factor for the gluon does not act on gravitons. The method in this subsection is extremely similar to that in subsection.3.1.

Our plain is to express the expansion of 𝒜EY(1,,n;p){\cal A}_{EY}(1,\cdots,n;p) as

𝒜EY(1,,n;p)=i=1n1(ϵ~pPi)𝒜Y(1,,i,p,i+1,,n),\displaystyle{\cal A}_{EY}(1,\cdots,n;p)=\sum_{i=1}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P_{i})\,{\cal A}_{Y}(1,\cdots,i,p,i+1,\cdots,n)\,,~{}~{}~{}~{} (113)

due to the similar reason as that for obtaining the formula (18), and determine the combinatory momenta PiP_{i} via the soft theorem. Taking k1τk1,k_{1}\to\tau k_{1}, and expanding 𝒜EY(1,,n;p){\cal A}_{EY}(1,\cdots,n;p) in τ\tau, the leading order contribution is given as

𝒜EY(0)(1,,n;p)=i=1n1(ϵ~pPi(0))𝒜Y(0)(1,,i,p,i+1,,n),\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p)=\sum_{i=1}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P^{(0)}_{i})\,{\cal A}^{(0)}_{Y}(1,\cdots,i,p,i+1,\cdots,n)\,,~{}~{}~{}~{} (114)

where Pi(0)P^{(0)}_{i} are again leading order contributions of PiP_{i}. Using the soft theorem and the soft factor in (110), we get

𝒜Y(0)(1,,i,p,i+1,,n)\displaystyle{\cal A}^{(0)}_{Y}(1,\cdots,i,p,i+1,\cdots,n) =\displaystyle= 1τ(ϵ1knsn1ϵ1k2s12)𝒜Y(,2,,i,p,i+1,,n),fori2,\displaystyle{1\over\tau}\,\Big{(}{\epsilon_{1}\cdot k_{n}\over s_{n1}}-{\epsilon_{1}\cdot k_{2}\over s_{12}}\Big{)}\,{\cal A}_{Y}(\not{1},2,\cdots,i,p,i+1,\cdots,n)\,,~{}~{}{\rm for}~{}i\geq 2\,,
𝒜Y(0)(1,p,2,,n)\displaystyle{\cal A}^{(0)}_{Y}(1,p,2,\cdots,n) =\displaystyle= 1τ(ϵ1knsn1ϵ1kps1p)𝒜Y(,p,2,,n),fori=1.\displaystyle{1\over\tau}\,\Big{(}{\epsilon_{1}\cdot k_{n}\over s_{n1}}-{\epsilon_{1}\cdot k_{p}\over s_{1p}}\Big{)}\,{\cal A}_{Y}(\not{1},p,2,\cdots,n)\,,~{}~{}{\rm for}~{}i=1\,.~{}~{}~{}~{} (115)

Substituting (115) into (114) gives

𝒜EY(0)(1,,n;p)\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p) =\displaystyle= 1τ(ϵ1knsn1ϵ1kps1p)(ϵ~pP1(0))𝒜Y(,p,2,,n)\displaystyle{1\over\tau}\,\Big{(}{\epsilon_{1}\cdot k_{n}\over s_{n1}}-{\epsilon_{1}\cdot k_{p}\over s_{1p}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot P^{(0)}_{1})\,{\cal A}_{Y}(\not{1},p,2,\cdots,n) (116)
+1τ(ϵ1knsn1ϵ1k2s12)j=2n1(ϵ~pPj(0))𝒜Y(,,j,p,j+1,,n).\displaystyle+{1\over\tau}\,\Big{(}{\epsilon_{1}\cdot k_{n}\over s_{n1}}-{\epsilon_{1}\cdot k_{2}\over s_{12}}\Big{)}\,\sum_{j=2}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P^{(0)}_{j})\,{\cal A}_{Y}(\not{1},\cdots,j,p,j+1,\cdots,n)\,.~{}~{}~{}~{}

Since the soft theorem imposes

𝒜EY(0)(1,,n;p)=Sg(0)(1)𝒜EY(,,n;p),\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p)=S^{(0)}_{g}(1)\,{\cal A}_{EY}(\not{1},\cdots,n;p)\,,~{}~{}~{}~{} (117)

the universality of the soft operator Sg(0)(1)S^{(0)}_{g}(1) implies that the combinatory momentum P1(0)P_{1}^{(0)} accompanied by the pole 1/s1p1/s_{1p} must vanish. Thus we find P1=k1P_{1}=k_{1}, and conclude that the operator Sg(0)(a)S^{(0)}_{g}(a) in (110) only acts on adjacent gluons. By considering the sub-leading order soft behavior of the gluon 11, one can figure out that the sub-leading soft factor Sg(1)(a)S^{(1)}_{g}(a) also only acts on adjacent gluons. Similar as in the YMS case in subsection.3.1, such phenomenon can be understood from the Feynman diagram point of view.

