This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\intervalconfig

soft open fences

Twisted Moments of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions

Jakob Streipel Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA jakob.streipel@wsu.edu
Abstract.

We compute an asymptotic formula for the twisted moment of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions and their derivatives. As an application we prove that symmetric-square lifts of GL(2)\operatorname{GL}(2) Maass forms are uniquely determined by the central values of the derivatives of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions.

1. Introduction

The method of moments has broad applications to the study of LL-functions and the forms attached to them. In her groundbreaking paper [10], Li uses bounds for moments of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions to deduce the first subconvexity bound for degree three LL-functions. Using asymptotic formulas for these moments one can derive nonvanishing results. For example [9, 15, 1] all use asymptotics for moments of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions or their derivative to deduce simultaneous nonvanishing results at the central point of these objects. In a series of papers Liu ([11, 12]) and later Sun ([16, 17]) use asymptotics for these moments twisted by Fourier coefficients at primes to show that self-dual Maass cusp forms for GL(3)\operatorname{GL}(3) are uniquely determined by central values of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions.

In this paper we compute asymptotics for twisted moments of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions (Theorem 1) and their derivatives (Theorem 5). As an application of this we prove an analogue of Liu’s results in the spectral aspect, i.e. we show that symmetric-square lifts of GL(2)\operatorname{GL}(2) Hecke–Maass forms are uniquely determined by central values of the derivatives of GL(3)×GL(2)\operatorname{GL}(3)\times\operatorname{GL}(2) LL-functions (Theorem 8).

Let ff be a Hecke–Maass form of type (ν1,ν2)(\nu_{1},\nu_{2}) for SL(3,)\operatorname{SL}(3,\mathbb{Z}) with Fourier coefficients A(m,n)A(m,n), normalized so that the first Fourier coefficient is A(1,1)=1A(1,1)=1. We define the LL-function

L(s,f)=m=1A(m,1)msL(s,f)=\sum_{m=1}^{\infty}\frac{A(m,1)}{m^{s}}

for Re(s)>1\operatorname{Re}(s)>1. This has analytic continuation and its completed LL-function Λ(s,f)\Lambda(s,f) satisfies Λ(s,f)=Λ(1s,f~)\Lambda(s,f)=\Lambda(1-s,\tilde{f}), where f~\tilde{f} denotes the dual form of ff of type (ν2,ν1)(\nu_{2},\nu_{1}) and Fourier coefficients A(n,m)A(n,m). Let {uj}\big{\{}\,u_{j}\,\big{\}} be an orthonormal basis of Hecke–Maass forms for SL(2,)\operatorname{SL}(2,\mathbb{Z}). We define the Rankin–Selberg LL-function

L(s,f×uj)=m1n1λj(n)A(n,m)(m2n)sL(s,f\times u_{j})=\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lambda_{j}(n)A(n,m)}{(m^{2}n)^{s}}

for Re(s)>1\operatorname{Re}(s)>1, where λj(n)\lambda_{j}(n) are the normalized Fourier coefficients of uju_{j} (see Preliminaries for details).

Our main result is this:

Theorem 1.

Let ff be a Hecke–Maass form for SL(3,)\operatorname{SL}(3,\mathbb{Z}) and let {uj}\big{\{}\,u_{j}\,\big{\}} be an orthonormal basis of even Hecke–Maass forms for SL(2,)\operatorname{SL}(2,\mathbb{Z}) with Laplacian eigenvalues 14+tj2\frac{1}{4}+t_{j}^{2}, tj0t_{j}\geq 0 and normalized Fourier coefficients λj(n)\lambda_{j}(n). Fix a prime pT1εp\ll T^{1-\varepsilon}.

Then for any ε>0\varepsilon>0 and TT large with T38+ε<MT1εT^{\frac{3}{8}+\varepsilon}<M\leq T^{1-\varepsilon}, we have

jk(tj)ωjλj(p)L(12,f×uj)+14πk(t)ω(t)η¯(p,12+it)|L(12it,f)|2𝑑t\displaystyle\sideset{}{{}^{\prime}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)L\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}+\frac{1}{4\pi}\int_{-\infty}^{\infty}k(t)\omega(t)\overline{\eta}\Bigl{(}p,\frac{1}{2}+it\Bigr{)}\Big{\lvert}L\Bigl{(}\frac{1}{2}-it,f\Bigr{)}\Big{\rvert}^{2}\,dt
=L(1,f~)(A(p,1)p1)+L(1,f)(A(1,p)p1)p32π0k(t)tanh(πt)t𝑑t+\displaystyle\qquad=\frac{L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}+L(1,f)\bigl{(}A(1,p)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(M3T52+εp1+ε+M1T32+εpε+MT17+εpε),\displaystyle\qquad\qquad{}+O(M^{-3}T^{\frac{5}{2}+\varepsilon}p^{1+\varepsilon}+M^{-1}T^{\frac{3}{2}+\varepsilon}p^{\varepsilon}+MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon}),

where means summing over the orthonormal basis of even Hecke–Maass forms, k(t)=e(tT)2M2+e(t+T)2M2k(t)=e^{-\frac{(t-T)^{2}}{M^{2}}}+e^{-\frac{(t+T)^{2}}{M^{2}}}, and the weights ωj\omega_{j} and ω(t)\omega(t) as well as η(n,s)\eta(n,s) are defined in the Preliminaries.

Remark 2.

The integral in the main term is of size

0k(t)tanh(πt)t𝑑tTM.\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt\asymp TM.
Remark 3.

Without the twist λj(p)\lambda_{j}(p) (i.e., corresponding to p=1p=1), the shape of the asymptotic formula is essentially the same, with main term

L(1,f~)+L(1,f)π0k(t)tanh(πt)t𝑑t.\frac{L(1,\tilde{f})+L(1,f)}{\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt.

If ff is self-dual this becomes

jk(tj)ωjλj(p)L(12,f×uj)+14πk(t)ω(t)η¯(p,12+it)|L(12it,f)|2𝑑t\displaystyle\sideset{}{{}^{\prime}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)L\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}+\frac{1}{4\pi}\int_{-\infty}^{\infty}k(t)\omega(t)\overline{\eta}\Bigl{(}p,\frac{1}{2}+it\Bigr{)}\Big{\lvert}L\Bigl{(}\frac{1}{2}-it,f\Bigr{)}\Big{\rvert}^{2}\,dt
=2L(1,f)(A(p,1)p1)p32π0k(t)tanh(πt)t𝑑t+\displaystyle\qquad=\frac{2L(1,f)\bigl{(}A(p,1)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(M3T52+εp1+ε+M1T32+εpε+MT17+εpε).\displaystyle\qquad\qquad{}+O(M^{-3}T^{\frac{5}{2}+\varepsilon}p^{1+\varepsilon}+M^{-1}T^{\frac{3}{2}+\varepsilon}p^{\varepsilon}+MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon}).
Remark 4.

Note that the analysis of the last error term, coming from the diagonal, can be refined in the case where ff is self-dual (using stronger bounds on the Ramanujan conjecture in this case), however the improvement in the error term doesn’t affect our application of it below.

Our approach in proving this, contained in Sections 36, is based on [10].

Using the same technology we further compute, in Section 7, asymptotics for the twisted first moment of the derivative at the central point:

Theorem 5.

Let ff be a Hecke–Maass form for SL(3,)\operatorname{SL}(3,\mathbb{Z}) and let {uj}\big{\{}\,u_{j}\,\big{\}} be an orthonormal basis of odd Hecke–Maass forms for SL(2,)\operatorname{SL}(2,\mathbb{Z}) with Laplacian eigenvalues 14+tj2\frac{1}{4}+t_{j}^{2}, tj0t_{j}\geq 0 and normalized Fourier coefficients λj(n)\lambda_{j}(n). Fix a prime pT1εp\ll T^{1-\varepsilon}. Then for any ε>0\varepsilon>0 and TT large with T38+ε<MT1εT^{\frac{3}{8}+\varepsilon}<M\leq T^{1-\varepsilon}, we have

jk(tj)ωjλj(p)L(12,f×uj)\displaystyle\sideset{}{{}^{*}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)L^{\prime}\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}
=3L(1,f~)(A(p,1)p1)+3L(1,f)(A(1,p)p1)2p32πk(t)tanh(πt)tlog|t|𝑑t+\displaystyle=\frac{3L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}+3L(1,f)\bigl{(}A(1,p)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt+{}
+K(A(p,1)p1)+K~(A(1,p)p1)2p32πk(t)tanh(πt)t𝑑t+\displaystyle\qquad{}+\frac{K\bigl{(}A(p,1)p-1\bigr{)}+\tilde{K}\bigl{(}A(1,p)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(M3T52+εp1+ε+M1T32+εpε+MT17+εpε)\displaystyle\qquad\qquad{}+O(M^{-3}T^{\frac{5}{2}+\varepsilon}p^{1+\varepsilon}+M^{-1}T^{\frac{3}{2}+\varepsilon}p^{\varepsilon}+MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon})

where means summing over the orthonormal basis of odd Hecke–Maass forms, K=2L(1,f~)3L(1,f~)log(2π)L(1,f~)logpK=2L^{\prime}(1,\tilde{f})-3L(1,\tilde{f})\log(2\pi)-L(1,\tilde{f})\log p and K~=2L(1,f)3L(1,f)log(2π)L(1,f)logp\tilde{K}=2L^{\prime}(1,f)-3L(1,f)\log(2\pi)-L(1,f)\log p are constants, k(t)=e(tT)2M2+e(t+T)2M2k(t)=e^{-\frac{(t-T)^{2}}{M^{2}}}+e^{-\frac{(t+T)^{2}}{M^{2}}}, and the weight ωj\omega_{j} is defined in the Preliminaries.

Remark 6.

The main term is of size

k(t)tanh(πt)tlog|t|𝑑tTMlogT.\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt\asymp TM\log T.
Remark 7.

Without the twist λj(p)\lambda_{j}(p), the asymptotic is again similar, with main term

3L(1,f~)+3L(1,f)2πk(t)tanh(πt)tlog|t|𝑑t.\frac{3L(1,\tilde{f})+3L(1,f)}{2\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt.

This agrees with [1, Theorem 1.1] when taking the average as long as possible (i.e., MM close to TT), but also allows averaging over shorter intervals.

For self-dual ff this becomes

jk(tj)ωjλj(p)L(12,f×uj)\displaystyle\sideset{}{{}^{*}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)L^{\prime}\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}
=3L(1,f)(A(p,1)p1)p32πk(t)tanh(πt)tlog|t|𝑑t+\displaystyle=\frac{3L(1,f)\bigl{(}A(p,1)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt+{}
+K(A(p,1)p1)p32πk(t)tanh(πt)t𝑑t+\displaystyle\qquad{}+\frac{K\bigl{(}A(p,1)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(M3T52+εp1+ε+M1T32+εpε+MT17+εpε).\displaystyle\qquad\qquad{}+O(M^{-3}T^{\frac{5}{2}+\varepsilon}p^{1+\varepsilon}+M^{-1}T^{\frac{3}{2}+\varepsilon}p^{\varepsilon}+MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon}).

An application of this is to show that symmetric-square lifts of GL(2)\operatorname{GL}(2) Maass forms are uniquely determined by the central values L(12,f×uj)L^{\prime}(\frac{1}{2},f\times u_{j}).

Theorem 8.

Let ff and gg be symmetric-square lifts of GL(2)\operatorname{GL}(2) Maass forms. If

L(12,f×uj)=cL(12,g×uj)L^{\prime}\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}=cL^{\prime}\Bigl{(}\frac{1}{2},g\times u_{j}\Bigr{)}

for some constant c0c\neq 0 and all odd uju_{j}, then f=gf=g.

This is an analogue in the spectral aspect of Liu’s results [11, 12] in the weight and level aspects.

We quickly sketch the proof of this. Let Af(m,n)A_{f}(m,n) and Ag(m,n)A_{g}(m,n) denote the Fourier coefficients of ff and gg respectively. For each fixed prime pp, the assumption of L(12,f×uj)=cL(12,g×uj)L^{\prime}(\frac{1}{2},f\times u_{j})=cL^{\prime}(\frac{1}{2},g\times u_{j}) applied to Theorem 5 tells us

3L(1,f)π(Af(p,1)p121p32)TMlogT=3cL(1,g)π(Ag(p,1)p121p32)TMlogT+Op(TM).\frac{3L(1,f)}{\pi}\Bigl{(}\frac{A_{f}(p,1)}{p^{\frac{1}{2}}}-\frac{1}{p^{\frac{3}{2}}}\Bigr{)}TM\log T=\frac{3cL(1,g)}{\pi}\Bigl{(}\frac{A_{g}(p,1)}{p^{\frac{1}{2}}}-\frac{1}{p^{\frac{3}{2}}}\Bigr{)}TM\log T+O_{p}(TM).

Moreover computing the same kind of moment as in Theorem 5 without the twist by λj(p)\lambda_{j}(p) we have

L(1,f)TMlogT=cL(1,g)TMlogT+Op(TM).L(1,f)TM\log T=cL(1,g)TM\log T+O_{p}(TM).

By taking TT\to\infty these two together therefore imply Af(p,1)=Ag(p,1)A_{f}(p,1)=A_{g}(p,1) for all primes pp. Hence by the strong multiplicity one theorem (e.g. [3, Theorem 12.6.1]), we have f=gf=g.

2. Preliminaries

Let z=x+iyz=x+iy and let

E(z,s)=12c,d(c,d)=1ys|cz+d|2sE(z,s)=\frac{1}{2}\sum_{\begin{subarray}{c}c,d\in\mathbb{Z}\\ (c,d)=1\end{subarray}}\frac{y^{s}}{\lvert cz+d\rvert^{2s}}

be the Eisenstein series with Fourier expansion

E(z,s)=ys+ϕ(s)y1s+n0ϕ(n,s)Ws(nz).E(z,s)=y^{s}+\phi(s)y^{1-s}+\sum_{n\neq 0}\phi(n,s)W_{s}(nz).

Here WsW_{s} is the Whittaker function

Ws(z)=2|y|12Ks12(2π|y|)e(x),W_{s}(z)=2\lvert y\rvert^{\frac{1}{2}}K_{s-\frac{1}{2}}(2\pi\lvert y\rvert)e(x),

where e(x)=e2πixe(x)=e^{2\pi ix}, KsK_{s} is the KK-Bessel function,

ϕ(s)=πΓ(s12)Γ(s)ζ(2s1)ζ(2s),\phi(s)=\sqrt{\pi}\frac{\Gamma\Bigl{(}s-\dfrac{1}{2}\Bigr{)}}{\Gamma(s)}\frac{\zeta(2s-1)}{\zeta(2s)},
ϕ(n,s)=πsΓ(s)1ζ(2s)1|n|12η(n,s),\phi(n,s)=\pi^{s}\Gamma(s)^{-1}\zeta(2s)^{-1}\lvert n\rvert^{-\frac{1}{2}}\eta(n,s),

and

η(n,s)=ad=|n|(ad)s12.\eta(n,s)=\sum_{ad=\lvert n\rvert}\Bigl{(}\frac{a}{d}\Bigr{)}^{s-\frac{1}{2}}.

For a Hecke–Maass form ff and the Eisenstein series E=E(z,12+it)E=E(z,\frac{1}{2}+it) we associate the Rankin–Selberg LL-function

L(s,f×E)=m1n1η¯(n,12+it)A(n,m)(m2n)sL(s,f\times E)=\sum_{m\geq 1}\sum_{n\geq 1}\frac{\bar{\eta}\Bigl{(}n,\dfrac{1}{2}+it\Bigr{)}A(n,m)}{(m^{2}n)^{s}}

for Re(s)>1\operatorname{Re}(s)>1. One derives

L(12,f×E)=|L(12it,f)|2,L\Bigl{(}\frac{1}{2},f\times E\Bigr{)}=\Big{\lvert}L\Bigl{(}\frac{1}{2}-it,f\Bigr{)}\Big{\rvert}^{2},

see e.g. [3, Theorem 12.3.6].

For uju_{j} in the basis of Hecke–Maass forms for SL(2,)\operatorname{SL}(2,\mathbb{Z}), we have the Fourier expansion

uj(z)=n0ρj(n)Wsj(nz).u_{j}(z)=\sum_{n\neq 0}\rho_{j}(n)W_{s_{j}}(nz).

The normalization we use to get λj(n)\lambda_{j}(n) is

ρj(±n)=ρj(±1)λj(n)n12.\rho_{j}(\pm n)=\rho_{j}(\pm 1)\lambda_{j}(n)n^{-\frac{1}{2}}.

From Rankin–Selberg theory one gets

m2nN|A(m,n)|2N,\mathop{\sum\sum}_{m^{2}n\leq N}\lvert A(m,n)\rvert^{2}\ll N,

which using Cauchy’s inequality gives us

nN|A(m,n)|N|m|.\sum_{n\leq N}\lvert A(m,n)\rvert\ll N\lvert m\rvert.

