This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tridiagonal real symmetric matrices with a connection to Pascal’s triangle and the Fibonacci sequence

Emily Gullerud
gulle069@umn.edu
   Rita Johnson
rita.laraine.johnson@gmail.com
   aBa Mbirika
mbirika@uwec.edu
Corresponding author
Abstract

We explore a certain family {An}n=1\{A_{n}\}_{n=1}^{\infty} of n×nn\times n tridiagonal real symmetric matrices. After deriving a three-term recurrence relation for the characteristic polynomials of this family, we find a closed form solution. The coefficients of these characteristic polynomials turn out to involve the diagonal entries of Pascal’s triangle in a tantalizingly predictive manner. Lastly, we explore a relation between the eigenvalues of various members of the family. More specifically, we give a sufficient condition on the values m,nm,n\in\mathbb{N} for when spec(Am)\operatorname{\texttt{spec}}(A_{m}) is contained in spec(An)\operatorname{\texttt{spec}}(A_{n}). We end the paper with a number of open questions, one of which intertwines our characteristic polynomials with the Fibonacci sequence in an intriguing manner involving ellipses.

1 Introduction

Tridiagonal matrices arise in many science and engineering areas, for example in parallel computing, telecommunication system analysis, and in solving differential equations using finite differences [2, 8, 4]. In particular, the eigenvalues of tridiagonal symmetric matrices have been studied extensively starting with Golub in 1962 [5]. Moreover, a search on MathSciNet reveals that over 100 papers with the words “tridiagonal symmetric matrices” in the title have been published since then.

Tridiagonal real symmetric matrices are a subclass of the class of real symmetric matrices. A real symmetric matrix is a square matrix AA with real-valued entries that are symmetric about the diagonal; that is, AA equals its transpose ATA^{\mathrm{T}}. Symmetric matrices arise naturally in a variety of applications. Real symmetric matrices in particular enjoy the following two properties: (1) all of their eigenvalues are real, and (2) the eigenvectors corresponding to distinct eigenvalues are orthogonal. In this paper, we investigate the family of real symmetric n×nn\times n matrices of the form

An=[011110]A_{n}=\begin{bmatrix}0&1&&\\ 1&\ddots&\ddots&\\ &\ddots&\ddots&1\\ &&1&0\end{bmatrix}

with ones on the superdiagonal and subdiagonal and zeroes in every other entry. These matrices, in particular, arise as the adjacency matrices of the path graphs and hence are fundamental objects in the field of spectral graph theory. The three main results of this paper are

  • MAIN RESULT 1: We give a closed form expression for the characteristic polynomials fn(λ)f_{n}(\lambda) of the AnA_{n} matrices and establish a three-term recurrence relation which the fn(λ)f_{n}(\lambda) polynomials satisfy.

  • MAIN RESULT 2: We show that the coefficients of these fn(λ)f_{n}(\lambda) polynomials have an intimate connection to the diagonals of Pascal’s triangle.

  • MAIN RESULT 3: Utilizing a trigonometric closed form expression for the set of eigenvalues of the AnA_{n} matrices, we give an upper bound on the spectral radius ρ(An)\rho(A_{n}) of AnA_{n} and provide a sufficiency condition on the values m,nm,n\in\mathbb{N} that guarantees spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n}).

We were initially drawn to this work when noticing the first few characteristic polynomials of the AnA_{n} matrices. For example, we give the first seven polynomials below.

nfn(λ)11λ21λ2131λ3+2λ41λ43λ2+151λ5+4λ33λ61λ65λ4+6λ2171λ7+6λ510λ3+4λ\begin{array}[]{|c||c c c c c|}\hline\cr n&&&f_{n}(\lambda)&&\\ \hline\cr\hline\cr 1&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda&&&&\\ 2&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{2}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}1}&&&\\ 3&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{3}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}2}\lambda&&&\\ 4&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{4}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}3}\lambda^{2}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}1}&&\\ 5&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{5}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}4}\lambda^{3}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}3}\lambda&&\\ 6&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{6}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}5}\lambda^{4}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}6}\lambda^{2}&-{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}1}&\\ 7&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{7}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}6}\lambda^{5}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}10}\lambda^{3}&+{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}4}\lambda&\\ \hline\cr\end{array}

Color-coding the coefficients to make the connection more transparent, we see that the four columns of coefficients (up to absolute value) correspond directly to the the first four diagonals in Pascal’s triangle. We used this observation to conjecture and eventually prove the following formula for the mthm^{\text{th}} characteristic polynomial:

fm(λ)=i=0m2(1)m+i(mii)λm2i.f_{m}(\lambda)=\sum_{i=0}^{\left\lfloor{\frac{m}{2}}\right\rfloor}(-1)^{m+i}\binom{m-i}{i}\lambda^{m-2i}.

We prove that this formula satisfies the three-term recurrence relation

fn(λ)=λfn1(λ)fn2(λ)f_{n}(\lambda)=-\lambda f_{n-1}(\lambda)-f_{n-2}(\lambda)

with initial conditions f1(λ)=λf_{1}(\lambda)=-\lambda and f2(λ)=λ21f_{2}(\lambda)=\lambda^{2}-1, thereby establishing our first main result. Our second main result uses a closed form for the eigenvalues of the matrix AnA_{n} to explore some properties of the spectrum of AnA_{n}. Our third main result was motivated by an observation that the four distinct eigenvalues of the matrix A4A_{4} are the golden ratio, its reciprocal, and their additive inverses. Furthermore via Mathematica, we observed that these four eigenvalues appear in the spectrum of the AnA_{n} matrices for the nn-values 4, 9, 14, 19, 24, 29, 34, 39, and 44. These numbers all being congruent to 4 modulo 5 seemed to be no accident. Motivated by this tantalizing observation, we use a closed form expression

λs=2cos(sπm+1) for s=1,,n\lambda_{s}=2\cos\left(\frac{s\pi}{m+1}\right)\text{ for }s=1,\ldots,n

for the nn distinct eigenvalues of each AnA_{n} matrix to give a sufficiency criterion for when the eigenvalues of the matrix AmA_{m} are also eigenvalues of the matrix AnA_{n}, thereby establishing our third main result.

The breakdown of the paper is as follows. In Section 2, we give some preliminaries and definitions. In Section 3, we focus on the characteristic polynomials of the AnA_{n} matrices; in particular,

  1.      (1)

    we derive a three-term recurrence relation for the characteristic polynomials of the family of matrices {An}n=1\{A_{n}\}_{n=1}^{\infty} in Subsection 3.1,

  2.      (2)

    we unveil a tantalizing connection between the coefficients of the family of characteristic polynomials {fn(λ)}n=1\{f_{n}(\lambda)\}_{n=1}^{\infty} of the matrices {An}n=1\{A_{n}\}_{n=1}^{\infty} and the diagonal columns of Pascal’s triangle in Subsection 3.2,

  3.      (3)

    we provide a closed form expression for fn(λ)f_{n}(\lambda) and prove that this closed form satisfies the recurrence relation in Subsection 3.3,

  4.      (4)

    we give a parity property of each fn(λ)f_{n}(\lambda) dependent on the parity of nn in Subsection 3.4, and

  5.      (5)

    we give a connection between our family of characteristic polynomials {fn(λ)}n=1\{f_{n}(\lambda)\}_{n=1}^{\infty} and Chebyshev polynomials of the second kind in Subsection 3.5.

In Section 4, we focus on the spectrum of the AnA_{n} matrices; in particular,

  1.      (6)

    we prove that a given trigonometric closed form yields the eigenvalues of each matrix AnA_{n} in Subsection 4.1,

  2.      (7)

    we investigate the spectral radius of the matrix AnA_{n} and in particular give lower and upper bounds of spec(An)\operatorname{\texttt{spec}}(A_{n}) in Subsection 4.2, and

  3.      (8)

    we prove a sufficiency condition on the values m,nm,n\in\mathbb{N} that guarantees the containment spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n}) in Subsection 4.3.

Finally in Section 5, we provide some open questions and, in particular, explore an intriguing connection between the fn(λ)f_{n}(\lambda) polynomials and the Fibonacci sequence.

2 Preliminaries and definitions

Let us recall some fundamental linear algebra definitions used in this paper. Since our main results revolve around eigenvalues, we start with this definition and establish notation.

Definition 2.1 (Eigenvalue and eigenvector).

Let An×nA\in\mathbb{C}^{n\times n} be a square matrix. An eigenpair of AA is a pair (λ,v)×(n0)(\lambda,\vec{v})\in\mathbb{C}\times(\mathbb{C}^{n}-{\vec{0}}) such that Av=λvA\vec{v}=\lambda\vec{v}. We call λ\lambda an eigenvalue and its corresponding nonzero vector v\vec{v} an eigenvector.

In particular, we look at the set of eigenvalues of a given matrix AA and the largest element up to absolute value of these eigenvalues defined as follows.

Definition 2.2 (Spectrum and spectral radius).

Let An×nA\in\mathbb{C}^{n\times n} be a square matrix. The multiset of eigenvalues of AA is called the spectrum of AA and is denoted spec(A)\operatorname{\texttt{spec}}(A). The spectral radius of AA is denoted ρ(A)\rho(A) and defined to be

ρ(A)=max{|λ|:λspec(A)}.\rho(A)=\max\{|\lambda|:\lambda\in\operatorname{\texttt{spec}}(A)\}.

The matrices we care about in this paper are a subset of a wider class of symmetric matrices called Toeplitz matrices. A Toeplitz matrix is a matrix of the form

[a0a1a2an1a1a0a1a2a1a1a2a1a0a1an1a2a1a0].\begin{bmatrix}a_{0}&a_{1}&a_{2}&\ldots&\ldots&a_{n-1}\\ a_{1}&a_{0}&a_{1}&\ddots&&\vdots\\ a_{2}&a_{1}&\ddots&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&a_{1}&a_{2}\\ \vdots&&\ddots&a_{1}&a_{0}&a_{1}\\ a_{n-1}&\ldots&\ldots&a_{2}&a_{1}&a_{0}\end{bmatrix}.

