This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Triangulated structures induced by mutations

Ryota Iitsuka
Abstract.

In representation theory of algebras, there exist two types of mutation pairs: rigid subcategories by Iyama-Yoshino and orthogonal collections by Coelho Simões-Pauksztello. It is known that such mutation pairs induce triangulated categories, however, these facts have been proved in different ways. In this paper, we introduce the concept of “premutation triples”, which is a simultaneous generalization of two different types of mutation pairs as well as concentric twin cotorsion pairs. We present two main theorems concerning mutation triples. The first theorem is that premutation triples induce pretriangulated categories. The second one is that pretriangulated categories induced by mutation triples, which are premutation triples satisfying an additional condition (MT4), become triangulated categories.

1. Introduction

The notion of “mutation” plays important roles in representation theory and related fields. Roughly speaking, mutation is an operation to obtain new objects from old ones, usually considered in triangulated categories, exact categories, or extriangulated categories [IY08, AI12, AIR14, GNP23]. There are many studies about mutation of tilting objects (for example, APR-tilting [ASS06]), silting objects[AI12], cluster-tilting objects[IY08, BMRRT06] and support τ\tau-tilting objects[AIR14]. They are respectively called tilting mutations, silting mutations, cluster-tilting mutations and support τ\tau-tilting mutations. There are some mutations which are considered in more generalized situations [LZ13, ZZ18]. In many cases, we can study characters of certain objects (silting objects and so on) by mutating them [AIR14, BMRRT06, IY08]. We collected some results on mutations of rigid subcategories in Appendix LABEL:Rigid_mutation_pairs and LABEL:Triangulated_structures_induced_by_rigid_mutation_pairs.

On the other hand, we may consider not only mutations of rigid subcategories (called “rigid mutations” here) but also those of orthogonal collections (called “orthogonal mutations” here). For example, simple-minded collections [KY14] and simple-minded systems [SP20, IJ23, Sim17, Dug15, SPP22]. We also collected some results in orthogonal mutations in Appendix LABEL:Orthogonal_mutation_pairs and LABEL:Triangulated_structures_induced_by_orthogonal_mutation_pairs.

What is more interesting is that both rigid and orthogonal mutations in a triangulated category induce another smaller triangulated category [IY08, BMRRT06, AI12, SP20]. Furthermore, it is also known that some mutation-like concepts induce triangulated categories. For example, a Frobenius extriangulated category induces a triangulated category whose shift functor is exactly a cosyzygy functor, which can be seen as a special case of rigid mutations in extriangulated categories [NP19]. For another example, a concentric twin cotorsion pair [Nak18, NP19, LN19] in triangulated category induces a pretriangulated category [BR07] and induces a triangulated category with some conditions [Nak18]. We review extriangulated categories and pretriangulated categories in section 2. (For details on concentric twin cotorsion pairs, see Appendix LABEL:ccTCP.)

However, the proofs showing that they induce triangulated structures are independent of all four cases: rigid mutations, orthogonal mutations, Frobenius extriangulated categories and concentric twin cotorsion pairs [IY08, IY18, Jin23, SP20, NP19, Nak18]. So our goal is to understand these triangulated structures within the same framework. In other words, we consider a simultaneous generalization of all four cases.

In section 3, we introduce the new concept of “premutation triples”, which is the framework we wanted to explain induced triangulated structures. Then we collect elementary results of premutation triples.

In the following definition, the concept of “strongly functorially finite” is defined in Definition 2.21 and the extriangulated categories (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}) and (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}_{\mathcal{I}},\mathfrak{s}_{\mathcal{I}}) are defined in Example 2.17.

Definition 1.1.

(Condition 3.1, 3.9 and Definition 3.11) Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an extriangulated category and (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a triplet of subcategories of 𝒞\mathcal{C}. (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) is called premutation triple if it satisfies the following conditions.

  • (MT1)

    SS𝒵=𝒵𝒱\SS\cap\mathcal{Z}=\mathcal{Z}\cap\mathcal{V}, denoted by \mathcal{I}, and \mathcal{I} is strongly functorially finite in 𝒵\mathcal{Z}.

  • (MT2)
    1. (i)

      𝔼(SS,𝒵)=0\mathbb{E}^{\mathcal{I}}(\SS,\mathcal{Z})=0 and 𝔼(SS,CoCone𝔼(,𝒵))=0\mathbb{E}_{\mathcal{I}}(\SS,\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{I},\mathcal{Z}))=0.

    2. (ii)

      𝔼(𝒵,𝒱)=0\mathbb{E}_{\mathcal{I}}(\mathcal{Z},\mathcal{V})=0 and 𝔼(Cone𝔼(𝒵,),𝒱)=0\mathbb{E}^{\mathcal{I}}(\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{I}),\mathcal{V})=0.

  • (MT3)
    1. (i)

      Cone𝔼(𝒵,𝒵)CoCone𝔼(𝒵,SS)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\SS).

    2. (ii)

      CoCone𝔼(𝒵,𝒵)Cone𝔼(𝒱,𝒵)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{V},\mathcal{Z}).

    3. (iii)

      SS\SS and 𝒵\mathcal{Z} are closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}) and 𝒱\mathcal{V} and 𝒵\mathcal{Z} are closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}_{\mathcal{I}},\mathfrak{s}_{\mathcal{I}}).

In the last of this section, We show the first main theorems below, which is a generalization of the results in [Nak18].

Theorem 1.2.

(Theorem LABEL:main_thm1) Let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a premutation triple. Then 𝒵/[]\mathcal{Z}/[\mathcal{I}] has a pretriangulated structure.

In section LABEL:triangulated, we collect sufficient conditions for mutation triples to induce a triangulated category. We consider two cases. The former one requires an additional condition (MT4), but it is not necessary that 𝒞\mathcal{C} is a triangulated category.

Theorem 1.3.

(Theorem LABEL:main_thm2, Remark LABEL:MT4) Let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a premutation triple. ()(\,\cdot\,)^{-} and ()+(\,\cdot\,)^{+} are defined in Proposition LABEL:prop_+_and_-. We consider the following new condition (MT4).

  • (MT4)

    (𝒵1/[])=(𝒵1/[])+(\mathcal{Z}\langle 1\rangle/[\mathcal{I}])^{-}=(\mathcal{Z}\langle-1\rangle/[\mathcal{I}])^{+}

(SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) is called a mutation triple if it satisfies (MT4). If (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) is a mutation triple, then 𝒵/[]\mathcal{Z}/[\mathcal{I}] has a triangulated structure.

The latter one is the result in [Nak18], which can be applied to mutation triples defined by concentric twin cotorsion pairs in triangulated category with specific conditions: Hovey and heart-equivalent. We show that (MT4) follows from these conditions. Therefore, the latter case is a special case of the former one.

In section LABEL:redMT, we introduce another triplet of subcategories, named reducible triple. We consider the following different version of (MT3) and (MT4) to define reducible triples. The extriangulated category (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}) is also defined in Example 2.17.

  • (RT3)
    1. (i)

      Cone𝔼(𝒵,𝒵)CoCone𝔼(𝒵,SS)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\SS).

    2. (ii)

      CoCone𝔼(𝒵,𝒵)Cone𝔼(𝒱,𝒵)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{V},\mathcal{Z}).

    3. (iii)

      SS\SS, 𝒵\mathcal{Z} and 𝒱\mathcal{V} are closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}).

  • (RT4)
    1. (i)

      \mathcal{I} is strongly contravariantly finite in SS\SS.

    2. (ii)

      \mathcal{I} is strongly covariantly finite in 𝒱\mathcal{V}.

    3. (iii)

      CoCone𝔼(,SS)=Cone𝔼(𝒱,)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{I},\SS)=\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{V},\mathcal{I}), denoted by \mathcal{R}.

Then we define a reducible triple as a triplet of subcategories satisfying (MT1), (MT2), (RT3) and (RT4).

Reducible triples have the following nice property.

Theorem 1.4.

(Theorem LABEL:main_thm3) Let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a reducible triple. Let \mathcal{E} be an extension closed subcategory in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}) containing \mathcal{R}. Then (𝒵)/[](\mathcal{E}\cap\mathcal{Z})/[\mathcal{I}] is an extension closed in 𝒵/[]\mathcal{Z}/[\mathcal{I}].

As an application of this theorem, we may consider restricting mutations to extension closed subcategory \mathcal{E} in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}), which induces mutations in the extriangulated category (𝒵)/[](\mathcal{E}\cap\mathcal{Z})/[\mathcal{I}]. Mutations of 2-term silting complexes [AIR14] are one of these examples.

Another advantage of introducing reducible triples is that we may define mutations of collections in 𝒞\mathcal{C}, which is a simultaneous generalization of cluster-tilting mutations, silting mutations, mutations of simple-minded systems and mutations of simple-minded collections.

Definition 1.5.

(Definition LABEL:defi_mu-rMT) Let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a reducible triple and \mathcal{R}^{\prime} be a collection in Ob(𝒞)\operatorname{\mathrm{Ob}}(\mathcal{C}) whose extension closure in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}) is \mathcal{R}. Assume that 𝒳Ob(𝒵)\mathcal{X}\subset\operatorname{\mathrm{Ob}}(\mathcal{Z}) be a collection containing \mathcal{R}^{\prime}. We denote 𝒳\mathcal{X}\setminus\mathcal{R}^{\prime} by 𝒳\mathcal{X}_{\mathcal{R}^{\prime}}.

  1. (1)

    We define right \mathcal{R}^{\prime}-mutation of 𝒳\mathcal{X} as Σ𝒳\mathcal{R}^{\prime}\cup\Sigma\mathcal{X}_{\mathcal{R}^{\prime}}, which is denoted by μ(𝒳)\mu^{-}_{\mathcal{R}^{\prime}}(\mathcal{X}).

  2. (2)

    We define left \mathcal{R}^{\prime}-mutation of 𝒳\mathcal{X} as Ω𝒳\mathcal{R}^{\prime}\cup\Omega\mathcal{X}_{\mathcal{R}^{\prime}}, which is denoted by μ+(𝒳)\mu^{+}_{\mathcal{R}^{\prime}}(\mathcal{X}).

Throughout this thesis, let kk be a field and 𝒞\mathcal{C} be a skeletally small additive category, thus the isomorphism class of Ob(𝒞)\operatorname{\mathrm{Ob}}(\mathcal{C}) is a set. If 𝒞\mathcal{C} is an extriangulated or triangulated, we denote the extension closure in 𝒞\mathcal{C} by \langle\cdot\rangle. We denote the category of abelian groups (resp. sets) by 𝖠𝖻\operatorname{\mathsf{Ab}} (resp. 𝖲𝖾𝗍\operatorname{\mathsf{Set}}).

We also assume that all subcategories are additive, full and closed under isomorphisms. We do not always assume that all subcategories are closed under direct summands, so we denote the smallest subcategory containing 𝒟\mathcal{D} and closed under direct summands by 𝖺𝖽𝖽𝒟\operatorname{\mathsf{add}}\mathcal{D} for a subcategory 𝒟\mathcal{D}.

We recall the concept of approximations.

Definition 1.6.

Let \mathcal{I} and 𝒵\mathcal{Z} be subcategories of 𝒞\mathcal{C} and let X𝒞X\in\mathcal{C}.

  1. (1)

    A morphism a:IXXa\colon I_{X}\to X in 𝒞\mathcal{C} is \mathcal{I}-epic if 𝒞(I,a):𝒞(I,IX)𝒞(I,X)\mathcal{C}(I,a)\colon\mathcal{C}(I,I_{X})\to\mathcal{C}(I,X) is surjective for any II in \mathcal{I}.

  2. (2)

    A morphism b:IXXb\colon I_{X}\to X in 𝒞\mathcal{C} is a right \mathcal{I}-approximation of XX if IXI_{X}\in\mathcal{I} and bb is \mathcal{I}-epic.

  3. (3)

    \mathcal{I} is contravariantly finite in 𝒵\mathcal{Z} if any ZZ in 𝒵\mathcal{Z} has a right \mathcal{I}-approximation.

Dually, we define \mathcal{I}-monic, a left \mathcal{I}-approximation of XX and covariantly finite in 𝒵\mathcal{Z}. \mathcal{I} is called functorially finite in 𝒵\mathcal{Z} if \mathcal{I} is both covariantly finite and contravariantly finite in 𝒵\mathcal{Z}.

Acknowledgements.

The author would like to thank H. Nakaoka and Professor Michael Wemyss for valuable suggestions to improve this paper.

2. Structures associated with additive category

2.1. Extriangulated categories

First, we start this section from the definition of extriangulated categories [NP19].

Definition 2.1.

[NP19, Definition 2.7, 2.8]

  1. (1)

    For X,Y𝒞X,Y\in\mathcal{C}, we denote the collection of three-term sequences whose first-term is XX and third-term is YY by ~(Y,X)\widetilde{\mathcal{E}}(Y,X) (note the order of XX and YY). Then we introduce an equivalence relation \sim in ~(Y,X)\widetilde{\mathcal{E}}(Y,X) as follows.

    For 𝐄=(X𝑥E𝑦Y),𝐄=(XxEyY)\mathbf{E}=(X\xrightarrow{x}E\xrightarrow{y}Y),\mathbf{E}^{\prime}=(X\xrightarrow{x^{\prime}}E^{\prime}\xrightarrow{y^{\prime}}Y) in ~(Y,X)\widetilde{\mathcal{E}}(Y,X),

    𝐄𝐄There exists an isomorphism e:EEsuch that x=ex and y=ye.\mathbf{E}\sim\mathbf{E}^{\prime}\iff\begin{aligned} \text{There }&\text{exists an isomorphism $e\colon E\to E^{\prime}$}\\ &\text{such that }x^{\prime}=ex\text{ and }y=y^{\prime}e.\end{aligned}

    We denote ~(Y,X)/\widetilde{\mathcal{E}}(Y,X)/\sim by (Y,X)\mathcal{E}(Y,X).

  2. (2)

    For X,Y𝒞X,Y\in\mathcal{C}, we denote as 0=(X[10]XY[01]Y)0=(X\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}1\\ 0\end{bmatrix}$}}X\oplus Y\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}0&1\end{bmatrix}$}}Y) in (Y,X)\mathcal{E}(Y,X).

  3. (3)

    For (X𝑎E𝑏Y)(X\xrightarrow{a}E\xrightarrow{b}Y) in (Y,X)\mathcal{E}(Y,X) and (XaEbY)(X^{\prime}\xrightarrow{a^{\prime}}E^{\prime}\xrightarrow{b^{\prime}}Y^{\prime}) in (Y,X)\mathcal{E}(Y^{\prime},X^{\prime}), (X𝑎E𝑏Y)(XaEbY)(X\xrightarrow{a}E\xrightarrow{b}Y)\oplus(X^{\prime}\xrightarrow{a^{\prime}}E^{\prime}\xrightarrow{b^{\prime}}Y^{\prime}) is defined by (XXaaEEbbYY)(X\oplus X^{\prime}\xrightarrow{a\oplus a^{\prime}}E\oplus E^{\prime}\xrightarrow{b\oplus b^{\prime}}Y\oplus Y^{\prime}) in (YY,XX)\mathcal{E}(Y\oplus Y^{\prime},X\oplus X^{\prime}).

Remark 2.2.

[NP19, Definition 2.1-2.3, Remark 2.2] Let 𝔼:𝒞op×𝒞𝖠𝖻\mathbb{E}\colon\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\operatorname{\mathsf{Ab}} be an additive bifunctor and X,X,Y,Y,Z𝒞X,X^{\prime},Y,Y^{\prime},Z\in\mathcal{C}.

  1. (1)

    An element δ𝔼(X,Y)\delta\in\mathbb{E}(X,Y) is called 𝔼\mathbb{E}-extension.

  2. (2)

    Let a:XYa\colon X\to Y and b:YZb\colon Y\to Z be morphisms in 𝒞\mathcal{C}, we can define the following natural transformations.

    𝔼(b,):𝔼(Z,)𝔼(Y,)\mathbb{E}(b,-)\colon\mathbb{E}(Z,-)\Rightarrow\mathbb{E}(Y,-)
    𝔼(,a):𝔼(,X)𝔼(,Y)\mathbb{E}(-,a)\colon\mathbb{E}(-,X)\Rightarrow\mathbb{E}(-,Y)
  3. (3)

    There exists the following isomorphism.

    𝔼(XY,XY)𝔼(X,X)𝔼(X,Y)𝔼(Y,X)𝔼(Y,Y)\mathbb{E}(X\oplus Y,X^{\prime}\oplus Y^{\prime})\cong\mathbb{E}(X,X^{\prime})\oplus\mathbb{E}(X,Y^{\prime})\oplus\mathbb{E}(Y,X^{\prime})\oplus\mathbb{E}(Y,Y^{\prime})

    Then we define δδ\delta\oplus\delta^{\prime} in left-hand side as the element which corresponds to (δ,0,0,δ)(\delta,0,0,\delta^{\prime}) in right-hand side by the above isomorphism.

  4. (4)

    Let δ𝔼(Z,X)\delta\in\mathbb{E}(Z,X). We write 𝔼(b,X)(δ),𝔼(Z,a)(δ)\mathbb{E}(b,X)(\delta),\mathbb{E}(Z,a)(\delta) as δb,aδ\delta b,a\delta respectively.

  5. (5)

    In the rest of this paper, we sometimes regard 𝔼\mathbb{E}-extensions as “morphisms” in 𝒞\mathcal{C}, that is, we interpret δb\delta b as a “composition” of (Y𝑏ZδX)(Y\xrightarrow{b}Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta$}\vss}}}X) and aδa\delta as a “composition” of (ZδX𝑎Y)(Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta$}\vss}}}X\xrightarrow{a}Y). Then we can consider commutative diagrams with 𝔼\mathbb{E}-extensions by this notation.