2.1. Kuznetsov trace formula

For m,n1m,n\geq 1 and any even test function h(t)h(t) holomorphic in the strip |Imt|12+ε\lvert\operatorname{Im}t\rvert\leq\frac{1}{2}+\varepsilon and h(t)(|t|+1)2εh(t)\ll(\lvert t\rvert+1)^{-2-\varepsilon} in the same strip, we have the Kuznetsov trace formula for even forms (see e.g., [2, Section 3])

jh(tj)ωjλj(m)λj(n)+14πh(t)ω(t)η¯(m,12+it)η(n,12+it)𝑑t\displaystyle\sideset{}{{}^{\prime}}{\sum}_{j}h(t_{j})\omega_{j}\lambda_{j}(m)\lambda_{j}(n)+\frac{1}{4\pi}\int_{-\infty}^{\infty}h(t)\omega(t)\overline{\eta}\Bigl{(}m,\frac{1}{2}+it\Bigr{)}\eta\Bigl{(}n,\frac{1}{2}+it\Bigr{)}\,dt
=12δ(m,n)H+c>012c(S(m,n;c)H+(4πmnc)+S(m,n;c)H(4πmnc)).\displaystyle\quad=\frac{1}{2}\delta(m,n)H+\sum_{c>0}\frac{1}{2c}\mathopen{}\mathclose{{}\left(S(m,n;c)H^{+}\Bigl{(}\frac{4\pi\sqrt{mn}}{c}\Bigr{)}+S(-m,n;c)H^{-}\Bigl{(}\frac{4\pi\sqrt{mn}}{c}\Bigr{)}}\right).

Here restricts the sum to even Maass forms, δ(m,n)\delta(m,n) is the Kronecker symbol,

ωj=4π|ρj(1)|2cosh(πtj),\omega_{j}=\frac{4\pi\lvert\rho_{j}(1)\rvert^{2}}{\cosh(\pi t_{j})},
ω(t)=4π|ϕ(1,12+it)|2cosh(πt).\omega(t)=\frac{4\pi\Big{\lvert}\phi\Bigl{(}1,\dfrac{1}{2}+it\Bigr{)}\Big{\rvert}^{2}}{\cosh(\pi t)}.
H=2π0h(t)tanh(πt)t𝑑t,H=\frac{2}{\pi}\int_{0}^{\infty}h(t)\tanh(\pi t)t\,dt,
H+(x)=2iJ2it(x)h(t)tcosh(πt)𝑑t,H^{+}(x)=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{h(t)t}{\cosh(\pi t)}\,dt,
H(x)=4πK2it(x)sinh(πt)h(t)t𝑑t,H^{-}(x)=\frac{4}{\pi}\int_{-\infty}^{\infty}K_{2it}(x)\sinh(\pi t)h(t)t\,dt,

and

S(a,b;c)=dd¯1(modc)e(da+d¯bc)S(a,b;c)=\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{da+\bar{d}b}{c}\Bigr{)}

is the classical Kloosterman sum, along with JνJ_{\nu} and KνK_{\nu} being the standard JJ-Bessel function and KK-Bessel function respectively.

2.2. Voronoi formula for GL(3)\operatorname{GL}(3)

Let

α=ν12ν2+1,β=ν1+ν2,γ=2ν1+ν21\alpha=-\nu_{1}-2\nu_{2}+1,\quad\beta=-\nu_{1}+\nu_{2},\quad\gamma=2\nu_{1}+\nu_{2}-1

denote the Langlands parameters of ff.

Per Miller and Schmid [13, Theorem 1.18], the Voronoi formula for GL(3)\operatorname{GL}(3) says that for ψ\psi a smooth compactly supported function on (0,)(0,\infty), c,d,d¯c,d,\bar{d}\in\mathbb{Z} with c0c\neq 0, (c,d)=1(c,d)=1, and dd¯1(modc)d\bar{d}\equiv 1\pmod{c}, we have

n1\displaystyle\sum_{n\geq 1} A(n,m)e(ndc)ψ(n)\displaystyle A(n,m)e\Bigl{(}\frac{nd}{c}\Bigr{)}\psi(n)
(1) =c±n1cmn21A(n1,n2)n1n2S(md¯,±n2;mcn11)Ψ±(n2n12c3m)\displaystyle=c\sum_{\pm}\sum_{n_{1}\mid cm}\sum_{n_{2}\geq 1}\frac{A(n_{1},n_{2})}{n_{1}n_{2}}S(m\bar{d},\pm n_{2};mcn_{1}^{-1})\Psi^{\pm}\Bigl{(}\frac{n_{2}n_{1}^{2}}{c^{3}m}\Bigr{)}{}

where

Ψ±(x)=(σ)ysγ±(s)g~(s)ds2πi\Psi^{\pm}(x)=\int_{(\sigma)}y^{-s}\gamma^{\pm}(s)\tilde{g}(-s)\frac{ds}{2\pi i}

and σ>max{1Re(α),1Re(β),1Re(γ)}\sigma>\max\big{\{}\,-1-\operatorname{Re}(\alpha),-1-\operatorname{Re}(\beta),-1-\operatorname{Re}(\gamma)\,\big{\}}. Here

g~(s)=0xs1g(x)𝑑x\tilde{g}(s)=\int_{0}^{\infty}x^{s-1}g(x)\,dx

is the Mellin transform of gg and

γ±(s)=γ0(s)γ1(s)\gamma^{\pm}(s)=\gamma_{0}(s)\mp\gamma_{1}(s)

with

γ(s)π3s322Γ(1+s+α+2)Γ(1+s+β+2)Γ(1+s+γ+2)Γ(sα+2)Γ(sβ+2)Γ(sγ+2)\gamma_{\ell}(s)\coloneqq\frac{\pi^{-3s-\frac{3}{2}}}{2}\frac{\Gamma\Bigl{(}\dfrac{1+s+\alpha+\ell}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{1+s+\beta+\ell}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{1+s+\gamma+\ell}{2}\Bigr{)}}{\Gamma\Bigl{(}\dfrac{-s-\alpha+\ell}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{-s-\beta+\ell}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{-s-\gamma+\ell}{2}\Bigr{)}}

for =0,1\ell=0,1.

From [10, Lemma 2.1], if ψ\psi in addition to being smooth is compactly supported on [X,2X][X,2X], then for any fixed integer K1K\geq 1 and xX1xX\gg 1, we have

(2) Ψ±(x)=x0ψ(y)j=1Kcj±e(3x13y13)+dj±e(3x13y13)(xy)j3dy+O((xX)K+23)\Psi^{\pm}(x)=x\int_{0}^{\infty}\psi(y)\sum_{j=1}^{K}\frac{c_{j}^{\pm}e(3x^{\frac{1}{3}}y^{\frac{1}{3}})+d_{j}^{\pm}e(-3x^{\frac{1}{3}}y^{\frac{1}{3}})}{(xy)^{\frac{j}{3}}}\,dy+O\bigl{(}(xX)^{\frac{-K+2}{3}}\bigr{)}

where cj±c_{j}^{\pm} and dj±d_{j}^{\pm} are absolute constants depending on α\alpha, β\beta, and γ\gamma. In practice we will only work with the j=1j=1 term coming from this, since all other terms are lower order and hence smaller and give even better estimates.

2.3. Approximate functional equations

Now L(s,f×uj)L(s,f\times u_{j}) has an approximate functional equation (see [6, Theorem 5.3]), namely

L(12,f×uj)\displaystyle L\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)} =m1n1λj(n)A(n,m)(m2n)12V(m2n,tj)+\displaystyle=\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lambda_{j}(n)A(n,m)}{(m^{2}n)^{\frac{1}{2}}}V_{-}(m^{2}n,t_{j})+{}
+m1n1λj(n)A(m,n)(m2n)12V+(m2n,tj)\displaystyle\qquad\qquad{}+\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lambda_{j}(n)A(m,n)}{(m^{2}n)^{\frac{1}{2}}}V_{+}(m^{2}n,t_{j})

where for

F(u)=(cosπuA)3A,F(u)=\Bigl{(}\cos\frac{\pi u}{A}\Bigr{)}^{-3A},

with AA a positive integer, and for |Imt|1000\lvert\operatorname{Im}t\rvert\leq 1000, we have

V(y,t)=12πi(1000)yuF(u)γ(12+u,t)γ(12,t)duuV_{\mp}(y,t)=\frac{1}{2\pi i}\int_{(1000)}y^{-u}F(u)\frac{\gamma_{\mp}\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma_{-}\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u}

and

γ(s,t)=π3sΓ(sitα2)Γ(sitβ2)Γ(sitγ2)×\displaystyle\gamma_{\mp}(s,t)=\pi^{-3s}\Gamma\Bigl{(}\frac{s-it\mp\alpha}{2}\Bigr{)}\Gamma\Bigl{(}\frac{s-it\mp\beta}{2}\Bigr{)}\Gamma\Bigl{(}\frac{s-it\mp\gamma}{2}\Bigr{)}\times{}
(3) ×Γ(s+itα2)Γ(s+itβ2)Γ(s+itγ2).\displaystyle\qquad{}\times\Gamma\Bigl{(}\frac{s+it\mp\alpha}{2}\Bigr{)}\Gamma\Bigl{(}\frac{s+it\mp\beta}{2}\Bigr{)}\Gamma\Bigl{(}\frac{s+it\mp\gamma}{2}\Bigr{)}.

Following [6, Proposition 5.4], essentially by Stirling’s formula, the growth of V±(m2n,tj)V_{\pm}(m^{2}n,t_{j}) limit the sums in L(12,f×uj)L(\frac{1}{2},f\times u_{j}) to m2n|tj|3+εm^{2}n\ll\lvert t_{j}\rvert^{3+\varepsilon}.

In order to make use of the Kuznetsov trace formula we also need an approximate functional equation for L(12,f×E)=|L(12it,f)|2L(\frac{1}{2},f\times E)=\lvert L(\frac{1}{2}-it,f)\rvert^{2}. As can be verified by using the functional equation of L(s,f)L(s,f) itself, this Rankin–Selberg LL-function satisfies the same functional equation as L(s,f×uj)L(s,f\times u_{j}) and consequently

|L(12it,f)|2\displaystyle\Big{\lvert}L\Bigl{(}\frac{1}{2}-it,f\Bigr{)}\Big{\rvert}^{2} =m1n1η(n,12+it)A(n,m)(m2n)12V(m2n,t)+\displaystyle=\sum_{m\geq 1}\sum_{n\geq 1}\frac{\eta\Bigl{(}n,\dfrac{1}{2}+it\Bigr{)}A(n,m)}{(m^{2}n)^{\frac{1}{2}}}V_{-}(m^{2}n,t)+{}
+m1n1η(n,12+it)A(m,n)(m2n)12V+(m2n,t).\displaystyle\qquad\qquad{}+\sum_{m\geq 1}\sum_{n\geq 1}\frac{\eta\Bigl{(}n,\dfrac{1}{2}+it\Bigr{)}A(m,n)}{(m^{2}n)^{\frac{1}{2}}}V_{+}(m^{2}n,t).

3. Proof of Theorem 1: The setup

Substituting these approximate functional equations into the spectrally normalized moment we wish to compute we get

m1n1A(n,m)(m2n)12(jk(tj)ωjλj(p)λj(n)V(m2n,tj)+\displaystyle\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\biggl{(}\sideset{}{{}^{\prime}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)\lambda_{j}(n)V_{-}(m^{2}n,t_{j})+{}
+14πk(t)ω(t)η¯(p,12+it)η(n,12+it)V(m2n,t)dt)+\displaystyle\qquad\qquad{}+\frac{1}{4\pi}\int_{-\infty}^{\infty}k(t)\omega(t)\overline{\eta}\Bigl{(}p,\frac{1}{2}+it\Bigr{)}\eta\Bigl{(}n,\frac{1}{2}+it\Bigr{)}V_{-}(m^{2}n,t)\,dt\biggr{)}+{}
+m1n1A(m,n)(m2n)12(jk(tj)ωjλj(p)λj(n)V+(m2n,tj)+\displaystyle{}+\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(m,n)}{(m^{2}n)^{\frac{1}{2}}}\biggl{(}\sideset{}{{}^{\prime}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)\lambda_{j}(n)V_{+}(m^{2}n,t_{j})+{}
+14πk(t)ω(t)η¯(p,12+it)η(n,12+it)V+(m2n,t)dt).\displaystyle\qquad\qquad{}+\frac{1}{4\pi}\int_{-\infty}^{\infty}k(t)\omega(t)\overline{\eta}\Bigl{(}p,\frac{1}{2}+it\Bigr{)}\eta\Bigl{(}n,\frac{1}{2}+it\Bigr{)}V_{+}(m^{2}n,t)\,dt\biggr{)}.

Hence computing asymptotics for this spectrally normalized moment proves Theorem 1.

Because V(y,t)V_{-}(y,t) and V+(y,t)V_{+}(y,t) are essentially the same, we will suppress the subscript in the following discussion and deal with the first sum above, keeping in mind that the dual sum behaves exactly the same, only its Fourier coefficient has the arguments reversed.

By calling h(t)=k(t)V(m2n,t)h(t)=k(t)V(m^{2}n,t) we can apply our Kuznetsov trace formula to the first sum, resulting in

12m1n1A(n,m)(m2n)12(δ(n,p)Hm,n+c>01c(S(n,p;c)Hm,n+(4πnpc)+\displaystyle\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\Biggl{(}\delta(n,p)H_{m,n}+\sum_{c>0}\frac{1}{c}\biggl{(}S(n,p;c)H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}+{}
+S(n,p;c)Hm,n(4πnpc))),\displaystyle{}+S(-n,p;c)H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}\biggr{)}\Biggr{)},

where this time in particular

Hm,n=2π0k(t)V(m2n,t)tanh(πt)t𝑑t,H_{m,n}=\frac{2}{\pi}\int_{0}^{\infty}k(t)V(m^{2}n,t)\tanh(\pi t)t\,dt,
Hm,n+(x)=2iJ2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t,H_{m,n}^{+}(x)=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt,

and

Hm,n(x)=4πK2it(x)sinh(πt)k(t)V(m2n,t)t𝑑t.H_{m,n}^{-}(x)=\frac{4}{\pi}\int_{-\infty}^{\infty}K_{2it}(x)\sinh(\pi t)k(t)V(m^{2}n,t)t\,dt.

We split the resulting sum into

𝒟+𝒪++𝒪\mathcal{D}+\mathcal{O}^{+}+\mathcal{O}^{-}

where

𝒟=12m1n1A(n,m)(m2n)12δ(n,p)Hm,n,\mathcal{D}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\delta(n,p)H_{m,n},
𝒪+=12m1n1A(n,m)(m2n)12c>0S(n,p;c)cHm,n+(4πnpc),\mathcal{O^{+}}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\sum_{c>0}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)},

and

𝒪=12m1n1A(n,m)(m2n)12c>0S(n,p;c)cHm,n(4πnpc).\mathcal{O}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\sum_{c>0}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}.

We will estimate each of these three terms in turn.

4. Proof of Theorem 1: The diagonal terms

We prove the following:

Lemma 9.
𝒟\displaystyle\mathcal{D} =12m1n1A(n,m)(m2n)12δ(n,p)Hm,n\displaystyle=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\delta(n,p)H_{m,n}
=L(1,f~)(A(p,1)p1)p32π0k(t)tanh(πt)t𝑑t+O(MT17+εpε).\displaystyle=\frac{L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+O(MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon}).

The dual sum is identical, only with L(1,f)L(1,f) instead of L(1,f~)L(1,\tilde{f}) and A(1,p)A(1,p) instead of A(p,1)A(p,1).

Since δ(n,p)=1\delta(n,p)=1 if n=pn=p and 0 otherwise, we have

𝒟=12m1A(p,m)mp12Hm,p.\mathcal{D}=\frac{1}{2}\sum_{m\geq 1}\frac{A(p,m)}{mp^{\frac{1}{2}}}H_{m,p}.

We can write this sum as

𝒟\displaystyle\mathcal{D} =12(m,p)=1A(p,m)mp12Hm,p+12(m,p)>1A(p,m)mp12Hm,p\displaystyle=\frac{1}{2}\sum_{(m,p)=1}\frac{A(p,m)}{mp^{\frac{1}{2}}}H_{m,p}+\frac{1}{2}\sum_{(m,p)>1}\frac{A(p,m)}{mp^{\frac{1}{2}}}H_{m,p}
=12(m,p)=1A(p,m)mp12Hm,p+12m1A(p,mp)(mp)p12Hmp,p.\displaystyle=\frac{1}{2}\sum_{(m,p)=1}\frac{A(p,m)}{mp^{\frac{1}{2}}}H_{m,p}+\frac{1}{2}\sum_{m\geq 1}\frac{A(p,mp)}{(mp)p^{\frac{1}{2}}}H_{mp,p}.

For (m,p)=1(m,p)=1, the multiplicativity of the Fourier coefficients gives us A(p,m)=A(p,1)A(1,m)A(p,m)=A(p,1)A(1,m), and in the second sum by the Hecke relations (see e.g., [3, Theorem 6.4.11])

A(p,mp)\displaystyle A(p,mp) =d(p,pm)μ(d)A(pd,1)A(1,pmd)\displaystyle=\sum_{d\mid(p,pm)}\mu(d)A\Big{(}\frac{p}{d},1\Big{)}A\Big{(}1,\frac{pm}{d}\Big{)}
=A(p,1)A(1,pm)A(1,1)A(1,m)\displaystyle=A(p,1)A(1,pm)-A(1,1)A(1,m)
=A(p,1)A(1,pm)A(1,m)\displaystyle=A(p,1)A(1,pm)-A(1,m)

since A(1,1)=1A(1,1)=1 by normalization. Putting these expressions back into 𝒟\mathcal{D} and rearranging we get

(4) 𝒟=A(p,1)2p12m1A(1,m)mHm,p12p32m1A(1,m)mHmp,p.\mathcal{D}=\frac{A(p,1)}{2p^{\frac{1}{2}}}\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p}-\frac{1}{2p^{\frac{3}{2}}}\sum_{m\geq 1}\frac{A(1,m)}{m}H_{mp,p}.

