This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tropical Lagrangian multi-sections
and
tropical locally free sheaves

Yat-Hin Suen Center for Geometry and Physics
Institute for Basic Science (IBS)
Pohang 37673
Republic of Korea
yhsuen@ibs.re.kr
Abstract.

This article is a continuation of the work [4]. We generalize the notion of tropical Lagrangian multi-sections to any dimensions. Together with some linear algebra data, we construct a special class of locally free sheaves, called tropical locally free sheaves. We will also provide the reverse construction and show that there is a 1-1 correspondence between isomorphism classes of tropical locally free sheaves and tropical Lagrangian multi-sections modulo certain equivalence.

1. Introduction

The Gross-Siebert program [6, 7, 8] gives an algebro-geometric understanding of SYZ mirror symmetry [14]. In [4], together with Chan and Ma, the author of this paper attempted to understand homological mirror symmetry [10] in terms of the Gross-Siebert setup. We introduced there the notion of tropical Lagrangian multi-sections over any 2-dimensional integral affine manifold of singularities BB equipped with polyhedral decomposition 𝒫\mathscr{P} and constructed, by fixing certain local model, a locally free sheaf β„°0\mathcal{E}_{0} over the associated scheme X0​(B,𝒫)X_{0}(B,\mathscr{P}). We also provided a nice combinatorial condition for smoothability of the pair (X0​(B,𝒫),β„°0)(X_{0}(B,\mathscr{P}),\mathcal{E}_{0}) under some extra assumptions.

In this article, we will generalize the notion of tropical Lagrangian multi-sections to any dimension. We begin by reviewing some preliminary of the Gross-Siebert program in Section 2. In Section 3, we introduce the notion of tropical Lagrangian multi-sections over any integral affine manifold with singularities BB equipped with a polyhedral decomposition 𝒫\mathscr{P}. For this purpose, we need the notion of tropical spaces, which has been introduced in [12]. Roughly speaking, tropical spaces are spaces that allow us to talk about sheaf of affine and piecewise linear functions. A tropical Lagrangian multi-section 𝕃\mathbb{L} over (B,𝒫)(B,\mathscr{P}) is then a branched covering map Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) between tropical spaces that respect the polyhedral decomposition 𝒫,𝒫′\mathscr{P},\mathscr{P}^{\prime} together with a multi-valued piecewise linear function Ο†\varphi on LL. Here ΞΌ:𝒫→℀>0\mu:\mathscr{P}\to\mathbb{Z}_{>0} is the multiplicity map. The multi-valued function Ο†\varphi should be thought of as certain tropical limit of the local potential of a Lagrangian multi-section of the SYZ fibration.

Given a tropical Lagrangian multi-section 𝕃\mathbb{L} over (B,𝒫)(B,\mathscr{P}). Due to its discrete nature, one shouldn’t expect 𝕃\mathbb{L} can determine a sheaf on X0​(B,𝒫)X_{0}(B,\mathscr{P}) uniquely. Therefore, we need to prescribe some continuous data on top of the discrete data determined by 𝕃\mathbb{L}. We will introduce in 4 two continuous data (𝐠,𝐑)({\bf{g}},{\bf{h}}) which guarantee the existence of a locally free sheave on X0​(B,𝒫)X_{0}(B,\mathscr{P}). The idea is to apply the technique in [15] to construct a collection of toric vector bundles {ℰ​(𝐠​(Ο„β€²))}π​(Ο„β€²)=Ο„\{\mathcal{E}({\bf{g}}(\tau^{\prime}))\}_{\pi(\tau^{\prime})=\tau} on each toric piece XΟ„X_{\tau} by using the multi-valued piecewise linear function Ο†\varphi on LL. The rank of each ℰ​(𝐠​(Ο„β€²))\mathcal{E}({\bf{g}}(\tau^{\prime})) is given by the ramification degree of the cell Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime}. Put

ℰ​(𝐠​(Ο„)):=⨁π​(Ο„β€²)=τℰ​(𝐠​(Ο„β€²)),\mathcal{E}({\bf{g}}(\tau)):=\bigoplus_{\pi(\tau^{\prime})=\tau}\mathcal{E}({\bf{g}}(\tau^{\prime})),

which is a toric vector bundle on XΟ„X_{\tau}, whose rank is exactly the degree of the branched covering map Ο€:Lβ†’B\pi:L\to B. Then we glue the vector bundles {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}} together by using the data 𝐑{\bf{h}}. However, in general, we may encounter an extra twisting data sΒ―\overline{s} when we glue the toric strata {XΟ„}Ο„βˆˆπ’«\{X_{\tau}\}_{\tau\in\mathscr{P}} together. In this case, there is an obstruction o𝕃​([sΒ―])∈H2​(L,β„‚Γ—)o_{\mathbb{L}}([\overline{s}])\in H^{2}(L,\mathbb{C}^{\times}) for gluing {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}}. This obstruction generalizes the obstruction maps appear in [6], Theorem 2.34 (the ample line bundle case) and [4], Theorem 5.5 (the 2-dimensional case).

Theorem 1.1 (=Theorem 4.6).

Suppose sΒ―\overline{s} is the associated closed gluing data of an open gluing data ss. The locally free sheaves {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}} can be glued to a rank rr locally free sheaf on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) via the data (𝐠,𝐑)({\bf{g}},{\bf{h}}) if and only if o𝕃​([sΒ―])=1o_{\mathbb{L}}([\overline{s}])=1.

The vanishing of o𝕃​([sΒ―])o_{\mathbb{L}}([\overline{s}]) will give us another continuous data 𝐀s{\bf{k}}_{s}, which can be combined with 𝐑{\bf{h}} to form 𝐑s{\bf{h}}_{s}. We then write 𝐃s{\bf{D}}_{s} for the data (𝐠,𝐑s)({\bf{g}},{\bf{h}}_{s}) and denote by π’Ÿs​(𝕃)\mathscr{D}_{s}(\mathbb{L}) the set of all such data. Theorem 1.1 says that a choice of data 𝐃sβˆˆπ’Ÿs​(𝕃){\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L}) will provide us a locally free sheaf β„°0​(𝕃,𝐃s)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}) on the scheme X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s).

In [5], the notion of unobstructed Lagrangian submanifolds ([1] for immersed Lagrangian submanifolds) was introduced. The main feature of an unobstructed Lagrangian submanifolds is that its Floer cohomology is well-defined and hence defines an object in the Fukaya category. In particular, unobstructed Lagrangian submanifolds should have the corresponding mirror objects. Therefore, we borrow this terminology here. Namely, for a fixed gluing data ss, a tropical Lagrangian multi-section 𝕃\mathbb{L} over (B,𝒫)(B,\mathscr{P}) is said to be unobstructed if π’Ÿs​(𝕃)β‰ βˆ…\mathscr{D}_{s}(\mathbb{L})\neq\emptyset and a pair (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}) is called a tropical Lagrangian brane (Definition 4.8).

Section 5 will be devoted to the reverse construction. Based on the construction in Section 4, we introduce the notion of tropical locally free sheaves (Definition 5.1). To such a locally free sheaf β„°0\mathcal{E}_{0}, we are able to construct a canonical tropical Lagrangian multi-section 𝕃ℰ0\mathbb{L}_{\mathcal{E}_{0}}. Moreover, there is a natural data 𝐃s​(β„°0)βˆˆπ’Ÿs​(𝕃ℰ0){\bf{D}}_{s}(\mathcal{E}_{0})\in\mathscr{D}_{s}(\mathbb{L}_{\mathcal{E}_{0}}) such that

β„°0β‰…β„°0​(𝕃ℰ0,𝐃s​(β„°0)).\mathcal{E}_{0}\cong\mathcal{E}_{0}(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0})).

We will end Section 5 by showing that we actually have an abundant sources of examples given by restricting toric vector bundles on the toric boundary of a toric variety (Theorem 5.9).

Given (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}), Section 4 has taught us how to construct a tropical locally free sheaf β„°0:=β„°0​(𝕃,𝐃s)\mathcal{E}_{0}:=\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}) while Section 5 has provided a canonical tropical Lagrangian brane (𝕃ℰ0,𝐃s​(β„°0))(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0})) out of β„°0\mathcal{E}_{0}. It is natural to compare (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}) and 𝕃ℰ0\mathbb{L}_{\mathcal{E}_{0}}. In general, we may not have 𝕃=𝕃ℰ0\mathbb{L}=\mathbb{L}_{\mathcal{E}_{0}}. This indicates the phenomenon that non-Hamiltonian isotopic or topologically different Lagrangian submanifolds can still be equivalent to each other in the derived (immersed) Fukaya category. See, for example, [3]. Therefore, we would still like to regard them as the same object. This brings us to Section 6, where we will introduce the notion of combinatorial equivalence of tropical Lagrangian branes and prove the following

Theorem 1.2 (=Theorem 6.6).

We have a canonical bijection

β„±:{Tropical locally free sheaves on ​X0​(B,𝒫,s)}isomorphismβ†’{(𝕃,𝐃s)|𝕃​ being unobstructed and ​𝐃sβˆˆπ’Ÿs​(𝕃)}combinatorial equivalence,\mathcal{F}:\frac{\{\text{Tropical locally free sheaves on }X_{0}(B,\mathscr{P},s)\}}{\text{isomorphism}}\to\frac{\{(\mathbb{L},{\bf{D}}_{s})\,|\,\mathbb{L}\text{ being unobstructed and }{\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L})\}}{\text{combinatorial equivalence}},

given by β„°0↦(𝕃ℰ0,𝐃s​(β„°0))\mathcal{E}_{0}\mapsto(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0})). Its inverse is given by (𝕃,𝐃s)↦ℰ0​(𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s})\mapsto\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}).

Theorem 1.2 provides a slightly more geometric understanding of homological mirror symmetry in the sense that we don’t need any derived objects on both sides to achieve the correspondence. Although a tropical Lagrangian multi-section is still not yet an honest Lagrangian multi-section, one should expect that an unobstructed Lagrangian multi-section can be constructed from the data (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}). We left this for future research.

2. The Gross-Siebert program

We give a brief review of how the scheme X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) is constructed. We follow [6] and use the fan construction.

Let BB be an integral affine manifold with singularities equipped with a polyhedral decomposition 𝒫\mathscr{P}. Elements in 𝒫\mathscr{P} are celled cells. Throughout the whole article, we assume BB is compact without boundary and all cells have no self-intersections. By taking the barycentric decomposition situation of 𝒫\mathscr{P}, there is a canonical open cover 𝒲:={WΟƒ}Οƒβˆˆπ’«\mathcal{W}:=\{W_{\sigma}\}_{\sigma\in\mathscr{P}} of BB so that WΟ„βˆ©WΟƒβ‰ βˆ…W_{\tau}\cap W_{\sigma}\neq\emptyset if and only if Ο„βŠ‚Οƒ\tau\subset\sigma. Denote by Ξ”βŠ‚B\Delta\subset B the singular locus of BB, which is a union of locally closed codimension 2 submanifolds inside the codimension 1 strata of BB and Ξ›\Lambda the lattice induced by the integral structure on B\Ξ”B\backslash\Delta. For Ο„βˆˆπ’«\tau\in\mathscr{P}, let

Λτ:={vβˆˆΞ›y:v​ is tangent to ​τ​ at ​y},\Lambda_{\tau}:=\{v\in\Lambda_{y}:v\text{ is tangent to }\tau\text{ at }y\},

for any y∈Int​(Ο„)\Ξ”y\in\mathrm{Int}(\tau)\backslash\Delta. This lattice is independent of the choice of y∈Int​(Ο„)y\in\mathrm{Int}(\tau). We also define

𝒬τ:=Ξ›/Λτ.\mathcal{Q}_{\tau}:=\Lambda/\Lambda_{\tau}.

For Ο„βŠ‚Οƒ\tau\subset\sigma, by parallel transport along a path in B\Ξ”B\backslash\Delta starting on Int​(Ο„)\Ξ”\mathrm{Int}(\tau)\backslash\Delta and ending on Int​(Οƒ)\mathrm{Int}(\sigma), we get a projection p:𝒬τ→𝒬σp:\mathcal{Q}_{\tau}\to\mathcal{Q}_{\sigma}. We always assume 𝒫\mathscr{P} is toric, that is, for each Ο„βˆˆπ’«\tau\in\mathscr{P}, there is a submersion SΟ„:WΟ„β†’π’¬Ο„βŠ—β„€β„S_{\tau}:W_{\tau}\to\mathcal{Q}_{\tau}\otimes_{\mathbb{Z}}\mathbb{R}. This gives a complete fan

Στ:={rβ‹…Sτ​(Οƒ)|ΟƒβŠƒΟ„,rβ‰₯0}\Sigma_{\tau}:=\{r\cdot S_{\tau}(\sigma)\,|\,\sigma\supset\tau,r\geq 0\}

on π’¬Ο„βŠ—β„€β„\mathcal{Q}_{\tau}\otimes_{\mathbb{Z}}\mathbb{R} and hence a complete toric variety XΟ„X_{\tau}. To glue them together, Gross-Siebert introduced the category Cat​(𝒫){\textbf{Cat}}(\mathscr{P}), whose objects are elements in 𝒫\mathscr{P} and

HomCat​(𝒫)​(Ο„,Οƒ):={βˆ…Β ifΒ β€‹Ο„βŠ„Οƒ,{e}Β ifΒ β€‹Ο„βŠ‚Οƒ.\mathrm{Hom}_{{\textbf{Cat}}(\mathscr{P})}(\tau,\sigma):=\begin{cases}\emptyset&\text{ if }\tau\not\subset\sigma,\\ \{e\}&\text{ if }\tau\subset\sigma.\end{cases}

For e:Ο„β†’Οƒe:\tau\to\sigma, the inclusion peβˆ—:π’¬Οƒβˆ—β†’π’¬Ο„βˆ—p_{e}^{*}:\mathcal{Q}_{\sigma}^{*}\to\mathcal{Q}_{\tau}^{*} induces a natural inclusion F​(e):XΟƒβ†’XΟ„F(e):X_{\sigma}\to X_{\tau} that satisfies

F​(e2∘e1)=F​(e1)∘F​(e2),F(e_{2}\circ e_{1})=F(e_{1})\circ F(e_{2}),

for all e1:Οƒ1β†’Οƒ2,e2:Οƒ2β†’Οƒ3e_{1}:\sigma_{1}\to\sigma_{2},e_{2}:\sigma_{2}\to\sigma_{3}. Hence we can take the limit

lim⟢XΟƒ\lim_{\longrightarrow}X_{\sigma}

to obtain an algebraic space. One can twist this construction by a cocycle [sΒ―]∈H1​(𝒲,π’¬π’«βŠ—β„‚Γ—)[\overline{s}]\in H^{1}(\mathcal{W},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}). Such an extra twisting is called a closed gluing data for the fan picture. Such cocycle give us for each e:Ο„β†’Οƒe:\tau\to\sigma, an element sΒ―eβˆˆπ’¬ΟƒβŠ—β„‚Γ—\overline{s}_{e}\in\mathcal{Q}_{\sigma}\otimes\mathbb{C}^{\times}, which defines an automorphism sΒ―e:XΟƒβ†’XΟƒ\overline{s}_{e}:X_{\sigma}\to X_{\sigma}. Put

Fs¯​(e):=F​(e)∘sΒ―e.F_{\overline{s}}(e):=F(e)\circ\overline{s}_{e}.

Since s¯\overline{s} is a 1-cocycle, we have s¯e1∘e2=s¯e1∘s¯e2\overline{s}_{e_{1}\circ e_{2}}=\overline{s}_{e_{1}}\circ\overline{s}_{e_{2}} and hence the s¯\overline{s}-twisted limit

X0​(B,𝒫,sΒ―):=lim⟢XΟƒX_{0}(B,\mathscr{P},\overline{s}):=\lim_{\longrightarrow}X_{\sigma}

makes sense and exists in the category of algebraic spaces. In [6], Gross-Siebert also introduced an other more refined gluing data, called the open gluing data.

Definition 2.1.

An open gluing data for the fan picture is a collection s:={se}es:=\{s_{e}\}_{e}, where for e:Ο„β†’Οƒe:\tau\to\sigma, se:Ξ›Οƒβˆ—β†’β„‚Γ—s_{e}:\Lambda_{\sigma}^{*}\to\mathbb{C}^{\times} is piecewise multiplicative with respective to the fan Ο„Λ‡βˆ’1​Σσˇ\check{\tau}^{-1}\Sigma_{\check{\sigma}} such that

  1. (1)

    si​d=1s_{id}=1, for i​d:Οƒβ†’Οƒid:\sigma\to\sigma the identity morphism.

  2. (2)

    If e3=e2∘e1e_{3}=e_{2}\circ e_{1}, we have se3=se2β‹…se1s_{e_{3}}=s_{e_{2}}\cdot s_{e_{1}}, whenever defined.

An open gluing data ss is called trivial if there exists t=(tΟƒ)Οƒβˆˆπ’«t=(t_{\sigma})_{\sigma\in\mathscr{P}}, with tΟƒβˆˆΞ“β€‹(Οƒ,π’¬π’«βŠ—β„‚Γ—)t_{\sigma}\in\Gamma(\sigma,\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}) such that se=tτ​tΟƒβˆ’1|Ο„s_{e}=t_{\tau}t_{\sigma}^{-1}|_{\tau}, for all e:Ο„β†’Οƒe:\tau\to\sigma. The set of all open gluing data is denoted by Z1​(𝒫,π’¬π’«βŠ—β„‚Γ—)Z^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}) and the set of all trivial open gluing data is denoted by B1​(𝒫,π’¬π’«βŠ—β„‚Γ—)B^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}).

The set of open gluing data modulo equivalence is parametrized by the group

H1​(𝒫,π’¬π’«βŠ—β„‚Γ—):=Z1​(𝒫,π’¬π’«βŠ—β„‚Γ—)B1​(𝒫,π’¬π’«βŠ—β„‚Γ—).H^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}):=\frac{Z^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})}{B^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})}.

For an open gluing data ss, one associates the closed gluing data sΒ―\overline{s} as follows. For e:Ο„β†’Οƒe:\tau\to\sigma, define sΒ―e\overline{s}_{e} to be the image of ss under the composition

Γ​(Ο„,π’¬π’«βŠ—β„‚Γ—)β†’π’¬Ο„βŠ—β„‚Γ—β†’βˆΌΞ“β€‹(WΟ„,π’¬π’«βŠ—β„‚Γ—)→Γ​(We,π’¬π’«βŠ—β„‚Γ—),\Gamma(\tau,\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})\to\mathcal{Q}_{\tau}\otimes\mathbb{C}^{\times}\xrightarrow{\sim}\Gamma(W_{\tau},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})\to\Gamma(W_{e},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}),

where the last map is given by restriction. This induces the open-to-closed map

H1​(𝒫,π’¬π’«βŠ—β„‚Γ—)β†’H1​(𝒲,π’¬π’«βŠ—β„‚Γ—),H^{1}(\mathscr{P},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})\to H^{1}(\mathcal{W},\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}),

which is injective by Proposition 2.32 in [6]. An important consequence of open gluing data is that the algebraic space X0​(B,𝒫,sΒ―)X_{0}(B,\mathscr{P},\overline{s}) can be built from some standard affine charts defined as follows. The open gluing data and the associated closed gluing data give the following commutative diagram

Vω2→σ\textstyle{{V_{\omega_{2}\to\sigma}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}sω2→σ\scriptstyle{s_{\omega_{2}\to\sigma}}Vω2→σ\textstyle{{V_{\omega_{2}\to\sigma}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s¯ω1→ω2\scriptstyle{\overline{s}_{\omega_{1}\to\omega_{2}}}Vω1→σ\textstyle{{V_{\omega_{1}\to\sigma}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}sω1→σ\scriptstyle{s_{\omega_{1}\to\sigma}}Vω1→σ\textstyle{{V_{\omega_{1}\to\sigma}}}

The colimit of the left hand side

V​(Οƒ):=lim⟢VΟ„β†’ΟƒV(\sigma):=\lim_{\longrightarrow}V_{\tau\to\sigma}

is actually an affine scheme and hence one can construct an algebraic space X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) by gluing {V​(Οƒ)}Οƒβˆˆπ’«m​a​x\{V(\sigma)\}_{\sigma\in\mathscr{P}_{max}} and it was shown by using universal property of colimit that

X0​(B,𝒫,s)β‰…X0​(B,𝒫,sΒ―).X_{0}(B,\mathscr{P},s)\cong X_{0}(B,\mathscr{P},\overline{s}).

as algebraic spaces (Proposition 2.30 in [6]). The fact that all cells have no self-intersections implies X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) is actually a scheme. Moreover, Proposition 2.32 in [6] also showed that there is an isomorphism X0​(B,𝒫,s)β‰…X0​(B,𝒫,sβ€²)X_{0}(B,\mathscr{P},s)\cong X_{0}(B,\mathscr{P},s^{\prime}) preserving toric strata if and only if [s]=[sβ€²][s]=[s^{\prime}].

Assume 𝒫\mathscr{P} is simple and positive (see [6] for their definitions). With a suitable choice of open gluing data ss, Gross-Siebert have shown in [6] that X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) carries a log structure that is log smooth off a codimension 2 locus ZZ, not containing any toric strata. Moreover, they proved in [8] that X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) is smoothable to a formal family over Spec​(ℂ​[[t]])\mathrm{Spec}({\mathbb{C}[[t]]}). In [13], Ruddat and Siebert proved that this formal family is in fact an analytic family.

3. Tropical Lagrangian multi-sections

We introduce the notion of tropical Lagrangian multi-sections over any integral affine manifold with singularities equipped with a polyhedral decomposition, generalizing the definition of tropical Lagrangian multi-sections in [4]. We use the notion of tropical space introduced in [12].

Definition 3.1.

A tropical piecewise linear space is a pair (X,𝒫​ℒX)(X,\mathcal{PL}_{X}), where XΒ―\underline{X} is a Hausdorff paracompact topological space and 𝒫​ℒX\mathcal{PL}_{X} is a sheaf of ℝ\mathbb{R}-valued continuous functions on XX such that for each x∈Xx\in X, there is a neighborhood UU of xx, an open subset VV of a polyhedral set in ℝn\mathbb{R}^{n} for some nn, a homeomorphism Ο•:Uβ†’V\phi:U\to V and an isomorphism Ο•#:Ο•βˆ’1​𝒫​ℒV→𝒫​ℒU\phi^{\#}:\phi^{-1}\mathcal{PL}_{V}\to\mathcal{PL}_{U}. A tropical space is a tropical piecewise linear space (X,𝒫​ℒX)(X,\mathcal{PL}_{X}) together with a choice of subsheaf π’œβ€‹f​fXβŠ‚π’«β€‹β„’X\mathcal{A}ff_{X}\subset\mathcal{PL}_{X} that contains the constant sheaf ℝ¯X\underline{\mathbb{R}}_{X}. We simply write XX for (X,𝒫​ℒX,π’œβ€‹f​fX)(X,\mathcal{PL}_{X},\mathcal{A}ff_{X}) when there are no confusion on the tropical space structure.

Definition 3.2.

Let XX be a tropical space. The sheaf of multi-valued piecewise linear functions is defined to be the quotient sheaf ℳ​𝒫​ℒX:=𝒫​ℒX/π’œβ€‹f​fX\mathcal{MPL}_{X}:=\mathcal{PL}_{X}/\mathcal{A}ff_{X}.

There is a natural notion of morphisms between tropical spaces.

Definition 3.3.