    For example, let δ𝔼(X,Y),δ𝔼(X,Y),x𝒞(X,X),y𝒞(Y,Y)\delta\in\mathbb{E}(X,Y),\delta^{\prime}\in\mathbb{E}(X^{\prime},Y^{\prime}),x\in\mathcal{C}(X,X^{\prime}),y\in\mathcal{C}(Y,Y^{\prime}), then

    yδ=δx is expressed as XXYY.δxδyy\delta=\delta^{\prime}x\text{ is expressed as }\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 8.3047pt\hbox{{\hbox{\kern-7.53471pt\raise 22.76208pt\hbox{\hbox{\kern 3.0pt\raise-3.41666pt\hbox{$\textstyle{X}$}}}}}{\hbox{\kern-8.3047pt\raise-22.76208pt\hbox{\hbox{\kern 3.0pt\raise-4.19444pt\hbox{$\textstyle{X^{\prime}}$}}}}}{\hbox{\kern 38.51028pt\raise 22.76208pt\hbox{\hbox{\kern 3.0pt\raise-3.41666pt\hbox{$\textstyle{Y}$}}}}}{\hbox{\kern 37.74028pt\raise-22.76208pt\hbox{\hbox{\kern 3.0pt\raise-4.19444pt\hbox{$\textstyle{Y^{\prime}}$}}}}}{\hbox{\kern 47.98161pt\raise-22.76208pt\hbox{\hbox{\kern 3.0pt\raise-3.41666pt\hbox{$\textstyle{\vphantom{X}.}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.20654pt\raise 28.19264pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\delta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 38.51028pt\raise 22.76208pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{x}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-15.56766pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.65654pt\raise-16.77597pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.98611pt\hbox{$\scriptstyle{\delta^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 37.74028pt\raise-22.76208pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 45.52417pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{y}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 45.52417pt\raise-15.56766pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\kern 20.03964pt\raise 0.00021pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\circlearrowright}$}}}}}\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces}}}}
Definition 2.3.

[NP19, Definition 2.4, 2.5]

  1. (1)

    Let 𝔼:𝒞op×𝒞𝖠𝖻\mathbb{E}\colon\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\operatorname{\mathsf{Ab}} be an additive bifunctor. 𝔰\mathfrak{s} is called a realization of 𝔼\mathbb{E} if 𝔰\mathfrak{s} satisfies the following conditions.

    1. (i)

      𝔰\mathfrak{s} is a collection of correspondence {𝔰X,Y:𝔼(X,Y)(X,Y)}X,Y𝒞\{\mathfrak{s}_{X,Y}\colon\mathbb{E}(X,Y)\to\mathcal{E}(X,Y)\}_{X,Y\in\mathcal{C}}. We often denote 𝔰X,Y\mathfrak{s}_{X,Y} as 𝔰\mathfrak{s} if there is no confusion.

    2. (ii)

      For δ𝔼(Y,X),δ𝔼(Y,X)\delta\in\mathbb{E}(Y,X),\delta^{\prime}\in\mathbb{E}(Y^{\prime},X^{\prime}), let 𝔰(δ)=(X𝑥E𝑦Y),𝔰(δ)=(XxEyY)\mathfrak{s}(\delta)=(X\xrightarrow{x}E\xrightarrow{y}Y),\mathfrak{s}(\delta^{\prime})=(X^{\prime}\xrightarrow{x^{\prime}}E^{\prime}\xrightarrow{y^{\prime}}Y^{\prime}). Then for any commutative diagrams in 𝒞\mathcal{C},

      X\textstyle{X}X\textstyle{X^{\prime}}E\textstyle{E}E\textstyle{E^{\prime}}Y\textstyle{Y}Y\textstyle{Y^{\prime}}X\textstyle{X}X\textstyle{X^{\prime}}x\scriptstyle{x}x\scriptstyle{x^{\prime}}y\scriptstyle{y}y\scriptstyle{y^{\prime}}a\scriptstyle{a}b\scriptstyle{b}a\scriptstyle{a}δ\scriptstyle{\delta}δ\scriptstyle{\delta^{\prime}}\scriptstyle{\circlearrowright}

      there exists a morphism e:EEe\colon E\to E^{\prime} which makes the following diagram commutative.

      X\textstyle{X}X\textstyle{X^{\prime}}E\textstyle{E}E\textstyle{E^{\prime}}Y\textstyle{Y}Y\textstyle{Y^{\prime}}X\textstyle{X}X\textstyle{X^{\prime}}x\scriptstyle{x}x\scriptstyle{x^{\prime}}y\scriptstyle{y}y\scriptstyle{y^{\prime}}a\scriptstyle{a}e\scriptstyle{{}^{\exists}e}b\scriptstyle{b}a\scriptstyle{a}δ\scriptstyle{\delta}δ\scriptstyle{\delta^{\prime}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  2. (2)

    Let 𝔰\mathfrak{s} be a realization of 𝔼\mathbb{E}. 𝔰\mathfrak{s} is additive if it satisfies the following conditions.

    1. (i)

      For any X,Y𝒞X,Y\in\mathcal{C}, 𝔰(0)=(X[10]XY[0 1]Y)\mathfrak{s}(0)=(X\xrightarrow{\scalebox{0.5}{$\begin{bmatrix}1\\ 0\\ \end{bmatrix}$}}X\oplus Y\xrightarrow{\scalebox{0.5}{$[0\ 1]$}}Y), that is, 𝔰\mathfrak{s} maps 0 in 𝔼(Y,X)\mathbb{E}(Y,X) to 0 in (Y,X)\mathcal{E}(Y,X).

    2. (ii)

      For any δ𝔼(X,Y),δ𝔼(X,Y)\delta\in\mathbb{E}(X,Y),\delta^{\prime}\in\mathbb{E}(X^{\prime},Y^{\prime}), 𝔰(δδ)=𝔰(δ)𝔰(δ)\mathfrak{s}(\delta\oplus\delta^{\prime})=\mathfrak{s}(\delta)\oplus\mathfrak{s}(\delta^{\prime}).

Remark 2.4.

[NP19, Definition 2.15, 2.19]

  1. (1)

    Let δ𝔼(Y,X)\delta\in\mathbb{E}(Y,X) and 𝔰(δ)=(X𝑥E𝑦Y)\mathfrak{s}(\delta)=(X\xrightarrow{x}E\xrightarrow{y}Y). This sequence (X𝑥E𝑦Y)(X\xrightarrow{x}E\xrightarrow{y}Y) is called 𝔰\mathfrak{s}-conflation. We often call it conflation if there is no confusion.

  2. (2)

    The left morphism of a conflation is called an 𝔰\mathfrak{s}-inflation and the right one is called an 𝔰\mathfrak{s}-deflation.

  3. (3)

    A pair (δ,𝔰(δ))(\delta,\mathfrak{s}(\delta)) is called an 𝔰\mathfrak{s}-triangle and it is denoted by

    X𝑥E𝑦YδXorYδX𝑥E𝑦Y.X\xrightarrow{x}E\xrightarrow{y}Y\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta$}\vss}}}X\quad\text{or}\quad Y\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta$}\vss}}}X\xrightarrow{x}E\xrightarrow{y}Y.
Definition 2.5.

[NP19, Definition 2.12]

A triplet (𝒞\mathcal{C}, 𝔼\mathbb{E}, 𝔰\mathfrak{s}) is called an extriangulated category, or ET category if the triplet satisfies the following conditions.

  • (ET1)

    𝔼:𝒞op×𝒞𝖠𝖻\mathbb{E}\colon\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\operatorname{\mathsf{Ab}} is an additive bifunctor.

  • (ET2)

    𝔰\mathfrak{s} is an additive realization of 𝔼\mathbb{E}.

  • (ET3)

    Let δ𝔼(Y,X),δ𝔼(Y,X)\delta\in\mathbb{E}(Y,X),\delta^{\prime}\in\mathbb{E}(Y^{\prime},X^{\prime}). For 𝔰(δ)=(X𝑥E𝑦Y),𝔰(δ)=(XxEyY)\mathfrak{s}(\delta)=(X\xrightarrow{x}E\xrightarrow{y}Y),\mathfrak{s}(\delta^{\prime})=(X^{\prime}\xrightarrow{x^{\prime}}E^{\prime}\xrightarrow{y^{\prime}}Y^{\prime}) and any diagram in 𝒞\mathcal{C},

    X\textstyle{X}X\textstyle{X^{\prime}}E\textstyle{E}E\textstyle{E^{\prime}}Y\textstyle{Y}Y\textstyle{Y^{\prime}}X\textstyle{X}X\textstyle{X^{\prime}}x\scriptstyle{x}x\scriptstyle{x^{\prime}}y\scriptstyle{y}y\scriptstyle{y^{\prime}}a\scriptstyle{a}e\scriptstyle{e}a\scriptstyle{a}δ\scriptstyle{\delta}δ\scriptstyle{\delta^{\prime}}\scriptstyle{\circlearrowright}

    there exists a morphism b:YYb\colon Y\to Y^{\prime} which makes the following diagram commutative.

    X\textstyle{X}X\textstyle{X^{\prime}}E\textstyle{E}E\textstyle{E^{\prime}}Y\textstyle{Y}Y\textstyle{Y^{\prime}}X\textstyle{X}X\textstyle{X^{\prime}}x\scriptstyle{x}x\scriptstyle{x^{\prime}}y\scriptstyle{y}y\scriptstyle{y^{\prime}}a\scriptstyle{a}e\scriptstyle{e}b\scriptstyle{b}a\scriptstyle{a}δ\scriptstyle{\delta}δ\scriptstyle{\delta^{\prime}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  • (ET3)op

    Dual of (ET3)\mathrm{(ET3)}.

  • (ET4)

    For δ𝔼(C,X),ϵ𝔼(D,Y)\delta\in\mathbb{E}(C,X),\epsilon\in\mathbb{E}(D,Y), 𝔰(δ)=(X𝑥YxC),𝔰(ϵ)=(Y𝑦ZyD)\mathfrak{s}(\delta)=(X\xrightarrow{x}Y\xrightarrow{x^{\prime}}C),\mathfrak{s}(\epsilon)=(Y\xrightarrow{y}Z\xrightarrow{y^{\prime}}D), there exist 𝔰\mathfrak{s}-triangles X𝑧ZzEδXX\xrightarrow{z}Z\xrightarrow{z^{\prime}}E\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta^{\prime}$}\vss}}}X and C𝑐E𝑑DϵCC\xrightarrow{c}E\xrightarrow{d}D\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\epsilon^{\prime}$}\vss}}}C which make the following diagram commutative.

    X\textstyle{X}X\textstyle{X}D\textstyle{D}Y\textstyle{Y}Z\textstyle{Z}D\textstyle{D}D\textstyle{D}C\textstyle{C}E\textstyle{E}D\textstyle{D}X\textstyle{X}X\textstyle{X}Y\textstyle{Y}x\scriptstyle{x}x\scriptstyle{x}x\scriptstyle{x^{\prime}}y\scriptstyle{y}y\scriptstyle{y^{\prime}}z\scriptstyle{z}z\scriptstyle{z^{\prime}}c\scriptstyle{c}d\scriptstyle{d}ϵ\scriptstyle{\epsilon}ϵ\scriptstyle{\epsilon}ϵ\scriptstyle{\epsilon^{\prime}}δ\scriptstyle{\delta}δ\scriptstyle{\delta^{\prime}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  • (ET4)op

    Dual of (ET4)\mathrm{(ET4)}.

Remark 2.6.

[NP19, Corollary 3.12] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category and (X𝑥Y𝑦ZδX)(X\xrightarrow{x}Y\xrightarrow{y}Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta$}\vss}}}X) be an 𝔰\mathfrak{s}-triangle. Then the following are exact sequences.

𝒞(Z,)𝒞(y,)𝒞(Y,)𝒞(x,)𝒞(X,)δ𝔼(Z,)𝔼(y,)𝔼(Y,)𝔼(x,)𝔼(X,)\mathcal{C}(Z,-)\xrightarrow{\scalebox{0.6}{$\mathcal{C}(y,-)$}}\mathcal{C}(Y,-)\xrightarrow{\scalebox{0.6}{$\mathcal{C}(x,-)$}}\mathcal{C}(X,-)\xrightarrow{-\circ\delta}\mathbb{E}(Z,-)\xrightarrow{\scalebox{0.6}{$\mathbb{E}(y,-)$}}\mathbb{E}(Y,-)\xrightarrow{\scalebox{0.6}{$\mathbb{E}(x,-)$}}\mathbb{E}(X,-)
𝒞(,X)𝒞(,x)𝒞(,Y)𝒞(,y)𝒞(,Z)δ𝔼(,X)𝔼(,x)𝔼(,Y)𝔼(,y)𝔼(,Z)\mathcal{C}(-,X)\xrightarrow{\scalebox{0.6}{$\mathcal{C}(-,x)$}}\mathcal{C}(-,Y)\xrightarrow{\scalebox{0.6}{$\mathcal{C}(-,y)$}}\mathcal{C}(-,Z)\xrightarrow{\delta\circ-}\mathbb{E}(-,X)\xrightarrow{\scalebox{0.6}{$\mathbb{E}(-,x)$}}\mathbb{E}(-,Y)\xrightarrow{\scalebox{0.6}{$\mathbb{E}(-,y)$}}\mathbb{E}(-,Z)

The following proposition is often used in this paper.

Proposition 2.7.

[NP19, Proposition 3.15] (Shifted octahedrons) Let XixiYiyiZδiXiX_{i}\xrightarrow{x_{i}}Y_{i}\xrightarrow{y_{i}}Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{i}$}\vss}}}X_{i} be an 𝔰\mathfrak{s}-triangle for i=1,2i=1,2. Then there exist 𝔰\mathfrak{s}-triangles X2v1Ww1Y1ϵ1X2X_{2}\xrightarrow{v_{1}}W\xrightarrow{w_{1}}Y_{1}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\epsilon_{1}$}\vss}}}X_{2} and X1v2Ww2Y2ϵ2X1X_{1}\xrightarrow{v_{2}}W\xrightarrow{w_{2}}Y_{2}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\epsilon_{2}$}\vss}}}X_{1} which make the following diagram commutative.

X2\textstyle{X_{2}}X2\textstyle{X_{2}}X1\textstyle{X_{1}}W\textstyle{W}Y2\textstyle{Y_{2}}X1\textstyle{X_{1}}X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}Z\textstyle{Z}X1\textstyle{X_{1}}X2\textstyle{X_{2}}X2\textstyle{X_{2}}W\textstyle{W}v2\scriptstyle{v_{2}}w2\scriptstyle{w_{2}}ϵ2\scriptstyle{\epsilon_{2}}x1\scriptstyle{x_{1}}y1\scriptstyle{y_{1}}δ1\scriptstyle{\delta_{1}}v1\scriptstyle{-v_{1}}v1\scriptstyle{v_{1}}w1\scriptstyle{w_{1}}ϵ1\scriptstyle{\epsilon_{1}}x2\scriptstyle{x_{2}}y2\scriptstyle{y_{2}}δ2\scriptstyle{\delta_{2}}v2\scriptstyle{v_{2}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
Proof.

See [NP19, Proposition 3.15]. ∎

The following definitions of projective objects and injective objects are analogies of exact category.

Definition 2.8.

[NP19] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category.

  1. (1)

    We define a subcategory of 𝒞\mathcal{C}, Proj𝔼𝒞\mathrm{Proj}_{\mathbb{E}}\mathcal{C} as {X𝒞𝔼(X,𝒞)=0}\{X\in\mathcal{C}\mid\mathbb{E}(X,\mathcal{C})=0\}. An object in Proj𝔼𝒞\operatorname{Proj}_{\mathbb{E}}\mathcal{C} is called a projective object.

  2. (2)

    𝒞\mathcal{C} has enough projectives if, for any XX in 𝒞\mathcal{C}, there exists a conflation XPXX^{\prime}\rightarrow P\rightarrow X with PProj𝔼𝒞P\in\operatorname{Proj}_{\mathbb{E}}\mathcal{C}.

  3. (3)

    For subcategories 𝒳,𝒴\mathcal{X},\mathcal{Y} of 𝒞\mathcal{C}, we define the following three subcategories.

    𝒳𝒴={E𝒞|There exists an 𝔰-conflation XEY where X𝒳,Y𝒴}\mathcal{X}\ast\mathcal{Y}=\left\{E\in\mathcal{C}\ \middle|\ \begin{aligned} \text{There }&\text{exists an }\mathfrak{s}\text{-conflation }\\ &X\rightarrow E\rightarrow Y\text{ where }X\in\mathcal{X},Y\in\mathcal{Y}\end{aligned}\right\}
    Cone𝔼(𝒳,𝒴)={Z𝒞|There exists an 𝔰-conflation XYZ where X𝒳,Y𝒴}\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}}(\mathcal{X},\mathcal{Y})=\left\{Z\in\mathcal{C}\ \middle|\ \begin{aligned} \text{There }&\text{exists an }\mathfrak{s}\text{-conflation }\\ &X\rightarrow Y\rightarrow Z\text{ where }X\in\mathcal{X},Y\in\mathcal{Y}\end{aligned}\right\}
    CoCone𝔼(𝒳,𝒴)={Z𝒞|There exists an 𝔰-conflation ZXY where X𝒳,Y𝒴}\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}}(\mathcal{X},\mathcal{Y})=\left\{Z^{\prime}\in\mathcal{C}\ \middle|\ \begin{aligned} \text{There }&\text{exists an }\mathfrak{s}\text{-conflation }\\ &Z^{\prime}\rightarrow X\rightarrow Y\text{ where }X\in\mathcal{X},Y\in\mathcal{Y}\end{aligned}\right\}

We denote Proj𝔼𝒞\operatorname{Proj}_{\mathbb{E}}\mathcal{C} by Proj𝒞\operatorname{Proj}\mathcal{C} when there is no confusion. Dually, we define Inj𝔼𝒞\operatorname{Inj}_{\mathbb{E}}\mathcal{C} and enough injectives. 𝒞\mathcal{C} is called Frobenius if Proj𝒞=Inj𝒞\operatorname{Proj}\mathcal{C}=\operatorname{Inj}\,\mathcal{C} and 𝒞\mathcal{C} has enough projectives and enough injectives.

Example 2.9.

[NP19, Corollary 3.18, Proposition 3.22]

  1. (1)

    An exact category is an ET category whose inflations are monomorphic and deflations are epimorphic. In this situation, 𝔰\mathfrak{s}-conflations are exactly conflations in the exact structure.