It remains to estimate the two sums. Recalling now

Hm,p=2π0k(t)V(m2p,t)tanh(πt)t𝑑tH_{m,p}=\frac{2}{\pi}\int_{0}^{\infty}k(t)V(m^{2}p,t)\tanh(\pi t)t\,dt

and

V(m2p,t)=12πi(1000)(m2p)uF(u)γ(12+u,t)γ(12,t)duu,V(m^{2}p,t)=\frac{1}{2\pi i}\int_{(1000)}(m^{2}p)^{-u}F(u)\frac{\gamma\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u},

we can bring the sum all the way into V(m2p,t)V(m^{2}p,t), getting

m1A(1,m)mHm,p\displaystyle\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p}
=2π0k(t)tanh(πt)t(12πi(1000)pu(m1A(1,m)m1+2u)F(u)γ(12+u,t)γ(12,t)duu)𝑑t.\displaystyle\quad=\frac{2}{\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\biggl{(}\frac{1}{2\pi i}\int_{(1000)}p^{-u}\Bigl{(}\sum_{m\geq 1}\frac{A(1,m)}{m^{1+2u}}\Bigr{)}F(u)\frac{\gamma\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u}\biggr{)}\,dt.

The sum on the inside is just L(1+2u,f~)L(1+2u,\tilde{f}) (keep in mind this means the dual sum will have L(1+2u,f)L(1+2u,f) here instead).

By the Kim–Sarnak bound on the generalized Ramanujan conjecture for GL(n)\operatorname{GL}(n), see [7, Appendix 2],

|Re(α)|,|Re(β)|,|Re(γ)|1217.\lvert\operatorname{Re}(\alpha)\rvert,\lvert\operatorname{Re}(\beta)\rvert,\lvert\operatorname{Re}(\gamma)\rvert\leq\frac{1}{2}-\frac{1}{7}.

Hence we can shift the line of integration to d=17+εd=-\frac{1}{7}+\varepsilon without hitting any of the poles of the gamma factors. Doing this we pass the simple pole at u=0u=0, picking up the residue L(1,f~)L(1,\tilde{f}). Therefore the inner integral becomes

(5) L(1,f~)+12πi(d)puL(1+2u,f~)F(u)γ(12+u,t)γ(12,t)duu.L(1,\tilde{f})+\frac{1}{2\pi i}\int_{(d)}p^{-u}L(1+2u,\tilde{f})F(u)\frac{\gamma\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u}.

To estimate the inner integral we need to control the gamma factors in terms of tt. By Stirling’s formula (see also [6, Proposition 5.4]) we have

Γ(s+u)Γ(s)|s+1|Re(u)exp(π2|u|)\frac{\Gamma(s+u)}{\Gamma(s)}\ll\lvert s+1\rvert^{\operatorname{Re}(u)}\exp\Bigl{(}\frac{\pi}{2}\lvert u\rvert\Bigr{)}

for Re(s)>0\operatorname{Re}(s)>0 and Re(u)>Re(s)\operatorname{Re}(u)>-\operatorname{Re}(s), so in tt each gamma factor contributes t17+εt^{-\frac{1}{7}+\varepsilon}.

The resulting exponential in |u|\lvert u\rvert is controlled by F(u)F(u) in the integral, and consequently what we get out of the inner integral (5) is L(1,f~)+O(p17εt67+ε)L(1,\tilde{f})+O(p^{\frac{1}{7}-\varepsilon}t^{-\frac{6}{7}+\varepsilon}), since we have six such gamma factors, and from this we get

m1A(1,m)mHm,p\displaystyle\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p} =L(1,f~)2π0k(t)tanh(πt)t𝑑t+\displaystyle=L(1,\tilde{f})\frac{2}{\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
(6) +O(p17ε0k(t)tanh(πt)t17+ε𝑑t).\displaystyle\qquad{}+O\Bigl{(}p^{\frac{1}{7}-\varepsilon}\int_{0}^{\infty}k(t)\tanh(\pi t)t^{\frac{1}{7}+\varepsilon}\,dt\Bigr{)}.

The second term in (4) is treated similarly, the only difference being a factor of p3up^{-3u} in the integral instead of pup^{-u}, hence

m1A(1,m)mHmp,p\displaystyle\sum_{m\geq 1}\frac{A(1,m)}{m}H_{mp,p} =L(1,f~)2π0k(t)tanh(πt)t𝑑t+\displaystyle=L(1,\tilde{f})\frac{2}{\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(p37ε0k(t)tanh(πt)t17+ε𝑑t).\displaystyle\qquad{}+O\Bigl{(}p^{\frac{3}{7}-\varepsilon}\int_{0}^{\infty}k(t)\tanh(\pi t)t^{\frac{1}{7}+\varepsilon}\,dt\Bigr{)}.

Putting both of these back into (4) we get

𝒟\displaystyle\mathcal{D} =L(1,f~)(A(p,1)p1)p32π0k(t)tanh(πt)t𝑑t+O(MT17+εpε)\displaystyle=\frac{L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+O(MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon})

since tt is about TT and the integral is of length about MM. Here we have again used the Kim–Sarnak bound, this time in the form |A(p,1)|p514+ε\lvert A(p,1)\rvert\ll p^{\frac{5}{14}+\varepsilon} (see [7, Appendix 2]) in the error term.

Working through the exact same calculations for the dual sum we consequently get

A(1,p)2p12m1A(m,1)mHm,p12p32m1A(m,1)mHmp,p\displaystyle\frac{A(1,p)}{2p^{\frac{1}{2}}}\sum_{m\geq 1}\frac{A(m,1)}{m}H_{m,p}-\frac{1}{2p^{\frac{3}{2}}}\sum_{m\geq 1}\frac{A(m,1)}{m}H_{mp,p}
=L(1,f)(A(1,p)p1)p32π0k(t)tanh(πt)t𝑑t+O(MT17+εpε)\displaystyle\qquad=\frac{L(1,f)\bigl{(}A(1,p)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+O(MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon})

which means the two diagonal sums put together contribute

L(1,f~)(A(p,1)p1)+L(1,f)(A(1,p)p1)p32π0k(t)tanh(πt)t𝑑t+\displaystyle\frac{L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}+L(1,f)\bigl{(}A(1,p)p-1\bigr{)}}{p^{\frac{3}{2}}\pi}\int_{0}^{\infty}k(t)\tanh(\pi t)t\,dt+{}
+O(MT17+εpε)\displaystyle\qquad{}+O(MT^{\frac{1}{7}+\varepsilon}p^{\varepsilon})

to the moment in Theorem 1.

5. Proof of Theorem 1: The JJ-Bessel function terms

For 𝒪+\mathcal{O}^{+}, using partition of unity it suffices to consider

+=12m1n1A(n,m)(m2n)12g(m2nN)c>0S(n,p;c)cHm,n+(4πnpc)\mathcal{R^{+}}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c>0}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}

where gg is a smooth function of compact support on \interval12\interval{1}{2} and NN is at most T3+εT^{3+\varepsilon}.

We prove the following:

Lemma 10.
+=O(M3T52+εp1+ε).\displaystyle\mathcal{R^{+}}=O(M^{-3}T^{\frac{5}{2}+\varepsilon}p^{1+\varepsilon}).

Since the off-diagonal terms will contribute only error terms we will have no need to keep track of the difference between this sum and its dual version. In what follows we will again suppress the subscripts on V±(m2n,t)V_{\pm}(m^{2}n,t), but the dual sum contributes precisely the same error.

Following [10], the strategy for estimating +\mathcal{R}^{+} is to split the cc-sum into three parts,

+=1++2++3+,\mathcal{R}^{+}=\mathcal{R}^{+}_{1}+\mathcal{R}^{+}_{2}+\mathcal{R}^{+}_{3},

with

1+=12m1n1A(n,m)(m2n)12g(m2nN)cC1mS(n,p;c)cHm,n+(4πnpc),\mathcal{R}^{+}_{1}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\geq\frac{C_{1}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)},
2+=12m1n1A(n,m)(m2n)12g(m2nN)C2mcC1mS(n,p;c)cHm,n+(4πnpc),\mathcal{R}^{+}_{2}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{\frac{C_{2}}{m}\leq c\leq\frac{C_{1}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)},

and

3+=12m1n1A(n,m)(m2n)12g(m2nN)cC2mS(n,p;c)cHm,n+(4πnpc).\mathcal{R}^{+}_{3}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C_{2}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}.

The idea is to tune the cut-offs C1C_{1} and C2C_{2} in such a way that both 1+\mathcal{R}^{+}_{1} and 2+\mathcal{R}^{+}_{2} are small, meaning negative powers of TT, and 3+\mathcal{R}^{+}_{3} we will handle a bit more delicately with stationary phase analysis.

Starting with the tail 1+\mathcal{R}^{+}_{1}, we move the line of integration in

Hm,n+(x)=2iJ2it(x)k(t)V(m2n,t)tcosh(πt)𝑑tH_{m,n}^{+}(x)=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt

to Imt=12\operatorname{Im}t=-\frac{1}{2}. This gives us

Hm,n+(x)=2iJ2iy+1(x)k(12i+y)V(m2n,12i+y)(12i+y)cosh(π(12i+y))𝑑yH_{m,n}^{+}(x)=2i\int_{-\infty}^{\infty}J_{2iy+1}(x)\frac{k\Bigl{(}-\dfrac{1}{2}i+y\Bigr{)}V\Bigl{(}m^{2}n,-\dfrac{1}{2}i+y\Bigr{)}\Bigl{(}-\dfrac{1}{2}i+y\Bigr{)}}{\cosh\Bigl{(}\pi\Bigl{(}-\dfrac{1}{2}i+y\Bigr{)}\Bigr{)}}\,dy

since this shift passes through no zeros of the denominator cosh(πt)\cosh(\pi t).

The JJ-Bessel function has the following integral representation (see for instance [4, 8.411 4])

Jν(z)=2(z2)νΓ(ν+12)Γ(12)0π/2sin(θ)2νcos(zcosθ)dθ,J_{\nu}(z)=2\frac{\Bigl{(}\dfrac{z}{2}\Bigr{)}^{\nu}}{\Gamma\Bigl{(}\nu+\dfrac{1}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{1}{2}\Bigr{)}}\int_{0}^{\pi/2}\sin(\theta)^{2\nu}\cos(z\cos\theta)\,d\theta,

which tells us that for Reν>12\operatorname{Re}\nu>-\frac{1}{2},

Jν(z)(z|Imν|+1)Reνeπ2|Imν|.J_{\nu}(z)\ll\Bigl{(}\frac{z}{\lvert\operatorname{Im}\nu\rvert+1}\Bigr{)}^{\operatorname{Re}\nu}e^{\frac{\pi}{2}\lvert\operatorname{Im}\nu\rvert}.

Using Stirling’s formula to estimate the gamma factors in V(m2n,di+y)V(m^{2}n,-di+y), we get

(7) V(m2n,di+y)(|y+1|3m2n)d.V(m^{2}n,-di+y)\ll\Bigl{(}\frac{\lvert y+1\rvert^{3}}{m^{2}n}\Bigr{)}^{d}.

Putting this together and back into Hm,n+(x)H_{m,n}^{+}(x), keeping in mind that this integral is of length about MM because of the exponential decay of k(12i+y)k(-\frac{1}{2}i+y), and that yy is about TT, this gives us

Hm,n+(x)xT1(m2n)12T32T1+εM=xT32+ε(m2n)12M.H_{m,n}^{+}(x)\ll xT^{-1}(m^{2}n)^{-\frac{1}{2}}T^{\frac{3}{2}}T^{1+\varepsilon}M=xT^{\frac{3}{2}+\varepsilon}(m^{2}n)^{-\frac{1}{2}}M.

Plugging this back into 1+\mathcal{R}^{+}_{1}, summing trivially over cc using Weil’s bound

S(a,b;c)εc12+ε(a,b,c)12S(a,b;c)\ll_{\varepsilon}c^{\frac{1}{2}+\varepsilon}(a,b,c)^{\frac{1}{2}}

for the Kloosterman sum, this gives us

cC1mS(n,p;c)cHm,n+(4πnpc)\displaystyle\sum_{c\geq\frac{C_{1}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)} cC1mc12+εc(4πnpc)T32+ε(m2n)12M\displaystyle\ll\sum_{c\geq\frac{C_{1}}{m}}\frac{c^{\frac{1}{2}+\varepsilon}}{c}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}T^{\frac{3}{2}+\varepsilon}(m^{2}n)^{-\frac{1}{2}}M
=(4π)(np)12T32+ε(m2n)12McC1mc1211+ε\displaystyle=(4\pi)(np)^{\frac{1}{2}}T^{\frac{3}{2}+\varepsilon}(m^{2}n)^{-\frac{1}{2}}M\sum_{c\geq\frac{C_{1}}{m}}c^{\frac{1}{2}-1-1+\varepsilon}
=(4π)T32+εm1p12McC1mc32+ε.\displaystyle=(4\pi)T^{\frac{3}{2}+\varepsilon}m^{-1}p^{\frac{1}{2}}M\sum_{c\geq\frac{C_{1}}{m}}c^{-\frac{3}{2}+\varepsilon}.

Hence the cc-sum converges. In particular, the sum over cc is about (C1m)12+ε(\frac{C_{1}}{m})^{-\frac{1}{2}+\varepsilon}. By picking C1C_{1} to be an appropriately large power of TT, say T100T^{100}, we can ensure that the power of TT is 32+ε+100(12+ε)<0\frac{3}{2}+\varepsilon+100(-\frac{1}{2}+\varepsilon)<0. Hence any power of TT larger than 33 will do. In other words, 1+\mathcal{R}^{+}_{1} contributes a negative power of TT, and as such is admissible.

Moving on to

2+=12m1n1A(n,m)(m2n)12g(m2nN)C2mcC1mS(n,p;c)cHm,n+(4πnpc)\mathcal{R}^{+}_{2}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{\frac{C_{2}}{m}\leq c\leq\frac{C_{1}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}

our goal is to choose C2C_{2} in such a way that this, too, is a negative power of TT, keeping in mind that C1=T100C_{1}=T^{100}. To do this we will use another integral representation of the JJ-Bessel function, namely

J2it(x)J2it(x)cosh(πt)=2iπtanh(πt)cos(xcoshζ)e(tζπ)𝑑ζ,\frac{J_{2it}(x)-J_{-2it}(x)}{\cosh(\pi t)}=-\frac{2i}{\pi}\tanh(\pi t)\int_{-\infty}^{\infty}\cos(x\cosh\zeta)e\Bigl{(}\frac{t\zeta}{\pi}\Bigr{)}\,d\zeta,

derived from [4, 8.411 11]. In other words we want to decompose Hm,n(x)H_{m,n}(x) as follows:

Hm,n+(x)\displaystyle H_{m,n}^{+}(x) =2iJ2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t\displaystyle=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt
=2i0J2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t+2i0J2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t\displaystyle=2i\int_{0}^{\infty}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt+2i\int_{-\infty}^{0}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt
=2i0J2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t2i0J2it(x)k(t)V(m2n,t)tcosh(πt)𝑑t.\displaystyle=2i\int_{0}^{\infty}J_{2it}(x)\frac{k(t)V(m^{2}n,t)t}{\cosh(\pi t)}\,dt-2i\int_{0}^{\infty}J_{-2it}(x)\frac{k(-t)V(m^{2}n,-t)t}{\cosh(-\pi t)}\,dt.

But k(t)k(t), V(m2n,t)V(m^{2}n,t), and cosh(πt)\cosh(\pi t) are all even in tt, so this becomes

Hm,n+(x)=2i0J2it(x)J2it(x)cosh(πt)k(t)V(m2n,t)t𝑑t,H_{m,n}^{+}(x)=2i\int_{0}^{\infty}\frac{J_{2it}(x)-J_{-2it}(x)}{\cosh(\pi t)}k(t)V(m^{2}n,t)t\,dt,

and so we can apply the above integral representation to get

Hm,n+(x)=4πt=0tanh(πt)(ζ=cos(xcoshζ)e(tζπ)𝑑ζ)k(t)V(m2n,t)t𝑑t.H_{m,n}^{+}(x)=\frac{4}{\pi}\int_{t=0}^{\infty}\tanh(\pi t)\biggl{(}\int_{\zeta=-\infty}^{\infty}\cos(x\cosh\zeta)e\Bigl{(}\frac{t\zeta}{\pi}\Bigr{)}\,d\zeta\biggr{)}k(t)V(m^{2}n,t)t\,dt.

