Abstract.
For the fifth Painlevé equation it is known that a general solution is
represented asymptotically by an elliptic function in cheese-like strips
near the point at infinity.
We present an explicit asymptotic formula for the error term of this
expression, which leads to an estimate for its magnitude
as was conjectured.
Analogous formula is obtained for the error term of
the correction function associated with the Lagrangian.
2020 Mathematics Subject Classification.
34M55, 34M56, 34M40, 34M60, 33E05.
Key words and phrases.
elliptic asymptotic representation; fifth Painlevé transcendents;
isomonodromy deformation; monodromy data;
Jacobi elliptic functions.
1. Introduction
The fifth Painlevé equation
y ′′ = ( 1 2 y + 1 y − 1 ) ( y ′ ) 2 − y ′ x + ( y − 1 ) 2 x 2 ( a θ y − b θ y ) + c θ y x − y ( y + 1 ) 2 ( y − 1 ) , y^{\prime\prime}=\Bigl{(}\frac{1}{2y}+\frac{1}{y-1}\Bigr{)}(y^{\prime})^{2}-\frac{y^{\prime}}{x}+\frac{(y-1)^{2}}{x^{2}}\Bigl{(}a_{\theta}y-\frac{b_{\theta}}{y}\Bigr{)}+c_{\theta}\frac{y}{x}-\frac{y(y+1)}{2(y-1)},
(PV )
in which 8 a θ = ( θ 0 − θ 1 + θ ∞ ) 2 , 8a_{\theta}=(\theta_{0}-\theta_{1}+\theta_{\infty})^{2},
8 b θ = ( θ 0 − θ 1 − θ ∞ ) 2 8b_{\theta}=(\theta_{0}-\theta_{1}-\theta_{\infty})^{2} ,
c θ = 1 − θ 0 − θ 1 c_{\theta}=1-\theta_{0}-\theta_{1} with θ 0 , θ 1 , θ ∞ ∈ ℂ \theta_{0},\theta_{1},\theta_{\infty}\in\mathbb{C} ,
governs the isomonodromy deformation of a linear system of the form
d Ξ d λ = \displaystyle\frac{d\Xi}{d\lambda}=
( x 2 σ 3 + 𝒜 0 λ + 𝒜 1 λ − 1 ) Ξ , \displaystyle\Bigl{(}\frac{x}{2}\sigma_{3}+\frac{\mathcal{A}_{0}}{\lambda}+\frac{\mathcal{A}_{1}}{\lambda-1}\Bigr{)}\Xi,
σ 3 = ( 1 0 0 − 1 ) , 𝒜 0 = ( 𝔷 + θ 0 / 2 − u ( 𝔷 + θ 0 ) 𝔷 / u − 𝔷 − θ 0 / 2 ) , \displaystyle\sigma_{3}=\begin{pmatrix}1&0\\
0&-1\end{pmatrix},\quad\mathcal{A}_{0}=\begin{pmatrix}\mathfrak{z}+\theta_{0}/2&-u(\mathfrak{z}+\theta_{0})\\
\mathfrak{z}/u&-\mathfrak{z}-\theta_{0}/2\end{pmatrix},
𝒜 1 = ( − 𝔷 − ( θ 0 + θ ∞ ) / 2 u y ( 𝔷 + ( θ 0 − θ 1 + θ ∞ ) / 2 ) − ( u y ) − 1 ( 𝔷 + ( θ 0 + θ 1 + θ ∞ ) / 2 ) 𝔷 + ( θ 0 + θ ∞ ) / 2 ) \displaystyle\mathcal{A}_{1}=\begin{pmatrix}-\mathfrak{z}-(\theta_{0}+\theta_{\infty})/2&uy(\mathfrak{z}+(\theta_{0}-\theta_{1}+\theta_{\infty})/2)\\
-(uy)^{-1}(\mathfrak{z}+(\theta_{0}+\theta_{1}+\theta_{\infty})/2)&\mathfrak{z}+(\theta_{0}+\theta_{\infty})/2\end{pmatrix}
(cf. [1 ] , [10 , (1.1)] , [11 , (3.1)] ) with the
monodromy data ( M 0 , M 1 ) = ( ( m i j 0 ) , ( m i j 1 ) ) ∈ S L 2 ( ℂ ) 2 (M^{0},M^{1})=((m^{0}_{ij}),(m^{1}_{ij}))\in SL_{2}(\mathbb{C})^{2}
defined along loops surrounding λ = 0 \lambda=0 and 1 1 , respectively.
Then a general solution y ( x ) y(x) of (PV ) is parametrised by
( M 0 , M 1 ) (M^{0},M^{1}) [1 , Section 2] .