Let X,YX,Y be tropical spaces. A morphism from f:Xβ†’Yf:X\to Y is a pair f:=(fΒ―,f#)f:=(\underline{f},f^{\#}) where fΒ―:XΒ―β†’YΒ―\underline{f}:\underline{X}\to\underline{Y} is a continuous map between the underlying topological spaces and f#:fβˆ’1​𝒫​ℒY→𝒫​ℒXf^{\#}:f^{-1}\mathcal{PL}_{Y}\to\mathcal{PL}_{X} is a morphism of sheaves that maps fβˆ’1β€‹π’œβ€‹f​fYf^{-1}\mathcal{A}ff_{Y} to π’œβ€‹f​fX\mathcal{A}ff_{X} and fβˆ’1​ℝ¯Yf^{-1}\underline{\mathbb{R}}_{Y} to ℝ¯X\underline{\mathbb{R}}_{X}. A morphism of tropical spaces f:Xβ†’Yf:X\to Y is said to be a submersion if the induced map f#:fβˆ’1​ℳ​𝒫​ℒY→ℳ​𝒫​ℒXf^{\#}:f^{-1}\mathcal{MPL}_{Y}\to\mathcal{MPL}_{X} is surjective.

The following lemma is evident.

Lemma 3.4.

Let XΒ―\underline{X} be a topological space, YY be a tropical space and fΒ―:XΒ―β†’YΒ―\underline{f}:\underline{X}\to\underline{Y} be a continuous map. The triple (XΒ―,fΒ―βˆ’1​𝒫​ℒY,fΒ―βˆ’1β€‹π’œβ€‹f​fY)(\underline{X},\underline{f}^{-1}\mathcal{PL}_{Y},\underline{f}^{-1}\mathcal{A}ff_{Y}) is a tropical space.

Remark 3.5.

Any cone complex induced by a fan in some ℝ\mathbb{R}-vector space is naturally a tropical space. If Ο€:Ξ£β€²β†’Ξ£\pi:\Sigma^{\prime}\to\Sigma is a morphism of cone complexes and Ξ£\Sigma is a fan, we always assume the underlying topological space |Ξ£β€²||\Sigma^{\prime}| is equipped with the pull-back tropical structure.

Given two topological spaces L,BL,B, a continuous map Ο€:Lβ†’B\pi:L\to B and a function ΞΌ:Lβ†’β„€>0\mu:L\to\mathbb{Z}_{>0}. If for any x∈Bx\in B, the preimage set Ο€βˆ’1​(x)\pi^{-1}(x) is finite, then we can define a function T​rπ​(ΞΌ):Bβ†’β„€>0Tr_{\pi}(\mu):B\to\mathbb{Z}_{>0} by

T​rπ​(ΞΌ)​(x):=βˆ‘xβ€²βˆˆΟ€βˆ’1​(x)μ​(xβ€²).Tr_{\pi}(\mu)(x):=\sum_{x^{\prime}\in\pi^{-1}(x)}\mu(x^{\prime}).

Now we can define branched covering map between tropical spaces.

Definition 3.6.

Let L,BL,B be tropical spaces. A branched covering map is a surjective morphism π:L→B\pi:L\to B and a function μ:L→℀>0\mu:L\to\mathbb{Z}_{>0}, called the multiplicity map, such that

  1. (1)

    For any x∈Bx\in B, the preimage set Ο€βˆ’1​(x)\pi^{-1}(x) is finite.

  2. (2)

    For any connected open sets WβŠ‚BW\subset B and connected Wβ€²βŠ‚Ο€βˆ’1​(W)W^{\prime}\subset\pi^{-1}(W), the function T​rΟ€|W′​(ΞΌ)Tr_{\pi|_{W^{\prime}}}(\mu) is constant on WW.

The degree of Ο€\pi is defined to be the positive constant T​rπ​(ΞΌ)Tr_{\pi}(\mu).

Let BB be an integral affine manifold with singularities equipped with a polyhedral decomposition 𝒫\mathscr{P}. It carries a natural tropical space structure π’œβ€‹f​fB,𝒫​ℒ𝒫\mathcal{A}ff_{B},\mathcal{PL}_{\mathscr{P}}. See [6], Section 1. Unless specified, we use this tropical space structure for (B,𝒫)(B,\mathscr{P}) without further notice.

Definition 3.7.

Let BB be an integral affine manifold with singularities and 𝒫\mathscr{P} a polyhedral decomposition. Let Ο€:(L,ΞΌ)β†’B\pi:(L,\mu)\to B be a branched covering map between tropical spaces. A polyhedral decomposition 𝒫′\mathscr{P}^{\prime} of Ο€:(L,ΞΌ)β†’B\pi:(L,\mu)\to B is a locally finite covering of LL by closed subsets (called cells) such that

  1. (1)

    If Οƒ1β€²,Οƒ2β€²βˆˆπ’«β€²\sigma_{1}^{\prime},\sigma_{2}^{\prime}\in\mathscr{P}^{\prime}, then Οƒ1β€²βˆ©Οƒ2β€²βˆˆπ’«β€²\sigma_{1}^{\prime}\cap\sigma_{2}^{\prime}\in\mathscr{P}^{\prime}.

  2. (2)

    If Οƒβ€²βˆˆπ’«β€²\sigma^{\prime}\in\mathscr{P}^{\prime}, then π​(Οƒβ€²)βˆˆπ’«\pi(\sigma^{\prime})\in\mathscr{P}.

  3. (3)

    For any Οƒβ€²βˆˆπ’«β€²\sigma^{\prime}\in\mathscr{P}^{\prime}, define the relative interior of Οƒβ€²\sigma^{\prime} to be

    Int​(Οƒβ€²):=Οƒβ€²\β‹ƒΟ„β€²βˆˆπ’«β€²:Ο„β€²βŠŠΟƒβ€²Ο„β€².\mathrm{Int}(\sigma^{\prime}):=\sigma^{\prime}\,\big{\backslash}\bigcup_{\tau^{\prime}\in\mathscr{P}^{\prime}:\tau^{\prime}\subsetneq\sigma^{\prime}}\tau^{\prime}.

    The function ΞΌ|Int​(Οƒβ€²)\mu|_{\mathrm{Int}(\sigma^{\prime})} is constant and Ο€|Οƒβ€²:Int​(Οƒβ€²)β†’Int​(π​(Οƒ))\pi|_{\sigma^{\prime}}:\mathrm{Int}(\sigma^{\prime})\to\mathrm{Int}(\pi(\sigma)) is an isomorphism of tropical spaces with respect to the pull-back tropical structures.

A cell Οƒβ€²\sigma^{\prime} is called ramified if μ​(Οƒβ€²)>1\mu(\sigma^{\prime})>1.

Remark 3.8.

Condition (3) implies piecewise linear functions on any cell Οƒβ€²\sigma^{\prime} are affine functions. We use the notations 𝒫​ℒ𝒫′\mathcal{PL}_{\mathscr{P}^{\prime}} and ℳ​𝒫​ℒ𝒫′\mathcal{MPL}_{\mathscr{P}^{\prime}} for the sheaf of piecewise linear functions and the sheaf of multi-valued piecewise linear functions on LL, respectively.

Given Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}). For Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime} and Ο„:=π​(Ο„β€²)\tau:=\pi(\tau^{\prime}), define WΟ„β€²W_{\tau^{\prime}} to be the connected component of Ο€βˆ’1​(WΟ„)\pi^{-1}(W_{\tau}) that contains Int​(Ο„β€²)\mathrm{Int}(\tau^{\prime}).

Definition 3.9.

Let Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) be a branched covering map of tropical spaces equipped with polyhedral decompositions. Let xβ€²βˆˆLx^{\prime}\in L and Ο„β€²\tau^{\prime} be the unique cell so that xβ€²βˆˆInt​(Ο„β€²)x^{\prime}\in\mathrm{Int}(\tau^{\prime}). Put Ο„:=π​(Ο„β€²)\tau:=\pi(\tau^{\prime}). A fan structure at xβ€²βˆˆLx^{\prime}\in L is a branched covering map of connected cone complexes πτ′:Στ′→Στ\pi_{\tau^{\prime}}:\Sigma_{\tau^{\prime}}\to\Sigma_{\tau} and a submersion of tropical spaces SΟ„β€²:WΟ„β€²β†’|Στ′|S_{\tau^{\prime}}:W_{\tau^{\prime}}\to|\Sigma_{\tau^{\prime}}| such that

Ο€Ο„β€²βˆ˜SΟ„β€²=SΟ„βˆ˜Ο€,\pi_{\tau^{\prime}}\circ S_{\tau^{\prime}}=S_{\tau}\circ\pi,

where SΟ„:WΟ„β†’|Στ|S_{\tau}:W_{\tau}\to|\Sigma_{\tau}| is the projection defining the fan structure at xx. The data Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) is called toric if it admits a fan structure at every point.

Suppose Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) is toric and Ο†:Wτ′→ℝ\varphi:W_{\tau^{\prime}}\to\mathbb{R} is a piecewise linear function. Then there is an affine function fβ€²:Wτ′→ℝf^{\prime}:W_{\tau^{\prime}}\to\mathbb{R} and a piecewise linear function φτ′\varphi_{\tau^{\prime}} on |Στ′||\Sigma_{\tau^{\prime}}| such that

Ο†βˆ’fβ€²=SΟ„β€²βˆ—β€‹Ο†Ο„β€²,\varphi-f^{\prime}=S_{\tau^{\prime}}^{*}\varphi_{\tau^{\prime}},

on WΟ„β€²W_{\tau^{\prime}}. For Οƒβ€²βˆˆπ’«m​a​xβ€²\sigma^{\prime}\in\mathscr{P}_{max}^{\prime} contains Ο„β€²\tau^{\prime}, we denote by mτ​(Οƒβ€²)βˆˆπ’¬Ο„βˆ—m_{\tau}(\sigma^{\prime})\in\mathcal{Q}_{\tau}^{*} the slope of φτ′\varphi_{\tau^{\prime}} on Sτ′​(Οƒβ€²)S_{\tau^{\prime}}(\sigma^{\prime}). For g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2}, choose a path Ξ³βŠ‚UΟ„1\gamma\subset U_{\tau_{1}}, which goes from a point in Int​(Ο„1)\Ξ”\mathrm{Int}(\tau_{1})\backslash\Delta to a point in Int​(Ο„2)\Ξ”\mathrm{Int}(\tau_{2})\backslash\Delta. Parallel transport along Ξ³\gamma gives a surjection pg:𝒬τ1→𝒬τ2p_{g}:\mathcal{Q}_{\tau_{1}}\to\mathcal{Q}_{\tau_{2}}. Given Ο†βˆˆH0​(𝒲′,ℳ​𝒫​ℒ𝒫′)\varphi\in H^{0}(\mathcal{W}^{\prime},\mathcal{MPL}_{\mathscr{P}^{\prime}}) and representatives {φτ′}\{\varphi_{\tau^{\prime}}\}, for Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}, there exists an affine function fΟ„1′​τ2β€²:WΟ„1β€²βˆ©WΟ„2′→ℝf_{\tau_{1}^{\prime}\tau_{2}^{\prime}}:W_{\tau_{1}^{\prime}}\cap W_{\tau_{2}^{\prime}}\to\mathbb{R} such that

SΟ„2β€²βˆ—β€‹Ο†Ο„2β€²=SΟ„1β€²βˆ—β€‹Ο†Ο„1β€²+fΟ„1′​τ2β€²,S_{\tau_{2}^{\prime}}^{*}\varphi_{\tau_{2}^{\prime}}=S_{\tau_{1}^{\prime}}^{*}\varphi_{\tau_{1}^{\prime}}+f_{\tau_{1}^{\prime}\tau_{2}^{\prime}},

whenever defined. Therefore, via the inclusion pgβˆ—:𝒬τ2βˆ—β†’π’¬Ο„1βˆ—p_{g}^{*}:\mathcal{Q}_{\tau_{2}}^{*}\to\mathcal{Q}_{\tau_{1}}^{*}, for any Οƒβ€²βŠƒΟ„2β€²\sigma^{\prime}\supset\tau_{2}^{\prime},

pgβˆ—β€‹mΟ„2​(Οƒβ€²)=mΟ„1​(Οƒβ€²)+mΟ„1′​τ2β€²,p_{g}^{*}m_{\tau_{2}}(\sigma^{\prime})=m_{\tau_{1}}(\sigma^{\prime})+m_{\tau_{1}^{\prime}\tau_{2}^{\prime}},

for some mΟ„1′​τ2β€²βˆˆπ’¬Ο„1βˆ—m_{\tau_{1}^{\prime}\tau_{2}^{\prime}}\in\mathcal{Q}_{\tau_{1}}^{*} only depends on Ο„1β€²,Ο„2β€²\tau_{1}^{\prime},\tau_{2}^{\prime}. We simply write

mΟ„2​(Οƒβ€²)=mΟ„1​(Οƒβ€²)+mΟ„1′​τ2β€²m_{\tau_{2}}(\sigma^{\prime})=m_{\tau_{1}}(\sigma^{\prime})+m_{\tau_{1}^{\prime}\tau_{2}^{\prime}}

if there is no confusion.

Now we can define the main object that we are going to study in this paper.

Definition 3.10.

Let BB be an integral affine manifold with singularities and 𝒫\mathscr{P} a polyhedral decomposition. A tropical Lagrangian multi-section 𝕃\mathbb{L} over (B,𝒫)(B,\mathscr{P}) is a toric branched covering of tropical spaces Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) equipped with polyhedral decomposition, together with a global section Ο†βˆˆH0​(L,ℳ​𝒫​ℒ𝒫′)\varphi\in H^{0}(L,\mathcal{MPL}_{\mathscr{P}^{\prime}}).

There is a special type of morphisms between tropical Lagrangian multi-sections over the same base (B,𝒫)(B,\mathscr{P}).

Definition 3.11.

A covering morphism of tropical Lagrangian multi-sections f:𝕃1→𝕃2f:\mathbb{L}_{1}\to\mathbb{L}_{2} over (B,𝒫)(B,\mathscr{P}) is a surjective morphism of tropical spaces f:L1β†’L2f:L_{1}\to L_{2}, mapping cells in 𝒫1β€²\mathscr{P}_{1}^{\prime} isomorphically onto cells in 𝒫2β€²\mathscr{P}_{2}^{\prime} such that Ο€1=Ο€2∘f\pi_{1}=\pi_{2}\circ f, T​rf​(ΞΌ1)=ΞΌ2Tr_{f}(\mu_{1})=\mu_{2} and Ο†1=fβˆ—β€‹Ο†2\varphi_{1}=f^{*}\varphi_{2}.

4. From tropical Lagrangian multi-sections to locally free sheaves

Let 𝕃\mathbb{L} be a tropical Lagrangian multi-section over (B,𝒫)(B,\mathscr{P}) of degree rr and ss an open gluing data. By thinking 𝕃\mathbb{L} as a Lagrangian multi-section of a Lagrangian torus fibration over BB, the SYZ philosophy suggests the mirror of 𝕃\mathbb{L} should be a holomorphic vector bundle, whose rank is same as the degree of the covering 𝕃→B\mathbb{L}\to B. Therefore, in this section, we would like to construct a rank rr locally free sheaf on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s). However, as mentioned in the introduction, one shouldn’t expect 𝕃\mathbb{L} itself can determine a locally free sheaf due to its discrete nature. We need some extra continuous data in analogous to the linear algebra data defined in [9].

To begin, let Ο„βˆˆπ’«\tau\in\mathscr{P} and Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime} be a lift, we would like to construct a rank μ​(Ο„β€²)\mu(\tau^{\prime}) locally free sheaf on the strata XΟ„X_{\tau}. Let VΟ„β†’ΟƒβŠ‚XΟ„V_{\tau\to\sigma}\subset X_{\tau} be the affine chart corresponds to the cone KΟ„β†’Οƒ:=ℝβ‰₯0β‹…Sτ​(Οƒ)βˆˆΞ£Ο„K_{\tau\to\sigma}:=\mathbb{R}_{\geq 0}\cdot S_{\tau}(\sigma)\in\Sigma_{\tau}. Define

ℰσ​(Ο„β€²):=π’ͺVΟ„β†’ΟƒβŠ•ΞΌβ€‹(Ο„β€²).\mathcal{E}_{\sigma}(\tau^{\prime}):=\mathcal{O}_{V_{\tau\to\sigma}}^{\oplus\mu(\tau^{\prime})}.

For Οƒβˆˆπ’«m​a​x\sigma\in\mathscr{P}_{max} contains Ο„\tau, μ​(Ο„β€²)\mu(\tau^{\prime}) equals to the number (count with multiplicity) of lifts of Οƒ\sigma that contain Ο„β€²\tau^{\prime}. We then obtain a frame {1Οƒ(Ξ±)​(Ο„)}Οƒ(Ξ±)βŠƒΟ„β€²\{1_{\sigma^{(\alpha)}}(\tau)\}_{\sigma^{(\alpha)}\supset\tau^{\prime}} for ℰσ​(Ο„β€²)\mathcal{E}_{\sigma}(\tau^{\prime}), parametrized by lifts of Οƒ\sigma contains Ο„β€²\tau^{\prime}, counting with multiplicity. To define transition maps, we use the function Ο†\varphi. By the toric assumption, there is a connected cone complex Στ′\Sigma_{\tau^{\prime}} over Στ\Sigma_{\tau} and a piecewise linear function φτ′\varphi_{\tau^{\prime}} such that SΟ„β€²βˆ—β€‹Ο†Ο„β€²S_{\tau^{\prime}}^{*}\varphi_{\tau^{\prime}} represents Ο†|WΟ„β€²\varphi|_{W_{\tau^{\prime}}}. Let Οƒβ€²βˆˆπ’«m​a​xβ€²\sigma^{\prime}\in\mathscr{P}_{max}^{\prime} be a lift of Οƒ\sigma contains Ο„β€²\tau^{\prime} and mτ​(Οƒβ€²)βˆˆπ’¬Ο„βˆ—m_{\tau}(\sigma^{\prime})\in\mathcal{Q}_{\tau}^{*} be the slope of φτ′\varphi_{\tau^{\prime}} on the cone Sτ′​(Οƒβ€²)S_{\tau^{\prime}}(\sigma^{\prime}). For Οƒ1,Οƒ2βŠƒΟ„\sigma_{1},\sigma_{2}\supset\tau, define GΟƒ1​σ2​(Ο„β€²):β„°Οƒ1​(Ο„β€²)|VΟ„β†’Οƒ1βˆ©Οƒ2β†’β„°Οƒ2​(Ο„β€²)|VΟ„β†’Οƒ1βˆ©Οƒ2G_{\sigma_{1}\sigma_{2}}(\tau^{\prime}):\mathcal{E}_{\sigma_{1}}(\tau^{\prime})|_{V_{\tau\to\sigma_{1}\cap\sigma_{2}}}\to\mathcal{E}_{\sigma_{2}}(\tau^{\prime})|_{V_{\tau\to\sigma_{1}\cap\sigma_{2}}} by

GΟƒ1​σ2​(Ο„β€²):1Οƒ1(Ξ±)​(Ο„β€²)β†¦βˆ‘Ξ²:Οƒ2(Ξ²)βŠƒΟ„β€²gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„β€²)​zmτ​(Οƒ1(Ξ±))βˆ’mτ​(Οƒ2(Ξ²))​1Οƒ2(Ξ²)​(Ο„β€²),G_{\sigma_{1}\sigma_{2}}(\tau^{\prime}):1_{\sigma_{1}^{(\alpha)}}(\tau^{\prime})\mapsto\sum_{\beta:\sigma_{2}^{(\beta)}\supset\tau^{\prime}}g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau^{\prime})z^{m_{\tau}(\sigma_{1}^{(\alpha)})-m_{\tau}(\sigma_{2}^{(\beta)})}1_{\sigma_{2}^{(\beta)}}(\tau^{\prime}),

where {1Οƒ(Ξ±)​(Ο„β€²)}\{1_{\sigma^{(\alpha)}}(\tau^{\prime})\} is a frame of ℰσ​(Ο„β€²)\mathcal{E}_{\sigma}(\tau^{\prime}). Put

GΟƒ1​σ2​(Ο„):=βˆ‘Ο„β€²:π​(Ο„β€²)=Ο„GΟƒ1​σ2​(Ο„β€²).G_{\sigma_{1}\sigma_{2}}(\tau):=\sum_{\tau^{\prime}:\pi(\tau^{\prime})=\tau}G_{\sigma_{1}\sigma_{2}}(\tau^{\prime}).

The coefficient of each monomial entry of GΟƒ1​σ2​(Ο„)G_{\sigma_{1}\sigma_{2}}(\tau) will be denoted by gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„)βˆˆβ„‚g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau)\in\mathbb{C}. We require them to satisfy the following

Definition 4.1.

Let Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime}. A Ο„β€²\tau^{\prime}-Kaneyama data is a collection of invertible matrices

𝐠​(Ο„β€²):={(gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„β€²))}Ο„β€²βŠ‚Οƒ1(Ξ±),Οƒ2(Ξ²)βˆˆπ’«m​a​xβ€²βŠ‚G​L​(μ​(Ο„β€²),β„‚){\bf{g}}(\tau^{\prime}):=\{(g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau^{\prime}))\}_{\tau^{\prime}\subset\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)}\in\mathscr{P}^{\prime}_{max}}\subset GL(\mu(\tau^{\prime}),\mathbb{C})

such that

  1. (G1)

    gΟƒ(Ξ±)​σ(Ξ²)​(Ο„β€²)=I​d(α​β)g_{\sigma^{(\alpha)}\sigma^{(\beta)}}(\tau^{\prime})=Id^{(\alpha\beta)}, for all Οƒβˆˆπ’«m​a​x\sigma\in\mathscr{P}_{max}.

  2. (G2)

    gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„β€²)=0g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau^{\prime})=0 if mτ​(Οƒ1(Ξ±))βˆ’mτ​(Οƒ2(Ξ²))βˆ‰KΟ„β†’Οƒ1βˆ©Οƒ2βˆ¨βˆ©π’¬Ο„βˆ—m_{\tau}(\sigma_{1}^{(\alpha)})-m_{\tau}(\sigma_{2}^{(\beta)})\notin K_{\tau\to\sigma_{1}\cap\sigma_{2}}^{\vee}\cap\mathcal{Q}_{\tau}^{*}.

  3. (G3)

    For any Οƒ1,Οƒ2,Οƒ3βˆˆπ’«m​a​x\sigma_{1},\sigma_{2},\sigma_{3}\in\mathscr{P}_{max}, we have

    βˆ‘Ξ²:Οƒ2(Ξ²)βŠƒΟ„β€²gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„β€²)​gΟƒ2(Ξ²)​σ3(Ξ³)​(Ο„β€²)=gΟƒ1(Ξ±)​σ3(Ξ³)​(Ο„β€²),\sum_{\beta:\sigma_{2}^{(\beta)}\supset\tau^{\prime}}g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau^{\prime})g_{\sigma_{2}^{(\beta)}\sigma_{3}^{(\gamma)}}(\tau^{\prime})=g_{\sigma_{1}^{(\alpha)}\sigma_{3}^{(\gamma)}}(\tau^{\prime}),

    for all Οƒ1(Ξ±),Οƒ3(Ξ³)βŠƒΟ„β€²\sigma_{1}^{(\alpha)},\sigma_{3}^{(\gamma)}\supset\tau^{\prime}.

