This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two and Three Pseudoscalar Production in e+ee^{+}e^{-} annihilation and their contributions to (g2)μ(g-2)_{\mu}

Wen Qin wqin@hnu.edu.cn School of Physics and Electronics, Hunan University, Changsha 410082, China Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, Hunan University, Changsha 410082, China    Ling-Yun Dai dailingyun@hnu.edu.cn School of Physics and Electronics, Hunan University, Changsha 410082, China Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, Hunan University, Changsha 410082, China    Jorge Portolés Jorge.Portoles@ific.uv.es IFIC, CSIC - Universitat de València, Apt. Correus 22085, E-46071 València, Spain
(May 8, 2025)
Abstract

A coherent study of e+ee^{+}e^{-} annihilation into two (π+π\pi^{+}\pi^{-},K+KK^{+}K^{-}) and three (π+ππ0,π+πη\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\eta) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E2GeVE\lesssim 2\,\mathrm{GeV}. The work of [L. Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D 88,056001 (2013)] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6±7.4)×1010(21.6\pm 7.4)\times 10^{-10} (2.9σ\sigma) from the experimental value.

preprint: APS/123-QED

I Introduction

It is well known that Quantum Chromodynamics (QCD) is successful in describing strong interactions. In the high energy region, the correlation functions could be well determined by perturbative QCD. However, the situation becomes more complicated in the low energy region, as the strong coupling constant increases when the energy decreases. Fortunately, at the very low energy region EMρE\ll M_{\rho} [MρM_{\rho} being the mass of the ρ(770)\rho(770)], the spontaneous chiral symmetry breaking of QCD generates the pseudoscalar octet of Goldstone bosons, which are treated as degrees of freedom in the effective field theory (EFT) of QCD: chiral perturbation theory (χ\chiPT) Weinberg (1979); Gasser and Leutwyler (1984). However, χ\chiPT is not the EFT in the intermediate energy region, MρE2GeVM_{\rho}\lesssim E\lesssim 2\,\mbox{GeV}, where it is populated by dense spectra of resonances. Resonance chiral theory (Rχ\chiT) is a reasonable approach to extent the working regime of χ\chiPT by including the resonances as new degrees of freedom Ecker et al. (1989a, b); Cirigliano et al. (2006); Portolés (2010). The construction of the lagrangian is guided by Lorentz invariance and by chiral and discrete symmetries, i.e. C-, P-parity conservation. The lack of a coupling that may guide a perturbative expansion in the calculations of the amplitudes, is compensated by a model of the large-NCN_{C} setting (being NCN_{C} the number of colours) ’t Hooft (1974a, b); Witten (1979). As in χ\chiPT, this approach produces the relevant operators in the lagrangian, in terms of Goldstone bosons, resonances and external fields, but leaves undetermined their coupling constants.

One may use experimental data to obtain information of the couplings. Meanwhile, there is one theoretical tool that has proven efficient in this task: one can extract information of the coupling constants by matching the perturbative Green functions of QCD currents, using the operator product expansion (OPE) at leading order, with those constructed in the Rχ\chiT framework Knecht and Nyffeler (2001); Ruiz-Femenia et al. (2003); Cirigliano et al. (2004, 2005); Husek and Leupold (2015); Dai et al. (2019); Kadavy et al. (2020). Actually, Rχ\chiT can also match, by construction, with χ\chiPT by integrating out the resonances in the Lagrangian Ecker et al. (1989b); Guo et al. (2007), allowing to relate their coupling constants, too. Indeed Rχ\chiT is successful in dealing with the lightest resonances and their interaction with the lightest pseudoscalars. It has been well applied in the study of hadron tau decays Jamin et al. (2008); Dumm et al. (2010a, b); Guo and Roig (2010); Escribano et al. (2013); Nugent et al. (2013); Miranda and Roig (2020), two-photon transition form factors Chen et al. (2012); Xiao et al. (2015); Dai et al. (2018), and e+ee^{+}e^{-} annihilation in the nonperturbative regime of QCD (Dubinsky et al., 2005; Dai et al., 2013).

Low-energy processes with many hadrons in the final state involve final-state interactions (FSI) that are notoriously difficult to deal with in a model independent way. The use of dispersive approaches to deal with them is possible in some instances, namely when good phenomenological data are available (see for instance Refs. Niecknig et al. (2012); Schneider et al. (2012); Danilkin et al. (2015); Albaladejo and Moussallam (2017); Isken et al. (2017); Colangelo et al. (2018); Yao et al. (2020) for some recent work). In the framework of Rχ\chiT, this is also achievable as we did in Ref. Dai et al. (2013), where both vector-meson dominance and the anomalous terms were considered in a coherent analysis of the e+eπ+ππ0,π+πηe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\eta channels, in the energy region populated by many hadron resonances up to E2.3GeVE\lesssim 2.3\,\mbox{GeV}. Here we will revisit that work and extend it to two pseudoscalar production in the light of the new data.

Recent interest on e+ee^{+}e^{-} annihilation into two and three pesudoscalars is driven by their contribution to the anomalous magnetic moment of the muon aμ=(gμ2)/2a_{\mu}=(g_{\mu}-2)/2, with gμg_{\mu} the muon Landé factor. The theoretical prediction of aμa_{\mu} has become a major tour de force in the last years because, on the experimental side, it has been measured with high precision, aμexp=11659208.9(6.3)×1010a_{\mu}^{\mathrm{exp}}=11659208.9(6.3)\times 10^{-10} [Bennett et al., 2006,Zyla et al., 2020], and there seems to be a 3.3σ3.3\,\sigma Zyla et al. (2020) or 3.7σ3.7\,\sigma Aoyama et al. (2020) discrepancy from the standard model (SM) prediction. This fact paves the possibility of bringing out new physics contributions. Within the standard model Jegerlehner (2017); Aoyama et al. (2020), the most important contribution, the electromagnetic one, is accurately calculated up to tenth-order αe5\alpha_{e}^{5}, aμQED=11658471.8931(104)×1010a_{\mu}^{\mathrm{QED}}=11658471.8931(104)\times 10^{-10}, with very small uncertainty (Aoyama et al., 2012, 2019). The electroweak contribution at the two-loop level is also well determined as aμEW=15.36(0.1)×1010a_{\mu}^{\mathrm{EW}}=15.36(0.1)\times 10^{-10} Jackiw and Weinberg (1972); Knecht et al. (2002); Czarnecki et al. (2003); Gnendiger et al. (2013). The hadronic contribution is considered as the major source of uncertainty and has two components: hadronic light-by-light scattering (HLBL) and hadronic vacuum polarization (HVP). The HLBL cannot be directly estimated from experimental input, and a combination of different theoretical models has estimated it as aμHLBL=9.2(1.8)×1010a_{\mu}^{\mathrm{HLBL}}=9.2(1.8)\times 10^{-10} Aoyama et al. (2020); Prades et al. (2009); Colangelo et al. (2020); Danilkin et al. (2020). The lattice calculations on HLBL and HVP could be found in, e.g. Refs. Borsanyi et al. (2020); Blum et al. (2017a, b); Asmussen et al. (2019). A comprehensive amplitude analysis on γγππ,KK¯\gamma\gamma\to\pi\pi,K\bar{K} is done in Refs.Dai and Pennington (2014a, b, 2016, 2017). They are indeed the constraints on HLBL where the photons are real. HVP is the largest hadronic contribution and it is related with the cross section of e+eanythinge^{+}e^{-}\to\,\mbox{anything} throughout causality and unitarity 111 We note that in the early works Terazawa (1968, 1969), the upper limit of HVP contribution has been given. . The present value for the leading order HVP contribution is aμHVP,LO=694.0(4.0)×1010a_{\mu}^{\mathrm{HVP},\mathrm{LO}}=694.0(4.0)\times 10^{-10} (Davier et al., 2020). And the next-to-leading order and next-to-next-to-leading order HVP corrections are derived by considering also higher order hadronic loops, aμHVP,NLO=9.83(0.07)×1010a_{\mu}^{\mathrm{HVP},\mathrm{NLO}}=-9.83(0.07)\times 10^{-10}(Keshavarzi et al., 2020), aμHVP,NNLO=1.24(0.01)×1010a_{\mu}^{\mathrm{HVP},\mathrm{NNLO}}=1.24(0.01)\times 10^{-10} (Kurz et al., 2014). The computation of the HVP contribution relies heavily on the available experimental data and, consequently, its improvement will come from the accurate measurement of the electron-positron cross-section.

Comparing the theoretical predictions with the SM and the experimental measurement, there is still a discrepancy, as commented above. There are lots of experimental data available. However, there are discordances among different collaborations, even those with the highest statistics datasets. The study of three pseudoscalar production was carried out in Ref. (Dai et al., 2013), but recently new experimental measurements of e+eπ+ππ0,π+πηe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\eta have become available. SND (Aul’chenko et al., 2015) has given a new measurement of e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} in the energy range 1.052.001.05-2.00 GeV. BESIII (Ablikim et al., 2019a) provided a measurement for e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} in a wide energy range between 0.7 and 3.0 GeV using the Initial State Radiation (ISR) method. SND also measured e+eηππe^{+}e^{-}\to\eta\pi\pi channel with η\eta in ηγγ\eta\rightarrow\gamma\gamma mode [Aulchenko et al., 2015] and η3π0\eta\rightarrow 3\pi^{0} mode (Achasov et al., 2018), and a combined results of these two modes were provided in (Achasov et al., 2018). CMD3 (Gribanov et al., 2020) also measured e+eηππe^{+}e^{-}\to\eta\pi\pi in ηγγ\eta\rightarrow\gamma\gamma mode, and the cross section values combined with its previous measurements were provided. Very recently, BESIII measured e+eηππe^{+}e^{-}\to\eta^{\prime}\pi\pi above 2 GeV Ablikim et al. (2020). Besides, there are also new experimental measurements for the two pseudoscalar cases. BaBar (Lees et al., 2012) measured e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} from threshold up to 3 GeV. KLOE has done three precise measurements of e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} Ambrosino et al. (2009, 2011); Babusci et al. (2013), using ISR below 1 GeV, and a combined results with all these three measurements were provided in Ref. (Anastasi et al., 2018). There are also precise measurements below 1 GeV, such as, SND (Achasov et al., 2020), BESIII (Ablikim et al., 2016) and CLEO (Xiao et al., 2018). Before 2008, there are also lots of experiment datasets, CMD2 Aul’chenko et al. (2005, 2006); Akhmetshin et al. (2007), DM2 (Bisello et al., 1989) and CMD & OLYA (Barkov et al., 1985). In contrast, the e+eK+Ke^{+}e^{-}\to K^{+}K^{-} process has a considerably shorter history starting from SND (Achasov et al., 2001) in 2001. Later, SND updated the measurements in 2007 (Achasov et al., 2007), and the most recent one in 2016 (Achasov et al., 2016). In 2019, a high precision measurement has been given by BESIII Ablikim et al. (2019b). There are also some other measurements from BarBar (Lees et al., 2013), CMD2 (Akhmetshin et al., 2008) and CMD3 (Kozyrev et al., 2018).
In this paper, we give a coherent analysis of e+ee^{+}e^{-} annihilation into two pseudoscalars π+π\pi^{+}\pi^{-},K+KK^{+}K^{-} and three pseudoscalars π+ππ0,π+πη\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\eta based on the former work (Dai et al., 2013), combined with all the recent experimental measurements. In Sec. II we will briefly update the theoretical framework and give the amplitudes calculated by Rχ\chiT. In Sec. III, we fit the amplitudes to the experimental data up to 2.3 GeV. In Sec. IV, the leading order HVP contribution to g2g-2 is estimated. Higher-order hadronic contributions are considered in Sec. V. Finally, we collect our conclusions in Sec. VI. An appendix collects detailed expressions for the involved form factors and decay widths.

II Theoretical Framework Updates and notations

II.1 Rχ\chiT and further improvements on the form factors

Massless QCD exhibits a chiral symmetry that rules its effective field theory at low energy. χ\chiPT, valid at EMρE\ll M_{\rho}, provides the interaction between the lightest octet of pseudoscalar mesons, and of these with external currents. At higher energies we need to take into account the hadronic resonance states, and a successful phenomenological approach is provided by Rχ\chiT. Only the aspects of interest for our case are collected here. We follow the language and notation of Ref. Cirigliano et al. (2006).

The structure of the lagrangian has, essentially, three pieces:

RχT=GB+kinV+VGB.{\cal L}_{\mathrm{R}\chi\mathrm{T}}\,=\,{\cal L}_{\mathrm{GB}}\,+\,{\cal L}^{\mathrm{V}}_{\mathrm{kin}}\,+\,{\cal L}_{\mathrm{V-GB}}\,. (1)

The first piece involves interaction terms with Goldstone bosons that cannot be generated by integrating out the vector resonance states. They are characterized by a perturbative expansion in terms of momenta (and masses), as in χ\chiPT. kinV{\cal L}^{\mathrm{V}}_{\mathrm{kin}} involves the kinetic term of the vector resonance states and VGB{\cal L}_{\mathrm{V-GB}} the interaction between Goldstone bosons and vector resonance fields. For the processes that we study in this work only the vector resonance fields will be needed. All of these lagrangians include also external fields coupled to scalar, pseudoscalar, vector, axial-vector or tensor currents. The lowest even-intrinsic-parity 𝒪(p2){\cal O}(p^{2}) of the GB{\cal L}_{\mathrm{GB}} Lagrangian is given by

(2)GB(2)χPT=F24uμuμ+χ+,\mathcal{L}_{(2)}^{\mathrm{GB}}\equiv\mathcal{L}_{(2)}^{\chi\mathrm{PT}}=\frac{F^{2}}{4}\left\langle u_{\mu}u^{\mu}+\chi_{+}\right\rangle\ , (2)

being FF the decay constant of the pion and \langle...\rangle indicates the trace in the SU(3)SU(3) space. The leading Wess-Zumino-Witten term describing the anomaly with odd-intrinsic-parity is of 𝒪(p4){\cal O}(p^{4}) Witten (1983); Wess and Zumino (1971). The explicit expression of interest for our work is given by

(4)GB=iNC212π2F3εμνρσμΦνΦρΦvσ+,\mathcal{L}_{(4)}^{\mathrm{GB}}\,=\,i\frac{N_{C}\sqrt{2}}{12\pi^{2}F^{3}}\,\varepsilon_{\mu\nu\rho\sigma}\,\left\langle\partial^{\mu}\Phi\partial^{\nu}\Phi\partial^{\rho}\Phi v^{\sigma}\right\rangle+\cdots\ \ , (3)

where vσv^{\sigma} is the external vector current and Φ\Phi the multiplet of Goldstone bosons. Higher orders of the GB{\cal L}_{\mathrm{GB}} lagrangian will not be considered, as we assume that their couplings are dominated by resonance contributions 222Up to 𝒪(p4){\cal O}(p^{4}) at least, this setting depends on the realization of the spin-1 resonance fields. In Ref. Ecker et al. (1989b), it was proven that this assumption is correct if one uses the antisymmetric formulation for those fields, as we do..

The kinetic term of the vector resonance field is given by

kinV=12λVλμνVνμ+14MV2VμνVμν,\mathcal{L}_{\mathrm{kin}}^{\mathrm{V}}=-\frac{1}{2}\left\langle\nabla^{\lambda}V_{\lambda\mu}\nabla_{\nu}V^{\nu\mu}\right\rangle+\frac{1}{4}M_{V}^{2}\left\langle V_{\mu\nu}V^{\mu\nu}\right\rangle\ , (4)

Here the resonances are collected as SU(3)VSU(3)_{V} octets and have the corresponding properties under chiral transformations. The Lagrangian that involves the interaction between Goldstone bosons and vector resonances, VGB{\cal L}_{\mathrm{V-GB}}, couples the later octets with a chiral tensor constituted by the pseudoscalar nonet and external fields. Hence these chiral tensors obey a chiral counting 𝒪(pn){\cal O}(p^{n}). This allows us to assign a label nn to the different pieces as (n)V{\cal L}_{(n)}^{V...}, where the numerator indicates the resonance fields in the interaction terms. We will consider

VGB=(2)V+(4)V+(2)VV.\mathcal{L}_{\mathrm{V-GB}}=\mathcal{L}_{(2)}^{\mathrm{V}}+\mathcal{L}_{(4)}^{\mathrm{V}}+\mathcal{L}_{(2)}^{\mathrm{VV}}\ . (5)

For instance, in the antisymmetric formulation for the spin-one vector resonances that we use,

(2)V\displaystyle{\cal L}_{(2)}^{\mathrm{V}} =\displaystyle= Vμνχ(2)μν,\displaystyle\langle\,V_{\mu\nu}\,\chi_{(2)}^{\mu\nu}\,\rangle\,,
χ(2)μν\displaystyle\chi_{(2)}^{\mu\nu} =\displaystyle= FV22f+μν+iGV2uμuν\displaystyle\frac{F_{V}}{2\sqrt{2}}\,f_{+}^{\mu\nu}\,+\,i\,\frac{G_{V}}{\sqrt{2}}\,u^{\mu}\,u^{\nu}\, (6)

where FVF_{V} and GVG_{V} are coupling constants not determined by the symmetry. The rest of terms in Eq. (5) are collected in Ref. Cirigliano et al. (2006) for the even-intrinsic-parity terms and Refs. Ruiz-Femenia et al. (2003); Dumm et al. (2010a); Dai et al. (2013) for those of odd-intrinsic parity. The coupling constants of the interaction terms of VGB\mathcal{L}_{\mathrm{V-GB}} could be extracted from the phenomenology involving those states. As commented in the introduction the matching between the leading order in the OPE expansion of specific Green functions of QCD and their expressions within Rχ\chiT is also a useful tool that has been employed in the bibliography Knecht and Nyffeler (2001); Ruiz-Femenia et al. (2003); Cirigliano et al. (2004, 2005); Husek and Leupold (2015); Dai et al. (2019); Kadavy et al. (2020). We will implement this procedure as far as it helps in our task. In particular we will use the relations between couplings specified in Ref. Dai et al. (2013).