  2. (2)

    A triangulated category is exactly a Frobenius ET category with Proj𝒞=0\operatorname{Proj}\mathcal{C}=0.

There are some ways to obtain a new ET category from old one. First case is a generalized statement of Happel’s theorem [Hap88].

Proposition 2.10.

[NP19, Proposition 3.30] Let 𝒞\mathcal{C} be an ET category and let Proj𝒞Inj𝒞\mathcal{I}\subset\operatorname{Proj}\mathcal{C}\cap\operatorname{Inj}\mathcal{C}. Then 𝒞/[]\mathcal{C}/[\mathcal{I}] also becomes an ET category.

Proof.

See [NP19, Proposition 3.30]. ∎

Corollary 2.11.

[NP19, Corollary 7.4, Remark 7.5] Let 𝒞\mathcal{C} be an Frobenius ET category. Then 𝒞/[Proj𝒞]\mathcal{C}/[\operatorname{Proj}\mathcal{C}] becomes a triangulated category.

Proof.

See [NP19, Corollary 7.4, Remark 7.5]. ∎

Next way is to restrict the bifunctor 𝔼\mathbb{E} and the realization 𝔰\mathfrak{s} to an extension-closed subcategory. We start from the definition of “extension-closed” subcategories.

Definition 2.12.

[NP19, Definition 2.17] Let 𝒞\mathcal{C} be an ET category and 𝒵\mathcal{Z} be a subcategory. 𝒵\mathcal{Z} is called extension-closed if, for any conflation ABCA\rightarrow B\rightarrow C where A,CA,C in 𝒵\mathcal{Z}, then BB is also in 𝒵\mathcal{Z}.

Lemma 2.13.

[NP19, Remark 2.18] Let 𝒞\mathcal{C} be an ET category and 𝒵\mathcal{Z} is an extension-closed subcategory. Then 𝒵\mathcal{Z} has an ET structure defined by restricting 𝔼\mathbb{E} and 𝔰\mathfrak{s} to 𝒵\mathcal{Z}.

Last way is to restrict the bifunctor to a closed subfunctor. See also [DRSSK99, p649] for the following definitions in exact categories.

Definition 2.14.

[HLN21, Definition 3.7] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category.

  1. (1)

    A functor 𝔽:𝒞op×𝒞𝖲𝖾𝗍\mathbb{F}\colon\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\operatorname{\mathsf{Set}} is called a subfunctor of 𝔼\mathbb{E} if it satisfies the following conditions.

    1. (i)

      For any X,Y𝒞X,Y\in\mathcal{C}, 𝔽(X,Y)\mathbb{F}(X,Y) is a subset of 𝔼(X,Y)\mathbb{E}(X,Y).

    2. (ii)

      For any morphism x:XXx\colon X^{\prime}\to X and y:YYy\colon Y\to Y^{\prime}, 𝔽(x,y)=𝔼(x,y)|𝔽(X,Y)\mathbb{F}(x,y)=\mathbb{E}(x,y)|_{\mathbb{F}(X,Y)}.

    Then we denote 𝔽𝔼\mathbb{F}\subset\mathbb{E}.

  2. (2)

    A subfunctor 𝔽𝔼\mathbb{F}\subset\mathbb{E} is called additive if 𝔽\mathbb{F} is an additive bifunctor.

Definition 2.15.

[HLN21, Definition 3.8] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category and 𝔽\mathbb{F} be an additive subfunctor of 𝔼\mathbb{E}. We define 𝔰|𝔽\mathfrak{s}|_{\mathbb{F}} by restriction of 𝔰\mathfrak{s} onto 𝔽\mathbb{F}.

Proposition 2.16.

[HLN21, Proposition 3.16] [DRSSK99, Proposition 1.4] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category and 𝔽\mathbb{F} be an additive subfunctor of 𝔼\mathbb{E}. Then the following are equivalent.

  1. (i)

    𝔰|𝔽\mathfrak{s}|_{\mathbb{F}}-inflations are closed under composition.

  2. (ii)

    𝔰|𝔽\mathfrak{s}|_{\mathbb{F}}-deflations are closed under composition.

  3. (iii)

    (𝒞,𝔽,𝔰|𝔽)(\mathcal{C},\mathbb{F},\mathfrak{s}|_{\mathbb{F}}) satisfies (ET4).

  4. (iv)

    (𝒞,𝔽,𝔰|𝔽)(\mathcal{C},\mathbb{F},\mathfrak{s}|_{\mathbb{F}}) satisfies (ET4)op.

  5. (v)

    (𝒞,𝔽,𝔰|𝔽)(\mathcal{C},\mathbb{F},\mathfrak{s}|_{\mathbb{F}}) is an ET category.

In this case, 𝔽\mathbb{F} is called closed.

The following are examples of closed subfunctors defined in [HLN21].

Example 2.17.

[HLN21, Definition 3.18, Proposition 3.19] Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category and \mathcal{I} be a subcategory of 𝒞\mathcal{C}.

  1. (1)

    We define a closed subfunctor 𝔼\mathbb{E}_{\mathcal{I}} of 𝔼\mathbb{E} as follows.

    𝔼(C,A)={δ𝔼(C,A)δ:𝒞(,C)𝔼(,A);zero morphism}.\mathbb{E}_{\mathcal{I}}(C,A)=\{\delta\in\mathbb{E}(C,A)\mid\delta\circ-\colon\mathcal{C}(\mathcal{I},C)\to\mathbb{E}(\mathcal{I},A);\text{zero morphism}\}.
  2. (2)

    We define a closed subfunctor 𝔼\mathbb{E}^{\mathcal{I}} of 𝔼\mathbb{E} as follows.

    𝔼(C,A)={δ𝔼(C,A)δ:𝒞(A,)𝔼(C,);zero morphism}.\mathbb{E}^{\mathcal{I}}(C,A)=\{\delta\in\mathbb{E}(C,A)\mid-\circ\delta\colon\mathcal{C}(A,\mathcal{I})\to\mathbb{E}(C,\mathcal{I});\text{zero morphism}\}.
  3. (3)

    We define a closed subfunctor 𝔼\mathbb{E}^{\mathcal{I}}_{\mathcal{I}} of 𝔼\mathbb{E} as follows.

    𝔼(C,A)=𝔼(C,A)𝔼(C,A).\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}(C,A)=\mathbb{E}^{\mathcal{I}}(C,A)\cap\mathbb{E}_{\mathcal{I}}(C,A).

We denote 𝔰|𝔼\mathfrak{s}|_{\mathbb{E}_{\mathcal{I}}} (resp. 𝔰|𝔼\mathfrak{s}|_{\mathbb{E}^{\mathcal{I}}}, 𝔰|𝔼\mathfrak{s}|_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}) by 𝔰\mathfrak{s}_{\mathcal{I}} (resp. 𝔰\mathfrak{s}^{\mathcal{I}}, 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}).

Remark 2.18.

In this paper, the ET structures defined by (𝒞,(\mathcal{C}, 𝔼,\mathbb{E}_{\mathcal{I}}, 𝔰)\mathfrak{s}_{\mathcal{I}}) and (𝒞,(\mathcal{C}, 𝔼,\mathbb{E}^{\mathcal{I}}, 𝔰)\mathfrak{s}^{\mathcal{I}}) are called relative extriangulated structure, or more simply relative structure. On the other hand, in [FGPPP24, Section 2], all extriangulated substructures are called relative extriangulated structure.

Remark 2.19.

Let (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) be an ET category and \mathcal{I} be a subcategory of 𝒞\mathcal{C}. Then Proj𝔼𝒞\mathcal{I}\subset\operatorname{Proj}_{\mathbb{E}_{\mathcal{I}}}\mathcal{C} and Inj𝔼𝒞\mathcal{I}\subset\operatorname{Inj}_{\mathbb{E}^{\mathcal{I}}}\mathcal{C}. This follows from the long exact sequences in Remark 2.6.

Now, we consider the approximation theory in ET categories. In the rest of this subsection, we fix an ET category (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}). We start from a reformulation of extensions in relative structures by using \mathcal{I}-epic and \mathcal{I}-monic morphisms in ET categories for a subcategory \mathcal{I}.

Lemma 2.20.

[Ara24, Proposition 3.2] Let \mathcal{I} be a subcategory of 𝒞\mathcal{C}. Let X𝑥Y𝑦ZδXX\xrightarrow{x}Y\xrightarrow{y}Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta$}\vss}}}X be an 𝔰\mathfrak{s}-triangle.

  1. (1)

    δ𝔼(Z,X)y\delta\in\mathbb{E}_{\mathcal{I}}(Z,X)\iff y is \mathcal{I}-epic.

  2. (2)

    δ𝔼(Z,X)x\delta\in\mathbb{E}^{\mathcal{I}}(Z,X)\iff x is \mathcal{I}-monic.

Proof.

From Remark 2.6, this follows from definitions of \mathcal{I}-epic and \mathcal{I}-monic. ∎

Definition 2.21.

[ZZ18, Definition 3.21] Let ,𝒳\mathcal{I},\mathcal{X} be subcategories of 𝒞\mathcal{C} where \mathcal{I} is closed under direct summands.

  1. (1)

    \mathcal{I} is strongly contravariantly finite in 𝒳\mathcal{X} with respect to (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) if, for any X𝒳X\in\mathcal{X}, there exists an 𝔰\mathfrak{s}-deflation IX𝑔XI_{X}\xrightarrow{g}X where gg is a right \mathcal{I}-approximation.

  2. (2)

    \mathcal{I} is strongly covariantly finite in 𝒳\mathcal{X} with respect to (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) if, for any X𝒳X\in\mathcal{X}, there exists an 𝔰\mathfrak{s}-inflation X𝑓IXX\xrightarrow{f}I^{X} where ff is a left \mathcal{I}-approximation.

  3. (3)

    \mathcal{I} is strongly functorially finite in 𝒳\mathcal{X} with respect to (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) if, \mathcal{I} is both strongly covariantly finite and strongly contravariantly finite in 𝒳\mathcal{X}.

Remark 2.22.

We do not assume that \mathcal{I} is contained in 𝒳\mathcal{X} in Definition 2.21.

Example 2.23.

Assume that 𝒞\mathcal{C} has enough projectives (resp. injectives). Then Proj𝒞\operatorname{Proj}\mathcal{C} (resp. Inj𝒞\operatorname{Inj}\,\mathcal{C}) is strongly contravariantly (resp. covariantly) finite in 𝒞\mathcal{C}.

The following lemma is an ET version of Lemma LABEL:lem_bracket_rigidver.

Lemma 2.24.

[Ara24, Lemma 3.5] Let 𝒳\mathcal{I}\subset\mathcal{X} be subcategories of 𝒞\mathcal{C}.

  1. (1)

    Assume that \mathcal{I} is strongly covariantly finite in 𝒳\mathcal{X}.

    1. (i)

      For X𝒳X\in\mathcal{X}, there exists an inflation iX:XIXi^{X}\colon X\to I^{X} which is a left \mathcal{I}-approximation of XX. Then we obtain the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangle.

      XiXIXpXX1λXXX\xrightarrow{i^{X}}I^{X}\xrightarrow{p^{X}}X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X
    2. (ii)

      For a morphism x:XXx\colon X\to X^{\prime} in 𝒳\mathcal{X}, we define x1:X1X1x\langle 1\rangle\colon X\langle 1\rangle\to X^{\prime}\langle 1\rangle as a morphism in 𝒞\mathcal{C} which makes the following diagram in 𝒞\mathcal{C} commutative.

      X1\textstyle{X\langle 1\rangle}X1\textstyle{X^{\prime}\langle 1\rangle}X\textstyle{X}X\textstyle{X^{\prime}}λX\scriptstyle{\lambda^{X}}λX\scriptstyle{\lambda^{X^{\prime}}}x\scriptstyle{x}x1\scriptstyle{x\langle 1\rangle}\scriptstyle{\circlearrowright}

    Then 1\langle 1\rangle induces an additive functor 1:𝒳/[]𝒞/[]\langle 1\rangle\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{C}/[\mathcal{I}]. Moreover, 1\langle 1\rangle is unique up to natural isomorphisms.

  2. (2)

    Assume that \mathcal{I} is strongly contravariantly finite in 𝒳\mathcal{X}.

    1. (i)

      For X𝒳X\in\mathcal{X}, there exists a deflation pX:IXXp_{X}\colon I_{X}\to X which is a right \mathcal{I}-approximation of XX. Then we obtain the following 𝔰\mathfrak{s}_{\mathcal{I}}-triangle.

      XλXX1iXIXpXXX\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda_{X}$}\vss}}}X\langle-1\rangle\xrightarrow{i_{X}}I_{X}\xrightarrow{p_{X}}X
    2. (ii)

      For a morphism x:XXx\colon X\to X^{\prime} in 𝒳\mathcal{X}, we define x1:X1X1x\langle-1\rangle\colon X\langle-1\rangle\to X^{\prime}\langle-1\rangle as a morphism in 𝒞\mathcal{C} which makes the following diagram commutative.

      X1\textstyle{X\langle-1\rangle}X1\textstyle{X^{\prime}\langle-1\rangle}X\textstyle{X}X\textstyle{X^{\prime}}λX\scriptstyle{\lambda_{X}}λX\scriptstyle{\lambda_{X^{\prime}}}x1\scriptstyle{x\langle-1\rangle}x\scriptstyle{x}\scriptstyle{\circlearrowright}

    Then 1\langle-1\rangle induces an additive functor 1:𝒳/[]𝒞/[]\langle-1\rangle\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{C}/[\mathcal{I}]. Moreover, 1\langle-1\rangle is unique up to natural isomorphisms.

Proof.

We prove only (1). First, for each XX in 𝒞\mathcal{C}, choose an 𝔰\mathfrak{s}-triangle XiXIXpXX1λXXX\xrightarrow{i^{X}}I^{X}\xrightarrow{p^{X}}X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X where iXi^{X} is a left \mathcal{I}-approximation. For any morphism x:XXx\colon X\to X^{\prime} in 𝒳\mathcal{X}, since iXi^{X} is a left \mathcal{I}-approximation and (ET3), there exist morphisms yy and ii which make the following diagram commutative.

X\textstyle{X}X\textstyle{X^{\prime}}IX\textstyle{I^{X}}IX\textstyle{I^{X^{\prime}}}X1\textstyle{X\langle 1\rangle}X1\textstyle{X^{\prime}\langle 1\rangle}X\textstyle{X}X\textstyle{X^{\prime}}iX\scriptstyle{i^{X}}iX\scriptstyle{i^{X^{\prime}}}pX\scriptstyle{p^{X}}pX\scriptstyle{p^{X^{\prime}}}x\scriptstyle{x}i\scriptstyle{i}y\scriptstyle{y}x\scriptstyle{x}λX\scriptstyle{\lambda^{X}}λX\scriptstyle{\lambda^{X^{\prime}}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Then we define x1x\langle 1\rangle by yy. Assume that morphisms y,y:X1X1y,y^{\prime}\colon X\langle 1\rangle\to X^{\prime}\langle 1\rangle in 𝒞\mathcal{C} satisfy xλX=λXy=λXyx\lambda^{X}=\lambda^{X^{\prime}}y=\lambda^{X^{\prime}}y^{\prime}. Then λX(yy)=0\lambda^{X^{\prime}}(y-y^{\prime})=0. So, yy=0y-y^{\prime}=0 in 𝒞/[]\mathcal{C}/[\mathcal{I}] and 1:𝒳𝒞/[]\langle 1\rangle\colon\mathcal{X}\to\mathcal{C}/[\mathcal{I}] is well-defined. This induces a functor 1:𝒳/[]𝒞/[]\langle 1\rangle\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{C}/[\mathcal{I}] because λXx1=xλX=0\lambda^{X^{\prime}}x\langle 1\rangle=x\lambda^{X}=0 for x[]x\in[\mathcal{I}]. Therefore, yy is uniquely determined by xx up to [][\mathcal{I}] and 1\langle 1\rangle is an additive functor.

Uniqueness of 1\langle 1\rangle up to natural isomorphisms follows from the diagram below and nXmX=idX1n^{X}m^{X}=\operatorname{id}_{X\langle 1\rangle} in 𝒞/[]\mathcal{C}/[\mathcal{I}] where XjXJXqXX1λXXX\xrightarrow{j^{X}}J^{X}\xrightarrow{q^{X}}X\langle 1\rangle^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle{\lambda^{\prime}}^{X}$}\vss}}}X is another 𝔰\mathfrak{s}-triangle with a left \mathcal{I}-approximation jXj^{X}.

X\textstyle{X}X\textstyle{X}X\textstyle{X}IX\textstyle{I^{X}}JX\textstyle{J^{X}}IX\textstyle{I^{X}}X1\textstyle{X\langle 1\rangle}X1\textstyle{X\langle 1\rangle^{\prime}}X1\textstyle{X\langle 1\rangle}X\textstyle{X}X\textstyle{X}X\textstyle{X}iX\scriptstyle{i^{X}}iX\scriptstyle{i^{X}}jX\scriptstyle{j^{X}}pX\scriptstyle{p^{X}}pX\scriptstyle{p^{X}}qX\scriptstyle{q^{X}}id\scriptstyle{\operatorname{id}}i\scriptstyle{i}mX\scriptstyle{m^{X}}id\scriptstyle{\operatorname{id}}id\scriptstyle{\operatorname{id}}j\scriptstyle{j}nX\scriptstyle{n^{X}}id\scriptstyle{\operatorname{id}}λX\scriptstyle{\lambda^{X}}λX\scriptstyle{\lambda^{X}}λX\scriptstyle{{\lambda^{\prime}}^{X}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Remark 2.25.

In the proof of Lemma 2.24, we used the following commutative diagram.

(2.1)

Then we denote mXm^{X} in 𝒞/[]\mathcal{C}/[\mathcal{I}] (that is mX¯\underline{m^{X}} in Notation 3.5) by μX\mu_{X} because μ\mu induces natural isomorphism 11\langle 1\rangle\Rightarrow\langle 1\rangle^{\prime} where 1,1:𝒳/[]𝒞/[]\langle 1\rangle,\langle 1\rangle^{\prime}\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{C}/[\mathcal{I}].