A collection of Kaneyama data 𝐠:={𝐠​(Ο„β€²)}Ο„β€²βˆˆπ’«β€²{\bf{g}}:=\{{\bf{g}}(\tau^{\prime})\}_{\tau^{\prime}\in\mathscr{P}^{\prime}} is said to be compatible if 𝐠​(Ο„β€²){\bf{g}}(\tau^{\prime}) is Ο„β€²\tau^{\prime}-compatible for all Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime} and for each g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2}, there exist a collection of rΓ—rr\times r matrices matrix

𝐑​(g):={(hΟƒ(Ξ±)​σ(Ξ²)​(g))Ξ±,Ξ²}Οƒβˆˆπ’«m​a​xβŠ‚G​L​(r,β„‚){\bf{h}}(g):=\{(h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g))_{\alpha,\beta}\}_{\sigma\in\mathscr{P}_{max}}\subset GL(r,\mathbb{C})

such that

  1. (H1)

    For any Οƒβˆˆπ’«m​a​x\sigma\in\mathscr{P}_{max} contains Ο„2\tau_{2}, we have hΟƒ(Ξ±)​σ(Ξ²)​(g)β‰ 0h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)\neq 0 only if Οƒ(Ξ±),Οƒ(Ξ²)\sigma^{(\alpha)},\sigma^{(\beta)} contains a common lift of Ο„1\tau_{1} and mΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ²))∈KΟ„1β†’Οƒβˆ¨βˆ©π’¬Ο„2βˆ—m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\beta)})\in K_{\tau_{1}\to\sigma}^{\vee}\cap\mathcal{Q}_{\tau_{2}}^{*}.

  2. (H2)

    For any Οƒ1,Οƒ2βˆˆπ’«m​a​x\sigma_{1},\sigma_{2}\in\mathscr{P}_{max} contain Ο„2\tau_{2},

    βˆ‘Ξ²=1rhΟƒ1(Ξ±)​σ1(Ξ²)​(g)​gΟƒ1(Ξ²)​σ2(Ξ³)​(Ο„1)=βˆ‘Ξ²=1rgΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„2)​hΟƒ2(Ξ²)​σ2(Ξ³)​(g),\sum_{\beta=1}^{r}h_{\sigma_{1}^{(\alpha)}\sigma_{1}^{(\beta)}}(g)g_{\sigma_{1}^{(\beta)}\sigma_{2}^{(\gamma)}}(\tau_{1})=\sum_{\beta=1}^{r}g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau_{2})h_{\sigma_{2}^{(\beta)}\sigma_{2}^{(\gamma)}}(g),

    whenever mΟ„1​(Οƒ1(Ξ±))βˆ’mΟ„1​(Οƒ2(Ξ³))∈KΟ„1β†’Οƒ1βˆ©Οƒ2βˆ¨βˆ©π’¬Ο„2βˆ—m_{\tau_{1}}(\sigma_{1}^{(\alpha)})-m_{\tau_{1}}(\sigma_{2}^{(\gamma)})\in K_{\tau_{1}\to\sigma_{1}\cap\sigma_{2}}^{\vee}\cap\mathcal{Q}_{\tau_{2}}^{*}.

  3. (H3)

    For g1:Ο„1β†’Ο„2,g2:Ο„2β†’Ο„3g_{1}:\tau_{1}\to\tau_{2},g_{2}:\tau_{2}\to\tau_{3} and g3:=g2∘g1g_{3}:=g_{2}\circ g_{1}, we have

    βˆ‘Ξ²=1rhΟƒ(Ξ±)​σ(Ξ²)​(g2)​hΟƒ(Ξ²)​σ(Ξ³)​(g1)=hΟƒ(Ξ±)​σ(Ξ³)​(g3),\sum_{\beta=1}^{r}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g_{2})h_{\sigma^{(\beta)}\sigma^{(\gamma)}}(g_{1})=h_{\sigma^{(\alpha)}\sigma^{(\gamma)}}(g_{3}),

    whenever ΟƒβŠƒΟ„3\sigma\supset\tau_{3} and mΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ³))∈KΟ„1β†’Οƒβˆ¨βˆ©π’¬Ο„3βˆ—m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\gamma)})\in K_{\tau_{1}\to\sigma}^{\vee}\cap\mathcal{Q}_{\tau_{3}}^{*}.

Remark 4.2.

Being invertible and the cocycle condition (G3) are independent of the choice of the ordering Οƒ(1),…,Οƒ(r)\sigma^{(1)},\dots,\sigma^{(r)}, so Definition 4.1 only depends on 𝕃\mathbb{L}.

Remark 4.3.

Conditions (G1)-(G3) are generalization of the linear algebra data given in [9] to affine manifold with singularities. Given a tropical Lagrangian multi-section with degree β‰₯2\geq 2, a Kaneyama data may not exist, even on a single toric piece (see [15], Example 5.1). Therefore, one may ask for the abundance of such data. We will prove in Theorem 5.9 that, at least in the case of Calabi-Yau hypersurfaces, such data can be obtained from restricting toric vector bundles on the ambient toric variety to its boundary divisor.

Condition (G2) implies entries of GΟƒ1​σ2​(Ο„β€²)G_{\sigma_{1}\sigma_{2}}(\tau^{\prime}) are regular functions. Condition (G1) and the cocycle condition (G3) immediately implies the existence of a rank μ​(Ο„β€²)\mu(\tau^{\prime}) locally free sheaf ℰ​(𝐠​(Ο„β€²))\mathcal{E}({\bf{g}}(\tau^{\prime})) on the closed toric strata XΟ„X_{\tau}. Define

ℰ​(𝐠​(Ο„)):=⨁τ′:π​(Ο„β€²)=τℰ​(𝐠​(Ο„β€²)),\mathcal{E}({\bf{g}}(\tau)):=\bigoplus_{\tau^{\prime}:\pi(\tau^{\prime})=\tau}\mathcal{E}({\bf{g}}(\tau^{\prime})),

which is a rank rr locally sheaf on XΟ„X_{\tau}.

Remark 4.4.

The local representative φτ′\varphi_{\tau^{\prime}} of Ο†\varphi determines a π’¬Ο„βŠ—β„‚Γ—\mathcal{Q}_{\tau}\otimes\mathbb{C}^{\times}-action on ℰ​(𝐠​(Ο„β€²))\mathcal{E}({\bf{g}}(\tau^{\prime})). Namely,

Ξ»β‹…1Οƒ(Ξ±)​(Ο„β€²):=Ξ»mτ​(Οƒ(Ξ±))​1Οƒ(Ξ±)​(Ο„β€²),\lambda\cdot 1_{\sigma^{(\alpha)}}(\tau^{\prime}):=\lambda^{m_{\tau}(\sigma^{(\alpha)})}1_{\sigma^{(\alpha)}}(\tau^{\prime}),

for all Ξ»βˆˆπ’¬Ο„βŠ—β„‚Γ—\lambda\in\mathcal{Q}_{\tau}\otimes\mathbb{C}^{\times}. One can easily check that this action is compatible with the transition maps. Hence ℰ​(𝐠​(Ο„β€²))\mathcal{E}({\bf{g}}(\tau^{\prime})) carries a structure of toric vector bundle over XΟ„X_{\tau}. The existence of equivariant structure will be important when we perform the reverse construction in Section 5.

We would like to glue {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}} together. The idea is to embed ℰ​(Ο„2β€²)\mathcal{E}(\tau_{2}^{\prime}) to ℰ​(Ο„1β€²)\mathcal{E}(\tau_{1}^{\prime}) when Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}. To do this, we first use the data {(hΟƒ(Ξ±)​σ(Ξ²)​(g))}\{(h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g))\} to construct an isomorphism H​(g):ℰ​(𝐠​(Ο„2))β†’F​(g)βˆ—β€‹β„°β€‹(𝐠​(Ο„1))H(g):\mathcal{E}({\bf{g}}(\tau_{2}))\to F(g)^{*}\mathcal{E}({\bf{g}}(\tau_{1})). Define

Hσ​(g):1Οƒ(Ξ±)​(Ο„2)β†¦βˆ‘Ξ²=1rhΟƒ(Ξ±)​σ(Ξ²)​(g)​zmΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ²))|VΟ„2→σ​F​(g)βˆ—β€‹1Οƒ(Ξ²)​(Ο„1).H_{\sigma}(g):1_{\sigma^{(\alpha)}}(\tau_{2})\mapsto\sum_{\beta=1}^{r}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)z^{m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\beta)})}|_{V_{\tau_{2}\to\sigma}}F(g)^{*}1_{\sigma^{(\beta)}}(\tau_{1}).

By Condition (H1), the entries of Hσ​(g)H_{\sigma}(g) are regular functions on VΟ„2β†’ΟƒV_{\tau_{2}\to\sigma}. Given maximal Οƒ1,Οƒ2βŠƒΟ„2\sigma_{1},\sigma_{2}\supset\tau_{2}, the composition F​(g)βˆ—β€‹GΟƒ1​σ2​(Ο„1)∘HΟƒ1​(g)|VΟ„2β†’Ο„F(g)^{*}G_{\sigma_{1}\sigma_{2}}(\tau_{1})\circ H_{\sigma_{1}}(g)|_{V_{\tau_{2}\to\tau}} is given by

1Οƒ1(Ξ±)​(Ο„1)β†¦βˆ‘Ξ²,Ξ³=1rhΟƒ1(Ξ±)​σ1(Ξ²)​(g)​gΟƒ1​σ2(β​γ)​(Ο„1)​zmΟ„1​(Οƒ1(Ξ±))βˆ’mΟ„1​(Οƒ2(Ξ³))|VΟ„2→τ​F​(g)βˆ—β€‹1Οƒ2(Ξ³)​(Ο„1).1_{\sigma_{1}^{(\alpha)}}(\tau_{1})\mapsto\sum_{\beta,\gamma=1}^{r}h_{\sigma_{1}^{(\alpha)}\sigma_{1}^{(\beta)}}(g)g_{\sigma_{1}\sigma_{2}}^{(\beta\gamma)}(\tau_{1})z^{m_{\tau_{1}}(\sigma_{1}^{(\alpha)})-m_{\tau_{1}}(\sigma_{2}^{(\gamma)})}|_{V_{\tau_{2}\to\tau}}F(g)^{*}1_{\sigma_{2}^{(\gamma)}}(\tau_{1}).

On the other hand, the composition HΟƒ2​(g)|VΟ„2β†’Ο„βˆ˜GΟƒ1​σ2​(Ο„2)H_{\sigma_{2}}(g)|_{V_{\tau_{2}\to\tau}}\circ G_{\sigma_{1}\sigma_{2}}(\tau_{2}) is given by

1Οƒ1(Ξ±)​(Ο„2)β†¦βˆ‘Ξ²,Ξ³=1rgΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„2)​hΟƒ2(Ξ²)​σ2(Ξ³)​(g)​zmΟ„2​(Οƒ1(Ξ±))βˆ’mΟ„2​(Οƒ2(Ξ²))+mΟ„1​(Οƒ2(Ξ²))βˆ’mΟ„1​(Οƒ2(Ξ³))|VΟ„2→τ​F​(g)βˆ—β€‹1Οƒ2(Ξ³)​(Ο„1).1_{\sigma_{1}^{(\alpha)}}(\tau_{2})\mapsto\sum_{\beta,\gamma=1}^{r}g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau_{2})h_{\sigma_{2}^{(\beta)}\sigma_{2}^{(\gamma)}}(g)z^{m_{\tau_{2}}(\sigma_{1}^{(\alpha)})-m_{\tau_{2}}(\sigma_{2}^{(\beta)})+m_{\tau_{1}}(\sigma_{2}^{(\beta)})-m_{\tau_{1}}(\sigma_{2}^{(\gamma)})}|_{V_{\tau_{2}\to\tau}}F(g)^{*}1_{\sigma_{2}^{(\gamma)}}(\tau_{1}).

Now, we introduce a frequently used trick, called the slope cancellation trick. By definition of GΟƒ1​σ2​(Ο„2)G_{\sigma_{1}\sigma_{2}}(\tau_{2}), the constant gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„2)g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau_{2}) is non-zero only if Οƒ1(Ξ±),Οƒ2(Ξ²)\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)} contain a common lift of Ο„2\tau_{2}, say Ο„2β€²\tau_{2}^{\prime}, so in particular, they contains Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}. On the other hand, by the construction of Hσ​(g)H_{\sigma}(g), the constant hΟƒ2(Ξ²)​σ2(Ξ³)​(g)h_{\sigma_{2}^{(\beta)}\sigma_{2}^{(\gamma)}}(g) is non-zero only if Οƒ2(Ξ²),Οƒ2(Ξ³)\sigma_{2}^{(\beta)},\sigma_{2}^{(\gamma)} contains a common lift of Ο„1\tau_{1} and it must be Ο„1β€²\tau_{1}^{\prime} as Οƒ2(Ξ²)βŠƒΟ„1β€²\sigma_{2}^{(\beta)}\supset\tau_{1}^{\prime}. As a whole, we conclude that Οƒ1(Ξ±),Οƒ2(Ξ²),Οƒ2(Ξ³)\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)},\sigma_{2}^{(\gamma)} all contain the lift Ο„1β€²\tau_{1}^{\prime} of Ο„1\tau_{1}. Moreover, via the inclusion pgβˆ—:𝒬τ2βˆ—β†’π’¬Ο„1βˆ—p_{g}^{*}:\mathcal{Q}_{\tau_{2}}^{*}\to\mathcal{Q}_{\tau_{1}}^{*}, the piecewise linear function

f:=pgβˆ—β€‹mΟ„2′​(Οƒβ€²)βˆ’mΟ„1′​(Οƒβ€²)f:=p_{g}^{*}m_{\tau_{2}^{\prime}}(\sigma^{\prime})-m_{\tau_{1}^{\prime}}(\sigma^{\prime})

is independent of Οƒβ€²\sigma^{\prime} as long as Ο„1β€²βŠ‚Ο„2β€²βŠ‚Οƒβ€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}\subset\sigma^{\prime}, which means ff is actually an affine function. This implies

mΟ„2′​(Οƒ1(Ξ±))βˆ’mΟ„2′​(Οƒ2(Ξ²))+mΟ„1′​(Οƒ2(Ξ²))βˆ’mΟ„1′​(Οƒ2(Ξ³))=\displaystyle m_{\tau_{2}^{\prime}}(\sigma_{1}^{(\alpha)})-m_{\tau_{2}^{\prime}}(\sigma_{2}^{(\beta)})+m_{\tau_{1}^{\prime}}(\sigma_{2}^{(\beta)})-m_{\tau_{1}^{\prime}}(\sigma_{2}^{(\gamma)})= mΟ„2′​(Οƒ1(Ξ±))βˆ’fβˆ’mΟ„1′​(Οƒ2(Ξ³))\displaystyle\,m_{\tau_{2}^{\prime}}(\sigma_{1}^{(\alpha)})-f-m_{\tau_{1}^{\prime}}(\sigma_{2}^{(\gamma)})
=\displaystyle= mΟ„1′​(Οƒ1(Ξ±))βˆ’mΟ„1′​(Οƒ2(Ξ³)).\displaystyle\,m_{\tau_{1}^{\prime}}(\sigma_{1}^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma_{2}^{(\gamma)}).

It is worth mentioning that we are not allowed to absorb ff by mΟ„1′​(Οƒ2(Ξ³))m_{\tau_{1}^{\prime}}(\sigma_{2}^{(\gamma)}) as Οƒ2(Ξ³)\sigma_{2}^{(\gamma)} may not contain Ο„2β€²\tau_{2}^{\prime}.

By using the slope cancellation trick and Condition (H2), it is easy to see that

F​(g)βˆ—β€‹GΟƒ1​σ2​(Ο„1)∘HΟƒ1​(g)|VΟ„2β†’Ο„=HΟƒ2​(g)|VΟ„2β†’Ο„βˆ˜GΟƒ1​σ2​(Ο„2).F(g)^{*}G_{\sigma_{1}\sigma_{2}}(\tau_{1})\circ H_{\sigma_{1}}(g)|_{V_{\tau_{2}\to\tau}}=H_{\sigma_{2}}(g)|_{V_{\tau_{2}\to\tau}}\circ G_{\sigma_{1}\sigma_{2}}(\tau_{2}).

Moreover, we have

det(Hσ​(g))=\displaystyle\det(H_{\sigma}(g))= det(hΟƒ(Ξ±)​σ(Ξ²)​(g))​zβˆ‘Ξ±=1rmΟ„1​(Οƒ(Ξ±))βˆ’βˆ‘Ξ±=1rmΟ„1​(Οƒ(Ξ±))\displaystyle\,\det(h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g))z^{\sum_{\alpha=1}^{r}m_{\tau_{1}}(\sigma^{(\alpha)})-\sum_{\alpha=1}^{r}m_{\tau_{1}}(\sigma^{(\alpha)})}
=\displaystyle= det(hΟƒ(Ξ±)​σ(Ξ²)​(g))βˆˆβ„‚Γ—.\displaystyle\,\det(h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g))\in\mathbb{C}^{\times}.

Hence H​(g):ℰ​(𝐠​(Ο„2))β†’F​(g)βˆ—β€‹β„°β€‹(𝐠​(Ο„1))H(g):\mathcal{E}({\bf{g}}(\tau_{2}))\to F(g)^{*}\mathcal{E}({\bf{g}}(\tau_{1})) defines an isomorphism.

Let sΒ―\overline{s} be the closed gluing data associated to the open gluing data ss. We now define

Hs¯​(g):ℰ​(𝐠​(Ο„2))β†’Fs¯​(g)βˆ—β€‹β„°β€‹(𝐠​(Ο„1))H_{\overline{s}}(g):\mathcal{E}({\bf{g}}(\tau_{2}))\to F_{\overline{s}}(g)^{*}\mathcal{E}({\bf{g}}(\tau_{1}))

to be the composition

ℰ​(𝐠​(Ο„2))β†’sΒ―gβˆ—β€‹β„°β€‹(𝐠​(Ο„2))β†’sΒ―gβˆ—β€‹H​(g)Fs¯​(g)βˆ—β€‹β„°β€‹(𝐠​(Ο„1))\mathcal{E}({\bf{g}}(\tau_{2}))\to\overline{s}_{g}^{*}\mathcal{E}({\bf{g}}(\tau_{2}))\xrightarrow{\overline{s}_{g}^{*}H(g)}F_{\overline{s}}(g)^{*}\mathcal{E}({\bf{g}}(\tau_{1}))

where the first isomorphism is prescribed by the chosen equivariant structure on ℰ​(𝐠​(Ο„2))\mathcal{E}({\bf{g}}(\tau_{2})), which depends on the choice of local representatives {φτ2β€²}\{\varphi_{\tau_{2}^{\prime}}\}. Explicitly, it is given by

Hs¯​(g):1Οƒ(Ξ±)​(Ο„2)β†¦βˆ‘Ξ²=1rhΟƒ(Ξ±)​σ(Ξ²)​(g)​sΒ―g​(mΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ²)))sΒ―g​(mΟ„2​(Οƒ(Ξ±)))​zmΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ²))|VΟ„2→σ​Fs¯​(g)βˆ—β€‹1Οƒ(Ξ²)​(Ο„1).H_{\overline{s}}(g):1_{\sigma^{(\alpha)}}(\tau_{2})\mapsto\sum_{\beta=1}^{r}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)\frac{\overline{s}_{g}(m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\beta)}))}{\overline{s}_{g}(m_{\tau_{2}}(\sigma^{(\alpha)}))}z^{m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\beta)})}|_{V_{\tau_{2}\to\sigma}}F_{\overline{s}}(g)^{*}1_{\sigma^{(\beta)}}(\tau_{1}).

To obtain a consistent gluing, we need the following cocycle condition

(1) Hs¯​(g3)βˆ’1∘Fs¯​(g2)βˆ—β€‹Hs¯​(g1)∘Hs¯​(g2)=I​dℰ​(𝐠​(Ο„3)),H_{\overline{s}}(g_{3})^{-1}\circ F_{\overline{s}}(g_{2})^{*}H_{\overline{s}}(g_{1})\circ H_{\overline{s}}(g_{2})=Id_{\mathcal{E}({\bf{g}}(\tau_{3}))},

for all g1:Ο„1β†’Ο„2,g2:Ο„2β†’Ο„3g_{1}:\tau_{1}\to\tau_{2},g_{2}:\tau_{2}\to\tau_{3} and g3:=g2∘g1g_{3}:=g_{2}\circ g_{1}. We only need to check this for any triple Ο„1β€²βŠ‚Ο„2β€²βŠ‚Ο„3β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}\subset\tau_{3}^{\prime}. Consider the composition

(2) Hs¯​(g3)βˆ’1∘Fs¯​(g2)βˆ—β€‹Hs¯​(g1)∘Hs¯​(g2).H_{\overline{s}}(g_{3})^{-1}\circ F_{\overline{s}}(g_{2})^{*}H_{\overline{s}}(g_{1})\circ H_{\overline{s}}(g_{2}).

First note that the monomial part of a summand of (2) has exponent

(mΟ„2​(Οƒ(Ξ±))βˆ’mΟ„2​(Οƒ(Ξ²)))+(mΟ„1​(Οƒ(Ξ²))βˆ’mΟ„1​(Οƒ(Ξ³)))+(mΟ„1​(Οƒ(Ξ³))βˆ’mΟ„1​(Οƒ(Ξ΄))),(m_{\tau_{2}}(\sigma^{(\alpha)})-m_{\tau_{2}}(\sigma^{(\beta)}))+(m_{\tau_{1}}(\sigma^{(\beta)})-m_{\tau_{1}}(\sigma^{(\gamma)}))+(m_{\tau_{1}}(\sigma^{(\gamma)})-m_{\tau_{1}}(\sigma^{(\delta)})),

with each bracketed term lies in 𝒬τ3βˆ—\mathcal{Q}_{\tau_{3}}^{*}. The corresponding summand is non-zero only if Οƒ(Ξ±),Οƒ(Ξ²),Οƒ(Ξ³),Οƒ(Ξ΄)\sigma^{(\alpha)},\sigma^{(\beta)},\sigma^{(\gamma)},\sigma^{(\delta)} contain a common lift of Ο„1\tau_{1}. Using the slope cancellation trick, the exponent reduces to

mΟ„1​(Οƒ(Ξ±))βˆ’mΟ„1​(Οƒ(Ξ΄))βˆˆπ’¬Ο„3βˆ—.m_{\tau_{1}}(\sigma^{(\alpha)})-m_{\tau_{1}}(\sigma^{(\delta)})\in\mathcal{Q}_{\tau_{3}}^{*}.

Now, the coefficient of the (Ξ±,Ξ΄)(\alpha,\delta)-entry of (2) is given by

βˆ‘Ξ²,Ξ³=1rhΟƒ(Ξ±)​σ(Ξ²)​(g2)​hΟƒ(Ξ²)​σ(Ξ³)​(g1)​hΟƒ(Ξ³)​σ(Ξ΄)βˆ’1​(g3)​sΒ―Ο„1​τ2​τ3(α​β​γ​δ)​(Οƒ),\sum_{\beta,\gamma=1}^{r}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g_{2})h_{\sigma^{(\beta)}\sigma^{(\gamma)}}(g_{1})h_{\sigma^{(\gamma)}\sigma^{(\delta)}}^{-1}(g_{3})\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{(\alpha\beta\gamma\delta)}(\sigma),

where sΒ―Ο„1​τ2​τ3(α​β​γ​δ)​(Οƒ)\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{(\alpha\beta\gamma\delta)}(\sigma) is the product of the following factors

sΒ―g2​(mΟ„2​(Οƒ(Ξ±))βˆ’mΟ„2​(Οƒ(Ξ²)))​sΒ―g2​(mΟ„3​(Οƒ(Ξ±)))βˆ’1,\displaystyle\overline{s}_{g_{2}}(m_{\tau_{2}}(\sigma^{(\alpha)})-m_{\tau_{2}}(\sigma^{(\beta)}))\overline{s}_{g_{2}}(m_{\tau_{3}}(\sigma^{(\alpha)}))^{-1},
sΒ―g3​(mΟ„1​(Οƒ(Ξ²))βˆ’mΟ„1​(Οƒ(Ξ³)))​sΒ―g1​(mΟ„2​(Οƒ(Ξ²)))βˆ’1,\displaystyle\overline{s}_{g_{3}}(m_{\tau_{1}}(\sigma^{(\beta)})-m_{\tau_{1}}(\sigma^{(\gamma)}))\overline{s}_{g_{1}}(m_{\tau_{2}}(\sigma^{(\beta)}))^{-1},
sΒ―g3​(mΟ„1​(Οƒ(Ξ³))βˆ’mΟ„1​(Οƒ(Ξ΄)))​sΒ―g3​(mΟ„3​(Οƒ(Ξ΄))).\displaystyle\overline{s}_{g_{3}}(m_{\tau_{1}}(\sigma^{(\gamma)})-m_{\tau_{1}}(\sigma^{(\delta)}))\overline{s}_{g_{3}}(m_{\tau_{3}}(\sigma^{(\delta)})).