In particular, we focus on a subclass of Toeplitz matrices called tridiagonal symmetric matrices. We give the specific definitions below.

Definition 2.3 (Tridiagonal matrix).

A tridiagonal symmetric matrix is a Toeplitz matrix in which all entries not lying on the diagonal, superdiagonal, or subdiagonal are zero.

We limit our perspective by considering the tridiagonal matrices of the following form.

Definition 2.4 (The matrix AnA_{n}).

Let AnA_{n} be an n×nn\times n tridiagonal symmetric matrix in which the diagonal entries are zero, and the superdiagonal and subdiagonal entries are all one.

Example 2.5.

Here are the AnA_{n} matrices for n=1,,4n=1,\ldots,4.

A1=[0]A2=[0110]A3=[010101010]A4=[0100101001010010]A_{1}=\begin{bmatrix}0\end{bmatrix}\hskip 25.29494ptA_{2}=\begin{bmatrix}0&1\\ 1&0\end{bmatrix}\hskip 25.29494ptA_{3}=\begin{bmatrix}0&1&0\\ 1&0&1\\ 0&1&0\end{bmatrix}\hskip 25.29494ptA_{4}=\begin{bmatrix}0&1&0&0\\ 1&0&1&0\\ 0&1&0&1\\ 0&0&1&0\end{bmatrix}

A typical method of finding the eigenvalues of a square matrix is by calculating the roots of the characteristic polynomial of the matrix.

Definition 2.6 (The characteristic polynomial fn(λ)f_{n}(\lambda)).

Given the matrix AnA_{n}, the characteristic polynomial fn(λ)f_{n}(\lambda) is the determinant of the matrix AnλInA_{n}-\lambda I_{n}; that is, fn(λ)=|AnλIn|f_{n}(\lambda)=|A_{n}-\lambda I_{n}|.

Remark 2.7.

If we set fn(λ)=0f_{n}(\lambda)=0, then clearly the nn roots (i.e., eigenvalues) of this characteristic equation give the spectrum of AnA_{n}. Moreover, these eigenvalues are real since AnA_{n} is a real symmetric matrix [10, Fact 1-2], and these eigenvalues are distinct since the subdiagonal and superdiagonal entries of AnA_{n} are nonzero [10, Lemma 7-7-1]. In particular, AnA_{n} has nn distinct real eigenvalues.

Example 2.8.

Consider the matrix A4A_{4} and the determinant |A4λI4||A_{4}-\lambda I_{4}|, which gives the characteristic polynomial f4(λ)f_{4}(\lambda).

A4=[0100101001010010]|A4λI4|=|λ1001λ1001λ1001λ|=λ43λ2+1.A_{4}=\begin{bmatrix}0&1&0&0\\ 1&0&1&0\\ 0&1&0&1\\ 0&0&1&0\end{bmatrix}\hskip 46.97505pt|A_{4}-\lambda I_{4}|=\begin{vmatrix}-\lambda&1&0&0\\ 1&-\lambda&1&0\\ 0&1&-\lambda&1\\ 0&0&1&-\lambda\end{vmatrix}=\lambda^{4}-3\lambda^{2}+1.

Thus the characteristic polynomial is f4(λ)=λ43λ2+1f_{4}(\lambda)=\lambda^{4}-3\lambda^{2}+1. The roots of the corresponding characteristic equation f4(λ)=0f_{4}(\lambda)=0 yield the four distinct eigenvalues

λ1\displaystyle\lambda_{1} =1+52=ϕ1.61803\displaystyle=\frac{1+\sqrt{5}}{2}=\phi\approx 1.61803 λ3\displaystyle\lambda_{3} =1+52=1ϕ.61803\displaystyle=\frac{-1+\sqrt{5}}{2}=\frac{1}{\phi}\approx.61803
λ2\displaystyle\lambda_{2} =152=1ϕ.61803\displaystyle=\frac{1-\sqrt{5}}{2}=-\frac{1}{\phi}\approx-.61803 λ4\displaystyle\lambda_{4} =152=ϕ1.61803,\displaystyle=\frac{-1-\sqrt{5}}{2}=-\phi\approx-1.61803,

where ϕ\phi is the golden ratio. Moreover in Subsection 4.3, we determine an infinite set of nn values for which spec(A4)spec(An)\operatorname{\texttt{spec}}(A_{4})\subset\operatorname{\texttt{spec}}(A_{n}).

3 The characteristic polynomial fn(λ)f_{n}(\lambda) of the matrix AnA_{n}

In this section, we find the family of characteristic polynomials {fn(λ)}n=1\{f_{n}(\lambda)\}_{n=1}^{\infty} corresponding to the family of matrices {An}n=1\{A_{n}\}_{n=1}^{\infty}. For each nn\in\mathbb{N}, the coefficients of the polynomial fn(λ)f_{n}(\lambda) reveal themselves to be exactly the entries of the (n+1)th(n+1)^{\mathrm{th}} diagonal of Pascal’s triangle as denoted in Figure 3.1. We use this observation to find a closed form expression for fn(λ)f_{n}(\lambda) for each nn. To confirm this expression is indeed correct, we show that it satisfies the easily derived three-term recurrence relation that the sequence {fn(λ)}n=1\{f_{n}(\lambda)\}_{n=1}^{\infty} must follow.

3.1 A recurrence relation for fn(λ)f_{n}(\lambda)

In this subsection, we show that the determinants of the matrices AnλInA_{n}-\lambda I_{n}, that is, the characteristic polynomials fn(λ)f_{n}(\lambda), satisfy the following three-term recurrence relation for all n3n\geq 3:

fn(λ)=λfn1(λ)fn2(λ)f_{n}(\lambda)=-\lambda f_{n-1}(\lambda)-f_{n-2}(\lambda) (3.1)

with initial conditions f1(λ)=λf_{1}(\lambda)=-\lambda and f2(λ)=λ21f_{2}(\lambda)=\lambda^{2}-1. First we consider the n×nn\times n matrix AnλInA_{n}-\lambda I_{n} and note that bottom-right (n1)×(n1)(n-1)\times(n-1) submatrix is An1λIn1A_{n-1}-\lambda I_{n-1}, and hence the minor given by deletion of the first row and first column is the characteristic polynomial fn1(λ)f_{n-1}(\lambda). This fact is pivotal in deriving the recurrence relation fn(λ)f_{n}(\lambda).

AnλIn=A_{n}-\lambda I_{n}=λ{-\lambda}1{1}0{0}{\cdots}0{0}1{1}λ{-\lambda}1{1}{\ddots}0{0}0{0}1{1}λ{-\lambda}{\ddots}{\vdots}{\vdots}{\ddots}{\ddots}{\ddots}1{1}0{0}0{0}{\cdots}1{1}λ{-\lambda}[\left[\vbox{\hrule height=42.69804pt,depth=42.69804pt,width=0.0pt}\right.]\left.\vbox{\hrule height=42.69804pt,depth=42.69804pt,width=0.0pt}\right]==λ{-\lambda}1{1}0{0}{\ldots}0{0}1{1}        0{0}  An1{A_{n-1}}λIn1{-\lambda I_{n-1}}  {\vdots}        0{0}        [\left[\vbox{\hrule height=40.0169pt,depth=40.0169pt,width=0.0pt}\right.]\left.\vbox{\hrule height=40.0169pt,depth=40.0169pt,width=0.0pt}\right]

Computing the determinant by cofactor expansion along the top row of AnλInA_{n}-\lambda I_{n}, we derive the following.

fn(λ)\displaystyle f_{n}(\lambda) =|AnλIn|\displaystyle=|A_{n}-\lambda I_{n}|
=λ|An1λIn1|1|11000λ1001λ1001λ|\displaystyle=-\lambda\cdot|A_{n-1}-\lambda I_{n-1}|-1\cdot\begin{vmatrix}1&1&0&\cdots&0\\ 0&-\lambda&1&\ddots&0\\ 0&1&-\lambda&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&1\\ 0&0&\cdots&1&-\lambda\\ \end{vmatrix}
=λfn1(λ)1\displaystyle=-\lambda\cdot f_{n-1}(\lambda)-1\cdot\leavevmode
=λfn1(λ)fn2(λ).\displaystyle=-\lambda\cdot f_{n-1}(\lambda)-f_{n-2}(\lambda).