Notation 2.26.

Let \mathcal{I} and 𝒳\mathcal{X} be subcategories of 𝒞\mathcal{C}.

  1. (1)

    We denote Cone𝔼(𝒳,)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{X},\mathcal{I}) by 𝒳1\mathcal{X}\langle 1\rangle_{\mathcal{I}}. In particular, 𝒳1\mathcal{I}\subset\mathcal{X}\langle 1\rangle_{\mathcal{I}}.

  2. (2)

    We denote CoCone𝔼(,𝒳)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{I},\mathcal{X}) by 𝒳1\mathcal{X}\langle-1\rangle_{\mathcal{I}}. In particular, 𝒳1\mathcal{I}\subset\mathcal{X}\langle-1\rangle_{\mathcal{I}}.

If there is no confusion, we often drop \mathcal{I} of 1\langle 1\rangle_{\mathcal{I}} and 1\langle-1\rangle_{\mathcal{I}}.

{X1X𝒳}\{X\langle 1\rangle\mid X\in\mathcal{X}\} in Lemma 2.24 and 𝒳1\mathcal{X}\langle 1\rangle are same up to isomorphisms in 𝒞/[]\mathcal{C}/[\mathcal{I}].

Note that we can define 𝒳1\mathcal{X}\langle 1\rangle (resp. 𝒳1\mathcal{X}\langle-1\rangle) even if \mathcal{I} is not strongly covariantly (resp. contravariantly) finite in 𝒳\mathcal{X}.

Lemma 2.27.

[Ara24, Proposition 3.2] Let \mathcal{I} be a subcategory of 𝒞\mathcal{C}.

  1. (1)

    If \mathcal{I} is strongly contravariantly finite in 𝒞\mathcal{C}, then =Proj𝔼𝒞\mathcal{I}=\operatorname{Proj}_{\mathbb{E}_{\mathcal{I}}}\!\mathcal{C} and (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}_{\mathcal{I}},\mathfrak{s}_{\mathcal{I}}) has enough projectives.

  2. (2)

    If \mathcal{I} is strongly covariantly finite in 𝒞\mathcal{C}, then =Inj𝔼𝒞\mathcal{I}=\operatorname{Inj}_{\mathbb{E}^{\mathcal{I}}}\!\mathcal{C} and (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}) has enough injectives.

Proof.

We only prove (2). Let =Inj𝔼𝒞\mathcal{I}^{\prime}=\operatorname{Inj}_{\mathbb{E}^{\mathcal{I}}}\mathcal{C}. By definition of relative structure, \mathcal{I}\subset\mathcal{I}^{\prime}. On the other hand, for any II^{\prime}\in\mathcal{I}^{\prime}, there exists an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle IIZII^{\prime}\rightarrow I\rightarrow Z\dashrightarrow I^{\prime} where II\in\mathcal{I} since \mathcal{I} is strongly covariantly finite in 𝒞\mathcal{C}. Since II^{\prime}\in\mathcal{I}^{\prime} and \mathcal{I} is closed under direct summands, the above 𝔰\mathfrak{s}-triangle splits and II^{\prime}\in\mathcal{I}. ∎

ET categories are different from triangulated categories because not every morphism has a cone or cocone. However, we may sometimes replace any morphisms by inflations (resp. deflations) up to ideal quotient in the following meanings.

Lemma 2.28.

[LN19, Proposition 1.20] Take a morphism f:XXf\colon X\to X^{\prime}. Let X𝑥E𝑦YδXX\xrightarrow{x}E\xrightarrow{y}Y\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta$}\vss}}}X be an 𝔰\mathfrak{s}-triangle and XxEyYfδXX^{\prime}\xrightarrow{x^{\prime}}E^{\prime}\xrightarrow{y^{\prime}}Y\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle f\delta$}\vss}}}X^{\prime} be a realization of fδf\delta. Then there exists a morphism g:EEg\colon E\to E^{\prime} which satisfies the following two conditions.

  1. (i)

    gg makes the following diagram commutative.

    X\textstyle{X}X\textstyle{X^{\prime}}E\textstyle{E}E\textstyle{E^{\prime}}Y\textstyle{Y}Y\textstyle{Y}X\textstyle{X}X\textstyle{X^{\prime}}x\scriptstyle{x}y\scriptstyle{y}δ\scriptstyle{\delta}x\scriptstyle{x^{\prime}}y\scriptstyle{y^{\prime}}fδ\scriptstyle{f\delta}f\scriptstyle{f}g\scriptstyle{g}f\scriptstyle{f}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  2. (ii)

    X[fx]XE[xg]EδyXX\xrightarrow{\scalebox{0.5}{$\begin{bmatrix}f\\ x\\ \end{bmatrix}$}}X^{\prime}\oplus E\xrightarrow{\scalebox{0.5}{$[-x^{\prime}\ g]$}}E^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta y^{\prime}$}\vss}}}X  is an 𝔰\mathfrak{s}-triangle, in particular, [fx]\begin{bmatrix}f\\ x\\ \end{bmatrix} is an inflation.

Proof.

See [LN19, Proposition 1.20]. ∎

The following statement is also useful.

Lemma 2.29.

[NP19, Proposition 3.17] Let X𝑎YbZδ1XX\xrightarrow{a}Y\xrightarrow{b^{\prime}}Z\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{1}$}\vss}}}X, X𝑐Z𝑑Zδ2XX\xrightarrow{c}Z^{\prime}\xrightarrow{d}Z^{\prime\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{2}$}\vss}}}X and XaY𝑏Zδ3XX^{\prime}\xrightarrow{a^{\prime}}Y\xrightarrow{b}Z^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{3}$}\vss}}}X^{\prime} be 𝔰\mathfrak{s}-triangles where c=bac=ba. Then there exists an 𝔰\mathfrak{s}-triangle X𝑓Z𝑔ZδXX^{\prime}\xrightarrow{f}Z\xrightarrow{g}Z^{\prime\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta$}\vss}}}X^{\prime} which makes the following diagram commutative.

X\textstyle{X}X\textstyle{X}X\textstyle{X^{\prime}}Y\textstyle{Y}Z\textstyle{Z^{\prime}}X\textstyle{X^{\prime}}X\textstyle{X^{\prime}}Z\textstyle{Z}Z\textstyle{Z^{\prime\prime}}X\textstyle{X^{\prime}}X\textstyle{X}X\textstyle{X}Y\textstyle{Y}a\scriptstyle{a}b\scriptstyle{b^{\prime}}δ1\scriptstyle{\delta_{1}}c\scriptstyle{c}d\scriptstyle{d}δ2\scriptstyle{\delta_{2}}a\scriptstyle{-a^{\prime}}a\scriptstyle{a^{\prime}}b\scriptstyle{b}δ3\scriptstyle{\delta_{3}}f\scriptstyle{f}g\scriptstyle{g}δ\scriptstyle{\delta}a\scriptstyle{a}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
Proof.

This is a dual statement of [NP19, Proposition 3.17]. ∎

Corollary 2.30.

Let \mathcal{I} be a strongly covariantly finite subcategory in 𝒞\mathcal{C} and a:XYa\colon X\to Y be a morphism in 𝒞\mathcal{C}. Take 𝔰\mathfrak{s}^{\mathcal{I}}-triangles XiXIXpXX1λXXX\xrightarrow{i^{X}}I^{X}\xrightarrow{p^{X}}X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X and XjXJXqXX1λXXX\xrightarrow{j^{X}}J^{X}\xrightarrow{q^{X}}X\langle 1\rangle^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle{\lambda^{\prime}}^{X}$}\vss}}}X\vphantom{\Big{(}} where iXi^{X} and jXj^{X} are left \mathcal{I}-approximations.

There exist the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangles from Lemma 2.28.

X[aiX]YIXb~Caδ~X\displaystyle X\xrightarrow{\scalebox{0.5}{$\begin{bmatrix}a\\ i^{X}\\ \end{bmatrix}$}}Y\oplus I^{X}\xrightarrow{\widetilde{b}}C^{a}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\widetilde{\delta}$}\vss}}}X
X[ajX]YJXb~Caδ~X\displaystyle X\xrightarrow{\scalebox{0.5}{$\begin{bmatrix}a\\ j^{X}\\ \end{bmatrix}$}}Y\oplus J^{X}\xrightarrow{\widetilde{b^{\prime}}}C^{a^{\prime}}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\widetilde{\delta^{\prime}}$}\vss}}}X
X[aiXjX]YIXJXb~Caδ~X\displaystyle X\xrightarrow{\scalebox{0.5}{$\begin{bmatrix}a\\ i^{X}\\ j^{X}\\ \end{bmatrix}$}}Y\oplus I^{X}\oplus J^{X}\xrightarrow{\widetilde{b^{\prime\prime}}}C^{a^{\prime\prime}}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\widetilde{\delta^{\prime\prime}}$}\vss}}}X

Then CaCaJXCaIXC^{a^{\prime\prime}}\cong C^{a}\oplus J^{X}\cong C^{a^{\prime}}\oplus I^{X}. In particular, CaC^{a} is uniquely determined up to isomorphisms in 𝒞/[]\mathcal{C}/[\mathcal{I}] and does not depend on choices of 𝔰\mathfrak{s}^{\mathcal{I}}-triangle XiXIXpXX1λXXX\xrightarrow{i^{X}}I^{X}\xrightarrow{p^{X}}X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}\vphantom{\Big{(}}X.

Proof.

From Lemma 2.29, there exists a commutative diagram.

X\textstyle{X}X\textstyle{X}JX\textstyle{J^{X}}YIXJX\textstyle{Y\!\oplus\!I^{X}\!\oplus\!J^{X}}YIX\textstyle{Y\!\oplus\!I^{X}}JX\textstyle{J^{X}}JX\textstyle{J^{X}}Ca\textstyle{C^{a^{\prime\prime}}}Ca\textstyle{C^{a}}JX\textstyle{J^{X}}X\textstyle{X}X\textstyle{X}

[aiXjX]\begin{bmatrix}a\\ i^{X}\\ j^{X}\end{bmatrix}

b~\scriptstyle{\widetilde{b^{\prime\prime}}}δ~\scriptstyle{\widetilde{\delta^{\prime\prime}}}

[aiX]\begin{bmatrix}a\\ i^{X}\end{bmatrix}

b~\scriptstyle{\widetilde{b}}δ~\scriptstyle{\widetilde{\delta}}0\scriptstyle{0}γ\scriptstyle{\gamma}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Since 𝔼(Ca,JX)=0\mathbb{E}^{\mathcal{I}}(C^{a},J^{X})=0, CaCaJXC^{a^{\prime\prime}}\cong C^{a}\oplus J^{X}. One can show CaCaIXC^{a^{\prime\prime}}\cong C^{a^{\prime}}\oplus I^{X} in the same way. ∎

Corollary 2.31.

[Nak18, Corollary 3.7] Let 𝒵\mathcal{I}\subset\mathcal{Z} be subcategories in 𝒞\mathcal{C} and assume that \mathcal{I} is strongly functorially finite in 𝒵\mathcal{Z}. If a morphism f:XYf\colon X\to Y in 𝒵\mathcal{Z} is an isomorphism in 𝒞/[]\mathcal{C}/[\mathcal{I}], then there exist I,JI,J\in\mathcal{I} and an isomorphism [fjik]:XJYI\scalebox{0.8}{$\begin{bmatrix}f&j\\ i&k\end{bmatrix}$}\colon X\oplus J\to Y\oplus I.

Proof.

Take an inflation iX:XIXi^{X}\colon X\to I^{X} which is also a left \mathcal{I}-approximation. Since ff is an isomorphism in 𝒞/[]\mathcal{C}/[\mathcal{I}], [fiX]:XYIX\scalebox{0.8}{$\begin{bmatrix}f\\ i^{X}\end{bmatrix}$}\colon X\to Y\oplus I^{X} is both an inflation and a section. We denote [fiX]\begin{bmatrix}f\\ i^{X}\end{bmatrix} by f~\widetilde{f}. Next, there exists a deflation p:IYYIXp\colon I_{Y}\to Y\oplus I^{X} which is also a right \mathcal{I}-approximation. Since f~\widetilde{f} is also an isomorphism in 𝒞/[]\mathcal{C}/[\mathcal{I}], [f~p]:XIYYIX\scalebox{0.8}{$\begin{bmatrix}\widetilde{f}&p\end{bmatrix}$}\colon X\oplus I_{Y}\to Y\oplus I^{X} is both an deflation and a retraction. From Lemma 2.29, there exists the following commutative diagram in 𝒞\mathcal{C}.

X\textstyle{X}X\textstyle{X}J\textstyle{J^{\prime}}XIY\textstyle{X\oplus I_{Y}}YIX\textstyle{Y\oplus I^{X}}J\textstyle{J^{\prime}}J\textstyle{J^{\prime}}IY\textstyle{I_{Y}}J\textstyle{J}J\textstyle{J^{\prime}}X\textstyle{X}X\textstyle{X}

[10]\begin{bmatrix}1\\ 0\end{bmatrix}

[01]\begin{bmatrix}0&1\end{bmatrix}

0\scriptstyle{0}f~\scriptstyle{\widetilde{f}}0\scriptstyle{0}

[f~p]\begin{bmatrix}\widetilde{f}&p\end{bmatrix}

0\scriptstyle{0}0\scriptstyle{0}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\phantom{XX}\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Because \mathcal{I} is closed under direct summands, JJ\in\mathcal{I}. By taking a section [jk]:JYIX\scalebox{0.8}{$\begin{bmatrix}j\\ k\end{bmatrix}$}\colon J\to Y\oplus I^{X}, [fjiXk]\begin{bmatrix}f&j\\ i^{X}&k\end{bmatrix} induces an isomorphism. ∎

At the end of this subsection, we add the following lemma which is used in section LABEL:triangulated.

Lemma 2.32.

Let 𝒳\mathcal{I}\subset\mathcal{X} be subcategories of 𝒞\mathcal{C} and suppose that \mathcal{I} is strongly covariantly finite in 𝒳\mathcal{X}. Assume that 𝔼(,𝒳)=0\mathbb{E}^{\mathcal{I}}(\mathcal{I},\mathcal{X})=0, then 1:𝒳/[]𝒳1/[]\langle 1\rangle\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{X}\langle 1\rangle/[\mathcal{I}] is an equivalence. In particular, an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle XIXX1λXXX\rightarrow I^{X}\rightarrow X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X\vphantom{\bigg{(}} is an 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle.

Proof.

Since 1:𝒳/[]𝒳1/[]\langle 1\rangle\colon\mathcal{X}/[\mathcal{I}]\to\mathcal{X}\langle 1\rangle/[\mathcal{I}] is essentially surjective by definition and one can directly prove 1\langle 1\rangle is full, we only show that 1\langle 1\rangle is faithful. Let x:XXx\colon X\to X^{\prime} be a morphism in 𝒳\mathcal{X} and take 𝔰\mathfrak{s}^{\mathcal{I}}-triangles XIXX1λXXX\rightarrow I^{X}\rightarrow X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X\vphantom{\Big{(}} and XIXX1λXXX^{\prime}\rightarrow I^{X^{\prime}}\rightarrow X^{\prime}\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X^{\prime}}$}\vss}}}X^{\prime}\vphantom{\Big{(}}. Then we obtain a morphism x1:X1X1x\langle 1\rangle\colon X\langle 1\rangle\to X^{\prime}\langle 1\rangle where xλX=λXx1x\lambda^{X}=\lambda^{X^{\prime}}x\langle 1\rangle. If x1=0x\langle 1\rangle=0 in 𝒞/[]\mathcal{C}/[\mathcal{I}], xλX=0x\lambda^{X}=0 from 𝔼(,𝒳)=0\mathbb{E}^{\mathcal{I}}(\mathcal{I},\mathcal{X})=0. Thus, xx factors through IXI^{X}. ∎

2.2. Pretriangulated categories

In this subsection, we introduce right triangulated categories, left triangulated categories and pretriangulated categories in [BR07]. First, we define right triangles and left triangles like as distinguished triangles in triangulated categories.

Definition 2.33.

[BR07, II.1] Let Σ,Ω:𝒞𝒞\Sigma,\Omega\colon\mathcal{C}\to\mathcal{C} be additive (endo)functors.

  1. (1)

    We define a category 𝖱𝖳𝗋𝗂\mathsf{RTri} as follows.

    1. (i)

      Objects are sequences in 𝒞\mathcal{C} of the form X𝑓Y𝑔ZΣXX\xrightarrow{f}Y\xrightarrow{g}Z\xrightarrow{h}\Sigma X.

    2. (ii)

      Morphisms are triplets (x,y,z)(x,y,z) which make the following diagram commutative.

      X1\textstyle{X_{1}}X2\textstyle{X_{2}}Y1\textstyle{Y_{1}}Y2\textstyle{Y_{2}}Z1\textstyle{Z_{1}}Z2\textstyle{Z_{2}}ΣX1\textstyle{\Sigma X_{1}}ΣX2\textstyle{\Sigma X_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}h2\scriptstyle{h_{2}}x\scriptstyle{x}y\scriptstyle{y}z\scriptstyle{z}Σx\scriptstyle{\Sigma x}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  2. (2)

    We define a category 𝖫𝖳𝗋𝗂\mathsf{LTri} as follows.

    1. (i)

      Objects are sequences in 𝒞\mathcal{C} of the form ΩZhX𝑓Y𝑔Z\Omega Z\xrightarrow{h^{\prime}}X\xrightarrow{f}Y\xrightarrow{g}Z.

    2. (ii)

      Morphisms are triplets (x,y,z)(x,y,z) which satisfy the following commutative diagram.

      ΩZ1\textstyle{\Omega Z_{1}}ΩZ2\textstyle{\Omega Z_{2}}X1\textstyle{X_{1}}X2\textstyle{X_{2}}Y1\textstyle{Y_{1}}Y2\textstyle{Y_{2}}Z1\textstyle{Z_{1}}Z2\textstyle{Z_{2}}h1\scriptstyle{h_{1}^{\prime}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h2\scriptstyle{h_{2}^{\prime}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}Ωz\scriptstyle{\Omega z}x\scriptstyle{x}y\scriptstyle{y}z\scriptstyle{z}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Now, let us define right triangulated categories and left triangulated categories.