Using the slope cancellation trick again, all the slope difference becomes mΟ„1​(Οƒ(Ξ·))βˆ’mΟ„1​(Οƒ(ΞΎ))m_{\tau_{1}}(\sigma^{(\eta)})-m_{\tau_{1}}(\sigma^{(\xi)}). Then one can easily show that

sΒ―Ο„1​τ2​τ3(α​β​γ​δ)​(Οƒ)=sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±))βˆ’1,\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{(\alpha\beta\gamma\delta)}(\sigma)=\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)})^{-1},

where

sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±)):=sΒ―g1​(mΟ„2​(Οƒ(Ξ±)))​sΒ―g2​(mΟ„3​(Οƒ(Ξ±)))​sΒ―g3​(mΟ„3​(Οƒ(Ξ±)))βˆ’1.\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)}):=\overline{s}_{g_{1}}(m_{\tau_{2}}(\sigma^{(\alpha)}))\overline{s}_{g_{2}}(m_{\tau_{3}}(\sigma^{(\alpha)}))\overline{s}_{g_{3}}(m_{\tau_{3}}(\sigma^{(\alpha)}))^{-1}.

Using Condition (H3), the composition (2) can be simplified to

1Οƒ(Ξ±)​(Ο„3)↦sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±))βˆ’1​1Οƒ(Ξ±)​(Ο„3).1_{\sigma^{(\alpha)}}(\tau_{3})\mapsto\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)})^{-1}1_{\sigma^{(\alpha)}}(\tau_{3}).
Lemma 4.5.

The 2-cocycle sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±))\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)}) only depends on the lifts Ο„1β€²,Ο„2β€²,Ο„3β€²\tau_{1}^{\prime},\tau_{2}^{\prime},\tau_{3}^{\prime} so that Ο„1β€²βŠ‚Ο„2β€²βŠ‚Ο„3β€²βŠ‚Οƒ(Ξ±)\tau_{1}^{\prime}\subset\tau_{2}^{\prime}\subset\tau_{3}^{\prime}\subset\sigma^{(\alpha)}. It is then closed with respective to the CΔ›ch differential Ξ΄Λ‡\check{\delta} on CΛ‡2​(𝒲′,β„‚Γ—)\check{C}^{2}(\mathcal{W}^{\prime},\mathbb{C}^{\times}) and its cohomology class is independent of the local representatives of Ο†\varphi.

Proof.

Let Οƒ1,Οƒ2βˆˆπ’«m​a​x\sigma_{1},\sigma_{2}\in\mathscr{P}_{max} such that Οƒ1,Οƒ2βŠƒΟ„3\sigma_{1},\sigma_{2}\supset\tau_{3}. We first prove the special case that Οƒ1(Ξ±),Οƒ2(Ξ²)\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)} contain the common lift Ο„3β€²\tau_{3}^{\prime} so that

mΟ„3​(Οƒ1(Ξ±))βˆ’mΟ„3​(Οƒ2(Ξ²))∈KΟ„3β†’Οƒ1βˆ©Οƒ2βˆ¨βˆ©π’¬Ο„3βˆ—.m_{\tau_{3}}(\sigma_{1}^{(\alpha)})-m_{\tau_{3}}(\sigma_{2}^{(\beta)})\in K_{\tau_{3}\to\sigma_{1}\cap\sigma_{2}}^{\vee}\cap\mathcal{Q}_{\tau_{3}}^{*}.

In this case, via the inclusion 𝒬τ3βˆ—βŠ‚π’¬Ο„2βˆ—βŠ‚π’¬Ο„1βˆ—\mathcal{Q}_{\tau_{3}}^{*}\subset\mathcal{Q}_{\tau_{2}}^{*}\subset\mathcal{Q}_{\tau_{1}}^{*}, we have

mΟ„1​(Οƒ1(Ξ±))βˆ’mΟ„1​(Οƒ2(Ξ²))=mΟ„2​(Οƒ1(Ξ±))βˆ’mΟ„2​(Οƒ2(Ξ²))=mΟ„3​(Οƒ1(Ξ±))βˆ’mΟ„3​(Οƒ2(Ξ²)).m_{\tau_{1}}(\sigma_{1}^{(\alpha)})-m_{\tau_{1}}(\sigma_{2}^{(\beta)})=m_{\tau_{2}}(\sigma_{1}^{(\alpha)})-m_{\tau_{2}}(\sigma_{2}^{(\beta)})=m_{\tau_{3}}(\sigma_{1}^{(\alpha)})-m_{\tau_{3}}(\sigma_{2}^{(\beta)}).

Hence the cocycle condition of ss implies

sΒ―Ο„1​τ2​τ3​(Οƒ1(Ξ±))=sΒ―Ο„1​τ2​τ3​(Οƒ2(Ξ²)).\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma_{1}^{(\alpha)})=\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma_{2}^{(\beta)}).

For general pair of Οƒ1(Ξ±),Οƒ2(Ξ²)\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)} that contains Ο„3β€²\tau_{3}^{\prime}, choose a sequence of maximal cells

Οƒ1(Ξ±):=Οƒi1(Ξ±1),Οƒi2(Ξ±2),…,Οƒik(Ξ±k):=Οƒ2(Ξ²).\sigma_{1}^{(\alpha)}:=\sigma_{i_{1}}^{(\alpha_{1})},\sigma_{i_{2}}^{(\alpha_{2})},\dots,\sigma_{i_{k}}^{(\alpha_{k})}:=\sigma_{2}^{(\beta)}.

such that Οƒij(Ξ±j)βŠƒΟ„3β€²\sigma_{i_{j}}^{(\alpha_{j})}\supset\tau_{3}^{\prime} for all j=1,…,kj=1,\dots,k and π​(Οƒij(Ξ±j)βˆ©Οƒij+1(Ξ±j+1))=Οƒijβˆ©Οƒij+1\pi(\sigma_{i_{j}}^{(\alpha_{j})}\cap\sigma_{i_{j+1}}^{(\alpha_{j+1})})=\sigma_{i_{j}}\cap\sigma_{i_{j+1}} for all j=1,…,kβˆ’1j=1,\dots,k-1. Then continuity of φτ3β€²\varphi_{\tau_{3}^{\prime}} implies

mΟ„3​(Οƒij(Ξ±j))|KΟ„3β†’Οƒijβˆ©Οƒij+1=mΟ„3​(Οƒij+1(Ξ±j+1))|KΟ„3β†’Οƒijβˆ©Οƒij+1m_{\tau_{3}}(\sigma_{i_{j}}^{(\alpha_{j})})|_{K_{\tau_{3}\to\sigma_{i_{j}}\cap\sigma_{i_{j+1}}}}=m_{\tau_{3}}(\sigma_{i_{j+1}}^{(\alpha_{j+1})})|_{K_{\tau_{3}\to\sigma_{i_{j}}\cap\sigma_{i_{j+1}}}}

for all j=1,…,kβˆ’1j=1,\dots,k-1. In particular,

mΟ„3​(Οƒij(Ξ±j))βˆ’mΟ„3​(Οƒij+1(Ξ±j+1))∈KΟ„3β†’Οƒijβˆ©Οƒij+1βˆ¨βˆ©π’¬Ο„3βˆ—,m_{\tau_{3}}(\sigma_{i_{j}}^{(\alpha_{j})})-m_{\tau_{3}}(\sigma_{i_{j+1}}^{(\alpha_{j+1})})\in K_{\tau_{3}\to\sigma_{i_{j}}\cap\sigma_{i_{j+1}}}^{\vee}\cap\mathcal{Q}_{\tau_{3}}^{*},

for all j=1,…,kβˆ’1j=1,\dots,k-1. By the special case, we have

sΒ―Ο„1​τ2​τ3​(Οƒ1(Ξ±))=sΒ―Ο„1​τ2​τ3​(Οƒi2(Ξ±2))=β‹―=sΒ―Ο„1​τ2​τ3​(Οƒ2(Ξ²)).\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma_{1}^{(\alpha)})=\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma_{i_{2}}^{(\alpha_{2})})=\cdots=\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma_{2}^{(\beta)}).

This proves the first part of the lemma. For the second part, it is obvious that sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±))\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)}) is Ξ΄Λ‡\check{\delta}-closed. To show that its cohomology class is independent of the local representatives, note that any choice of another local representative of Ο†\varphi differ from φτiβ€²\varphi_{\tau_{i}^{\prime}} by a local affine function fΟ„iβ€²:WΟ„i→ℝf_{\tau_{i}^{\prime}}:W_{\tau_{i}}\to\mathbb{R}. Then

sΒ―Ο„1​τ2​τ3o​l​d​(Οƒ1(Ξ±))=sΒ―g1​(fΟ„2β€²)​sΒ―g2​(fΟ„3β€²)​sΒ―g3​(fΟ„3β€²)βˆ’1​sΒ―Ο„1​τ2​τ3n​e​w​(Οƒ1(Ξ±)),\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{old}(\sigma_{1}^{(\alpha)})=\overline{s}_{g_{1}}(f_{\tau_{2}^{\prime}})\overline{s}_{g_{2}}(f_{\tau_{3}^{\prime}})\overline{s}_{g_{3}}(f_{\tau_{3}^{\prime}})^{-1}\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{new}(\sigma_{1}^{(\alpha)}),

which means sΒ―Ο„1​τ2​τ3o​l​d​(Οƒ1(Ξ±))\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{old}(\sigma_{1}^{(\alpha)}) and sΒ―Ο„1​τ2​τ3n​e​w​(Οƒ1(Ξ±))\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}^{new}(\sigma_{1}^{(\alpha)}) define the same cohomology class. ∎

Denote the cohomology class obtained in Lemma 4.5 by [sΒ―Ο„1′​τ2′​τ3β€²]∈H2​(𝒲′,β„‚Γ—)[\overline{s}_{\tau_{1}^{\prime}\tau_{2}^{\prime}\tau_{3}^{\prime}}]\in H^{2}(\mathcal{W}^{\prime},\mathbb{C}^{\times}). We define o𝕃:H1​(𝒲,β„‚Γ—)β†’H2​(𝒲′,β„‚Γ—)o_{\mathbb{L}}:H^{1}(\mathcal{W},\mathbb{C}^{\times})\to H^{2}(\mathcal{W}^{\prime},\mathbb{C}^{\times}) by

o𝕃:[sΒ―]↦[sΒ―Ο„1′​τ2′​τ3β€²].o_{\mathbb{L}}:[\overline{s}]\mapsto[\overline{s}_{\tau_{1}^{\prime}\tau_{2}^{\prime}\tau_{3}^{\prime}}].

This map is well-defined because if sΒ―Ο„1β†’Ο„2=tΟ„1βˆ’1​tΟ„2|Ο„1\overline{s}_{\tau_{1}\to\tau_{2}}=t_{\tau_{1}}^{-1}t_{\tau_{2}}|_{\tau_{1}}, we have

sΒ―Ο„1​τ2​τ3​(Οƒ(Ξ±))=\displaystyle\overline{s}_{\tau_{1}\tau_{2}\tau_{3}}(\sigma^{(\alpha)})= tΟ„2​(mΟ„2​(Οƒ(Ξ±)))tΟ„1​(mΟ„2​(Οƒ(Ξ±)))​tΟ„3​(mΟ„3​(Οƒ(Ξ±)))tΟ„2​(mΟ„3​(Οƒ(Ξ±)))​tΟ„1​(mΟ„3​(Οƒ(Ξ±)))tΟ„3​(mΟ„3​(Οƒ(Ξ±)))\displaystyle\,\frac{t_{\tau_{2}}(m_{\tau_{2}}(\sigma^{(\alpha)}))}{t_{\tau_{1}}(m_{\tau_{2}}(\sigma^{(\alpha)}))}\frac{t_{\tau_{3}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}{t_{\tau_{2}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}\frac{t_{\tau_{1}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}{t_{\tau_{3}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}
=\displaystyle= tΟ„1​(mΟ„1​(Οƒ(Ξ±)))tΟ„1​(mΟ„2​(Οƒ(Ξ±)))​tΟ„2​(mΟ„2​(Οƒ(Ξ±)))tΟ„2​(mΟ„3​(Οƒ(Ξ±)))​tΟ„1​(mΟ„3​(Οƒ(Ξ±)))tΟ„1​(mΟ„1​(Οƒ(Ξ±)))\displaystyle\,\frac{t_{\tau_{1}}(m_{\tau_{1}}(\sigma^{(\alpha)}))}{t_{\tau_{1}}(m_{\tau_{2}}(\sigma^{(\alpha)}))}\frac{t_{\tau_{2}}(m_{\tau_{2}}(\sigma^{(\alpha)}))}{t_{\tau_{2}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}\frac{t_{\tau_{1}}(m_{\tau_{3}}(\sigma^{(\alpha)}))}{t_{\tau_{1}}(m_{\tau_{1}}(\sigma^{(\alpha)}))}
=\displaystyle= tΟ„1​(mΟ„1′​τ2β€²)​tΟ„2​(mΟ„2′​τ3β€²)​tΟ„1′​(mΟ„1′​τ3β€²)βˆ’1.\displaystyle\,t_{\tau_{1}}(m_{\tau_{1}^{\prime}\tau_{2}^{\prime}})t_{\tau_{2}}(m_{\tau_{2}^{\prime}\tau_{3}^{\prime}})t_{\tau_{1}^{\prime}}(m_{\tau_{1}^{\prime}\tau_{3}^{\prime}})^{-1}.

It is clear that o𝕃o_{\mathbb{L}} is a group homomorphism. Since WΟ„0β€²βˆ©β‹―βˆ©WΟ„pβ€²W_{\tau_{0}^{\prime}}\cap\cdots\cap W_{\tau_{p}^{\prime}} are contractible for all pβ‰₯0p\geq 0, it follows that {WΟ„β€²}Ο„β€²βˆˆπ’«β€²\{W_{\tau^{\prime}}\}_{\tau^{\prime}\in\mathscr{P}^{\prime}} is an acyclic cover for β„‚Γ—\mathbb{C}^{\times}. It was also shown is [6] that {WΟ„}Ο„βˆˆπ’«\{W_{\tau}\}_{\tau\in\mathscr{P}} is an acyclic cover for π’¬π’«βŠ—β„‚Γ—\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times}. Therefore, we can simply write o𝕃:H1​(B,π’¬π’«βŠ—β„‚Γ—)β†’H2​(L,β„‚Γ—)o_{\mathbb{L}}:H^{1}(B,\mathcal{Q}_{\mathscr{P}}\otimes\mathbb{C}^{\times})\to H^{2}(L,\mathbb{C}^{\times}).

Theorem 4.6.

Suppose sΒ―\overline{s} is the associated closed gluing data of an open gluing data ss. The locally free sheaves {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}} can be glued to a rank rr locally free sheaf on the scheme X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) via the data (𝐠,𝐑)({\bf{g}},{\bf{h}}) if and only if o𝕃​([sΒ―])=1o_{\mathbb{L}}([\overline{s}])=1.

Proof.

If {ℰ​(𝐠​(Ο„))}Ο„βˆˆπ’«\{\mathcal{E}({\bf{g}}(\tau))\}_{\tau\in\mathscr{P}} can be glued, then it is necessary that sΟ„1′​τ2′​τ3β€²=1s_{\tau_{1}^{\prime}\tau_{2}^{\prime}\tau_{3}^{\prime}}=1. Hence its cohomology class equals to 1 too. Conversely, suppose o𝕃​([s])=1o_{\mathbb{L}}([s])=1. Then there exists a collection 𝐀s:={kΟ„1′​τ2β€²}Ο„1β€²βŠ‚Ο„2β€²{\bf{k}}_{s}:=\{k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}\}_{\tau_{1}^{\prime}\subset\tau_{2}^{\prime}} such that

sΒ―Ο„1′​τ2′​τ3β€²=kΟ„1′​τ2′​kΟ„2′​τ3′​kΟ„1′​τ3β€²βˆ’1.\overline{s}_{\tau_{1}^{\prime}\tau_{2}^{\prime}\tau_{3}^{\prime}}=k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}k_{\tau_{2}^{\prime}\tau_{3}^{\prime}}k_{\tau_{1}^{\prime}\tau_{3}^{\prime}}^{-1}.

We modify Hs¯​(g)H_{\overline{s}}(g) to a map H~s¯​(g)\widetilde{H}_{\overline{s}}(g), given by

1Ο„2β€²(Ξ±)​(Οƒ)β†¦βˆ‘Ξ²=1rkΟ„1(Ξ±)​τ2(Ξ±)βˆ’1​sΒ―g​(mΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²)))sΒ―g1​(mΟ„2​(Οƒ(Ξ±)))​hΟƒ(Ξ±)​σ(Ξ²)​(g)​zmΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))​Fs¯​(g)βˆ—β€‹1Ο„1β€²(Ξ²)​(Οƒ)1_{\tau_{2}^{\prime}}^{(\alpha)}(\sigma)\mapsto\sum_{\beta=1}^{r}k_{\tau_{1}^{(\alpha)}\tau_{2}^{(\alpha)}}^{-1}\frac{\overline{s}_{g}(m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)}))}{\overline{s}_{g_{1}}(m_{\tau_{2}}(\sigma^{(\alpha)}))}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)z^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})}F_{\overline{s}}(g)^{*}1_{\tau_{1}^{\prime}}^{(\beta)}(\sigma)

where, up to reordering, Ο„1(Ξ±),Ο„2(Ξ±)\tau_{1}^{(\alpha)},\tau_{2}^{(\alpha)} are determined by Ο„1(Ξ±)βŠ‚Ο„2(Ξ±)βŠ‚Οƒ(Ξ±)\tau_{1}^{(\alpha)}\subset\tau_{2}^{(\alpha)}\subset\sigma^{(\alpha)}. Then it is easy to see that

(3) Fs¯​(g2)βˆ—β€‹H~s¯​(g1)∘H~s¯​(g2)=H~s¯​(g3).F_{\overline{s}}(g_{2})^{*}\widetilde{H}_{\overline{s}}(g_{1})\circ\widetilde{H}_{\overline{s}}(g_{2})=\widetilde{H}_{\overline{s}}(g_{3}).

We can then define the colimit β„°0:=limβŸΆβ„°β€‹(𝐠​(Ο„))\mathcal{E}_{0}:=\displaystyle{\lim_{\longrightarrow}}\,\mathcal{E}({\bf{g}}(\tau)) with respective to {H~Ο„1​τ2​(s)}\{\widetilde{H}_{\tau_{1}\tau_{2}}(s)\}.

It remains to prove locally freeness. To do this, we describe β„°0\mathcal{E}_{0} on open subsets of X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s). For each maximal Οƒβˆˆπ’«m​a​x\sigma\in\mathscr{P}_{max}, let

Vs¯​(Οƒ):=limβŸΆΟ„βŠ‚ΟƒVΟ„β†’Οƒ.V_{\overline{s}}(\sigma):=\lim_{\begin{subarray}{c}\longrightarrow\\ \tau\subset\sigma\end{subarray}}V_{\tau\to\sigma}.

Recall that Vs¯​(Οƒ)β‰…V​(Οƒ)V_{\overline{s}}(\sigma)\cong V(\sigma), which is an affine scheme. Denote by iΟƒ:Vs¯​(Οƒ)β†ͺX0​(B,𝒫,sΒ―)i_{\sigma}:V_{\overline{s}}(\sigma)\hookrightarrow X_{0}(B,\mathscr{P},\overline{s}) the inclusion, given by embedding an affine strata VΟ„β†’ΟƒV_{\tau\to\sigma} to the closed strata XΟ„βŠ‚X0​(B,𝒫,s)X_{\tau}\subset X_{0}(B,\mathscr{P},s). Then

X0​(B,𝒫,s)=β‹ƒΟƒβˆˆπ’«m​a​xiσ​(Vs¯​(Οƒ)).X_{0}(B,\mathscr{P},s)=\bigcup_{\sigma\in\mathscr{P}_{max}}i_{\sigma}(V_{\overline{s}}(\sigma)).

Let v1,v2v_{1},v_{2} be two vertices of Οƒ\sigma. By definition of the limit, ΞΎ1​(x1)βˆˆβ„°Οƒβ€‹(v1)x1\xi_{1}(x_{1})\in\mathcal{E}_{\sigma}(v_{1})_{x_{1}} is identified with ΞΎ2​(x2)βˆˆβ„°Οƒβ€‹(v2)x2\xi_{2}(x_{2})\in\mathcal{E}_{\sigma}(v_{2})_{x_{2}} if and only if there exists Ο„βŠ‚Οƒ\tau\subset\sigma, g1:v1β†’Ο„,g2:v2β†’Ο„g_{1}:v_{1}\to\tau,g_{2}:v_{2}\to\tau and x∈VΟ„β†’Οƒx\in V_{\tau\to\sigma} with

Fs¯​(gi)​(x)=xiF_{\overline{s}}(g_{i})(x)=x_{i}

and there exists η​(x)βˆˆβ„°Οƒβ€‹(Ο„)x\eta(x)\in\mathcal{E}_{\sigma}(\tau)_{x} such that

H~s¯​(gi):η​(x)↦ξi​(xi),\widetilde{H}_{\overline{s}}(g_{i}):\eta(x)\mapsto\xi_{i}(x_{i}),

for i=1,2i=1,2. This is an equivalence relation due to the cocycle condition of {H~s¯​(g)}g\{\widetilde{H}_{\overline{s}}(g)\}_{g}. For e:Ο„β†’Οƒe:\tau\to\sigma. Define

1~Οƒ(Ξ±)​(Ο„):=βˆ‘Ξ²=1rkΟ„(Ξ±)​σ(Ξ±)βˆ’1​hΟƒ(Ξ±)​σ(Ξ²)​(e)​zmτ​(Οƒ(Ξ±))βˆ’mτ​(Οƒ(Ξ²))​1Οƒ(Ξ²)​(Ο„).\widetilde{1}_{\sigma^{(\alpha)}}(\tau):=\sum_{\beta=1}^{r}k_{\tau^{(\alpha)}\sigma^{(\alpha)}}^{-1}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(e)z^{m_{\tau}(\sigma^{(\alpha)})-m_{\tau}(\sigma^{(\beta)})}1_{\sigma^{(\beta)}}(\tau).