We can get rid of e(t+T)2M2e^{-\frac{(t+T)^{2}}{M^{2}}} from k(t)=e(tT)2M2+e(t+T)2M2k(t)=e^{-\frac{(t-T)^{2}}{M^{2}}}+e^{-\frac{(t+T)^{2}}{M^{2}}} with negligible error, and similarly tanh(πt)\tanh(\pi t) is inconsequential, so we are left with studying

Hm,n+(x)=4πt=0ζ=cos(xcoshζ)e(tζπ)e(tT)2M2V(m2n,t)t𝑑ζ𝑑t+O(TA)H_{m,n}^{+}(x)=\frac{4}{\pi}\int_{t=0}^{\infty}\int_{\zeta=-\infty}^{\infty}\cos(x\cosh\zeta)e\Bigl{(}\frac{t\zeta}{\pi}\Bigr{)}e^{-\frac{(t-T)^{2}}{M^{2}}}V(m^{2}n,t)t\,d\zeta\,dt+O(T^{-A})

where AA is an arbitrarily large constant. We make the change of variables u=tTMu=\frac{t-T}{M}, under which our integral becomes

Hm,n+(x)\displaystyle H_{m,n}^{+}(x) =4Mπu=TMζ=cos(xcoshζ)e((Mu+T)ζπ)(Mu+T)eu2×\displaystyle=\frac{4M}{\pi}\int_{u=-\frac{T}{M}}^{\infty}\int_{\zeta=-\infty}^{\infty}\cos(x\cosh\zeta)e\Bigl{(}\frac{(Mu+T)\zeta}{\pi}\Bigr{)}(Mu+T)e^{-u^{2}}\times{}
×V(m2n,Mu+T)dζdu+O(TA).\displaystyle\qquad\qquad\qquad{}\times V(m^{2}n,Mu+T)\,d\zeta\,du+O(T^{-A}).

We only study the term arising from the TT part of Mu+TMu+T; the term from MuMu can be handled similarly.

Hence we want to understand

Hm,n+,1(x)=4MTπu=ζ=eu2V(m2n,Mu+T)cos(xcoshζ)e(uMζπ)e(Tζπ)𝑑u𝑑ζ,H_{m,n}^{+,1}(x)=\frac{4MT}{\pi}\int_{u=-\infty}^{\infty}\int_{\zeta=-\infty}^{\infty}e^{-u^{2}}V(m^{2}n,Mu+T)\cos(x\cosh\zeta)e\Bigl{(}\frac{uM\zeta}{\pi}\Bigr{)}e\Bigl{(}\frac{T\zeta}{\pi}\Bigr{)}\,du\,d\zeta,

where we have extended the uu-integral to \interval[open]\interval[open]{-\infty}{\infty} with negligible error because of the exponential decay of eu2e^{-u^{2}}.

By setting

k(u)=eu2V(m2n,Mu+T)k^{*}(u)=e^{-u^{2}}V(m^{2}n,Mu+T)

and considering its Fourier transform

k^(ζ)=k(u)e(uζ)𝑑u,\widehat{k^{*}}(\zeta)=\int_{-\infty}^{\infty}k^{*}(u)e(-u\zeta)\,du,

we get in particular that

k^(Mζπ)=k(u)e(uMζπ)𝑑u.\widehat{k^{*}}\Bigl{(}-\frac{M\zeta}{\pi}\Bigr{)}=\int_{-\infty}^{\infty}k^{*}(u)e\Bigl{(}\frac{uM\zeta}{\pi}\Bigr{)}\,du.

This lets us rewrite Hm,n+,1(x)H_{m,n}^{+,1}(x) as

Hm,n+,1(x)=4MTπk^(Mζπ)cos(xcoshζ)e(Tζπ)𝑑ζ,H_{m,n}^{+,1}(x)=\frac{4MT}{\pi}\int_{-\infty}^{\infty}\widehat{k^{*}}\Bigl{(}-\frac{M\zeta}{\pi}\Bigr{)}\cos(x\cosh\zeta)e\Bigl{(}\frac{T\zeta}{\pi}\Bigr{)}\,d\zeta,

and changing variables to ξ=Mζπ\xi=-\frac{M\zeta}{\pi}, this leaves us studying

(8) Hm,n+,1(x)=4Tk^(ξ)cos(xcoshξπM)e(TξM)𝑑ξ.H_{m,n}^{+,1}(x)=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)\cos\Bigl{(}x\cosh\frac{\xi\pi}{M}\Bigr{)}e\Bigl{(}-\frac{T\xi}{M}\Bigr{)}\,d\xi.

Rewriting cosine in terms of exponentials, the phase of this integral is

ϕ(ξ)=TξM±x2πcoshξπM,\phi(\xi)=-\frac{T\xi}{M}\pm\frac{x}{2\pi}\cosh\frac{\xi\pi}{M},

the plus or minus depending on which half of the exponential representation of cosine we are considering, but the analysis is the same either way:

|ϕ(ξ)|TMx2MsinhξπMTMx2MξπM=TMxξπ2M2\lvert\phi^{\prime}(\xi)\rvert\geq\frac{T}{M}-\frac{x}{2M}\sinh\frac{\xi\pi}{M}\gg\frac{T}{M}-\frac{x}{2M}\frac{\xi\pi}{M}=\frac{T}{M}-\frac{x\xi\pi}{2M^{2}}

Hence for there to be a stationary phase we must have xx about the size TMTM, and consequently so long as |x|T1εM\lvert x\rvert\leq T^{1-\varepsilon}M, there is no stationary phase, and so by the First derivative test ([5, Lemma 5.1.2]) Hm,n+,1(x)H_{m,n}^{+,1}(x) (and hence Hm,n+(x)H_{m,n}^{+}(x), being composed of Hm,n+,1(x)H_{m,n}^{+,1}(x) and a similar term) is small in this region.

In particular, since x=4πnpcx=\frac{4\pi\sqrt{np}}{c}, this means that 2+\mathcal{R}^{+}_{2} is negligible for 4πnpcT1εM\frac{4\pi\sqrt{np}}{c}\leq T^{1-\varepsilon}M, or in other words

c4πnpT1εM.c\geq\frac{4\pi\sqrt{np}}{T^{1-\varepsilon}M}.

As promised we want to tune C2C_{2} in such a way that 2+\mathcal{R}^{+}_{2}, the cc-sum of which ranges over C2mcC1m\frac{C_{2}}{m}\leq c\leq\frac{C_{1}}{m}, is small. Remembering that 1m2nN21\leq\frac{m^{2}n}{N}\leq 2, i.e., nNm2n\gg Nm^{-2}, we infer from the above that

C2=NpT1εMC_{2}=\frac{\sqrt{Np}}{T^{1-\varepsilon}M}

does the job, since in this range the resulting exponential integral has no stationary phase, and recall that in 2+\mathcal{R}^{+}_{2}, the cc-sum is over C2mcC1m\frac{C_{2}}{m}\leq c\leq\frac{C_{1}}{m}, hence convergent.

Finally for

3+=12m1n1A(n,m)(m2n)12g(m2nN)cC2mS(n,p;c)cHm,n+(4πnpc).\mathcal{R}^{+}_{3}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C_{2}}{m}}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}.

we need to be substantially more careful, because this time, for cC2mc\leq\frac{C_{2}}{m}, the integral Hm,n+,1H_{m,n}^{+,1} in (8) has stationary phase for ξ±2MTπx\xi\asymp\pm\frac{2MT}{\pi x}. We will focus on the stationary phase near ξ0=2MTπx\xi_{0}=-\frac{2MT}{\pi x} from the negative part of ±\pm in the phase ϕ(ξ)\phi(\xi) simply to keep the signs uniform; the positive one is treated similarly. To this end we will call

H~m,n+,1(x)=4Tk^(ξ)e(TξMx2πcoshξπM)𝑑ξ.\tilde{H}_{m,n}^{+,1}(x)=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{T\xi}{M}-\frac{x}{2\pi}\cosh\frac{\xi\pi}{M}\Bigr{)}\,d\xi.

Following [10, Proposition 4.1] (or [8, Lemma 5.1] or [14, Proposition 3.1]), we can extract asymptotics for H~m,n+,1(x)\tilde{H}_{m,n}^{+,1}(x). This is essentially ordinary stationary phase analysis, only being quite careful with the computation of the error.

By expanding the cosh\cosh in the phase ϕ(ξ)\phi(\xi) as a Taylor series we get

H~m,n+,1(x)\displaystyle\tilde{H}_{m,n}^{+,1}(x) =4Tk^(ξ)e(TξMx2ππxξ24M2π3xξ448M4π5xξ61440M6)𝑑ξ+\displaystyle=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{T\xi}{M}-\frac{x}{2\pi}-\frac{\pi x\xi^{2}}{4M^{2}}-\frac{\pi^{3}x\xi^{4}}{48M^{4}}-\frac{\pi^{5}x\xi^{6}}{1440M^{6}}\Bigr{)}\,d\xi+{}
+O(T|k^(ξ)||ξ|8|x|M8𝑑ξ).\displaystyle\qquad\qquad\qquad{}+O\Bigl{(}T\int_{-\infty}^{\infty}\lvert\widehat{k^{*}}(\xi)\rvert\frac{\lvert\xi\rvert^{8}\lvert x\rvert}{M^{8}}\,d\xi\Bigr{)}.

Note that the integral in the error is finite in ξ\xi, so the error here is O(T|x|M8)O(\frac{T\lvert x\rvert}{M^{8}}). By expanding the last exponential term e(π5xξ61440M6)e(-\frac{\pi^{5}x\xi^{6}}{1440M^{6}}) as a Taylor series of order 11 we get

(9) H~m,n+,1(x)=Wm,n+(x)2π6x1440M6Wm,n(x)+O(T|x|M8)\tilde{H}_{m,n}^{+,1}(x)=W_{m,n}^{+}(x)-\frac{2\pi^{6}x}{1440M^{6}}W_{m,n}^{-}(x)+O\Bigl{(}\frac{T\lvert x\rvert}{M^{8}}\Bigr{)}

where

Wm,n+(x)=4Te(x2π)k0(ξ)e(TξMπxξ24M2)𝑑ξW_{m,n}^{+}(x)=4Te\Bigl{(}-\frac{x}{2\pi}\Bigr{)}\int_{-\infty}^{\infty}k_{0}^{*}(\xi)e\Bigl{(}-\frac{T\xi}{M}-\frac{\pi x\xi^{2}}{4M^{2}}\Bigr{)}\,d\xi

with

k0(ξ)=k^(ξ)e(π3xξ448M4)k_{0}^{*}(\xi)=\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{\pi^{3}x\xi^{4}}{48M^{4}}\Bigr{)}

and

Wm,n(x)=4Te(x2π)ξ6k0(ξ)e(TξMπxξ24M2)𝑑ξ.W_{m,n}^{-}(x)=4Te\Bigl{(}-\frac{x}{2\pi}\Bigr{)}\int_{-\infty}^{\infty}\xi^{6}k_{0}^{*}(\xi)e\Bigl{(}-\frac{T\xi}{M}-\frac{\pi x\xi^{2}}{4M^{2}}\Bigr{)}\,d\xi.

In what follows we will deal with Wm,n+(x)W_{m,n}^{+}(x) as Wm,n(x)W_{m,n}^{-}(x) can be handled with precisely the same methods. As detailed in the calculations above [10, Proposition 4.1], by completing the square in the exponential, applying Parseval’s theorem and then Taylor’s theorem again, we arrive at the asymptotic

Wm,n+(x)\displaystyle W_{m,n}^{+}(x) =TM|x|e(x2π+T2πx)0lL10l12ll14l2L2cl,l1,l2M2ll1T4l2l1xl+3l2l1×\displaystyle=\frac{TM}{\sqrt{\lvert x\rvert}}e\Bigl{(}-\frac{x}{2\pi}+\frac{T^{2}}{\pi x}\Bigr{)}\sum_{0\leq l\leq L_{1}}\sum_{0\leq l_{1}\leq 2l}\sum_{\frac{l_{1}}{4}\leq l_{2}\leq L_{2}}c_{l,l_{1},l_{2}}\frac{M^{2l-l_{1}}T^{4l_{2}-l_{1}}}{x^{l+3l_{2}-l_{1}}}\times{}
×k^(2ll1)(2MTπx)+O(TM|x|(T4|x|3)L2+1+T(M|x|)2L1+3).\displaystyle\qquad{}\times\widehat{k^{*}}^{(2l-l_{1})}\Bigl{(}-\frac{2MT}{\pi x}\Bigr{)}+O\biggl{(}\frac{TM}{\sqrt{\lvert x\rvert}}\Bigl{(}\frac{T^{4}}{\lvert x\rvert^{3}}\Bigr{)}^{L_{2}+1}+T\Bigl{(}\frac{M}{\sqrt{\lvert x\rvert}}\Bigr{)}^{2L_{1}+3}\biggr{)}.

Here cl,l1,l2c_{l,l_{1},l_{2}} are constants depending only on ll, l1l_{1}, and l2l_{2}, where in particular from the above calculations c0,0,0=1+i2c_{0,0,0}=\frac{1+i}{\sqrt{2}}.

Now we are essentially done, because recalling how H~m,n+,1(x)\tilde{H}_{m,n}^{+,1}(x) in (9) is composed of Wm,n+W_{m,n}^{+}, a similar term, and a remainder of O(T|x|M8)O(\frac{T\lvert x\rvert}{M^{8}}), we simply take L1L_{1} and L2L_{2} to be sufficiently large that the error O(T|x|M8)O(\frac{T\lvert x\rvert}{M^{8}}) dominates the error terms in L1L_{1} and L2L_{2}.

It then suffices to study only the leading term l=l1=l2=0l=l_{1}=l_{2}=0, because the rest are of identical form and can be handled similarly.

From these asymptotics we infer that to study 3+\mathcal{R}^{+}_{3} it suffices to study

~3+\displaystyle\tilde{\mathcal{R}}^{+}_{3} (1+i)TM2πp14m1n1A(n,m)mn34g(m2nN)×\displaystyle\coloneqq\frac{(1+i)TM}{2\pi p^{\frac{1}{4}}}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{mn^{\frac{3}{4}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\times{}
(10) ×cC2mS(n,p;c)c12e(2npcT2c4π2np)k^(MTc2π2np).\displaystyle\qquad{}\times\sum_{c\leq\frac{C_{2}}{m}}\frac{S(n,p;c)}{c^{\frac{1}{2}}}e\Bigl{(}\frac{2\sqrt{np}}{c}-\frac{T^{2}c}{4\pi^{2}\sqrt{np}}\Bigr{)}\widehat{k^{*}}\Bigl{(}\frac{MTc}{2\pi^{2}\sqrt{np}}\Bigr{)}.

The error in this asymptotic expansion is therefore of size

m1n1A(n,m)mn12g(m2nN)cC2mc1S(n,p;c)T|x|M8\displaystyle\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{mn^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C_{2}}{m}}c^{-1}S(n,p;c)\frac{T\lvert x\rvert}{M^{8}}
m1n1|A(n,m)|mn12g(m2nN)cC2mc32+εTn12p12M8\displaystyle\qquad\qquad\ll\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lvert A(n,m)\rvert}{mn^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C_{2}}{m}}c^{-\frac{3}{2}+\varepsilon}\frac{Tn^{\frac{1}{2}}p^{\frac{1}{2}}}{M^{8}}
TM8p12m1m2n1|A(n,m)|g(m2nN)C2\displaystyle\qquad\qquad\ll TM^{-8}p^{\frac{1}{2}}\sum_{m\geq 1}m^{-2}\sum_{n\geq 1}\lvert A(n,m)\rvert g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}C_{2}
(11) TM8Np12N12p12T1εM=TεM9N32p.\displaystyle\qquad\qquad\ll TM^{-8}Np^{\frac{1}{2}}\frac{N^{\frac{1}{2}}p^{\frac{1}{2}}}{T^{1-\varepsilon}M}=T^{\varepsilon}M^{-9}N^{\frac{3}{2}}p.

where we have used the Weil bound on the Kloosterman sum and recalling that x=4πnpcx=\frac{4\pi\sqrt{np}}{c} and C2=N12p12T1εMC_{2}=\frac{N^{\frac{1}{2}}p^{\frac{1}{2}}}{T^{1-\varepsilon}M}. Since the main term from 𝒟\mathcal{D} is of size TMTM, we need this to be at most T1εMT^{1-\varepsilon}M. This tells us how long of a sum Ta<MT1εT^{a}<M\leq T^{1-\varepsilon} we are allowed, namely, to use this asymptotic expansion, we need a>720+εa>\frac{7}{20}+\varepsilon. We will have occasion to tune this aa more finely later on, when we analyze ~3+\tilde{\mathcal{R}}^{+}_{3} itself.

To see that we need to open the Kloosterman sum, notice how if we were to sum trivially over nn, using Weil’s bound of the Kloosterman sum, we get

~3+TMC21+εN14N34T94+ε,\tilde{\mathcal{R}}^{+}_{3}\ll TMC_{2}^{1+\varepsilon}N^{\frac{1}{4}}\ll N^{\frac{3}{4}}\leq T^{\frac{9}{4}+\varepsilon},

recalling how NT3+εN\leq T^{3+\varepsilon}. Hence to save T54M1T^{\frac{5}{4}}M^{-1} we open the Kloosterman sum and sum nontrivially over nn using the Voronoi formula for GL(3)\operatorname{GL}(3).

To this end we identify the terms depending on nn from the expression (10) for ~3+\tilde{\mathcal{R}}_{3}^{+}, except for the Fourier coefficients A(n,m)A(n,m) and the Kloosterman sums S(n,p;c)S(n,p;c) (since those will be handled by the Voronoi formula), as

ψ(y)=y34g(m2yN)e(2ypcT2c4π2yp)k^(MTc2π2yp).\psi(y)=y^{-\frac{3}{4}}g\Bigl{(}\frac{m^{2}y}{N}\Bigr{)}e\Bigl{(}\frac{2\sqrt{yp}}{c}-\frac{T^{2}c}{4\pi^{2}\sqrt{yp}}\Bigr{)}\widehat{k^{*}}\Bigl{(}\frac{MTc}{2\pi^{2}\sqrt{yp}}\Bigr{)}.