3.2 The fn(λ)f_{n}(\lambda) and their connection to Pascal’s triangle

In Table 3.1, we give the characteristic polynomials fn(λ)f_{n}(\lambda) for n=1,,12n=1,\ldots,12. Upon examination of the coefficients of these twelve polynomials, it becomes immediately apparent that the binomial coefficients in the diagonal columns of Pascal’s triangle are intimately involved with the coefficients of the fn(λ)f_{n}(\lambda). In Figure 3.1, we give the first twelve rows of Pascal’s triangle, carefully coding the diagonal columns, to match the table of the twelve fn(λ)f_{n}(\lambda) polynomials with their corresponding colors matching those in Pascal’s triangle.

nfn(λ)11λ21λ2131λ3+2λ41λ43λ2+151λ5+4λ33λ61λ65λ4+6λ2171λ7+6λ510λ3+4λ81λ87λ6+15λ410λ2+191λ9+8λ721λ5+20λ35λ101λ109λ8+28λ635λ4+15λ21111λ11+10λ936λ7+56λ535λ3+6λ121λ1211λ10+45λ884λ6+70λ421λ2+1\begin{array}[]{|c||c c c c c c c|}\hline\cr n&&&f_{n}(\lambda)&&&&\\ \hline\cr\hline\cr 1&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda&&&&&&\\ 2&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{2}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}1}&&&&&\\ 3&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{3}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}2}\lambda&&&&&\\ 4&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{4}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}3}\lambda^{2}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}1}&&&&\\ 5&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{5}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}4}\lambda^{3}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}3}\lambda&&&&\\ 6&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{6}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}5}\lambda^{4}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}6}\lambda^{2}&-{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}1}&&&\\ 7&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{7}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}6}\lambda^{5}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}10}\lambda^{3}&+{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}4}\lambda&&&\\ 8&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{8}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}7}\lambda^{6}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}15}\lambda^{4}&-{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}10}\lambda^{2}&+{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}1}&&\\ 9&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{9}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}8}\lambda^{7}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}21}\lambda^{5}&+{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}20}\lambda^{3}&-{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}5}\lambda&&\\ 10&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{10}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}9}\lambda^{8}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}28}\lambda^{6}&-{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}35}\lambda^{4}&+{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}15}\lambda^{2}&-{\color[rgb]{0,1,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,0}1}&\\ 11&-{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{11}&+{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}10}\lambda^{9}&-{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}36}\lambda^{7}&+{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}56}\lambda^{5}&-{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}35}\lambda^{3}&+{\color[rgb]{0,1,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,0}6}\lambda&\\ 12&{\color[rgb]{0,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,1}\pgfsys@color@cmyk@stroke{1}{0}{0}{0}\pgfsys@color@cmyk@fill{1}{0}{0}{0}1}\lambda^{12}&-{\color[rgb]{1,.5,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,.5,0}11}\lambda^{10}&+{\color[rgb]{.5,0,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,0,.5}45}\lambda^{8}&-{\color[rgb]{0,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{0,.5,.5}84}\lambda^{6}&+{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}70}\lambda^{4}&-{\color[rgb]{0,1,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,1,0}21}\lambda^{2}&+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}1}\\ \hline\cr\end{array}
Table 3.1: The first twelve characteristic polynomials fn(λ)f_{n}(\lambda)
11112113311464115101051161520156117213535217118285670562881193684126126843691110451202102522101204510111155165330462462330165551111126622049579292479249522066121n=12n=12n=11n=11n=10n=10n=9n=9n=8n=8n=7n=7n=6n=6n=5n=5n=4n=4n=3n=3n=2n=2n=1n=1
Figure 3.1: The first twelve diagonals of Pascal’s triangle

3.3 A closed form fn(λ)f_{n}(\lambda) for the recurrence relation

To arrive at the closed form for the solution to the recurrence relation given in Equation (3.1), we use our observation of the intimate connection with Pascal’s triangle and the coefficients of the individual fn(λ)f_{n}(\lambda) as nn varies. For instance, the 1st1^{\mathrm{st}}, 2nd2^{\mathrm{nd}}, 3rd3^{\mathrm{rd}}, etc. coefficients of each fn(λ)f_{n}(\lambda) coincide directly with entries in the 1st1^{\mathrm{st}}, 2nd2^{\mathrm{nd}}, 3rd3^{\mathrm{rd}}, etc. diagonals, respectively, of Pascal’s triangle in the particular manner depicted in Figure 3.1. We highlight this connection to make this relationship apparent.

By careful analysis of the connection between the fn(λ)f_{n}(\lambda) polynomials and Pascal’s triangle, we prove our main result that a closed form for the recurrence relation in Subsection 3.1 is given by

fm(λ)=i=0m2(1)m+i(mii)λm2i.f_{m}(\lambda)=\sum_{i=0}^{\left\lfloor{\frac{m}{2}}\right\rfloor}(-1)^{m+i}\binom{m-i}{i}\lambda^{m-2i}. (3.2)

In actual practice, it is more helpful to consider the equation above for mm even and mm odd. The closed form when the index mm is even is

f2k(λ)=i=0k(1)i(2kii)λ2k2i,f_{2k}(\lambda)=\sum_{i=0}^{k}(-1)^{i}\binom{2k-i}{i}\lambda^{2k-2i}, (3.3)

and the closed form when the index mm is odd is

f2k+1(λ)=i=0k(1)i+1((2k+1)ii)λ(2k+1)2i.f_{2k+1}(\lambda)=\sum_{i=0}^{k}(-1)^{i+1}\binom{(2k+1)-i}{i}\lambda^{(2k+1)-2i}. (3.4)

Before we prove that the recurrence relation fn(λ)=λfn1(λ)fn2(λ)f_{n}(\lambda)=-\lambda f_{n-1}(\lambda)-f_{n-2}(\lambda) is satisfied by these closed forms above, we give a motivating example for when nn is even. The case for when nn is odd is similar.

Example 3.1.

(An even case example) Set n=10n=10. According to the recurrence relation in Equation (3.1), we have

f10(λ)=λf9(λ)f8(λ).f_{10}(\lambda)=-\lambda f_{9}(\lambda)-f_{8}(\lambda).

By Equation (3.3), the left hand side of (3.1) is

f10(λ)=i=05(1)i(10ii)λ102i=(100)λ10(91)λ8+(82)λ6(73)λ4+(64)λ2(55).f_{10}(\lambda)=\sum_{i=0}^{5}(-1)^{i}\binom{10-i}{i}\lambda^{10-2i}=\binom{10}{0}\lambda^{10}-\binom{9}{1}\lambda^{8}+\binom{8}{2}\lambda^{6}-\binom{7}{3}\lambda^{4}+\binom{6}{4}\lambda^{2}-\binom{5}{5}.

By Equations (3.3) and (3.4), the right hand side of (3.1) is

λf9(λ)f8(λ)\displaystyle{-\lambda f_{9}(\lambda)-f_{8}(\lambda)} =λi=04(1)i+1(9ii)λ92ii=04(1)i(8ii)λ82i\displaystyle={-\lambda{\sum}_{i=0}^{4}(-1)^{i+1}\binom{9-i}{i}\lambda^{9-2i}-{\sum}_{i=0}^{4}(-1)^{i}\binom{8-i}{i}\lambda^{8-2i}}
=λ[(90)λ9+(81)λ7(72)λ5+(63)λ3(54)λ][(80)λ8(71)λ6+(62)λ4(53)λ2+(44)]\displaystyle=-\lambda\left[-\binom{9}{0}\lambda^{9}+\binom{8}{1}\lambda^{7}-\binom{7}{2}\lambda^{5}+\binom{6}{3}\lambda^{3}-\binom{5}{4}\lambda\right]-\left[\binom{8}{0}\lambda^{8}-\binom{7}{1}\lambda^{6}+\binom{6}{2}\lambda^{4}-\binom{5}{3}\lambda^{2}+\binom{4}{4}\right]
=(90)λ10(81)λ8+(72)λ6(63)λ4+(54)λ2(80)λ8+(71)λ6(62)λ4+(53)λ2(44)\displaystyle=\binom{9}{0}\lambda^{10}-\binom{8}{1}\lambda^{8}+\binom{7}{2}\lambda^{6}-\binom{6}{3}\lambda^{4}+\binom{5}{4}\lambda^{2}-\binom{8}{0}\lambda^{8}+\binom{7}{1}\lambda^{6}-\binom{6}{2}\lambda^{4}+\binom{5}{3}\lambda^{2}-\binom{4}{4}
=(90)λ10[(81)+(80)]λ8+[(72)+(71)]λ6[(63)+(62)]λ4+[(54)+(53)]λ2(44)\displaystyle=\binom{9}{0}\lambda^{10}-\left[\binom{8}{1}+\binom{8}{0}\right]\lambda^{8}+\left[\binom{7}{2}+\binom{7}{1}\right]\lambda^{6}-\left[\binom{6}{3}+\binom{6}{2}\right]\lambda^{4}+\left[\binom{5}{4}+\binom{5}{3}\right]\lambda^{2}-\binom{4}{4}
=(100)λ10(91)λ8+(82)λ6(73)λ4+(64)λ2(55)\displaystyle=\binom{10}{0}\lambda^{10}-\binom{9}{1}\lambda^{8}+\binom{8}{2}\lambda^{6}-\binom{7}{3}\lambda^{4}+\binom{6}{4}\lambda^{2}-\binom{5}{5}
=f10(λ).\displaystyle={f_{10}(\lambda)}.

The second to last equality above utilizes the fact that (90)=(100)\binom{9}{0}=\binom{10}{0} and (44)=(55)\binom{4}{4}=\binom{5}{5} trivially, as well as the fundamental combinatorial identity known as Pascal’s rule:

(nr)+(nr+1)=(n+1r+1).\binom{n}{r}+\binom{n}{r+1}=\binom{n+1}{r+1}. (3.4)

We now state and prove the main result of this section.

Theorem 3.2.

Consider the recurrence relation fn(λ)=λfn1(λ)fn2(λ)f_{n}(\lambda)=-\lambda f_{n-1}(\lambda)-f_{n-2}(\lambda) with initial conditions f1(λ)=λf_{1}(\lambda)=-\lambda and f2(λ)=λ21f_{2}(\lambda)=\lambda^{2}-1. A closed form for this recurrence relation is given by

fm(λ)=i=0m2(1)m+i(mii)λm2i.f_{m}(\lambda)=\sum_{i=0}^{\left\lfloor{\frac{m}{2}}\right\rfloor}(-1)^{m+i}\binom{m-i}{i}\lambda^{m-2i}.
Proof.

Consider the recurrence relation defined by

fn(λ)=λfn1(λ)fn2(λ).f_{n}(\lambda)=-\lambda f_{n-1}(\lambda)-f_{n-2}(\lambda).

It is readily verified that Equation (3.2) yields the initial conditions when n=1,2n=1,2, so it suffices to show that Equation (3.2) satisfies the recurrence relation. We divide this into two separate cases dependent on the parity of the integer n3n\geq 3.