The vanishing of P1(0)P^{(0)}_{1} eliminates the first line at the r.h.s of (116), thus the soft theorem (117) together with the soft operator (110) require

Sg(0)(1)𝒜EY(,,n;p)\displaystyle S^{(0)}_{g}(1)\,{\cal A}_{EY}(\not{1},\cdots,n;p) (118)
=\displaystyle= Sg(0)(1)j=2n1(ϵ~pPj(0))𝒜Y(,,j,p,j+1,,n),\displaystyle S^{(0)}_{g}(1)\,\sum_{j=2}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P^{(0)}_{j})\,{\cal A}_{Y}(\not{1},\cdots,j,p,j+1,\cdots,n)\,,~{}~{}~{}~{}

which indicates the expansion

𝒜EY(2,,n;p)=j=2n1(ϵ~pPj(0))𝒜Y(2,,j,p,j+1,,n),\displaystyle{\cal A}_{EY}(2,\cdots,n;p)=\sum_{j=2}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P^{(0)}_{j})\,{\cal A}_{Y}(2,\cdots,j,p,j+1,\cdots,n)\,,~{}~{}~{}~{} (119)

The expansions in (119) and (113) are totally the same, up to a relabeling. Thus, the solution P1=k1P_{1}=k_{1} indicates P2(0)=k2P^{(0)}_{2}=k_{2} in (119), therefore

P2=k2+αk1.\displaystyle P_{2}=k_{2}+\alpha k_{1}\,.~{}~{}~{}~{} (120)

The parameter α\alpha can be fixed by considering the soft behavior of the the external gluon 22. After taking k2τk2k_{2}\to\tau k_{2} and expanding (113) in τ\tau, the leading order term is found to be

𝒜EY(0)(1,,n;p)\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p) =\displaystyle= 1τ(ϵ2kpsp2ϵ2k3s23)(ϵ~pP1(0))𝒜Y(1,p,,,n)\displaystyle{1\over\tau}\,\Big{(}{\epsilon_{2}\cdot k_{p}\over s_{p2}}-{\epsilon_{2}\cdot k_{3}\over s_{23}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot P_{1}^{(0)})\,{\cal A}_{Y}(1,p,\not{2},\cdots,n) (121)
+1τ(ϵ2k1s12ϵ2kps2p)(ϵ~pP2(0))𝒜Y(1,,p,,n)\displaystyle+{1\over\tau}\,\Big{(}{\epsilon_{2}\cdot k_{1}\over s_{12}}-{\epsilon_{2}\cdot k_{p}\over s_{2p}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot P_{2}^{(0)})\,{\cal A}_{Y}(1,\not{2},p,\cdots,n)
+1τ(ϵ2k1s12ϵ2k3s23)i=3n1(ϵ~pPi(0))𝒜Y(1,,,i,p,i+1,,n).\displaystyle+{1\over\tau}\,\Big{(}{\epsilon_{2}\cdot k_{1}\over s_{12}}-{\epsilon_{2}\cdot k_{3}\over s_{23}}\Big{)}\,\sum_{i=3}^{n-1}\,(\widetilde{\epsilon}_{p}\cdot P_{i}^{(0)})\,{\cal A}_{Y}(1,\not{2},\cdots,i,p,i+1,\cdots,n)\,.~{}~{}~{}~{}

The soft theorem (117) and the universality of soft operator impose the constraint

𝒜EY(0)(1,,n;p)=1τ(ϵ2k1s12ϵ2k3s23)𝒜EY(1,,,n;p).\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p)={1\over\tau}\,\Big{(}{\epsilon_{2}\cdot k_{1}\over s_{12}}-{\epsilon_{2}\cdot k_{3}\over s_{23}}\Big{)}\,{\cal A}_{EY}(1,\not{2},\cdots,n;p)\,.~{}~{}~{} (122)

By applying the expansion (113) to 𝒜EY(1,3,,n;p){\cal A}_{EY}(1,3,\cdots,n;p) in (122), with the solution P1=k1P_{1}=k_{1}, and comparing with (121), one can get the following equation

(ϵ2kpsp2ϵ2k3s23)(ϵ~pP1(0))+(ϵ2k1s12ϵ2kps2p)(ϵ~pP2(0))=(ϵ2k1s12ϵ2k3s23)(ϵ~pk1).\displaystyle\Big{(}{\epsilon_{2}\cdot k_{p}\over s_{p2}}-{\epsilon_{2}\cdot k_{3}\over s_{23}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot P_{1}^{(0)})+\Big{(}{\epsilon_{2}\cdot k_{1}\over s_{12}}-{\epsilon_{2}\cdot k_{p}\over s_{2p}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot P_{2}^{(0)})=\Big{(}{\epsilon_{2}\cdot k_{1}\over s_{12}}-{\epsilon_{2}\cdot k_{3}\over s_{23}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot k_{1})\,.~{}~{}~{}~{} (123)

The solution to (123) is α=1\alpha=1, thus we have P1=k1,P2=k1+k2P_{1}=k_{1},\,P_{2}=k_{1}+k_{2}.

Taking the soft limit of other external gluons successively, and applying the same method, one can find

Pi=j=1ikj,\displaystyle P_{i}=\sum_{j=1}^{i}\,k_{j}\,,~{}~{}~{}~{} (124)

thus the EYM amplitude with one external graviton can be expanded as

𝒜EY(1,,n;p)=(ϵ~pXp)𝒜Y(1,{2,,n1}\shufflep,n).\displaystyle{\cal A}_{EY}(1,\cdots,n;p)=(\widetilde{\epsilon}_{p}\cdot X_{p})\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\,.~{}~{}~{}~{} (125)

As can be seen, the whole process from (113) to (125) is paralleled to that from (18) to (35) in subsection.3.1, with the replacement δijϵjki\delta_{ij}\to\epsilon_{j}\cdot k_{i} which reflects the color-kinematic duality.