By Condition (H1), {1~Οƒ(Ξ±)​(Ο„)}Ξ±=1r\{\widetilde{1}_{\sigma^{(\alpha)}}(\tau)\}_{\alpha=1}^{r} gives a frame for ℰσ​(Ο„)\mathcal{E}_{\sigma}(\tau). We prove that if g:{v}β†’Ο„g:\{v\}\to\tau is a vertex, then

H~s¯​(g):1~Οƒ(Ξ±)​(Ο„)↦Fs¯​(g)βˆ—β€‹1~Οƒ(Ξ±)​(v).\widetilde{H}_{\overline{s}}(g):\widetilde{1}_{\sigma^{(\alpha)}}(\tau)\mapsto F_{\overline{s}}(g)^{*}\widetilde{1}_{\sigma^{(\alpha)}}(v).

The coefficient of H~s¯​(g)​(1~Οƒ(Ξ±)​(Ο„))\widetilde{H}_{\overline{s}}(g)(\widetilde{1}_{\sigma^{(\alpha)}}(\tau)) attached to the base vector Fs¯​(g)βˆ—β€‹1Οƒ(Ξ³)​(v)F_{\overline{s}}(g)^{*}1_{\sigma^{(\gamma)}}(v) equals to

βˆ‘Ξ²=1rkΟ„(Ξ±)​σ(Ξ±)βˆ’1​kv(Ξ²)​τ(Ξ²)βˆ’1​hΟƒ(Ξ±)​σ(Ξ²)​(e)​hΟƒ(Ξ²)​σ(Ξ³)​(g)​sΒ―{v}→τ​(mv​(Οƒ(Ξ²))βˆ’mv​(Οƒ(Ξ³)))sΒ―{v}→τ​(mτ​(Οƒ(Ξ²)))​zmτ​(Οƒ(Ξ±))βˆ’mτ​(Οƒ(Ξ²))+mv​(Οƒ(Ξ²))βˆ’mv​(Οƒ(Ξ³))\sum_{\beta=1}^{r}k_{\tau^{(\alpha)}\sigma^{(\alpha)}}^{-1}k_{v^{(\beta)}\tau^{(\beta)}}^{-1}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(e)h_{\sigma^{(\beta)}\sigma^{(\gamma)}}(g)\frac{\overline{s}_{\{v\}\to\tau}(m_{v}(\sigma^{(\beta)})-m_{v}(\sigma^{(\gamma)}))}{\overline{s}_{\{v\}\to\tau}(m_{\tau}(\sigma^{(\beta)}))}z^{m_{\tau}(\sigma^{(\alpha)})-m_{\tau}(\sigma^{(\beta)})+m_{v}(\sigma^{(\beta)})-m_{v}(\sigma^{(\gamma)})}

By (H1), Οƒ(Ξ±),Οƒ(Ξ²)\sigma^{(\alpha)},\sigma^{(\beta)} contain a common lift of Ο„\tau, we must have Ο„(Ξ²)=Ο„(Ξ±)\tau^{(\beta)}=\tau^{(\alpha)} and so v(Ξ²)=v(Ξ±)v^{(\beta)}=v^{(\alpha)}. In particular,

mτ​(Οƒ(Ξ±))βˆ’mτ​(Οƒ(Ξ²))+mv​(Οƒ(Ξ²))βˆ’mv​(Οƒ(Ξ³))=mv​(Οƒ(Ξ±))βˆ’mv​(Οƒ(Ξ³)).m_{\tau}(\sigma^{(\alpha)})-m_{\tau}(\sigma^{(\beta)})+m_{v}(\sigma^{(\beta)})-m_{v}(\sigma^{(\gamma)})=m_{v}(\sigma^{(\alpha)})-m_{v}(\sigma^{(\gamma)}).

Using the formula sΒ―g​(mτ​(Οƒ(Ξ±)))=kv(Ξ±)​τ(Ξ±)​kΟ„(Ξ±)​σ(Ξ±)​kv(Ξ±)​σ(Ξ±)βˆ’1\overline{s}_{g}(m_{\tau}(\sigma^{(\alpha)}))=k_{v^{(\alpha)}\tau^{(\alpha)}}k_{\tau^{(\alpha)}\sigma^{(\alpha)}}k_{v^{(\alpha)}\sigma^{(\alpha)}}^{-1} and (H3), the sum becomes

βˆ‘Ξ²=1rkv(Ξ±)​σ(Ξ±)βˆ’1​hΟƒ(Ξ±)​σ(Ξ³)​(e∘g)​sΒ―{v}→τ​(mv​(Οƒ(Ξ±))βˆ’mv​(Οƒ(Ξ³)))​zmv​(Οƒ(Ξ±))βˆ’mv​(Οƒ(Ξ³)),\sum_{\beta=1}^{r}k_{v^{(\alpha)}\sigma^{(\alpha)}}^{-1}h_{\sigma^{(\alpha)}\sigma^{(\gamma)}}(e\circ g)\overline{s}_{\{v\}\to\tau}(m_{v}(\sigma^{(\alpha)})-m_{v}(\sigma^{(\gamma)}))z^{m_{v}(\sigma^{(\alpha)})-m_{v}(\sigma^{(\gamma)})},

which is the coefficient attached to Fs¯​(g)βˆ—β€‹1Οƒ(Ξ³)​(v)F_{\overline{s}}(g)^{*}1_{\sigma^{(\gamma)}}(v) in Fs¯​(g)βˆ—β€‹1~Οƒ(Ξ±)​(v)F_{\overline{s}}(g)^{*}\widetilde{1}_{\sigma^{(\alpha)}}(v). Hence {1~Οƒ(Ξ±)​(v)}vβˆˆΟƒ\{\widetilde{1}_{\sigma^{(\alpha)}}(v)\}_{v\in\sigma} glue to a frame and gives a trivialization ΟˆΟƒ:β„°0|Vs¯​(Οƒ)β†’π’ͺVs¯​(Οƒ)βŠ•r\psi_{\sigma}:\mathcal{E}_{0}|_{V_{\overline{s}}(\sigma)}\to\mathcal{O}_{V_{\overline{s}}(\sigma)}^{\oplus r}. ∎

Remark 4.7.

The proof of Theorem 4.6 shows that for each Οƒβˆˆπ’«m​a​x\sigma\in\mathscr{P}_{max}, the trivialization

ΟˆΟƒ:iΟƒβˆ—β€‹β„°0β†’βˆΌβ¨Οƒβ€²βˆˆπ’«β€²β€‹(Οƒ)π’ͺVs¯​(Οƒ)βŠ•ΞΌβ€‹(Οƒβ€²),\psi_{\sigma}:i_{\sigma}^{*}\mathcal{E}_{0}\xrightarrow{\sim}\bigoplus_{\sigma^{\prime}\in\mathscr{P}^{\prime}(\sigma)}\mathcal{O}_{V_{\overline{s}}(\sigma)}^{\oplus\mu(\sigma^{\prime})},

is explicitly given by mapping {1~Οƒ(Ξ±)​(v)}vβˆˆΟ„\{\widetilde{1}_{\sigma^{(\alpha)}}(v)\}_{v\in\tau} to 1Οƒ(Ξ±)1_{\sigma^{(\alpha)}}. Let Οƒ1,Οƒ2βˆˆπ’«m​a​x\sigma_{1},\sigma_{2}\in\mathscr{P}_{max} and Ο„=Οƒ1βˆ©Οƒ2\tau=\sigma_{1}\cap\sigma_{2}. With respective to this frame, the transition map ΟˆΟƒ2βˆ˜ΟˆΟƒ1βˆ’1\psi_{\sigma_{2}}\circ\psi_{\sigma_{1}}^{-1}, in terms of coordinates of the open subset V​(Ο„)βŠ‚V​(Οƒ1)V(\tau)\subset V(\sigma_{1}), is given by

ΟˆΟƒ2βˆ˜ΟˆΟƒ1βˆ’1:1Οƒ1(Ξ±)β†¦βˆ‘Ξ²=1rg~Οƒ1(Ξ±)​σ2(Ξ²)​(s)​zmv​(Οƒ1(Ξ±))βˆ’mv​(Οƒ2(Ξ²))​1Οƒ2(Ξ²),\psi_{\sigma_{2}}\circ\psi_{\sigma_{1}}^{-1}:1_{\sigma_{1}^{(\alpha)}}\mapsto\sum_{\beta=1}^{r}\widetilde{g}_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(s)z^{m_{v}(\sigma_{1}^{(\alpha)})-m_{v}(\sigma_{2}^{(\beta)})}1_{\sigma_{2}^{(\beta)}},

for some g~Οƒ1(Ξ±)​σ2(Ξ²)​(s)βˆˆβ„‚\widetilde{g}_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(s)\in\mathbb{C}, depending on the gluing data ss. We emphasis that in the sum, we have

zmv​(Οƒ1(Ξ±))βˆ’mv​(Οƒ2(Ξ²))|V{v}β†’Ο„=0z^{m_{v}(\sigma_{1}^{(\alpha)})-m_{v}(\sigma_{2}^{(\beta)})}|_{V_{\{v\}\to\tau}}=0

if mv​(Οƒ1(Ξ±))βˆ’mv​(Οƒ2(Ξ²))βˆ‰K{v}β†’Ο„βˆ¨βˆ©Ξ›Οƒ1βˆ—m_{v}(\sigma_{1}^{(\alpha)})-m_{v}(\sigma_{2}^{(\beta)})\notin K_{\{v\}\to\tau}^{\vee}\cap\Lambda_{\sigma_{1}}^{*}.

We combine the data 𝐑{\bf{h}} in Definition 4.1 and the data 𝐀s{\bf{k}}_{s} obtained in Theorem 4.6, and simply write 𝐑s{\bf{h}}_{s} as this is the only data needed for the cocycle condition (3) to be satisfied. We denote the locally free sheaf obtained in Theorem 4.6 by β„°0​({φτ′},𝐃s)\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}\},{\bf{D}}_{s}) for instance, where 𝐃s{\bf{D}}_{s} is the data (𝐠,𝐑s)({\bf{g}},{\bf{h}}_{s}). One would of course ask for the dependence of β„°0​({φτ′},𝐃s)\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}\},{\bf{D}}_{s}) on the local representatives {φτ′}\{\varphi_{\tau^{\prime}}\} and 𝐃s{\bf{D}}_{s}. It is not hard to see that if {φτ′′}\{\varphi_{\tau^{\prime}}^{\prime}\} is an other choice of representative of Ο†\varphi, there exists another data 𝐃sβ€²=(𝐠,𝐑,𝐀sβ€²){\bf{D}}_{s}^{\prime}=({\bf{g}},{\bf{h}},{\bf{k}}_{s}^{\prime}) such that β„°0​({φτ′},𝐃s)=β„°0​({φτ′′},𝐃sβ€²)\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}\},{\bf{D}}_{s})=\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}^{\prime}\},{\bf{D}}_{s}^{\prime}). To prove this, first note that for each Ο„βˆˆπ’«\tau\in\mathscr{P} and each lift Ο„β€²\tau^{\prime} of it, GΟƒ1​σ2​(Ο„β€²)G_{\sigma_{1}\sigma_{2}}(\tau^{\prime}) is independent of the choice of local representative of Ο†\varphi. It remains to consider the gluing maps {H~s¯​(g)}\{\widetilde{H}_{\overline{s}}(g)\}. For each Ο„β€²βˆˆπ’«\tau^{\prime}\in\mathscr{P}, fΟ„β€²:=Ο†Ο„β€²β€²βˆ’Ο†Ο„β€²f_{\tau^{\prime}}:=\varphi_{\tau^{\prime}}^{\prime}-\varphi_{\tau^{\prime}} is an affine function defined on WΟ„β€²W_{\tau^{\prime}}. Recall that we have

sΒ―Ο„1′​τ2′​τ3β€²=kΟ„1′​τ2′​kΟ„2′​τ3′​kΟ„1′​τ3β€²βˆ’1.\overline{s}_{\tau_{1}^{\prime}\tau_{2}^{\prime}\tau_{3}^{\prime}}=k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}k_{\tau_{2}^{\prime}\tau_{3}^{\prime}}k_{\tau_{1}^{\prime}\tau_{3}^{\prime}}^{-1}.

If we define

kΟ„1′​τ2β€²β€²=kΟ„1′​τ2′​sΒ―g​(fΟ„2β€²)βˆˆβ„‚Γ—,k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}^{\prime}=k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}\overline{s}_{g}(f_{\tau_{2}^{\prime}})\in\mathbb{C}^{\times},

then

sΒ―g1​(mΟ„2′​(Οƒ(Ξ±)))​sΒ―g2​(mΟ„3′​(Οƒ(Ξ±)))​sΒ―g3​(mΟ„3′​(Οƒ(Ξ±)))βˆ’1=kΟ„1′​τ2′′​kΟ„2′​τ3′′​kΟ„1′​τ3β€²β€²β£βˆ’1.\overline{s}_{g_{1}}(m_{\tau_{2}}^{\prime}(\sigma^{(\alpha)}))\overline{s}_{g_{2}}(m_{\tau_{3}}^{\prime}(\sigma^{(\alpha)}))\overline{s}_{g_{3}}(m_{\tau_{3}}^{\prime}(\sigma^{(\alpha)}))^{-1}=k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}^{\prime}k_{\tau_{2}^{\prime}\tau_{3}^{\prime}}^{\prime}k_{\tau_{1}^{\prime}\tau_{3}^{\prime}}^{\prime-1}.

Thus if we modify Hs¯​(g)H_{\overline{s}}(g) by 𝐀sβ€²:={kΟ„1′​τ2β€²β€²}{\bf{k}}_{s}^{\prime}:=\{k_{\tau_{1}^{\prime}\tau_{2}^{\prime}}^{\prime}\} as in the proof of Theorem 4.6, we have

H~s¯′​(g)=H~s¯​(g).\widetilde{H}_{\overline{s}}^{\prime}(g)=\widetilde{H}_{\overline{s}}(g).

Thus we have β„°0​({φτ′},𝐃s)=β„°0​({φτ′′},𝐃sβ€²)\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}\},{\bf{D}}_{s})=\mathcal{E}_{0}(\{\varphi_{\tau^{\prime}}^{\prime}\},{\bf{D}}_{s}^{\prime}).

Definition 4.8.

Let 𝕃\mathbb{L} be a tropical Lagrangian multi-section define over (B,𝒫)(B,\mathscr{P}) and ss be an open gluing data for the fan picture and sΒ―\overline{s} be its associated closed gluing data. Suppose o𝕃​([s])=1o_{\mathbb{L}}([s])=1 and denote the data (𝐠,𝐑s)({\bf{g}},{\bf{h}}_{s}) by 𝐃s{\bf{D}}_{s}, where 𝐠{\bf{g}} as in Definition 4.1 and 𝐑s=(𝐑,𝐀s){\bf{h}}_{s}=({\bf{h}},{\bf{k}}_{s}) as in Theorem 4.6. We denote the locally free sheaf obtained in Theorem 4.6 by β„°0​(𝕃,𝐃s)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}). The set of all 𝐃s{\bf{D}}_{s} is denoted by π’Ÿs​(𝕃)\mathscr{D}_{s}(\mathbb{L}). We say 𝕃\mathbb{L} is unobstructed if π’Ÿs​(𝕃)β‰ βˆ…\mathscr{D}_{s}(\mathbb{L})\neq\emptyset and a pair (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}) is a called a tropical Lagrangian brane.

Remark 4.9.

One can enrich 𝕃\mathbb{L} by a β„‚Γ—\mathbb{C}^{\times}-local system β„’\mathcal{L} on the domain LL. Regarding it as a constructible sheaf on LL, we obtain a set of specialization maps {fΟ„1′​τ2β€²}Ο„1β€²βŠ‚Ο„2β€²βŠ‚β„‚Γ—\{f_{\tau_{1}^{\prime}\tau_{2}^{\prime}}\}_{\tau_{1}^{\prime}\subset\tau_{2}^{\prime}}\subset\mathbb{C}^{\times} that represent β„’\mathcal{L}. Given 𝐃=(𝐠,𝐑)βˆˆπ’Ÿβ€‹(𝕃){\bf{D}}=({\bf{g}},{\bf{h}})\in\mathscr{D}(\mathbb{L}), one can twist the gluing data 𝐑{\bf{h}} by setting

hΟƒ(Ξ±)​σ(Ξ²)ℒ​(g):=hΟƒ(Ξ±)​σ(Ξ²)​(g)​fΟ„1′​τ2β€²,h_{\sigma^{(\alpha)}\sigma^{(\beta)}}^{\mathcal{L}}(g):=h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)f_{\tau_{1}^{\prime}\tau_{2}^{\prime}},

where g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2} and Ο„1β€²,Ο„2β€²βˆˆπ’«β€²\tau_{1}^{\prime},\tau_{2}^{\prime}\in\mathscr{P}^{\prime} are lifts of Ο„1,Ο„2\tau_{1},\tau_{2} that are uniquely determined by requiring Ο„1β€²βŠ‚Ο„2β€²βŠ‚Οƒ(Ξ±)βˆ©Οƒ(Ξ²)\tau_{1}^{\prime}\subset\tau_{2}^{\prime}\subset\sigma^{(\alpha)}\cap\sigma^{(\beta)}. By the definition that hΟƒ(Ξ±)​σ(Ξ²)​(g)β‰ 0h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)\neq 0 only if Οƒ(Ξ±),Οƒ(Ξ²)\sigma^{(\alpha)},\sigma^{(\beta)} contain a common lift of Ο„1\tau_{1}, it is easy to see that 𝐃ℒ:=(𝐠,𝐑ℒ)βˆˆπ’Ÿβ€‹(𝕃){\bf{D}}^{\mathcal{L}}:=({\bf{g}},{\bf{h}}^{\mathcal{L}})\in\mathscr{D}(\mathbb{L}).

5. Tropical locally free sheaves and their associated tropical Lagrangian multi-section

As we have seen in the construction of β„°0​(𝕃,𝐃s)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}), the restriction of β„°0​(𝕃,𝐃s)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}) to a strata XΟ„βŠ‚X0​(B,𝒫,s)X_{\tau}\subset X_{0}(B,\mathscr{P},s) is actually a toric vector bundle whose equivariant structure is determined by the fan structure SΟ„β€²:WΟ„β€²β†’LΟ„β€²S_{\tau^{\prime}}:W_{\tau^{\prime}}\to L_{\tau^{\prime}} and the choice of local representative of Ο†|WΟ„β€²\varphi|_{W_{\tau^{\prime}}}. See Remark 4.4 for the description of the equivariant structure. Recall that a strata XΟ„X_{\tau} of a toric variety XΞ£X_{\Sigma} is actually a closed orbit in XΞ£X_{\Sigma} with respective to the big torus action. Hence if β„°\mathcal{E} is a toric vector bundle on XΞ£X_{\Sigma}, its restriction β„°|XΟ„\mathcal{E}|_{X_{\tau}} admits an induced big torus action and the inclusion map β„°|XΟ„β†’β„°\mathcal{E}|_{X_{\tau}}\to\mathcal{E} is equivariant with respective to the big torus action. It guides us to look at the following type of locally free sheaf over X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s).

Definition 5.1.

Let β„°0\mathcal{E}_{0} be a locally free sheaf on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) and for Ο„βˆˆπ’«\tau\in\mathscr{P}, put ℰ​(Ο„):=qΟ„βˆ—β€‹β„°0\mathcal{E}(\tau):=q_{\tau}^{*}\mathcal{E}_{0}. A tropical structure on β„°0\mathcal{E}_{0} is a choice of toric vector bundle structure on ℰ​(Ο„):=qΟ„βˆ—β€‹β„°0\mathcal{E}(\tau):=q_{\tau}^{*}\mathcal{E}_{0} such that for any g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2} and toric indecomposable summand β„°(Ξ±)​(Ο„2)\mathcal{E}^{(\alpha)}(\tau_{2}) of ℰ​(Ο„2)\mathcal{E}(\tau_{2}), there exists character Ο‡g\chi_{g} on XΟ„1X_{\tau_{1}} such that the embedding β„°(Ξ±)​(Ο„2)β†ͺFs¯​(g)βˆ—β€‹(ℰ​(Ο„1)βŠ—(Ο‡g))\mathcal{E}^{(\alpha)}(\tau_{2})\hookrightarrow F_{\overline{s}}(g)^{*}(\mathcal{E}(\tau_{1})\otimes(\chi_{g})) is 𝒬τ1βŠ—β„‚Γ—\mathcal{Q}_{\tau_{1}}\otimes\mathbb{C}^{\times}-equivariant. A locally free sheaf on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s) that admits a tropical structure is called a tropical locally free sheaf.

Definition 5.1 makes sense because of the following results.

Theorem 5.2 (=Theorem 1.2.3 + Corollary 1.2.4 in [2]).

Let E,FE,F be two toric vector bundles over a complete toric variety XΞ£X_{\Sigma}. Then the following statement are true.

  1. (1)

    EE is indecomposable torically if and only if it is indecomposable as a ordinary vector bundle.

  2. (2)

    If EE is a indecomposable summand of FF, then there exists a character Ο‡\chi such that EβŠ—(Ο‡)E\otimes(\chi) is a toric summand of FF.

In particular, two indecomposable toric vector bundles E,FE,F on a toric variety are isomorphic as ordinary vector bundles if and only if Eβ‰…FβŠ—(Ο‡)E\cong F\otimes(\chi) as toric vector bundles, for some character Ο‡\chi.

Proposition 5.3 (=Proposition 1.2.6 in [2]).

Indecomposable summands of a toric vector bundle over a complete toric variety is unique up to reordering.

As a whole, we obtain a classification of toric vector bundle structures on a vector bundle.

Corollary 5.4.

Let EE be a toric vector over a complete toric variety XΣX_{\Sigma}. Then indecomposable summands of EE are toric vector bundle. Suppose FF is a toric vector bundle such that F≅EF\cong E as ordinary vector bundles. Then by shifting indecomposable summands of FF, we have F≅EF\cong E as toric vector bundles.

Proof.

Indecomposable summands of a vector bundle over complete reduced scheme are unique. Hence they must be the toric indecomposable summands of EE by (1) in Theorem 5.2. If Fβ‰…EF\cong E as ordinary vector bundles, then their indecomposable summands are isomorphic. By (2) in Theorem 5.2, they are torically isomorphic up to shift of characters. ∎

The construction in Section 4 indeed gave us tropical locally sheaves.

Proposition 5.5.

Let (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}) be a tropical Lagrangian brane. Then β„°0​(𝕃,𝐃s)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}) is tropical.

Proof.