CASE 1: (nn is even)

Since nn is even with n3n\geq 3, then n=2kn=2k for some k2k\geq 2. Hence we want to show that the following recurrence relation is satisfied by the appropriate choice of closed forms, Equations (3.3) or (3.4), as needed dependent on the parity of each of the three indices below:

f2k(λ)=λf2k1(λ)f2k2(λ).f_{2k}(\lambda)=-\lambda f_{2k-1}(\lambda)-f_{2k-2}(\lambda).

We start with the right hand side of (3.3). For the ease of the reader, the expressions in blue indicate the change from one line to the next.

λf2k1(λ)f2k2(λ)\displaystyle{-\lambda f_{2k-1}(\lambda)-f_{2k-2}(\lambda)}
=λi=0k1(1)i+1((2k1)ii)λ(2k1)2ii=0k1(1)i((2k2)ii)λ(2k2)2i\displaystyle\hskip 36.135pt=-\lambda{\sum}_{i=0}^{k-1}(-1)^{i+1}\binom{(2k-1)-i}{i}\lambda^{(2k-1)-2i}-{\sum}_{i=0}^{k-1}(-1)^{i}\binom{(2k-2)-i}{i}\lambda^{(2k-2)-2i} (3.4)
=i=0k1(1)i((2k1)ii)λ2k2i+i=0k1(1)i+1((2k2)ii)λ(2k2)2i\displaystyle\hskip 36.135pt={\sum}_{i=0}^{k-1}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i}}\binom{(2k-1)-i}{i}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-2i}}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\,+}{\sum}_{i=0}^{k-1}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i+1}}\binom{(2k-2)-i}{i}\lambda^{(2k-2)-2i}
=(2k10)λ2k+i=1k1(1)i((2k1)ii)λ2k2i+i=0k2(1)i+1((2k2)ii)λ(2k2)2i+(1)k(k1k1)λ0\displaystyle\begin{split}&\hskip 36.135pt={\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\binom{2k-1}{0}\lambda^{2k}}+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i=1}}^{k-1}(-1)^{i}\binom{(2k-1)-i}{i}\lambda^{2k-2i}\\ &\hskip 130.08621pt+{\sum}_{i=0}^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k-2}}(-1)^{i+1}\binom{(2k-2)-i}{i}\lambda^{(2k-2)-2i}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}+\,(-1)^{k}\binom{k-1}{k-1}\lambda^{0}}\\ \end{split}
=(2k10)λ2k+j=0k2(1)j+1((2k1)(j+1)j+1)λ2k2(j+1)+j=0k2(1)j+1((2k2)jj)λ(2k2)2j+(1)k(k1k1)λ0\displaystyle\begin{split}&\hskip 36.135pt=\binom{2k-1}{0}\lambda^{2k}+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j=0}}^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k-2}}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j+1}}\binom{(2k-1)-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(j+1)}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j+1}}\lambda^{2k-2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(j+1)}}\\ &\hskip 130.08621pt+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j=0}}^{k-2}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}+1}\binom{(2k-2)-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}}\lambda^{(2k-2)-2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}}+(-1)^{k}\binom{k-1}{k-1}\lambda^{0}\\ \end{split} (3.5)
=(2k10)λ2k+j=0k2(1)j+1[((2k1)(j+1)j+1)+((2k2)jj)]λ2k22j+(1)k(k1k1)λ0\displaystyle\begin{split}&\hskip 36.135pt=\binom{2k-1}{0}\lambda^{2k}+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\sum}_{j=0}^{k-2}(-1)^{j+1}\left[\binom{(2k-1)-(j+1)}{j+1}+\binom{(2k-2)-j}{j}\right]\lambda^{2k-2-2j}}\\ &\hskip 130.08621pt+(-1)^{k}\binom{k-1}{k-1}\lambda^{0}\\ \end{split}
=(2k10)λ2k+j=0k2(1)j+1((2k2j)+1j+1)λ2k22j+(1)k(k1k1)λ0\displaystyle\hskip 36.135pt=\binom{2k-1}{0}\lambda^{2k}+{\sum}_{j=0}^{k-2}(-1)^{j+1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\binom{(2k-2-j)+1}{j+1}}\lambda^{2k-2-2j}+(-1)^{k}\binom{k-1}{k-1}\lambda^{0} (3.6)
=(2k0)λ2k+i=1k1(1)i(2kii)λ2k2i+(1)k(2kkk)λ2k2k\displaystyle\hskip 36.135pt=\binom{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k}}{0}\lambda^{2k}+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i=1}}^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k-1}}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i}}\binom{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-i}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i}}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-2i}}+(-1)^{k}\binom{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-k}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k}}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-2k}} (3.7)
=i=0k(1)i(2kii)λ2k2i\displaystyle\hskip 36.135pt={\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i=0}}^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k}}(-1)^{i}\binom{2k-i}{i}\lambda^{2k-2i}
=f2k(λ)\displaystyle\hskip 36.135pt={f_{2k}(\lambda)} (3.8)

Line (3.4) holds by the closed forms given by Equations (3.3) and (3.4). Line (3.5) holds by taking i=j+1i=j+1 for the first summation and i=ji=j for the second summation. Line (3.6) holds by Equation (3.4). Line (3.7) holds by taking i=j+1i=j+1 and realizing that (2k10)=(2k0)\binom{2k-1}{0}=\binom{2k}{0} and (k1k1)=(kk)\binom{k-1}{k-1}=\binom{k}{k}. Line (3.8) holds by the closed form given by Equation (3.3). Therefore the closed forms satisfy the recurrence relation when nn is even.

CASE 2: (nn is odd)

Since nn is odd with n3n\geq 3, then n=2k+1n=2k+1 for some k1k\geq 1. Hence we want to show that the following recurrence relation is satisfied by the appropriate choice of closed forms, Equations (3.3) or (3.4), as needed dependent on the parity of each of the three indices below:

f2k+1(λ)=λf2k(λ)f2k1(λ).f_{2k+1}(\lambda)=-\lambda f_{2k}(\lambda)-f_{2k-1}(\lambda).

We start with the right hand side of (3.3):

λf2k(λ)f2k1(λ)\displaystyle{-\lambda f_{2k}(\lambda)-f_{2k-1}(\lambda)}
=λi=0k(1)i(2kii)λ2k2ii=0k1(1)i+1((2k1)ii)λ(2k1)2i\displaystyle\hskip 36.135pt=-\lambda{\sum}_{i=0}^{k}(-1)^{i}\binom{2k-i}{i}\lambda^{2k-2i}-{\sum}_{i=0}^{k-1}(-1)^{i+1}\binom{(2k-1)-i}{i}\lambda^{(2k-1)-2i} (3.9)
=i=0k(1)i+1(2kii)λ2k2i+1+i=0k1(1)i((2k1)ii)λ(2k1)2i\displaystyle\hskip 36.135pt={\sum}_{i=0}^{k}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i+1}}\binom{2k-i}{i}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-2i+1}}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}+}{\sum}_{i=0}^{k-1}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i}}\binom{(2k-1)-i}{i}\lambda^{(2k-1)-2i}
=(2k0)λ2k+1+i=1k(1)i+1(2kii)λ2k2i+1+j=1k(1)j1((2k1)(j1)j1)λ(2k1)2(j1)\displaystyle\begin{split}&\hskip 36.135pt={\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}-\binom{2k}{0}\lambda^{2k+1}}+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}i=1}}^{k}(-1)^{i+1}\binom{2k-i}{i}\lambda^{2k-2i+1}\\ &\hskip 130.08621pt+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j=1}}^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}k}}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j-1}}\binom{(2k-1)-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(j-1)}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j-1}}\lambda^{(2k-1)-2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(j-1)}}\\ \end{split} (3.10)
=(2k0)λ2k+1+j=1k(1)j+1(2kjj)λ2k2j+1+j=1k(1)j+1(2kjj1)λ2k2j+1\displaystyle\hskip 36.135pt=-\binom{2k}{0}\lambda^{2k+1}+{\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j=1}}^{k}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}+1}\binom{2k-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}}{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}}\lambda^{2k-2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j}+1}+{\sum}_{j=1}^{k}(-1)^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j+1}}\binom{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-j}}{j-1}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k-2j+1}} (3.11)
=(2k0)λ2k+1+j=1k(1)j+1[(2kjj)+(2kjj1)]λ2k2j+1\displaystyle\hskip 36.135pt=-\binom{2k}{0}\lambda^{2k+1}+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\sum}_{j=1}^{k}(-1)^{j+1}\left[\binom{2k-j}{j}+\binom{2k-j}{j-1}\right]\lambda^{2k-2j+1}}
=(2k+10)λ2k+1+j=1k(1)j+1((2k+1)jj)λ(2k+1)2j\displaystyle\hskip 36.135pt=-\binom{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2k+1}}{0}\lambda^{2k+1}+{\sum}_{j=1}^{k}(-1)^{j+1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\binom{(2k+1)-j}{j}}\lambda^{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(2k+1)-2j}} (3.12)
=j=0k(1)j+1((2k+1)jj)λ(2k+1)2j\displaystyle\hskip 36.135pt={\sum}_{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}j=0}}^{k}(-1)^{j+1}\binom{(2k+1)-j}{j}\lambda^{(2k+1)-2j}
=f2k+1(λ)\displaystyle\hskip 36.135pt={f_{2k+1}(\lambda)} (3.13)

Line (3.9) holds by the closed forms given by Equations (3.3) and (3.4). Line (3.10) holds by taking i=j1i=j-1 for the second summation. Line (3.11) holds by taking i=ji=j for the first summation. Line (3.12) holds by Equation (3.4) and realizing that (2k0)=(2k+10)\binom{2k}{0}=\binom{2k+1}{0}. Line (3.13) holds by the closed form given by Equation (3.4). Therefore the closed forms satisfy the recurrence relation when nn is odd. Hence Equation (3.2) satisfies the recurrence relation, and the result follows. ∎

3.4 Parity properties of the fn(λ)f_{n}(\lambda)

Observing the graphs of various characteristic functions fn(λ)f_{n}(\lambda) in Figure 4.1, it appears that the functions of even index are symmetric about the yy-axis (the hallmark trait of an even function), while the functions of odd index are symmetric about the origin—that is, the graph remains unchanged after 180 degree rotation about the origin (the hallmark trait of an odd function). This observation prompts the following theorem.