However, the large energy region of study cannot be described fully with only one multiplet of vector resonances VμνV_{\mu\nu}. The lightest one is situated around MρM_{\rho}, i.e. under 1GeV1\,\mbox{GeV}. Two other vector multiplets populate the interval 1GeVE2GeV1\,\mbox{GeV}\lesssim E\lesssim 2\,\mbox{GeV}, that we will call VμνV^{\prime}_{\mu\nu} and Vμν′′V^{\prime\prime}_{\mu\nu}. Their couplings to the pseudoscalar mesons will be defined with respect to the ones of the lightest multiplet as βππ\beta_{\pi\pi}^{\prime},βππ′′\beta_{\pi\pi}^{\prime\prime},βKK\beta_{KK}^{\prime},βKK′′\beta_{KK}^{\prime\prime}, through their poles, as

1MV2x1MV2x+βππ,KKMV2x+βππ,KK′′MV′′2x.\frac{1}{M_{V}^{2}-x}\rightarrow\frac{1}{M_{V}^{2}-x}+\frac{\beta_{\pi\pi,KK}^{\prime}}{M_{V^{\prime}}^{2}-x}+\frac{\beta_{\pi\pi,KK}^{\prime\prime}}{M_{V^{\prime\prime}}^{2}-x}\ . (7)

The ρω\rho-\omega mixing, required by the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} process, is reconsidered. While a constant mixing angle δ0\delta_{0} is enough to describe mixing in the three pseudoscalar case as discussed in Ref. (Dai et al., 2013):

(|ρ¯0|ω¯)=(cosδ0sinδ0sinδ0cosδ0)(|ρ0|ω),\left(\begin{array}[]{c}|\bar{\rho}^{0}\rangle\\ |\bar{\omega}\rangle\end{array}\right)=\left(\begin{array}[]{cc}\cos\delta_{0}&-\sin\delta_{0}\\ \sin\delta_{0}&\cos\delta_{0}\end{array}\right)\left(\begin{array}[]{c}|\rho^{0}\rangle\\ |\omega\rangle\end{array}\right)\ , (8)

an energy dependent mixing angle is discussed in Ref. (Gasser and Leutwyler, 1982), although in the non-relativistic limit and we need to generalize it to the relativistic case. The energy dependent mixing angle could be parameterized as

(|ρ¯0|ω¯)\displaystyle\left(\begin{array}[]{c}|\bar{\rho}^{0}\rangle\\ |\bar{\omega}\rangle\end{array}\right) =(cosδMVΓρsinδ(MV2s)+iMV(ΓρΓω)MVΓρsinδ(MV2s)iMV(ΓρΓω)cosδ)(|ρ0|ω)\displaystyle=\left(\begin{array}[]{cc}{\cos\delta}&{\frac{M_{V}\Gamma_{\rho}\sin\delta}{-(M_{V}^{2}-s)+iM_{V}(\Gamma_{\rho}-\Gamma_{\omega})}}\\ {\frac{M_{V}\Gamma_{\rho}\sin\delta}{-(M_{V}^{2}-s)-iM_{V}(\Gamma_{\rho}-\Gamma_{\omega})}}&{\cos\delta}\end{array}\right)\left(\begin{array}[]{c}\left|\rho^{0}\right\rangle\\ \left|\omega\right\rangle\end{array}\right) (15)
(cosδsinδω(s)sinδρ(s)cosδ)(|ρ0|ω),\displaystyle\equiv\left(\begin{array}[]{cc}{\cos\delta}&{-\sin\delta^{\omega}(s)}\\ {\sin\delta^{\rho}(s)}&{\cos\delta}\end{array}\right)\left(\begin{array}[]{c}\left|\rho^{0}\right\rangle\\ \left|\omega\right\rangle\end{array}\right)\ , (20)

where |ρ0,|ω\left|\rho^{0}\right\rangle,|\omega\rangle denote the physical states. Hence the energy dependence of the mixing angle is driven by the resonance propagators. Here MVM_{V} is the mass of the nonet of vector resonances in the SU(3)SU(3) limit. We will take MV=MρM_{V}=M_{\rho}. For the two body final state processes e+eπ+π,K+Ke^{+}e^{-}\to\pi^{+}\pi^{-},K^{+}K^{-}, we always take energy dependent mixing mechanism according to Eq. (20). For the three body cases, we adopt two ways. One is to take the same energy dependent ρω\rho-\omega mixing mechanism as that of the two body case. This will be Fit I. The other is to use the constant mixing angle δ0\delta_{0}. This will be our Fit II. Comparison of both fits will unveil the influence of ρω\rho-\omega mixing in the analysis of data.

II.2 Cross sections for two and three pseudoscalar final states

The amplitude for three-meson production in e+ee^{+}e^{-} collisions is driven by the hadronization of the electromagnetic current, in terms of one vector form factor only:

π+(p1)π(p2)P(p3)|(𝒱μ3+𝒱μ8/3)eiQCD|0=iFVP(Q2,s,t)εμναβp1νp2αp3β,\langle\pi^{+}(p_{1})\pi^{-}(p_{2})P(p_{3})|\left({\cal V}_{\mu}^{3}+{\cal V}_{\mu}^{8}/\sqrt{3}\right)\,e^{i{\cal L}_{\mbox{\tiny{QCD}}}}|0\rangle\,=\,i\,F_{V}^{P}(Q^{2},s,t)\,\varepsilon_{\mu\nu\alpha\beta}\,p_{1}^{\nu}p_{2}^{\alpha}p_{3}^{\beta}\,, (21)

being 𝒱μi=q¯γμ(λi/2)q{\cal V}_{\mu}^{i}=\overline{q}\gamma_{\mu}(\lambda^{i}/2)q and P=π,ηP=\pi,\eta. The Mandelstam variables are defined as s=(Qp3)2s=(Q-p_{3})^{2}, t=(Qp1)2t=(Q-p_{1})^{2}, with Q=p1+p2+p3Q=p_{1}+p_{2}+p_{3}. The cross section and amplitudes for the three pseudoscalar cases that we are considering, namely e+eπ+ππ0e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\pi^{0} and e+eπ+πηe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\eta, are quite the same as specified in Ref. (Dai et al., 2013), except for a small change in the treatment of ρω\rho-\omega mixing, as illustrated in Sect. II.1. The corresponding expressions for the cross-section and the modified form factors for the three pseudoscalar cases are collected in Appendix A.

These form factors depend on several couplings of the Rχ\chiT lagrangian that are not determined by the symmetry. However, some of them or, at least, relations between them can be established by matching Green functions calculated in this framework with their expressions at leading order OPE expansion of QCD, as it has been commented before. By implementing these short-distance relations our form factors satisfy both the chiral constraints in the low-energy region and the asymptotic constraints at the high energy limit (Q2Q^{2}\rightarrow\infty). Hence the only unknown couplings in these form factors will be FVF_{V}, 2g4+g52g_{4}+g_{5}, d2d_{2}, c3c_{3} and αV\alpha_{V} Dai et al. (2013), to be added to the βππ,KK\beta_{\pi\pi,KK}^{\prime} and βππ,KK′′\beta_{\pi\pi,KK}^{\prime\prime} from Eq. (7) and the mixing angles between the octet and singlet pseudoscalar (θP\theta_{P}) and vector (θV\theta_{V}) components, defined also in Dai et al. (2013).

Two-pseudoscalar final states in e+ee^{+}e^{-} annihilation are given by the corresponding vector form factor

P+(p1)P(p2)|(𝒱μ3+𝒱μ8/3)eiQCD|0=(p1p2)μFVP(Q2),\langle P^{+}(p_{1})P^{-}(p_{2})|\left({\cal V}_{\mu}^{3}+{\cal V}_{\mu}^{8}/\sqrt{3}\right)\,e^{i{\cal L}_{\mbox{\tiny{QCD}}}}|0\rangle\,=\,(p_{1}-p_{2})_{\mu}\,F_{V}^{P}(Q^{2})\,, (22)

with Q=p1+p2Q=p_{1}+p_{2} and P=π,KP=\pi,K. The energy in the center of mass frame is given by EcmQ2E_{cm}\equiv\sqrt{Q^{2}}. The cross sections σππσ(e+eπ+π)\sigma_{\pi\pi}\equiv\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) and σKKσ(e+eK+K)\sigma_{KK}\equiv\sigma(e^{+}e^{-}\to K^{+}K^{-}) are given by

σPP=αe2π3Q2(14mP2Q2)3/2|FVP(Q2)|2.\sigma_{PP}=\alpha_{e}^{2}\,\frac{\pi}{3\,Q^{2}}\,\left(1-4\frac{m_{P}^{2}}{Q^{2}}\right)^{3/2}\,|F_{V}^{P}(Q^{2})|^{2}\,. (23)

The form factors FVπ(Q2)F_{V}^{\pi}(Q^{2}) and FVK(Q2)F_{V}^{K}(Q^{2}) were thoroughly studied in Ref. (Arganda et al., 2008) (see also Guerrero and Pich (1997); Pich and Portolés (2001); Miranda and Roig (2018) for alternative parameterizations) in the case of tau decays. Hence we need to include now the new ρω\rho-\omega mixing mechanism, present in e+ee^{+}e^{-} into hadrons. We also extend the described energy region by adding heavier vector multiplets, as commented above. Their expressions are:

FVπ\displaystyle F_{V}^{\pi} =(1+FVGVF2Q2(BW(Mρ,Γρ,,Q2)\displaystyle=\left(1+\frac{F_{V}G_{V}}{F^{2}}Q^{2}\left(BW(M_{\rho},\Gamma_{\rho,},Q^{2})\right.\right.
+βππBW(Mρ,Γρ,,Q2)+βππ′′BW(Mρ′′,Γρ′′,,Q2))\displaystyle\left.\ \ +\beta_{\pi\pi}^{{}^{\prime}}BW(M_{\rho^{{}^{\prime}}},\Gamma_{\rho^{{}^{\prime}},},Q^{2})+\beta_{\pi\pi}^{{}^{\prime\prime}}BW(M_{\rho^{{}^{\prime\prime}}},\Gamma_{\rho^{{}^{\prime\prime}},},Q^{2})\right)
(13sinθVsinδρ+cosδ)cosδ\displaystyle\ \ (\frac{1}{\text{$\sqrt{3}$}}\sin\theta_{V}\sin\delta^{\rho}+\cos\delta)\cos\delta
FVGVF2Q2(BW(Mω,Γω,,Q2)+βππBW(Mω,Γω,,Q2)\displaystyle-\frac{F_{V}G_{V}}{F^{2}}Q^{2}\left(BW(M_{\omega},\Gamma_{\omega,},Q^{2})+\beta_{\pi\pi}^{{}^{\prime}}BW(M_{\omega^{{}^{\prime}}},\Gamma_{\omega^{{}^{\prime}},},Q^{2})\right.
+βππ"BW(Mω′′,Γω′′,,Q2))(13sinθVcosδsinδω)sinδω)\displaystyle\left.\left.+\beta_{\pi\pi}^{{}^{\prime}"}BW(M_{\omega^{{}^{\prime\prime}}},\Gamma_{\omega^{{}^{\prime\prime}},},Q^{2})\right)(\frac{1}{\text{$\sqrt{3}$}}\sin\theta_{V}\cos\delta-\sin\delta^{\omega})\sin\delta^{\omega}\right)
exp[s96π2F2(Re[A[mπ,Mρ,Q2]+12A[mK,Mρ,Q2]])],\displaystyle\ \ \exp\left[\frac{-s}{96\pi^{2}F^{2}}\left({\rm Re}\left[A[m_{\pi},M_{\rho},Q^{2}]+\frac{1}{2}A[m_{K},M_{\rho},Q^{2}]\right]\right)\right]\ , (24)
FVK\displaystyle F_{V}^{K} =(cosθV22FVGVF2(1+82αV2mK2mπ2MV2)Mϕ2(BW(Mϕ,Γϕ,Q2)+βKKBW(Mϕ,Γϕ,,Q2)\displaystyle=\Bigm{(}\frac{\cos\theta_{V}{}^{2}}{2}\frac{F_{V}G_{V}}{F^{2}}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}})M_{\phi}^{2}\bigm{(}BW(M_{\text{$\phi$}},\Gamma_{\phi},Q^{2})+\beta_{KK}^{{}^{\prime}}BW(M_{\phi^{{}^{\prime}}},\Gamma_{\phi^{{}^{\prime}},},Q^{2})
+βKK′′BW(Mϕ′′,Γϕ′′,,Q2))+X124FVGVF2(1+82αVmπ2MV2)Mω2(BW(Mω,Γω,Q2)\displaystyle\ \ +\beta_{KK}^{{}^{\prime\prime}}BW(M_{\phi^{{}^{\prime\prime}}},\Gamma_{\phi^{{}^{\prime\prime}},},Q^{2}))+\frac{X_{1}}{24}\frac{F_{V}G_{V}}{F^{2}}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})M_{\omega}^{2}\bigm{(}BW(M_{\omega},\Gamma_{\omega},Q^{2})
+βKKBW(Mω,Γω,,Q2)+βKK′′BW(Mω′′,Γω′′,,Q2))exp[q296π2F2(32Re(A[mK,Mρ,Q2]))]\displaystyle\ \ +\beta_{KK}^{{}^{\prime}}BW(M_{\omega^{{}^{\prime}}},\Gamma_{\omega^{{}^{\prime}},},Q^{2})+\beta_{KK}^{{}^{\prime\prime}}BW(M_{\omega^{{}^{\prime\prime}}},\Gamma_{\omega^{{}^{\prime\prime}},},Q^{2})\Bigm{)}\exp\left[\frac{-q^{2}}{96\pi^{2}F^{2}}\left(\frac{3}{2}{\rm Re}(A[m_{K},M_{\rho},Q^{2}])\right)\right]
+X224FVGVF2Mρ2(1+82αVmπ2MV2)(BW(Mρ,Γρ,Q2)+βKKBW(Mρ,Γρ,,Q2)\displaystyle\ \ +\frac{X_{2}}{24}\frac{F_{V}G_{V}}{F^{2}}M_{\rho}^{2}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})\Bigm{(}BW(M_{\rho},\Gamma_{\rho},Q^{2})+\beta_{KK}^{{}^{\prime}}BW(M_{\rho^{{}^{\prime}}},\Gamma_{\rho^{{}^{\prime}},},Q^{2})
+βKK′′BW(Mρ′′,Γρ′′,,Q2))exp[q296π2F2(Re[A[mπ,Mρ,Q2]+12A[mK,Mρ,Q2]])] .\displaystyle\ \ +\beta_{KK}^{{}^{\prime\prime}}BW(M_{\rho^{{}^{\prime\prime}}},\Gamma_{\rho^{{}^{\prime\prime}},},Q^{2})\Big{)}\exp\left[\frac{-q^{2}}{96\pi^{2}F^{2}}\left({\rm Re}\left[A[m_{\pi},M_{\rho},Q^{2}]+\frac{1}{2}A[m_{K},M_{\rho},Q^{2}]\right]\right)\right]\text{\ .} (25)

The functions in Eqs. (24,25) are given by:

[BW(MV,ΓV,Q2)]1\displaystyle\left[BW(M_{V},\Gamma_{V},Q^{2})\right]^{-1} =\displaystyle= MV2iMVΓV(Q2)Q2,\displaystyle M_{V}^{2}-iM_{V}\Gamma_{V}(Q^{2})-Q^{2}\,,
A(mP,μ,Q2)\displaystyle A\left(m_{P},\mu,Q^{2}\right) =\displaystyle= ln(mP2/μ2)+8mP2Q253+σP3ln(σP+1σP1),\displaystyle\ln\left(m_{P}^{2}/\mu^{2}\right)+\frac{8m_{P}^{2}}{Q^{2}}-\frac{5}{3}+\sigma_{P}^{3}\ln\left(\frac{\sigma_{P}+1}{\sigma_{P}-1}\right)\,,
σP\displaystyle\sigma_{P} \displaystyle\equiv 14mP2/Q2,\displaystyle\sqrt{1-4m_{P}^{2}/Q^{2}}\,, (26)

and

X1\displaystyle X_{1} =\displaystyle=  163cosδsinθVsinδω(Q2)6cos2δcos2θV+12sin2δω(Q2)+3cos2δ+3,\displaystyle-\,16\sqrt{3}\cos\delta\sin\theta_{V}\sin\delta^{\omega}(Q^{2})-6\cos^{2}\delta\cos 2\theta_{V}+12\sin^{2}\delta_{\omega}(Q^{2})+3\cos 2\delta+3\ ,
X2\displaystyle X_{2} =\displaystyle=  6cos2θVsin2δρ(Q2)+163cosδsinθVsinδρ(Q2)\displaystyle-\,6\cos 2\theta_{V}\sin^{2}\delta^{\rho}(Q^{2})+16\sqrt{3}\cos\delta\sin\theta_{V}\sin\delta^{\rho}(Q^{2}) (27)
+ 6sin2δρ(Q2)+6cos2δ+6,\displaystyle+\,6\sin^{2}\delta^{\rho}(Q^{2})+6\cos 2\delta+6\ ,

Notice that X1=12sin2θVX_{1}=12\sin^{2}\theta_{V} and X2=12X_{2}=12 in the isospin limit. The angles sinδρ,ω\sin\delta^{\rho,\omega} related with the ρω\rho-\omega mixing are defined in Eq. (20). The Q2Q^{2} dependence of resonance widths are a debated issue. A thorough proposal within the chiral framework was proposed in Ref. Gómez Dumm et al. (2000) for wide resonances. We will use this result for Γρ(Q2)\Gamma_{\rho}(Q^{2}), while a parameterization in terms of the on-shell widths, driven by the two-body phase-space decay will be employed for Γρ,ρ′′(Q2)\Gamma_{\rho^{\prime},\rho^{\prime\prime}}(Q^{2}). The precise expressions are collected in Ref. Dai et al. (2013). Meanwhile the rest of resonances, that are quite narrow, will be taken constant. Notice that the two-body vector form factors do not include more unknown couplings to those of three-body form factors.

III Combined fit to experimental data

As we have seen Rχ\chiT provides a controlled setting to extract information from experimental data. Part of, but not all, of the couplings have been constrained by demanding that Green functions, in this framework, match the asymptotic behaviour of QCD, within the leading term of the OPE expansion, in the high energy limit. The remaining coupling constants, the mixing angles and resonance masses and on-shell widths are left to be determined from the experimental data of cross sections and widths involving vector resonances.

The unknown couplings include FV,2g4+g5,d2,c3,αVF_{V},2g_{4}+g_{5},d_{2},c_{3},\alpha_{V}, the phenomenological parameters, βX\beta_{X}^{{}^{\prime}} and βX′′\beta_{X}^{{}^{\prime\prime}} with X=π,η,ππ,KKX=\pi,\eta,\pi\pi,KK, counting for the corresponding strength of the couplings of the VV^{\prime} and V′′V^{\prime\prime} 333Notice that X=π,ηX=\pi,\eta appear in the three pseudoscalar final state π+ππ0\pi^{+}\pi^{-}\pi^{0} and π+πη\pi^{+}\pi^{-}\eta, respectively and X=ππ,KKX=\pi\pi,KK denote the two pseudoscalar final state π+π\pi^{+}\pi^{-}and K+KK^{+}K^{-}, respectively.. The mixing angles of the pseudoscalar singlet and octet θP\theta_{P}, that of vector singlet and octet θV\theta_{V}, and the ρω\rho-\omega mixing angle, the energy dependent δ\delta and/or constant δ0\delta_{0} are also left free. The masses and widths of resonances belonging to heavier second and third multiplets are also fitted around the central values listed in PDG (Zyla et al., 2020).

The last thirty years of experimental work have been very fruitful getting results for the cross-sections we are interested in, as collected in Sect. I. In order to get results for our parameters we decide to fit the experimental data of cross-sections obtained by dedicated experiments in the last twenty years, i.e. we exclude data older than 2000, with one exception: BESIII (Ablikim et al., 2019a) measured the cross section of e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} with high statistics above 1.05GeV1.05\,\mbox{GeV}, while it has a relatively large uncertainty below that energy. Thus we do not fit the data points below 1.05GeV1.05\,\mbox{GeV} from this dataset. In addition we also fit the PDG figures Zyla et al. (2020) for the decay widths of vector resonances whose expressions are collected in Appendix A.

Two fits are performed: Fit I uses a uniform energy dependent ρω\rho-\omega mixing according to Eq. (20). In Fit II, the two body final state cases take into account the energy dependent ρω\rho-\omega mixing, while the other processes are carried out with a constant ρω\rho-\omega mixing angle, see Eq. (8). The comparison between cross-section data and the fit is shown in Figure 1 for the three-pseudoscalar case and Figure 2 for the two-pseudocalar case. The captions in the figures collect all data used in the plots and in the fits.

The global fit includes decay widths of related resonances and their results are shown in Table 1. The reported errors are obtained, in quadrature, from two components: one arises from the Bootstrap method by varying the central value of experimental data within its error bar, and the other comes from the statistics with dozens of solutions which could also fit to the experimental data sets well. The latter one is the dominant source of error estimation. The cyan bands of all the solutions of Fit II can be found in figure 1 and Figure 2. In general, both Fit I and Fit II provide overall reasonable approximations to the experimental figures quoted in the PDG (Zyla et al., 2020).