5.2 Soft factors for graviton

In this subsection, we determine the soft factors for the graviton at leading, sub-leading, and sub-sub-leading orders, using the recursive expansion of EY amplitudes in (111) and the soft theorem. Let us consider the EY amplitude 𝒜EY(1,,n;p,q){\cal A}_{EY}(1,\cdots,n;p,q) which contains nn external gluons, and two external gravitons labeled by pp and qq. By applying the general recursive expansion (111), one can expand 𝒜EY(1,,n;p,q){\cal A}_{EY}(1,\cdots,n;p,q) as

𝒜EY(1,,n;p,q)\displaystyle{\cal A}_{EY}(1,\cdots,n;p,q) =\displaystyle= (ϵ~pYp)𝒜EY(1,{2,,n1}\shufflep,n;q)\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,{\cal A}_{EY}(1,\{2,\cdots,n-1\}\shuffle p,n;q) (126)
+(ϵ~pf~qYq)𝒜Y(1,{2,,n1}\shuffle{q,p},n),\displaystyle+(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n)\,,~{}~{}~{}

and use this formula to study the soft behavior of the external graviton qq. Here the strength tensor f~a\widetilde{f}_{a} is f~aμνkaμϵ~aνϵ~aμkaν\widetilde{f}_{a}^{\mu\nu}\equiv k^{\mu}_{a}\widetilde{\epsilon}^{\nu}_{a}-\widetilde{\epsilon}_{a}^{\mu}k_{a}^{\nu}. Since ϵ~pf~qYq\widetilde{\epsilon}_{p}\cdot\widetilde{f}_{q}\cdot Y_{q} in the second line at the r.h.s of (126) is proportional to τ\tau under the re-scaling kqτkqk_{q}\to\tau k_{q}, the leading order term of 𝒜EY(1,,n;p,q){\cal A}_{EY}(1,\cdots,n;p,q) only arises from the first line. One can use (111) to expand 𝒜EY(1,{2,,n1}\shufflep,n;q){\cal A}_{EY}(1,\{2,\cdots,n-1\}\shuffle p,n;q) in (126) further, and use the leading soft factor for the gluon given in (110), to get

𝒜EY(0)(1,,n;p,q)\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p,q) (127)
=\displaystyle= (ϵ~pYp)(ϵ~qXq)𝒜Y(0)(1,{2,,n1}\shufflep\shuffleq,n)\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,(\widetilde{\epsilon}_{q}\cdot X_{q})\,{\cal A}^{(0)}_{Y}(1,\{2,\cdots,n-1\}\shuffle p\shuffle q,n)
=\displaystyle= 1τi=1n1[j{1,,n1}i(ϵqkjsjqϵqkj+1sq(j+1))(ϵ~pYp)(ϵ~qXq)𝒜Y(1,,j,,j+1,,i,p,i+1,,n)\displaystyle{1\over\tau}\,\sum_{i=1}^{n-1}\,\Big{[}\sum_{j\in\{1,\cdots,n-1\}\setminus i}\,\Big{(}{\epsilon_{q}\cdot k_{j}\over s_{jq}}-{\epsilon_{q}\cdot k_{j+1}\over s_{q(j+1)}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\,(\widetilde{\epsilon}_{q}\cdot X_{q})\,{\cal A}_{Y}(1,\cdots,j,\not{q},j+1,\cdots,i,p,i+1,\cdots,n)
+(ϵqkisiqϵqkpsqp)(ϵ~pYp)(ϵ~qXq)𝒜Y(1,,i,,p,i+1,,n)\displaystyle+\Big{(}{\epsilon_{q}\cdot k_{i}\over s_{iq}}-{\epsilon_{q}\cdot k_{p}\over s_{qp}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\,(\widetilde{\epsilon}_{q}\cdot X_{q})\,{\cal A}_{Y}(1,\cdots,i,\not{q},p,i+1,\cdots,n)
+(ϵqkpspqϵqki+1sq(i+1))(ϵ~pYp)(ϵ~qXq)𝒜Y(1,,i,p,,i+1,,n)]\displaystyle+\Big{(}{\epsilon_{q}\cdot k_{p}\over s_{pq}}-{\epsilon_{q}\cdot k_{i+1}\over s_{q(i+1)}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\,(\widetilde{\epsilon}_{q}\cdot X_{q})\,{\cal A}_{Y}(1,\cdots,i,p,\not{q},i+1,\cdots,n)\Big{]}
=\displaystyle= 1τ[(ϵ1kp)(ϵ~qkp)spq(ϵqkn)(ϵ~qkp)sqn+j=1n1((ϵqkj)(ϵ~qkj)sjq(ϵqkn)(ϵ~qkj)sqn)]𝒜EY(1,,n;p)\displaystyle{1\over\tau}\,\Big{[}{(\epsilon_{1}\cdot k_{p})\,(\widetilde{\epsilon}_{q}\cdot k_{p})\over s_{pq}}-{(\epsilon_{q}\cdot k_{n})\,(\widetilde{\epsilon}_{q}\cdot k_{p})\over s_{qn}}+\sum_{j=1}^{n-1}\,\Big{(}{(\epsilon_{q}\cdot k_{j})\,(\widetilde{\epsilon}_{q}\cdot k_{j})\over s_{jq}}-{(\epsilon_{q}\cdot k_{n})\,(\widetilde{\epsilon}_{q}\cdot k_{j})\over s_{qn}}\Big{)}\Big{]}\,{\cal A}_{EY}(1,\cdots,n;p)
=\displaystyle= 1τ((ϵqkp)(ϵ~qkp)spq+j=1n(ϵqkj)(ϵ~qkj)sjq)𝒜EY(1,,n;p).\displaystyle{1\over\tau}\,\Big{(}{(\epsilon_{q}\cdot k_{p})\,(\widetilde{\epsilon}_{q}\cdot k_{p})\over s_{pq}}+\sum_{j=1}^{n}\,{(\epsilon_{q}\cdot k_{j})\,(\widetilde{\epsilon}_{q}\cdot k_{j})\over s_{jq}}\Big{)}\,{\cal A}_{EY}(1,\cdots,n;p)\,.~{}~{}~{}~{}