Choose any representative {φτ′}\{\varphi_{\tau^{\prime}}\} of Ο†\varphi to give ℰ​(𝐠​(Ο„β€²))\mathcal{E}({\bf{g}}(\tau^{\prime})) a structure of toric vector bundle over the strata XΟ„X_{\tau}. For Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}, recall that the gluing isomorphism Hs¯​(g):ℰ​(𝐠​(Ο„2))β†’Fs¯​(g)βˆ—β€‹β„°β€‹(𝐠​(Ο„1))H_{\overline{s}}(g):\mathcal{E}({\bf{g}}(\tau_{2}))\to F_{\overline{s}}(g)^{*}\mathcal{E}({\bf{g}}(\tau_{1})) takes the form

1Οƒ(Ξ±)​(Ο„2β€²)β†¦βˆ‘Ξ²=1rkΟ„1(Ξ±)​τ2(Ξ±)βˆ’1​hΟƒ(Ξ±)​σ(Ξ²)​(g)​zmΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))​Fs¯​(g)βˆ—β€‹1Οƒ(Ξ²)​(Ο„1β€²)1_{\sigma^{(\alpha)}}(\tau_{2}^{\prime})\mapsto\sum_{\beta=1}^{r}k_{\tau_{1}^{(\alpha)}\tau_{2}^{(\alpha)}}^{-1}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)z^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})}F_{\overline{s}}(g)^{*}1_{\sigma^{(\beta)}}(\tau_{1}^{\prime})

on the chart VΟ„2β†’ΟƒβŠ‚XΟ„2V_{\tau_{2}\to\sigma}\subset X_{\tau_{2}} with respective to equivariant frames. Let Ξ»βˆˆπ’¬Ο„1βŠ—β„‚Γ—\lambda\in\mathcal{Q}_{\tau_{1}}\otimes\mathbb{C}^{\times}. Applying Ξ»\lambda to the left hand side, we have

Ξ»β‹…1Οƒ(Ξ±)​(Ο„2β€²)=Ξ»pgβˆ—β€‹mΟ„2′​(Οƒ(Ξ±))​1Οƒ(Ξ±)​(Ο„2β€²),\lambda\cdot 1_{\sigma}^{(\alpha)}(\tau_{2}^{\prime})=\lambda^{p_{g}^{*}m_{\tau_{2}^{\prime}}(\sigma^{(\alpha)})}1_{\sigma}^{(\alpha)}(\tau_{2}^{\prime}),

while when Ξ»\lambda is applied to the right hand side, we have

Ξ»mΟ„1′​(Οƒ(Ξ±))β€‹βˆ‘Ξ²=1rkΟ„1(Ξ±)​τ2(Ξ±)βˆ’1​hΟƒ(Ξ±)​σ(Ξ²)​(g)​zmΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))​Fs¯​(g)βˆ—β€‹1Ο„1β€²(Ξ²)​(Οƒ).\lambda^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})}\sum_{\beta=1}^{r}k_{\tau_{1}^{(\alpha)}\tau_{2}^{(\alpha)}}^{-1}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)z^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})}F_{\overline{s}}(g)^{*}1_{\tau_{1}^{\prime}}^{(\beta)}(\sigma).

As Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime}, the slope difference f:=pgβˆ—β€‹mΟ„2′​(Οƒβ€²)βˆ’mΟ„1′​(Οƒβ€²)f:=p_{g}^{*}m_{\tau_{2}^{\prime}}(\sigma^{\prime})-m_{\tau_{1}^{\prime}}(\sigma^{\prime}) is independent of Οƒβ€²\sigma^{\prime} as long as Οƒβ€²βŠƒΟ„2β€²\sigma^{\prime}\supset\tau_{2}^{\prime}, which means fβˆˆπ’¬Ο„1βˆ—f\in\mathcal{Q}_{\tau_{1}}^{*}. This affine function gives a character Ο‡f\chi_{f} on XΟ„1X_{\tau_{1}}. Then it is easy to see that the map Hs¯​(g)|ℰ​(𝐠​(Ο„2β€²)):ℰ​(𝐠​(Ο„2β€²))β†’Fs¯​(g)βˆ—β€‹(ℰ​(𝐠​(Ο„1β€²))βŠ—(Ο‡f))H_{\overline{s}}(g)|_{\mathcal{E}({\bf{g}}(\tau_{2}^{\prime}))}:\mathcal{E}({\bf{g}}(\tau_{2}^{\prime}))\to F_{\overline{s}}(g)^{*}(\mathcal{E}({\bf{g}}(\tau_{1}^{\prime}))\otimes(\chi_{f})) is a 𝒬τ1βŠ—β„‚Γ—\mathcal{Q}_{\tau_{1}}\otimes\mathbb{C}^{\times}-equivariant embedding. In particular, Hs¯​(g)H_{\overline{s}}(g) is equivariant on any indecomposable summands of ℰ​(𝐠​(Ο„2β€²))\mathcal{E}({\bf{g}}(\tau_{2}^{\prime})). ∎

Given a tropical locally free sheaf β„°0\mathcal{E}_{0} on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s), we now construct a tropical Lagrangian multi-section over (B,𝒫)(B,\mathscr{P}). Let Ο„βˆˆπ’«\tau\in\mathscr{P}. By assumption, ℰ​(Ο„):=qΟ„βˆ—β€‹β„°0\mathcal{E}(\tau):=q_{\tau}^{*}\mathcal{E}_{0} admits a structure of toric vector bundle over the toric strata XΟ„X_{\tau}. Let β„°(Ξ±)​(Ο„)\mathcal{E}^{(\alpha)}(\tau) be an indecomposable summand of ℰ​(Ο„)\mathcal{E}(\tau) and define

Ο„(Ξ±):=τ×{β„°(Ξ±)​(Ο„)}.\tau^{(\alpha)}:=\tau\times\{\mathcal{E}^{(\alpha)}(\tau)\}.

As Ο„(Ξ±)β‰…Ο„\tau^{(\alpha)}\cong\tau via the first projection, we also refer them as cells. From now on, we write β„°(Ξ±)​(Ο„)\mathcal{E}^{(\alpha)}(\tau) as ℰ​(Ο„(Ξ±))\mathcal{E}(\tau^{(\alpha)}) and ΞΌΟ„(Ξ±)\mu_{\tau^{(\alpha)}} for the multiplicity of β„°(Ξ±)​(Ο„)\mathcal{E}^{(\alpha)}(\tau) in ℰ​(Ο„)\mathcal{E}(\tau). Let 𝒫′​(Ο„)\mathscr{P}^{\prime}(\tau) be the collection of all cells (counting with multiplicity) with the first projection being Ο„\tau. For g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2}, we define 𝔭τ2​τ1:𝒫′​(Ο„2)→𝒫′​(Ο„1)\mathfrak{p}_{\tau_{2}\tau_{1}}:\mathscr{P}^{\prime}(\tau_{2})\to\mathscr{P}^{\prime}(\tau_{1}) by mapping Ο„2β€²\tau_{2}^{\prime} to Ο„1β€²\tau_{1}^{\prime} for which ℰ​(Ο„2β€²)\mathcal{E}(\tau_{2}^{\prime}) is summand of Fs¯​(g)βˆ—β€‹β„°β€‹(Ο„1β€²)F_{\overline{s}}(g)^{*}\mathcal{E}(\tau_{1}^{\prime}) via the equality ℰ​(Ο„2)=Fs¯​(g)βˆ—β€‹β„°β€‹(Ο„1)\mathcal{E}(\tau_{2})=F_{\overline{s}}(g)^{*}\mathcal{E}(\tau_{1}). Since β„°0\mathcal{E}_{0} is a global sheaf on X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s), it is clear that

𝔭τ2​τ1βˆ˜π”­Ο„3​τ2=𝔭τ3​τ1,\mathfrak{p}_{\tau_{2}\tau_{1}}\circ\mathfrak{p}_{\tau_{3}\tau_{2}}=\mathfrak{p}_{\tau_{3}\tau_{1}},

whenever Ο„1βŠ‚Ο„2βŠ‚Ο„3\tau_{1}\subset\tau_{2}\subset\tau_{3}. Define ΞΌ:𝒫′→℀>0\mu:\mathscr{P}^{\prime}\to\mathbb{Z}_{>0} by

μ​(Ο„β€²):=rk​(ℰ​(Ο„β€²)).\mu(\tau^{\prime}):=\mathrm{rk}(\mathcal{E}(\tau^{\prime})).

Then it is clear that ({𝒫′​(Ο„)}Ο„βˆˆπ’«,{𝔭τ2​τ1}Ο„1βŠ‚Ο„2,ΞΌ)(\{\mathscr{P}^{\prime}(\tau)\}_{\tau\in\mathscr{P}},\{\mathfrak{p}_{\tau_{2}\tau_{1}}\}_{\tau_{1}\subset\tau_{2}},\mu) defines an abstract branched covering (see Appendix A for this notion) over (B,𝒫)(B,\mathscr{P}). By the construction in Appendix A, the data ({𝒫′​(Ο„)}Ο„βˆˆπ’«,{𝔭τ2​τ1}Ο„1βŠ‚Ο„2,ΞΌ)(\{\mathscr{P}^{\prime}(\tau)\}_{\tau\in\mathscr{P}},\{\mathfrak{p}_{\tau_{2}\tau_{1}}\}_{\tau_{1}\subset\tau_{2}},\mu) induce a branched covering map of tropical spaces and we denote it by Ο€β„°0:(Lβ„°0,𝒫ℰ0β€²,ΞΌβ„°0)β†’(B,𝒫)\pi_{\mathcal{E}_{0}}:(L_{\mathcal{E}_{0}},\mathscr{P}_{\mathcal{E}_{0}}^{\prime},\mu_{\mathcal{E}_{0}})\to(B,\mathscr{P}).

It remains to construct the fan structure and the piecewise linear function. Let’s first make the following

Definition 5.6.

Let Ξ£\Sigma be a complete fan. Two tropical Lagrangian multi-sections 𝕃1,𝕃2\mathbb{L}_{1},\mathbb{L}_{2} over Ξ£\Sigma is said to be differ by a shift of affine function if there exists an isomorphism of weighted cone complexes f:(L1,Ξ£1,ΞΌ1)β†’(L2,Ξ£2,ΞΌ2)f:(L_{1},\Sigma_{1},\mu_{1})\to(L_{2},\Sigma_{2},\mu_{2}) such that Ο€1=Ο€2∘f\pi_{1}=\pi_{2}\circ f and fβˆ—β€‹Ο†2βˆ’Ο†1f^{*}\varphi_{2}-\varphi_{1} is an affine function on L1L_{1}.

Let 𝕃τ′\mathbb{L}_{\tau^{\prime}} be the associated tropical Lagrangian multi-section (see [11] or [15] for the construction) of an indecomposable summand ℰ​(Ο„β€²)\mathcal{E}(\tau^{\prime}), which is always separable (Definition 3.13 and Proposition 3.21 in [15]). By Theorem 5.2, different choice of equivariant structure on ℰ​(Ο„β€²)\mathcal{E}(\tau^{\prime}) only leads to a shift of affine function on LΟ„β€²L_{\tau^{\prime}}.

For e:Ο„β†’Οƒe:\tau\to\sigma and Ο„β€²βŠ‚Οƒβ€²\tau^{\prime}\subset\sigma^{\prime}, ℰ​(Οƒβ€²)\mathcal{E}(\sigma^{\prime}) is by definition an indecomposable summand of Fs¯​(e)βˆ—β€‹β„°β€‹(Ο„β€²)F_{\overline{s}}(e)^{*}\mathcal{E}(\tau^{\prime}). Hence by Theorem 5.2, up to a shift of affine function if necessary, the tropical Lagrangian multi-section 𝕃σ′\mathbb{L}_{\sigma^{\prime}} is a localization (see Appendix B for this notion) of 𝕃τ′\mathbb{L}_{\tau^{\prime}} along some cone in Στ′\Sigma_{\tau^{\prime}} whose projection to Στ\Sigma_{\tau} is Kτ​(Οƒ)K_{\tau}(\sigma). By Theorem B.4, such cone is unique as 𝕃τ′\mathbb{L}_{\tau^{\prime}} is separable. Define SΟ„β€²|Οƒβ€²βˆ©WΟ„β€²:Οƒβ€²βˆ©WΟ„β€²β†’Kτ′​(Οƒβ€²)S_{\tau^{\prime}}|_{\sigma^{\prime}\cap W_{\tau^{\prime}}}:\sigma^{\prime}\cap W_{\tau^{\prime}}\to K_{\tau^{\prime}}(\sigma^{\prime}) by

x′↦((SΟ„βˆ˜Ο€)​(xβ€²),mτ′​(Οƒβ€²)),x^{\prime}\mapsto((S_{\tau}\circ\pi)(x^{\prime}),m_{\tau^{\prime}}(\sigma^{\prime})),

for xβ€²βˆˆΟƒβ€²βˆ©WΟ„β€²x^{\prime}\in\sigma^{\prime}\cap W_{\tau^{\prime}} and mτ′​(Οƒβ€²)m_{\tau^{\prime}}(\sigma^{\prime}) the slope of φτ′\varphi_{\tau^{\prime}} on the cone Kτ′​(Οƒβ€²)K_{\tau^{\prime}}(\sigma^{\prime}). Since φτ′\varphi_{\tau^{\prime}} is continuous, it is not hard to see that SΟ„β€²S_{\tau^{\prime}} is well-defined and continuous. This gives the desired fan structure SΟ„β€²:WΟ„β€²β†’|LΟ„β€²|S_{\tau^{\prime}}:W_{\tau^{\prime}}\to|L_{\tau^{\prime}}|. Define Ο†β„°0:={SΟ„β€²βˆ—β€‹Ο†Ο„β€²}Ο„β€²βˆˆπ’«β€²\varphi_{\mathcal{E}_{0}}:=\{S_{\tau^{\prime}}^{*}\varphi_{\tau^{\prime}}\}_{\tau^{\prime}\in\mathscr{P}^{\prime}}. By Theorem 5.2, shifting 𝕃τ2β€²\mathbb{L}_{\tau_{2}^{\prime}} by an affine function if necessary, we may assume it is a localization of 𝕃τ1β€²\mathbb{L}_{\tau_{1}^{\prime}} if ℰ​(Ο„2β€²)\mathcal{E}(\tau_{2}^{\prime}) is a summand of ℰ​(Ο„1β€²)|XΟ„2\mathcal{E}(\tau_{1}^{\prime})|_{X_{\tau_{2}}}, which means Ο†β„°0∈H0​(Lβ„°0,ℳ​𝒫​ℒ𝒫ℰ0β€²)\varphi_{\mathcal{E}_{0}}\in H^{0}(L_{\mathcal{E}_{0}},\mathcal{MPL}_{\mathscr{P}_{\mathcal{E}_{0}}^{\prime}}).

Definition 5.7.

Let β„°0\mathcal{E}_{0} be a tropical locally free sheaf over X0​(B,𝒫,s)X_{0}(B,\mathscr{P},s). The data 𝕃ℰ0:=(Lβ„°0,𝒫ℰ0β€²,ΞΌβ„°0,Ο€β„°0,Ο†β„°0)\mathbb{L}_{\mathcal{E}_{0}}:=(L_{\mathcal{E}_{0}},\mathscr{P}_{\mathcal{E}_{0}}^{\prime},\mu_{\mathcal{E}_{0}},\pi_{\mathcal{E}_{0}},\varphi_{\mathcal{E}_{0}}) is called the associated tropical Lagrangian multi-section of β„°0\mathcal{E}_{0}.

Given a tropical locally free sheaf β„°0\mathcal{E}_{0}, we can also associate a data 𝐃s​(β„°0)=(𝐠,𝐑s)βˆˆπ’Ÿs​(𝕃ℰ0){\bf{D}}_{s}(\mathcal{E}_{0})=({\bf{g}},{\bf{h}}_{s})\in\mathscr{D}_{s}(\mathbb{L}_{\mathcal{E}_{0}}) such that

β„°0β‰…β„°0​(𝕃ℰ0,𝐃s​(β„°0)).\mathcal{E}_{0}\cong\mathcal{E}_{0}(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0})).

Indeed, 𝐠{\bf{g}} exists because of the fact that each ℰ​(Ο„β€²)\mathcal{E}(\tau^{\prime}) is toric. For 𝐑s{\bf{h}}_{s}, note that for g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2}, by definition, ℰ​(Ο„2β€²)\mathcal{E}(\tau_{2}^{\prime}) is mapped to a summand of Fs¯​(g)βˆ—β€‹β„°β€‹(Ο„1β€²)F_{\overline{s}}(g)^{*}\mathcal{E}(\tau_{1}^{\prime}) for a unique Ο„1β€²\tau_{1}^{\prime}. Let {1Οƒ(Ξ±)​(Ο„1β€²)},{1Οƒ(Ξ±)​(Ο„2β€²)}\{1_{\sigma}^{(\alpha)}(\tau_{1}^{\prime})\},\{1_{\sigma}^{(\alpha)}(\tau_{2}^{\prime})\} be equivariant frame of ℰ​(Ο„1β€²),ℰ​(Ο„2β€²)\mathcal{E}(\tau_{1}^{\prime}),\mathcal{E}(\tau_{2}^{\prime}), respectively. By definition, there is a character Ο‡g\chi_{g} so that the natural map Hs¯​(g):ℰ​(Ο„2β€²)β†’Fs¯​(g)βˆ—β€‹(ℰ​(Ο„1β€²)βŠ—(Ο‡g))H_{\overline{s}}(g):\mathcal{E}(\tau_{2}^{\prime})\to F_{\overline{s}}(g)^{*}(\mathcal{E}(\tau_{1}^{\prime})\otimes(\chi_{g})) is 𝒬τ1βŠ—β„‚Γ—\mathcal{Q}_{\tau_{1}}\otimes\mathbb{C}^{\times}-equivariant. Let 1Ο‡g​(Οƒ)1_{\chi_{g}}(\sigma) be an equivariant frame of (Ο‡g)(\chi_{g}) on the chart VΟ„1β†’ΟƒβŠ‚XΟ„1V_{\tau_{1}\to\sigma}\subset X_{\tau_{1}}. Then Hs¯​(g)H_{\overline{s}}(g) is of the form

1Οƒ(Ξ±)​(Ο„2β€²)β†¦βˆ‘Ξ²=1μ​(Ο„1β€²)hΟƒ(Ξ±)​σ(Ξ²)​(g)s​zmΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))​Fs¯​(g)βˆ—β€‹(1Οƒ(Ξ²)​(Ο„1β€²)βŠ—1σ​(Ο‡g)),1_{\sigma}^{(\alpha)}(\tau_{2}^{\prime})\mapsto\sum_{\beta=1}^{\mu(\tau_{1}^{\prime})}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)_{s}z^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})}F_{\overline{s}}(g)^{*}(1_{\sigma}^{(\beta)}(\tau_{1}^{\prime})\otimes 1_{\sigma}(\chi_{g})),

for some hΟƒ(Ξ±)​σ(Ξ²)​(g)sβˆˆβ„‚h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)_{s}\in\mathbb{C} that is non-zero only if mΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))∈KΟ„2β†’Οƒβˆ¨βˆ©π’¬Ο„2βˆ—m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})\in K_{\tau_{2}\to\sigma}^{\vee}\cap\mathcal{Q}_{\tau_{2}}^{*}. As (Ο‡g)(\chi_{g}) is just the trivial line bundle on XΟ„1X_{\tau_{1}}, we have a well-define map

1Οƒ(Ξ±)​(Ο„2β€²)β†¦βˆ‘Ξ²=1μ​(Ο„1β€²)hΟƒ(Ξ±)​σ(Ξ²)​(g)s​zmΟ„1′​(Οƒ(Ξ±))βˆ’mΟ„1′​(Οƒ(Ξ²))​Fs¯​(g)βˆ—β€‹1Οƒ(Ξ²)​(Ο„1β€²).1_{\sigma}^{(\alpha)}(\tau_{2}^{\prime})\mapsto\sum_{\beta=1}^{\mu(\tau_{1}^{\prime})}h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g)_{s}z^{m_{\tau_{1}^{\prime}}(\sigma^{(\alpha)})-m_{\tau_{1}^{\prime}}(\sigma^{(\beta)})}F_{\overline{s}}(g)^{*}1_{\sigma}^{(\beta)}(\tau_{1}^{\prime}).

This gives the data 𝐑s{\bf{h}}_{s}. On the other hand, the assignment

𝕃↦ℰ0​(𝕃,𝐃s)↦𝕃ℰ0​(𝕃,𝐃s)\mathbb{L}\mapsto\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s})\mapsto\mathbb{L}_{\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s})}

rarely be the identity, even in the case of one toric piece [15]. This indicates the fact that non-Hamiltonian equivalent Lagrangian branes can still be equivalent in the derived Fukaya category (see [3] for this phenomenon). In our case, although 𝕃\mathbb{L} and 𝕃ℰ0​(𝕃,𝐃s)\mathbb{L}_{\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s})} are not isomorphic, they are related by a covering morphism (c.f. Definition 3.11).

Proposition 5.8.

Let β„°0:=β„°0​(𝕃,𝐃s)\mathcal{E}_{0}:=\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}). There is a covering morphism f:𝕃ℰ0→𝕃f:\mathbb{L}_{\mathcal{E}_{0}}\to\mathbb{L}.

Proof.

For Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime}, let S​(Ο„β€²)S(\tau^{\prime}) be the set of all lifts Ο„(Ξ±)βˆˆπ’«β„°0β€²\tau^{(\alpha)}\in\mathscr{P}_{\mathcal{E}_{0}}^{\prime} of Ο„βˆˆπ’«\tau\in\mathscr{P} so that

⨁τ(Ξ±)∈S​(Ο„β€²)ℰ​(Ο„(Ξ±))=ℰ​(𝐠​(Ο„β€²)).\bigoplus_{\tau^{(\alpha)}\in S(\tau^{\prime})}\mathcal{E}(\tau^{(\alpha)})=\mathcal{E}({\bf{g}}(\tau^{\prime})).

Then ff is defined to by mapping all cells in S​(Ο„β€²)S(\tau^{\prime}) to Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime}. It is clear from the definition of ff that it is continuous, preserves polyhedral compositions, the piecewise linear functions and satisfies T​rf​(ΞΌβ„°0)=ΞΌTr_{f}(\mu_{\mathcal{E}_{0}})=\mu. ∎

We end this section by proving the following

Theorem 5.9.

Let ΞžβŠ‚Nℝ\Xi\subset N_{\mathbb{R}} be a polytope centered at the origin so that the natural affine structure with singularities on the boundary B:=βˆ‚ΞžB:=\partial\Xi is integral and Ξ£\Sigma be the fan obtained by taking cones of proper faces of Ξ\Xi. Let XΞ£X_{\Sigma} be the projective toric variety associated to a Ξ£\Sigma and X0:=βˆ‚XΞ£X_{0}:=\partial X_{\Sigma} the toric boundary. Then β„°0:=β„°|X0\mathcal{E}_{0}:=\mathcal{E}|_{X_{0}} is a tropical locally free sheaf.

Proof.