III.1 Analysis of the results

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Fit to the cross sections of e+eπππ,ππηe^{+}e^{-}\to\pi\pi\pi,\pi\pi\eta of Fit I (dashed blue line) and Fit II (solid black line). The cyan bands correspond to the uncertainty of Fit II. The last graph is about ηππ\eta\pi\pi channel and the others for πππ\pi\pi\pi. The experimental data displayed for e+eπππe^{+}e^{-}\to\pi\pi\pi are from DM1 (Cordier et al., 1980), ND (Dolinsky et al., 1991), DM2 (Antonelli et al., 1992), CMD2 Akhmetshin et al. (2004, 1998, 2000a), SND (Achasov et al., 2003, 2002; Aul’chenko et al., 2015), Babar (Aubert et al., 2004), and BESIII (Ablikim et al., 2019a). The experimental data displayed for e+eππηe^{+}e^{-}\to\pi\pi\eta are from DM2 (Antonelli et al., 1988), ND (Dolinsky et al., 1991), CMD2 (Akhmetshin et al., 2000b), Babar (Aubert et al., 2007), SND Aulchenko et al. (2015); Achasov et al. (2014, 2018), and CMD3 (Gribanov et al., 2020).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Fit to the cross sections of e+eπ+π,K+Ke^{+}e^{-}\to\pi^{+}\pi^{-},K^{+}K^{-} of Fit I (dashed blue line) and Fit II (solid black line). The cyan bands corresponds to the uncertainty of Fit II. The top four graphs are for e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} ,the bottom two graphs are for e+eK+Ke^{+}e^{-}\to K^{+}K^{-}. The experimental data displayed for e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} are from BaBar (Lees et al., 2012), KLOE Ambrosino et al. (2009, 2011); Babusci et al. (2013); Anastasi et al. (2018), SND (Achasov et al., 2020), BESIII (Ablikim et al., 2016), CLEO (Xiao et al., 2018), CMD2 Aul’chenko et al. (2005, 2006); Akhmetshin et al. (2007), DM2 (Bisello et al., 1989) and CMD & OLYA (Barkov et al., 1985). The experimental data displayed for e+eK+Ke^{+}e^{-}\to K^{+}K^{-} are from SND (Achasov et al., 2001, 2007, 2016), BaBar (Lees et al., 2013), CMD2 (Akhmetshin et al., 2008), CMD3 (Kozyrev et al., 2018) and BESIII Ablikim et al. (2019b).

A comparison between our fitted parameters and those of Fit 4 in Ref. (Dai et al., 2013) is shown in Table 2. We also compare the masses and widths of the resonances with those listed in PDG (Zyla et al., 2020). The fitting procedure is carried out with MINUIT (James and Roos, 1975).

The quoted errors in the fitted parameters are provided by the Bootstrap method. In general, the parameters in Fit I and Fit II are consistent with those of Fit 4 in Ref. (Dai et al., 2013), within a deviation of about 10%10\%. FVF_{V}, 2g4+g52g_{4}+g_{5}, θV\theta_{V}, δ0\delta_{0} and/or δ\delta are mainly determined by the experimental data under 1.05GeV1.05\,\mbox{GeV}, where it has higher statistics and precision. However, the joint fit including the e+eK+Ke^{+}e^{-}\to K^{+}K^{-} process constrain θV\theta_{V} strongly. This can be understood from the form factor in Eq. (25), where the cross section around the ϕ\phi peak increases with the descent of θV\theta_{V}. In contrast, the cross section of e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} around the ϕ\phi peak decreases when θV\theta_{V} goes down, which could be deduced from the expressions in Appendix A. As a consequence, θV\theta_{V} is about 11^{\circ} larger than that of Ref. (Dai et al., 2013). The inclusion of e+eK+Ke^{+}e^{-}\to K^{+}K^{-} process also constrains αV\alpha_{V}, the higher order correction to the FVF_{V} coupling arising from SU(3)SU(3) symmetry breaking. The cross section of e+eK+Ke^{+}e^{-}\to K^{+}K^{-} increases with rising αV\alpha_{V}. To confront the theoretical predictions to the experimental data of the cross section of e+eK+Ke^{+}e^{-}\to K^{+}K^{-}, αV\alpha_{V} is fixed to be negative. Notice that αV\alpha_{V} is small as it is higher order correction.

The energy dependent ρω\rho-\omega mixing angle δ\delta is determined by the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} process. From Eq. (24), the cross section of e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} is mainly determined by δ\delta, since FVGV/F2=1F_{V}G_{V}/F^{2}=1 is constrained by the high energy behaviour and θV\theta_{V} could be determined as above. The two mechanisms of ρω\rho-\omega mixing adopted in Fit I and II have almost no effects on the three body final state case. There is only a very little difference reflected around the ρ\rho peak in the e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} process. In the energy region around their masses, ρ\rho and ω\omega mix with a relative phase that results in a larger mode of |FVπ|2|F_{V}^{\pi}|^{2}. Hence the magnitude of FVF_{V} and 2g4+g52g_{4}+g_{5} are smaller in Fit I in comparison to Fit II and the results in Ref. (Dai et al., 2013).

The parameters related with the resonance multiplets are almost the same in Fit I and Fit II, but some of them are different from those of Ref. (Dai et al., 2013). They are mainly determined by the energy region above 1.0GeV1.0\,\mbox{GeV}. Both e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} and e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} processes are sensitive to the masses and widths of ρ\rho^{{}^{\prime}} and ρ′′\rho^{{}^{\prime\prime}} in this energy region. The e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} data gives relative smaller masses and larger widths of ρ\rho^{{}^{\prime}}, compared with those provided by the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} process. Hence the combined fitted ρ\rho^{{}^{\prime}} mass is about 30MeV30\,\mbox{MeV} smaller and the ρ\rho^{{}^{\prime}} width is about 100MeV100\,\mbox{MeV} larger than those in Ref. (Dai et al., 2013). The mass and width of ρ′′\rho^{{}^{\prime\prime}} also changes slightly. Consequently, the relative weights of the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} process βη\beta^{\prime}_{\eta} and βη′′\beta^{\prime\prime}_{\eta} have sizable changes compared with those in Ref. (Dai et al., 2013). Meanwhile, the strengths of the e+eπ0π+πe^{+}e^{-}\to\pi^{0}\pi^{+}\pi^{-} process βπ\beta^{\prime}_{\pi} and βπ′′\beta^{\prime\prime}_{\pi} are similar. Notice that in the two-body processes e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} and e+eK+Ke^{+}e^{-}\to K^{+}K^{-}, the parameters βππ(′′)\beta_{\pi\pi}^{{}^{\prime}(^{\prime\prime})} and βKK(′′)\beta_{KK}^{{}^{\prime}(^{\prime\prime})} turn out to be very small with magnitudes  0.2\lesssim\,0.2, as expected by lowest meson dominance Moussallam (1995, 1997); Knecht et al. (1999); Knecht and Nyffeler (2001); Bijnens et al. (2003).

Width        Fit 1        Fit II        Ref.  (Dai et al., 2013)        PDG (Zyla et al., 2020)
Γρ0πππ(105GeV)\Gamma_{\rho^{0}\to\pi\pi\pi}\;\;(10^{-5}\,\mbox{GeV}) 0.86±\pm0.31 0.64±\pm0.49 0.93 1.49+0.940.73{}_{-0.73}^{+0.94}
Γωπππ(103GeV)\Gamma_{\omega\to\pi\pi\pi}\;\;(10^{-3}\,\mbox{GeV}) 7.43±\pm0.78 7.96±\pm0.74 7.66 7.58±\pm0.05
Γϕπππ(104GeV)\mathrm{\mathsf{\mathbf{\mathsf{\Gamma_{\phi\to\pi\pi\pi}}}}}\;\;(10^{-4}\,\mbox{GeV}) 9.08±\pm1.57 9.00±\pm1.14 6.25 6.53±\pm0.14
Γρee(106GeV)\Gamma_{\rho\to ee}\;\;(10^{-6}\,\mbox{GeV}) 5.56±\pm0.66 5.81±\pm0.52 6.54 6.98±\pm0.07
Γωee(107GeV)\Gamma_{\omega\to ee}\;\;\;(10^{-7}\,\mbox{GeV}) 7.28±\pm0.85 7.60±\pm0.65 6.69 6.25±\pm0.13
Γϕ𝚎𝚎(106GeV)\mathscr{\mathit{\mathtt{\Gamma_{\phi\to ee}\;}}}\;\;(10^{-6}\,\mbox{GeV}) 0.82±\pm0.09 0.86±\pm0.08 1.20 1.26±\pm0.01
Γρππ(101GeV)\Gamma_{\rho\to\pi\pi}\;\;(10^{-1}\,\mbox{GeV}) 1.30±\pm0.17 1.24±\pm0.11 1.14 1.48±\pm0.01
Γωππ(104GeV)\Gamma_{\omega\to\pi\pi}\;\;(10^{-4}\,\mbox{GeV}) 1.33±\pm0.47 1.23±\pm0.11 1.61 1.30±\pm0.05
Γϕππ(107GeV)\Gamma_{\phi\to\pi\pi}\;\;(10^{-7}\,\mbox{GeV}) 1.82±\pm0.20 1.91±\pm0.18 2.66 3.10±\pm0.55
Γρ0π0γ(105GeV)\Gamma_{\rho^{0}\to\pi^{0}\gamma}\;\;(10^{-5}\,\mbox{GeV}) 4.60±\pm0.64 5.38±\pm0.64 5.96 6.95±\pm0.89
Γρ+π+γ(105GeV)\Gamma_{\rho^{+}\to\pi^{+}\gamma}\;\;(10^{-5}\,\mbox{GeV}) 4.46±\pm0.62 4.53±\pm0.37 4.81 6.65±\pm0.74
Γωπ0γ(104GeV)\Gamma_{\omega\to\pi^{0}\gamma}\;\;(10^{-4}\,\mbox{GeV}) 3.97±\pm0.47 4.07±\pm0.35 4.43 7.13±\pm0.19
Γϕπ0γ(106GeV)\Gamma_{\phi\to\pi^{0}\gamma}\;(10^{-6}\,\mbox{GeV}) 9.01±\pm2.26 9.17±\pm1.30 7.34 5.52±\pm0.21
Γρηγ(105GeV)\Gamma_{\rho\to\eta\gamma}\;\;(10^{-5}\,\mbox{GeV}) 3.95±\pm0.69 4.32±\pm0.38 4.85 4.43±\pm0.31
Γωηγ(106GeV)\Gamma_{\omega\to\eta\gamma}\;\;(10^{-6}\,\mbox{GeV}) 4.42±\pm0.77 3.77±\pm0.48 4.13 3.82±\pm0.34
Γϕηγ(105GeV)\Gamma_{\phi\to\eta\gamma}\;\;(10^{-5}\,\mbox{GeV}) 5.92±\pm0.78 6.10±\pm0.48 6.57 5.54±\pm0.11
Γηργ(105GeV)\Gamma_{\eta^{\prime}\to\rho\gamma}\;\;(10^{-5}\,\mbox{GeV}) 4.51±\pm1.34 5.10±\pm1.10 5.37 5.66±\pm0.10
Γηωγ(106GeV)\Gamma_{\eta^{\prime}\to\omega\gamma}\;(10^{-6}\,\mbox{GeV}) 6.24±\pm1.77 5.52±\pm0.94 5.12 4.74±\pm0.13
Γϕηγ(107GeV)\Gamma_{\phi\to\eta^{\prime}\gamma}\;\;(10^{-7}\,\mbox{GeV}) 3.07±\pm0.71 3.36±\pm0.44 3.93 2.64±\pm0.09
Table 1: Decay widths involving vector resonances compared with the Fit 4 of Ref. (Dai et al., 2013) and PDG (Zyla et al., 2020).

Since d2d_{2}, c3c_{3} and θP\theta_{P} are mainly correlated with the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} process, they also have sizable changes, while masses and widths of other resonance multiplets are quite the same. In summary, and as shown in Table 2, the fitted masses and widths of heavier multiplets are closer to the experimental average values in PDG (Zyla et al., 2020), due to a combination of updated experimental measurements and the constraints from π+π\pi^{+}\pi^{-} and K+KK^{+}K^{-} processes.

Notice however, that the masses and widths of ρ\rho^{\prime} and ρ′′\rho^{\prime\prime} obtained here correspond to the specific definition of the energy dependent width propagator shown in Eq. (40) of Ref. (Dai et al., 2013), which may not be used by the experimentalists. Hence a precise comparison with the experimental determinations is not straightforward.

Finally θV\theta_{V} and αV\alpha_{V} change sizeably with respect to the results of Ref. (Dai et al., 2013) due to the inclusion of the process e+eK+Ke^{+}e^{-}\to K^{+}K^{-}, so that the partial widths sensitive to θV\theta_{V} and αV\alpha_{V} become worse. Nevertheless, these partial widths turn out to be bearable with the experimental data from PDG (Zyla et al., 2020), considering the incertitude associated with the theoretical framework of large-NCN_{C} expansion implemented in the framework of Rχ\chiT. In addition, the difference of partial widths of Γρ0πππ\Gamma_{\rho^{0}\to\pi\pi\pi} in Fit I and Fit II are caused by the different parametrization of the ρω\rho-\omega mixing. The ρ0\rho^{0} decays in Fits. I and II have different mixing angles and also the former one is energy dependent, see eq.(2.9).

The comparison of our solutions for the three pseudoscalar case with experimental data is shown in Figure 1, and that of the two pseudoscalar case is shown in Figur 2. The results of Fit I are shown in blue dashed lines and those of Fit II are shown in solid black lines. In general, Fit I and Fit II are almost indistinguishable. There is slight difference shown around the ρ\rho peak in e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} process at 0.6<E< 10.6\,<\,E\,<\,1 (GeV), due to the different parametrization of ρω\rho-\omega mixing adopted. Noted that Fit II is a little better in this region, since there is one more parameter δ0\delta_{0} and the energy dependent mixing mechanism designed for the ππ\pi\pi scattering may not be suitable for the three pion case, where the three body re-scattering needs to be considered.. Fit II seems also a little better at the ϕ\phi peak in the e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} process. This is because that, FVF_{V} and 2g4+g52g_{4}+g_{5} in Fit II are allowed to have larger values than in Fit I, which can slightly compensate the ϕ\phi peak in e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}. As illustrated above, the θV\theta_{V} and αV\alpha_{V} constrained by the e+eK+Ke^{+}e^{-}\to K^{+}K^{-} will suppress the ϕ\phi peak in e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}. The high energy behaviour of e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-}, as shown in Figure 2, is balanced with the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} process through the mass and width of ρ\rho^{{}^{\prime}}.

                      Fit I                       Fit II               Ref.  (Dai et al., 2013)           PDG (Zyla et al., 2020)
FV(GeV)F_{V}\,\mbox{(GeV)} 0.139±\pm0.001 0.142±\pm0.001 0.148±\pm0.001 -
2g4+g52g_{4}+g_{5} -0.442±\pm0.001 -0.492±\pm0.002 -0.493±\pm0.003 -
d2d_{2} 0.0273±\pm0.0005 0.0276±\pm0.0006 0.0359±\pm0.0007 -
c3c_{3} 0.00432±\pm0.00012 0.00435±\pm0.00013 0.00689±\pm0.00017 -
αV\alpha_{V} -0.00120±\pm0.00012 -0.00113±\pm0.00014 0.0126±\pm0.0007 -
θV()\theta_{V}(^{\circ}) 39.61±\pm0.01 39.56±\pm0.01 38.94±\pm0.02 -
θP()\theta_{P}(^{\circ}) -19.39±\pm0.09 -19.61±\pm0.10 -21.37±\pm0.26 -
δ0()\delta_{0}(^{\circ}) - 1.70±\pm0.05 2.12±\pm0.06 -
δ()\delta(^{\circ}) -1.83±\pm0.04 -1.80±\pm0.01 - -
βπ\beta_{\pi}^{\prime} -0.434±\pm0.005 -0.454±\pm0.003 -0.469±\pm0.008 -
βπ′′\beta_{\pi}^{\prime\prime} 0.239±\pm0.002 0.224±\pm0.005 0.225±\pm0.007 -
βη\beta^{\prime}_{\eta} -0.452±\pm0.008 -0.438±\pm0.006 -0.174±\pm0.017 -
βη′′\beta^{\prime\prime}_{\eta} -0.0213±\pm0.0031 -0.0233±\pm0.0023 -0.0968±\pm0.0139 -
βππ\beta_{\pi\pi}^{\prime} -0.0625±\pm0.0007 -0.0625±\pm0.0009 - -
βππ′′\beta_{\pi\pi}^{\prime\prime} 0.0115±\pm0.0006 0.0118±\pm0.0007 - -
βKK\beta_{KK}^{\prime} -0.0652±\pm0.0023 -0.0712±\pm0.0040 - -
βKK′′\beta_{KK}^{\prime\prime} -0.202±\pm0.003 -0.197±\pm0.005 - -
Mρ(GeV)M_{\rho^{\prime}}\,\mbox{(GeV)} 1.517±\pm0.001 1.519±\pm0.002 1.550±\pm0.012 1.465(25)
Γρ(GeV)\Gamma_{\rho^{\prime}}\,\mbox{(GeV)} 0.340±\pm0.006 0.340±\pm0.001 0.238±\pm0.018 0.400(60)
Mω(GeV)M_{\omega^{\prime}}\,\mbox{(GeV)} 1.256±\pm0.006 1.253±\pm0.003 1.249±\pm0.003 1.410(60)
Γω(GeV)\Gamma_{\omega^{\prime}}\,\mbox{(GeV)} 0.310±\pm0.005 0.310±\pm0.003 0.307±\pm0.007 0.290(190)
Mϕ(GeV)M_{\phi^{\prime}}\,\mbox{(GeV)} 1.640±\pm0.003 1.640±\pm0.003 1.641±\pm0.005 1.680(20)
Γϕ(GeV)\Gamma_{\phi^{\prime}}\,\mbox{(GeV)} 0.083±\pm0.001 0.090±\pm0.002 0.086±\pm0.007 0.15(5)
Mρ′′(GeV)M_{\rho^{\prime\prime}}\,\mbox{(GeV)} 1.720±\pm0.004 1.720±\pm0.001 1.794±\pm0.012 1.720(20)
Γρ′′(GeV)\Gamma_{\rho^{\prime\prime}}\,\mbox{(GeV)} 0.150±\pm0.001 0.150±\pm0.005 0.297±\pm0.033 0.25(10)
Mω′′(GeV)M_{\omega^{\prime\prime}}\,\mbox{(GeV)} 1.683±\pm0.005 1.725±\pm0.010 1.700±\pm0.011 1.670(30)
Γω′′(GeV)\Gamma_{\omega^{\prime\prime}}\,\mbox{(GeV)} 0.400±\pm0.002 0.400±\pm0.003 0.400±\pm0.013 0.315(35)
Mϕ′′M_{\phi^{\prime\prime}} (GeV) 2.114±\pm0.010 2.126±\pm0.025 2.086±\pm0.022 2.160(80)
Γϕ′′\Gamma_{\phi^{\prime\prime}} (GeV) 0.108±\pm0.014 0.100±\pm0.014 0.108±\pm0.017 0.125(65)
Table 2: Fitted parameters of Fits I and II compared with the Fit 4 of Ref. (Dai et al., 2013) and PDG (Zyla et al., 2020). The uncertainty of the parameters are coming from the Bootstrap method.