The above manipulation is paralleled to that in (74), with the replacement δaqϵqka\delta_{aq}\to\epsilon_{q}\cdot k_{a}. Since the soft theorem requires

𝒜EY(0)(1,,n;p,q)=Sh(0)(q)𝒜EY(0)(1,,n;p),\displaystyle{\cal A}^{(0)}_{EY}(1,\cdots,n;p,q)=S^{(0)}_{h}(q)\,{\cal A}^{(0)}_{EY}(1,\cdots,n;p)\,, (128)

from the last line of (127) we observe that

Sh(0)(q)=1τa(ϵqka)(ϵ~qka)saq=1τakaεqkasaq,\displaystyle S^{(0)}_{h}(q)={1\over\tau}\sum_{a}\,{(\epsilon_{q}\cdot k_{a})\,(\widetilde{\epsilon}_{q}\cdot k_{a})\over s_{aq}}={1\over\tau}\sum_{a}\,{k_{a}\cdot\varepsilon_{q}\cdot k_{a}\over s_{aq}}\,,~{}~{}~{}~{} (129)

which is the same as the formula found by Weinberg in Weinberg . Here εqμν\varepsilon_{q}^{\mu\nu} is the polarization tensor of the graviton, and the summation is over all external particles including both gluons and gravitons.

Then we turn to the sub-leading order. The expanded formula (126) indicates

𝒜EY(1)(1,,n;p,q)\displaystyle{\cal A}^{(1)}_{EY}(1,\cdots,n;p,q) =\displaystyle= (ϵ~pYp)𝒜EY(1)(1,{2,,n1}\shufflep,n;q)\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,{\cal A}^{(1)}_{EY}(1,\{2,\cdots,n-1\}\shuffle p,n;q) (130)
+τ(ϵ~pf~qYq)𝒜Y(0)(1,{2,,n1}\shuffle{q,p},n)\displaystyle+\tau\,(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,{\cal A}^{(0)}_{Y}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n)
=\displaystyle= (ϵ~pYp)[Sh(1)(q)𝒜Y(1,{2,,n1}\shufflep,n)]\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,\Big{[}S^{(1)}_{h}(q)\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]}
+[(a(ϵqka)(ϵ~qJakq)saq)(ϵ~pYp)]𝒜Y(1,{2,n1}\shufflep,n).\displaystyle+\Big{[}\Big{(}\sum_{a}\,{(\epsilon_{q}\cdot k_{a})\,(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\over s_{aq}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\,.~{}~{}~{}

To obtain the second equality in (130), we have used the soft theorem, and the relation

τ(ϵ~pf~qYq)𝒜Y(0)(1,{2,,n1}\shuffle{q,p},n)\displaystyle\tau\,(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,{\cal A}^{(0)}_{Y}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n) (131)
=\displaystyle= [(a(ϵqka)(ϵ~qJakq)saq)(ϵ~pYp)]𝒜Y(1,{2,n1}\shufflep,n),\displaystyle\Big{[}\Big{(}\sum_{a}\,{(\epsilon_{q}\cdot k_{a})\,(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\over s_{aq}}\Big{)}\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\,,~{}~{}~{}

which comes from the computation paralleled to that in (68) and (70). In the second line of (131), the summation is over all external legs aa, and the effective part is the summation over legs which contribute kak_{a} or ϵ~a\widetilde{\epsilon}_{a} to (ϵ~pYp)(\widetilde{\epsilon}_{p}\cdot Y_{p}), since (ϵ~qJakq)(ϵ~pYp)(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})(\widetilde{\epsilon}_{p}\cdot Y_{p}) vanishes otherwise. From (130), one can observe that

𝒜EY(1)(1,,n;p,q)\displaystyle{\cal A}^{(1)}_{EY}(1,\cdots,n;p,q) =\displaystyle= Sh(1)(q)𝒜EY(1,,n;p)\displaystyle S^{(1)}_{h}(q)\,{\cal A}_{EY}(1,\cdots,n;p) (132)
=\displaystyle= Sh(1)(q)[(ϵ~pYp)𝒜Y(1,{2,n1}\shufflep,n)]\displaystyle S^{(1)}_{h}(q)\,\Big{[}(\widetilde{\epsilon}_{p}\cdot Y_{p})\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\Big{]}
=\displaystyle= (ϵ~pYp)[Sh(1)(q)𝒜Y(1,{2,n1}\shufflep,n)]\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,\Big{[}S^{(1)}_{h}(q)\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\Big{]}
+[Sh(1)(q)(ϵ~pYp)]𝒜Y(1,{2,n1}\shufflep,n),\displaystyle+\Big{[}S^{(1)}_{h}(q)\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\,,~{}~{}~{}~{}

where the sub-leading soft factor for the graviton is given as

Sh(1)(q)=a(ϵqka)(ϵ~qJakq)saq=akaεqJakqsaq,\displaystyle S^{(1)}_{h}(q)=\sum_{a}\,{(\epsilon_{q}\cdot k_{a})\,(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\over s_{aq}}=\sum_{a}\,{k_{a}\cdot\varepsilon_{q}\cdot J_{a}\cdot k_{q}\over s_{aq}}\,,~{}~{}~{}~{} (133)

which is the same as that found in Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia . The second equality in (132) uses (111) to expand 𝒜EY(1,,n;p){\cal A}_{EY}(1,\cdots,n;p) further. The third uses Leibnitz’s rule, since the operator (133) includes the first order derivative of Lorentz vectors.