Theorem 3.3.

The characteristic polynomial fn(λ)f_{n}(\lambda) is an even (respectively, odd) function when nn is even (respectively, odd).

Proof.

Clearly f1(λ)=f1(λ)f_{1}(-\lambda)=-f_{1}(\lambda) and f2(λ)=f2(λ)f_{2}(-\lambda)=f_{2}(\lambda), so it suffices to justify the following:

  • Claim 1: f2k(λ)=f2k(λ)f_{2k}(-\lambda)=f_{2k}(\lambda) for all k2k\geq 2, and

  • Claim 2: f2k+1(λ)=f2k+1(λ)f_{2k+1}(-\lambda)=-f_{2k+1}(\lambda) for all k1k\geq 1.

By Equation (3.3), we have f2k(λ)=f2k(λ)f_{2k}(-\lambda)=f_{2k}(\lambda) if and only if (λ)2k2i=λ2k2i(-\lambda)^{2k-2i}=\lambda^{2k-2i}. But since 2k2i2k-2i is even, it is clear that (λ)2k2i=λ2k2i(-\lambda)^{2k-2i}=\lambda^{2k-2i} holds, so Claim 1 follows. On the other hand, by Equation (3.4), we have f2k+1(λ)=f2k+1(λ)f_{2k+1}(-\lambda)=-f_{2k+1}(\lambda) if and only if (λ)(2k+1)2i=λ(2k+1)2i(-\lambda)^{(2k+1)-2i}=-\lambda^{(2k+1)-2i}. But since (2k+1)2i(2k+1)-2i is odd, it is clear that (λ)(2k+1)2i=λ(2k+1)2i(-\lambda)^{(2k+1)-2i}=-\lambda^{(2k+1)-2i} holds, so Claim 2 follows. ∎

3.5 A connection to Chebyshev polynomials of the second kind

In personal communication with Paul Terwilliger, it was brought to our attention that our characteristic polynomials fn(λ)f_{n}(\lambda) correspond to a certain normalization of Chebyshev polynomials of the second kind (up to a change of variable for λ-\lambda in place of λ\lambda). We first recall the definition of these well-known polynomials, and then we give the normalization.

Definition 3.4.

The sequence (Un(x))n0(U_{n}(x))_{n\geq 0} of Chebyshev polynomials of the second kind are given by the recurrence relation Un(x)=2xUn1(x)Un2(x)U_{n}(x)=2x\cdot U_{n-1}(x)-U_{n-2}(x) for n2n\geq 2 with initial conditions U0(x)=1U_{0}(x)=1 and U1(x)=2xU_{1}(x)=2x.

The following normalization of the Chebyshev polynomials of the second kind is well known and appeared as early as 1646 in Viète’s Opera Mathematica (Chapter IX, Theorem VII), but we take the following definition and notation from the National Bureau of Standards in 1952 [9].

Definition 3.5.

The sequence (Sn(x))n0(S_{n}(x))_{n\geq 0} of normalized Chebyshev polynomials of the second kind are given by the recurrence relation Sn(x)=xSn1(x)Sn2(x)S_{n}(x)=x\cdot S_{n-1}(x)-S_{n-2}(x) for all n2n\geq 2 with initial conditions S0(x)=1S_{0}(x)=1 and S1(x)=xS_{1}(x)=x.

In Table 3.2, we present the Chebyshev polynomials of the second kind Un(x)U_{n}(x), normalized Chebyshev polynomials Sn(x)S_{n}(x), and our characteristic polynomials fn(x)f_{n}(x) for the first seven nn-index values.

nUn(x)Sn(x)fn(x)011112xxx24x21x21x2138x34xx32xx3+2x416x412x2+1x43x2+1x43x2+1532x532x3+6xx54x3+3xx5+4x33x664x680x4+24x21x65x4+6x21x65x4+6x21\begin{array}[]{|c||c|c|c|}\hline\cr n&U_{n}(x)&S_{n}(x)&f_{n}(x)\\ \hline\cr\hline\cr 0&1&1&1\\ \hline\cr 1&2x&x&-x\\ \hline\cr 2&4x^{2}-1&x^{2}-1&x^{2}-1\\ \hline\cr 3&8x^{3}-4x&x^{3}-2x&-x^{3}+2x\\ \hline\cr 4&16x^{4}-12x^{2}+1&x^{4}-3x^{2}+1&x^{4}-3x^{2}+1\\ \hline\cr 5&32x^{5}-32x^{3}+6x&x^{5}-4x^{3}+3x&-x^{5}+4x^{3}-3x\\ \hline\cr 6&64x^{6}-80x^{4}+24x^{2}-1&x^{6}-5x^{4}+6x^{2}-1&x^{6}-5x^{4}+6x^{2}-1\\ \hline\cr\end{array}
Table 3.2: Comparison of the first seven polynomials Un(x)U_{n}(x), Sn(x)S_{n}(x), and fn(x)f_{n}(x)

It is clear that we have the following connection between our family of characteristic polynomials and the normalized Chebyshev and Chebyshev polynomials:

fn(λ)=Sn(λ)=Un(λ2).f_{n}(\lambda)=S_{n}(-\lambda)=U_{n}\left(-\frac{\lambda}{2}\right).
Remark 3.6.

The polynomials Sn(x)S_{n}(x) are also known as Vieta-Fibonacci polynomials denoted by Vn(x)V_{n}(x) and introduced as such by Horadam [6].

4 The spectrum of the matrix AnA_{n}

As mentioned in the introduction, the AnA_{n} matrices are the adjacency matrices of a very important class of graphs, namely the path graphs. For example, consider the path graph P4P_{4} and its corresponding adjacency matrix, which is the matrix A4A_{4}.

v1v_{1}v2v_{2}v3v_{3}v4v_{4}\longleftrightarrow [\@arstrutv1v2v3v4\\v10100\\v21010\\v30101\\v40010]\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{4}\\v_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\v_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\v_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\v_{4}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt\crcr}}}}\right]

These matrices are fundamental objects in spectral graph theory. In this section, we examine the spectrum of these matrices. Here is a table of the exact roots of the first five characteristic equations, and below that is a table of these roots approximated up to 5 decimal places.

n-valueexact roots of fn(λ)=01λ1=02λ1=1 or λ1=13λ1=0 or λ2=2 or λ3=24λ1=12(51) or λ2=12(51) or λ3=12(15) or λ4=12(5+1)5λ1=0 or λ2=3 or λ3=3 or λ4=1 or λ5=1\begin{array}[]{|c||l|}\hline\cr n\text{-value}&\text{exact roots of }f_{n}(\lambda)=0\\ \hline\cr\hline\cr 1&\lambda_{1}=0\\ 2&\lambda_{1}=1\text{ or }\lambda_{1}=-1\\ 3&\lambda_{1}=0\text{ or }\lambda_{2}=\sqrt{2}\text{ or }\lambda_{3}=-\sqrt{2}\\ 4&\lambda_{1}=\frac{1}{2}\left(-\sqrt{5}-1\right)\text{ or }\lambda_{2}=\frac{1}{2}\left(\sqrt{5}-1\right)\text{ or }\lambda_{3}=\frac{1}{2}\left(1-\sqrt{5}\right)\text{ or }\lambda_{4}=\frac{1}{2}\left(\sqrt{5}+1\right)\\ 5&\lambda_{1}=0\text{ or }\lambda_{2}=\sqrt{3}\text{ or }\lambda_{3}=-\sqrt{3}\text{ or }\lambda_{4}=-1\text{ or }\lambda_{5}=1\\ \hline\cr\end{array}
n-valueroots (up to 5 decimal places) of fn(λ)=0 in increasing order1λ1=02λ1=1 or λ2=13λ1=1.41421 or λ2=0 or λ3=1.414214λ1=1.61803 or λ2=0.618034 or λ3=0.618034 or λ4=1.618035λ1=1.73205 or λ2=1 or λ3=0 or λ3=1 or λ5=1.73205\begin{array}[]{|c||l|}\hline\cr n\text{-value}&\text{roots (up to 5 decimal places) of }f_{n}(\lambda)=0\text{ in increasing order}\\ \hline\cr\hline\cr 1&\lambda_{1}=0\\ 2&\lambda_{1}=-1\text{ or }\lambda_{2}=1\\ 3&\lambda_{1}=-1.41421\text{ or }\lambda_{2}=0\text{ or }\lambda_{3}=1.41421\\ 4&\lambda_{1}=-1.61803\text{ or }\lambda_{2}=-0.618034\text{ or }\lambda_{3}=0.618034\text{ or }\lambda_{4}=1.61803\\ 5&\lambda_{1}=-1.73205\text{ or }\lambda_{2}=-1\text{ or }\lambda_{3}=0\text{ or }\lambda_{3}=1\text{ or }\lambda_{5}=1.73205\\ \hline\cr\end{array}

In Figure 4.1, we plot the characteristic polynomials fn(λ)f_{n}(\lambda) for n=2,3,4,5n=2,3,4,5. Notice that since the odd-index equations have no constant term, the graphs of those equations necessarily pass through the origin.