As in [10 , 11 , Theorem 2.1] , for each ϕ \phi such that 0 < | ϕ | < π / 2 , 0<|\phi|<\pi/2,
y ( x ) y(x) admits an expression of the form
y ( x ) + 1 y ( x ) − 1 = A ϕ 1 / 2 sn ( ( x − x 0 ) / 2 + Δ ( x ) ; A ϕ 1 / 2 ) \frac{y(x)+1}{y(x)-1}=A_{\phi}^{1/2}\mathrm{sn}((x-x_{0})/2+\Delta(x);A^{1/2}_{\phi})
(1.1)
with Δ ( x ) = O ( x − 2 / 9 + ε ) \Delta(x)=O(x^{-2/9+\varepsilon}) for any ε \varepsilon satisfying
0 < ε < 2 / 9 0<\varepsilon<2/9 as x = e i ϕ t → ∞ x=e^{i\phi}t\to\infty through the cheese-like
strip S ( ϕ , t ∞ , κ 0 , δ 0 ) , S(\phi,t_{\infty},\kappa_{0},\delta_{0}), where v = sn ( z ; k ) v=\mathrm{sn}(z;k) is the
Jacobi elliptic function such that v z 2 = ( 1 − v 2 ) ( 1 − k 2 v 2 ) , v_{z}^{2}=(1-v^{2})(1-k^{2}v^{2}), and
the symbols A ϕ A_{\phi} , x 0 x_{0} and S ( ϕ , t ∞ , κ 0 , δ 0 ) S(\phi,t_{\infty},\kappa_{0},\delta_{0}) are
as in (1) and (3) below.
Since A ϕ A_{\phi} does not depend on the solution y ( x ) y(x) , the leading term of
the expression above contains the integration constant x 0 x_{0} depending on
( M 0 , M 1 ) (M^{0},M^{1}) and the other
integration constant appears in the error term Δ ( x ) . \Delta(x).
Moreover Δ ( x ) \Delta(x) may be treated in studying, say, the τ \tau -function
[8 , p. 121] , degeneration into trigonometric asymptotics
[8 , Section 4] .
For these facts detailed study on Δ ( x ) \Delta(x) is desirable.
Under the supposition Δ ( x ) = O ( x − 1 ) \Delta(x)=O(x^{-1}) , an asymptotic form
of Δ ( x ) \Delta(x) containing the other integration constant is discussed in
[10 , Theorem 2.3 and Corollary 2.4] .
For the τ \tau -function associated with (PI ) Iwaki [5 ] ,
by the method of topological recursion, obtained a conjectural full-order
expansion yielding the elliptic expression of solutions.
In this paper we unconditionally present an explicit expression of
Δ ( x ) \Delta(x) , which leads to the estimate Δ ( x ) = O ( x − 1 ) \Delta(x)=O(x^{-1})
as was conjectured.
The correction function B ϕ ( t ) B_{\phi}(t) [11 , (5.5)] for
the Lagrangian of y ( x ) y(x) contains information about asymptotics
(see also [8 , Section 3] ).
Analogous explicit formula is obtained for the error term of the asymptotic
expression of B ϕ ( t ) B_{\phi}(t) .
Our results are stated in Theorems 2.1 , 2.2 and 2.3 .
In Section 3 , from a system of equations equivalent to (PV )
we derive integral equations containing the error term h ( x ) = Δ ( x ) / 2 . h(x)=\Delta(x)/2. The final section is devoted to the proofs of main theorems
by using these equations, in which
our argument is quite different from those in [4 ] ,
[2 , Chapter 8] , [6 ] and [9 ] applied to
(PII ) and (PI ).
Throughout this paper we use the following symbols.