Definition 2.34.

[BR07, II.1]

  1. (1)

    A right triangulated category is a triplet (𝒞,Σ,)(\mathcal{C},\Sigma,\nabla) where

    1. (i)

      Σ:𝒞𝒞\Sigma\colon\mathcal{C}\to\mathcal{C} be an additive functor.

    2. (ii)

      \nabla is a full subcategory of 𝖱𝖳𝗋𝗂\mathsf{RTri}.

    3. (iii)

      (𝒞,Σ,)(\mathcal{C},\Sigma,\nabla) satisfies all of the axioms of a triangulated category except that Σ\Sigma is not necessarily an equivalence.

  2. (2)

    A left triangulated category is a triplet (𝒞,Ω,Δ)(\mathcal{C},\Omega,\Delta) where

    1. (i)

      Ω:𝒞𝒞\Omega\colon\mathcal{C}\to\mathcal{C} be an additive functor.

    2. (ii)

      Δ\Delta is a full subcategory of 𝖫𝖳𝗋𝗂\mathsf{LTri}.

    3. (iii)

      (𝒞,Ω,Δ)(\mathcal{C},\Omega,\Delta) satisfies all of the axioms of a triangulated category except that Ω\Omega is not necessarily an equivalence.

Remark 2.35.

For the convenience of the reader, we list the axioms of right triangulated categories (𝒞,Σ,)(\mathcal{C},\Sigma,\nabla) below.

  • (rTR0)

    \nabla is closed under isomorphisms.

  • (rTR1)
    1. (i)

      For any X𝒞X\in\mathcal{C}, the sequence XidX0ΣXX\xrightarrow{\text{id}}X\rightarrow 0\rightarrow\Sigma X is in \nabla.

    2. (ii)

      For any morphism f:XYf\colon X\to Y, there exists the sequence X𝑓YZΣXX\xrightarrow{f}Y\rightarrow Z\rightarrow\Sigma X in \nabla.

  • (rTR2)

    Let X𝑓Y𝑔ZΣXX\xrightarrow{f}Y\xrightarrow{g}Z\xrightarrow{h}\Sigma X be a sequence in \nabla, then Y𝑔ZΣXΣfΣYY\xrightarrow{g}Z\xrightarrow{h}\Sigma X\xrightarrow{-\Sigma f}\Sigma Y is also in \nabla.

  • (rTR3)

    Assume that there exists a commutative diagram where each row is in \nabla.

    X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}Z1\textstyle{Z_{1}}ΣX1\textstyle{\Sigma X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}Z2\textstyle{Z_{2}}ΣX2\textstyle{\Sigma X_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}h2\scriptstyle{h_{2}}x\scriptstyle{x}y\scriptstyle{y}Σx\scriptstyle{\Sigma x}\scriptstyle{\circlearrowright}

    Then there exists a morphism z:Z1Z2z\colon Z_{1}\to Z_{2} which makes the following diagram commutative.

    X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}Z1\textstyle{Z_{1}}ΣX1\textstyle{\Sigma X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}Z2\textstyle{Z_{2}}ΣX2\textstyle{\Sigma X_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}h2\scriptstyle{h_{2}}x\scriptstyle{x}y\scriptstyle{y}z\scriptstyle{z}Σx\scriptstyle{\Sigma x}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
  • (rTR4)

    Assume that a=aaa^{\prime\prime}=a^{\prime}a and X𝑎Y𝑏C𝑐ΣXX\xrightarrow{a}Y\xrightarrow{b}C\xrightarrow{c}\Sigma X, YaZbDcΣYY\xrightarrow{a^{\prime}}Z\xrightarrow{b^{\prime}}D\xrightarrow{c^{\prime}}\Sigma Y, XaZbEcΣXX\xrightarrow{a^{\prime\prime}}Z\xrightarrow{b^{\prime\prime}}E\xrightarrow{c^{\prime\prime}}\Sigma X are in \nabla. Then there exists C𝑠E𝑡D𝑢ΣCC\xrightarrow{s}E\xrightarrow{t}D\xrightarrow{u}\Sigma C in \nabla which makes the following diagram commutative.

    X\textstyle{X}Y\textstyle{Y}C\textstyle{C}ΣX\textstyle{\Sigma X}X\textstyle{X}Z\textstyle{Z}E\textstyle{E}ΣX\textstyle{\Sigma X}D\textstyle{D}D\textstyle{D}ΣY\textstyle{\Sigma Y}ΣY\textstyle{\Sigma Y}ΣC\textstyle{\Sigma C}Σb\scriptstyle{\Sigma b}a\scriptstyle{a}b\scriptstyle{b}c\scriptstyle{c}a\scriptstyle{a^{\prime\prime}}b\scriptstyle{b^{\prime\prime}}c\scriptstyle{c^{\prime\prime}}c\scriptstyle{c^{\prime}}a\scriptstyle{a^{\prime}}b\scriptstyle{b^{\prime}}c\scriptstyle{c^{\prime}}s\scriptstyle{s}t\scriptstyle{t}u\scriptstyle{u}Σa\scriptstyle{\Sigma a}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
Remark 2.36.

Assume that (𝒞,Σ,)(\mathcal{C},\Sigma,\nabla) satisfies from (rTR0) to (rTR3). Then one can show the following statements like triangulated categories.

  1. (1)

    For any right triangle X𝑓Y𝑔ZΣXX\xrightarrow{f}Y\xrightarrow{g}Z\xrightarrow{h}\Sigma X,

    𝒞(,X)f𝒞(,Y)g𝒞(,Z)\mathcal{C}(-,X)\xrightarrow{f\circ-}\mathcal{C}(-,Y)\xrightarrow{g\circ-}\mathcal{C}(-,Z)

    is exact.

  2. (2)

    Assume that there exists a commutative diagram where each row is in \nabla and x,yx,y are isomorphisms.

    X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}Z1\textstyle{Z_{1}}ΣX1\textstyle{\Sigma X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}Z2\textstyle{Z_{2}}ΣX2\textstyle{\Sigma X_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}h2\scriptstyle{h_{2}}x\scriptstyle{x}

    \sim

    y\scriptstyle{y}

    \sim

    Σx\scriptstyle{\Sigma x}

    \sim

    \scriptstyle{\circlearrowright}

    Then there exists an isomorphism z:Z1Z2z\colon Z_{1}\to Z_{2} which makes the following diagram commutative.

    X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}Z1\textstyle{Z_{1}}ΣX1\textstyle{\Sigma X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}Z2\textstyle{Z_{2}}ΣX2\textstyle{\Sigma X_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}h2\scriptstyle{h_{2}}x\scriptstyle{x}

    \sim

    y\scriptstyle{y}

    \sim

    z\scriptstyle{z}

    \sim

    Σx\scriptstyle{\Sigma x}

    \sim

    \scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Finally, we define pretriangulated categories.

Definition 2.37.

[BR07, II.1] (𝒞,Σ,Ω,,Δ)(\mathcal{C},\Sigma,\Omega,\nabla,\Delta) is a pretriangulated category if it satisfies the following conditions.

  1. (i)

    (Σ,Ω)(\Sigma,\Omega) is an adjoint pair of additive endofunctors Σ,Ω:𝒞𝒞\Sigma,\Omega\colon\mathcal{C}\to\mathcal{C}.
    Now, let α\alpha be a unit and β\beta be a counit.

  2. (ii)

    (𝒞,Σ,)(\mathcal{C},\Sigma,\nabla) is a right triangulated category.

  3. (iii)

    (𝒞,Ω,Δ)(\mathcal{C},\Omega,\Delta) is a left triangulated category.

  4. (iv)

    For any commutative diagrams in 𝒞\mathcal{C}

    X1\textstyle{X_{1}}ΩZ2\textstyle{\Omega Z_{2}}Y1\textstyle{Y_{1}}X2\textstyle{X_{2}}Z1\textstyle{Z_{1}}Y2\textstyle{Y_{2}}ΣX1\textstyle{\Sigma X_{1}}Z2\textstyle{Z_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}h2\scriptstyle{h_{2}^{\prime}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}s\scriptstyle{s}t\scriptstyle{t}βZ2Σs\scriptstyle{\beta_{Z_{2}}\circ\Sigma s}\scriptstyle{\circlearrowright}X1\textstyle{X_{1}}ΩZ2\textstyle{\Omega Z_{2}}Y1\textstyle{Y_{1}}X2\textstyle{X_{2}}Z1\textstyle{Z_{1}}Y2\textstyle{Y_{2}}ΣX1\textstyle{\Sigma X_{1}}Z2\textstyle{Z_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}h2\scriptstyle{h_{2}^{\prime}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}u\scriptstyle{u^{\prime}}t\scriptstyle{t^{\prime}}ΩuαX1\scriptstyle{\Omega u^{\prime}\circ\alpha_{X_{1}}}\scriptstyle{\circlearrowright}

    where X1f1Y1g1Z1h1ΣX1X_{1}\xrightarrow{f_{1}}Y_{1}\xrightarrow{g_{1}}Z_{1}\xrightarrow{h_{1}}\Sigma X_{1} is a right triangle and ΩZ2h2X2f2Y2g2Z2\Omega Z_{2}\xrightarrow{h_{2}^{\prime}}X_{2}\xrightarrow{f_{2}}Y_{2}\xrightarrow{g_{2}}Z_{2} is a left triangle, then there exist morphisms u:Z1Y2u\colon Z_{1}\to Y_{2} and s:Y1X2s^{\prime}\colon Y_{1}\to X_{2} which make following diagrams commutative.

    X1\textstyle{X_{1}}ΩZ2\textstyle{\Omega Z_{2}}Y1\textstyle{Y_{1}}X2\textstyle{X_{2}}Z1\textstyle{Z_{1}}Y2\textstyle{Y_{2}}ΣX1\textstyle{\Sigma X_{1}}Z2\textstyle{Z_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}h2\scriptstyle{h_{2}^{\prime}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}s\scriptstyle{s}t\scriptstyle{t}u\scriptstyle{u}βZ2Σs\scriptstyle{\beta_{Z_{2}}\circ\Sigma s}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}X1\textstyle{X_{1}}ΩZ2\textstyle{\Omega Z_{2}}Y1\textstyle{Y_{1}}X2\textstyle{X_{2}}Z1\textstyle{Z_{1}}Y2\textstyle{Y_{2}}ΣX1\textstyle{\Sigma X_{1}}Z2\textstyle{Z_{2}}f1\scriptstyle{f_{1}}g1\scriptstyle{g_{1}}h1\scriptstyle{h_{1}}h2\scriptstyle{h_{2}^{\prime}}f2\scriptstyle{f_{2}}g2\scriptstyle{g_{2}}u\scriptstyle{u^{\prime}}t\scriptstyle{t^{\prime}}s\scriptstyle{s^{\prime}}ΩuαX1\scriptstyle{\Omega u^{\prime}\circ\alpha_{X_{1}}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}
Example 2.38.

[BR07, II.1]

  1. (1)

    A triangulated category (𝒞,[1],)(\mathcal{C},[1],\triangle) is a pretriangulated category (𝒞,[1],[1],(\mathcal{C},[1],[-1], ,)\triangle,\triangle).

  2. (2)

    Assume that 𝒜\mathcal{A} is an abelian category. Let 𝖱𝖤𝗑\mathsf{REx} be the collection of right exact sequences and 𝖫𝖤𝗑\mathsf{LEx} be the collection of left exact sequences. Then (𝒜,(\mathcal{A}, 0,0, 0,0, 𝖱𝖤𝗑,\mathsf{REx}, 𝖫𝖤𝗑)\mathsf{LEx}) is a pretriangulated category.

3. Pretriangulated structures induced by premutation triples

We fix an ET category (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) in this section.

3.1. The condition (MT1) and (MT2)

In the following definition, we use notations which are compatible with previous section and [Nak18].

Condition 3.1.

Let SS,𝒱,𝒵\SS,\mathcal{V},\mathcal{Z} be subcategories of 𝒞\mathcal{C}. We denote SS𝒵,𝒱𝒵\SS\cap\mathcal{Z},\mathcal{V}\cap\mathcal{Z} by ,𝒥\mathcal{I},\mathcal{J}, respectively. We consider the following two conditions.

  • (rMT1)

    \mathcal{I} is strongly contravariantly finite in 𝒵\mathcal{Z}.

  • (rMT2)

    𝔼(SS,𝒵)=0\mathbb{E}^{\mathcal{I}}(\SS,\mathcal{Z})=0 and 𝔼(SS,𝒵1)=0\mathbb{E}_{\mathcal{I}}(\SS,\mathcal{Z}\langle-1\rangle)=0.

Dually, we also consider the following two conditions.

  • (lMT1)

    𝒥\mathcal{J} is strongly covariantly finite in 𝒵\mathcal{Z}.

  • (lMT2)

    𝔼𝒥(𝒵,𝒱)=0\mathbb{E}_{\mathcal{J}}(\mathcal{Z},\mathcal{V})=0 and 𝔼𝒥(𝒵1,𝒱)=0\mathbb{E}^{\mathcal{J}}(\mathcal{Z}\langle 1\rangle,\mathcal{V})=0.

For convenience, we also use the following conditions.

  • (MT1)

    =𝒥\mathcal{I}=\mathcal{J}, (rMT1) and (lMT1).

  • (MT2)

    (rMT2) and (lMT2).

Remark 3.2.
  1. (1)

    By definition of strongly contravariantly (resp. covariantly) finite, we assume that \mathcal{I} (resp. 𝒥\mathcal{J}) is closed under direct summands. On the other hand, recall that we do not always assume that SS,𝒵\SS,\mathcal{Z} and 𝒱\mathcal{V} are closed under direct summands.

  2. (2)

    Cone𝔼(𝒵,𝒵)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) == Cone𝔼(𝒵,𝒵)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) if (rMT2) holds. Dually, CoCone𝔼(𝒵,𝒵)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) == CoCone𝔼(𝒵,𝒵)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) if (lMT2) holds.

  3. (3)

    From Lemma 2.32, 𝔼(SS,𝒵1)=0\mathbb{E}^{\mathcal{I}}(\SS,\mathcal{Z}\langle-1\rangle)=0 and 𝔼𝒥(𝒵1,𝒱)=0\mathbb{E}_{\mathcal{J}}(\mathcal{Z}\langle 1\rangle,\mathcal{V})=0 under (MT1) and (MT2). That is because δ𝔼(S,Z)\delta\in\mathbb{E}^{\mathcal{I}}(S,Z^{\prime}) where SSS,Z𝒵1S\in\SS,Z^{\prime}\in\mathcal{Z}\langle-1\rangle factors through λ𝔼(Z,Z)\lambda\in\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}(Z,Z^{\prime}) where Z𝒵Z\in\mathcal{Z}. We can show 𝔼𝒥(𝒵1,𝒱)=0\mathbb{E}_{\mathcal{J}}(\mathcal{Z}\langle 1\rangle,\mathcal{V})=0 in the same way.

  4. (4)

    From Lemma 2.32, 𝔼(SS,𝒵)=0\mathbb{E}_{\mathcal{I}}(\SS,\mathcal{Z})=0 and 𝔼𝒥(𝒵,𝒱)=0\mathbb{E}^{\mathcal{J}}(\mathcal{Z},\mathcal{V})=0 under (MT1) and (MT2). That is because δ𝔼(S,Z)\delta\in\mathbb{E}_{\mathcal{I}}(S,Z) where SSS,Z𝒵S\in\SS,Z\in\mathcal{Z} factors through λZ𝔼(Z1,Z)\lambda^{Z}\in\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}(Z\langle 1\rangle,Z) from 𝔼(SS,)𝔼(SS,𝒵1)=0\mathbb{E}_{\mathcal{I}}(\SS,\mathcal{I})\subset\mathbb{E}_{\mathcal{I}}(\SS,\mathcal{Z}\langle-1\rangle)=0. We can show 𝔼𝒥(𝒵,𝒱)=0\mathbb{E}^{\mathcal{J}}(\mathcal{Z},\mathcal{V})=0 in the same way.

The definitions of rigid mutation pairs and orthogonal mutation pairs are in Appendix LABEL:tri_str_by_MP. The definition of concentric twin cotorsion pairs is in Appendix LABEL:ccTCP.

Example 3.3.

X

  1. (1)

    [NP19] Assume that (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}) is Frobenius with 𝒫=Proj𝔼𝒞\mathcal{P}=\operatorname{Proj}_{\mathbb{E}}\mathcal{C}. Then (𝒫,𝒞,𝒫)(\mathcal{P},\mathcal{C},\mathcal{P}) satisfies (MT1) and (MT2).

  2. (2)

    [IY08] Assume that 𝒞\mathcal{C} is a triangulated category. Let \mathcal{I} be a functorially finite rigid subcategory of 𝒞\mathcal{C} and (𝒳,𝒴)(\mathcal{X},\mathcal{Y}) be a rigid \mathcal{I}-mutation pair. We define 𝒵=𝒳𝒴\mathcal{Z}=\mathcal{X}\cap\mathcal{Y}. Then (,𝒵,)(\mathcal{I},\mathcal{Z},\mathcal{I}) satisfies (MT1) and (MT2).

  3. (3)

    [SP20] Assume that 𝒞\mathcal{C} is a Hom-finite Krull-Schmidt triangulated kk-category with a Serre functor 𝕊\mathbb{S}. Let \mathcal{M} be a collection of Ob(𝒞)\operatorname{\mathrm{Ob}}(\mathcal{C}) which satisfies the condition (SP1) in Condition LABEL:SP_condi1 and (𝒳,𝒴)(\mathcal{X},\mathcal{Y}) be an orthogonal \langle\mathcal{M}\rangle-mutation pair. We define 𝒵=𝒳𝒴\mathcal{Z}=\mathcal{X}\cap\mathcal{Y}. Then ([1],𝒵,[1])(\langle\mathcal{M}[1]\rangle,\mathcal{Z},\langle\mathcal{M}[-1]\rangle) satisfies (MT1) and (MT2).