Finally, we consider the sub-sub-leading order. At this order, we have the analogue of (130) which is

𝒜EY(2)(1,,n;p,q)\displaystyle{\cal A}^{(2)}_{EY}(1,\cdots,n;p,q) =\displaystyle= (ϵ~pYp)𝒜EY(2)(1,{2,,n1}\shufflep,n;q)\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,{\cal A}^{(2)}_{EY}(1,\{2,\cdots,n-1\}\shuffle p,n;q) (134)
+τ(ϵ~pf~qYq)𝒜Y(1)(1,{2,,n1}\shuffle{q,p},n)\displaystyle+\tau\,(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,{\cal A}^{(1)}_{Y}(1,\{2,\cdots,n-1\}\shuffle\{q,p\},n)
=\displaystyle= (ϵ~pYp)[Sh(2)(q)𝒜Y(1,{2,,n1}\shufflep,n)]\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,\Big{[}S^{(2)}_{h}(q)\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]}
+τ(ϵ~pf~qYq)[a(ϵpJakqsaqϵpJa+1kqs(a+1)q)𝒜Y(1,{2,,n1}\shufflep,n)],\displaystyle+\tau\,(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,\Big{[}{\sum_{a}}^{\prime}\,\Big{(}{\epsilon_{p}\cdot J_{a}\cdot k_{q}\over s_{aq}}-{\epsilon_{p}\cdot J_{a+1}\cdot k_{q}\over s_{(a+1)q}}\Big{)}\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]}\,,~{}~{}~{}

where we have used the soft theorem and the sub-leading soft operator (110) for the gluon to get the second equality. The summation a\sum^{\prime}_{a} is over all legs at the l.h.s of pp in the color ordering. To continue, we observe that the derivation of (131)(\ref{eq-2o}) will not be altered when replacing ϵqka\epsilon_{q}\cdot k_{a} with the arbitrary operator 𝒪aq{\cal O}_{aq} determined by external leg qq and it’s adjacent partner aa. Thus we can generalize (131) to

a[(ϵ~qJakq)(ϵ~pYp)][𝒪aqsaq𝒜Y(1,{2,n1}\shufflep,n)]\displaystyle\sum_{a}\,\Big{[}(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,\Big{[}{{\cal O}_{aq}\over s_{aq}}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\Big{]} (135)
=\displaystyle= (ϵ~pf~qYq)[a(𝒪aqsaq𝒪(a+1)qs(a+1)q)𝒜Y(1,{2,,n1}\shufflep,n)],\displaystyle\,(\widetilde{\epsilon}_{p}\cdot{\widetilde{f}}_{q}\cdot Y_{q})\,\Big{[}{\sum_{a}}^{\prime}\,\Big{(}{{\cal O}_{aq}\over s_{aq}}-{{\cal O}_{(a+1)q}\over s_{(a+1)q}}\Big{)}\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]}\,,~{}~{}~{}~{}

where the summation in the first line is again over all external legs, and the summation in the second line is again over all legs at the l.h.s of pp in the color ordering. Substituting (135) into (134) with 𝒪aq=ϵqJakq{\cal O}_{aq}=\epsilon_{q}\cdot J_{a}\cdot k_{q}, we obtain the following expression for 𝒜EY(2)(1,,n;p,q){\cal A}^{(2)}_{EY}(1,\cdots,n;p,q),

𝒜EY(2)(1,,n;p,q)\displaystyle{\cal A}^{(2)}_{EY}(1,\cdots,n;p,q) =\displaystyle= (ϵ~pYp)[Sh(2)(q)𝒜Y(1,{2,,n1}\shufflep,n)]\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,\Big{[}S^{(2)}_{h}(q)\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]} (136)
+τa[(ϵ~qJakq)(ϵ~pYp)][ϵqJakqsaq𝒜Y(1,{2,n1}\shufflep,n)],\displaystyle+\tau\,\sum_{a}\,\Big{[}(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,\Big{[}{\epsilon_{q}\cdot J_{a}\cdot k_{q}\over s_{aq}}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\Big{]}\,,~{}~{}~{}

which indicates

𝒜EY(2)(1,,n;p,q)\displaystyle{\cal A}^{(2)}_{EY}(1,\cdots,n;p,q) =\displaystyle= Sh(2)(q)𝒜EY(1,,n,p)\displaystyle S^{(2)}_{h}(q)\,{\cal A}_{EY}(1,\cdots,n,p) (137)
=\displaystyle= (ϵ~pYp)[Sh(2)(q)𝒜Y(1,{2,,n1}\shufflep,n)]\displaystyle(\widetilde{\epsilon}_{p}\cdot Y_{p})\,\Big{[}S^{(2)}_{h}(q)\,{\cal A}_{Y}(1,\{2,\cdots,n-1\}\shuffle p,n)\Big{]}
+τa[(ϵ~qJakq)(ϵ~pYp)][ϵqJakqsaq𝒜Y(1,{2,n1}\shufflep,n)]\displaystyle+\tau\,\sum_{a}\,\Big{[}(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,\Big{[}{\epsilon_{q}\cdot J_{a}\cdot k_{q}\over s_{aq}}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\Big{]}
+[Sh(2)(q)(ϵ~pYp)]𝒜Y(1,{2,n1}\shufflep,n),\displaystyle+\Big{[}S^{(2)}_{h}(q)\,(\widetilde{\epsilon}_{p}\cdot Y_{p})\Big{]}\,{\cal A}_{Y}(1,\{2\cdots,n-1\}\shuffle p,n)\,,~{}~{}~{}