IV Leading-order hadronic vacuum polarization contributions to aμa_{\mu}

The Hadronic Vacuum Polarization (HVP) corrections to aμ=(gμ2)/2a_{\mu}=(g_{\mu}-2)/2 are related to the e+e hadrons e^{+}e^{-}\to\text{ hadrons } cross sections through the optical theorem and analyticity Gourdin and De Rafael (1969); Jegerlehner (2017). The leading order HVP correction can be expressed as

aμhad=(αe(0)mμ3π)2sthrdsK^(s)s2Rh(s) ,a_{\mu}^{\mbox{\tiny had}}=\left(\frac{\alpha_{e}(0)m_{\mu}}{3\pi}\right)^{2}\int_{s_{\mbox{\tiny thr}}}^{\infty}\mathrm{d}s\frac{\hat{K}(s)}{s^{2}}R_{\mathrm{h}}(s)\text{\ ,} (28)

where

αe=e24π,\displaystyle\alpha_{e}=\frac{e^{2}}{4\pi}, Rh(s)=3s4παe2(s)σ(e+e hadrons ),\displaystyle\qquad R_{\mathrm{h}}(s)=\frac{3s}{4\pi\alpha_{e}^{2}(s)}\,\sigma\left(e^{+}e^{-}\rightarrow\text{ hadrons }\right)\ , (29)

and the kernel function is defined as,

K^(s)=3smμ2[(1+x2)(1+x)2x2(ln(1+x)x+x22)+x22(2x2)+1+x1xx2lnx] ,\hat{K}(s)=\frac{3s}{m_{\mu}^{2}}\left.\left[\frac{\left(1+x^{2}\right)(1+x)^{2}}{x^{2}}\left(\ln(1+x)-x+\frac{x^{2}}{2}\right)\right.\left.+\frac{x^{2}}{2}\left(2-x^{2}\right)+\frac{1+x}{1-x}x^{2}\ln x\right]\text{\ ,}\right. (30)

with

x=1βμ(s)1+βμ(s),\displaystyle x=\frac{1-\beta_{\mu}(s)}{1+\beta_{\mu}(s)}, βμ(s)=14mμ2s.\displaystyle\qquad\beta_{\mu}(s)=\sqrt{1-\frac{4m_{\mu}^{2}}{s}}\ . (31)

Notice that the lower limit in the integration in Eq. (28) depends on the starting contribution and its 𝒪(αe){\cal O}(\alpha_{e}) order. Hence sthr=mπ02s_{\mbox{\tiny thr}}=m_{\pi^{0}}^{2} when including the π0γ\pi^{0}\gamma contribution and sthr=4mπ2s_{\mbox{\tiny thr}}=4m_{\pi}^{2} when starting in the ππ\pi\pi contribution.

It is interesting to notice the 1/s21/s^{2} enhancement factor (leading order) of contributions of low energies in aμhada_{\mu}^{\mbox{\tiny had}} (3). Thus the kernel gives higher weight, in particular, to the lowest lying resonance ρ(770)\rho(770) that couples strongly to π+π\pi^{+}\pi^{-}. This is the reason why the pion pair production e+eπ+πe^{+}e^{-}\rightarrow\pi^{+}\pi^{-} gives, by far, the largest contribution to aμhada_{\mu}^{\mbox{\tiny had}}. However, we are in the position to determine the contributions to the muon anomalous magnetic moment relevant to the three and two pseudoscalar final states that we discussed above. They are shown as aμCa_{\mu}^{C} with different energy regions in Table 3.

Here aμCa_{\mu}^{C} (C=ππ,KK,πππ,ηππC=\pi\pi,KK,\pi\pi\pi,\eta\pi\pi) denotes for the lowest order hadronic vacuum polarization contribution of e+eππ,KK,πππ,ηππe^{+}e^{-}\to\pi\pi,KK,\pi\pi\pi,\eta\pi\pi, respectively. The error bars for aμCa_{\mu}^{C} are given by the combination of the uncertainty coming from the Bootstrap method and the statistics from dozens of solutions that also fit to the experimental data sets well.

aμC×1010a_{\mu}^{C}\times 10^{-10} Ref. (Colangelo et al., 2019) Ref. (Dai et al., 2013) Ref. (Hoferichter et al., 2019) Ref. (Davier et al., 2020) Fit I Fit II
aμππ|0.63GeVa_{\mu}^{\pi\pi}|_{\leq 0.63\mathrm{GeV}} 132.8(0.4)(1.0) - - - 132.11±\pm0.63 132.11±\pm0.67
aμππ|1GeVa_{\mu}^{\pi\pi}|_{\leq 1\mathrm{GeV}} 495.0(1.5)(2.1) - - - 498.48±\pm2.34 498.47±\pm2.33
aμππ|1.8GeVa_{\mu}^{\pi\pi}|_{\leq 1\mathrm{.8GeV}} - - - 507.85±\pm0.83±\pm3.23±\pm0.55 508.89±\pm2.45 508.89±\pm2.45
aμππ|2.3GeVa_{\mu}^{\pi\pi}|_{\leq 2.3\mathrm{GeV}} - - - - 509.13±\pm2.48 509.13±\pm2.48
aμKK|.1.1GeVa_{\mu}^{KK}|_{\leq\mathrm{.1.1GeV}} - - - - 20.73±\pm0.94 20.74±\pm0.88
aμKK|.1.8GeVa_{\mu}^{KK}|_{\leq\mathrm{.1.8GeV}} - - - 23.08±\pm0.20±\pm0.33±\pm0.21 24.35±\pm1.02 24.36±\pm0.97
aμKK|2.3GeVa_{\mu}^{KK}|_{\leq\mathrm{2.3GeV}} - - - - 24.43±\pm1.03 24.44±\pm1.01
aμπππ|1.8GeVa_{\mu}^{\pi\pi\pi}|_{\leq 1.8\mathrm{GeV}} - 48.55 46.2(8) 46.21±\pm0.40±\pm1.10±\pm0.86 48.55±\pm1.42 48.54±\pm1.39
aμπππ|2.3GeVa_{\mu}^{\pi\pi\pi}|_{\leq 2.3GeV}\mathrm{} - - - - 48.76±\pm1.45 48.75±\pm1.43
aμηππ|1.8GeVa_{\mu}^{\eta\pi\pi}|_{\leq 1.8\mathrm{GeV}} 1.135 - 1.19±\pm0.02±\pm0.04±\pm0.02 1.28±\pm0.10 1.29±\pm0.09
aμηππ|2.3GeVa_{\mu}^{\eta\pi\pi}|_{\leq 2.3GeV} - - - - 1.52±\pm0.12 1.53±\pm0.12
aμHVP.LOa_{\mu}^{\mathrm{HVP}\mathrm{.LO}} - - - 694.0±\pm4.0 699.46±\pm3.41 699.47±\pm3.39
aμSMa_{\mu}^{\mathrm{SM}} 11659183.1±\pm4.8 11659187.3±\pm3.8 11659187.3±\pm3.9
Δaμ\Delta a_{\mu} 26.0±7.9(3.3σ)26.0\pm 7.9(3.3\sigma) 21.6±7.4(2.9σ)21.6\pm 7.4(2.9\sigma) 21.6±7.4(2.9σ)21.6\pm 7.4(2.9\sigma)
Table 3: Our predictions of muon anomalous magnetic moment, where other contributions are from Refs. (Davier et al., 2020; Aoyama et al., 2020) and references therein. We compared the aμCa_{\mu}^{C} , aμHVP,LOa_{\mu}^{\mathrm{HVP}\mathrm{,LO}}, aμSMa_{\mu}^{\mathrm{SM}} and Δaμ\Delta a_{\mu} with Refs. Dai et al. (2013); Hoferichter et al. (2019); Davier et al. (2020); Colangelo et al. (2019). The experimental value is measured as aμexp=11659208.9±6.3a_{\mu}^{\mathrm{exp}}=11659208.9\pm 6.3 Bennett et al. (2006).

It is noted that, although different parameterizations of the ρω\rho-\omega mixing are adopted in Fit I and Fit II, the individual contributions of each channel are almost the same. A look back to the Figure 1 shows that the results of Fit I are slightly different from the ones of Fit II around the ρ\rho peak in the e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} process (see the first three graphs). However, the total contributions to aμπππ|1.8GeVa_{\mu}^{\pi\pi\pi}|_{\leq 1.8\,\mathrm{GeV}} are almost the same, as the contribution of Fit I is slightly larger than that of Fit II on the left hand side of he ρ\rho peak, but it is in the opposite situation on the right hand side of ρ\rho peak. They tend to cancel between each other. Since there is little difference between the two fits, we will discuss below with Fit II. The aμCa_{\mu}^{C} evaluated here are consistent with those in Refs. (Colangelo et al., 2019; Hoferichter et al., 2019; Davier et al., 2020), within their uncertainty. In addition, aμπππ|1.8GeVa_{\mu}^{\pi\pi\pi}|_{\leq 1.8\,\mathrm{GeV}} is also consistent with that evaluated based on the cross section fitted in Ref. (Dai et al., 2013). On the other hand, a slightly larger aμηππ|1.8GeVa_{\mu}^{\eta\pi\pi}|_{\leq 1.8\,\mathrm{GeV}} is obtained compared with that of Refs. (Dai et al., 2013; Davier et al., 2020). One has to note that the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} process has a threshold at about 0.73GeV0.73\,\mbox{GeV}, and therefore has a larger dependence on the resonance multiplets.

As explained above the largest contribution of the hadronic vacuum polarization comes from e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-}. In our theoretical framework, the cross section of e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} below 1GeV1\,\mbox{GeV} is almost fixed with a small dependence on δ\delta, while other parameters contribute little. Hence the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross-section shares little uncertainty from the parameters. For the e+eK+Ke^{+}e^{-}\to K^{+}K^{-} process, only θV\theta_{V} and αV\alpha_{V} are sensitive, but θV\theta_{V} and αV\alpha_{V} are in tension with the ϕ\phi peak in e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}. Hence, there is a dedicated balance between these two data sets, which causes considerable uncertainty. Since we have fitted up to E=2.3E=2.3 GeV, we also listed the corresponding aμC|2.3GeVa_{\mu}^{C}|_{\leq 2.3\,\mbox{GeV}} in Table 3.

The total contribution is

aμHVP,LO=(699.47± 3.38)×1010a_{\mu}^{\mathrm{\tiny HVP}\mathrm{\tiny,LO}}\,=\,(699.47\,\pm\,3.38)\times 10^{-10} (32)

from Fit II, in combination with the left channels fitted in Ref. (Davier et al., 2020). Note that the four contributions we consider here provide the largest uncertainty among all the channels. Combined with the other contributions (QED (Aoyama et al., 2012), EW Jackiw and Weinberg (1972); Knecht et al. (2002); Czarnecki et al. (2003); Gnendiger et al. (2013), NLHVP (Kurz et al., 2014), NNLHVP (Kurz et al., 2014), HLBL Zyla et al. (2020); Prades et al. (2009); Colangelo et al. (2020); Danilkin et al. (2020)) within the SM, we also give an estimation of the anomalous magnetic moment of muon in SM. It is about 4.2×10104.2\times 10^{-10} larger in total than that in Ref. (Davier et al., 2020). Hence our estimation of the discrepancy Δaμ\Delta a_{\mu} between the theoretical prediction in SM and that measured by experiment is 0.4σ0.4\sigma smaller than that in Ref. (Davier et al., 2020). Our estimation of Δaμ=(21.6±7.4)×1010\Delta a_{\mu}=(21.6\pm 7.4)\times 10^{-10} is 2.9σ2.9\sigma smaller than that of the experimental value.

V Higher-order hadronic vacuum polarization contributions to aμa_{\mu}

We can also consider the contribution of the hadronic vacuum polarization to higher-order corrections to the leading result of the previous Sec. IV. These have already been computed in the past at next-to-leading (NLO) order Krause (1997) and nex-to-next-to-leading (NNLO) order Kurz et al. (2014). In our case, however, we will only consider the contribution of two and three pseudoscalars to HVP, as we have obtained in Sec. III.

NLO contributions correspond to 𝒪(αe3){\cal O}(\alpha_{e}^{3}) with one and two HVP insertions. They are given by

aμ(2a,2b)\displaystyle a_{\mu}^{(2a,2b)} =\displaystyle= 13(αe(0)π)34mπ2dssRh(s)K(2a,2b)(s),\displaystyle\frac{1}{3}\left(\frac{\alpha_{e}(0)}{\pi}\right)^{3}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds}{s}\,R_{\mathrm{h}}(s)\ K^{(2a,2b)}(s)\,,
aμ(2c)\displaystyle a_{\mu}^{(2c)} =\displaystyle= 19(αe(0)π)34mπ2dssdssRh(s)Rh(s)K(2c)(s,s),\displaystyle\frac{1}{9}\left(\frac{\alpha_{e}(0)}{\pi}\right)^{3}\iint_{4m_{\pi}^{2}}^{\infty}\frac{ds}{s}\frac{ds^{\prime}}{s^{\prime}}R_{\mathrm{h}}(s)\,R_{\mathrm{h}}\left(s^{\prime}\right)\,K^{(2c)}\left(s,s^{\prime}\right)\,, (33)

respectively, where Rh(s)R_{\mathrm{h}}(s) has been defined in Eq. (29). The label notation and the kernels K(2a,2b,2c)K^{(2a,2b,2c)} can be read from Ref. Krause (1997). Notice that the lower limit in the integral is taken to be 4mπ24m_{\pi}^{2} as we are only including the contributions of cross-sections of two and three pseudoscalars.

𝒪(αe4){\cal O}(\alpha_{e}^{4}) with up to three HVP insertions corresponds to the NNLO case. Their contributions can be computed as

aμ(3a,3b,3bLBL)\displaystyle a_{\mu}^{(3a,3b,3bLBL)} =\displaystyle= 13(αe(0)π)44mπ2dssRh(s)K(3a,3b,3bLBL)(s),\displaystyle\frac{1}{3}\left(\frac{\alpha_{e}(0)}{\pi}\right)^{4}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds}{s}\,R_{\mathrm{h}}(s)\,K^{(3a,3b,3bLBL)}(s)\,,
aμ(3c)\displaystyle a_{\mu}^{(3c)} =\displaystyle= 19(αe(0)π)44mπ2dssdssRh(s)Rh(s)K(3c)(s,s),\displaystyle\frac{1}{9}\left(\frac{\alpha_{e}(0)}{\pi}\right)^{4}\iint_{4m_{\pi}^{2}}^{\infty}\frac{ds}{s}\frac{ds^{\prime}}{s^{\prime}}R_{\mathrm{h}}(s)\,R_{\mathrm{h}}\left(s^{\prime}\right)\,K^{(3c)}\left(s,s^{\prime}\right)\,, (34)
aμ(3d)\displaystyle a_{\mu}^{(3d)} =\displaystyle= 127(αe(0)π)44mπ2dssdssds′′s′′Rh(s)Rh(s)Rh(s′′)K(3d)(s,s,s′′).\displaystyle\frac{1}{27}\left(\frac{\alpha_{e}(0)}{\pi}\right)^{4}\iiint_{4m_{\pi}^{2}}^{\infty}\frac{ds}{s}\frac{ds^{\prime}}{s^{\prime}}\frac{ds^{\prime\prime}}{s^{\prime\prime}}R_{\mathrm{h}}(s)\,R_{\mathrm{h}}\left(s^{\prime}\right)\,R_{\mathrm{h}}\left(s^{\prime\prime}\right)\,K^{(3d)}\left(s,s^{\prime},s^{\prime\prime}\right)\,.

Here the label notation and the different kernels K(3a,3b,3bLBL,3c,3d)K^{(3a,3b,3bLBL,3c,3d)} follow from Ref. Kurz et al. (2014).

×1012\times 10^{-12} ππ\pi\pi KKKK πππ\pi\pi\pi ππη\pi\pi\eta Our total Total (Kurz et al., 2014)
2a -1369±\pm8 -79.8±\pm2.8 -145±\pm3 -5.93±\pm0.46 -1600±\pm9 -2090
2b 776±\pm5 37.6±\pm1.3 74.7±\pm1.8 2.37±\pm0.18 891±\pm5 1068
2c 22.4±\pm0.2 22.4±\pm0.2 35
aμNLOa_{\mu}^{\mathrm{NLO}} -687±\pm10 –987±\pm9
3a 45.4±\pm0.3 3.11±\pm0.11 5.20±\pm0.12 0.267±\pm0.021 54.0±\pm0.3 80
3b -24.8±\pm0.2 -1.62±\pm0.06 -2.78±\pm0.06 -0.131±\pm0.010 -29.3±\pm0.2 -41
3bLBL 58.0±\pm0.3 3.47±\pm0.12 6.19±\pm0.14 0.268±\pm0.021 67.9±\pm0.4 91
3c -2.34±\pm0.02 -2.34±\pm0.02 -6
3d 0.0249±\pm0.0004 0.0249±\pm0.0004 0.05
aμNNLOa_{\mu}^{\mathrm{NNLO}} 90.3±\pm0.5 124±\pm1
Table 4: Our estimation of the higher-order HVP contributions to aμhada_{\mu}^{\mbox{\tiny had}} using Fit II results and with and upper limit of integration of s=2.3GeV\sqrt{s}=2.3\,\mbox{GeV}. The sum of the four processes considered here is given in the penultimate column, while the contributions of all channels, estimated in Ref. (Kurz et al., 2014), are listed in the last column.

Our results are shown in Table 4. Since Fit I and Fit II are almost indistinguishable, we would just derive the higher order HVP corrections with Fit II. We also quote the results of Ref. Kurz et al. (2014), although we remind that the later include all the cross-sections but not only the two- and three-pseudoscalar contributions (with s2.3GeV\sqrt{s}\leq 2.3\,\mbox{GeV}) to HVP that we have computed. Hence, the difference between both results can be considered as an estimate of the HVP contributions, that we have not included, and of the higher-energy contribution of the two- and three-pseudoscalar channels. The errors have been estimated in the same way as the leading order contributions to aμCa_{\mu}^{C}. It is found that these four processes (with the quoted energy upper limit) account for roughly 70 percent of the higher-order HVP corrections to aμhada_{\mu}^{\mbox{\tiny had}}.

VI Conclusions

Combined with the latest experimental data available for e+ee^{+}e^{-} annihilation into three pseudoscalar cases e+eπππ,ππηe^{+}e^{-}\to\pi\pi\pi,\pi\pi\eta, we carried out joint fits including the two pseudoscalar cases e+eπ+π,K+K,e^{+}e^{-}\to\pi^{+}\pi^{-},K^{+}K^{-}, within the framework of Rχ\chiT in the energy region up to E2GeVE\lesssim 2\,\mbox{GeV}. Taking into account the possible different mixing mechanisms of ρω\rho-\omega in the three and two pseudoscalar cases, two fits have been performed. In Fit I, we apply a uniform energy dependent ρω\rho-\omega mixing parametrization. In Fit II, the energy dependent ρω\rho-\omega mixing parametrization is only used in the two pseudoscalar channel, while a constant mixing angle is used in the three body case. Overall very reasonable fits for both cases are found. There is no relevant difference between Fit I and Fit II except for a small difference around the ρ\rho peak in the π+ππ0\pi^{+}\pi^{-}\pi^{0} case. This indicates that the ρω\rho-\omega mixing mechanism that plays an important role in the two pion case may not be exactly the one to be applied in the three body case. However, it will not affect much the descriptions in the three body case, as well as their contribution to the HVP. Our results have been obtained within a QCD-based phenomenological theory framework with a joint fit of four different channels that restrict mutually each other.

The main hadronic contributions to the muon anomalous magnetic moment come from the lower energy region E< 1.05GeVE\,<\,1.05\,\mbox{GeV} of the hadronic vacuum polarization input, where few parameters are dominant. Hence, reliable predictions can be made within our theoretical framework from our previous analyses of the two- and three-pseudoscalar contributions to the e+ee^{+}e^{-} cross-section. Accordingly we have computed the leading-order HVP contribution to the anomalous magnetic moment of the muon by including the four main channels, studied previously, in our estimate. The central value of these four channels to HVP is about 5×10105\times 10^{-10} larger than that of Ref. (Davier et al., 2020). In consequence, the discrepancy between SM prediction and the experimental measurement decreases to (21.6±7.4)×1010(21.6\pm 7.4)\times 10^{-10}. As an aside, we have also computed the NLO and NNLO HVP contributions to the anomalous magnetic moment of the muon as given by the two- and three-pseudoscalar contributions to the cross-section.