  4. (4)

    [Nak18] Let ((SS,𝒯),(𝒰,𝒱))((\SS,\mathcal{T}),(\mathcal{U},\mathcal{V})) be a concentric twin cotorsion pairs. We define 𝒵=𝒯𝒰\mathcal{Z}=\mathcal{T}\cap\mathcal{U}. Then (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) satisfies (MT1) and (MT2).

Proof.

(1) (MT1) follows from the definition of Frobenius ET categories. Since 𝒫\mathcal{P} is both projective and injective, 𝔼=𝔼𝒫=𝔼𝒫\mathbb{E}=\mathbb{E}^{\mathcal{P}}=\mathbb{E}_{\mathcal{P}} and 𝔼(𝒫,)=0,𝔼(,𝒫)=0\mathbb{E}(\mathcal{P},-)=0,\mathbb{E}(-,\mathcal{P})=0. Thus, (MT2) holds.

(2) By definition of rigid \mathcal{I}-mutation pairs, \mathcal{I} is functorially finite in 𝒵\mathcal{Z}. In particular, (MT1) holds. 𝒵[1][1]\mathcal{Z}\subset{}^{\perp}\mathcal{I}[1]\cap\mathcal{I}[-1]^{\perp} also follows from definition of rigid \mathcal{I}-mutation pairs. Note that 𝒵1𝒴,𝒵1𝒳\mathcal{Z}\langle 1\rangle\subset\mathcal{Y},\mathcal{Z}\langle-1\rangle\subset\mathcal{X}. Thus, 𝔼(,𝒵)=0,𝔼(,𝒵1)=0,𝔼(𝒵,)=0\mathbb{E}(\mathcal{I},\mathcal{Z})=0,\mathbb{E}(\mathcal{I},\mathcal{Z}\langle-1\rangle)=0,\mathbb{E}(\mathcal{Z},\mathcal{I})=0 and 𝔼(𝒵1,)=0\mathbb{E}(\mathcal{Z}\langle 1\rangle,\mathcal{I})=0. In particular, (MT2) holds.

(3) Note that =𝒥=0\mathcal{I}=\mathcal{J}=0 since (𝒳,𝒴)(\mathcal{X},\mathcal{Y}) is an orthogonal mutation pair, in particular, 𝔼=𝔼=𝔼\mathbb{E}=\mathbb{E}^{\mathcal{I}}=\mathbb{E}_{\mathcal{I}} and 1=[1]\langle 1\rangle=[1], then (MT1) hold. (MT2) follows from 𝒵[1][1]\mathcal{Z}\subset{}^{\perp}\mathcal{M}^{\perp}\cap{}^{\perp}\mathcal{M}[-1]\cap\mathcal{M}[1]^{\perp}.

(4) =𝒥\mathcal{I}=\mathcal{J} since ((SS,𝒯),(𝒰,𝒱))((\SS,\mathcal{T}),(\mathcal{U},\mathcal{V})) is concentric. By definition of twin cotorsion pairs, 𝔼(SS,𝒵)=0\mathbb{E}(\SS,\mathcal{Z})=0 and 𝔼(𝒵,𝒱)=0\mathbb{E}(\mathcal{Z},\mathcal{V})=0. From 𝒵1𝒰\mathcal{Z}\langle 1\rangle\subset\mathcal{U} and 𝒵1𝒯\mathcal{Z}\langle-1\rangle\subset\mathcal{T}, 𝔼(SS,𝒵1)=0\mathbb{E}(\SS,\mathcal{Z}\langle-1\rangle)=0 and 𝔼(𝒵1,𝒱)=0\mathbb{E}(\mathcal{Z}\langle 1\rangle,\mathcal{V})=0. Thus, we obtain (MT2). (MT1) is direct from the definition of twin cotorsion pairs (for details, see [LN19]). ∎

From Example 3.3(4), we may consider a triplet (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) satisfying (MT1) and (MT2) as a generalization of concentric twin cotorsion pairs. We define new subcategories of 𝒞\mathcal{C}, 𝒰~\widetilde{\mathcal{U}} and 𝒯~\widetilde{\mathcal{T}}, which are denoted by 𝒞\mathcal{C}^{-} and 𝒞+\mathcal{C}^{+} in Definition LABEL:defi_plus-minus_ccTCP, respectively. We use these notations because 𝒰𝒰~=𝒞\mathcal{U}\subset\widetilde{\mathcal{U}}=\mathcal{C}^{-} and 𝒯𝒯~=𝒞+\mathcal{T}\subset\widetilde{\mathcal{T}}=\mathcal{C}^{+} hold for any concentric twin cotorsion pair ((SS,𝒯),(𝒰,𝒱))((\SS,\mathcal{T}),(\mathcal{U},\mathcal{V})).

Notation 3.4.
  1. (1)

    Let (SS,𝒵)(\SS,\mathcal{Z}) be a pair of subcategories which satisfies (rMT1) and (rMT2). We define 𝒰~\widetilde{\mathcal{U}} as CoCone𝔼(𝒵,SS)\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\SS).

  2. (2)

    Let (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) be a pair of subcategories which satisfies (lMT1) and (lMT2). We define 𝒯~\widetilde{\mathcal{T}} as Cone𝔼𝒥(𝒱,𝒵)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{J}}}(\mathcal{V},\mathcal{Z}).

Notation 3.5.
  1. (1)

    Let (SS,𝒵)(\SS,\mathcal{Z}) be a pair of subcategories which satisfies (rMT1) and (rMT2). We denote 𝒳/[]\mathcal{X}/[\mathcal{I}] by 𝒳¯\underline{\mathcal{X}} for a subcategory 𝒳\mathcal{X} containing \mathcal{I}.

  2. (2)

    Let (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) be a pair of subcategories which satisfies (lMT1) and (lMT2). We denote 𝒴/[𝒥]\mathcal{Y}/[\mathcal{J}] by 𝒴¯\underline{\mathcal{Y}} for a subcategory 𝒴\mathcal{Y} containing 𝒥\mathcal{J}.

  3. (3)

    For a morphism xx in 𝒵\mathcal{Z}, we denote x1¯\underline{x\langle 1\rangle} by x¯1\underline{x}\langle 1\rangle.

Lemma 3.6.

[Nak18, Fact 2.1, Definition 3.10]

  1. (1)

    Let (SS,𝒵)(\SS,\mathcal{Z}) be a pair of subcategories which satisfies (rMT1) and (rMT2). For U𝒰~U\in\widetilde{\mathcal{U}}, take an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle UhUZUgUSUU\xrightarrow{h^{U}}Z^{U}\xrightarrow{g^{U}}S\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle$}\vss}}}U. Then hU¯:𝒵¯(ZU,𝒵)𝒰~¯(U,𝒵)-\circ\underline{h^{U}}\colon\underline{\mathcal{Z}}(Z^{U}\!,\mathcal{Z})\to\underline{\widetilde{\mathcal{U}}}(U,\mathcal{Z}) is a natural isomorphism. In particular, there exists an additive functor σ:𝒰~¯𝒵¯;UZU\sigma\colon\underline{\widetilde{\mathcal{U}}}\to\underline{\mathcal{Z}}\,;U\mapsto Z^{U} which is a left adjoint of the inclusion functor ισ:𝒵¯𝒰~¯\iota_{\sigma}\colon\underline{\mathcal{Z}}\to\underline{\widetilde{\mathcal{U}}}.

  2. (2)

    Let (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) be a pair of subcategories which satisfies (lMT1) and (lMT2). For T𝒯~T\in\widetilde{\mathcal{T}}, take an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle TVZThTTT\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle$}\vss}}}V\xrightarrow{}Z_{T}\xrightarrow{h_{T}}T. Then hT¯:𝒵¯(𝒵,ZT)𝒯~¯(𝒵,T)\underline{h_{T}}\circ-\colon\underline{\mathcal{Z}}(\mathcal{Z},Z_{T})\to\underline{\widetilde{\mathcal{T}}}(\mathcal{Z},T) is a natural isomorphism. In particular, there exists an additive functor ω:𝒯~¯𝒵¯;TZT\omega\colon\underline{\widetilde{\mathcal{T}}}\to\underline{\mathcal{Z}}\,;T\mapsto Z_{T} which is a right adjoint of the inclusion functor ιω:𝒵¯𝒯~¯\iota_{\omega}\colon\underline{\mathcal{Z}}\to\underline{\widetilde{\mathcal{T}}}.

Proof.

We only prove (1). We denote hU,gUh^{U},g^{U} by h,gh,g respectively. Since h¯:𝒵¯(ZU,𝒵)𝒰~¯(U,𝒵)-\circ\underline{h}\colon\underline{\mathcal{Z}}(Z^{U}\!,\mathcal{Z})\to\underline{\widetilde{\mathcal{U}}}(U,\mathcal{Z}) is clearly well-defined and functorial, we only have to show that this is bijective for any Z𝒵Z^{\prime}\in\mathcal{Z}. Take a morphism z:ZUZz\colon Z^{U}\to Z^{\prime} with zh¯=0\underline{zh}=0. There exists an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle Z1IpZZλZZ1Z^{\prime}\langle-1\rangle\xrightarrow{}I\xrightarrow{p_{Z^{\prime}}}Z^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda_{Z^{\prime}}$}\vss}}}Z^{\prime}\langle-1\rangle because \mathcal{I} is strongly contravariantly finite in 𝒵\mathcal{Z}. We denote pZ,λZp_{Z^{\prime}},\lambda_{Z^{\prime}} by p,λp,\lambda, respectively. Since λ\lambda is an 𝔼\mathbb{E}_{\mathcal{I}}-extension and zh[]zh\in[\mathcal{I}], there exists a morphism a:UIa\colon U\to I with zh=pazh=pa. Since 𝔼(SS,𝒵)=0\mathbb{E}^{\mathcal{I}}(\SS,\mathcal{Z})=0, there exists a morphism a:ZUIa^{\prime}\colon Z^{U}\to I such that a=aha=a^{\prime}h. Then 0=zhpa=(zpa)h0=zh-pa=(z-pa^{\prime})h. Thus, there exists a morphism z:SZz^{\prime}\colon S\to Z^{\prime} where zpa=zgz-pa^{\prime}=z^{\prime}g. From 𝔼(SS,𝒵1)=0\mathbb{E}_{\mathcal{I}}(\SS,\mathcal{Z}\langle-1\rangle)=0, then λz=0\lambda z^{\prime}=0 and there exists a morphism z:SIz^{\prime\prime}\colon S\to I where z=pzz^{\prime}=pz^{\prime\prime}. Therefore z¯=pa+zg¯=p(a+zg)¯=0\underline{z}=\underline{pa^{\prime}+z^{\prime}g}=\underline{p(a^{\prime}+z^{\prime\prime}g)}=0, that is, h¯-\circ\underline{h} is injective. On the other hand, h¯-\circ\underline{h} is surjective because 𝔼(SS,𝒵)=0\mathbb{E}^{\mathcal{I}}(\SS,\mathcal{Z})=0. ∎

Remark 3.7.
  1. (1)

    From Lemma 3.6(1), for a morphism z:ZUZz\colon Z^{U}\to Z in 𝒵\mathcal{Z},

    z¯=0 in 𝒵¯zhU¯=0 in 𝒰¯~.\underline{z}=0\text{ in }\underline{\mathcal{Z}}\iff\underline{zh^{U}}=0\text{ in }\widetilde{\underline{\mathcal{U}}}\,.
  2. (2)

    From the above proof, for any morphism u:UZu\colon U\to Z^{\prime} where U𝒰~U\in\widetilde{\mathcal{U}} and Z𝒵Z^{\prime}\in\mathcal{Z}, there exists a morphism z:ZUZz\colon Z^{U}\to Z^{\prime} which satisfies u=zhUu=zh^{U} in 𝒰~\widetilde{\mathcal{U}} and such zz is unique up to [][\mathcal{I}].

  3. (3)

    We can construct σ:𝒰¯~𝒵¯\sigma\colon\widetilde{\underline{\mathcal{U}}}\to\underline{\mathcal{Z}} directly like 1\langle 1\rangle.

    1. (i)

      For U𝒰~U\in\widetilde{\mathcal{U}}, there exists an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle

      UhUσUgUSρUUU\xrightarrow{h^{U}}\sigma U\xrightarrow{g^{U}}S\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\rho^{U}$}\vss}}}U

      where σU𝒵\sigma U\in\mathcal{Z} and SSSS\in\SS.

    2. (ii)

      For a morphism u:U1U2u\colon U_{1}\to U_{2} in 𝒰~\widetilde{\mathcal{U}}, there exist 𝔰\mathfrak{s}^{\mathcal{I}}-triangles U1hU1σU1gU1S1ρU1U1U_{1}\xrightarrow{h^{U_{1}}}\sigma U_{1}\xrightarrow{g^{U_{1}}}S_{1}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\rho^{U_{1}}$}\vss}}}U_{1} and U2hU2σU2gU2S2ρU2U2U_{2}\xrightarrow{h^{U_{2}}}\sigma U_{2}\xrightarrow{g^{U_{2}}}S_{2}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\rho^{U_{2}}$}\vss}}}U_{2} where S1,S2SSS_{1},S_{2}\in\SS. We denote σU1,σU2\sigma U_{1},\sigma U_{2} by Z1,Z2Z_{1},Z_{2}, respectively. Then there exists a unique morphism z:Z1Z2z\colon Z_{1}\to Z_{2} in 𝒞\mathcal{C} up to [][\mathcal{I}] which makes the following diagram commutative from (2).

      U1\textstyle{U_{1}}Z1\textstyle{Z_{1}}U2\textstyle{U_{2}}Z2\textstyle{Z_{2}}hU1\scriptstyle{h^{U_{1}}}hU2\scriptstyle{h^{U_{2}}}u\scriptstyle{u}z\scriptstyle{z}\scriptstyle{\circlearrowright}

      We define σ(u)\sigma(u) as zz.

    Then σ\sigma induces an additive functor σ:𝒰~¯𝒵¯\sigma\colon\underline{\widetilde{\mathcal{U}}}\to\underline{\mathcal{Z}}. From uniqueness of left adjoint functor up to natural isomorphisms, σ\sigma does not depend on the choices of 𝔰\mathfrak{s}^{\mathcal{I}}-triangle UhUZUSUU\xrightarrow{h^{U}}Z^{U}\rightarrow S\dashrightarrow U in Lemma 3.6 up to natural isomorphisms.

Notation 3.8.
  1. (1)

    For a morphism uu in 𝒰~\widetilde{\mathcal{U}}, we denote σ(u)¯\underline{\sigma(u)} by σ(u¯)\sigma(\underline{u}).

  2. (2)

    We denote the unit of the adjoint pair (σ,ισ)(\sigma,\iota_{\sigma}) by η\eta.

  3. (3)

    We denote the counit of the adjoint pair (ιω,ω)(\iota_{\omega},\omega) by ε\varepsilon.

3.2. Definition of premutation triples

Condition 3.9.

We consider the following conditions.

  1. (1)

    Assume (rMT1) and (rMT2).

    • (rMT3)
      1. (i)

        Cone𝔼(𝒵,𝒵)𝒰~\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\widetilde{\mathcal{U}}.

      2. (ii)

        SS\SS and 𝒵\mathcal{Z} are closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}).

  2. (2)

    Assume (lMT1) and (lMT2).

    • (lMT3)
      1. (i)

        CoCone𝔼𝒥(𝒵,𝒵)𝒯~\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}_{\mathcal{J}}}(\mathcal{Z},\mathcal{Z})\subset\widetilde{\mathcal{T}}.

      2. (ii)

        𝒵\mathcal{Z} and 𝒱\mathcal{V} are closed under extensions in (𝒞,𝔼𝒥,𝔰𝒥)(\mathcal{C},\mathbb{E}_{\mathcal{J}},\mathfrak{s}_{\mathcal{J}}).

  3. (3)

    Assume (MT1) and (MT2).

    • (MT3)

      (rMT3) and (lMT3).

Remark 3.10.

If (rMT2) holds, then Cone𝔼(𝒵,𝒵)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) == Cone𝔼(𝒵,𝒵)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}). On the other hand, CoCone𝔼(𝒵,SS)CoCone𝔼(𝒵,SS)=𝒰~\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\SS)\subsetneq\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\SS)=\widetilde{\mathcal{U}} in general. In Example LABEL:ex_HoveyTCP_ARquiv(LABEL:ex_HoveyTCP_ARquiv_1), YCoCone𝔼(𝒵,SS)=𝒰Y\in\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\SS)=\mathcal{U} but YCoCone𝔼(𝒵,SS)Y\notin\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\SS). That is because there exists a triangle Y𝑓I1𝑔I2Y[1]Y\xrightarrow{f}I_{1}\xrightarrow{g}I_{2}\rightarrow Y[1] where ff is \mathcal{I}-monic but gg is not \mathcal{I}-epic.

The condition Cone𝔼(𝒵,𝒵)CoCone𝔼(𝒵,SS)\operatorname{Cone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z})\subset\operatorname{CoCone\hskip 0.5pt}_{\mathbb{E}^{\mathcal{I}}_{\mathcal{I}}}(\mathcal{Z},\SS) is contained in Condition LABEL:condi_rMT3.

Definition 3.11.

Let SS,𝒵,𝒱\SS,\mathcal{Z},\mathcal{V} be subcategories of 𝒞\mathcal{C}.

  1. (1)

    (SS,𝒵)(\SS,\mathcal{Z}) is a right mutation double if (SS,𝒵,)(\SS,\mathcal{Z},\mathcal{I}) satisfies (MT1), (rMT2) and (rMT3).

  2. (2)

    (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) is a left mutation double if (𝒥,𝒵,𝒱)(\mathcal{J},\mathcal{Z},\mathcal{V}) satisfies (MT1), (lMT2) and (lMT3).

  3. (3)

    (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) is a premutation triple if it satisfies from (MT1) to (MT3).

Remark 3.12.
  1. (1)

    Note that both right and left mutation doubles are required to satisfy (MT1). That is because right (resp. left) mutation doubles are required to have the additive functor 1\langle 1\rangle (resp. 1\langle-1\rangle) so that we may define Σ\Sigma (resp. Ω\Omega) in Definition 3.14.