where the sub-sub-leading soft operator for the graviton is given by

Sh(2)(q)=τ2a(ϵqJakq)(ϵ~qJakq)saq=τ2akqJaεqJakqsaq,\displaystyle S^{(2)}_{h}(q)={\tau\over 2}\,\sum_{a}\,{(\epsilon_{q}\cdot J_{a}\cdot k_{q})\,(\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q})\over s_{aq}}=-{\tau\over 2}\,\sum_{a}\,{k_{q}\cdot J_{a}\cdot\varepsilon_{q}\cdot J_{a}\cdot k_{q}\over s_{aq}}\,,~{}~{}~{} (138)

the same as the operator provided in Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia . In the second equality of (137), the Leibnitz’s rule and the observation Sh(2)(q)(ϵ~pYp)=0S^{(2)}_{h}(q)\,(\widetilde{\epsilon}_{p}\cdot Y_{p})=0 have been used. The factor 1/21/2 arises from the observation that swapping ϵqJakq\epsilon_{q}\cdot J_{a}\cdot k_{q} and ϵ~qJakq\widetilde{\epsilon}_{q}\cdot J_{a}\cdot k_{q} also leads to the second line at the r.h.s of (136), since for gravitons of Einstein gravity under consideration, two sets of polarization vectors {ϵi}\{\epsilon_{i}\} and {ϵ~i}\{\widetilde{\epsilon}_{i}\} are the same.

From the formulas provided in (129), (133), and (138), one can see that soft operators for the graviton are manifestly gauge invariant at each order, they act on all external legs including both gravitons and gluons.

6 Conclusion and discussion

In this paper, by imposing soft theorems, the universality of soft factors, and assuming the double copy structure, we constructed the expansions of single trace YMS tree amplitudes and pure YM tree amplitudes to KK BAS basis, and determined the soft factors including the leading factor for the BAS scalar, the leading and sub-leading factors for the gluon. Our method also leads to the expansions of single trace EYM tree amplitudes and pure GR tree amplitudes, as demonstrated in the simplest example in subsection.5.1. Using the expanded formula of EYM amplitude, we reproduced the soft factors for the graviton at leading, sub-leading, as well as sub-sub-leading orders.

From our results, one can see that the soft factor for the BAS scalar only acts on external BAS scalars, the soft factors for the gluon acts on external scalars and gluons, while the soft factors for the graviton acts on all external particles. These observations imply that the action of soft factors depend on the charges carried by external particles. BAS theory carries two gauge groups G1G_{1} and G2G_{2}, YM theory carries only one gauge group G1G_{1}, while GR carries non of them. Correspondingly, the soft factor for the BAS scalar only acts on external particles which carry both G1G_{1} and G2G_{2} charges, the soft factors for the gluon only acts on external particles which carry the G1G_{1} charges, and the soft factors for the graviton acts on all external particles which carry the gravitational charges.

An interesting question is, if the factorization in the manner of (1) holds at any order? Using the expansions of amplitudes, one can calculate the Laurent expansion of the amplitude in the soft parameter τ\tau to any order. However, it does not mean the universal soft operators can be extracted at any order. This is a potential future direction. If the higher order operators exist, we need to work out the explicit formulas of them. And if they do not exist, we need to understand the reason.

The expansions of tree amplitudes can be extended to a wide range of theories, as discussed in Zhou:2019mbe . Thus, another interesting future direction is to answer if the expansions of other theories, as well as the explicit formulas of soft factors for other particles, can be determined by imposing the soft theorems and the universality of soft factors.

Acknowledgments

The author would thank Prof. Yijian Du, Chang Hu and Linghui Hou, for helpful discussions and valuable suggestions.