Opening the Kloosterman sum we get

n1A(n,m)S(n,p;c)ψ(n)=dd¯1(modc)e(pd¯c)n1A(n,m)e(ndc)ψ(n).{}\sum_{n\geq 1}A(n,m)S(n,p;c)\psi(n)=\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{p\bar{d}}{c}\Bigr{)}\sum_{n\geq 1}A(n,m)e\Bigl{(}\frac{nd}{c}\Bigr{)}\psi(n).

This is a productive thing to do because the Voronoi formula (1) tells us precisely how to handle the inner sum, namely

n1A(n,m)e(ndc)ψ(n)=c±n1cmn21A(n1,n2)n1n2S(md¯,±n2;mcn11)Ψ±(n2n12c3m).\sum_{n\geq 1}A(n,m)e\Bigl{(}\frac{nd}{c}\Bigr{)}\psi(n)=c\sum_{\pm}\sum_{n_{1}\mid cm}\sum_{n_{2}\geq 1}\frac{A(n_{1},n_{2})}{n_{1}n_{2}}S(m\bar{d},\pm n_{2};mcn_{1}^{-1})\Psi^{\pm}\Bigl{(}\frac{n_{2}n_{1}^{2}}{c^{3}m}\Bigr{)}.

Recalling now cC2m=NpT1εMmc\leq\frac{C_{2}}{m}=\frac{\sqrt{Np}}{T^{1-\varepsilon}Mm} and how NT3+εN\leq T^{3+\varepsilon}, the size of the argument after transforming times the length of the original nn-sum is at least

n2n12c3mNm2T218εp321\frac{n_{2}n_{1}^{2}}{c^{3}m}\frac{N}{m^{2}}\gg T^{\frac{21}{8}-\varepsilon}p^{-\frac{3}{2}}\gg 1

since pT1εp\ll T^{1-\varepsilon}. Consequently the version of [10, Lemma 2.1] in (2) applies and the size of the integral transform Ψ±(x)\Psi^{\pm}(x) reduces to studying

(13) x23c1±0e(u1(y))a(y)𝑑y+x23d1±0e(u2(y))a(y)𝑑y,\displaystyle x^{\frac{2}{3}}c_{1}^{\pm}\int_{0}^{\infty}e(u_{1}(y))a(y)\,dy+x^{\frac{2}{3}}d_{1}^{\pm}\int_{0}^{\infty}e(u_{2}(y))a(y)\,dy,

where c1±c_{1}^{\pm} and d1±d_{1}^{\pm} are absolute constants depending on the Langlands parameters of ff,

u1(y)=2ypc+3x13y13,u2(y)=2ypc3x13y13,u_{1}(y)=\frac{2\sqrt{yp}}{c}+3x^{\frac{1}{3}}y^{\frac{1}{3}},\qquad u_{2}(y)=\frac{2\sqrt{yp}}{c}-3x^{\frac{1}{3}}y^{\frac{1}{3}},

and

a(y)=ψ(y)y13=g(m2yN)k^(MTc2π2yp)e(T2c4π2yp)y1312.a(y)=\psi(y)y^{-\frac{1}{3}}=g\Bigl{(}\frac{m^{2}y}{N}\Bigr{)}\widehat{k^{*}}\Bigl{(}\frac{MTc}{2\pi^{2}\sqrt{yp}}\Bigr{)}e\Bigl{(}-\frac{T^{2}c}{4\pi^{2}\sqrt{yp}}\Bigr{)}y^{-\frac{13}{12}}.

As mentioned in the discussion of (2), there are more terms in Ψ±(x)\Psi^{\pm}(x), but like in all our previous analysis they are of lower order and do not contribute anything of interest.

These are oscillatory integrals with a weight, so they lend themselves to stationary phase analysis. In particular, the first integral with phase u1(y)u_{1}(y) has negligible contribution, since u1(y)c1y12u_{1}^{\prime}(y)\gg c^{-1}y^{-\frac{1}{2}} and a(y)T2cy3112a^{\prime}(y)\ll T^{2}cy^{-\frac{31}{12}} meaning that

u1(y)a(y)1c2T2y2512TεM2m2N1y2512T2aε.u_{1}^{\prime}(y)a^{\prime}(y)^{-1}\gg c^{-2}T^{-2}y^{\frac{25}{12}}\gg T^{-\varepsilon}M^{2}m^{2}N^{-1}y^{\frac{25}{12}}\gg T^{2a-\varepsilon}.

Whatever we tune aa to be, this power of TT is no doubt positive, and so using partial integration as many times as we like we can make the contribution of this first integral bounded by as large a negative power of TT as we please.

The second integral is the one that contributes a stationary phase, and consequently the one we have to exercise more care with. This time, because of the minus sign in the phase, we have

u2(y)=p12c1y12x13y23,u_{2}^{\prime}(y)=p^{\frac{1}{2}}c^{-1}y^{-\frac{1}{2}}-x^{\frac{1}{3}}y^{-\frac{2}{3}},

meaning that if xx is bounded away from p32c3y12p^{\frac{3}{2}}c^{-3}y^{\frac{1}{2}}, in particular xx away from p32c3m1N12p^{\frac{3}{2}}c^{-3}m^{-1}N^{\frac{1}{2}} since y=nNm2y=n\sim Nm^{-2}, then we have no stationary phase, and the second integral has negligible contribution for the same reason as the first one.

Consequently to have a stationary phase we are looking at xx around the size p32c3m1N12p^{\frac{3}{2}}c^{-3}m^{-1}N^{\frac{1}{2}}, or in other words n2N12p32n12n_{2}\sim N^{\frac{1}{2}}p^{\frac{3}{2}}n_{1}^{-2}. In this range the relevant integral

0e(u2(y))a(y)𝑑y\int_{0}^{\infty}e(u_{2}(y))a(y)\,dy

therefore has a stationary phase point at y0=p3c6x2y_{0}=p^{-3}c^{6}x^{2}, which using the stationary phase method ([5, Lemma 5.5.6]) gives us

(14) 0e(u2(y))a(y)𝑑y=a(y0)e(xc2p1+18)u2′′(y0)+O(c72T4N116m113p74).\int_{0}^{\infty}e(u_{2}(y))a(y)\,dy=\frac{a(y_{0})e\Bigl{(}-xc^{2}p^{-1}+\dfrac{1}{8}\Bigr{)}}{\sqrt{u_{2}^{\prime\prime}(y_{0})}}+O(c^{\frac{7}{2}}T^{4}N^{-\frac{11}{6}}m^{\frac{11}{3}}p^{-\frac{7}{4}}).

Note for ease of reference later that

u2′′(y)=23x13y5312p12c1y32,u_{2}^{\prime\prime}(y)=\frac{2}{3}x^{\frac{1}{3}}y^{-\frac{5}{3}}-\frac{1}{2}p^{\frac{1}{2}}c^{-1}y^{-\frac{3}{2}},

so in particular at y0=p3c6x2y_{0}=p^{-3}c^{6}x^{2} we have u2′′(y0)=16x3c10p5u_{2}^{\prime\prime}(y_{0})=\frac{1}{6}x^{-3}c^{-10}p^{5}, so that

1u2′′(y0)=6x32c5p52=6n232n13c12m32p52\frac{1}{\sqrt{u_{2}^{\prime\prime}(y_{0})}}=\sqrt{6}x^{\frac{3}{2}}c^{5}p^{-\frac{5}{2}}=\sqrt{6}n_{2}^{\frac{3}{2}}n_{1}^{3}c^{\frac{1}{2}}m^{-\frac{3}{2}}p^{-\frac{5}{2}}

for x=n2n12c3mx=\frac{n_{2}n_{1}^{2}}{c^{3}m}.

In order to now use this to control the error we need to do something about the Kloosterman sums that remain after using the Voronoi formula. Per (5) and the Voronoi formula we are left with

dd¯1(modc)e(pd¯c)S(md¯,±n2;mcn11).\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{p\bar{d}}{c}\Bigr{)}S(m\bar{d},\pm n_{2};mcn_{1}^{-1}).

To handle this, open the Kloosterman sum and switch the order of summation to get

uu¯1(modmcn11)\displaystyle\sum_{u\bar{u}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0mumcn_{1}^{-1})} e(±n2u¯mcn11)dd¯1(modc)e(pd¯c)e(md¯umcn11)\displaystyle e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{p\bar{d}}{c}\Bigr{)}e\Bigl{(}\frac{m\bar{d}u}{mcn_{1}^{-1}}\Bigr{)}
=uu¯1(modmcn11)e(±n2u¯mcn11)dd¯1(modc)e(d¯(p+un1)c)\displaystyle=\sum_{u\bar{u}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0mumcn_{1}^{-1})}e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{\bar{d}(p+un_{1})}{c}\Bigr{)}
=uu¯1(modmcn11)e(±n2u¯mcn11)S(0,p+un1;c).\displaystyle=\sum_{u\bar{u}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0mumcn_{1}^{-1})}e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}S(0,p+un_{1};c).

The Kloosterman sum in the right-hand side,

S(0,a;c)=vv¯1(modc)e(avc),S(0,a;c)=\sum_{v\bar{v}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{av}{c}\Bigr{)},

is really just the Ramanujan sum, which is bounded by (a,c)(a,c), so the twisted sum of Kloosterman sums above is bounded by mc1+εmc^{1+\varepsilon} since n1mcn_{1}\mid mc.

This lets us bound the contribution to (10) from the error term in the stationary phase analysis by

MTp14m1m1cC2mc12n1cmn2N12p32n12|A(n1,n2)|n1n2(n2n12c3m)23mc1+εc72T4N116m113p74\displaystyle MTp^{-\frac{1}{4}}\sum_{m\geq 1}m^{-1}\sum_{c\leq\frac{C_{2}}{m}}c^{\frac{1}{2}}\sum_{n_{1}\mid cm}\sum_{n_{2}\sim N^{\frac{1}{2}}p^{\frac{3}{2}}n_{1}^{-2}}\frac{\lvert A(n_{1},n_{2})\rvert}{n_{1}n_{2}}\Bigl{(}\frac{n_{2}n_{1}^{2}}{c^{3}m}\Bigr{)}^{\frac{2}{3}}mc^{1+\varepsilon}c^{\frac{7}{2}}T^{4}N^{-\frac{11}{6}}m^{\frac{11}{3}}p^{-\frac{7}{4}}
M3T1+εN12p1+ε\displaystyle\qquad\qquad\qquad\ll M^{-3}T^{1+\varepsilon}N^{\frac{1}{2}}p^{1+\varepsilon}

using calculations similar to those of the error from the asymptotic expansion in (11). Remember for this calculation how x=n2n12c3mx=\frac{n_{2}n_{1}^{2}}{c^{3}m} and how by (13) there is an x23x^{\frac{2}{3}} in front of the integral we are estimating with stationary phase analysis.

Since we want this to be dominated by TMTM, we again need to tune the length of Ta<MT1εT^{a}<M\leq T^{1-\varepsilon}. In particular, for M3T1+εN12MT4a+1+32+εM^{-3}T^{1+\varepsilon}N^{\frac{1}{2}}\leq MT^{-4a+1+\frac{3}{2}+\varepsilon} to be dominated by TMTM we need a>38+εa>\frac{3}{8}+\varepsilon. Comparing this to a>720+εa>\frac{7}{20}+\varepsilon in order to get an admissible error from the asymptotic expansion before, we see that we have narrowed the range of MM slightly.

This means that, at this point, after using the Voronoi formula once and applying stationary phase analysis, we have

~3+\displaystyle\tilde{\mathcal{R}}^{+}_{3} =TMp34πm1m1cC2mc1±n1cmn11n21A(n1,n2)×\displaystyle=\frac{TMp^{\frac{3}{4}}}{\pi}\sum_{m\geq 1}m^{-1}\sum_{c\leq\frac{C_{2}}{m}}c^{-1}\sum_{\pm}\sum_{n_{1}\mid cm}n_{1}^{-1}\sum_{n_{2}\geq 1}A(n_{1},n_{2})\times{}
×uu¯1(modmcn11)S(0,p+un1;c)e(±n2u¯mcn11)e(n2n12cmp)b(n2)\displaystyle\qquad{}\times\sum_{u\bar{u}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0mumcn_{1}^{-1})}S(0,p+un_{1};c)e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}e\Bigl{(}\frac{-n_{2}n_{1}^{2}}{cmp}\Bigr{)}b(n_{2})
(15) +O(MT524a+εp1+ε)\displaystyle\qquad{}+O(MT^{\frac{5}{2}-4a+\varepsilon}p^{1+\varepsilon}){}

where now

b(y)=y1g(y2n14Np)k^(MTcmp2π2yn12)e(T2cmp4π2yn12).b(y)=y^{-1}g\Bigl{(}\frac{y^{2}n_{1}^{4}}{Np}\Bigr{)}\widehat{k^{*}}\Bigl{(}\frac{MTcmp}{2\pi^{2}yn_{1}^{2}}\Bigr{)}e\Bigl{(}\frac{-T^{2}cmp}{4\pi^{2}yn_{1}^{2}}\Bigr{)}.

If at this point we sum trivially over n2n_{2}, keeping in mind that 1n22n14Np21\leq\frac{n_{2}^{2}n_{1}^{4}}{Np}\leq 2, we find that the main term contributes about TMC2TMT12M1TMC_{2}\ll TMT^{\frac{1}{2}}M^{-1}, so we need to save an additional T12+εM1T^{\frac{1}{2}+\varepsilon}M^{-1} in order for this to be admissible. To do this we have to once again switch the order of summation and use the Voronoi formula for a second time.

The relevant n2n_{2}-sum is

n21A(n1,n2)e(±n2u¯mcn11)e(n2n12cmp)b(n2).\sum_{n_{2}\geq 1}A(n_{1},n_{2})e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}e\Bigl{(}\frac{-n_{2}n_{1}^{2}}{cmp}\Bigr{)}b(n_{2}).

We rewrite the character as

e(±n2u¯mcn11)e(n2n12cmp)\displaystyle e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}\Bigr{)}e\Bigl{(}\frac{-n_{2}n_{1}^{2}}{cmp}\Bigr{)} =e(±n2u¯mcn11n2n12cmp)=e(±n2u¯pn2n1mcn11p)\displaystyle=e\Bigl{(}\frac{\pm n_{2}\bar{u}}{mcn_{1}^{-1}}-\frac{n_{2}n_{1}^{2}}{cmp}\Bigr{)}=e\Bigl{(}\frac{\pm n_{2}\bar{u}p-n_{2}n_{1}}{mcn_{1}^{-1}p}\Bigr{)}
=e(n2(±u¯pn1)mcn11p).\displaystyle=e\Bigl{(}\frac{n_{2}(\pm\bar{u}p-n_{1})}{mcn_{1}^{-1}p}\Bigr{)}.

Relabeling

±u¯pn1mcn11p=u¯c\frac{\pm\bar{u}p-n_{1}}{mcn_{1}^{-1}p}=\frac{\bar{u}^{\prime}}{c^{\prime}}

with (u¯,c)=1(\bar{u}^{\prime},c^{\prime})=1 and cmcn11pc^{\prime}\mid mcn_{1}^{-1}p, this gives us the following n2n_{2}-sum, expanded using the Voronoi formula:

n21A(n1,n2)e(n2u¯c)b(n2)\displaystyle\sum_{n_{2}\geq 1}A(n_{1},n_{2})e\Bigl{(}\frac{n_{2}\bar{u}^{\prime}}{c^{\prime}}\Bigr{)}b(n_{2})
(16) =c±l1cn1l21A(l1,l2)l1l2S(n1u,±l2;n1cl11)B±(l2l12c3n1).\displaystyle\qquad=c^{\prime}\sum_{\pm}\sum_{l_{1}\mid c^{\prime}n_{1}}\sum_{l_{2}\geq 1}\frac{A(l_{1},l_{2})}{l_{1}l_{2}}S(n_{1}u^{\prime},\pm l_{2};n_{1}c^{\prime}l_{1}^{-1})B^{\pm}\Bigl{(}\frac{l_{2}l_{1}^{2}}{c^{\prime 3}n_{1}}\Bigr{)}.{}

Here B±(x)B^{\pm}(x) are the same integral transforms of b(y)b(y) that Ψ±(x)\Psi^{\pm}(x) are of ψ(y)\psi(y) in our first use of the Voronoi formula, and so for the same reason we look at the size of the argument xx compared to the length of the sum prior to using the Voronoi formula in order to use (2):

l2l12c3n1N12p12n12M31\frac{l_{2}l_{1}^{2}}{c^{\prime 3}n_{1}}\frac{N^{\frac{1}{2}}p^{\frac{1}{2}}}{n_{1}^{2}}\gg M^{3}\gg 1

and so again the asymptotics apply, and we can write the integral transform B±(x)B^{\pm}(x) in terms of

B±(x)=x23c1±0e(v1(y))q(y)𝑑yx23d1±0e(v2(y))q(y)𝑑y\displaystyle B^{\pm}(x)=x^{\frac{2}{3}}c_{1}^{\pm}\int_{0}^{\infty}e(v_{1}(y))q(y)\,dy-x^{\frac{2}{3}}d_{1}^{\pm}\int_{0}^{\infty}e(v_{2}(y))q(y)\,dy
(17) +lower order terms.\displaystyle{}+\text{lower order terms}.{}

As before, c1±c_{1}^{\pm} and d1±d_{1}^{\pm} are absolute constants depending on ff. The phases are

v1(y)=3x13y13T2cmp4π2yn12andv2(y)=3x13y13T2cmp4π2yn12,v_{1}(y)=3x^{\frac{1}{3}}y^{\frac{1}{3}}-\frac{T^{2}cmp}{4\pi^{2}yn_{1}^{2}}\quad\text{and}\quad v_{2}(y)=-3x^{\frac{1}{3}}y^{\frac{1}{3}}-\frac{T^{2}cmp}{4\pi^{2}yn_{1}^{2}},

and

q(y)=y43g(y2n14Np)k^(MTcmp2π2yn12).q(y)=y^{-\frac{4}{3}}g\Bigl{(}\frac{y^{2}n_{1}^{4}}{Np}\Bigr{)}\widehat{k^{*}}\Bigl{(}\frac{MTcmp}{2\pi^{2}yn_{1}^{2}}\Bigr{)}.