  2. (2)

    A triplet (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) which satisfies (MT1), (MT2) and (MT3), that is (SS,𝒵)(\SS,\mathcal{Z}) is a right mutation double and (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) is a left mutation double with =𝒥\mathcal{I}=\mathcal{J}, is not mutation triple. (We define mutation triples in Section LABEL:triangulated.) Later, we check that right mutation doubles (resp. left mutation doubles, premutation triples, mutation triples) induce right triangulated (resp. left triangulated, pretriangulated, triangulated) categories.

From the following examples, Frobenius ET categories, rigid mutation pairs, orthogonal mutation pairs and concentric twin cotorsion pairs are examples of premutation triples.

Example 3.13.

X

  1. (1)

    Assume that 𝒞\mathcal{C} has enough projectives and Proj𝒞\operatorname{Proj}\mathcal{C} is strongly functorially finite in 𝒞\mathcal{C}. Then (Proj𝒞,𝒞)(\operatorname{Proj}\mathcal{C},\mathcal{C}) is a right mutation double. Dually, assume that 𝒞\mathcal{C} has enough injectives and Inj𝒞\operatorname{Inj}\mathcal{C} is strongly functorially finite in 𝒞\mathcal{C}. Then (𝒞,Inj𝒞)(\mathcal{C},\operatorname{Inj}\mathcal{C}) is a left mutation double.

  2. (2)

    [NP19] Assume that 𝒞\mathcal{C} is Frobenius with 𝒫=Proj𝒞\mathcal{P}=\operatorname{Proj}\mathcal{C}. Then (𝒫,𝒞,𝒫)(\mathcal{P},\mathcal{C},\mathcal{P}) is a premutation triple. More generally, for any strongly functorially finite subcategory 𝒳\mathcal{X} in 𝒞\mathcal{C}, (𝒳,𝒞,𝒳)(\mathcal{X},\mathcal{C},\mathcal{X}) in (𝒞,𝔼𝒳𝒳,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{X}}_{\mathcal{X}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}) is a premutation triple.

  3. (3)

    [IY08] In the case of Example 3.3(2), we additionally assume that 𝒳=𝒴\mathcal{X}=\mathcal{Y} and (IY3) in Condition LABEL:IY_condi. Then (,𝒵,)(\mathcal{I},\mathcal{Z},\mathcal{I}) is a premutation triple.

  4. (4)

    [SP20] In the case of Example 3.3(3), we additionally assume that 𝒳=𝒴\mathcal{X}=\mathcal{Y} and (SP3) in Condition LABEL:SP_condi2. Then ([1],𝒵,[1])(\langle\mathcal{M}[1]\rangle,\mathcal{Z},\langle\mathcal{M}[-1]\rangle) is a premutation triple.

  5. (5)

    [Nak18] In the case of Example 3.3(4), (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) is a premutation triple.

Proof.

(1) We only prove when 𝒞\mathcal{C} has enough projectives. From assumptions, (MT1) holds. (rMT2) follows from 𝔼(𝒫,)=0\mathbb{E}(\mathcal{P},-)=0. (rMT3) is also true because 𝒰~=𝒞\widetilde{\mathcal{U}}=\mathcal{C} and 𝒫\mathcal{P} is closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E},\mathfrak{s}). (2) is direct from (1). (3) follows from Lemma 2.20 and [IY08, Lemma 4.3]. (4) is by definition of (SP3). (5) follows from Lemma LABEL:conic and the definition of twin cotorsion pairs. ∎

Because of the condition (rMT3)1)((i) and (lMT3)2)((i), we can finally define mutation functors.

Definition 3.14.
  1. (1)

    Let (SS,𝒵)(\SS,\mathcal{Z}) be a right mutation double. We define an additive functor Σ=σ1:𝒵¯𝒵¯\Sigma=\sigma\circ\langle 1\rangle\colon\underline{\mathcal{Z}}\to\underline{\mathcal{Z}}, called a right mutation functor.

  2. (2)

    Let (𝒵,𝒱)(\mathcal{Z},\mathcal{V}) be a left mutation double. We define an additive functor Ω=ω1:𝒵¯𝒵¯\Omega=\omega\circ\langle-1\rangle\colon\underline{\mathcal{Z}}\to\underline{\mathcal{Z}}, called a left mutation functor.

Example 3.15.
  1. (1)

    In the case of Example 3.13(2), a right (resp. left) mutation functor is exactly a cosyzygy (resp. syzygy) functor.

  2. (2)

    In the case of Example 3.13(3), a right (resp. left) mutation functor is exactly right (resp. left) mutation functor in Lemma LABEL:lem_bracket_rigidver.

  3. (3)

    In the case of Example 3.13(4), a right (resp. left) mutation functor is exactly right (resp. left) mutation functor in Definition LABEL:sigma_and_omega_inSP.

  4. (4)

    In the case of Example 3.13(5), a right (resp. left) mutation functor is exactly right (resp. left) mutation functor in Definition LABEL:defi_sigma-omega_CTP.

In the last part of this section, we collect some lemmas we use later.

Lemma 3.16.

[Nak18, Proposition 4.3] Let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a premutation triple. Then (Σ,Ω)(\Sigma,\Omega) is an adjoint pair.

Proof.

From Lemma 3.6, we only have to show that there exists a bifunctorial isomorphism Φ:𝒰~¯(Z1,Z)𝒯¯~(Z,Z1)\Phi\colon\underline{\widetilde{\mathcal{U}}}(Z\langle 1\rangle,Z^{\prime})\xrightarrow{\sim}\widetilde{\underline{\mathcal{T}}}(Z,Z^{\prime}\langle-1\rangle) for any Z,Z𝒵Z,Z^{\prime}\in\mathcal{Z}. For a morphism z:Z1Zz\colon Z\langle 1\rangle\to Z^{\prime}, we take an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle ZiZIZpZZ1λZZZ\xrightarrow{i^{Z}}I^{Z}\xrightarrow{p^{Z}}Z\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{Z}$}\vss}}}Z and an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle Z1iZIZpZZλZZ1Z^{\prime}\langle-1\rangle\xrightarrow{i_{Z^{\prime}}}I_{Z^{\prime}}\xrightarrow{p_{Z^{\prime}}}Z^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda_{Z^{\prime}}$}\vss}}}Z^{\prime}\langle-1\rangle. Then there exists a morphism z:ZZ1z^{\prime}\colon Z\to Z^{\prime}\langle-1\rangle which makes the following diagram commutative since pZp_{Z^{\prime}} is a right \mathcal{I}-approximation.

Z\textstyle{Z}Z1\textstyle{Z^{\prime}\langle-1\rangle}IZ\textstyle{I^{Z}}IZ\textstyle{I_{Z^{\prime}}}Z1\textstyle{Z\langle 1\rangle}Z\textstyle{Z^{\prime}}Z\textstyle{Z}Z1\textstyle{Z^{\prime}\langle-1\rangle}iZ\scriptstyle{i^{Z}}pZ\scriptstyle{p^{Z}}λZ\scriptstyle{\lambda^{Z}}iZ\scriptstyle{i_{Z^{\prime}}}pZ\scriptstyle{-p_{Z^{\prime}}}λZ\scriptstyle{-\lambda_{Z^{\prime}}}z\scriptstyle{z^{\prime}}z\scriptstyle{z}z\scriptstyle{z^{\prime}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Then we define Φ(z¯)=z¯\Phi(\underline{z})=\underline{z^{\prime}}. This correspondence is well-defined and injective from the commutativity of the right most square. In particular, zz^{\prime} is unique up to [][\mathcal{I}] which satisfies zλZ=λZzz^{\prime}\lambda^{Z}=-\lambda_{Z^{\prime}}z. This correspondence is also surjective since iZi^{Z} is a left \mathcal{I}-approximation. Finally, this is bifunctorial because zz^{\prime} is uniquely determined by the commutativity of right square. ∎

Notation 3.17.

We denote the unit (resp. counit) of (Σ,Ω)(\Sigma,\Omega) by α\alpha (resp. β\beta).

Remark 3.18.

From Lemma 3.6 and 3.16, we have the following isomorphisms for Z,Z𝒵Z,Z^{\prime}\in\mathcal{Z}.

𝒵¯(ΣZ,Z)hZ1¯𝒰~¯(Z1,Z)Φ𝒯~¯(Z,Z1)hZ1¯𝒵¯(Z,ΩZ)\displaystyle\underline{\mathcal{Z}}(\Sigma Z,Z^{\prime})\xrightarrow{-\circ\underline{h^{Z\langle 1\rangle}}}\underline{\widetilde{\mathcal{U}}}(Z\langle 1\rangle,Z^{\prime})\xrightarrow{\phantom{x}\Phi\phantom{x}}\underline{\widetilde{\mathcal{T}}}(Z,Z^{\prime}\langle-1\rangle)\xleftarrow{\underline{h_{Z^{\prime}\langle-1\rangle}}\circ-}\underline{\mathcal{Z}}(Z,\Omega Z^{\prime}) (3.1)

Then for a morphism f:ZΩZf\colon Z\to\Omega Z^{\prime} in 𝒵\mathcal{Z}, the corresponding morphism f:ΣZZf^{\prime}\colon\Sigma Z\to Z^{\prime} in (3.1) is uniquely determined by the following commutative diagram up to [][\mathcal{I}].

(3.2)

Note that f¯=βZΣ(f¯)\underline{f^{\prime}}=\beta_{Z^{\prime}}\circ\Sigma(\underline{f}) and f¯=Ω(f¯)αZ\underline{f}=\Omega(\underline{f^{\prime}})\circ\alpha_{Z}.

Remark 3.19.

We assume that 𝒞\mathcal{C} is a triangulated category and let (SS,𝒵,𝒱)(\SS,\mathcal{Z},\mathcal{V}) be a premutation triple induced by a concentric twin cotorsion pair. The negative sign in the proof of Lemma 3.16 comes from the following isomorphic correspondence.

𝔼(X1,X)𝒞(X1,X[1])λXlX\begin{array}[]{ccc}\mathbb{E}(X\langle 1\rangle,X)&\xrightarrow{\sim}&\mathcal{C}(X\langle 1\rangle,X[1])\\[3.0pt] \lambda^{X}&\mapsto&l^{X}\end{array}
𝔼(Y,Y1)𝒞(Y[1],Y1)[1]𝒞(Y,Y1[1])λYlY[1]lY\begin{array}[]{ccccc}\mathbb{E}(Y,Y\langle-1\rangle)&\xrightarrow{\sim}&\mathcal{C}(Y[-1],Y\langle-1\rangle)&\xrightarrow{[1]}&\mathcal{C}(Y,Y\langle-1\rangle[1])\\[3.0pt] \lambda_{Y}&\mapsto&-l_{Y}[-1]&\mapsto&-l_{Y}\end{array}

Then Φ\Phi in Lemma 3.16 is defined by the following commutative diagram in 𝒞¯\underline{\mathcal{C}}.

Z1\textstyle{Z\langle 1\rangle}Z[1]\textstyle{Z[1]}Z\textstyle{Z^{\prime}}Z1[1]\textstyle{Z^{\prime}\langle-1\rangle[1]}lZ\scriptstyle{l^{Z}}lZ\scriptstyle{l_{Z^{\prime}}}z\scriptstyle{z}(Φ(z))[1]\scriptstyle{(\Phi(z))[1]}\scriptstyle{\circlearrowright}

This correspondence is used in [Nak18, Definition 4.1].

Lemma 3.20.

[Nak18, Lemma 3.11] Let (SS,𝒵)(\SS,\mathcal{Z}) be a right mutation double. Assume that there exists an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle U𝑢USUU\xrightarrow{u}U^{\prime}\rightarrow S\dashrightarrow U where U,U𝒰~U,U^{\prime}\in\widetilde{\mathcal{U}}. Then σ(u¯):σUσU\sigma(\underline{u})\colon\sigma U\to\sigma U^{\prime} is an isomorphism.

Proof.

By definition of right mutation doubles, there exists an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle SUZSS^{\prime}\dashrightarrow U^{\prime}\rightarrow Z^{\prime}\rightarrow S^{\prime} where Z𝒵Z^{\prime}\in\mathcal{Z} and SSSS^{\prime}\in\SS. Since SS\SS is closed under extensions in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}), there exists the following commutative diagram in 𝒞\mathcal{C} where SSSS^{\prime\prime}\in\SS.

U\textstyle{U}U\textstyle{U}U\textstyle{U^{\prime}}Z\textstyle{Z^{\prime}}S\textstyle{S^{\prime}}S\textstyle{S}S\textstyle{S^{\prime\prime}}S\textstyle{S^{\prime}}U\textstyle{U}U\textstyle{U}u\scriptstyle{u}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Thus, we obtain an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle UZSUU\rightarrow Z^{\prime}\rightarrow S^{\prime\prime}\dashrightarrow U. From uniqueness of σ\sigma, σ(u¯)\sigma(\underline{u}) is an isomorphism. ∎

3.3. Right triangles induced by a right mutation double

In this subsection, we consider right triangulated (resp. left triangulated, pretriangulated) structures induced by right mutation doubles (resp. left mutation doubles, premutation triples). We assume that (SS,𝒵)(\SS,\mathcal{Z}) is a right mutation double.

First, we fix the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangles to define 1\langle 1\rangle and σ\sigma.

  1. (1)

    For X𝒵X\in\mathcal{Z}, there exists the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangle (and also an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle) where IXI^{X}\in\mathcal{I} and we fix it.

    XiXIXpXX1λXXX\xrightarrow{i^{X}}I^{X}\xrightarrow{p^{X}}X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}$}\vss}}}X

    Then we define iX,pX,λXi^{X},p^{X},\lambda^{X} by the above fixed 𝔰\mathfrak{s}^{\mathcal{I}}-triangle.

  2. (2)

    For U𝒰~U\in\widetilde{\mathcal{U}}, there exists the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangle (this is not an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle in general) where σU𝒵,SUSS\sigma U\in\mathcal{Z},S^{U}\in\SS and we fix it.

    UhUσUgUSUρUUU\xrightarrow{h^{U}}\sigma U\xrightarrow{g^{U}}S^{U}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\rho^{U}$}\vss}}}U

    Then we define hU,gU,ρUh^{U},g^{U},\rho^{U} by the above fixed 𝔰\mathfrak{s}^{\mathcal{I}}-triangle. For Z𝒵Z\in\mathcal{Z}, we always take σZ\sigma Z and hZh^{Z} so that σZ=Z\sigma Z=Z and hZ=idZh^{Z}=\mathrm{id}_{Z}.

We remind readers that 1:𝒵¯𝒰~¯\langle 1\rangle\colon\underline{\mathcal{Z}}\to\underline{\widetilde{\mathcal{U}}} and σ:𝒰~¯𝒵¯\sigma\colon\underline{\widetilde{\mathcal{U}}}\to\underline{\mathcal{Z}} do not depend on the choices of the above 𝔰\mathfrak{s}^{\mathcal{I}}-triangles up to natural isomorphisms.

Remark 3.21.

Let U𝒰~U\in\widetilde{\mathcal{U}}. From Remark 3.7(3), σ(hU)\sigma(h^{U}) is one of the morphisms which makes the following diagram in 𝒞\mathcal{C} commutative. Note that hσU=idσUh^{\sigma U}=\mathrm{id}_{\sigma U}.

U\textstyle{U}σU\textstyle{\sigma U}σU\textstyle{\sigma U}σU\textstyle{\sigma U}hU\scriptstyle{h^{U}}hσU\scriptstyle{h^{\sigma U}}hU\scriptstyle{h^{U}}σ(hU)\scriptstyle{\sigma(h^{U})}\scriptstyle{\circlearrowright}

Then (σ(hU)idσU)hU=0(\sigma(h^{U})-\operatorname{id}_{\sigma U})h^{U}=0. From Remark 3.7(1), σ(hU¯)=idσU¯\sigma(\underline{h^{U}})=\underline{\mathrm{id}_{\sigma U}}.

Notation 3.22.
  1. (1)

    Let a:XYa\colon X\to Y be a morphism in 𝒵\mathcal{Z}. From Lemma 2.28, there exists the following 𝔰\mathfrak{s}^{\mathcal{I}}-triangle (this is also an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle from Remark 3.2(2)) and we fix it.

    X[aiX]YIXb~Caδ~XX\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}a\\ i^{X}\\ \end{bmatrix}$}}Y\oplus I^{X}\xrightarrow{\widetilde{b}}C^{a}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\widetilde{\delta}$}\vss}}}X

    Then we define b~,Ca\widetilde{b},C^{a} and δ~\widetilde{\delta} by the above 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle. We also define a~=[aiX]\widetilde{a}=\scalebox{0.8}{$\begin{bmatrix}a\\ i^{X}\\ \end{bmatrix}$} and bb as the composition of Y[10]YIXb~CaY\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}1\\ 0\end{bmatrix}$}}Y\oplus I^{X}\xrightarrow{\widetilde{b}}C^{a}.

  2. (2)

    From Lemma 2.29, there exists the following commutative diagram in (𝒞,𝔼,𝔰)(\mathcal{C},\mathbb{E}^{\mathcal{I}}_{\mathcal{I}},\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}) and we fix it.

    (3.3)

    Then we define ca,γac^{a},\gamma^{a} by the above diagram. We often drop “aa” if there is no confusion.

There exists the following sequence in 𝒵¯\underline{\mathcal{Z}}.

Xa~¯YIXhCab~¯σCaσ(c¯)ΣXX\xrightarrow{\,\underline{\widetilde{a}}\,}Y\oplus I^{X}\xrightarrow{\,\underline{h^{C^{a}}\widetilde{b}}\,}\sigma C^{a}\xrightarrow{\sigma({\underline{c}})}\Sigma X

We show that the sequence (3.3) in Notation 3.22 does not depend on choices of morphism cc and 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle XIXX1λXXX\rightarrow I^{X}\rightarrow X\langle 1\rangle\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\lambda^{X}\vphantom{X^{X^{x}}}$}\vss}}}X.

Lemma 3.23.
  1. (1)

    The morphism cc in Notation 3.22(2) is uniquely determined in 𝒵¯\underline{\mathcal{Z}}.