Acknowledgments

We thank for the useful discussions with professors Chu-Wen Xiao and Jian-Ming Shen. This project is supported by National Natural Science Foundation of China (NSFC) with Grant Nos.11805059 and 11675051, Joint Large Scale Scientific Facility Funds of the NSFC and Chinese Academy of Sciences (CAS) under Contract No.U1932110, and Fundamental Research Funds for the Central Universities. This work has been supported in part by Grants No. FPA2017-84445-P and SEV-2014-0398 (AEI/ERDF, EU) and by PROMETEO/2017/053 (GV).

Appendix A Three body final state form factors and partial decay widths

A.1 Three body final state form factors

The cross section of the e+eπ+(p1)π(p2)P(p3)e^{+}e^{-}\rightarrow\pi^{+}(p_{1})\pi^{-}(p_{2})P(p_{3}) process (P a pseudoscalar meson) is driven by the vector form factor in Eq. (21) through

σP(Q2)=α2192πQ6ss+𝑑stt+𝑑tϕ(Q2,s,t)|FVP(Q2,s,t)|2,\sigma_{P}(Q^{2})=\frac{\alpha^{2}}{192\,\pi\,Q^{6}}\,\int_{s_{-}}^{s_{+}}ds\int_{t_{-}}^{t_{+}}dt\,\phi(Q^{2},s,t)\,|F_{V}^{P}(Q^{2},s,t)|^{2}, (A.1)

where Q=p1+p2+p3Q=p_{1}+p_{2}+p_{3}, s=(Qp3)2s=(Q-p_{3})^{2}, t=(Qp1)2t=(Q-p_{1})^{2} and

ϕ(Q2,s,t)=st(Q2st)+smP2(tQ2)mπ2[mP4mP2(2Q2+s)+Q4Q2s2st]smπ4,\phi(Q^{2},s,t)=st(Q^{2}-s-t)+sm_{P}^{2}(t-Q^{2})-m_{\pi}^{2}[m_{P}^{4}-m_{P}^{2}(2Q^{2}+s)+Q^{4}-Q^{2}s-2st]-sm_{\pi}^{4}\,, (A.2)

being mP=mπ,mηm_{P}=m_{\pi},m_{\eta}, depending on the final state. In Eq. (A.1) the integration limits are:

s\displaystyle s_{-} =\displaystyle= 4mπ2,\displaystyle 4m_{\pi}^{2}\,,
s+\displaystyle s_{+} =\displaystyle= (Q2mP)2,\displaystyle(\sqrt{Q^{2}}-m_{P})^{2}\,,
t±\displaystyle t_{\pm} =\displaystyle= 14s{(Q2mP2)2[λ1/2(Q2,s,mP2)λ1/2(s,mπ2,mπ2)]2},\displaystyle\frac{1}{4\,s}\left\{\left(Q^{2}-m_{P}^{2}\right)^{2}-\left[\lambda^{1/2}(Q^{2},s,m_{P}^{2})\mp\lambda^{1/2}(s,m_{\pi}^{2},m_{\pi}^{2})\right]^{2}\right\}\,, (A.3)

with λ(a,b,c)\lambda(a,b,c) the Källén’s triangle function.

The vector form factors relevant for the e+eπ+ππ0,π+πηe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\pi^{0},\,\pi^{+}\pi^{-}\eta cross-sections are given by:

FVP(Q2,s,t)\displaystyle F_{V}^{P}(Q^{2},s,t) =FaP+FbP+FcP+FdP,\displaystyle=F_{a}^{P}+F_{b}^{P}+F_{c}^{P}+F_{d}^{P}\,, (A.4)

with P=π,ηP=\pi,\eta. We give now the expressions for the form factors. When notation is not fully specified we refer to Appendix A.3 of Ref. Dai et al. (2013).

Hence the vector form factors are

Faπ\displaystyle{F}_{a}^{\pi} =NC12π2F3,\displaystyle=-\frac{N_{C}}{12\pi^{2}F^{3}},
Fbπ\displaystyle{F}_{b}^{\pi} =82FV(1+82αVmπ2MV2)3MVF3(2cosθV+sinθV)GRπ(Q2)×{(sinθVcosδ3sinδω(Q2))cosδ\displaystyle=\frac{8\sqrt{2}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})}{3M_{V}F^{3}}(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})\,G_{R_{\pi}}(Q^{2})\times\left\{(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(Q^{2}))\cos\delta\;\right.
×BWR[π,ω,Q2]+(sinθVsinδρ(Q2)+3cosδ)sinδρ(Q2)BWR[π,ρ,Q2]}\displaystyle\left.\times BW_{R}[\pi,\omega,Q^{2}]+(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})+\sqrt{3}\cos\delta)\sin\delta^{\rho}(Q^{2})\;BW_{R}[\pi,\rho,Q^{2}]\right\}
+82FV(1+82αV2mK2mπ2MV2)3MVF3cosθV(cosθV2sinθV)BWR[π,ϕ,Q2]GRπ(Q2),\displaystyle+\frac{8\sqrt{2}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}})}{3M_{V}F^{3}}\cos\theta_{V}(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\,BW_{R}[\pi,\phi,Q^{2}]\leavevmode\nobreak\ G_{R_{\pi}}(Q^{2}),
Fcπ\displaystyle{F}_{c}^{\pi} =42GV3MVF3{(cosδ+6cosθVsinδρ(s)+3sinδρ(s)sinθV)cosδBWR[π,ρ,s]CRπ(Q2,s)\displaystyle=-\frac{4\sqrt{2}G_{V}}{3M_{V}F^{3}}\left\{(\cos\delta+\sqrt{6}\cos\theta_{V}\sin\delta^{\rho}(s)+\sqrt{3}\sin\delta^{\rho}(s)\sin\theta_{V})\cos\delta\leavevmode\nobreak\ BW_{R}[\pi,\rho,s]\leavevmode\nobreak\ C_{R\pi}(Q^{2},s)\right.
+BWR[π,ρ,t]CRπ(Q2,t)+BWR[π,ρ,u]CRπ(Q2,u)\displaystyle+BW_{R}[\pi,\rho,t]\leavevmode\nobreak\ C_{R\pi}(Q^{2},t)+BW_{R}[\pi,\rho,u]\leavevmode\nobreak\ C_{R\pi}(Q^{2},u)
[3cosδ(2cosθV+sinθV)sinδω(s)]sinδω(s)BWR[π,ω,s]CRπ(Q2,s)},\displaystyle\left.-\left[\sqrt{3}\cos\delta\left(\sqrt{2}\cos\theta_{V}+\sin\theta_{V}\right)-\sin\delta^{\omega}(s)\right]\sin\delta^{\omega}(s)\leavevmode\nobreak\ BW_{R}[\pi,\omega,s]\leavevmode\nobreak\ C_{R\pi}(Q^{2},s)\right\},
Fdπ\displaystyle{F}_{d}^{\pi} =8GVFV(1+82αVmπ2MV2)3F3(2cosθV+sinθV)×\displaystyle=\frac{8G_{V}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}{}^{2}}{M_{V}^{2}})}{3F^{3}}(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})\times
{(sinθVcosδ3sinδω(Q2))cosδ(cos2δsinδρ(s)sinδω(Q2))\displaystyle\left\{(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(Q^{2}))\cos\delta(\cos^{2}\delta-\sin\delta^{\rho}(s)\sin\delta^{\omega}(Q^{2}))\right.
×BWRR[π,ω,ρ,Q2,s]DRπ(Q2,s)\displaystyle\times BW_{RR}[\pi,\omega,\rho,Q^{2},s]D_{R\pi}(Q^{2},s)
+(sinθVcosδ3sinδω(Q2))cosδBWRR[π,ω,ρ,Q2,t]DRπ(Q2,t)\displaystyle+(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(Q^{2}))\cos\delta\;BW_{RR}[\pi,\omega,\rho,Q^{2},t]\leavevmode\nobreak\ D_{R\pi}(Q^{2},t)
+(sinθVcosδ3sinδω(Q2))cosδBWRR[π,ω,ρ,Q2,u]DRπ(Q2,u)\displaystyle+(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(Q^{2}))\cos\delta\;BW_{RR}[\pi,\omega,\rho,Q^{2},u]\leavevmode\nobreak\ D_{R\pi}(Q^{2},u)
+(sinθVcosδ3sinδω(Q2))[sinδω(Q2)+sinδω(s)]cosδsinδω(s)\displaystyle+(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(Q^{2}))[\sin\delta^{\omega}(Q^{2})+\sin\delta^{\omega}(s)]\cos\delta\sin\delta^{\omega}(s)
×BWRR[π,ω,ω,Q2,s]DRπ(Q2,s)\displaystyle\times BW_{RR}[\pi,\omega,\omega,Q^{2},s]D_{R\pi}(Q^{2},s)
+(sinθVsinδρ(Q2)+3cosδ)[sinδρ(Q2)+sinδρ(s)]cos2δ\displaystyle+(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})+\sqrt{3}\cos\delta)[\sin\delta^{\rho}(Q^{2})+\sin\delta^{\rho}(s)]\cos^{2}\delta
×BWRR[π,ρ,ρ,Q2,s]DRπ(Q2,s)\displaystyle\times\;BW_{RR}[\pi,\rho,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\pi}(Q^{2},s)
+(sinθVsinδρ(Q2)+3cosδ)sinδρ(Q2)BWRR[π,ρ,ρ,Q2,t]DRπ(Q2,t)\displaystyle+(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})+\sqrt{3}\cos\delta)\sin\delta^{\rho}(Q^{2})\;BW_{RR}[\pi,\rho,\rho,Q^{2},t]\leavevmode\nobreak\ D_{R\pi}(Q^{2},t)
+(sinθVsinδρ(Q2)+3cosδ)sinδρ(Q2)BWRR[π,ρ,ρ,Q2,u]DRπ(Q2,u)\displaystyle+(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})+\sqrt{3}\cos\delta)\sin\delta^{\rho}(Q^{2})\;BW_{RR}[\pi,\rho,\rho,Q^{2},u]\leavevmode\nobreak\ D_{R\pi}(Q^{2},u)
(sinθVsinδρ(Q2)+3cosδ)(cos2δsinδρ(Q2)sinδω(s))sinδω(s)\displaystyle-(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})+\sqrt{3}\cos\delta)(\cos^{2}\delta-\sin\delta^{\rho}(Q^{2})\sin\delta^{\omega}(s))\sin\delta^{\omega}(s)
×BWRR[π,ρ,ω,Q2,s]DRπ(Q2,s)}+8GVFV(1+82αV2mK2mπ2MV2)3F3\displaystyle\left.\times BW_{RR}[\pi,\rho,\omega,Q^{2},s]D_{R\pi}(Q^{2},s)\right\}+\frac{8G_{V}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}{}^{2}-m_{\pi}{}^{2}}{M_{V}^{2}})}{3F^{3}}
×(cosθV2sinθV)cosθV\displaystyle\times(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\,\cos\theta_{V}
×{cos2δBWRR[π,ϕ,ρ,Q2,s]DRπ(Q2,s)+sin2δω(s)BWRR[π,ϕ,ω,Q2,s]DRπ(Q2,s)\displaystyle\times\left\{\cos^{2}\delta BW_{RR}[\pi,\phi,\rho,Q^{2},s]D_{R\pi}(Q^{2},s)+\sin^{2}\delta^{\omega}(s)BW_{RR}[\pi,\phi,\omega,Q^{2},s]D_{R\pi}(Q^{2},s)\right.
+BWRR[π,ϕ,ρ,Q2,t]DRπ(Q2,t)+BWRR[π,ϕ,ρ,Q2,u]DRπ(Q2,u)}.\displaystyle\left.+BW_{RR}[\pi,\phi,\rho,Q^{2},t]\leavevmode\nobreak\ D_{R\pi}(Q^{2},t)+\;BW_{RR}[\pi,\phi,\rho,Q^{2},u]\leavevmode\nobreak\ D_{R\pi}(Q^{2},u)\right\}.
Faη\displaystyle{F}_{a}^{\eta} =NC123π2F3(2sinθP+cosθP),\displaystyle=-\frac{N_{C}}{12\sqrt{3}\pi^{2}F^{3}}(-\sqrt{2}\sin\theta_{P}+\cos\theta_{P}),
Fbη\displaystyle{F}_{b}^{\eta} =86FV(1+82αVmπ2MV2)3MVF3(cosδ+13sinδρ(Q2)sinθV)\displaystyle=\frac{8\sqrt{6}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})}{3M_{V}F^{3}}\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\delta^{\rho}(Q^{2})\sin\theta_{V}\right)
×cosδ(2sinθP+cosθP)BWR[η,ρ,Q2]GRη(Q2,s)\displaystyle\times\cos\delta(-\sqrt{2}\sin\theta_{P}+\cos\theta_{P})BW_{R}[\eta,\rho,Q^{2}]\leavevmode\nobreak\ G_{R\eta}(Q^{2},s)\
86FV(1+82αVmπ2MV2)3MVF3(sinδω(Q2)+13cosδsinθV)sinδω(Q2)\displaystyle-\frac{8\sqrt{6}F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})}{3M_{V}F^{3}}\left(-\sin\delta^{\omega}(Q^{2})+\frac{1}{\sqrt{3}}\cos\delta\sin\theta_{V}\right)\sin\delta^{\omega}(Q^{2})
×(2sinθP+cosθP)×BWR[η,ω,Q2]GRη(Q2,s),\displaystyle\times(-\sqrt{2}\sin\theta_{P}+\cos\theta_{P})\times BW_{R}[\eta,\omega,Q^{2}]\leavevmode\nobreak\ G_{R\eta}(Q^{2},s),
Fcη\displaystyle{F}_{c}^{\eta} =42GV3MVF3cosδ{3cosδ(cosθP2sinθP)+sinδρ(s)[2cosθVcosθP\displaystyle=-\frac{4\sqrt{2}G_{V}}{3M_{V}F^{3}}\cos\delta\{\sqrt{3}\cos\delta(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})+\sin\delta^{\rho}(s)\ [\;\sqrt{2}\cos\theta_{V}\cos\theta_{P}
sinθV(cosθP+2sinθP)]}BWR[η,ρ,s]CRη1(Q2,s,mη2)\displaystyle-\sin\theta_{V}(\cos\theta_{P}+\sqrt{2}\sin\theta_{P})\;]\;\}BW_{R}[\eta,\rho,s]\leavevmode\nobreak\ C_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
42GV9MVF3cosδ{4sinδρ(s)[2cos(θV+θP)2cosθPsinθV+cosθVsinθP]mK2+\displaystyle-\frac{4\sqrt{2}G_{V}}{9M_{V}F^{3}}\cos\delta\{4\sin\delta^{\rho}(s)[\sqrt{2}\cos(\theta_{V}+\theta_{P})-2\cos\theta_{P}\sin\theta_{V}+\cos\theta_{V}\sin\theta_{P}]m_{K}^{2}+
[33cosδ(cosθP2sinθP)sinδρ(s)(2cos(θV+θP)5cosθPsinθV\displaystyle[3\sqrt{3}\cos\delta(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})-\sin\delta^{\rho}(s)(\leavevmode\nobreak\ \sqrt{2}\cos(\theta_{V}+\theta_{P})-5\cos\theta_{P}\sin\theta_{V}
+4cosθVsinθP)]mπ2}BWR[η,ρ,s]CRη2\displaystyle+4\cos\theta_{V}\sin\theta_{P}\leavevmode\nobreak\ )]m_{\pi}^{2}\;\}\leavevmode\nobreak\ BW_{R}[\eta,\rho,s]\leavevmode\nobreak\ C_{R\eta 2}
+42GV3MVF3sinδω(s){3sinδω(s)(cosθP+2sinθP)+cosδ[2cosθVcosθP\displaystyle+\frac{4\sqrt{2}G_{V}}{3M_{V}F^{3}}\sin\delta^{\omega}(s)\{\sqrt{3}\sin\delta^{\omega}(s)(-\cos\theta_{P}+\sqrt{2}\sin\theta_{P})+\cos\delta[\sqrt{2}\cos\theta_{V}\cos\theta_{P}
sinθV(cosθP+2sinθP)]}BWR[η,ω,s]CRη1(Q2,s,mη2)\displaystyle-\sin\theta_{V}(\cos\theta_{P}+\sqrt{2}\sin\theta_{P})\;]\;\}\leavevmode\nobreak\ BW_{R}[\eta,\omega,s]\leavevmode\nobreak\ C_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
+42GV9MVF3sinδω(s){4cosδ[2cos(θV+θP)2cosθPsinθV+cosθVsinθP]mK2\displaystyle+\frac{4\sqrt{2}G_{V}}{9M_{V}F^{3}}\sin\delta^{\omega}(s)\{4\cos\delta[\sqrt{2}\cos(\theta_{V}+\theta_{P})-2\cos\theta_{P}\sin\theta_{V}+\cos\theta_{V}\sin\theta_{P}]m_{K}^{2}-
[33sinδω(s)(cosθP2sinθP)+cosδ(2cos(θV+θP)5cosθPsinθV\displaystyle[3\sqrt{3}\sin\delta^{\omega}(s)(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})+\cos\delta(\sqrt{2}\cos(\theta_{V}+\theta_{P})-5\cos\theta_{P}\sin\theta_{V}
+4cosθVsinθP)]mπ2}BWR[η,ω,s]CRη2,\displaystyle+4\cos\theta_{V}\sin\theta_{P})]m_{\pi}^{2}\}\leavevmode\nobreak\ BW_{R}[\eta,\omega,s]\leavevmode\nobreak\ C_{R\eta 2},
Fdη\displaystyle{F}_{d}^{\eta} =8FV(1+82αVmπ2MV2)GV6F3cosδ(cosδ+13sinδρ(Q2)sinθV)\displaystyle=\frac{8F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{\sqrt{6}F^{3}}\cos\delta\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\delta^{\rho}(Q^{2})\sin\theta_{V}\right)
{cos2δ(2cosθP2sinθP)+sinδρ(Q2)sinδρ(s)[cosθPsinθV(4cosθV\displaystyle\{\cos^{2}\delta(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})+\sin\delta^{\rho}(Q^{2})\sin\delta^{\rho}(s)[\cos\theta_{P}\sin\theta_{V}(4\cos\theta_{V}
2sinθV)2sinθP]}BWRR[η,ρ,ρ,Q2,s]DRη1(Q2,s,mη2)\displaystyle-\sqrt{2}\sin\theta_{V})-2\sin\theta_{P}]\}BW_{RR}[\eta,\rho,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
+2FV(1+82αVmπ2MV2)GV36F3cosδ(cosδ+13sinδρ(Q2)sinθV)\displaystyle+\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{6}F^{3}}\cos\delta\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\delta^{\rho}(Q^{2})\sin\theta_{V}\right)
×{8sinδρ(Q2)sinδρ(s)[cosθP(32+2cos2θV+4sin2θV)\displaystyle\times\bigg{\{}8\sin\delta^{\rho}(Q^{2})\sin\delta^{\rho}(s)[\cos\theta_{P}(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}+4\sin 2\theta_{V})
+(3+cos2θV+22sin2θV)×sinθP]mK2+[12cos2δ(2cosθP2sinθP)\displaystyle+(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})\times\sin\theta_{P}]m_{K}^{2}+[12\cos^{2}\delta(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})
+sinδρ(Q2)sinδρ(s)(92cos(2θVθP)+182cosθP\displaystyle+\sin\delta^{\rho}(Q^{2})\sin\delta^{\rho}(s)(-9\sqrt{2}\cos(2\theta_{V}-\theta_{P})+18\sqrt{2}\cos\theta_{P}
+72cos(2θV+θP)8sin(2θV+θP))]mπ2}BWRR[η,ρ,ρ,Q2,s]DRη2\displaystyle+7\sqrt{2}\cos(2\theta_{V}+\theta_{P})-8\sin(2\theta_{V}+\theta_{P}))]m_{\pi}^{2}\bigg{\}}BW_{RR}[\eta,\rho,\rho,Q^{2},s]D_{R\eta 2}
8FV(1+82αVmπ2MV2)GV6F3sinδω(s)(sinδω(Q2)+13cosδsinθV)\displaystyle-\frac{8F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{\sqrt{6}F^{3}}\sin\delta^{\omega}(s)\left(-\sin\delta^{\omega}(Q^{2})+\frac{1}{\sqrt{3}}\cos\delta\sin\theta_{V}\right)
×{cosθP[2sinδω(Q2)×sinδω(s)+cos2δsinθV(4cosθV2sinθV)]\displaystyle\times\bigg{\{}\cos\theta_{P}[\sqrt{2}\sin\delta^{\omega}(Q^{2})\times\sin\delta^{\omega}(s)+\cos^{2}\delta\sin\theta_{V}(4\cos\theta_{V}-\sqrt{2}\sin\theta_{V})]
2sinθP(cos2δ+sinδω(Q2)sinδω(s))}BWRR[η,ω,ω,Q2,s]DRη1(Q2,s,mη2)\displaystyle-2\sin\theta_{P}(\cos^{2}\delta+\sin\delta^{\omega}(Q^{2})\sin\delta^{\omega}(s))\bigg{\}}BW_{RR}[\eta,\omega,\omega,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
2FV(1+82αVmπ2MV2)GV36F3sinδω(s)×(sinδω(Q2)+13cosδsinθV)\displaystyle-\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{6}F^{3}}\sin\delta^{\omega}(s)\times\left(-\sin\delta^{\omega}(Q^{2})+\frac{1}{\sqrt{3}}\cos\delta\sin\theta_{V}\right)
×{8cos2δ[cosθP(32+2cos2θV+4sin2θV)+\displaystyle\times\bigg{\{}8\cos^{2}\delta[\cos\theta_{P}(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}+4\sin 2\theta_{V})+
(3+cos2θV+22sin2θV)sinθP]mK2\displaystyle(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}]m_{K}^{2}
+[12sinδω(Q2)sinδω(s)(2cosθP2sinθP)\displaystyle+[12\sin\delta^{\omega}(Q^{2})\sin\delta^{\omega}(s)(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})
+cos2δ(92cos(2θVθP)+182cosθP+72cos(2θV+θP)\displaystyle+\cos^{2}\delta(-9\sqrt{2}\cos(2\theta_{V}-\theta_{P})+18\sqrt{2}\cos\theta_{P}+7\sqrt{2}\cos(2\theta_{V}+\theta_{P})
8sin(2θV+θP))]mπ2}×BWRR[η,ω,ω,Q2,s]DRη2\displaystyle-8\sin(2\theta_{V}+\theta_{P}))\big{]}m_{\pi}^{2}\bigg{\}}\times BW_{RR}[\eta,\omega,\omega,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 2}
+2FV(1+82αVmπ2MV2)GV6F3cosδ(sinδω(Q2)+13cosδsinθV)\displaystyle+\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{\sqrt{6}F^{3}}\cos\delta\left(-\sin\delta^{\omega}(Q^{2})+\frac{1}{\sqrt{3}}\cos\delta\sin\theta_{V}\right)
×{(12cos2θVcosθpsinδρ(s)+12sin2θVcosθpsinδρ(s)\displaystyle\times\{(-\frac{1}{2}\cos^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(s)+\frac{1}{2}\sin^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(s)
22sinθVcosθVcosθPsinδρ(s)+2sinθPsinδρ(s)\displaystyle-2\sqrt{2}\sin\theta_{V}\cos\theta_{V}\cos\theta_{P}\sin\delta^{\rho}(s)+\sqrt{2}\sin\theta_{P}\sin\delta^{\rho}(s)
+12cosθPsinδρ(s)2sinθPsinδω(Q2)+cosθPsinδω(Q2))(42cosδ)}\displaystyle+\frac{1}{2}\cos\theta_{P}\sin\delta^{\rho}(s)-\sqrt{2}\sin\theta_{P}\sin\delta^{\omega}(Q^{2})+\cos\theta_{P}\sin\delta^{\omega}(Q^{2}))(-4\sqrt{2}\cos\delta)\}
×BWRR[η,ω,ρ,Q2,s]DRη1(Q2,s,mη2)+2FV(1+82αVmπ2MV2)GV36F3cosδ\displaystyle\times BW_{RR}[\eta,\omega,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})+\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{6}F^{3}}\cos\delta
×(sinδω(Q2)+13cosδsinθV)BWRR[η,ω,ρ,Q2,s]DRη2\displaystyle\times\left(-\sin\delta^{\omega}(Q^{2})+\frac{1}{\sqrt{3}}\cos\delta\sin\theta_{V}\right)BW_{RR}[\eta,\omega,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 2}
×{2cosδ[mπ2(sinδρ(s)(42sin(2θV+θP)+9cos(2θVθP)7cos(2θV+θP)\displaystyle\times\{-\sqrt{2}\cos\delta\ [m_{\pi}^{2}(\sin\delta^{\rho}(s)(4\sqrt{2}\sin(2\theta_{V}+\theta_{P})+9\cos(2\theta_{V}-\theta_{P})-7\cos(2\theta_{V}+\theta_{P})
18cosθP)+12sinδω(Q2)(cosθP2sinθP))4mK2sinδρ(s)\displaystyle-18\cos\theta_{P})+12\sin\delta^{\omega}(Q^{2})(\cos\theta_{P}-\sqrt{2}\sin\theta_{P}))-4m_{K}^{2}\sin\delta^{\rho}(s)
×(2cosθP(22sin2θV+cos2θV3)+sinθP(4sin2θV+2cos2θV32))]}\displaystyle\times(2\cos\theta_{P}(2\sqrt{2}\sin 2\theta_{V}+\cos 2\theta_{V}-3)+\sin\theta_{P}(4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2}))]\}
2FV(1+82αVmπ2MV2)GV6F3(cosδ+13sinδρ(Q2)sinθV)\displaystyle-\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{\sqrt{6}F^{3}}\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\delta^{\rho}(Q^{2})\sin\theta_{V}\right)
×BWRR[η,ρ,ω,Q2,s]DRη1(Q2,s,mη2)\displaystyle\times BW_{RR}[\eta,\rho,\omega,Q^{2},s]D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
×{42cosδsinδω(s)(cosθP(sinθVsinδρ(Q2)(sinθV22cosθV)\displaystyle\times\{-4\sqrt{2}\cos\delta\sin\delta^{\omega}(s)(\cos\theta_{P}(\sin\theta_{V}\sin\delta^{\rho}(Q^{2})(\sin\theta_{V}-2\sqrt{2}\cos\theta_{V})
+sinδω(s))+2sinθP(sinδρ(Q2)sinδω(s)))}\displaystyle+\sin\delta^{\omega}(s))+\sqrt{2}\sin\theta_{P}(\sin\delta^{\rho}(Q^{2})-\sin\delta^{\omega}(s)))\}
2FV(1+82αVmπ2MV2)GV36F3(cosδ+13sinδρ(Q2)sinθV)\displaystyle-\frac{2F_{V}(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{6}F^{3}}\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\delta^{\rho}(Q^{2})\sin\theta_{V}\right)
×{2cosδsinδω(s)[mπ2(sinδρ(Q2)(42sin(2θV+θP)+9cos(2θVθP)\displaystyle\times\{-\sqrt{2}\cos\delta\sin\delta^{\omega}(s)[m_{\pi}^{2}(\sin\delta^{\rho}(Q^{2})(4\sqrt{2}\sin(2\theta_{V}+\theta_{P})+9\cos(2\theta_{V}-\theta_{P})
7cos(2θV+θP)18cosθP)+12sinδω(s)(cosθP2sinθP))4mK2sinδρ(Q2)\displaystyle-7\cos(2\theta_{V}+\theta_{P})-18\cos\theta_{P})+12\sin\delta^{\omega}(s)(\cos\theta_{P}-\sqrt{2}\sin\theta_{P}))-4m_{K}^{2}\sin\delta^{\rho}(Q^{2})
×(2cosθP(22sin2θV+cos2θV3)+sinθP(4sin2θV+2cos2θV32))]}\displaystyle\times(2\cos\theta_{P}(2\sqrt{2}\sin 2\theta_{V}+\cos 2\theta_{V}-3)+\sin\theta_{P}(4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2}))]\}
×BWRR[η,ρ,ω,Q2,s]DRη24FV(1+82αV2mK2mπ2MV2)GV32F3cosδcosθV\displaystyle\times BW_{RR}[\eta,\rho,\omega,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 2}-\frac{4F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}{}^{2}-m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{2}F^{3}}\cos\delta\cos\theta_{V}
×cosθPsinδρ(s)(4cos2θV+2sin2θV)×BWRR[η,ϕ,ρ,Q2,s]DRη1(Q2,s,mη2)\displaystyle\times\cos\theta_{P}\sin\delta^{\rho}(s)\left(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V}\right)\times\leavevmode\nobreak\ BW_{RR}[\eta,\phi,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
+4FV(1+82αV2mK2mπ2MV2)GV92F3\displaystyle+\frac{4F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{9\sqrt{2}F^{3}}
×cosδcosθVsinδρ(s){4(22cos2θVsin2θV)sinθP(mK2mπ2)\displaystyle\times\cos\delta\cos\theta_{V}\sin\delta^{\rho}(s)\bigg{\{}4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})
+cosθP(4cos2θV2sin2θV)(4mK2mπ2)}BWRR[η,ϕ,ρ,Q2,s]DRη2\displaystyle+\cos\theta_{P}(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\leavevmode\nobreak\ \bigg{\}}\leavevmode\nobreak\ BW_{RR}[\eta,\phi,\rho,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 2}
+4FV(1+82αV2mK2mπ2MV2)GV32F3sinδω(s)cosθVcosδcosθP\displaystyle+\frac{4F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{3\sqrt{2}F^{3}}\sin\delta^{\omega}(s)\cos\theta_{V}\cos\delta\cos\theta_{P}
×(4cos2θV+2sin2θV)×BWRR[η,ϕ,ω,Q2,s]DRη1(Q2,s,mη2)\displaystyle\times(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\times BW_{RR}[\eta,\phi,\omega,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 1}(Q^{2},s,m_{\eta}^{2})
4FV(1+82αV2mK2mπ2MV2)GV92F3sinδω(s)cosθVcosδ\displaystyle-\frac{4F_{V}(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}{}^{2}-m_{\pi}^{2}}{M_{V}^{2}})G_{V}}{9\sqrt{2}F^{3}}\sin\delta^{\omega}(s)\cos\theta_{V}\cos\delta
×{4(22cos2θVsin2θV)sinθP(mK2mπ2)+cosθP\displaystyle\times\bigg{\{}4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})+\cos\theta_{P}
×(4cos2θV2sin2θV)(4mK2mπ2)}BWRR[η,ϕ,ω,Q2,s]DRη2.\displaystyle\times(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\bigg{\}}\leavevmode\nobreak\ BW_{RR}[\eta,\phi,\omega,Q^{2},s]\leavevmode\nobreak\ D_{R\eta 2}.