Let 𝒫\mathscr{P} be given by proper faces of Ξ\Xi. The affine structure on BB is given by the fan structure

WvβŠ‚Nℝ→Nℝ/β„β€‹βŸ¨v⟩,W_{v}\subset N_{\mathbb{R}}\to N_{\mathbb{R}}/\mathbb{R}\langle v\rangle,

for v∈Ξv\in\Xi a vertex. By assumption, this affine structure with singularities is integral and we have X0=X0​(B,𝒫)X_{0}=X_{0}(B,\mathscr{P}). Since each strata of X0X_{0} is a toric strata of XΞ£X_{\Sigma}, each ℰ​(Ο„)\mathcal{E}(\tau) has a natural NβŠ—β„‚Γ—N\otimes\mathbb{C}^{\times}-equivariant structure. Since β„°\mathcal{E} is toric, it has the corresponding tropical Lagrangian multi-section 𝕃Σ\mathbb{L}_{\Sigma} over Ξ£\Sigma. Denote the piecewise linear function on 𝕃Σ\mathbb{L}_{\Sigma} by Ο†\varphi. For each proper face Ο„βˆˆπ’«\tau\in\mathscr{P}, let K​(Ο„)∈ΣK(\tau)\in\Sigma be the corresponding cone. Choose a splitting ΞΉΟ„\iota_{\tau} of the projection pΟ„:Nβ†’N/(ℝ​K​(Ο„)∩N)≅𝒬τp_{\tau}:N\to N/(\mathbb{R}K(\tau)\cap N)\cong\mathcal{Q}_{\tau} to equip ℰ​(Ο„)\mathcal{E}(\tau) a π’¬Ο„βŠ—β„‚Γ—\mathcal{Q}_{\tau}\otimes\mathbb{C}^{\times}-equivariant structure over XΟ„X_{\tau}. Let β„°(Ξ±)​(Ο„)\mathcal{E}^{(\alpha)}(\tau) be a toric indecomposable summand of ℰ​(Ο„)\mathcal{E}(\tau) and 𝕃τ(Ξ±)\mathbb{L}_{\tau}^{(\alpha)} be its associated tropical Lagrangian multi-section. It has been shown in Theorem B.4 that 𝕃τ2(Ξ±)\mathbb{L}_{\tau_{2}}^{(\alpha)} is a localization of 𝕃Σ\mathbb{L}_{\Sigma} and

fΟ„:=pΟ„βˆ—β€‹Ο†Ο„(Ξ±)βˆ’Ο†f_{\tau}:=p_{\tau}^{*}\varphi_{\tau}^{(\alpha)}-\varphi

is an affine function in a neighborhood of the cone that we localized. Therefore, for g:Ο„1β†’Ο„2g:\tau_{1}\to\tau_{2},

pΟ„1βˆ—β€‹Ο†Ο„1(Ξ²)βˆ’pΟ„2βˆ—β€‹Ο†Ο„2(Ξ±)p_{\tau_{1}}^{*}\varphi_{\tau_{1}}^{(\beta)}-p_{\tau_{2}}^{*}\varphi_{\tau_{2}}^{(\alpha)}

is also an affine function as long as β„°(Ξ±)​(Ο„2)βŠ‚Fs¯​(g)βˆ—β€‹β„°(Ξ²)​(Ο„1)\mathcal{E}^{(\alpha)}(\tau_{2})\subset F_{\overline{s}}(g)^{*}\mathcal{E}^{(\beta)}(\tau_{1}). Note that we have pΟ„2=pg∘pΟ„1p_{\tau_{2}}=p_{g}\circ p_{\tau_{1}} and ΞΉΟ„βˆ—\iota_{\tau}^{*} is a left inverse of pΟ„βˆ—p_{\tau}^{*}. By applying ΞΉΟ„1βˆ—\iota_{\tau_{1}}^{*}, the difference

φτ1(Ξ²)βˆ’pgβˆ—β€‹Ο†Ο„2(Ξ±)\varphi_{\tau_{1}}^{(\beta)}-p_{g}^{*}\varphi_{\tau_{2}}^{(\alpha)}

is an affine function. This affine function gives a character Ο‡g\chi_{g} on XΟ„1X_{\tau_{1}} so that β„°(Ξ±)​(Ο„2)βŠ‚Fs¯​(g)βˆ—β€‹β„°(Ξ²)​(Ο„1)\mathcal{E}^{(\alpha)}(\tau_{2})\subset F_{\overline{s}}(g)^{*}\mathcal{E}^{(\beta)}(\tau_{1}) is a 𝒬τ1βŠ—β„‚Γ—\mathcal{Q}_{\tau_{1}}\otimes\mathbb{C}^{\times}-equivariant embedding. This completes the proof of the theorem. ∎

Theorem 5.9 provides us an abundant source of examples of tropical locally free sheaves that is smoothable. Indeed, when X0X_{0} is the central fiber of a family of Calabi-Yau hypersurfaces π’³βŠ‚XΞ£\mathcal{X}\subset X_{\Sigma}. By simply restricting the toric vector bundle β„°\mathcal{E} on XΞ£X_{\Sigma} to the family 𝒳\mathcal{X}, the pair (X0,β„°0)(X_{0},\mathcal{E}_{0}) is tautologically smoothable to (𝒳t,β„°|𝒳t)(\mathcal{X}_{t},\mathcal{E}|_{\mathcal{X}_{t}}). Although the smoothing problem in this case is trivial, it does provide us many examples of tropical locally free sheaves on X0X_{0} that can be smoothed in any dimension.

6. The correspondence

In this section, we would like to establish a correspondence between the set of tropical free sheaves modulo isomorphism and the set of tropical Lagrangian multi-sections modulo certain non-trivial equivalence.

If two tropical locally free sheaves β„°0,β„°0β€²\mathcal{E}_{0},\mathcal{E}_{0}^{\prime} are isomorphic, then for any Ο„βˆˆπ’«\tau\in\mathscr{P}, ℰ​(Ο„)≅ℰ′​(Ο„)\mathcal{E}(\tau)\cong\mathcal{E}^{\prime}(\tau) as ordinary vector bundles on the strata XΟ„X_{\tau}. By Corollary 5.4, their indecomposable summands are isomorphic as toric vector bundles up to shift of characters on XΟ„X_{\tau}. Hence the associated tropical Lagrangian multi-sections of their indecomposable summand only differ from each other by shifts of affine functions. This gives a covering isomorphism f:𝕃ℰ0β†’βˆΌπ•ƒβ„°0β€²f:\mathbb{L}_{\mathcal{E}_{0}}\xrightarrow{\sim}\mathbb{L}_{\mathcal{E}_{0}^{\prime}} between their associated tropical Lagrangian multi-sections. We define the equivalence between data in π’Ÿs​(𝕃)\mathscr{D}_{s}(\mathbb{L}) on a fixed tropical Lagrangian multi-section 𝕃\mathbb{L} tautologically.

Definition 6.1.

Let 𝕃\mathbb{L} be an unobstructed tropical Lagrangian multi-section over (B,𝒫)(B,\mathscr{P}) and 𝐃s,𝐃sβ€²βˆˆπ’Ÿs​(𝕃){\bf{D}}_{s},{\bf{D}}_{s}^{\prime}\in\mathscr{D}_{s}(\mathbb{L}). We write 𝐃sβˆΌπƒsβ€²{\bf{D}}_{s}\sim{\bf{D}}_{s}^{\prime} if β„°0​(𝕃,𝐃s)β‰…β„°0​(𝕃,𝐃sβ€²)\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s})\cong\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s}^{\prime}).

Given two unobstructed tropical Lagrangian multi-sections 𝕃1,𝕃2\mathbb{L}_{1},\mathbb{L}_{2} over (B,𝒫)(B,\mathscr{P}) and a data 𝐃sβˆˆπ’Ÿs​(𝕃2){\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L}_{2}). Suppose f:𝕃2→𝕃1f:\mathbb{L}_{2}\to\mathbb{L}_{1} is a covering isomorphism. It is easy to provide a data fβˆ—β€‹πƒsβˆˆπ’Ÿs​(𝕃1)f_{*}{\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L}_{1}) for 𝕃1\mathbb{L}_{1} so that

(4) β„°0​(𝕃1,fβˆ—β€‹πƒs)β‰…β„°0​(𝕃2,𝐃s).\mathcal{E}_{0}(\mathbb{L}_{1},f_{*}{\bf{D}}_{s})\cong\mathcal{E}_{0}(\mathbb{L}_{2},{\bf{D}}_{s}).

In particular, if β„°0β‰…β„°0β€²\mathcal{E}_{0}\cong\mathcal{E}_{0}^{\prime}, then fβˆ—β€‹πƒs​(β„°0)βˆΌπƒs​(β„°0β€²)f_{*}{\bf{D}}_{s}(\mathcal{E}_{0})\sim{\bf{D}}_{s}(\mathcal{E}_{0}^{\prime}). However, as we have pointed out in Section 5 that non-isomorphic tropical Lagrangian multi-sections can still give rise to isomorphic tropical locally free sheaves after choosing suitable brane data. These tropical Lagrangian multi-sections should be regarded as equivalent objects in some sense. In the remaining part of this section, we explore this non-trivial equivalence.

Definition 6.2.

Let 𝕃1,𝕃2\mathbb{L}_{1},\mathbb{L}_{2} be two tropical Lagrangian multi-sections of same degree over (B,𝒫)(B,\mathscr{P}). We write 𝕃1≀𝕃2\mathbb{L}_{1}\leq\mathbb{L}_{2} if there exists a covering morphism f:𝕃2→𝕃1f:\mathbb{L}_{2}\to\mathbb{L}_{1}.

Given a covering morphism f:𝕃2→𝕃1f:\mathbb{L}_{2}\to\mathbb{L}_{1} and data 𝐃sβˆˆπ’Ÿs​(𝕃2){\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L}_{2}), we can define the push-forward fβˆ—β€‹πƒsf_{*}{\bf{D}}_{s} of 𝐃s{\bf{D}}_{s} by

(fβˆ—β€‹g)f​(Οƒ1(Ξ±))​f​(Οƒ2(Ξ²))​(f​(Ο„β€²)):=gΟƒ1(Ξ±)​σ2(Ξ²)​(Ο„β€²),(fβˆ—β€‹h)f​(Οƒ(Ξ±))​f​(Οƒ(Ξ²))​(g):=hΟƒ(Ξ±)​σ(Ξ²)​(g),(f_{*}g)_{f(\sigma_{1}^{(\alpha)})f(\sigma_{2}^{(\beta)})}(f(\tau^{\prime})):=g_{\sigma_{1}^{(\alpha)}\sigma_{2}^{(\beta)}}(\tau^{\prime}),\,(f_{*}h)_{f(\sigma^{(\alpha)})f(\sigma^{(\beta)})}(g):=h_{\sigma^{(\alpha)}\sigma^{(\beta)}}(g),

where Οƒ1(Ξ±),Οƒ2(Ξ²),Ο„β€²\sigma_{1}^{(\alpha)},\sigma_{2}^{(\beta)},\tau^{\prime} are some choices of preimage cells of f​(Οƒ1(Ξ±)),f​(Οƒ2(Ξ²)),f​(Ο„β€²)f(\sigma_{1}^{(\alpha)}),f(\sigma_{2}^{(\beta)}),f(\tau^{\prime}) such that

mf​(Ο„β€²)​(f​(Οƒ1(Ξ±)))=mτ′​(Οƒ1(Ξ±)),mf​(Ο„β€²)​(f​(Οƒ2(Ξ²)))=mτ′​(Οƒ2(Ξ²))m_{f(\tau^{\prime})}(f(\sigma_{1}^{(\alpha)}))=m_{\tau^{\prime}}(\sigma_{1}^{(\alpha)}),\,m_{f(\tau^{\prime})}(f(\sigma_{2}^{(\beta)}))=m_{\tau^{\prime}}(\sigma_{2}^{(\beta)})

and Ο„β€²βŠ‚Οƒ1(Ξ±)βˆ©Οƒ2(Ξ²)\tau^{\prime}\subset\sigma_{1}^{(\alpha)}\cap\sigma_{2}^{(\beta)}. It is straightforward to check that fβˆ—β€‹πƒsβˆˆπ’Ÿs​(𝕃1)f_{*}{\bf{D}}_{s}\in\mathscr{D}_{s}(\mathbb{L}_{1}). Different choices of preimage cells of f​(Οƒ(Ξ±))f(\sigma^{(\alpha)}) amount a permutation of the ordered frame {1Οƒ(Ξ±)​(Ο„)}Ξ±=1r\{1_{\sigma^{(\alpha)}}(\tau)\}_{\alpha=1}^{r} that preserve the π’¬Ο„βŠ—β„‚Γ—\mathcal{Q}_{\tau}\otimes\mathbb{C}^{\times}-action. Hence such choice won’t affect the resulting tropical locally free sheaf.

Definition 6.3.

Let (𝕃1,𝐃s(1)),(𝕃2,𝐃2(2))(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)}),(\mathbb{L}_{2},{\bf{D}}_{2}^{(2)}) be two tropical Lagrangian branes. We write (𝕃1,𝐃s(1))≀(𝕃2,𝐃s(2))(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)})\leq(\mathbb{L}_{2},{\bf{D}}_{s}^{(2)}) if there exists a covering morphism f:𝕃2→𝕃1f:\mathbb{L}_{2}\to\mathbb{L}_{1} such that fβˆ—β€‹πƒs(2)βˆΌπƒs(1)f_{*}{\bf{D}}_{s}^{(2)}\sim{\bf{D}}_{s}^{(1)}.

Definition 6.4.

Let (𝕃1,𝐃s(1)),(𝕃2,𝐃2(2))(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)}),(\mathbb{L}_{2},{\bf{D}}_{2}^{(2)}) be two tropical Lagrangian branes. We write (𝕃1,𝐃s(1))∼(𝕃2,𝐃2(2))(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)})\sim(\mathbb{L}_{2},{\bf{D}}_{2}^{(2)}) if there exists a tropical Lagrangian brane (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}) over (B,𝒫)(B,\mathscr{P}) such that (𝕃i,𝐃s(i))≀(𝕃,𝐃s)(\mathbb{L}_{i},{\bf{D}}_{s}^{(i)})\leq(\mathbb{L},{\bf{D}}_{s}), for all i=1,2i=1,2. We say (𝕃1,𝐃s(1))(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)}) is combinatorially equivalent to (𝕃2,𝐃s(2))(\mathbb{L}_{2},{\bf{D}}_{s}^{(2)}) if there exists a sequence of tropical Lagrangian branes (𝕃1β€²,𝐃s′⁣(1)),(𝕃2β€²,𝐃s′⁣(2)),…,(𝕃kβ€²,𝐃s′⁣(k))(\mathbb{L}_{1}^{\prime},{\bf{D}}_{s}^{\prime(1)}),(\mathbb{L}_{2}^{\prime},{\bf{D}}_{s}^{\prime(2)}),\dots,(\mathbb{L}_{k}^{\prime},{\bf{D}}_{s}^{\prime(k)}) over (B,𝒫)(B,\mathscr{P}) such that (𝕃1β€²,𝐃s′⁣(1))=(𝕃1,𝐃s(1)),(𝕃kβ€²,𝐃s′⁣(k))=(𝕃2,𝐃s(2))(\mathbb{L}_{1}^{\prime},{\bf{D}}_{s}^{\prime(1)})=(\mathbb{L}_{1},{\bf{D}}_{s}^{(1)}),(\mathbb{L}_{k}^{\prime},{\bf{D}}_{s}^{\prime(k)})=(\mathbb{L}_{2},{\bf{D}}_{s}^{(2)}) and (𝕃i+1β€²,𝐃s′⁣(i+1))∼c(𝕃iβ€²,𝐃s′⁣(i))(\mathbb{L}_{i+1}^{\prime},{\bf{D}}_{s}^{\prime(i+1)})\sim_{c}(\mathbb{L}_{i}^{\prime},{\bf{D}}_{s}^{\prime(i)}), for all i=1,…,kβˆ’1i=1,\dots,k-1.

Remark 6.5.

The relation ∼c\sim_{c} is only reflexive and symmetric. The notion of combinatorially equivalence is the transitive closure of ∼c\sim_{c} and hence, an equivalent relation. Geometrically, 𝕃1,𝕃2\mathbb{L}_{1},\mathbb{L}_{2} are combinatorially equivalent means one can fold or unfold cells of 𝕃1\mathbb{L}_{1} to obtain 𝕃2\mathbb{L}_{2} in finite steps.

We define

TLFS​(X0​(B,𝒫,s)):=\displaystyle\text{TLFS}(X_{0}(B,\mathscr{P},s)):= {Tropical locally free sheaves on ​X0​(B,𝒫,s)}isomorphism\displaystyle\,\frac{\{\text{Tropical locally free sheaves on }X_{0}(B,\mathscr{P},s)\}}{\text{isomorphism}}
TLB​(B,𝒫,s):=\displaystyle\text{TLB}(B,\mathscr{P},s):= {Tropical Lagrangian branes over ​(B,𝒫,s)}combinatorial equivalence.\displaystyle\,\frac{\{\text{Tropical Lagrangian branes over }(B,\mathscr{P},s)\}}{\text{combinatorial equivalence}}.

By Proposition 5.8, we have the following

Theorem 6.6.

We have a canonical bijection

β„±:TLFS​(X0​(B,𝒫,s))β†’TLB​(B,𝒫,s),\mathcal{F}:\mathrm{TLFS}(X_{0}(B,\mathscr{P},s))\to\mathrm{TLB}(B,\mathscr{P},s),

given by β„°0↦(𝕃ℰ0,𝐃s​(β„°0))\mathcal{E}_{0}\mapsto(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0})). Its inverse is given by (𝕃ℰ0,𝐃s)↦ℰ0​(𝕃ℰ0,𝐃s)(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s})\mapsto\mathcal{E}_{0}(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}).

Proof.

We have seen that the composition

β„°0↦(𝕃ℰ0,𝐃s​(β„°0))↦ℰ0​(𝕃ℰ0,𝐃s​(β„°0))\mathcal{E}_{0}\mapsto(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0}))\mapsto\mathcal{E}_{0}(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}(\mathcal{E}_{0}))

is the identity. It remains to shown that the assignment β„°0↦(𝕃ℰ0,𝐃s)\mathcal{E}_{0}\mapsto(\mathbb{L}_{\mathcal{E}_{0}},{\bf{D}}_{s}) is surjective, that is, given (𝕃,𝐃s)(\mathbb{L},{\bf{D}}_{s}), whether 𝕃\mathbb{L} is combinatorially equivalent to 𝕃ℰ0​(𝕃,𝐃s)\mathbb{L}_{\mathcal{E}_{0}(\mathbb{L},{\bf{D}}_{s})}. This follows immediately from Proposition 5.8. ∎

Remark 6.7.

Since every vector bundle on β„™1\mathbb{P}^{1} splits in to direct sum of line bundles, we see that the ramification locus Sβ€²S^{\prime} of 𝕃ℰ0\mathbb{L}_{\mathcal{E}_{0}} is always of codimension at least 2. In particular, every tropical Lagrangian brane is combinatorial equivalent to a tropical Lagrangian brane with codim​(Sβ€²)β‰₯2\mathrm{codim}(S^{\prime})\geq 2.

Appendix A Construction of branched covering maps of tropical spaces via discrete data

Let BB be an integral affine manifold with singularities and 𝒫\mathscr{P} a polyhedral decomposition. Branched covering of tropical spaces over (B,𝒫)(B,\mathscr{P}) can be constructed via discrete data.

Definition A.1.

Let BB be an integral affine manifold with singularities and 𝒫\mathscr{P} be a polyhedral decomposition. A covering data over (B,𝒫)(B,\mathscr{P}) is a triple (𝔓,𝔭,ΞΌ)(\mathfrak{P},\mathfrak{p},\mu) that satisfies the following

  1. (1)

    𝔓:={𝒫′​(Ο„)}Ο„βˆˆπ’«\mathfrak{P}:=\{\mathscr{P}^{\prime}(\tau)\}_{\tau\in\mathscr{P}} is a collection of finite sets, paramatrized by 𝒫\mathscr{P}. We put

    𝒫′:=β‹ƒΟ„βˆˆπ’«β€²β€‹(Ο„)𝒫′​(Ο„).\mathscr{P}^{\prime}:=\bigcup_{\tau\in\mathscr{P}^{\prime}(\tau)}\mathscr{P}^{\prime}(\tau).
  2. (2)

    𝔭:={𝔭τ1​τ2}Ο„2βŠ‚Ο„1\mathfrak{p}:=\{\mathfrak{p}_{\tau_{1}\tau_{2}}\}_{\tau_{2}\subset\tau_{1}} is a collection of surjections 𝔭τ1​τ2:𝒫′​(Ο„1)→𝒫′​(Ο„2)\mathfrak{p}_{\tau_{1}\tau_{2}}:\mathscr{P}^{\prime}(\tau_{1})\to\mathscr{P}^{\prime}(\tau_{2}) such that for Ο„3βŠ‚Ο„2βŠ‚Ο„1\tau_{3}\subset\tau_{2}\subset\tau_{1}, we have 𝔭τ2​τ3βˆ˜π”­Ο„1​τ2=𝔭τ1​τ3\mathfrak{p}_{\tau_{2}\tau_{3}}\circ\mathfrak{p}_{\tau_{1}\tau_{2}}=\mathfrak{p}_{\tau_{1}\tau_{3}}.

  3. (3)

    ΞΌ:𝒫′→℀>0\mu:\mathscr{P}^{\prime}\to\mathbb{Z}_{>0} is a function such that

    βˆ‘Ο„β€²βˆˆπ’«β€²β€‹(Ο„)μ​(Ο„β€²)\sum_{\tau^{\prime}\in\mathscr{P}^{\prime}(\tau)}\mu(\tau^{\prime})

    is a constant independent of Ο„βˆˆπ’«\tau\in\mathscr{P}.

We construct a branched covering map between tropical spaces as follows. Define a partial ordering βŠ‚β€²\subset^{\prime} on 𝒫′\mathscr{P}^{\prime} by setting

Ο„1β€²βŠ‚β€²Ο„2β€²βŸΊΟ„1βŠ‚Ο„2​ and ​𝔭τ1​τ2​(Ο„2β€²)=Ο„1β€².\tau_{1}^{\prime}\subset^{\prime}\tau_{2}^{\prime}\Longleftrightarrow\tau_{1}\subset\tau_{2}\text{ and }\mathfrak{p}_{\tau_{1}\tau_{2}}(\tau_{2}^{\prime})=\tau_{1}^{\prime}.

Equip 𝒫,𝒫′\mathscr{P},\mathscr{P}^{\prime} the poset topology, that is, a subset π’¬β€²βŠ‚π’«β€²\mathscr{Q}^{\prime}\subset\mathscr{P}^{\prime} is closed if and only if it satisfies

Οƒβ€²βˆˆπ’¬β€²β€‹Β andΒ β€‹Ο„β€²βŠ‚β€²Οƒβ€²βŸΉΟ„β€²βˆˆπ’¬β€².\sigma^{\prime}\in\mathscr{Q}^{\prime}\text{ and }\tau^{\prime}\subset^{\prime}\sigma^{\prime}\Longrightarrow\tau^{\prime}\in\mathscr{Q}^{\prime}.

Then the map 𝒫′→𝒫\mathscr{P}^{\prime}\to\mathscr{P} given by τ′↦τ\tau^{\prime}\mapsto\tau is continuous. There is another map B→𝒫B\to\mathscr{P} mapping x∈Bx\in B to Ο„xβˆˆπ’«\tau_{x}\in\mathscr{P}, the unique cell such that x∈Int​(Ο„x)x\in\mathrm{Int}(\tau_{x}), which is also continuous. Define the topological space

L:=B×𝒫𝒫′.L:=B\times_{\mathscr{P}}\mathscr{P}^{\prime}.