  2. (2)

    The sequence (3.3) in Notation 3.22 does not depend on the choices of 1\langle 1\rangle, up to isomorphisms of sequences in 𝒵¯\underline{\mathcal{Z}}.

Proof.

(1) If morphisms c,c:CaX1c,c^{\prime}\colon C^{a}\to X\langle 1\rangle satisfies δ~=λc=λc\widetilde{\delta}=\lambda c=\lambda c^{\prime}, then ccc-c^{\prime} factors through IXI^{X}.

(2) Take another 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle XjXJXqXX1λXXX\xrightarrow{j^{X}}J^{X}\xrightarrow{q^{X}}X\langle 1\rangle^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle{\lambda^{\prime}}^{X}$}\vss}}}X where jXj^{X} is a left \mathcal{I}-approximation. Let μ:11\mu\colon\langle 1\rangle\Rightarrow\langle 1\rangle^{\prime} be a natural isomorphism defined in Remark 2.25 and Σ=σ1\Sigma^{\prime}=\sigma\circ\langle 1\rangle^{\prime}. Then λX=λXmX\lambda^{X}={\lambda^{\prime}}^{X}m^{X} holds. From Corollary 2.30, there exists the following commutative diagrams where fi¯\underline{f_{i}} and gi¯\underline{g_{i}} are isomorphisms for i=1,2i=1,2.

(3.4)

Let c:CaX1c\colon C^{a}\to X\langle 1\rangle and c:CaX1c^{\prime}\colon C^{a^{\prime}}\to X\langle 1\rangle^{\prime} be the morphisms defined in Notation 3.22(2), then λXmXcg1=δ~g1=δ~g2=λXcg2{\lambda^{\prime}}^{X}m^{X}cg_{1}=\widetilde{\delta}g_{1}=\widetilde{\delta^{\prime}}g_{2}={\lambda^{\prime}}^{X}c^{\prime}g_{2} from (2.1), (3.3) and (3.4). Thus, mXc¯=cg2¯g11¯\underline{m^{X}c}=\underline{c^{\prime}g_{2}}\underline{{g_{1}}^{-1}}. Applying σ\sigma, σ(mX¯)σ(c¯)=σ(c¯)σ(g2g11¯)\sigma(\underline{m^{X}})\sigma(\underline{c})=\sigma(\underline{c^{\prime}})\sigma(\underline{g_{2}{g_{1}}^{-1}}). Therefore, the following commutative diagram exists in 𝒞¯\underline{\mathcal{C}}.

X\textstyle{X}YIX\textstyle{Y\!\oplus\!I^{X}}Ca\textstyle{C^{a}}ΣX\textstyle{\Sigma X}X\textstyle{X}YJX\textstyle{Y\!\oplus\!J^{X}}Ca\textstyle{C^{a^{\prime}}}ΣX\textstyle{\Sigma^{\prime}X}a~¯\scriptstyle{\underline{\widetilde{a}}}hCab~¯\scriptstyle{\underline{h^{C^{a}}\widetilde{b}}}σ(c¯)\scriptstyle{\sigma(\underline{c})}a~¯\scriptstyle{\underline{\widetilde{a^{\prime}}}}hCab~¯\scriptstyle{\underline{h^{C^{a^{\prime}}}\widetilde{b^{\prime}}}}σ(c¯)\scriptstyle{\sigma(\underline{c^{\prime}})}

f2f11¯\underline{f_{2}{f_{1}}\!^{-1}}

\sim

σ(g2g11¯)\sigma(\underline{g_{2}{g_{1}}\!^{-1}})

\sim

σ(mX¯)\scriptstyle{\sigma(\underline{m^{X}})}

\sim

\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Lemma 3.24.

Let a:XYa\colon X\to Y be a morphism in 𝒵\mathcal{Z} and XaYbUδXX\xrightarrow{a^{\prime}}Y\xrightarrow{b^{\prime}}U^{\prime}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta^{\prime}$}\vss}}}X be an 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle where a¯=a¯\underline{a}=\underline{a^{\prime}}. Then there exists a morphism s:σCaσUs\colon\sigma C^{a}\to\sigma U^{\prime} which makes the following diagram in 𝒵¯\underline{\mathcal{Z}} commutative where s¯\underline{s} is an isomorphism.

X\textstyle{X}Y\textstyle{Y}σCa\textstyle{\sigma C^{a}}ΣX\textstyle{\Sigma X}X\textstyle{X}Y\textstyle{Y}σU\textstyle{\sigma U^{\prime}}ΣX\textstyle{\Sigma X}a¯\scriptstyle{\underline{a}}hCab¯\scriptstyle{\underline{h^{C^{a}}b}}σ(c¯)\scriptstyle{\sigma(\underline{c})}a¯\scriptstyle{\underline{a^{\prime}}}hCab¯\scriptstyle{\underline{h^{C^{a^{\prime}}}b^{\prime}}}σ(c)¯\scriptstyle{\sigma(\underline{c^{\prime})}}s¯\scriptstyle{\underline{s}}

\sim

\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

In particular, the isomorphism class of the sequence (3.3) in 𝒵\mathcal{Z} does not depend on the choices of aa up to [][\mathcal{I}].

Before we show the above statement, we prove the following claim.

Claim 3.25.

Assume that there exists a commutative diagram in 𝒞\mathcal{C} with two 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangles X1a1Y1b1U1δ1X1X_{1}\xrightarrow{a_{1}}Y_{1}\xrightarrow{b_{1}}U_{1}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{1}$}\vss}}}X_{1} and X2a2Y2b2U2δ2X2X_{2}\xrightarrow{a_{2}}Y_{2}\xrightarrow{b_{2}}U_{2}\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle\delta_{2}$}\vss}}}X_{2} where Xi,Yj𝒵X_{i},Y_{j}\in\mathcal{Z} for 1i,j21\leq i,j\leq 2.

X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}U1\textstyle{U_{1}}X1\textstyle{X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}U2\textstyle{U_{2}}X2\textstyle{X_{2}}a1\scriptstyle{a_{1}}b1\scriptstyle{b_{1}}δ1\scriptstyle{\delta_{1}}a2\scriptstyle{a_{2}}b2\scriptstyle{b_{2}}δ2\scriptstyle{\delta_{2}}x\scriptstyle{x}y\scriptstyle{y}u\scriptstyle{u}x\scriptstyle{x}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

This induces the following commutative diagram in 𝒵¯\underline{\mathcal{Z}}.

X1\textstyle{X_{1}}Y1\textstyle{Y_{1}}σU1\textstyle{\sigma U_{1}}ΣX1\textstyle{\Sigma X_{1}}X2\textstyle{X_{2}}Y2\textstyle{Y_{2}}σU2\textstyle{\sigma U_{2}}ΣX2\textstyle{\Sigma X_{2}}a1¯\scriptstyle{\underline{a_{1}}}hU1b1¯\scriptstyle{\underline{h^{U_{1}}b_{1}}}σ(c1¯)\scriptstyle{\sigma{(\underline{c_{1}})}}a2¯\scriptstyle{\underline{a_{2}}}hU2b2¯\scriptstyle{\underline{h^{U_{2}}b_{2}}}σ(c2¯)\scriptstyle{\sigma{(\underline{c_{2}})}}x¯\scriptstyle{\underline{x}}y¯\scriptstyle{\underline{y}}σ(u¯)\scriptstyle{\sigma(\underline{u})}Σx¯\scriptstyle{\Sigma\underline{x}}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\phantom{XX}\circlearrowright}
Proof.

First, we recall the following commutative diagrams (3.5) in 𝒞\mathcal{C}.

Then λX2x1c1=xλX1c1=xδ1=λX2c2u\lambda^{X_{2}}x\langle 1\rangle c_{1}=x\lambda^{X_{1}}c_{1}=x\delta_{1}=\lambda^{X_{2}}c_{2}u. Thus, x1c1c2ux\langle 1\rangle c_{1}-c_{2}u factors through IX2I^{X_{2}} and x¯1c1¯=c2u¯\underline{x}\langle 1\rangle\underline{c_{1}}=\underline{c_{2}u}. Applying σ\sigma, Σ(x¯)σ(c1¯)=σ(c2¯)σ(u¯)\Sigma(\underline{x})\sigma(\underline{c_{1}})=\sigma(\underline{c_{2}})\sigma(\underline{u}). Therefore, the claim holds.

(3.5)

Proof of Lemma 3.24. Since iX:XIXi^{X}\colon X\to I^{X} is a left \mathcal{I}-approximation, aaa-a^{\prime} factors through iXi^{X}. Let kX:IXYk^{X}\colon I^{X}\to Y be a morphism where aa=kXiXa-a^{\prime}=k^{X}i^{X}. There exists an 𝔰\mathfrak{s}-triangle IX[kX1]YIX[1kX]Y0IXI^{X}\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}k^{X}\\ 1\end{bmatrix}$}}Y\oplus I^{X}\xrightarrow{\scalebox{0.6}{$\begin{bmatrix}1&-k^{X}\end{bmatrix}$}}Y\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-3.0pt\hbox{$\scriptstyle 0$}\vss}}}I^{X}. Then we obtain the following commutative diagram from Lemma 2.29.

IX\textstyle{I^{X}}IX\textstyle{I^{X}}X\textstyle{X}YIX\textstyle{Y\!\oplus\!I^{X}}Ca\textstyle{C^{a}}X\textstyle{X}X\textstyle{X}Y\textstyle{Y}U\textstyle{U^{\prime}}X\textstyle{X}IX\textstyle{I^{X}}IX\textstyle{I^{X}}a~\scriptstyle{\widetilde{a}}b~\scriptstyle{\widetilde{b}}δ~\scriptstyle{\widetilde{\delta}}a\scriptstyle{a^{\prime}}b\scriptstyle{b^{\prime}}δ\scriptstyle{\delta^{\prime}}

[kX1]\begin{bmatrix}k^{X}\\ 1\end{bmatrix}

[1kX]\begin{bmatrix}1&-k^{X}\end{bmatrix}

0\scriptstyle{0}u\scriptstyle{u}0\scriptstyle{0}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

From the above claim, we only have to prove σ(u¯)\sigma(\underline{u}) is an isomorphism. However, this is clear because u¯\underline{u} is isomorphic from the above diagram.

Therefore, the sequence (3.3) does not depend on the choices of aa up to [][\mathcal{I}]. Thus, the following definition makes sense.

Definition 3.26.

Let a¯:XY\underline{a}\colon X\to Y be a morphism in 𝒵¯\underline{\mathcal{Z}}. Then there exists the following commutative diagram in 𝒵¯\underline{\mathcal{Z}}. That is because hCab~¯\underline{h^{C^{a}}\widetilde{b}} == hCab~[1000]¯\underline{h^{C^{a}}\widetilde{b}\scalebox{0.8}{$\begin{bmatrix}1&0\\ 0&0\end{bmatrix}$}} == hCab[10]¯\underline{h^{C^{a}}b\scalebox{0.8}{$\begin{bmatrix}1&0\end{bmatrix}$}}.

X\textstyle{X}YIX\textstyle{Y\oplus I^{X}}σCa\textstyle{\sigma C^{a}}ΣX\textstyle{\Sigma X}X\textstyle{X}Y\textstyle{Y}σCa\textstyle{\sigma C^{a}}ΣX\textstyle{\Sigma X}a~¯\scriptstyle{\underline{\widetilde{a}}}hCab~¯\scriptstyle{\underline{h^{C^{a}}\widetilde{b}}}σ(c¯)\scriptstyle{\sigma(\underline{c})}a¯\scriptstyle{\underline{a}}hCab¯\scriptstyle{\underline{h^{C^{a}}b}}σ(c¯)\scriptstyle{\sigma(\underline{c})}

[10]\begin{bmatrix}1&0\end{bmatrix}

\sim

\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Then the following sequence in 𝒵¯\underline{\mathcal{Z}} is unique up to isomorphisms. It is called the standard right triangle of a¯\underline{a}.

Xa¯YhCab¯σCaσ(c¯)ΣX\displaystyle X\xrightarrow{\,\underline{a}\,}Y\xrightarrow{\,\underline{h^{C^{a}}b}\,}\sigma C^{a}\xrightarrow{\sigma(\underline{c})}\Sigma X (3.6)

We define

=(sequencesin 𝒵¯ isomorphic to one in {Xa¯YhCab¯σCaσ(c¯)ΣXa is a morphism in 𝒵})\nabla=\left(\begin{array}[]{ll}\text{sequences}&\text{in }\underline{\mathcal{Z}}\text{ isomorphic to one in }\\ &\{X\xrightarrow{\underline{a}}Y\xrightarrow{\underline{h^{C^{a}}b}}\sigma C^{a}\xrightarrow{\sigma(\underline{c})}\Sigma X\mid a\text{ is a morphism in }\mathcal{Z}\}\end{array}\right)

and a sequence in \nabla is called a right triangle in 𝒵¯\underline{\mathcal{Z}}.

Example 3.27.

The diagram (3.3) is induced by a=idZa=\mathrm{id}_{Z} for Z𝒵Z\in\mathcal{Z}.

Z\textstyle{Z}Z\textstyle{Z}Z\textstyle{Z}ZIZ\textstyle{Z\!\oplus\!I^{Z}}IZ\textstyle{I^{Z}}Z\textstyle{Z}Z\textstyle{Z}IZ\textstyle{I^{Z}}Z1\textstyle{Z\langle 1\rangle}Z\textstyle{Z}Z\textstyle{Z}Z\textstyle{Z}ZIZ\textstyle{Z\!\oplus\!I^{Z}}

[1iZ]\begin{bmatrix}1\\ i^{Z}\end{bmatrix}

[iZ1]\begin{bmatrix}-i^{Z}&1\end{bmatrix}

0\scriptstyle{0}iZ\scriptstyle{i^{Z}}pZ\scriptstyle{p^{Z}}λZ\scriptstyle{\lambda^{Z}}

[10]\begin{bmatrix}-1\\ 0\\ \end{bmatrix}

[10]\begin{bmatrix}1\\ 0\\ \end{bmatrix}

[0 1][0\ 1]

0\scriptstyle{0}iZ\scriptstyle{-i^{Z}}pZ\scriptstyle{p^{Z}}λZ\scriptstyle{-\lambda^{Z}}

[1iZ]\begin{bmatrix}1\\ i^{Z}\end{bmatrix}

\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}\scriptstyle{\circlearrowright}

Thus, ZidZ¯Z0¯00¯ΣZZ\xrightarrow{\underline{\mathrm{id}_{Z}}}Z\xrightarrow{\underline{0}}0\xrightarrow{\underline{0}}\Sigma Z is a right triangle.

3.4. Right triangulated structures induced by right mutation doubles

We assume that (SS,𝒵)(\SS,\mathcal{Z}) is a right mutation double. Now, we check the triplet (𝒵¯,Σ,)(\underline{\mathcal{Z}},\Sigma,\nabla) satisfies the axioms of right triangulated category.

Lemma 3.28.

The triplet (𝒵¯,Σ,)(\underline{\mathcal{Z}},\Sigma,\nabla) satisfies (rTR0) and (rTR1) in Remark 2.35.

Proof.

(rTR0) is by definition of \nabla. (rTR1)(i) follows from Example 3.27. Since \mathcal{I} is strongly covariantly finite in 𝒵\mathcal{Z}, (rTR1)(ii) holds from Lemma 2.28. ∎

Lemma 3.29.

(𝒵¯,Σ,)(\underline{\mathcal{Z}},\Sigma,\nabla) satisfies (rTR2) in Remark 2.35.

Proof.

We only have to show for the standard right triangles Xa¯YhCab¯σCaσ(c¯)ΣXX\xrightarrow{\underline{a}}Y\xrightarrow{\underline{h^{C^{a}}b}}\sigma C^{a}\xrightarrow{\sigma({\underline{c})}}\Sigma X. In the rest of this proof, we denote σCa\sigma C^{a} by ZZ. Recall that both b:YCab\colon Y\to C^{a} and hCa:CaZh^{C^{a}}\colon C^{a}\to Z are 𝔰\mathfrak{s}^{\mathcal{I}}-inflations. Thus hCabh^{C^{a}}b, now denoted by bb^{\prime}, is also an 𝔰\mathfrak{s}^{\mathcal{I}}-inflation and there exists an 𝔰\mathfrak{s}^{\mathcal{I}}-triangle YbZcUδYY\xrightarrow{b^{\prime}}Z\xrightarrow{c^{\prime}}U\mathrel{\mathop{\dashrightarrow}\limits^{\vbox to0.0pt{\kern-5.0pt\hbox{$\scriptstyle\delta^{\prime}$}\vss}}}Y (this is also an 𝔰\mathfrak{s}_{\mathcal{I}}-triangle since Y𝒵¯Y\in\underline{\mathcal{Z}}). We define a morphism a:UY1a^{\prime}\colon U\to Y\langle 1\rangle by the following commutative diagram.

(3.7)

This 𝔰\mathfrak{s}^{\mathcal{I}}_{\mathcal{I}}-triangle induces the following right triangle.

Yb¯ZhUc¯σUσ(a¯)ΣYY\xrightarrow{\underline{b^{\prime}}}Z\xrightarrow{\underline{h^{U}c^{\prime}}}\sigma U\xrightarrow{\sigma(\underline{a^{\prime}})}\Sigma Y

It is enough to show that the above sequence is isomorphic to Yb¯Zσ(c¯)ΣXΣa¯ΣYY\xrightarrow{\underline{b^{\prime}}}Z\xrightarrow{\sigma(\underline{c})}\Sigma X\xrightarrow{-\Sigma\underline{a}}\Sigma Y. From (ET4), we obtain a morphism u:X1Uu\colon X\langle 1\rangle\to U which is defined by the following left commutative diagram. We also obtain the following right commutative diagram.

Ca\textstyle{C^{a}}Z\textstyle{Z}X1\textstyle{X\langle 1\rangle}ΣX\textstyle{\Sigma X}U\textstyle{U}σU\textstyle{\sigma U}hCa\scriptstyle{h^{C^{a}}}hX1\scriptstyle{h^{X\langle 1\rangle}}