A.2 Decay widths involving vector resonances

A.2.1 Two-body decays

Γωππ\displaystyle\Gamma_{\omega\to\pi\pi} =GV2Mω348πF4sin2δω(Mω2)(14mπ2Mω2)3/2,\displaystyle=\frac{G_{V}^{2}\,M_{\omega}^{3}}{48\pi F^{4}}\sin^{2}\delta^{\omega}(M_{\omega}^{2})\left(1-\frac{4m_{\pi}^{2}}{M_{\omega}^{2}}\right)^{3/2},
Γρ+\displaystyle\Gamma_{\rho\to\ell^{+}\ell^{-}} =4α2πFV23Mρ(1+82αVmπ2MV2)2(cosδ+13sinθVsinδρ(Mρ2))2(1+2m2Mρ2)(14m2Mρ2)1/2,\displaystyle=\frac{4\,\alpha^{2}\,\pi\,F_{V}^{2}}{3\,M_{\rho}}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)^{2}\left(\cos\delta+\frac{1}{\sqrt{3}}\sin\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})\right)^{2}\left(1+\frac{2m_{\ell}^{2}}{M_{\rho}^{2}}\right)\left(1-\frac{4m_{\ell}^{2}}{M_{\rho}^{2}}\right)^{1/2}\ ,
Γω+\displaystyle\Gamma_{\omega\to\ell^{+}\ell^{-}} =4α2πFV227Mω(1+82αVmπ2MV2)2(3sinθVcosδ3sinδω(Mω2))2(1+2m2Mω2)(14m2Mω2)1/2,\displaystyle=\frac{4\,\alpha^{2}\,\pi\,F_{V}^{2}}{27\,M_{\omega}}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)^{2}(\sqrt{3}\sin\theta_{V}\cos\delta-3\sin\delta^{\omega}(M_{\omega}^{2}))^{2}\left(1+\frac{2m_{\ell}^{2}}{M_{\omega}^{2}}\right)\left(1-\frac{4m_{\ell}^{2}}{M_{\omega}^{2}}\right)^{1/2}\ ,
Fρ0π0γ\displaystyle F_{\rho^{0}\to\pi^{0}\gamma} =223MVFCRπ(0,Mρ2)(cosδ+6cosθVsinδρ(Mρ2)+3sinδρ(Mρ2)sinθV)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\pi}(0,M_{\rho}^{2})\left(\cos\delta+\sqrt{6}\cos\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})+\sqrt{3}\sin\delta^{\rho}(M_{\rho}^{2})\sin\theta_{V}\right)
4FV(1+82αVmπ2MV2)3Mρ2FDRπ(0,Mρ2)(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\pi}(0,M_{\rho}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
×[sinδρ(Mρ2)+sinδρ(0)]cosδ(2cosθV+sinθV)4FV(1+82αVmπ2MV2)3Mω2F\displaystyle\times[\sin\delta^{\rho}(M_{\rho}^{2})+\sin\delta^{\rho}(0)]\cos\delta(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}
×DRπ(0,Mρ2)(sinθVcosδ3sinδω(0))[cos2δsinδρ(Mρ2)sinδω(0)]\displaystyle\times D_{R\pi}(0,M_{\rho}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))[\cos^{2}\delta-\sin\delta^{\rho}(M_{\rho}^{2})\sin\delta^{\omega}(0)]
×(2cosθV+sinθV)\displaystyle\times(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})
4FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRπ(0,Mρ2)cosθVcosδ(cosθV2sinθV),\displaystyle-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\pi}(0,M_{\rho}^{2})\cos\theta_{V}\cos\delta(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\,,
Fρ±π±γ\displaystyle F_{\rho^{\pm}\to\pi^{\pm}\gamma} =223MVFCRπ(0,Mρ2)4FV(1+82αVmπ2MV2)3Mρ2FDRπ(0,Mρ2)sinδρ(0)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\pi}(0,M_{\rho}^{2})-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\pi}(0,M_{\rho}^{2})\sin\delta^{\rho}(0)
×(2cosθV+sinθV)(sinθVsinδρ(0)+3cosδ)4FV(1+82αVmπ2MV2)3Mω2F\displaystyle\times(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}
×DRπ(0,Mρ2)cosδ(2cosθV+sinθV)(sinθVcosδ3sinδω(0))\displaystyle\times D_{R\pi}(0,M_{\rho}^{2})\cos\delta(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
4FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRπ(0,Mρ2)cosθV(cosθV2sinθV),\displaystyle-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\pi}(0,M_{\rho}^{2})\cos\theta_{V}(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\,,
Fϕπ0γ\displaystyle F_{\phi\to\pi^{0}\gamma} =263MVFCRπ(0,Mϕ2)(cosθV2sinθV)4FV(1+82αVmπ2MV2)3Mρ2FDRπ(0,Mϕ2)\displaystyle=\frac{2\sqrt{6}}{3M_{V}F}C_{R\pi}(0,M_{\phi}^{2})(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\pi}(0,M_{\phi}^{2})
×(sinθVsinδρ(0)+3cosδ)cosδ(cosθV2sinθV)4FV(1+82αVmπ2MV2)3Mω2F\displaystyle\times(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)\cos\delta(\cos\theta_{V}-\sqrt{2}\sin\theta_{V})-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}
×DRπ(0,Mϕ2)(sinθVcosδ3sinδω(0))sinδω(0)(cosθV+2sinθV),\displaystyle\times D_{R\pi}(0,M_{\phi}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))\sin\delta^{\omega}(0)(-\cos\theta_{V}+\sqrt{2}\sin\theta_{V})\,,
Fωπ0γ\displaystyle F_{\omega\to\pi^{0}\gamma} =223MVFCRπ(0,Mω2)(3cosδ(2cosθV+sinθV)sinδω(Mω2))4FV(1+82αVmπ2MV2)3Mρ2F\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\pi}(0,M_{\omega}^{2})\left(\sqrt{3}\cos\delta(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})-\sin\delta^{\omega}(M_{\omega}^{2})\right)-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}
×DRπ(0,Mω2)(sinθVsinδρ(0)+3cosδ)(cos2δsinδρ(0)sinδω(Mω2))(2cosθV+sinθV)\displaystyle\times D_{R\pi}(0,M_{\omega}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)(\cos^{2}\delta-\sin\delta^{\rho}(0)\sin\delta^{\omega}(M_{\omega}^{2}))(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})
+4FV(1+82αVmπ2MV2)3Mω2FDRπ(0,Mω2)(sinθVcosδ3sinδρ(0))(sinδω(Mω2)+sinδω(0))\displaystyle+\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}D_{R\pi}(0,M_{\omega}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\rho}(0))(\sin\delta^{\omega}(M_{\omega}^{2})+\sin\delta^{\omega}(0))
×cosδ(2cosθV+sinθV)\displaystyle\times\cos\delta(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})
4FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRπ(0,Mω2)cosθVsinδω(Mω2)(cosθV+2sinθV),\displaystyle-\frac{4F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\pi}(0,M_{\omega}^{2})\cos\theta_{V}\sin\delta^{\omega}(M_{\omega}^{2})(-\cos\theta_{V}+\sqrt{2}\sin\theta_{V})\,,
Fωηγ\displaystyle F_{\omega\to\eta\gamma} =223MVFCRη1(0,Mω2,mη2)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\omega}^{2},m_{\eta}^{2})
{3sinδω(Mω2)(cosθP+2sinθP)+cosδ[2cosθVcosθPsinθV(cosθP+2sinθP)]}\displaystyle\left\{\sqrt{3}\sin\delta^{\omega}(M_{\omega}^{2})(-\cos\theta_{P}+\sqrt{2}\sin\theta_{P})+\cos\delta[\sqrt{2}\cos\theta_{V}\cos\theta_{P}-\sin\theta_{V}(\cos\theta_{P}+\sqrt{2}\sin\theta_{P})]\right\}
+229MVFCRη2{4cosδ(2cos(θV+θP)2cosθPsinθV+cosθVsinθP)mK2\displaystyle+\frac{2\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{4\cos\delta\left(\sqrt{2}\cos(\theta_{V}+\theta_{P})-2\cos\theta_{P}\sin\theta_{V}+\cos\theta_{V}\sin\theta_{P}\right)m_{K}^{2}\right.
(33sinδω(Mω2)(cosθP2sinθP)\displaystyle-\left(3\sqrt{3}\sin\delta^{\omega}(M_{\omega}^{2})(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})\right.
+cosδ[2cos(θV+θP)5cosθPsinθV+4cosθVsinθP])mπ2}\displaystyle\left.\left.+\cos\delta[\sqrt{2}\cos(\theta_{V}+\theta_{P})-5\cos\theta_{P}\sin\theta_{V}+4\cos\theta_{V}\sin\theta_{P}]\right)m_{\pi}^{2}\right\}
FV(1+82αVmπ2MV2)32Mρ2FDRη1(0,Mω2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3\sqrt{2}M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
×{(42cosδ)(12cos2θVcosθpsinδρ(0)+12sin2θVcosθpsinδρ(0)\displaystyle\times\{(-4\sqrt{2}\cos\delta)(-\frac{1}{2}\cos^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(0)+\frac{1}{2}\sin^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(0)
22sinθVcosθVcosθPsinδρ(0)+2sinθPsinδρ(0)+12cosθPsinδρ(0)\displaystyle-2\sqrt{2}\sin\theta_{V}\cos\theta_{V}\cos\theta_{P}\sin\delta^{\rho}(0)+\sqrt{2}\sin\theta_{P}\sin\delta^{\rho}(0)+\frac{1}{2}\cos\theta_{P}\sin\delta^{\rho}(0)
2sinθPsinδω(Mω2)+cosθPsinδω(Mω2))}\displaystyle-\sqrt{2}\sin\theta_{P}\sin\delta^{\omega}(M_{\omega}^{2})+\cos\theta_{P}\sin\delta^{\omega}(M_{\omega}^{2}))\}
FV(1+82αVmπ2MV2)92Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9\sqrt{2}M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
×{2cosδ[mπ2(sinδρ(0)(42sin(2θV+θP)+9cos(2θVθP)7cos(2θV+θP)18cosθP)\displaystyle\times\{-\sqrt{2}\cos\delta\ [m_{\pi}^{2}(\sin\delta^{\rho}(0)(4\sqrt{2}\sin(2\theta_{V}+\theta_{P})+9\cos(2\theta_{V}-\theta_{P})-7\cos(2\theta_{V}+\theta_{P})-18\cos\theta_{P})
+12sinδω(Mω2)(cosθP2sinθP))\displaystyle+12\sin\delta^{\omega}(M_{\omega}^{2})(\cos\theta_{P}-\sqrt{2}\sin\theta_{P}))
4mK2sinδρ(0)(2cosθP(22sin2θV+cos2θV3)+sinθP(4sin2θV+2cos2θV32))]}\displaystyle-4m_{K}^{2}\sin\delta^{\rho}(0)(2\cos\theta_{P}(2\sqrt{2}\sin 2\theta_{V}+\cos 2\theta_{V}-3)+\sin\theta_{P}(4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2}))]\}
22FV(1+82αVmπ2MV2)3Mω2FDRη1(0,Mω2,mη2)(sinθVcosδ3sinδω(0))\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
{cosθP[2sinδω(0)sinδω(Mω2)+cos2δsinθV(4cosθV2sinθV)]2[sinδω(0)sinδω(Mω2)\displaystyle\{\cos\theta_{P}[\sqrt{2}\sin\delta^{\omega}(0)\sin\delta^{\omega}(M_{\omega}^{2})+\cos^{2}\delta\sin\theta_{V}(4\cos\theta_{V}-\sqrt{2}\sin\theta_{V})]-2[\sin\delta^{\omega}(0)\sin\delta^{\omega}(M_{\omega}^{2})
+cos2δ]sinθP}FV(1+82αVmπ2MV2)92Mω2FDRη2(sinθVcosδ3sinδω(0))\displaystyle+\cos^{2}\delta]\sin\theta_{P}\}-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9\sqrt{2}M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
{8cos2δ(cosθP(32+2cos2θV+4sin2θV)\displaystyle\left\{8\cos^{2}\delta\left(\cos\theta_{P}(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}+4\sin 2\theta_{V})\right.\right.
+(3+cos2θV+22sin2θV)sinθP)mK2+(12sinδω(0)sinδω(Mω2)(2cosθP2sinθP)\displaystyle\left.\left.+(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right)m_{K}^{2}\right.+\left(12\sin\delta^{\omega}(0)\sin\delta^{\omega}(M_{\omega}^{2})(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})\right.
+cos2δ[92cos(2θVθP)+182cosθP\displaystyle\left.+\cos^{2}\delta[-9\sqrt{2}\cos(2\theta_{V}-\theta_{P})+18\sqrt{2}\cos\theta_{P}\right.
+72cos(2θV+θP)8sin(2θV+θP)])mπ2}\displaystyle\left.\left.+7\sqrt{2}\cos(2\theta_{V}+\theta_{P})-8\sin(2\theta_{V}+\theta_{P})]\right)m_{\pi}^{2}\right\}
+2FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mω2,mη2)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta}^{2})
{cosθVcosδcosθP(4cos2θV+2sin2θV)}\displaystyle\left\{\cos\theta_{V}\cos\delta\cos\theta_{P}(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\right\}
2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθVcosδ\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}\cos\delta
{4(22cos2θVsin2θV)sinθP(mK2mπ2)\displaystyle\left\{4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})\right.
+cosθP(4cos2θV2sin2θV)(4mK2mπ2)},\displaystyle\left.+\cos\theta_{P}(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\right\}\,,
Fρ0ηγ\displaystyle F_{\rho^{0}\to\eta\gamma} =223MVFCRη1(0,Mρ2,mη2){3cosδ(cosθP2sinθP)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\rho}^{2},m_{\eta}^{2})\left\{\sqrt{3}\cos\delta(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})\right.
+sinδρ(Mρ2)[2cosθVcosθPsinθV(cosθP+2sinθP)]}\displaystyle\left.+\sin\delta^{\rho}(M_{\rho}^{2})[\sqrt{2}\cos\theta_{V}\cos\theta_{P}-\sin\theta_{V}(\cos\theta_{P}+\sqrt{2}\sin\theta_{P})]\right\}
+229MVFCRη2{4sinδρ(Mρ2)(2cos(θV+θP)2cosθPsinθV+cosθVsinθP)mK2\displaystyle+\frac{2\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{4\sin\delta^{\rho}(M_{\rho}^{2})\left(\sqrt{2}\cos(\theta_{V}+\theta_{P})-2\cos\theta_{P}\sin\theta_{V}+\cos\theta_{V}\sin\theta_{P}\right)m_{K}^{2}\right.
+(33cosδ(cosθP2sinθP)\displaystyle+\left(3\sqrt{3}\cos\delta(\cos\theta_{P}-\sqrt{2}\sin\theta_{P})\right.
sinδρ(Mρ2)[2cos(θV+θP)5cosθPsinθV+4cosθVsinθP])mπ2}\displaystyle\left.\left.-\sin\delta^{\rho}(M_{\rho}^{2})[\sqrt{2}\cos(\theta_{V}+\theta_{P})-5\cos\theta_{P}\sin\theta_{V}+4\cos\theta_{V}\sin\theta_{P}]\right)m_{\pi}^{2}\right\}
22FV(1+82αVmπ2MV2)3Mρ2FDRη1(0,Mρ2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
{cos2δ(2cosθP2sinθP)+sinδρ(Mρ2)sinδρ(0)[cosθPsinθV(4cosθV2sinθV)2sinθP]}\displaystyle\left\{\cos^{2}\delta(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})+\sin\delta^{\rho}(M_{\rho}^{2})\sin\delta^{\rho}(0)[\cos\theta_{P}\sin\theta_{V}(4\cos\theta_{V}-\sqrt{2}\sin\theta_{V})-2\sin\theta_{P}]\right\}
FV(1+82αVmπ2MV2)92Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9\sqrt{2}M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
{8sinδρ(Mρ2)sinδρ(0)(cosθP(32+2cos2θV+4sin2θV)\displaystyle\left\{8\sin\delta^{\rho}(M_{\rho}^{2})\sin\delta^{\rho}(0)\left(\cos\theta_{P}(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}+4\sin 2\theta_{V})\right.\right.
+(3+cos2θV+22sin2θV)sinθP)mK2+(12cos2δ(2cosθP2sinθP)\displaystyle\left.+(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right)m_{K}^{2}+\left(12\cos^{2}\delta(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})\right.
+sinδρ(Mρ2)sinδρ(0)[92cos(2θVθP)+182cosθP\displaystyle\left.+\sin\delta^{\rho}(M_{\rho}^{2})\sin\delta^{\rho}(0)[-9\sqrt{2}\cos(2\theta_{V}-\theta_{P})+18\sqrt{2}\cos\theta_{P}\right.
+72cos(2θV+θP)8sin(2θV+θP)])mπ2}\displaystyle\left.\left.+7\sqrt{2}\cos(2\theta_{V}+\theta_{P})-8\sin(2\theta_{V}+\theta_{P})]\right)m_{\pi}^{2}\right\}
FV(1+82αVmπ2MV2)32Mω2FDRη1(0,Mρ2,mη2)(sinθVcosδ3sinδω(0))\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3\sqrt{2}M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
×{(42cosδ)(12cos2θVcosθpsinδρ(Mρ2)+12sin2θVcosθpsinδρ(Mρ2)\displaystyle\times\{(-4\sqrt{2}\cos\delta)(-\frac{1}{2}\cos^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(M_{\rho}^{2})+\frac{1}{2}\sin^{2}\theta_{V}\cos\theta_{p}\sin\delta^{\rho}(M_{\rho}^{2})
22sinθVcosθVcosθPsinδρ(Mρ2)+2sinθPsinδρ(Mρ2)+12cosθPsinδρ(Mρ2)\displaystyle-2\sqrt{2}\sin\theta_{V}\cos\theta_{V}\cos\theta_{P}\sin\delta^{\rho}(M_{\rho}^{2})+\sqrt{2}\sin\theta_{P}\sin\delta^{\rho}(M_{\rho}^{2})+\frac{1}{2}\cos\theta_{P}\sin\delta^{\rho}(M_{\rho}^{2})
2sinθPsinδω(0)+cosθPsinδω(0))}\displaystyle-\sqrt{2}\sin\theta_{P}\sin\delta^{\omega}(0)+\cos\theta_{P}\sin\delta^{\omega}(0))\}
FV(1+82αVmπ2MV2)92Mω2FDRη2(sinθVcosδ3sinδω(0))\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9\sqrt{2}M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
×{2cosδ[mπ2(sinδρ(Mρ2)(42sin(2θV+θP)+9cos(2θVθP)7cos(2θV+θP)\displaystyle\times\left\{-\sqrt{2}\cos\delta\ [m_{\pi}^{2}(\sin\delta^{\rho}(M_{\rho}^{2})(4\sqrt{2}\sin(2\theta_{V}+\theta_{P})+9\cos(2\theta_{V}-\theta_{P})-7\cos(2\theta_{V}+\theta_{P})\right.
18cosθP)+12sinδω(0)(cosθP2sinθP))4mK2sinδρ(Mρ2)(2cosθP(22sin2θV\displaystyle-18\cos\theta_{P})+12\sin\delta^{\omega}(0)(\cos\theta_{P}-\sqrt{2}\sin\theta_{P}))-4m_{K}^{2}\sin\delta^{\rho}(M_{\rho}^{2})(2\cos\theta_{P}(2\sqrt{2}\sin 2\theta_{V}
+cos2θV3)+sinθP(4sin2θV+2cos2θV32))]}\displaystyle\left.+\cos 2\theta_{V}-3)+\sin\theta_{P}(4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2}))]\right\}
+2FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mρ2,mη2)cosθVcosθPsinδρ(Mρ2)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta}^{2})\cos\theta_{V}\cos\theta_{P}\sin\delta^{\rho}(M_{\rho}^{2})
×(4cos2θV+2sin2θV)2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθVsinδρ(Mρ2)\displaystyle\times(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})
{4(22cos2θVsin2θV)sinθP(mK2mπ2)\displaystyle\left\{4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})\right.