It is not hard to see that LL is in fact Hausdorff and paracompact. There is a collection of closed subsets 𝒫×𝒫𝒫′≅𝒫′\mathscr{P}\times_{\mathscr{P}}\mathscr{P}^{\prime}\cong\mathscr{P}^{\prime}. We can then write Ο„1β€²βŠ‚Ο„2β€²\tau_{1}^{\prime}\subset\tau_{2}^{\prime} instead of Ο„1β€²βŠ‚β€²Ο„2β€²\tau_{1}^{\prime}\subset^{\prime}\tau_{2}^{\prime} if we regard Ο„1β€²,Ο„2β€²\tau_{1}^{\prime},\tau_{2}^{\prime} as subsets in LL. Let Ο€:Lβ†’B\pi:L\to B be the first projection. It maps elements in 𝒫′\mathscr{P}^{\prime} homeomorphic to elements in 𝒫\mathscr{P}. In particular, we can talk about the relative interior an element Ο„β€²βˆˆπ’«β€²\tau^{\prime}\in\mathscr{P}^{\prime}, namely,

Int​(Ο„β€²):=Ο€βˆ’1​(Int​(Ο„))βˆ©Ο„β€²\mathrm{Int}(\tau^{\prime}):=\pi^{-1}(\mathrm{Int}(\tau))\cap\tau^{\prime}

Define μ:L→℀>0\mu:L\to\mathbb{Z}_{>0} by

ΞΌ:x′↦μ​(Ο„xβ€²β€²),\mu:x^{\prime}\mapsto\mu(\tau_{x^{\prime}}^{\prime}),

where Ο„xβ€²β€²\tau_{x^{\prime}}^{\prime} is the unique element in 𝒫′\mathscr{P}^{\prime} for which xβ€²βˆˆInt​(Ο„xβ€²β€²)x^{\prime}\in\mathrm{Int}(\tau_{x^{\prime}}^{\prime}). Define the sheaf of piecewise linear functions on LL to be the sheaf

𝒫​ℒ𝒫′​(Uβ€²):={Ο†βˆˆC0​(Uβ€²,ℝ):Ο†|Uβ€²βˆ©Int​(Οƒβ€²)βˆ˜Ο€|Uβ€²βˆ©Int​(Οƒβ€²)βˆ’1​ is an affine function for allΒ β€‹Οƒβ€²βˆˆπ’«m​a​xβ€²}\mathcal{PL}_{\mathscr{P}^{\prime}}(U^{\prime}):=\{\varphi\in C^{0}(U^{\prime},\mathbb{R}):\varphi|_{U^{\prime}\cap\mathrm{Int}(\sigma^{\prime})}\circ\pi|_{U^{\prime}\cap\mathrm{Int}(\sigma^{\prime})}^{-1}\text{ is an affine function for all }\sigma^{\prime}\in\mathscr{P}_{max}^{\prime}\}

and the sheaf of affine functions on LL to be the sheaf associated to the presheaf

π’œβ€‹f​fL​(Uβ€²):=lim⟢UβŠƒΟ€β€‹(Uβ€²)A​f​fB​(U).\mathcal{A}ff_{L}(U^{\prime}):=\lim_{\begin{subarray}{c}\longrightarrow\\ U\supset\pi(U^{\prime})\end{subarray}}Aff_{B}(U).

We have ℝ¯LβŠ‚π’œβ€‹f​fLβŠ‚π’«β€‹β„’π’«β€²\underline{\mathbb{R}}_{L}\subset\mathcal{A}ff_{L}\subset\mathcal{PL}_{\mathscr{P}^{\prime}}. Define Ο€#:𝒫​ℒ𝒫→𝒫​ℒ𝒫′\pi^{\#}:\mathcal{PL}_{\mathscr{P}}\to\mathcal{PL}_{\mathscr{P}^{\prime}} by pulling back a germ of piecewise linear functions on BB to LL. It is clear that Ο€#\pi^{\#} preserves affine functions. Hence Ο€:(L,𝒫′,ΞΌ)β†’(B,𝒫)\pi:(L,\mathscr{P}^{\prime},\mu)\to(B,\mathscr{P}) is a branched covering map between tropical spaces that preserves polyhedral decompositions.

Appendix B Localization

Let Ξ£\Sigma be a complete fan and 𝕃\mathbb{L} a tropical Lagrangian multi-section over it. We look at 𝕃\mathbb{L} in a neighborhood of a cone Ο„β€²βˆˆΞ£β€²\tau^{\prime}\in\Sigma^{\prime} and construct another tropical Lagrangian multi-section 𝕃τ′\mathbb{L}_{\tau^{\prime}} called the localization of 𝕃\mathbb{L} along Ο„β€²\tau^{\prime}.

Fix Ο„βˆˆΞ£\tau\in\Sigma. Let ΞΉΟ„:NΟ„β†’N\iota_{\tau}:N_{\tau}\to N be a lift of pΟ„:Nβ†’NΟ„p_{\tau}:N\to N_{\tau}, which induces a projection ΞΉΟ„βˆ—:Mβ†’MΟ„\iota_{\tau}^{*}:M\to M_{\tau} and a fan Στ\Sigma_{\tau} on NΟ„,ℝN_{\tau,\mathbb{R}}. For any cone Οƒβ€²βˆˆΞ£β€²\sigma^{\prime}\in\Sigma^{\prime} such that π​(Οƒβ€²)=ΟƒβŠƒΟ„\pi(\sigma^{\prime})=\sigma\supset\tau, the slope m​(Οƒβ€²)∈M​(Οƒ)m(\sigma^{\prime})\in M(\sigma) gives an element

mτ​(Οƒβ€²):=ΞΉΟ„βˆ—β€‹m​(Οƒβ€²)∈MΟ„/(ΟƒβŸ‚βˆ©MΟ„),m_{\tau}(\sigma^{\prime}):=\iota_{\tau}^{*}m(\sigma^{\prime})\in M_{\tau}/(\sigma^{\perp}\cap M_{\tau}),

Define Kτ​(Οƒβ€²):=Kτ​(Οƒ)Γ—{mτ​(Οƒβ€²)}βˆˆΞ£Ο„β€²K_{\tau}(\sigma^{\prime}):=K_{\tau}(\sigma)\times\{m_{\tau}(\sigma^{\prime})\}\in\Sigma_{\tau}^{\prime}. Let Ο„β€²βˆˆΞ£β€²\tau^{\prime}\in\Sigma^{\prime} be a lift of Ο„\tau. Define

Starβˆ˜β€‹(Ο„β€²):=β‹ƒΟƒβ€²βŠƒΟ„β€²Int​(Οƒβ€²),\text{Star}^{\circ}(\tau^{\prime}):=\bigcup_{\sigma^{\prime}\supset\tau^{\prime}}\mathrm{Int}(\sigma^{\prime}),

the open star of Ο„β€²\tau^{\prime} and

Στ′′:={Kτ​(Οƒβ€²)|Οƒβ€²βŠƒΟ„β€²}.\Sigma_{\tau^{\prime}}^{\prime}:=\{K_{\tau}(\sigma^{\prime})\,|\,\sigma^{\prime}\supset\tau^{\prime}\}.

We write an element in Στ′′\Sigma_{\tau^{\prime}}^{\prime} as Kτ′​(Οƒβ€²)K_{\tau^{\prime}}(\sigma^{\prime}) to emphasis its dependence on Ο„β€²\tau^{\prime}. This gives a topological space

LΟ„β€²:=|Στ|×ΣτΣτ′′,L_{\tau^{\prime}}:=|\Sigma_{\tau}|\times_{\Sigma_{\tau}}\Sigma_{\tau^{\prime}}^{\prime},

a projection πτ′:LΟ„β€²β†’|Στ|\pi_{\tau^{\prime}}:L_{\tau^{\prime}}\to|\Sigma_{\tau}|, a multiplicity map μτ′​(Kτ′​(Οƒβ€²)):=μ​(Οƒβ€²)\mu_{\tau^{\prime}}(K_{\tau^{\prime}}(\sigma^{\prime})):=\mu(\sigma^{\prime}), and a piecewise linear function

φτ′|Kτ′​(Οƒβ€²):=mτ​(Οƒβ€²).\varphi_{\tau^{\prime}}|_{K_{\tau^{\prime}}(\sigma^{\prime})}:=m_{\tau}(\sigma^{\prime}).

The slope of φτ′\varphi_{\tau^{\prime}} on a cone Kτ′​(Οƒβ€²)βˆˆΞ£Ο„β€²β€²K_{\tau^{\prime}}(\sigma^{\prime})\in\Sigma_{\tau^{\prime}}^{\prime} will be denoted by mτ′​(Οƒβ€²)∈MΟ„m_{\tau^{\prime}}(\sigma^{\prime})\in M_{\tau}, which is of course, equals to mτ​(Οƒβ€²)m_{\tau}(\sigma^{\prime}). It is clear that (LΟ„β€²,Στ′′,ΞΌΟ„β€²,πτ′,φτ′)(L_{\tau^{\prime}},\Sigma_{\tau^{\prime}}^{\prime},\mu_{\tau^{\prime}},\pi_{\tau^{\prime}},\varphi_{\tau^{\prime}}) is a tropical Lagrangian multi-section over Στ\Sigma_{\tau}. We denote it by 𝕃τ′\mathbb{L}_{\tau^{\prime}}. It’s degree is given by μ​(Ο„β€²)\mu(\tau^{\prime}).

To understand the relation between Ο†\varphi and φτ′\varphi_{\tau^{\prime}}, we define a projection pΟ„β€²:Starβˆ˜β€‹(Ο„β€²)β†’LΟ„β€²p_{\tau^{\prime}}:\text{Star}^{\circ}(\tau^{\prime})\to L_{\tau^{\prime}} by setting

pΟ„β€²|Int​(Οƒβ€²):Int​(Οƒβ€²)β†’Kτ​(Οƒ)Γ—{mτ​(Οƒβ€²)},p_{\tau^{\prime}}|_{\mathrm{Int}(\sigma^{\prime})}:\mathrm{Int}(\sigma^{\prime})\to K_{\tau}(\sigma)\times\{m_{\tau}(\sigma^{\prime})\},

where the first component is given by pΟ„βˆ˜Ο€|Starβˆ˜β€‹(Ο„β€²)p_{\tau}\circ\pi|_{\text{Star}^{\circ}(\tau^{\prime})}. Clearly, pΟ„β€²p_{\tau^{\prime}} maps cones to cones and by construction, we have

Ο€Ο„β€²βˆ˜pΟ„β€²=pΟ„βˆ˜Ο€|Starβˆ˜β€‹(Ο„β€²).\pi_{\tau^{\prime}}\circ p_{\tau^{\prime}}=p_{\tau}\circ\pi|_{\text{Star}^{\circ}(\tau^{\prime})}.

For Οƒ1β€²,Οƒ2β€²βˆˆΞ£β€²β€‹(n)\sigma_{1}^{\prime},\sigma_{2}^{\prime}\in\Sigma^{\prime}(n) such that Ο„β€²βŠ‚Οƒ1β€²,Οƒ2β€²\tau^{\prime}\subset\sigma_{1}^{\prime},\sigma_{2}^{\prime}, by continuity of Ο†\varphi, we have

m​(Οƒ1β€²)βˆ’m​(Οƒ2β€²)=pΟ„βˆ—β€‹(mΟ„β€²),m(\sigma_{1}^{\prime})-m(\sigma_{2}^{\prime})=p_{\tau}^{*}(m_{\tau^{\prime}}),

for some mΟ„β€²βˆˆΟ„βŸ‚βˆ©M=MΟ„m_{\tau^{\prime}}\in\tau^{\perp}\cap M=M_{\tau}. As ΞΉΟ„βˆ—:Mβ†’MΟ„\iota_{\tau}^{*}:M\to M_{\tau} is the left inverse of the inclusion pΟ„βˆ—:MΟ„β†’Mp_{\tau}^{*}:M_{\tau}\to M, we have

mτ′​(Οƒ1β€²)βˆ’mτ′​(Οƒ2β€²)=ΞΉΟ„βˆ—β€‹(m​(Οƒ1β€²)βˆ’m​(Οƒ2β€²))=ΞΉΟ„βˆ—β€‹pΟ„βˆ—β€‹(mΟ„β€²)=mΟ„β€².m_{\tau^{\prime}}(\sigma_{1}^{\prime})-m_{\tau^{\prime}}(\sigma_{2}^{\prime})=\iota_{\tau}^{*}(m(\sigma_{1}^{\prime})-m(\sigma_{2}^{\prime}))=\iota_{\tau}^{*}p_{\tau}^{*}(m_{\tau^{\prime}})=m_{\tau^{\prime}}.

Hence

(5) pΟ„βˆ—β€‹(mτ′​(Οƒ1β€²)βˆ’mτ′​(Οƒ2β€²))=m​(Οƒ1β€²)βˆ’m​(Οƒ2β€²).p_{\tau}^{*}\left(m_{\tau^{\prime}}(\sigma_{1}^{\prime})-m_{\tau^{\prime}}(\sigma_{2}^{\prime})\right)=m(\sigma_{1}^{\prime})-m(\sigma_{2}^{\prime}).

For Ο„β€²\tau^{\prime} and a maximal cone Οƒβ€²βŠƒΟ„β€²\sigma^{\prime}\supset\tau^{\prime}, the function

fΟ„β€²:=pΟ„βˆ—β€‹mτ′​(Οƒβ€²)βˆ’m​(Οƒβ€²)∈Mf_{\tau^{\prime}}:=p_{\tau}^{*}m_{\tau^{\prime}}(\sigma^{\prime})-m(\sigma^{\prime})\in M

is independent of Οƒβ€²βŠƒΟ„β€²\sigma^{\prime}\supset\tau^{\prime} and hence a linear function defined on Starβˆ˜β€‹(Ο„β€²)\text{Star}^{\circ}(\tau^{\prime}). Thus

(6) pΟ„β€²βˆ—β€‹Ο†Ο„β€²=Ο†+fΟ„β€²p_{\tau^{\prime}}^{*}\varphi_{\tau^{\prime}}=\varphi+f_{\tau^{\prime}}

on Starβˆ˜β€‹(Ο„β€²)\text{Star}^{\circ}(\tau^{\prime}). We can generalize this to arbitrary pair of stratum as follows. For Ο„2β€²βŠ‚Ο„1β€²\tau_{2}^{\prime}\subset\tau_{1}^{\prime}, we have Starβˆ˜β€‹(Ο„1β€²)βŠ‚Starβˆ˜β€‹(Ο„2β€²)\text{Star}^{\circ}(\tau_{1}^{\prime})\subset\text{Star}^{\circ}(\tau_{2}^{\prime}), so the difference

pΟ„1β€²βˆ—β€‹Ο†Ο„1β€²βˆ’pΟ„2β€²βˆ—β€‹Ο†Ο„2β€²p_{\tau_{1}^{\prime}}^{*}\varphi_{\tau_{1}^{\prime}}-p_{\tau_{2}^{\prime}}^{*}\varphi_{\tau_{2}^{\prime}}

is a linear function on Starβˆ˜β€‹(Ο„1β€²)\text{Star}^{\circ}(\tau_{1}^{\prime}). As a whole, we proved the following

Theorem B.1.

For any Ο„βˆˆΞ£\tau\in\Sigma, by choosing a lift of the projection pΟ„:Nβ†’NΟ„p_{\tau}:N\to N_{\tau}, there is a collection of tropical Lagrangian multi-sections {𝕃τ′}Ο„β€²:π​(Ο„β€²)=Ο„\{\mathbb{L}_{\tau^{\prime}}\}_{\tau^{\prime}:\pi(\tau^{\prime})=\tau} over Στ\Sigma_{\tau} such that, for each lift Ο„β€²\tau^{\prime} of Ο„\tau, there is a map pΟ„β€²:Starβˆ˜β€‹(Ο„β€²)β†’LΟ„β€²p_{\tau^{\prime}}:\text{Star}^{\circ}(\tau^{\prime})\to L_{\tau^{\prime}} so that

Ο€Ο„β€²βˆ˜pΟ„β€²=pΟ„βˆ˜Ο€|Starβˆ˜β€‹(Ο„β€²).\pi_{\tau^{\prime}}\circ p_{\tau^{\prime}}=p_{\tau}\circ\pi|_{\text{Star}^{\circ}(\tau^{\prime})}.

Moreover, for Ο„2β€²βŠ‚Ο„1β€²\tau_{2}^{\prime}\subset\tau_{1}^{\prime}, the difference

pΟ„1β€²βˆ—β€‹Ο†Ο„1β€²βˆ’pΟ„2β€²βˆ—β€‹Ο†Ο„2β€²p_{\tau_{1}^{\prime}}^{*}\varphi_{\tau_{1}^{\prime}}-p_{\tau_{2}^{\prime}}^{*}\varphi_{\tau_{2}^{\prime}}

is an integral linear function on Starβˆ˜β€‹(Ο„1β€²)\text{Star}^{\circ}(\tau_{1}^{\prime}).

Recall the definition of separability introduced in [15], Definition 3.13.

Definition B.2.

A tropical Lagrangian multi-section 𝕃=(L,Ξ£L,ΞΌ,Ο€,Ο†)\mathbb{L}=(L,\Sigma_{L},\mu,\pi,\varphi) over a fan Ξ£\Sigma is said to be separable if it satisfies the following condition: For any Ο„βˆˆΞ£\tau\in\Sigma and distinct lifts Ο„(Ξ±),Ο„(Ξ²)∈ΣL\tau^{(\alpha)},\tau^{(\beta)}\in\Sigma_{L} of Ο„\tau, we have Ο†|Ο„(Ξ±)β‰ Ο†|Ο„(Ξ²)\varphi|_{\tau^{(\alpha)}}\neq\varphi|_{\tau^{(\beta)}}.

Separability is preserved under localization.

Proposition B.3.

If 𝕃\mathbb{L} is separable, the tropical Lagrangian multi-section 𝕃τ′\mathbb{L}_{\tau^{\prime}} is also separable.

Proof.

Let Kτ​(Οƒ)βˆˆΞ£Ο„K_{\tau}(\sigma)\in\Sigma_{\tau}. Suppose Kτ′​(Οƒ(Ξ±)),Kτ′​(Οƒ(Ξ²))K_{\tau^{\prime}}(\sigma^{(\alpha)}),K_{\tau^{\prime}}(\sigma^{(\beta)}) are two distinct lift of Kτ​(Οƒ)K_{\tau}(\sigma) and contain distinct lifts of Kτ​(Οƒ)K_{\tau}(\sigma). In particular, Οƒ(Ξ±)β‰ Οƒ(Ξ²)\sigma^{(\alpha)}\neq\sigma^{(\beta)}. As we have seen, the difference pΟ„β€²βˆ—β€‹Ο†Ο„β€²βˆ’Ο†p_{\tau^{\prime}}^{*}\varphi_{\tau^{\prime}}-\varphi is an affine function on Staro​(Ο„β€²)\text{Star}^{\text{o}}(\tau^{\prime}). Thus

m​(Οƒ(Ξ±))βˆ’m​(Οƒ(Ξ²))=pΟ„βˆ—β€‹(mτ′​(Οƒ(Ξ±))βˆ’mτ′​(Οƒ(Ξ±))).m(\sigma^{(\alpha)})-m(\sigma^{(\beta)})=p_{\tau}^{*}(m_{\tau^{\prime}}(\sigma^{(\alpha)})-m_{\tau^{\prime}}(\sigma^{(\alpha)})).

By separability, m​(Οƒ(Ξ±))β‰ m​(Οƒ(Ξ²))m(\sigma^{(\alpha)})\neq m(\sigma^{(\beta)}). Hence for any vβˆˆΟ„v\in\tau,

(mτ′​(Οƒ(Ξ±))βˆ’mτ′​(Οƒ(Ξ²)))​(pτ​(v))=(m​(Οƒ(Ξ±))βˆ’m​(Οƒ(Ξ²)))​(v)β‰ 0.\left(m_{\tau^{\prime}}(\sigma^{(\alpha)})-m_{\tau^{\prime}}(\sigma^{(\beta)})\right)(p_{\tau}(v))=\left(m(\sigma^{(\alpha)})-m(\sigma^{(\beta)})\right)(v)\neq 0.

Hence 𝕃τ′\mathbb{L}_{\tau^{\prime}} is also separable. ∎

The relation between restriction and localization is given by the following

Theorem B.4.

Let β„°\mathcal{E} be a toric vector bundle on XΞ£X_{\Sigma} and XΟ„βŠ‚XΞ£X_{\tau}\subset X_{\Sigma} be a toric strata. Let β„°Ο„:=β„°|XΟ„\mathcal{E}_{\tau}:=\mathcal{E}|_{X_{\tau}}. By choosing a lift of pΟ„:Nβ†’N/(β„β€‹Ο„βˆ©N)p_{\tau}:N\to N/(\mathbb{R}\tau\cap N), β„°Ο„(Ξ±)\mathcal{E}_{\tau}^{(\alpha)} admits a structure of toric vector bundle over XΟ„X_{\tau}. Moreover, if β„°Ο„(Ξ±)\mathcal{E}_{\tau}^{(\alpha)} is an indecomposable summand of β„°Ο„\mathcal{E}_{\tau}, the associated tropical Lagrangian multi-section 𝕃τ(Ξ±)\mathbb{L}_{\tau}^{(\alpha)} of β„°Ο„(Ξ±)\mathcal{E}_{\tau}^{(\alpha)} is a localization of 𝕃ℰ\mathbb{L}_{\mathcal{E}} along a unique cone.

Proof.

Let ΞΉΟ„:N/(β„β€‹Ο„βˆ©N)β†’N\iota_{\tau}:N/(\mathbb{R}\tau\cap N)\to N be a lift of the projection pΟ„:Nβ†’N/(β„β€‹Ο„βˆ©N)p_{\tau}:N\to N/(\mathbb{R}\tau\cap N). Then it is easy to check that

λ¯⋅v:=ιτ​(λ¯)β‹…v\overline{\lambda}\cdot v:=\iota_{\tau}(\overline{\lambda})\cdot v

defines a toric vector bundle structure on β„°Ο„\mathcal{E}_{\tau} over XΟ„X_{\tau}. It is by construction that the tropical Lagrangian multi-section 𝕃τ\mathbb{L}_{\tau} associated to β„°Ο„\mathcal{E}_{\tau} is a localization of 𝕃ℰ\mathbb{L}_{\mathcal{E}}. Since β„°Ο„(Ξ±)\mathcal{E}_{\tau}^{(\alpha)} is a summand, it must be toric by Corollary 5.4. There is an inclusion 𝕃τ(Ξ±)βŠ‚π•ƒΟ„\mathbb{L}_{\tau}^{(\alpha)}\subset\mathbb{L}_{\tau} which covering |Ξ£||\Sigma|. Hence 𝕃ℰτ(Ξ±)\mathbb{L}_{\mathcal{E}_{\tau}^{(\alpha)}} is also a localization of 𝕃ℰ\mathbb{L}_{\mathcal{E}}. Separability of 𝕃ℰ\mathbb{L}_{\mathcal{E}} implies the cone that we localize is unique. ∎

References

  • [1] M.Β Akaho and D.Β Joyce, Immersed Lagrangian Floer theory, J. Differential Geom. 86 (2010), no.Β 3, 381–500.
  • [2] AΒ Klyachko Alexander, Equivariant bundles on toral varieties, Ann. of Math. (2) 35 (1990), 337–375.
  • [3] K.Β Chan and Y.-H. Suen, SYZ transforms for immersed Lagrangian multisections, Trans. Amer. Math. Soc. 372 (2019), no.Β 8, 5747–5780.
  • [4] Kwokwai Chan, ZimingΒ Nikolas Ma, and Yat-Hin Suen, Tropical Lagrangian multi-sections and smoothing of locally free sheaves over degenerate Calabi-Yau surfaces, to be appear in Adv. in Math, arXiv:2004.00523.
  • [5] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol.Β 46, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.
  • [6] M.Β Gross and B.Β Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), no.Β 2, 169–338.
  • [7] by same author, Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom. 19 (2010), no.Β 4, 679–780.
  • [8] by same author, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no.Β 3, 1301–1428.
  • [9] Tamafumi Kaneyama, On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J. 57 (1975), 65–86. MR 376680
  • [10] M.Β Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol.Β 1, 2 (ZΓΌrich, 1994), BirkhΓ€user, Basel, 1995, pp.Β 120–139.
  • [11] S.Β Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18 (2009), no.Β 1, 1–36.
  • [12] C.Β Renzo, G.Β Andreas, and M.Β Hannah, Tropical ψ\psi classes, preprint (2021), arXiv:2009.00586.
  • [13] H.Β Ruddat and B.Β Siebert, Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Γ‰tudes Sci. 132 (2020), 1–82.
  • [14] A.Β Strominger, S.-T. Yau, and E.Β Zaslow, Mirror symmetry is TT-duality, Nuclear Phys. B 479 (1996), no.Β 1-2, 243–259.
  • [15] Y.-H. Suen, Tropical Lagrangian multi-sections and toric vector bundles, preprint (2021), arXiv:2106.05705.