Refer to caption
Figure 4.1: Plots of fn(λ)f_{n}(\lambda) for n=2,3,4,5n=2,3,4,5

Examining the roots of fn(λ)=0f_{n}(\lambda)=0 in just these few small cases, we can visually confirm the following:

  • As Theorem 3.3 guarantees, the polynomials f3f_{3} and f5f_{5} are odd functions while the polynomials f2f_{2} and f4f_{4} are even functions.

  • If λi\lambda_{i} is a root of fn(λ)=0f_{n}(\lambda)=0, then λi-\lambda_{i} is also a root.

  • For nn even, all nn roots are nonzero and come in distinct pairs λi\lambda_{i} and λi-\lambda_{i} for i=1,2,,n2i=1,2,\ldots,\frac{n}{2}.

  • For nn odd, exactly one root is zero and the other n1n-1 roots come in distinct pairs λi\lambda_{i} and λi-\lambda_{i} for i=1,2,,n12i=1,2,\ldots,\frac{n-1}{2}.

  • As nn increases, the largest eigenvalue of the matrix AnA_{n} also increases and appears to be bounded above by 2. More precisely, it seems that ρ(An)<2\rho(A_{n})<2 for all nn.

In this section, we explore in generality all the observations above. Regarding the spectrum of the family {An}n=1\{A_{n}\}_{n=1}^{\infty}, we investigate the spectral radius, lower and upper bounds of spec(An)\operatorname{\texttt{spec}}(A_{n}), and a spectrum set-containment sufficiency condition for spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n}) dependent on the values m,nm,n\in\mathbb{N}. We prove many of our assertions using a trigonometric closed form for the roots of fn(λ)f_{n}(\lambda).

4.1 A trigonometric closed form for the roots of fn(λ)=0f_{n}(\lambda)=0

Though many sources going back as far as 1965 are credited in the literature as giving closed forms for the eigenvalues of tridiagonal symmetric matrices, few of these cited papers or books actually provide a proof [1, 3, 7]. However in his 1978 book, Smith provides a proof for the closed forms for eigenvalues of tridiagonal (but not necessarily) symmetric matrices that have the values a,b,ca,b,c\in\mathbb{C} in the diagonal, superdiagonal, and subdiagonal, respectively [11]. For these matrix values, the nn eigenvalues are given by the formula

λs=a+2bccos(sπn+1) for s=1,,n.\lambda_{s}=a+2\sqrt{bc}\cos\left(\frac{s\pi}{n+1}\right)\text{ for }s=1,\ldots,n.

Below we modify the proof to give a closed form expression for the eigenvalues of the AnA_{n} matrices.

Proposition 4.1.

The nn distinct eigenvalues of the matrix AnA_{n} are

λs=2cos(sπn+1) for s=1,,n.\lambda_{s}=2\cos\left(\frac{s\pi}{n+1}\right)\text{ for }s=1,\ldots,n.
Proof.

Let λ\lambda represent an eigenvalue of the matrix AnA_{n} with corresponding eigenvector v\vec{v}. Consider the equation Anv=λvA_{n}\vec{v}=\lambda\vec{v}. This can be rewritten as (AnλIn)v=0\left(A_{n}-\lambda I_{n}\right)\vec{v}=\vec{0}. Then

(AnλIn)v=[λ1111λ][v1v2vn]=[000].\left(A_{n}-\lambda I_{n}\right)\vec{v}=\begin{bmatrix}-\lambda&1&&\\ 1&\ddots&\ddots&\\ &\ddots&\ddots&1\\ &&1&-\lambda\end{bmatrix}\begin{bmatrix}\vec{v}_{1}\\ \vec{v}_{2}\\ \vdots\\ \vec{v}_{n}\end{bmatrix}=\begin{bmatrix}0\\ 0\\ \vdots\\ 0\end{bmatrix}.

The resulting system of equations is as follows:

λv1+v2\displaystyle-\lambda\vec{v}_{1}+\vec{v}_{2} =0\displaystyle=0
v1λv2+v3\displaystyle\vec{v}_{1}-\lambda\vec{v}_{2}+\vec{v}_{3} =0\displaystyle=0
\displaystyle\vdots\quad\quad \displaystyle\quad\,\,\vdots
vj1λvj+vj+1\displaystyle\vec{v}_{j-1}-\lambda\vec{v}_{j}+\vec{v}_{j+1} =0\displaystyle=0
\displaystyle\vdots\quad\quad \displaystyle\quad\,\,\vdots
vn2λvn1+vn\displaystyle\vec{v}_{n-2}-\lambda\vec{v}_{n-1}+\vec{v}_{n} =0\displaystyle=0
vn1λvn\displaystyle\vec{v}_{n-1}-\lambda\vec{v}_{n} =0\displaystyle=0

In general, a single equation can be defined by

vj1λvj+vj+1=0 for j=1,,n\vec{v}_{j-1}-\lambda\vec{v}_{j}+\vec{v}_{j+1}=0\quad\text{ for }j=1,\ldots,n (4.14)

where v0=0\vec{v}_{0}=0 and vn+1=0\vec{v}_{n+1}=0. Let a solution to this equation be vj=Amj\vec{v}_{j}=Am^{j} for arbitrary nonzero constants AA and mm. Substituting this solution into Equation (4.14) shows that mm is a root of

m2λm+1=0.m^{2}-\lambda m+1=0.

Since m2λm+1=0m^{2}-\lambda m+1=0 is a quadratic equation, there are two, in our case real, roots of this quadratic. Let us denote these two roots by m1m_{1} and m2m_{2}. Hence the general solution of Equation (4.14) is

vj=Bm1j+Cm2j\vec{v}_{j}=Bm_{1}^{j}+Cm_{2}^{j} (4.15)

where BB and CC are arbitrary nonzero constants. Since v0=0\vec{v}_{0}=0 and vn+1=0\vec{v}_{n+1}=0, we get B+C=0B+C=0 and Bm1n+1+Cm2n+1=0Bm_{1}^{n+1}+Cm_{2}^{n+1}=0, respectively, by Equation (4.15). Substituting the former equation into the latter results in

(m1m2)n+1=1=e2πis for s=1,,n.\left(\frac{m_{1}}{m_{2}}\right)^{n+1}=1=e^{2\pi is}\quad\text{ for }s=1,\ldots,n.

Hence it follows that

m1m2=e2πis/(n+1).\frac{m_{1}}{m_{2}}=e^{2\pi is/(n+1)}. (4.16)

Since m2λm+1=0m^{2}-\lambda m+1=0 is a quadratic equation, the product of the roots is given by m1m2=1m_{1}m_{2}=1. Using Equation (4.16), we have the sequence of implications

m1m2=e2πis/(n+1)\displaystyle\frac{m_{1}}{m_{2}}=e^{2\pi is/(n+1)} m1=m2e2πis/(n+1)\displaystyle\Longrightarrow m_{1}=m_{2}\cdot e^{2\pi is/(n+1)}
m12=m1m2e2πis/(n+1)\displaystyle\Longrightarrow m_{1}^{2}=m_{1}m_{2}\cdot e^{2\pi is/(n+1)}
m12=e2πis/(n+1)\displaystyle\Longrightarrow m_{1}^{2}=e^{2\pi is/(n+1)} since m1m2=1m_{1}m_{2}=1
m1=eπis/(n+1).\displaystyle\Longrightarrow m_{1}=e^{\pi is/(n+1)}.

Through a similar argument it can be found that

m2=eπis/(n+1).m_{2}=e^{-\pi is/(n+1)}.

Again since m2λm+1=0m^{2}-\lambda m+1=0 is a quadratic equation, the sum of the roots is given by m1+m2=λm_{1}+m_{2}=\lambda. It follows that

λ\displaystyle\lambda =m1+m2\displaystyle=m_{1}+m_{2}
=eπis/(n+1)+eπis/(n+1)\displaystyle=e^{\pi is/(n+1)}+e^{-\pi is/(n+1)}
=ei(πsn+1)+ei(πsn+1)\displaystyle=e^{i\left(\frac{\pi s}{n+1}\right)}+e^{i\left(\frac{-\pi s}{n+1}\right)}
=(cos(πsn+1)+isin(πsn+1))+(cos(πsn+1)+isin(πsn+1))\displaystyle=\left(\cos\left(\frac{\pi s}{n+1}\right)+i\sin\left(\frac{\pi s}{n+1}\right)\right)+\left(\cos\left(\frac{-\pi s}{n+1}\right)+i\sin\left(\frac{-\pi s}{n+1}\right)\right)
=2cos(πsn+1),\displaystyle=2\cos{\left(\frac{\pi s}{n+1}\right)},

where the last equality holds since cosine is an even function and sine is an odd function. Thus we conclude that λs=2cos(πsn+1)\lambda_{s}=2\cos{\left(\frac{\pi s}{n+1}\right)} for s=1,,ns=1,\ldots,n. ∎

4.2 Spectral radius of the matrix AnA_{n} and some boundary values

Much work has been done to study the bounds of the eigenvalues of real symmetric matrices. Methods discovered in the mid-nineteenth century reduce the original matrix to a tridiagonal matrix whose eigenvalues are the same as those of the original matrix. Exploiting this idea, Golub in 1962 determined lower bounds on tridiagonal matrices of the form

[a0b100b1a2b20b2bn20bn2an1bn100bn1an].\begin{bmatrix}a_{0}&b_{1}&0&\ldots&\ldots&0\\ b_{1}&a_{2}&b_{2}&\ddots&&\vdots\\ 0&b_{2}&\ddots&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&b_{n-2}&0\\ \vdots&&\ddots&b_{n-2}&a_{n-1}&b_{n-1}\\ 0&\ldots&\ldots&0&b_{n-1}&a_{n}\end{bmatrix}.
Proposition 4.2 (Golub [5, Corollary 1.1]).