+cosθP(4cos2θV2sin2θV)(4mK2mπ2)},\displaystyle\left.+\cos\theta_{P}(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\right\}\,,
Fϕηγ\displaystyle F_{\phi\to\eta\gamma} =223MVFCRη1(0,Mϕ2,mη2){2cosθPsinθVcosθV(cosθP+2sinθP)}\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\phi}^{2},m_{\eta}^{2})\left\{-\sqrt{2}\cos\theta_{P}\sin\theta_{V}-\cos\theta_{V}(\cos\theta_{P}+\sqrt{2}\sin\theta_{P})\right\}
+29MVFCRη2{4(3cos(θVθP)+cos(θV+θP)+22sin(θV+θP))mK2\displaystyle+\frac{\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{-4\left(3\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})\right)m_{K}^{2}\right.
+(9cos(θVθP)+cos(θV+θP)+22sin(θV+θP))mπ2}\displaystyle\left.+\left(9\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})\right)m_{\pi}^{2}\right\}
+2FV(1+82αVmπ2MV2)3Mρ2FDRη1(0,Mϕ2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
cosθPsinδρ(0)(4cos2θV+2sin2θV)\displaystyle\cos\theta_{P}\sin\delta^{\rho}(0)(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})
2FV(1+82αVmπ2MV2)9Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)sinδρ(0)\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)\sin\delta^{\rho}(0)
{4(22cos2θVsin2θV)sinθP(mK2mπ2)\displaystyle\left\{4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})\right.
+cosθP(4cos2θV2sin2θV)(4mK2mπ2)}\displaystyle\left.+\cos\theta_{P}(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\right\}
+2FV(1+82αVmπ2MV2)3Mω2FDRη1(0,Mϕ2,mη2)(sinθVcosδ3sinδω(0))\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
cosδcosθP(4cos2θV+2sin2θV)\displaystyle\cos\delta\cos\theta_{P}(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})
2FV(1+82αVmπ2MV2)9Mω2FDRη2(sinθVcosδ3sinδω(0))cosδ\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))\cos\delta
{4(22cos2θVsin2θV)sinθP(mK2mπ2)\displaystyle\left\{4(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})\sin\theta_{P}(m_{K}^{2}-m_{\pi}^{2})\right.
+cosθP(4cos2θV2sin2θV)(4mK2mπ2)}\displaystyle\left.+\cos\theta_{P}(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})(4m_{K}^{2}-m_{\pi}^{2})\right\}
22FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mϕ2,mη2)cosθV\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta}^{2})\cos\theta_{V}
{cosθVcosθP(2cosθV+4sinθV)2sinθP}\displaystyle\left\{-\cos\theta_{V}\cos\theta_{P}(\sqrt{2}\cos\theta_{V}+4\sin\theta_{V})-2\sin\theta_{P}\right\}
2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθV\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}
{(2cosθV2sinθV)2(2cosθP2sinθP)mπ2\displaystyle\left\{(\sqrt{2}\cos\theta_{V}-2\sin\theta_{V})^{2}(\sqrt{2}\cos\theta_{P}-2\sin\theta_{P})m_{\pi}^{2}\right.
4(2cosθV+sinθV)2(2cosθP+sinθP)(2mK2mπ2)},\displaystyle\left.-4(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})^{2}(\sqrt{2}\cos\theta_{P}+\sin\theta_{P})(2m_{K}^{2}-m_{\pi}^{2})\right\}\,,
Fηωγ\displaystyle F_{\eta^{\prime}\to\omega\gamma} =223MVFCRη1(0,Mω2,mη2){cosδsinθV(2cosθPsinθP)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\omega}^{2},m_{\eta^{\prime}}^{2})\left\{\cos\delta\sin\theta_{V}(\sqrt{2}\cos\theta_{P}-\sin\theta_{P})\right.
+2cosδcosθVsinθP3sinδω(Mω2)(2cosθP+sinθP)}\displaystyle\left.+\sqrt{2}\cos\delta\cos\theta_{V}\sin\theta_{P}-\sqrt{3}\sin\delta^{\omega}(M_{\omega}^{2})(\sqrt{2}\cos\theta_{P}+\sin\theta_{P})\right\}
+29MVFCRη2{4cosδ(3cos(θVθP)+cos(θV+θP)+22sin(θV+θP))mK2\displaystyle+\frac{\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{4\cos\delta\left(-3\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})\right)m_{K}^{2}\right.
+(63sinδω(Mω2)(2cosθP+sinθP)\displaystyle+\left(-6\sqrt{3}\sin\delta^{\omega}(M_{\omega}^{2})(\sqrt{2}\cos\theta_{P}+\sin\theta_{P})\right.
cosδ[9cos(θVθP)+cos(θV+θP)+22sin(θV+θP)])mπ2}\displaystyle\left.\left.-\cos\delta[-9\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})]\right)m_{\pi}^{2}\right\}
FV(1+82αVmπ2MV2)32Mρ2FDRη1(0,Mω2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3\sqrt{2}M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
×{(42cosδ){sinθP[sinθVsinδρ(0)(sinθV22cosθV)\displaystyle\times\{(-4\sqrt{2}\cos\delta)\{\sin\theta_{P}[\sin\theta_{V}\sin\delta^{\rho}(0)(\sin\theta_{V}-2\sqrt{2}\cos\theta_{V})
+sinδω(Mω2)]+2cosθP(sinδω(Mω2)sinδρ(0))}}\displaystyle+\sin\delta^{\omega}(M_{\omega}^{2})]+\sqrt{2}\cos\theta_{P}(\sin\delta^{\omega}(M_{\omega}^{2})-\sin\delta^{\rho}(0))\}\}
FV(1+82αVmπ2MV2)92Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9\sqrt{2}M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
×{(22cosδ){sinδρ(0)[2mK2(cosθP(4sin2θV+2cos2θV32)\displaystyle\times\{(-2\sqrt{2}\cos\delta)\{\sin\delta^{\rho}(0)[2m_{K}^{2}\ (\cos\theta_{P}\ (4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2})
2sinθP(22sin2θV+cos2θV3))+mπ2(22cos(2θV+θP)8sin2θVcosθP\displaystyle-2\sin\theta_{P}(2\sqrt{2}\sin 2\theta_{V}+\cos 2\theta_{V}-3))+m_{\pi}^{2}\ (-2\sqrt{2}\cos(2\theta_{V}+\theta_{P})-8\sin 2\theta_{V}\cos\theta_{P}
+(cos2θV9)sinθP)]+6mπ2sinδω(Mω2)(sinθP+2cosθP)}}\displaystyle\left.+(\cos 2\theta_{V}-9)\sin\theta_{P})]+6m_{\pi}^{2}\sin\delta^{\omega}(M_{\omega}^{2})(\sin\theta_{P}+\sqrt{2}\cos\theta_{P})\right\}\}
22FV(1+82αVmπ2MV2)3Mω2FDRη1(0,Mω2,mη2)(sinθVcosδ3sinδω(0)){sinδω(Mω2)\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))\{\sin\delta^{\omega}(M_{\omega}^{2})
×sinδω(0)(2cosθP+2sinθP)+cos2δ[2cosθP+sinθV(4cosθV2sinθV)sinθP]}\displaystyle\times\sin\delta^{\omega}(0)(2\cos\theta_{P}+\sqrt{2}\sin\theta_{P})+\cos^{2}\delta[2\cos\theta_{P}+\sin\theta_{V}(4\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\sin\theta_{P}]\}
2FV(1+82αVmπ2MV2)9Mω2FDRη2(sinθVcosδ3sinδω(0))\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
{4cos2δ(cosθP(3+cos2θV+22sin2θV)(32+2cos2θV\displaystyle\left\{-4\cos^{2}\delta\left(\cos\theta_{P}(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})-(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}\right.\right.
+4sin2θV)sinθP)mK2+(6sinδω(Mω2)sinδω(0)(2cosθP+2sinθP)\displaystyle\left.+4\sin 2\theta_{V})\sin\theta_{P}\right)m_{K}^{2}+\left(6\sin\delta^{\omega}(M_{\omega}^{2})\sin\delta^{\omega}(0)(2\cos\theta_{P}+\sqrt{2}\sin\theta_{P})\right.
+cos2δ(4cos(2θV+θP)+2[8cosθPsin2θV(9+cos2θV)sinθP]))mπ2}\displaystyle\left.\left.+\cos^{2}\delta\left(4\cos(2\theta_{V}+\theta_{P})+\sqrt{2}[8\cos\theta_{P}\sin 2\theta_{V}-(-9+\cos 2\theta_{V})\sin\theta_{P}]\right)\right)m_{\pi}^{2}\right\}
+2FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mω2,mη2)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\omega}^{2},m_{\eta^{\prime}}^{2})
{cosθVcosδ(4cos2θV+2sin2θV)sinθP}\displaystyle\left\{\cos\theta_{V}\cos\delta(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right\}
2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθVcosδ\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}\cos\delta
{4cosθP(22cos2θVsin2θV)(mK2mπ2)\displaystyle\left\{-4\cos\theta_{P}(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})(m_{K}^{2}-m_{\pi}^{2})\right.
+(4cos2θV2sin2θV)sinθP(4mK2mπ2)},\displaystyle\left.+(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}(4m_{K}^{2}-m_{\pi}^{2})\right\}\,,
Fηργ\displaystyle F_{\eta^{\prime}\to\rho\gamma} =223MVFCRη1(0,Mρ2,mη2){3cosδ(2cosθP+sinθP)\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\rho}^{2},m_{\eta^{\prime}}^{2})\left\{\sqrt{3}\cos\delta(\sqrt{2}\cos\theta_{P}+\sin\theta_{P})\right.
+sinδρ(Mρ2)[2cosθPsinθV+(2cosθVsinθV)sinθP]}\displaystyle\left.+\sin\delta^{\rho}(M_{\rho}^{2})[\sqrt{2}\cos\theta_{P}\sin\theta_{V}+(\sqrt{2}\cos\theta_{V}-\sin\theta_{V})\sin\theta_{P}]\right\}
+29MVFCRη2{4sinδρ(Mρ2)(3cos(θVθP)+cos(θV+θP)+22sin(θV+θP))mK2\displaystyle+\frac{\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{4\sin\delta^{\rho}(M_{\rho}^{2})\left(-3\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})\right)m_{K}^{2}\right.
+(63cosδ(2cosθP+sinθP)\displaystyle+\left(6\sqrt{3}\cos\delta(\sqrt{2}\cos\theta_{P}+\sin\theta_{P})\right.
sinδρ(Mρ2)[9cos(θVθP)+cos(θV+θP)+22sin(θV+θP)])mπ2}\displaystyle\left.\left.-\sin\delta^{\rho}(M_{\rho}^{2})[-9\cos(\theta_{V}-\theta_{P})+\cos(\theta_{V}+\theta_{P})+2\sqrt{2}\sin(\theta_{V}+\theta_{P})]\right)m_{\pi}^{2}\right\}
22FV(1+82αVmπ2MV2)3Mρ2FDRη1(0,Mρ2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
{cos2δ(2cosθP+2sinθP)+sinδρ(0)sinδρ(Mρ2)[2cosθP+sinθV(4cosθV2sinθV)sinθP]}\displaystyle\left\{\cos^{2}\delta(2\cos\theta_{P}+\sqrt{2}\sin\theta_{P})+\sin\delta^{\rho}(0)\sin\delta^{\rho}(M_{\rho}^{2})[2\cos\theta_{P}+\sin\theta_{V}(4\cos\theta_{V}-\sqrt{2}\sin\theta_{V})\sin\theta_{P}]\right\}
2FV(1+82αVmπ2MV2)9Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
{4sinδρ(0)sinδρ(Mρ2)(cosθP(3+cos2θV+22sin2θV)\displaystyle\left\{-4\sin\delta^{\rho}(0)\sin\delta^{\rho}(M_{\rho}^{2})\left(\cos\theta_{P}(-3+\cos 2\theta_{V}+2\sqrt{2}\sin 2\theta_{V})\right.\right.
(32+2cos2θV+4sin2θV)sinθP)mK2+(6cos2δ(2cosθP+2sinθP)\displaystyle\left.-(-3\sqrt{2}+\sqrt{2}\cos 2\theta_{V}+4\sin 2\theta_{V})\sin\theta_{P}\right)m_{K}^{2}+\left(6\cos^{2}\delta(2\cos\theta_{P}+\sqrt{2}\sin\theta_{P})\right.
+sinδρ(0)sinδρ(Mρ2)(4cos(2θV+θP)+2[8cosθPsin2θV(9+cos2θV)sinθP]))mπ2}\displaystyle\left.\left.+\sin\delta^{\rho}(0)\sin\delta^{\rho}(M_{\rho}^{2})\left(4\cos(2\theta_{V}+\theta_{P})+\sqrt{2}[8\cos\theta_{P}\sin 2\theta_{V}-(-9+\cos 2\theta_{V})\sin\theta_{P}]\right)\right)m_{\pi}^{2}\right\}
2FV(1+82αVmπ2MV2)6Mω2FDRη1(0,Mρ2,mη2)(sinθVcosδ3sinδω(0))\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{6M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
×{(42cosδ){sinθP[sinθVsinδρ(Mρ2)(sinθV22cosθV)\displaystyle\times\{(-4\sqrt{2}\cos\delta)\{\sin\theta_{P}[\sin\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})(\sin\theta_{V}-2\sqrt{2}\cos\theta_{V})
+sinδω(0)]+2cosθP(sinδω(0)sinδρ(Mρ2))}}\displaystyle+\sin\delta^{\omega}(0)]+\sqrt{2}\cos\theta_{P}(\sin\delta^{\omega}(0)-\sin\delta^{\rho}(M_{\rho}^{2}))\}\}
2FV(1+82αVmπ2MV2)18Mω2FDRη2(sinθVcosδ3sinδω(0))\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{18M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
×{(22cosδ){sinδρ(Mρ2)[2mK2(cosθP(4sin2θV+2cos2θV32)\displaystyle\times\{(-2\sqrt{2}\cos\delta)\{\sin\delta^{\rho}(M_{\rho}^{2})[2m_{K}^{2}\ (\cos\theta_{P}\ (4\sin 2\theta_{V}+\sqrt{2}\cos 2\theta_{V}-3\sqrt{2})
2sinθP(22sin2θV+cos2θV3))+mπ2(22cos(2θV+θP)8sin2θVcosθP\displaystyle-2\sin\theta_{P}(2\sqrt{2}\sin 2\theta_{V}+\cos 2\theta_{V}-3))+m_{\pi}^{2}\ (-2\sqrt{2}\cos(2\theta_{V}+\theta_{P})-8\sin 2\theta_{V}\cos\theta_{P}
+(cos2θV9)sinθP)]+6mπ2sinδω(0)(sinθP+2cosθP)}}\displaystyle\left.+(\cos 2\theta_{V}-9)\sin\theta_{P})]+6m_{\pi}^{2}\sin\delta^{\omega}(0)(\sin\theta_{P}+\sqrt{2}\cos\theta_{P})\right\}\}
+2FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mρ2,mη2)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\rho}^{2},m_{\eta^{\prime}}^{2})
{cosθVsinδρ(Mρ2)(4cos2θV+2sin2θV)sinθP}\displaystyle\left\{\cos\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right\}
2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθVsinδρ(Mρ2)\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}\sin\delta^{\rho}(M_{\rho}^{2})
{4cosθP(22cos2θVsin2θV)(mK2mπ2)\displaystyle\left\{-4\cos\theta_{P}(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})(m_{K}^{2}-m_{\pi}^{2})\right.
+(4cos2θV2sin2θV)sinθP(4mK2mπ2)},\displaystyle\left.+(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}(4m_{K}^{2}-m_{\pi}^{2})\right\}\,,
Fϕηγ\displaystyle F_{\phi\to\eta^{\prime}\gamma} =223MVFCRη1(0,Mϕ2,mη2){2cos(θV+θP)cosθVsinθP}\displaystyle=\frac{2\sqrt{2}}{3M_{V}F}C_{R\eta 1}(0,M_{\phi}^{2},m_{\eta^{\prime}}^{2})\left\{\sqrt{2}\cos(\theta_{V}+\theta_{P})-\cos\theta_{V}\sin\theta_{P}\right\}
+29MVFCRη2{8(2cos(θV+θP)+cosθPsinθV2cosθVsinθP)mK2\displaystyle+\frac{\sqrt{2}}{9M_{V}F}C_{R\eta 2}\left\{8\left(\sqrt{2}\cos(\theta_{V}+\theta_{P})+\cos\theta_{P}\sin\theta_{V}-2\cos\theta_{V}\sin\theta_{P}\right)m_{K}^{2}\right.
+(22cos(θV+θP)9sin(θVθP)+sin(θV+θP))mπ2}\displaystyle\left.+\left(-2\sqrt{2}\cos(\theta_{V}+\theta_{P})-9\sin(\theta_{V}-\theta_{P})+\sin(\theta_{V}+\theta_{P})\right)m_{\pi}^{2}\right\}
+2FV(1+82αVmπ2MV2)3Mρ2FDRη1(0,Mϕ2,mη2)(sinθVsinδρ(0)+3cosδ)\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\rho}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)
{sinδρ(0)(4cos2θV+2sin2θV)sinθP}\displaystyle\left\{\sin\delta^{\rho}(0)(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right\}
2FV(1+82αVmπ2MV2)9Mρ2FDRη2(sinθVsinδρ(0)+3cosδ)sinδρ(0)\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\rho}^{2}F}D_{R\eta 2}(\sin\theta_{V}\sin\delta^{\rho}(0)+\sqrt{3}\cos\delta)\sin\delta^{\rho}(0)
{4cosθP(22cos2θVsin2θV)(mK2mπ2)\displaystyle\left\{-4\cos\theta_{P}(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})(m_{K}^{2}-m_{\pi}^{2})\right.
+(4cos2θV2sin2θV)sinθP(4mK2mπ2)}\displaystyle\left.+(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}(4m_{K}^{2}-m_{\pi}^{2})\right\}
+2FV(1+82αVmπ2MV2)3Mω2FDRη1(0,Mϕ2,mη2)(sinθVcosδ3sinδω(0))\displaystyle+\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\omega}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta^{\prime}}^{2})(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))
{cosδ(4cos2θV+2sin2θV)sinθP}\displaystyle\left\{\cos\delta(-4\cos 2\theta_{V}+\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}\right\}
2FV(1+82αVmπ2MV2)9Mω2FDRη2(sinθVcosδ3sinδω(0))cosδ\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\omega}^{2}F}D_{R\eta 2}(\sin\theta_{V}\cos\delta-\sqrt{3}\sin\delta^{\omega}(0))\cos\delta
{4cosθP(22cos2θVsin2θV)(mK2mπ2)\displaystyle\left\{-4\cos\theta_{P}(2\sqrt{2}\cos 2\theta_{V}-\sin 2\theta_{V})(m_{K}^{2}-m_{\pi}^{2})\right.
+(4cos2θV2sin2θV)sinθP(4mK2mπ2)}\displaystyle\left.+(4\cos 2\theta_{V}-\sqrt{2}\sin 2\theta_{V})\sin\theta_{P}(4m_{K}^{2}-m_{\pi}^{2})\right\}
22FV(1+82αV2mK2mπ2MV2)3Mϕ2FDRη1(0,Mϕ2,mη2)cosθV\displaystyle-\frac{2\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{3M_{\phi}^{2}F}D_{R\eta 1}(0,M_{\phi}^{2},m_{\eta^{\prime}}^{2})\cos\theta_{V}
{2cosθPcosθV(2cosθV+4sinθV)sinθP}\displaystyle\left\{2\cos\theta_{P}-\cos\theta_{V}(\sqrt{2}\cos\theta_{V}+4\sin\theta_{V})\sin\theta_{P}\right\}
2FV(1+82αV2mK2mπ2MV2)9Mϕ2FDRη2cosθV\displaystyle-\frac{\sqrt{2}F_{V}\left(1+8\sqrt{2}\alpha_{V}\frac{2m_{K}^{2}-m_{\pi}^{2}}{M_{V}^{2}}\right)}{9M_{\phi}^{2}F}D_{R\eta 2}\cos\theta_{V}
{(2cosθV2sinθV)2(2cosθP+2sinθP)mπ2\displaystyle\left\{(\sqrt{2}\cos\theta_{V}-2\sin\theta_{V})^{2}(2\cos\theta_{P}+\sqrt{2}\sin\theta_{P})m_{\pi}^{2}\right.
4(2cosθV+sinθV)2(cosθP+2sinθP)(2mK2mπ2)}.\displaystyle\left.-4(\sqrt{2}\cos\theta_{V}+\sin\theta_{V})^{2}(-\cos\theta_{P}+\sqrt{2}\sin\theta_{P})(2m_{K}^{2}-m_{\pi}^{2})\right\}\,.