We perform the same kind of analysis as we did after the first application of the Voronoi formula. First,

v1(y)=x13y23+T2cmp4π2y2n12T2cmpy2n12v_{1}^{\prime}(y)=x^{\frac{1}{3}}y^{-\frac{2}{3}}+\frac{T^{2}cmp}{4\pi^{2}y^{2}n_{1}^{2}}\gg\frac{T^{2}cmp}{y^{2}n_{1}^{2}}

and q(y)y13TεN1n14p1q^{\prime}(y)\ll y^{-\frac{1}{3}}T^{\varepsilon}N^{-1}n_{1}^{4}p^{-1}, and hence

v1(y)q(y)1T2cmpy2n12y13TεN1n14p1T2εcmp12N12y43T12εv_{1}^{\prime}(y)q^{\prime}(y)^{-1}\gg\frac{T^{2}cmp}{y^{2}n_{1}^{2}}y^{-\frac{1}{3}}T^{\varepsilon}N^{-1}n_{1}^{4}p^{-1}\gg T^{2-\varepsilon}cmp^{\frac{1}{2}}N^{-\frac{1}{2}}y^{\frac{4}{3}}\gg T^{\frac{1}{2}-\varepsilon}

since 1y2n14Np21\leq\frac{y^{2}n_{1}^{4}}{Np}\leq 2. Consequently, since that is a positive power of TT, we can integrate by parts as many times as we like to get a sufficiently large negative power of TT, so the integral with v1(y)v_{1}(y) as its phase is negligible.

Concerning the integral with phase v2(y)v_{2}(y), we have

v2(y)=x13y23+T2cmp4π2y2n12,v_{2}^{\prime}(y)=-x^{\frac{1}{3}}y^{-\frac{2}{3}}+\frac{T^{2}cmp}{4\pi^{2}y^{2}n_{1}^{2}},

so in order to have the same negligible asymptotics as in the previous case we need |v2(y)|T2cmpy2n12\lvert v_{2}^{\prime}(y)\rvert\gg\frac{T^{2}cmp}{y^{2}n_{1}^{2}}, or in other words we need xx away from

T6c3m3pn1264π6N2\frac{T^{6}c^{3}m^{3}pn_{1}^{2}}{64\pi^{6}N^{2}}

since yy is about N12p12n12\frac{N^{\frac{1}{2}}p^{\frac{1}{2}}}{n_{1}^{2}}. Therefore if

xT6c3m3pn1210π6N2orxT6c3m3pn12100π6N2x\geq\frac{T^{6}c^{3}m^{3}pn_{1}^{2}}{10\pi^{6}N^{2}}\quad\text{or}\quad x\leq\frac{T^{6}c^{3}m^{3}pn_{1}^{2}}{100\pi^{6}N^{2}}

we have, by exactly the same argument as for v1(y)v_{1}(y), no stationary or small phase and the integral with phase v2(y)v_{2}(y) is negligible in this range.

It remains to study the integral with phase v2(y)v_{2}(y) in the range

T6c3m3pn12100π6N2xT6c3m3pn1210π6N2\frac{T^{6}c^{3}m^{3}pn_{1}^{2}}{100\pi^{6}N^{2}}\leq x\leq\frac{T^{6}c^{3}m^{3}pn_{1}^{2}}{10\pi^{6}N^{2}}

or equivalently the l2l_{2}-sum in the range

L2100l2L210\frac{L_{2}}{100}\leq l_{2}\leq\frac{L_{2}}{10}

with

L2=T6c3m3pn13c3π6N2l12.L_{2}=\frac{T^{6}c^{3}m^{3}pn_{1}^{3}c^{\prime 3}}{\pi^{6}N^{2}l_{1}^{2}}.

Here we have

|v2′′(y)|T2cmpy3n12T2cmp12N32n14.\lvert v_{2}^{\prime\prime}(y)\rvert\gg\frac{T^{2}cmp}{y^{3}n_{1}^{2}}\gg T^{2}cmp^{-\frac{1}{2}}N^{-\frac{3}{2}}n_{1}^{4}.

By the Second derivative test ([5, Lemma 5.1.3]), we deduce from this and (17) that

B±(x)\displaystyle B^{\pm}(x) x23(T2cmp12N32n14)12(N12p12n12)43Tε\displaystyle\ll x^{\frac{2}{3}}(T^{2}cmp^{-\frac{1}{2}}N^{-\frac{3}{2}}n_{1}^{4})^{-\frac{1}{2}}\Bigl{(}\frac{N^{\frac{1}{2}}p^{\frac{1}{2}}}{n_{1}^{2}}\Bigr{)}^{-\frac{4}{3}}T^{\varepsilon}
(18) T3+εc32m32p14n12N54\displaystyle\ll T^{3+\varepsilon}c^{\frac{3}{2}}m^{\frac{3}{2}}p^{\frac{1}{4}}n_{1}^{2}N^{-\frac{5}{4}}{}

since at this point xT6c3m3pn12N2x\ll T^{6}c^{3}m^{3}pn_{1}^{2}N^{-2}.

Combining (15), (16), and (18), along with the Weil bound (n2cl11)12+ε(n_{2}c^{\prime}l_{1}^{-1})^{\frac{1}{2}+\varepsilon} for the innermost Kloosterman sum and the bound (p+un1,c)(p+un_{1},c) for the Ramanujan sum, we finally have

~3+\displaystyle\tilde{\mathcal{R}}^{+}_{3} MTp34m1m1cC2mc1n1cmn11uu¯1(modmcn11)(p+un1,c)\displaystyle\ll MTp^{\frac{3}{4}}\sum_{m\geq 1}m^{-1}\sum_{c\leq\frac{C_{2}}{m}}c^{-1}\sum_{n_{1}\mid cm}n_{1}^{-1}\sum_{u\bar{u}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0mumcn_{1}^{-1})}(p+un_{1},c)
×cl1cn1L2100l2L210|A(l1,l2)|l1l2(n1cl11)12+ε\displaystyle\qquad{}\times c^{\prime}\sum_{l_{1}\mid c^{\prime}n_{1}}\sum_{\frac{L_{2}}{100}\leq l_{2}\leq\frac{L_{2}}{10}}\frac{\lvert A(l_{1},l_{2})\rvert}{l_{1}l_{2}}(n_{1}c^{\prime}l_{1}^{-1})^{\frac{1}{2}+\varepsilon}
×T3+εc32m32p14n12N54+O(MT524a+εp1+ε)\displaystyle\qquad{}\times T^{3+\varepsilon}c^{\frac{3}{2}}m^{\frac{3}{2}}p^{\frac{1}{4}}n_{1}^{2}N^{-\frac{5}{4}}+O(MT^{\frac{5}{2}-4a+\varepsilon}p^{1+\varepsilon})
M3TεN34p+O(MT524a+εp1+ε)\displaystyle\ll M^{-3}T^{\varepsilon}N^{\frac{3}{4}}p+O(MT^{\frac{5}{2}-4a+\varepsilon}p^{1+\varepsilon})
MT944a+εp+O(MT524a+εp1+ε).\displaystyle\ll MT^{\frac{9}{4}-4a+\varepsilon}p+O(MT^{\frac{5}{2}-4a+\varepsilon}p^{1+\varepsilon}).

For this to be admissible, namely dominated by TMTM, we need a>516+εa>\frac{5}{16}+\varepsilon in TaMT1εT^{a}\leq M\leq T^{1-\varepsilon}, which of course is covered by a>38+εa>\frac{3}{8}+\varepsilon from earlier.

6. Proof of Theorem 1: The KK-Bessel function terms

Again using partition of unity it suffices for 𝒪\mathcal{O}^{-} to consider

=12m1n1A(n,m)(m2n)12g(m2nN)c>0S(n,p;c)cHm,n(4πnpc)\mathcal{R}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c>0}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}

where gg is a smooth function of compact support on \interval12\interval{1}{2} and NN is at most T3+εT^{3+\varepsilon}.

We prove the following:

Lemma 11.
=O(M1T32+εpε).\mathcal{R}^{-}=O(M^{-1}T^{\frac{3}{2}+\varepsilon}p^{\varepsilon}).

Recall how

Hm,n(x)=4πK2it(x)sinh(πt)k(t)V(m2n,t)t𝑑t.H_{m,n}^{-}(x)=\frac{4}{\pi}\int_{-\infty}^{\infty}K_{2it}(x)\sinh(\pi t)k(t)V(m^{2}n,t)t\,dt.

As with +\mathcal{R}^{+} we will split the cc-sum, but this time it suffices to split it into only two parts,

1=12m1n1A(n,m)(m2n)12g(m2nN)cCmS(n,p;c)cHm,n(4πnpc)\mathcal{R}_{1}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\geq\frac{C}{m}}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}

and

2=12m1n1A(n,m)(m2n)12g(m2nN)cCmS(n,p;c)cHm,n(4πnpc).\mathcal{R}_{2}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C}{m}}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}.

As before we will tune the cut-off CC carefully in a moment.

The first part we deal with in essentially the same way we dealt with 1+\mathcal{R}_{1}^{+} involving the JJ-Bessel function, after first using an identity to switch from the KK-Bessel function to the II-Bessel function (because we have similar integral representations for the II-Bessel function and the JJ-Bessel function). That is to say, we move the line of integration in Hm,n(x)H_{m,n}^{-}(x) carefully and use the integral representation for the Bessel function to extract bounds.

In particular, we have

Kν(z)=π2Iν(z)Iν(z)sin(πν),K_{\nu}(z)=\frac{\pi}{2}\frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\pi\nu)},

so that

Hm,n(x)\displaystyle H_{m,n}^{-}(x) =2I2it(x)I2it(x)sin(2itπ)sinh(πt)k(t)V(m2n,t)t𝑑t\displaystyle=2\int_{-\infty}^{\infty}\frac{I_{-2it}(x)-I_{2it}(x)}{\sin(2it\pi)}\sinh(\pi t)k(t)V(m^{2}n,t)t\,dt
=4I2it(x)sin(2itπ)sinh(πt)k(t)V(m2n,t)t𝑑t\displaystyle=-4\int_{-\infty}^{\infty}\frac{I_{2it}(x)}{\sin(2it\pi)}\sinh(\pi t)k(t)V(m^{2}n,t)t\,dt

since k(t)k(t) and V(m2n,t)V(m^{2}n,t) are even in tt.

Moving the line of integration to Imt=d\operatorname{Im}t=-d, which we will tune momentarily, this becomes

4I2d+2iy(x)sin((2d+2iy)π)sinh(π(di+y))k(di+y)\displaystyle-4\int_{-\infty}^{\infty}\frac{I_{2d+2iy}(x)}{\sin((2d+2iy)\pi)}\sinh(\pi(-di+y))k(-di+y) V(m2n,di+y)(di+y)dy+\displaystyle V(m^{2}n,-di+y)(-di+y)\,dy+{}
+residue terms.\displaystyle{}+\text{residue terms}.

The residue terms come from denominator sin((2u+2iy)π)\sin((2u+2iy)\pi) with simple zeros at 2u+2iy=l2u+2iy=l, ll\in\mathbb{Z} and l0l\neq 0, and are of size

Il(x)V(m2n,il2)l2.\ll I_{l}(x)V\Bigl{(}m^{2}n,-i\frac{l}{2}\Bigr{)}\frac{l}{2}.

For fixed dd there are only finitely many such residues for l=1,2,<dl=1,2,\ldots<d.

Per [4, 8.431 3] we have the integral representation

Iν(z)=(z2)νΓ(ν+12)Γ(12)0πe±zcos(θ)sin(θ)2νdθI_{\nu}(z)=\frac{\Bigl{(}\dfrac{z}{2}\Bigr{)}^{\nu}}{\Gamma\Bigl{(}\nu+\dfrac{1}{2}\Bigr{)}\Gamma\Bigl{(}\dfrac{1}{2}\Bigr{)}}\int_{0}^{\pi}e^{\pm z\cos(\theta)}\sin(\theta)^{2\nu}\,d\theta

so that for Re(ν)>12\operatorname{Re}(\nu)>-\frac{1}{2} we have the bound

Iν(z)(z|Imν|+1)ReνeπImνez,I_{\nu}(z)\ll\Bigl{(}\frac{z}{\lvert\operatorname{Im}\nu\rvert+1}\Bigr{)}^{\operatorname{Re}\nu}e^{\pi\operatorname{Im}\nu}e^{z},

and from (7) we have V(m2n,di+y)|y|3d(m2n)dV(m^{2}n,-di+y)\ll\lvert y\rvert^{3d}(m^{2}n)^{-d}. This makes the residue terms bounded by

xd(m2n)12,\ll x^{d}(m^{2}n)^{-\frac{1}{2}},

and hence we have

Hm,n(x)x2dex(m2n)dTd+1+εM+xd(m2n)12H_{m,n}^{-}(x)\ll x^{2d}e^{x}(m^{2}n)^{-d}T^{d+1+\varepsilon}M+x^{d}(m^{2}n)^{-\frac{1}{2}}

since yy is about TT and the length of the integral is about MM, both because of the exponential decay of k(di+y)k(-di+y). This is the first step in tuning CC, the lower bound on cCmc\geq\frac{C}{m}. In order for the exe^{x} factor to be insignificant we need x=4πnpcx=\frac{4\pi\sqrt{np}}{c} bounded above, say by cNc\geq\sqrt{N}.

With this we have, using the Weil bound on the Kloosterman sum,

1m1n1\displaystyle\mathcal{R}_{1}^{-}\ll\sum_{m\geq 1}\sum_{n\geq 1} |A(n,m)|(m2n)12g(m2nN)cCmc1c12+ε×\displaystyle\frac{\lvert A(n,m)\rvert}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\geq\frac{C}{m}}c^{-1}c^{\frac{1}{2}+\varepsilon}\times{}
×((4πnpc)2d(m2n)dTd+1+εM+(4πnpc)d(m2n)12).\displaystyle{}\times\biggl{(}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}^{2d}(m^{2}n)^{-d}T^{d+1+\varepsilon}M+\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}^{d}(m^{2}n)^{-\frac{1}{2}}\biggr{)}.

The power of cc from the first term in the parentheses is 1212d+ε\frac{1}{2}-1-2d+\varepsilon and the power of cc from the second term in the parentheses is 121d+ε\frac{1}{2}-1-d+\varepsilon, so for the cc-sum to converge we need d>12d>\frac{1}{2} when moving the line of integration.

This then makes the cc-sum about (Cm)122d+ε(\frac{C}{m})^{\frac{1}{2}-2d+\varepsilon}, so by taking

C=N+T,C=\sqrt{N}+T,

the N\sqrt{N} in case m2Nm^{2}\ll N is large and TT in case mm is small, and picking dd sufficiently large we make the entirety of 1\mathcal{R}_{1}^{-} bounded by a large negative power of TT.

Finally we handle

2=12m1n1A(n,m)(m2n)12g(m2nN)cCmS(n,p;c)cHm,n(4πnpc)\mathcal{R}_{2}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{c\leq\frac{C}{m}}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}

in a way exactly analogous to how 2+\mathcal{R}_{2}^{+} and 3+\mathcal{R}_{3}^{+} were handled. We substitute the integral representation (from [4, 8.432 4])

K2it(x)=12cosh(tπ)1cos(xsinhζ)e(tζπ)dζK_{2it}(x)=\frac{1}{2}\cosh(t\pi)^{-1}\int_{-\infty}^{\infty}\cos(x\sinh\zeta)e\Bigl{(}-\frac{t\zeta}{\pi}\Bigr{)}\,d\zeta

into Hm,n(x)H_{m,n}^{-}(x), make the change of variables u=tTMu=\frac{t-T}{M} we made with 2+\mathcal{R}_{2}^{+}, extract the e(t+T)2M2e^{-\frac{(t+T)^{2}}{M^{2}}} part of k(t)k(t) with negligible error because of exponential decay, identify the resulting integral in uu as the Fourier transformation of k(u)=eu2V(m2n,Mu+T)k^{*}(u)=e^{-u^{2}}V(m^{2}n,Mu+T), make a second change of variables ξ=Mζπ\xi=-\frac{M\zeta}{\pi}, and finally reduce all of it to studying the integral

Hm,n,1(x)=4Tk^(ξ)cos(xsinhξπM)e(TξM)𝑑ξ.H_{m,n}^{-,1}(x)=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)\cos\Bigl{(}x\sinh\frac{\xi\pi}{M}\Bigr{)}e\Bigl{(}-\frac{T\xi}{M}\Bigr{)}\,d\xi.