References

  • (1) F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions,” Phys. Rev.  110, 974 (1958).
  • (2) S. Weinberg, “Infrared photons and gravitons,” Phys. Rev.  140, B516 (1965).
  • (3) F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” [arXiv:1404.4091 [hep-th]].
  • (4) E. Casali, “Soft sub-leading divergences in Yang-Mills amplitudes,” JHEP 08, 077 (2014) doi:10.1007/JHEP08(2014)077 [arXiv:1404.5551 [hep-th]].
  • (5) R. Britto, F. Cachazo and B. Feng, “New recursion relations for tree amplitudes of gluons,” Nucl. Phys. B 715, 499-522 (2005) doi:10.1016/j.nuclphysb.2005.02.030 [arXiv:hep-th/0412308 [hep-th]].
  • (6) R. Britto, F. Cachazo, B. Feng and E. Witten, “Direct proof of tree-level recursion relation in Yang-Mills theory,” Phys. Rev. Lett. 94, 181602 (2005) doi:10.1103/PhysRevLett.94.181602 [arXiv:hep-th/0501052 [hep-th]].
  • (7) B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations,” Phys. Rev. Lett. 113, no.10, 101601 (2014) doi:10.1103/PhysRevLett.113.101601 [arXiv:1404.7749 [hep-th]].
  • (8) N. Afkhami-Jeddi, “Soft Graviton Theorem in Arbitrary Dimensions,” [arXiv:1405.3533 [hep-th]].
  • (9) F. Cachazo, S. He, and E. Y. Yuan, “Scattering Equations and Kawai-Lewellen-Tye Orthogonality,” Phys. Rev. D90 (2014) no. 6, 065001, arXiv:1306.6575 [hep-th].
  • (10) F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles in Arbitrary Dimensions,” Phys. Rev. Lett. 113 (2014) no. 17, 171601, arXiv:1307.2199 [hep-th].
  • (11) F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles: Scalars, Gluons and Gravitons,” JHEP 1407 (2014) 033, arXiv:1309.0885 [hep-th].
  • (12) F. Cachazo, S. He and E. Y. Yuan, “Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations,” JHEP 1501, 121 (2015) [arXiv:1409.8256 [hep-th]].
  • (13) F. Cachazo, S. He and E. Y. Yuan, “Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM,” JHEP 1507, 149 (2015) [arXiv:1412.3479 [hep-th]].
  • (14) A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07, 152 (2014) doi:10.1007/JHEP07(2014)152 [arXiv:1312.2229 [hep-th]].
  • (15) A. Strominger, JHEP 07, 151 (2014) doi:10.1007/JHEP07(2014)151 [arXiv:1308.0589 [hep-th]].
  • (16) T. He, V. Lysov, P. Mitra and A. Strominger, JHEP 05, 151 (2015) doi:10.1007/JHEP05(2015)151 [arXiv:1401.7026 [hep-th]].
  • (17) D. Kapec, V. Lysov, S. Pasterski and A. Strominger, JHEP 08, 058 (2014) doi:10.1007/JHEP08(2014)058 [arXiv:1406.3312 [hep-th]].
  • (18) A. Strominger and A. Zhiboedov, JHEP 01, 086 (2016) doi:10.1007/JHEP01(2016)086 [arXiv:1411.5745 [hep-th]].
  • (19) S. Pasterski, A. Strominger and A. Zhiboedov, JHEP 12, 053 (2016) doi:10.1007/JHEP12(2016)053 [arXiv:1502.06120 [hep-th]].
  • (20) G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited,” Phys. Rev. Lett.  105, 111103 (2010) [arXiv:0909.2617 [gr-qc]].
  • (21) G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG 2010, 010 (2010) [arXiv:1102.4632 [gr-qc]].
  • (22) G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 1112, 105 (2011) [arXiv:1106.0213 [hep-th]].
  • (23) Z. Bern, S. Davies and J. Nohle, “On Loop Corrections to sub-leading Soft Behavior of Gluons and Gravitons,” arXiv:1405.1015 [hep-th].
  • (24) S. He, Y. -t. Huang and C. Wen, “Loop Corrections to Soft Theorems in Gauge Theories and Gravity,” arXiv:1405.1410 [hep-th].
  • (25) F. Cachazo and E. Y. Yuan, “Are Soft Theorems Renormalized?,” arXiv:1405.3413 [hep-th].
  • (26) M. Bianchi, S. He, Y. t. Huang and C. Wen, “More on Soft Theorems: Trees, Loops and Strings,” Phys. Rev. D 92, no.6, 065022 (2015) doi:10.1103/PhysRevD.92.065022 [arXiv:1406.5155 [hep-th]].
  • (27) M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton theorem,” Phys. Rev. D 90, no.12, 124028 (2014) doi:10.1103/PhysRevD.90.124028 [arXiv:1408.2228 [hep-th]].
  • (28) M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,” JHEP 01, 036 (2017) doi:10.1007/JHEP01(2017)036 [arXiv:1608.00685 [gr-qc]].
  • (29) H. Elvang, C. R. T. Jones and S. G. Naculich, “Soft Photon and Graviton Theorems in Effective Field Theory,” Phys. Rev. Lett. 118, no.23, 231601 (2017) doi:10.1103/PhysRevLett.118.231601 [arXiv:1611.07534 [hep-th]].
  • (30) A. L. Guerrieri, Y. t. Huang, Z. Li and C. Wen, “On the exactness of soft theorems,” JHEP 12, 052 (2017) doi:10.1007/JHEP12(2017)052 [arXiv:1705.10078 [hep-th]].
  • (31) Y. Hamada and S. Sugishita, “Soft pion theorem, asymptotic symmetry and new memory effect,” JHEP 11, 203 (2017) doi:10.1007/JHEP11(2017)203 [arXiv:1709.05018 [hep-th]].