A.2.2 Three-body decays

The three pion decays of the vector resonances are given by:

Γ(Vπ+(p1)π(p2)π0(p3))=1256π3MV3ss+dstt+dt𝒫(s,t)|ΩV|2,\Gamma(V\rightarrow\pi^{+}(p_{1})\pi^{-}(p_{2})\pi^{0}(p_{3}))=\frac{1}{256\,\pi^{3}\,M_{V}^{3}}\int_{s_{-}}^{s_{+}}ds\int_{t_{-}}^{t_{+}}dt\,{\cal P}(s,t)|\Omega_{V}|^{2}\,, (A.5)

for V=ρ,ω,ϕV=\rho,\omega,\phi, where s=(p1+p2)2s=(p_{1}+p_{2})^{2}, t=(p1+p3)2t=(p_{1}+p_{3})^{2} and

𝒫(s,t)=112[(3mπ2+MV2s)stst2mπ2(mπ2MV2)2].{\cal P}(s,t)=\frac{1}{12}\left[(3m_{\pi}^{2}+M_{V}^{2}-s)st-st^{2}-m_{\pi}^{2}(m_{\pi}^{2}-M_{V}^{2})^{2}\right]\,. (A.6)

The integration limits are:

s+\displaystyle s_{+} =\displaystyle= (MVmπ)2,\displaystyle(M_{V}-m_{\pi})^{2}\,,
s\displaystyle s_{-} =\displaystyle= 4mπ2,\displaystyle 4m_{\pi}^{2}\,,
t\displaystyle t_{\mp} =\displaystyle= 14s[(MV2mπ2)2(λ1/2(s,mπ2,mπ2)±λ1/2(MV2,s,mπ2))2].\displaystyle\frac{1}{4s}\left[\left(M_{V}^{2}-m_{\pi}^{2}\right)^{2}-\left(\lambda^{1/2}(s,m_{\pi}^{2},m_{\pi}^{2})\pm\lambda^{1/2}(M_{V}^{2},s,m_{\pi}^{2})\right)^{2}\right]. (A.7)

Finally ΩV\Omega_{V} is defined by

Vπ+ππ0=iεμναβp1μp2νp3αεVβΩV,{\cal M}_{V\rightarrow\pi^{+}\pi^{-}\pi^{0}}=i\varepsilon_{\mu\nu\alpha\beta}\,p_{1}^{\mu}\,p_{2}^{\nu}\,p_{3}^{\alpha}\,\varepsilon_{V}^{\beta}\,\Omega_{V}\,, (A.8)

being εVμ\varepsilon_{V}^{\mu} the polarization of the vector meson. Within resonance chiral theory the corresponding reduced amplitudes, ΩV\Omega_{V}, are:

Ωω\displaystyle\Omega_{\omega} =(23cosθV+13sinθV)8cosδMωF3{2MVGRπ(Mω2)+GV(cos2δ+sinδρ(s)sinδω(Mω2))\displaystyle=\left(\sqrt{\frac{2}{3}}\cos\theta_{V}+\sqrt{\frac{1}{3}}\sin\theta_{V}\right)\frac{8\cos\delta}{M_{\omega}F^{3}}\left\{\frac{\sqrt{2}}{M_{V}}G_{R\pi}(M_{\omega}^{2})+G_{V}(\cos^{2}\delta+\sin\delta^{\rho}(s)\sin\delta^{\omega}(M_{\omega}^{2}))\right.
×BW[ρ,s]DRπ(Mω2,s)+GVBW[ρ,t]DRπ(Mω2,t)+GVBW[ρ,u]DRπ(Mω2,u)\displaystyle\times\,BW[\rho,s]\leavevmode\nobreak\ D_{R\pi}(M_{\omega}^{2},s)+G_{V}BW[\rho,t]\leavevmode\nobreak\ D_{R\pi}(M_{\omega}^{2},t)+G_{V}BW[\rho,u]\leavevmode\nobreak\ D_{R\pi}(M_{\omega}^{2},u)
+GVsinδω(Mω2)(sinδω(Mω2)+sinδω(s))BW[ω,s]DRπ(Mω2,s)},\displaystyle+G_{V}\sin\delta^{\omega}(M_{\omega}^{2})\,(\sin\delta^{\omega}(M_{\omega}^{2})\,+\sin\delta^{\omega}(s)\,)BW[\omega,s]\leavevmode\nobreak\ D_{R\pi}(M_{\omega}^{2},s)\bigg{\}},
Ωϕ\displaystyle\Omega_{\phi} =(13cosθV23sinθV)8MϕF3{2MVGRπ(Mϕ2)\displaystyle=\left(\sqrt{\frac{1}{3}}\cos\theta_{V}-\sqrt{\frac{2}{3}}\sin\theta_{V}\right)\frac{8}{M_{\phi}F^{3}}\left\{\frac{\sqrt{2}}{M_{V}}G_{R\pi}(M_{\phi}^{2})\right.
+GVcos2δBW[ρ,s]DRπ(Mϕ2,s)+GVBW[ρ,t]DRπ(Mϕ2,t)\displaystyle+G_{V}\cos^{2}\delta\,BW[\rho,s]\leavevmode\nobreak\ D_{R\pi}(M_{\phi}^{2},s)+G_{V}BW[\rho,t]\leavevmode\nobreak\ D_{R\pi}(M_{\phi}^{2},t)
+GVBW[ρ,u]DRπ(Mϕ2,u)+GVsin2δω(s)BW[ω,s]DRπ(Mϕ2,s)},\displaystyle+G_{V}BW[\rho,u]\leavevmode\nobreak\ D_{R\pi}(M_{\phi}^{2},u)+G_{V}\sin^{2}\delta^{\omega}(s)\,BW[\omega,s]\leavevmode\nobreak\ D_{R\pi}(M_{\phi}^{2},s)\bigg{\}},
Ωρ\displaystyle\Omega_{\rho} =(23cosθV+13sinθV)8sinδρ(Mρ2)MρF3{2MVGRπ(Mρ2)+2GVcos2δBWR[ρ,s]DRπ(Mρ2,s)\displaystyle=\left(\sqrt{\frac{2}{3}}\cos\theta_{V}+\sqrt{\frac{1}{3}}\sin\theta_{V}\right)\frac{8\sin\delta^{\rho}(M_{\rho}^{2})}{M_{\rho}F^{3}}\Bigg{\{}\frac{\sqrt{2}}{M_{V}}G_{R\pi}(M_{\rho}^{2})+2G_{V}\cos^{2}\delta\,BW_{R}[\rho,s]D_{R\pi}(M_{\rho}^{2},s)
+GVBWR[ρ,t]DRπ(Mρ2,t)+GVBWR[ρ,u]DRπ(Mρ2,u)}(23cosθV+13sinθV)\displaystyle+G_{V}BW_{R}[\rho,t]D_{R\pi}(M_{\rho}^{2},t)+G_{V}BW_{R}[\rho,u]D_{R\pi}(M_{\rho}^{2},u)\Bigg{\}}-\left(\sqrt{\frac{2}{3}}\cos\theta_{V}+\sqrt{\frac{1}{3}}\sin\theta_{V}\right)
×8sinδω(s)MρF3GV(cos2δsinδρ(Mρ2)sinδω(s))BWR[ω,s]DRπ(Mρ2,s),\displaystyle\times\frac{8\sin\delta^{\omega}(s)}{M_{\rho}F^{3}}G_{V}(\cos^{2}\delta-\sin\delta^{\rho}(M_{\rho}^{2})\sin\delta^{\omega}(s))\,BW_{R}[\omega,s]D_{R\pi}(M_{\rho}^{2},s),

being u=MV2+3mπ2stu=M_{V}^{2}+3m_{\pi}^{2}-s-t.

References