As with 2+\mathcal{R}_{2}^{+} there is a second term, the one arising from the MuMu part of t=Mu+Tt=Mu+T instead of the TT part, but again like 2+\mathcal{R}_{2}^{+} that second term can be handled similarly.

The point of this is that we now have a oscillatory integral, so by looking at the phase

ϕ(ξ)=TξM±x2πsinhξπM\phi(\xi)=-\frac{T\xi}{M}\pm\frac{x}{2\pi}\sinh\frac{\xi\pi}{M}

with derivative

ϕ(ξ)=TM±x2McoshξπM\phi^{\prime}(\xi)=-\frac{T}{M}\pm\frac{x}{2M}\cosh\frac{\xi\pi}{M}

we see that the integral can have a small or stationary phase if |x|\lvert x\rvert is close to TT, say T100|x|100T\frac{T}{100}\leq\lvert x\rvert\leq 100T. Hence for xx outside this range the integral is negligible, and we need only concern ourselves with xx inside this range.

The approach to get asymptotics for Hm,n,1(x)H_{m,n}^{-,1}(x) (again following [10, Proposition 5.1]) is the same as that for Hm,n+,1(x)H_{m,n}^{+,1}(x), except slightly easier: we expand the sinh\sinh in the phase as a Taylor series, giving us

H~m,n,1(x)\displaystyle\tilde{H}_{m,n}^{-,1}(x) =4Tk^(ξ)e(TξMx2πsinhξπM)𝑑ξ\displaystyle=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{T\xi}{M}-\frac{x}{2\pi}\sinh\frac{\xi\pi}{M}\Bigr{)}\,d\xi
=4Tk^(ξ)e(TξM+xξ2M+π2xξ312M3+π4xξ5240M5)𝑑ξ+O(T|x|M7).\displaystyle=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{T\xi}{M}+\frac{x\xi}{2M}+\frac{\pi^{2}x\xi^{3}}{12M^{3}}+\frac{\pi^{4}x\xi^{5}}{240M^{5}}\Bigr{)}\,d\xi+O\Bigl{(}\frac{T\lvert x\rvert}{M^{7}}\Bigr{)}.

for the plus part of the ±\pm in the phase; the minus part is similar.

Expanding e(π2xξ312M3+π4xξ5240M5)e(\frac{\pi^{2}x\xi^{3}}{12M^{3}}+\frac{\pi^{4}x\xi^{5}}{240M^{5}}) as a Taylor series of order LL this gives us

H~m,n,1(x)\displaystyle\tilde{H}_{m,n}^{-,1}(x) =4Tk^(ξ)e((2Tx)ξ2M)0lL0l1ldl,l1(xξ3M3)l1(xξ5M5)ll1dξ+\displaystyle=4T\int_{-\infty}^{\infty}\widehat{k^{*}}(\xi)e\Bigl{(}-\frac{(2T-x)\xi}{2M}\Bigr{)}\sum_{0\leq l\leq L}\sum_{0\leq l_{1}\leq l}d_{l,l_{1}}\Bigl{(}\frac{x\xi^{3}}{M^{3}}\Bigr{)}^{l_{1}}\Bigl{(}\frac{x\xi^{5}}{M^{5}}\Bigr{)}^{l-l_{1}}\,d\xi+{}
+O(T|x|L+1M3L+3+T|x|M7)\displaystyle\qquad\qquad\qquad\qquad{}+O\Bigl{(}\frac{T\lvert x\rvert^{L+1}}{M^{3L+3}}+\frac{T\lvert x\rvert}{M^{7}}\Bigr{)}

where dl,l1d_{l,l_{1}} are constants from the Taylor expansion. In particular, d0,0=1d_{0,0}=1. Identifying the integral in ξ\xi as a Fourier transform we get

H~m,n,1(x)\displaystyle\tilde{H}_{m,n}^{-,1}(x) =4T0lL0l1ldl,l1xlM5l2l1k(5l2l1)(x2T2M)+O(T|x|L+1M3L+3+T|x|M7)\displaystyle=4T\sum_{0\leq l\leq L}\sum_{0\leq l_{1}\leq l}d^{\prime}_{l,l_{1}}\frac{x^{l}}{M^{5l-2l_{1}}}{k^{*}}^{(5l-2l_{1})}\Bigl{(}\frac{x-2T}{2M}\Bigr{)}+O\Bigl{(}\frac{T\lvert x\rvert^{L+1}}{M^{3L+3}}+\frac{T\lvert x\rvert}{M^{7}}\Bigr{)}

where dl,l1=dl,l1(2πi)5l+2l1d^{\prime}_{l,l_{1}}=d_{l,l_{1}}(2\pi i)^{-5l+2l_{1}} are relabeled constants. Again in particular d0,0=1d^{\prime}_{0,0}=1.

Hence, like with 3+\mathcal{R}_{3}^{+}, we take LL to be sufficiently large that the second error term dominates the error, and study the l=l1=0l=l_{1}=0 term since the other terms can be treated similarly.

This means that to study 2\mathcal{R}_{2}^{-} it suffices to study

~2Tm1n1A(n,m)(m2n)12g(m2nN)Np100Tmc100NpTmS(n,p;c)ck(4πnpc2T2M).\tilde{\mathcal{R}}_{2}^{-}\coloneqq T\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}\frac{S(-n,p;c)}{c}k^{*}\Biggl{(}\frac{\dfrac{4\pi\sqrt{np}}{c}-2T}{2M}\Biggr{)}.

The error term from these asymptotics on Hm,n(x)H_{m,n}^{-}(x) is of size O(T|x|M7)O(\frac{T\lvert x\rvert}{M^{7}}), so to 2\mathcal{R}_{2}^{-} as a whole this contributes

m1n1A(n,m)mn12g(m2nN)Np100Tmc100NpTmS(n,p;c)cT|x|M7\displaystyle\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{mn^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}\frac{S(-n,p;c)}{c}\frac{T\lvert x\rvert}{M^{7}}
m1n1|A(n,m)|mn12g(m2nN)Np100Tmc100NpTmc32+εTn12p12M7\displaystyle\qquad\qquad\ll\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lvert A(n,m)\rvert}{mn^{\frac{1}{2}}}g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}c^{-\frac{3}{2}+\varepsilon}\frac{Tn^{\frac{1}{2}}p^{\frac{1}{2}}}{M^{7}}
TM7p12m1m1n1|A(n,m)|g(m2nN)(NpTm)12+ε\displaystyle\qquad\qquad\ll TM^{-7}p^{\frac{1}{2}}\sum_{m\geq 1}m^{-1}\sum_{n\geq 1}\lvert A(n,m)\rvert g\Bigl{(}\frac{m^{2}n}{N}\Bigr{)}\Bigl{(}\frac{\sqrt{Np}}{Tm}\Bigr{)}^{-\frac{1}{2}+\varepsilon}
T32εM7N14+εp14+εm1m12εmNm2=T32εM7N34+εp14+ε.\displaystyle\qquad\qquad\ll T^{\frac{3}{2}-\varepsilon}M^{-7}N^{-\frac{1}{4}+\varepsilon}p^{\frac{1}{4}+\varepsilon}\sum_{m\geq 1}m^{-\frac{1}{2}-\varepsilon}m\frac{N}{m^{2}}=T^{\frac{3}{2}-\varepsilon}M^{-7}N^{\frac{3}{4}+\varepsilon}p^{\frac{1}{4}+\varepsilon}.

For this to be admissible we need a>1132+εa>\frac{11}{32}+\varepsilon, which is satisfied by the requirement a>38+εa>\frac{3}{8}+\varepsilon already established from ~3+\tilde{\mathcal{R}}_{3}^{+}.

If at this point we sum ~2\tilde{\mathcal{R}}_{2}^{-} trivially over nn using the Weil bound for the Kloosterman sum, we get

~2T12N34+εT114+ε.\tilde{\mathcal{R}}_{2}^{-}\ll T^{\frac{1}{2}}N^{\frac{3}{4}+\varepsilon}\ll T^{\frac{11}{4}+\varepsilon}.

Hence we must save T74+εM1T^{\frac{7}{4}+\varepsilon}M^{-1}, and in order to do so we must repeat what we did previously: open the Kloosterman sum, apply the Voronoi formula for GL(3)\operatorname{GL}(3), and analyze the size of the resulting integral transform.

The relevant nn-sum in ~2\tilde{\mathcal{R}}_{2}^{-} is

n1A(n,m)S(n,p;c)ψ(n)=dd¯1(modc)e(pd¯c)n1A(n,m)e(ndc)ψ(n)\sum_{n\geq 1}A(n,m)S(-n,p;c)\psi(n)=\sum_{d\bar{d}\equiv 1\mkern 4.0mu({\operator@font mod}\mkern 6.0muc)}e\Bigl{(}\frac{-p\bar{d}}{c}\Bigr{)}\sum_{n\geq 1}A(n,m)e\Bigl{(}\frac{nd}{c}\Bigr{)}\psi(n)

where

ψ(y)=g(m2yN)k(4πypc2T2M)y12,\psi(y)=g\Bigl{(}\frac{m^{2}y}{N}\Bigr{)}k^{*}\Biggl{(}\frac{\dfrac{4\pi\sqrt{yp}}{c}-2T}{2M}\Biggr{)}y^{-\frac{1}{2}},

and the Voronoi formula says the inner sum is

n1A(n,m)e(ndc)ψ(n)\displaystyle\sum_{n\geq 1}A(n,m)e\Bigl{(}\frac{nd}{c}\Bigr{)}\psi(n)
=c±n1cmn21A(n1,n2)n1n2S(md¯,±n2;mcn11)Ψ±(n2n12c3m)\displaystyle\qquad=c\sum_{\pm}\sum_{n_{1}\mid cm}\sum_{n_{2}\geq 1}\frac{A(n_{1},n_{2})}{n_{1}n_{2}}S(m\bar{d},\pm n_{2};mcn_{1}^{-1})\Psi^{\pm}\Bigl{(}\frac{n_{2}n_{1}^{2}}{c^{3}m}\Bigr{)}

As before, we look at the size of the argument in the integral transforms times the length of the original nn-sum:

n2n12c3mNm2n2n12m3NT3m3N32T3N12p32Tε1\frac{n_{2}n_{1}^{2}}{c^{3}m}\frac{N}{m^{2}}\gg\frac{n_{2}n_{1}^{2}}{m^{3}}\frac{NT^{3}m^{3}}{N^{\frac{3}{2}}}\gg\frac{T^{3}}{N^{\frac{1}{2}}p^{\frac{3}{2}}}\gg T^{\varepsilon}\gg 1

since now c100N12p12Tmc\leq\frac{100N^{\frac{1}{2}}p^{\frac{1}{2}}}{Tm} and pT1εp\ll T^{1-\varepsilon}. Therefore by (2), to study Ψ±(x)\Psi^{\pm}(x) for x=n2n12c3mx=\frac{n_{2}n_{1}^{2}}{c^{3}m}, it suffices to consider

(19) x230e(ϕ(y))a(y)𝑑yx^{\frac{2}{3}}\int_{0}^{\infty}e(\phi(y))a(y)\,dy

with the phase

ϕ(y)=3x13y13,\phi(y)=3x^{\frac{1}{3}}y^{\frac{1}{3}},

and amplitude

a(y)=ψ(y)y13=g(m2yN)k(4πypc2T2M)y56.a(y)=\psi(y)y^{-\frac{1}{3}}=g\Bigl{(}\frac{m^{2}y}{N}\Bigr{)}k^{*}\Biggl{(}\frac{\dfrac{4\pi\sqrt{yp}}{c}-2T}{2M}\Biggr{)}y^{-\frac{5}{6}}.

The analysis this time is slightly easier than in the case for the JJ-Bessel function terms because this time ψ(y)\psi(y) does not involve an exponential causing oscillations.

Since ϕ(y)=x13y23\phi^{\prime}(y)=x^{\frac{1}{3}}y^{-\frac{2}{3}} and a(y)y116a^{\prime}(y)\ll y^{-\frac{11}{6}}, we get

ϕ(y)(a(y))1x13y76n213n123c1m3N712\phi^{\prime}(y)(a^{\prime}(y))^{-1}\gg x^{\frac{1}{3}}y^{\frac{7}{6}}\gg n_{2}^{\frac{1}{3}}n_{1}^{\frac{2}{3}}c^{-1}m^{-3}N^{\frac{7}{12}}

since x=n2n12c3mx=\frac{n_{2}n_{1}^{2}}{c^{3}m} and y=nNm2y=n\sim Nm^{-2} because of the factor of g(m2yN)g(\frac{m^{2}y}{N}) in ψ(y)\psi(y). Now if

n2N12TεM3n12,n_{2}\gg\frac{N^{\frac{1}{2}}T^{\varepsilon}}{M^{3}n_{1}^{2}},

this is makes

ϕ(y)(a(y))1Tε,\phi^{\prime}(y)(a^{\prime}(y))^{-1}\gg T^{\varepsilon},

meaning that by integrating by parts many times, the contribution to ~2\tilde{\mathcal{R}}_{2}^{-} from such n2n_{2} is negligible. We therefore turn to

n2N12TεM3n12.n_{2}\ll\frac{N^{\frac{1}{2}}T^{\varepsilon}}{M^{3}n_{1}^{2}}.

Recalling how k(u)=eu2V(m2n,Mu+T)(1+|u|)Ak^{*}(u)=e^{-u^{2}}V(m^{2}n,Mu+T)\ll(1+\lvert u\rvert)^{-A} for any A>0A>0, we have that a(y)a(y) is negligible unless the argument

u=4πypc2T2Mu=\frac{\dfrac{4\pi\sqrt{yp}}{c}-2T}{2M}

of k(u)k^{*}(u) is about zero, i.e.,

|4πypc2T2M|=|2πypcTM|Tε.\Bigg{\lvert}\frac{\dfrac{4\pi\sqrt{yp}}{c}-2T}{2M}\Bigg{\rvert}=\Bigg{\lvert}\frac{\dfrac{2\pi\sqrt{yp}}{c}-T}{M}\Bigg{\rvert}\leq T^{\varepsilon}.

From this we deduce

14π2p(TcTεMc)2y14π2p(Tc+TεMc)2.\frac{1}{4\pi^{2}p}(Tc-T^{\varepsilon}Mc)^{2}\leq y\leq\frac{1}{4\pi^{2}p}(Tc+T^{\varepsilon}Mc)^{2}.

Therefore the length of the integral (19) is about T1+εMc2p1T^{1+\varepsilon}Mc^{2}p^{-1}, the integrand is about y56y^{-\frac{5}{6}}, and there is an x23x^{\frac{2}{3}} in front of the integral, so

Ψ±(x)x23y56T1+εMc2p1x23(Nm2)56T1+εMc2p1.\Psi^{\pm}(x)\ll x^{\frac{2}{3}}y^{-\frac{5}{6}}T^{1+\varepsilon}Mc^{2}p^{-1}\ll x^{\frac{2}{3}}(Nm^{-2})^{-\frac{5}{6}}T^{1+\varepsilon}Mc^{2}p^{-1}.

Plugging this into ~2\tilde{\mathcal{R}}_{2}^{-}, along with the estimates on the Kloosterman sum coming from the Voronoi formula, we then get

~2\displaystyle\tilde{\mathcal{R}}_{2}^{-} TmNm1Np100Tmc100NpTmn1cmn2NTεM3n12|A(n1,n2)|n1n2mc1+ε×\displaystyle\ll T\sum_{m\leq\sqrt{N}}m^{-1}\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}\sum_{n_{1}\mid cm}\sum_{n_{2}\ll\frac{\sqrt{N}T^{\varepsilon}}{M^{3}n_{1}^{2}}}\frac{\lvert A(n_{1},n_{2})\rvert}{n_{1}n_{2}}mc^{1+\varepsilon}\times{}
×(n2n12c3m)23(Nm2)56T1+εMc2p1\displaystyle\qquad\qquad\qquad\qquad{}\times\Bigl{(}\frac{n_{2}n_{1}^{2}}{c^{3}m}\Bigr{)}^{\frac{2}{3}}(Nm^{-2})^{-\frac{5}{6}}T^{1+\varepsilon}Mc^{2}p^{-1}
=T2+εMN56p1mNmNp100Tmc100NpTmc1+εn1cmn113n2NTεM3n12n213|A(n1,n2)|\displaystyle=T^{2+\varepsilon}MN^{-\frac{5}{6}}p^{-1}\sum_{m\leq\sqrt{N}}m\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}c^{1+\varepsilon}\sum_{n_{1}\mid cm}n_{1}^{\frac{1}{3}}\sum_{n_{2}\ll\frac{\sqrt{N}T^{\varepsilon}}{M^{3}n_{1}^{2}}}n_{2}^{-\frac{1}{3}}\lvert A(n_{1},n_{2})\rvert
T2+εMN56p1mNmNp100Tmc100NpTmc1+εn1cmn113(NTεM3n12)23n1\displaystyle\ll T^{2+\varepsilon}MN^{-\frac{5}{6}}p^{-1}\sum_{m\leq\sqrt{N}}m\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}c^{1+\varepsilon}\sum_{n_{1}\mid cm}n_{1}^{\frac{1}{3}}\Bigl{(}\frac{\sqrt{N}T^{\varepsilon}}{M^{3}n_{1}^{2}}\Bigr{)}^{\frac{2}{3}}n_{1}
T2+εM1N12p1mNm1+εNp100Tmc100NpTmc1+ε\displaystyle\ll T^{2+\varepsilon}M^{-1}N^{-\frac{1}{2}}p^{-1}\sum_{m\leq\sqrt{N}}m^{1+\varepsilon}\sum_{\frac{\sqrt{Np}}{100Tm}\leq c\leq\frac{100\sqrt{Np}}{Tm}}c^{1+\varepsilon}
TεN12+εM1pεMT322a+εpε,\displaystyle\ll T^{\varepsilon}N^{\frac{1}{2}+\varepsilon}M^{-1}p^{\varepsilon}\ll MT^{\frac{3}{2}-2a+\varepsilon}p^{\varepsilon},

which is admissible if a>14a>\frac{1}{4}, and so covered by a>38a>\frac{3}{8}.