Let AA be an n×nn\times n matrix with real entries aij=aia_{ij}=a_{i} for i=ji=j, aij=bma_{ij}=b_{m} for |ij|=1|i-j|=1 where m=min(i,j)m=\min(i,j), and aij=0a_{ij}=0 otherwise. Then the interval [akσk,ak+σk][a_{k}-\sigma_{k},\;a_{k}+\sigma_{k}] where σk2=bk2+bk12\sigma_{k}^{2}=b_{k}^{2}+b_{k-1}^{2} contains at least one eigenvalue.

Applying the latter proposition to the tridiagonal AnA_{n} matrices, we easily yield an interval in which the lower bound (in absolute value) of the eigenvalues of AnA_{n} is guaranteed to occur.

Corollary 4.3.

For each matrix AnA_{n}, there exists an eigenvalue λ\lambda such that |λ|1|\lambda|\leq 1.

Proof.

Consider the matrix AnA_{n}. Then in the language of Proposition 4.2, we have ai=0a_{i}=0 and bi=1b_{i}=1 for each ii. Thus the σk\sigma_{k} are calculated as follows

σk={1if k=1,2if 2kn1,1if k=n.\sigma_{k}=\begin{cases}1&\mbox{if }k=1,\\ \sqrt{2}&\mbox{if }2\leq k\leq n-1,\\ 1&\mbox{if }k=n.\end{cases}

By Proposition 4.2, an eigenvalue is guaranteed to exist in the the interval [akσk,ak+σk][a_{k}-\sigma_{k},\;a_{k}+\sigma_{k}]. In particular for k=1k=1 the result follows. ∎

So we have a firm interval where the lower bound (in absolute value) will contain an eigenvalue of AnA_{n}. As for an upper bound, it is clear by Proposition 4.1 that the following theorem holds.

Theorem 4.4.

For each nn\in\mathbb{N}, the spectral radius ρ(An)\rho(A_{n}) of the matrix AnA_{n} is bounded above by 22.

4.3 Sufficient condition for spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n})

Recall in Section 3, we gave the characteristic polynomial fn(λ)f_{n}(\lambda) of the matrix AnA_{n} when n=7n=7 as follows:

f7(λ)=λ7+6λ510λ3+4λ.f_{7}(\lambda)=-\lambda^{7}+6\lambda^{5}-10\lambda^{3}+4\lambda.

The characteristic equation f7(λ)=0f_{7}(\lambda)=0 has the seven roots

λ=0λ=±2λ=±22λ=±2+2.\begin{array}[]{l}\lambda=0\\ \lambda=\pm\sqrt{2}\\ \lambda=\pm\sqrt{2-\sqrt{2}}\\ \lambda=\pm\sqrt{\sqrt{2}+2}.\end{array}

It is interesting to note that these distinct seven roots appear as eigenvalues in a higher-degree characteristic polynomial. For example, when n=15n=15, the characteristic polynomial is

f15(λ)=λ15+14λ1378λ11+220λ9330λ7+252λ584λ3+8λ.f_{15}(\lambda)=-\lambda^{15}+14\lambda^{13}-78\lambda^{11}+220\lambda^{9}-330\lambda^{7}+252\lambda^{5}-84\lambda^{3}+8\lambda.

The characteristic equation f15(λ)=0f_{15}(\lambda)=0 has the 15 roots

λ=0λ=±222λ=±2λ=±22+2λ=±22λ=±22+2λ=±2+2λ=±2+2+2.\begin{array}[]{ll}\lambda=0&\lambda=\pm\sqrt{2-\sqrt{2-\sqrt{2}}}\\ \lambda=\pm\sqrt{2}&\lambda=\pm\sqrt{\sqrt{2-\sqrt{2}}+2}\\ \lambda=\pm\sqrt{2-\sqrt{2}}&\lambda=\pm\sqrt{2-\sqrt{\sqrt{2}+2}}\\ \lambda=\pm\sqrt{\sqrt{2}+2}&\lambda=\pm\sqrt{\sqrt{\sqrt{2}+2}+2}.\end{array}

This phenomenon is no coincidence. In fact the following theorem provides a way to predict the values m<nm<n for which a complete set of roots of the equation fm(λ)=0f_{m}(\lambda)=0 will be contained in the set of roots of the equation fn(λ)=0f_{n}(\lambda)=0.

Theorem 4.5.

Fix mm\in\mathbb{N}. For any nn\in\mathbb{N} such that m<nm<n and nm(modm+1)n\equiv m\pmod{m+1}, it follows that spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n}).

Proof.

Let m,nm,n\in\mathbb{N} such that m<nm<n and nm(modm+1)n\equiv m\pmod{m+1}. Then nm=(m+1)kn-m=(m+1)k for some kk\in\mathbb{N}. This can be rewritten as

n=m(k+1)+k.n=m(k+1)+k. (4.17)

Now consider spec(Am)\operatorname{\texttt{spec}}(A_{m}) and spec(An)\operatorname{\texttt{spec}}(A_{n}). By Proposition 4.1, these are defined as follows:

spec(Am)={λrλr=2cos(rπm+1)}r=1m\operatorname{\texttt{spec}}(A_{m})=\left\{\lambda_{r}\mid\lambda_{r}=2\cos\left(\frac{r\pi}{m+1}\right)\right\}_{r=1}^{m}\\ spec(An)={λsλs=2cos(sπn+1)}s=1n.\operatorname{\texttt{spec}}(A_{n})=\left\{\lambda_{s}\mid\lambda_{s}=2\cos\left(\frac{s\pi}{n+1}\right)\right\}_{s=1}^{n}.

By the following sequence of equalities, we can rewrite λsspec(An)\lambda_{s}\in\operatorname{\texttt{spec}}(A_{n}) in terms of mm and kk.

λs\displaystyle\lambda_{s} =2cos(sπn+1) for s=1,2,,n\displaystyle=2\cos\left(\frac{s\pi}{n+1}\right)\text{ for }s=1,2,\ldots,n
=2cos(sπm(k+1)+k+1) for s=1,2,,m(k+1)+k\displaystyle=2\cos\left(\frac{s\pi}{m(k+1)+k+1}\right)\text{ for }s=1,2,\ldots,m(k+1)+k by Equation (4.17)
=2cos(sπmk+m+k+1)\displaystyle=2\cos\left(\frac{s\pi}{mk+m+k+1}\right)
=2cos(sπ(m+1)(k+1))\displaystyle=2\cos\left(\frac{s\pi}{(m+1)(k+1)}\right)
=2cos((sk+1)πm+1).\displaystyle=2\cos\left(\frac{\left(\frac{s}{k+1}\right)\pi}{m+1}\right).

Recall λr=2cos(rπm+1)\lambda_{r}=2\cos\left(\frac{r\pi}{m+1}\right). Hence λr=λs\lambda_{r}=\lambda_{s} when r=sk+1r=\frac{s}{k+1}.

Since sS={1,2,,m(k+1)+k}s\in S=\{1,2,\ldots,m(k+1)+k\}, the set T={k+1,2(k+1),,m(k+1)}T=\{k+1,2(k+1),\ldots,m(k+1)\} is a subset of SS. Notice for each sTs\in T, there exists a unique r{1,2,,m}r\in\{1,2,\ldots,m\} under the equality r=sk+1r=\frac{s}{k+1}. Thus for all λrspec(Am)\lambda_{r}\in\operatorname{\texttt{spec}}(A_{m}), there exists a λsspec(An)\lambda_{s}\in\operatorname{\texttt{spec}}(A_{n}) such that λr=λs\lambda_{r}=\lambda_{s}. Then λrspec(An)\lambda_{r}\in\operatorname{\texttt{spec}}(A_{n}) for all r{1,2,,m}r\in\{1,2,\ldots,m\}. Therefore spec(Am)spec(An)\operatorname{\texttt{spec}}(A_{m})\subset\operatorname{\texttt{spec}}(A_{n}). ∎

Remark 4.6.

In the introduction we noted our observation via Mathematica that the golden ratio, its reciprocal, and their additive inverses arise as eigenvalues of AnA_{n} for the nn values 4, 9, 14, 19, 24, 29, 34, 39, and 44. In Example 2.8, we computed the four eigenvalues of A4A_{4}. As an application of Theorem 4.5, if we let m=4m=4, then it is evident that the spec(A4)spec(A4+5k)\operatorname{\texttt{spec}}(A_{4})\subset\operatorname{\texttt{spec}}(A_{4+5k}) for all kk\in\mathbb{N}, thus confirming our observation.

5 Open questions

Question 5.1.

In the plot in Figure 4.1 it appears that the maximum and minimum values for the characteristic polynomials lie on a hyperbola. For example, here is a plot of f10(λ)f_{10}(\lambda) and f20(λ)f_{20}(\lambda).

[Uncaptioned image]

Do the max and min values of the sequence {fn(λ)}n=1\{f_{n}(\lambda)\}_{n=1}^{\infty} lie on a particular hyperbola? And if so, can we find an exact formula for this hyperbola?

Question 5.2.

A natural setting in which to generalize this research is the following family of n×nn\times n matrices

[0bbbb0]\begin{bmatrix}0&b&&\\ b&\ddots&\ddots&\\ &\ddots&\ddots&b\\ &&b&0\end{bmatrix}

where b>0b>0 is some integer. These are the adjacency matrices of the multiple-edged path graphs, that is, the graphs that have bb edges between each pair of consecutive vertices. For example, below we give the multiple-edge path graph on 4 vertices with two edges between each vertex, and we give its corresponding adjacency matrix.

v1v_{1}v2v_{2}v3v_{3}v4v_{4}\longleftrightarrow [\@arstrutv1v2v3v4\\v10200\\v22020\\v30202\\v40020]\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle v_{4}\\v_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\v_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\v_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2\\v_{4}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 2$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt\crcr}}}}\right]

Do the coefficients of the corresponding characteristic polynomials have any connection to the binomial coefficients as they do in the b=1b=1 case? Moreover, is there an analogue of the spectrum containment sufficiency condition as in our Theorem 4.5?