  • (32) P. Mao and J. B. Wu, “Note on asymptotic symmetries and soft gluon theorems,” Phys. Rev. D 96, no.6, 065023 (2017) doi:10.1103/PhysRevD.96.065023 [arXiv:1704.05740 [hep-th]].
  • (33) Z. z. Li, H. h. Lin and S. q. Zhang, “On the Symmetry Foundation of Double Soft Theorems,” JHEP 12, 032 (2017) doi:10.1007/JHEP12(2017)032 [arXiv:1710.00480 [hep-th]].
  • (34) P. Di Vecchia, R. Marotta and M. Mojaza, “The B-field soft theorem and its unification with the graviton and dilaton,” JHEP 10, 017 (2017) doi:10.1007/JHEP10(2017)017 [arXiv:1706.02961 [hep-th]].
  • (35) M. Bianchi, A. L. Guerrieri, Y. t. Huang, C. J. Lee and C. Wen, “Exploring soft constraints on effective actions,” JHEP 10, 036 (2016) doi:10.1007/JHEP10(2016)036 [arXiv:1605.08697 [hep-th]].
  • (36) S. Chakrabarti, S. P. Kashyap, B. Sahoo, A. Sen and M. Verma, “Subleading Soft Theorem for Multiple Soft Gravitons,” JHEP 12, 150 (2017) doi:10.1007/JHEP12(2017)150 [arXiv:1707.06803 [hep-th]].
  • (37) A. Sen, “Subleading Soft Graviton Theorem for Loop Amplitudes,” JHEP 11, 123 (2017) doi:10.1007/JHEP11(2017)123 [arXiv:1703.00024 [hep-th]].
  • (38) Y. Hamada and G. Shiu, “Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities,” Phys. Rev. Lett. 120, no.20, 201601 (2018) doi:10.1103/PhysRevLett.120.201601 [arXiv:1801.05528 [hep-th]].
  • (39) C. Cheung, K. Kampf, J. Novotny and J. Trnka, “Effective Field Theories from Soft Limits of Scattering Amplitudes,” Phys. Rev. Lett. 114, no.22, 221602 (2015) doi:10.1103/PhysRevLett.114.221602 [arXiv:1412.4095 [hep-th]].
  • (40) H. Luo and C. Wen, “Recursion relations from soft theorems,” JHEP 03, 088 (2016) doi:10.1007/JHEP03(2016)088 [arXiv:1512.06801 [hep-th]].
  • (41) H. Elvang, M. Hadjiantonis, C. R. T. Jones and S. Paranjape, “Soft Bootstrap and Supersymmetry,” JHEP 01, 195 (2019) doi:10.1007/JHEP01(2019)195 [arXiv:1806.06079 [hep-th]].
  • (42) F. Cachazo, P. Cha and S. Mizera, “Extensions of Theories from Soft Limits,” JHEP 06, 170 (2016) doi:10.1007/JHEP06(2016)170 [arXiv:1604.03893 [hep-th]].
  • (43) L. Rodina, “Scattering Amplitudes from Soft Theorems and Infrared Behavior,” Phys. Rev. Lett. 122, no.7, 071601 (2019) doi:10.1103/PhysRevLett.122.071601 [arXiv:1807.09738 [hep-th]].
  • (44) C. Boucher-Veronneau and A. J. Larkoski, “Constructing Amplitudes from Their Soft Limits,” JHEP 09, 130 (2011) doi:10.1007/JHEP09(2011)130 [arXiv:1108.5385 [hep-th]].
  • (45) D. Nguyen, M. Spradlin, A. Volovich and C. Wen, “The Tree Formula for MHV Graviton Amplitudes,” JHEP 07, 045 (2010) doi:10.1007/JHEP07(2010)045 [arXiv:0907.2276 [hep-th]].
  • (46) H. Kawai, D. C. Lewellen and S. H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269, 1 (1986).
  • (47) Z. Bern, J. J. M. Carrasco and H. Johansson, “New Relations for Gauge-Theory Amplitudes,” Phys. Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].
  • (48) M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, “Scattering amplitudes in 𝒩=2\mathcal{N}=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity,” JHEP 1501, 081 (2015) doi:10.1007/JHEP01(2015)081 [arXiv:1408.0764 [hep-th]].
  • (49) H. Johansson and A. Ochirov, “Color-Kinematics Duality for QCD Amplitudes,” JHEP 1601, 170 (2016) doi:10.1007/JHEP01(2016)170 [arXiv:1507.00332 [hep-ph]].
  • (50) H. Johansson and A. Ochirov, “Double copy for massive quantum particles with spin,” JHEP 1909, 040 (2019) doi:10.1007/JHEP09(2019)040 [arXiv:1906.12292 [hep-th]].
  • (51) C. H. Fu, Y. J. Du, R. Huang and B. Feng, “Expansion of Einstein-Yang-Mills Amplitude,” JHEP 1709, 021 (2017) doi:10.1007/JHEP09(2017)021 [arXiv:1702.08158 [hep-th]].
  • (52) F. Teng and B. Feng, “Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame,” JHEP 1705, 075 (2017) [arXiv:1703.01269 [hep-th]].
  • (53) Y. J. Du and F. Teng, “BCJ numerators from reduced Pfaffian,” JHEP 1704, 033 (2017) [arXiv:1703.05717 [hep-th]].
  • (54) Y. J. Du, B. Feng and F. Teng, “Expansion of All Multitrace Tree Level EYM Amplitudes,” JHEP 1712, 038 (2017) [arXiv:1708.04514 [hep-th]].
  • (55) B. Feng, X. Li and K. Zhou, “Expansion of EYM theory by Differential Operators,” arXiv:1904.05997 [hep-th].
  • (56) R. Kleiss and H. Kuijf, “MULTI - GLUON CROSS-SECTIONS AND FIVE JET PRODUCTION AT HADRON COLLIDERS,” Nucl. Phys.  B 312, 616 (1989).
  • (57) K. Zhou, “Unified web for expansions of amplitudes,” JHEP 10, 195 (2019) doi:10.1007/JHEP10(2019)195 [arXiv:1908.10272 [hep-th]].