This finishes the calculation for ~2\tilde{\mathcal{R}}_{2}^{-}, and hence for \mathcal{R}^{-} as a whole, and therefore of the entire moment. Hence this finishes the proof of Theorem 1.

7. Proof of Theorem 5

The calculations for Theorem 5, the twisted first moment of the derivative L(12,f×uj)L^{\prime}(\frac{1}{2},f\times u_{j}) for {uj}\big{\{}\,u_{j}\,\big{\}} an orthonormal basis of odd Hecke–Maass forms for SL(2,)\operatorname{SL}(2,\mathbb{Z}), are essentially the same as the ones above. The main difference is that of the diagonal main term, because this time the integral transform in the approximate functional equation has an order 2 pole instead of a simple pole.

For the derivative L(12,f×uj)L^{\prime}(\frac{1}{2},f\times u_{j}) we have the approximate functional equation

L(12,f×uj)\displaystyle L^{\prime}\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)} =m1n1λj(n)A(n,m)(m2n)12U(m2n,tj)+\displaystyle=\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lambda_{j}(n)A(n,m)}{(m^{2}n)^{\frac{1}{2}}}U_{-}(m^{2}n,t_{j})+{}
(20) +m1n1λj(n)A(m,n)(m2n)12U+(m2n,tj)\displaystyle\qquad\qquad{}+\sum_{m\geq 1}\sum_{n\geq 1}\frac{\lambda_{j}(n)A(m,n)}{(m^{2}n)^{\frac{1}{2}}}U_{+}(m^{2}n,t_{j}){}

where

U(y,t)=12πi(1000)yuF(u)γ(12+u,t)γ(12,t)duu2.U_{\mp}(y,t)=\frac{1}{2\pi i}\int_{(1000)}y^{-u}F(u)\frac{\gamma_{\mp}\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma_{-}\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u^{2}}.

As in the the proof Theorem 1 we will focus on the A(n,m)A(n,m) terms coming from the first sum, the dual sum one being treated similarly. We consequently suppress the subscripts \mp from now on.

We have the Kuznetsov trace formula for odd Maass forms (see [2, Section 3]):

Lemma 12.

Let h(t)h(t) be even, holomorphic and bounded h(t)(|t|+1)2εh(t)\ll(\lvert t\rvert+1)^{-2-\varepsilon} in the strip |Imt|12+ε\lvert\operatorname{Im}t\rvert\leq\frac{1}{2}+\varepsilon. Then

jh(tj)ωjλj(m)λj(n)\displaystyle\sideset{}{{}^{*}}{\sum}_{j}h(t_{j})\omega_{j}\lambda_{j}(m)\lambda_{j}(n)
=12δ(m,n)H+c>012c(S(m,n;c)H+(4πmnc)S(m,n;c)H(4πmnc)),\displaystyle=\frac{1}{2}\delta(m,n)H+\sum_{c>0}\frac{1}{2c}\mathopen{}\mathclose{{}\left(S(m,n;c)H^{+}\Bigl{(}\frac{4\pi\sqrt{mn}}{c}\Bigr{)}-S(-m,n;c)H^{-}\Bigl{(}\frac{4\pi\sqrt{mn}}{c}\Bigr{)}}\right),

where restricts the sum to odd Maass forms,

ωj=4π|ρj(1)|2cosh(πtj),\omega_{j}=\frac{4\pi\lvert\rho_{j}(1)\rvert^{2}}{\cosh(\pi t_{j})},
ω(t)=4π|ϕ(1,12+it)|2cosh(πt).\omega(t)=\frac{4\pi\Big{\lvert}\phi\Bigl{(}1,\dfrac{1}{2}+it\Bigr{)}\Big{\rvert}^{2}}{\cosh(\pi t)}.
H=1πh(t)tanh(πt)t𝑑t,H=\frac{1}{\pi}\int_{-\infty}^{\infty}h(t)\tanh(\pi t)t\,dt,
H+(x)=2iJ2it(x)h(t)tcosh(πt)𝑑t,H^{+}(x)=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{h(t)t}{\cosh(\pi t)}\,dt,

and

H(x)=4πK2it(x)sinh(πt)h(t)t𝑑t.H^{-}(x)=\frac{4}{\pi}\int_{-\infty}^{\infty}K_{2it}(x)\sinh(\pi t)h(t)t\,dt.

Applying this and (20) to the twisted moment in Theorem 5 we get

jk(tj)ωjλj(p)L(12,f×uj)=12m1n1A(n,m)(m2n)12(δ(n,p)Hm,n+\displaystyle\sideset{}{{}^{*}}{\sum}_{j}k(t_{j})\omega_{j}\lambda_{j}(p)L^{\prime}\Bigl{(}\frac{1}{2},f\times u_{j}\Bigr{)}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\Biggl{(}\delta(n,p)H_{m,n}+{}
+c>01c(S(n,p;c)Hm,n+(4πnpc)S(n,p;c)Hm,n(4πnpc)))+\displaystyle{}+\sum_{c>0}\frac{1}{c}\biggl{(}S(n,p;c)H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}-S(-n,p;c)H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}\biggr{)}\Biggr{)}+{}
+dual sum\displaystyle{}+\text{dual sum}

where this time

Hm,n=1πk(t)U(m2n,t)tanh(πt)t𝑑t,H_{m,n}=\frac{1}{\pi}\int_{-\infty}^{\infty}k(t)U(m^{2}n,t)\tanh(\pi t)t\,dt,
Hm,n+(x)=2iJ2it(x)k(t)U(m2n,t)tcosh(πt)𝑑t,H_{m,n}^{+}(x)=2i\int_{-\infty}^{\infty}J_{2it}(x)\frac{k(t)U(m^{2}n,t)t}{\cosh(\pi t)}\,dt,

and

Hm,n(x)=4πK2it(x)sinh(πt)k(t)U(m2n,t)t𝑑t.H_{m,n}^{-}(x)=\frac{4}{\pi}\int_{-\infty}^{\infty}K_{2it}(x)\sinh(\pi t)k(t)U(m^{2}n,t)t\,dt.

As before we split the resulting sum into diagonal and off-diagonal terms,

𝒟+𝒪++𝒪,\mathcal{D}+\mathcal{O}^{+}+\mathcal{O}^{-},

where

𝒟=12m1n1A(n,m)(m2n)12δ(n,p)Hm,n,\mathcal{D}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\delta(n,p)H_{m,n},
𝒪+=12m1n1A(n,m)(m2n)12c>0S(n,p;c)cHm,n+(4πnpc),\mathcal{O^{+}}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\sum_{c>0}\frac{S(n,p;c)}{c}H_{m,n}^{+}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)},

and

𝒪=12m1n1A(n,m)(m2n)12c>0S(n,p;c)cHm,n(4πnpc).\mathcal{O}^{-}=\frac{1}{2}\sum_{m\geq 1}\sum_{n\geq 1}\frac{A(n,m)}{(m^{2}n)^{\frac{1}{2}}}\sum_{c>0}\frac{S(-n,p;c)}{c}H_{m,n}^{-}\Bigl{(}\frac{4\pi\sqrt{np}}{c}\Bigr{)}.

Note that U(y,t)U(y,t) is bounded by log(t3y1)\log(t^{3}y^{-1}). Since this is a power savings compared to the bound we used for V(m2n,12+y)V(m^{2}n,-\frac{1}{2}+y) before, we see that exactly the same calculations for the off-diagonal terms will work out for the derivative, and so the off-diagonal terms here contribute precisely the same error terms as they did in Theorem 1.

We hence turn our focus toward the diagonal term. By the same shuffling of Fourier coefficients using the Hecke relation as in (4), we first have

𝒟\displaystyle\mathcal{D} =A(p,1)2p12m1A(1,m)mHm,p12p32m1A(1,m)mHmp,p.\displaystyle=\frac{A(p,1)}{2p^{\frac{1}{2}}}\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p}-\frac{1}{2p^{\frac{3}{2}}}\sum_{m\geq 1}\frac{A(1,m)}{m}H_{mp,p}.

Following the same approach as in Section 4, we bring the sum into Hm,pH_{m,p} and get (for the first sum, the second one is handled similarly),

m1A(1,m)mHm,p\displaystyle\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p} =1πk(t)(m1A(1,m)mU(m2p,t))tanh(πt)t𝑑t.\displaystyle=\frac{1}{\pi}\int_{-\infty}^{\infty}k(t)\Bigl{(}\sum_{m\geq 1}\frac{A(1,m)}{m}U(m^{2}p,t)\Bigr{)}\tanh(\pi t)t\,dt.

Note how the remaining exponential in the integral makes the length of the integral about MM, and tt is about TT.

Next, to estimate the inner sum we bring the sum all the way into the integral defining U(m2p,t)U(m^{2}p,t), i.e.,

m1A(1,m)mU(m2p,t)=12πi(1000)puL(1+2u,f~)F(u)γ(12+u,t)γ(12,t)duu2.\sum_{m\geq 1}\frac{A(1,m)}{m}U(m^{2}p,t)=\frac{1}{2\pi i}\int_{(1000)}p^{-u}L(1+2u,\tilde{f})F(u)\frac{\gamma\Bigl{(}\dfrac{1}{2}+u,t\Bigr{)}}{\gamma\Bigl{(}\dfrac{1}{2},t\Bigr{)}}\frac{du}{u^{2}}.

Move the line of integration to Re(u)=17+ε\operatorname{Re}(u)=-\frac{1}{7}+\varepsilon, past the order 2 pole at u=0u=0 and we pick up the residue

2L(1,f~)+3L(1,f~)log|t|3L(1,f~)log(2π)L(1,f~)logp+O(|t|1pε).2L^{\prime}(1,\tilde{f})+3L(1,\tilde{f})\log\lvert t\rvert-3L(1,\tilde{f})\log(2\pi)-L(1,\tilde{f})\log p+O(\lvert t\rvert^{-1}p^{\varepsilon}).

By Stirling’s formula and the convexity bound for L(s,f~)L(s,\tilde{f}) we therefore get

m1\displaystyle\sum_{m\geq 1} A(1,m)mU(m2p,t)\displaystyle\frac{A(1,m)}{m}U(m^{2}p,t)
=3L(1,f~)log|t|+2L(1,f~)3L(1,f~)log(2π)L(1,f~)logp+\displaystyle=3L(1,\tilde{f})\log\lvert t\rvert+2L^{\prime}(1,\tilde{f})-3L(1,\tilde{f})\log(2\pi)-L(1,\tilde{f})\log p+{}
+O(|t|1pε)+O(p17ε|t|67+ε)\displaystyle\qquad{}+O(\lvert t\rvert^{-1}p^{\varepsilon})+O(p^{\frac{1}{7}-\varepsilon}\lvert t\rvert^{-\frac{6}{7}+\varepsilon})

for tt about TT.

Plugging this back into the integral for Hm,pH_{m,p}, we therefore get

m1A(1,m)mHm,p\displaystyle\sum_{m\geq 1}\frac{A(1,m)}{m}H_{m,p} =3L(1,f~)πk(t)tanh(πt)tlog|t|𝑑t+\displaystyle=\frac{3L(1,\tilde{f})}{\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt+{}
+Kk(t)tanh(πt)t𝑑t+O(T17+εMp17ε)\displaystyle\qquad{}+K\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\,dt+O(T^{\frac{1}{7}+\varepsilon}Mp^{\frac{1}{7}-\varepsilon})

where K=2L(1,f~)3L(1,f~)log(2π)L(1,f~)logpK=2L^{\prime}(1,\tilde{f})-3L(1,\tilde{f})\log(2\pi)-L(1,\tilde{f})\log p.

The sum with Hmp,pH_{mp,p} in place of Hm,pH_{m,p} works out precisely the same.

Hence

𝒟\displaystyle\mathcal{D} =3L(1,f~)(A(p,1)p1)2p32πk(t)tanh(πt)tlog|t|𝑑t+\displaystyle=\frac{3L(1,\tilde{f})\bigl{(}A(p,1)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt+{}
+K(A(p,1)p1)2p32πk(t)tanh(πt)t𝑑t+O(T17+εMpε)\displaystyle\qquad{}+\frac{K\bigl{(}A(p,1)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\,dt+O(T^{\frac{1}{7}+\varepsilon}Mp^{\varepsilon})

with K=2L(1,f~)3L(1,f~)log(2π)L(1,f~)logpK=2L^{\prime}(1,\tilde{f})-3L(1,\tilde{f})\log(2\pi)-L(1,\tilde{f})\log p.

The dual sum consequently works out identically, only with switching f~\tilde{f} for ff and switching the Fourier coefficients, so

𝒟~\displaystyle\tilde{\mathcal{D}} =3L(1,f)(A(1,p)p1)2p32πk(t)tanh(πt)tlog|t|𝑑t+\displaystyle=\frac{3L(1,f)\bigl{(}A(1,p)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\log\lvert t\rvert\,dt+{}
+K~(A(p,1)p1)2p32πk(t)tanh(πt)t𝑑t+O(T17+εMpε)\displaystyle\qquad{}+\frac{\tilde{K}\bigl{(}A(p,1)p-1\bigr{)}}{2p^{\frac{3}{2}}\pi}\int_{-\infty}^{\infty}k(t)\tanh(\pi t)t\,dt+O(T^{\frac{1}{7}+\varepsilon}Mp^{\varepsilon})

where K~=2L(1,f)3L(1,f)log(2π)L(1,f)logp\tilde{K}=2L^{\prime}(1,f)-3L(1,f)\log(2\pi)-L(1,f)\log p.

Together with the previously computed bounds for the off-diagonal terms which as discussed still apply, this proves Theorem 5.

Acknowledgements

The author would like to thank Sheng-Chi Liu for his tireless support and helpful insight, comments and encouragement, and the anonymous referee for their detailed and valuable feedback.

References

  • [1] G. Chen and X. Yan. Non-vanishing of the first derivative of GL(3) × GL(2) L-functions. Int. J. Number Theory, 14(3):847–869, 2018.
  • [2] J. B. Conrey and H. Iwaniec. The cubic moment of central values of automorphic L-functions. Ann. Math., 151(3):1175–1216, 2000.
  • [3] D. Goldfeld. Automorphic Forms and LL-Functions for the Group GL(n,R)\mathrm{GL}(n,R). Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, UK, 2006.
  • [4] I. S. Gradshteĭn and I. M. Ryzhik. Table of integrals, series, and products. Academic Press, Amsterdam; Boston, 8 edition, 2015.
  • [5] M. N. Huxley. Area, lattice points, and exponential sums. Number London Mathematical Society Monographs in Oxford science publications. Clarendon Press, Oxford, New York, 1996.
  • [6] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53 of Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2014.
  • [7] H. Kim. Functoriality for the exterior square of GL4\operatorname{GL}_{4} and the symmetric fourth of GL2\operatorname{GL}_{2}. J. Am. Math. Soc., 16(1):139–183, 2003. With an appendix by Dinakar Ramakrishnan; with an appendix co-authored by Peter Sarnak.
  • [8] Y.-K. Lau, J. Liu, and Y. Ye. A new bound K2/3+εK^{2/3+\varepsilon} for Rankin-Selberg L-functions for Hecke congruence subgroups. Int. Math. Res. Pap., 2006:1–78, 2006.
  • [9] X. Li. The central value of the Rankin–Selberg L-functions. Geom. Funct. Anal., 18:1660–1695, 2009.
  • [10] X. Li. Bounds for GL(3)×GL(2)\mathrm{GL}(3)\times\mathrm{GL}(2) LL-functions and GL(3)\mathrm{GL}(3) LL-functions. Ann. Math., 173(1):301–336, 2011.
  • [11] S.-C. Liu. Determination of GL(3) cusp forms by central values of GL(3) × GL(2) L-functions. Int. Math. Res. Notices., 2010(21):4025–4041, 02 2010.
  • [12] S.-C. Liu. Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, level aspect. J. Number Theory, 131(8):1397–1408, 2011.
  • [13] S. Miller and W. Schmid. Automorphic distributions, L-functions, and Voronoi summation for GL(3). Ann. Math., 164(2):423–488, 2006.
  • [14] P. Sarnak. Estimates for Rankin–Selberg LL-functions and quantum unique ergodicity. J. Funct. Anal., 184(2):419–453, 2001.
  • [15] Q. Sun. Non-vanishing of derivatives of GL(3) x GL(2) L-functions. Proc. Am. Math. Soc., 140(2):449–463, 2012.
  • [16] Q. Sun. On effective determination of symmetric-square lifts. Centr. Eur. J. Math, 12(7):976–990, 2014.
  • [17] Q. Sun. On effective determination of symmetric-square lifts, level aspect. Int. J. Number Theory, 11(01):51–65, 2015.