5.1 Conjectures on fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1} where Fn+1F_{n+1} is the (n+1)th(n+1)^{\mathrm{th}} Fibonacci number

There is a tantalizing connection between the characteristic polynomials fn(λ)f_{n}(\lambda) and the Fibonacci sequence {Fn}n=0={0,1,1,2,3,5,8,13,21,}\{F_{n}\}_{n=0}^{\infty}=\{0,1,1,2,3,5,8,13,21,\ldots\}. Recall the polynomial f12(λ)f_{12}(\lambda) from Table 3.1.

f12(λ)=1λ1211λ10+45λ884λ6+70λ421λ2+1.f_{12}(\lambda)={\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}\lambda^{12}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}11}\lambda^{10}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}45}\lambda^{8}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}84}\lambda^{6}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}70}\lambda^{4}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}21}\lambda^{2}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}.

For what λ\lambda does f12(λ)=F13f_{12}(\lambda)=F_{13}? It turns out λ=i\lambda=i is a root as follows:

f12(i)\displaystyle f_{12}(i) =1i1211i10+45i884i6+70i421i2+1\displaystyle={\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}i^{12}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}11}i^{10}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}45}i^{8}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}84}i^{6}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}70}i^{4}-{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}21}i^{2}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}
=1+11+45+84+70+21+1\displaystyle={\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}11}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}45}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}84}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}70}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}21}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}1}
=233=F13.\displaystyle=233=F_{13}.

We leave it to the reader to easily prove that we have the following result.

Theorem 5.3.

Let kk\in\mathbb{N}. Then λ=i\lambda=i satisfies f4k(λ)=F4k+1f_{4k}(\lambda)=F_{4k+1} where FnF_{n} denotes the nthn^{\mathrm{th}} Fibonacci number.

However, something more compelling occurs when we graph the roots of fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1}. For example, in the n=12n=12 case, we know that λ=i\lambda=i is a root. But what about the other 11 roots? Graphing the roots of f12(λ)=F13f_{12}(\lambda)=F_{13} in the complex plane, we obtain the following graph:

[Uncaptioned image]

These roots appear to lie on an ellipse. This is not unique though to the fn=Fn+1f_{n}=F_{n+1} where nn is a multiple of 4. Consider the roots of f29(λ)=F30f_{29}(\lambda)=F_{30}. The following is the polynomial f29(λ)f_{29}(\lambda):

f29(λ)=λ29\displaystyle f_{29}(\lambda)=-\lambda^{29} +28λ27351λ25+2600λ2312650λ21+42504λ19\displaystyle+28\lambda^{27}-351\lambda^{25}+2600\lambda^{23}-12650\lambda^{21}+42504\lambda^{19}
100947λ17+170544λ15203490λ13+167960λ11\displaystyle-100947\lambda^{17}+170544\lambda^{15}-203490\lambda^{13}+167960\lambda^{11}
92378λ9+31824λ76188λ5+560λ315λ.\displaystyle-92378\lambda^{9}+31824\lambda^{7}-6188\lambda^{5}+560\lambda^{3}-15\lambda.

Graphing the roots of f29(λ)=F30f_{29}(\lambda)=F_{30} in the complex plane, we obtain the following graph:

[Uncaptioned image]

What if we change a single coefficient? If we change the coefficient of λ25\lambda^{25} in f29(λ)f_{29}(\lambda) from 351-351 to 350-350 (denoting this modified polynomial by f29~(λ)\widetilde{f_{29}}(\lambda)), and we set the polynomial f29~(λ)\widetilde{f_{29}}(\lambda) equal to F30F_{30}, then we get

F30=λ29\displaystyle F_{30}=-\lambda^{29} +28λ27𝟑𝟓𝟎λ25+2600λ2312650λ21+42504λ19\displaystyle+28\lambda^{27}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\mathbf{-350}}\lambda^{25}+2600\lambda^{23}-12650\lambda^{21}+42504\lambda^{19}
100947λ17+170544λ15203490λ13+167960λ11\displaystyle-100947\lambda^{17}+170544\lambda^{15}-203490\lambda^{13}+167960\lambda^{11}
92378λ9+31824λ76188λ5+560λ315λ.\displaystyle-92378\lambda^{9}+31824\lambda^{7}-6188\lambda^{5}+560\lambda^{3}-15\lambda.

Graphing the roots of f29~(λ)=F30\widetilde{f_{29}}(\lambda)=F_{30} in the complex plane, we obtain the following graph:

[Uncaptioned image]

Observe that we no longer get an ellipse. Clearly there is something special about the roots of fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1}. This leads one to the following conjecture.

Conjecture 5.4.

The roots of fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1} lie on an ellipse.

Lastly, from the two examples above of the graphs of the roots of f12(λ)=F13f_{12}(\lambda)=F_{13} and f29(λ)=F30f_{29}(\lambda)=F_{30}, we observe that for the roots λ=a+bi\lambda=a+bi, the imaginary parts bb in absolute value appear to be bounded above by 1, while the real parts aa in absolute value increased slightly (in absolute value) from the value a2.16648a\approx 2.16648 in the n=12n=12 case to the value a2.20796a\approx-2.20796 in the n=29n=29 case. Does this pattern continue to hold as we increase the nn value in fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1}? Here are the roots of f201(λ)=F202f_{201}(\lambda)=F_{202} with a perfect ellipse fitting the 201 distinct roots!

[Uncaptioned image]

In the above example, there is exactly one real root and it has value approximately 2.23206-2.23206. Observe that this is larger in absolute value than the one real root in the n=29n=29 case, which is approximately 2.20796-2.20796. Moreover, the root with the largest imaginary part in the n=201n=201 case is approximately (up to 10 decimal places) 0.0174265601+0.9999693615i-0.0174265601+0.9999693615\,i. Observe the imaginary part does not exceed 1 but is larger than the imaginary part in the n=29n=29 case, whose root with largest imaginary part is approximately (up to 10 decimal places) 0.118795230904+0.9985023199i-0.118795230904+0.9985023199\,i. From further compelling evidence via Mathematica on a large number of concrete examples, we offer the following conjecture.

Conjecture 5.5.

Consider the roots a+bia+bi of the equation fn(λ)=Fn+1f_{n}(\lambda)=F_{n+1}. Then the following hold:

  • If nn is even, then there are two distinct real roots and n2n-2 distinct complex roots occurring in n22\frac{n-2}{2} conjugate pairs.

  • If nn is odd, then there is one real root with negative parity and n1n-1 distinct complex roots occurring in n12\frac{n-1}{2} conjugate pairs.

  • The real parts Re(a+bi)\operatorname{Re}(a+bi) are unbounded as nn increases.

  • The imaginary parts Im(a+bi)\operatorname{Im}(a+bi) are bounded above by 11 and bounded below by 1-1, as nn increases.

6 Acknowledgments

Among the many locations in Eau Claire, WI, where this research was done, the authors thank The Plus where they conducted research while enjoying pizza. They also thank the grassy fields of Phoenix Park where author Gullerud came up with the proof of the spec\operatorname{\texttt{spec}} containments.

References

  • [1] M. Abromovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., 1965.
  • [2] I. Bar-On, Interlacing properties of tridiagonal symmetric matrices with applications to parallel computing, SIAM J. Matrix Anal. Appl. 17 (1996), 548–562.
  • [3] S. Barnett, Matrices, Methods and Applications, Oxford University Press, 1990.
  • [4] C. Cryer, The numerical solution of boundary value problems for second order functional differential equations by finite differences, Numer. Math. 20 (1972), 288–299.
  • [5] G. Golub, Bounds for eigenvalues of tridiagonal symmetric matrices computed by the LR method, Math. Comp. 16 (1962), 428–447.
  • [6] A. F. Horadam, Vieta polynomials, Fibonacci Quart. 40 (2002), 223–232.
  • [7] W. Kahan and J. Varah, Two working algorithms for the eigenvalues of a symmetric tridiagonal matrix, Technical Report CS43, Computer Science Department, Stanford University (1966), 29pp.
  • [8] L. Lu and W. Sun, The minimal eigenvalues of a class of block-tridiagonal matrices, IEEE Trans. Inform. Theory 43 (1997), 787–791.
  • [9] NBS (1952), Tables of Chebyshev Polynomials Sn(x)S_{n}(x) and Cn(x)C_{n}(x), National Bureau of Standards Applied Mathematics Series, No. 9. U.S. Government Printing Office, Washington, D.C., 1952.
  • [10] B. N. Parlett, The symmetric eigenvalue problem, Prentice-Hall Series in Computational Mathematics. Prentice-Hall, Inc., 1980.
  • [11] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 2nd ed., Clarendon Press, Oxford University Press, 1978.

Appendix

A.1 The research team

The research team for this project are Emily Gullerud, Rita Johnson, and Dr. aBa Mbirika. This research was done in 2017–2018 at the University of Wisconsin-Eau Claire (UWEC). Emily is currently completing a PhD program in mathematics at the University of Minnesota. Rita is currently a software engineer in Utah. Dr. aBa continues to happily teach mathematics and joyously conduct research at UWEC.

[Uncaptioned image]

Left to right are authors Rita Johnson, Emily Gullerud’s head, and aBa Mbirika.111The authors thank the hospitality of author Rita’s uncles Rick and Mike whose porch provided a stimulating environment on Memorial Day in 2017 for us to prove that Equations (3.3) and (3.4), shown on the whiteboard in the picture above, satisfy the three-term recurrence relation in Theorem 3.2.