(1) For each ϕ ∈ ℝ \phi\in\mathbb{R} , A ϕ ∈ ℂ A_{\phi}\in\mathbb{C} is a unique
solution of the Boutroux equations
Re e i ϕ ∫ 𝐚 A ϕ − z 2 1 − z 2 𝑑 z = Re e i ϕ ∫ 𝐛 A ϕ − z 2 1 − z 2 𝑑 z = 0 \mathrm{Re\,}e^{i\phi}\int_{\mathbf{a}}\sqrt{\frac{A_{\phi}-z^{2}}{1-z^{2}}}dz=\mathrm{Re\,}e^{i\phi}\int_{\mathbf{b}}\sqrt{\frac{A_{\phi}-z^{2}}{1-z^{2}}}dz=0
[10 , Section 7] . Here 𝐚 \mathbf{a} and 𝐛 \mathbf{b} are basic cycles as
in Figure 1.1 on the elliptic curve Π ∗ = Π + ∗ ∪ Π − ∗ \Pi^{*}=\Pi^{*}_{+}\cup\Pi^{*}_{-}
given by w ( A ϕ , z ) = ( 1 − z 2 ) ( A ϕ − z 2 ) w(A_{\phi},z)=\sqrt{(1-z^{2})(A_{\phi}-z^{2})}
such that Π + ∗ \Pi^{*}_{+} and Π − ∗ \Pi^{*}_{-} are
glued along the cuts [ − 1 , − A ϕ 1 / 2 ] ∪ [ A ϕ 1 / 2 , 1 ] [-1,-A^{1/2}_{\phi}]\cup[A^{1/2}_{\phi},1] with
0 ≤ Re A ϕ 1 / 2 ≤ 1 ; 0\leq\mathrm{Re\,}A_{\phi}^{1/2}\leq 1; and the branches of the square roots
A ϕ − z 2 1 − z 2 = A ϕ − z 2 1 − z 2 , ( A ϕ − z 2 ) ( 1 − z 2 ) = A ϕ − z 2 1 − z 2 \sqrt{\frac{A_{\phi}-z^{2}}{1-z^{2}}}=\frac{\sqrt{A_{\phi}-z^{2}}}{\sqrt{1-z^{2}}},\quad\sqrt{(A_{\phi}-z^{2})(1-z^{2})}=\sqrt{A_{\phi}-z^{2}}\,\sqrt{1-z^{2}}
are determined by z − 1 A ϕ − z 2 → i z^{-1}\sqrt{A_{\phi}-z^{2}}\to i and
z − 1 1 − z 2 → i z^{-1}\sqrt{1-z^{2}}\to i
as z → ∞ z\to\infty on the upper sheet Π + ∗ \Pi^{*}_{+} .
− 1 -1 − A ϕ 1 / 2 -A_{\phi}^{1/2} 1 1 A ϕ 1 / 2 A_{\phi}^{1/2} 𝐚 \mathbf{a} 𝐛 \mathbf{b} Π + ∗ \Pi^{*}_{+}
Figure 1.1. Cycles 𝐚 , \mathbf{a}, 𝐛 \mathbf{b} on Π ∗ \Pi^{*}
(2) The periods of Π ∗ \Pi^{*} along 𝐚 \mathbf{a} and 𝐛 \mathbf{b} are
Ω 𝐚 = ∫ 𝐚 d z w ( A ϕ , z ) , Ω 𝐛 = ∫ 𝐛 d z w ( A ϕ , z ) , \Omega_{\mathbf{a}}=\int_{\mathbf{a}}\frac{dz}{w(A_{\phi},z)},\quad\Omega_{\mathbf{b}}=\int_{\mathbf{b}}\frac{dz}{w(A_{\phi},z)},
and write
ℰ 𝐚 = ∫ 𝐚 A ϕ − z 2 1 − z 2 𝑑 z , ℰ 𝐛 = ∫ 𝐛 A ϕ − z 2 1 − z 2 𝑑 z . \mathcal{E}_{\mathbf{a}}=\int_{\mathbf{a}}\sqrt{\frac{A_{\phi}-z^{2}}{1-z^{2}}}\,dz,\quad\mathcal{E}_{\mathbf{b}}=\int_{\mathbf{b}}\sqrt{\frac{A_{\phi}-z^{2}}{1-z^{2}}}\,dz.
(3) Set
x 0 ≡ − 1 π i ( Ω 𝐛 log ( m 21 0 m 12 1 ) + Ω 𝐚 log 𝔪 ϕ ) − ( 1 2 Ω 𝐚 + Ω 𝐛 ) ( θ ∞ + 1 ) mod 2 Ω 𝐚 ℤ + 2 Ω 𝐛 ℤ , x_{0}\equiv\frac{-1}{\pi i}(\Omega_{\mathbf{b}}\log(m^{0}_{21}m^{1}_{12})+\Omega_{\mathbf{a}}\log\mathfrak{m}_{\phi})-(\tfrac{1}{2}\Omega_{\mathbf{a}}+\Omega_{\mathbf{b}})(\theta_{\infty}+1)\quad\mod 2\Omega_{\mathbf{a}}\mathbb{Z}+2\Omega_{\mathbf{b}}\mathbb{Z},
in which 𝔪 ϕ = m 11 0 \mathfrak{m}_{\phi}=m^{0}_{11} if − π / 2 < ϕ < 0 -\pi/2<\phi<0 , and = e − π i θ ∞ ( m 11 1 ) − 1 =e^{-\pi i\theta_{\infty}}(m^{1}_{11})^{-1} if 0 < ϕ < π / 2 . 0<\phi<\pi/2. For given positive
numbers κ 0 , \kappa_{0}, δ 0 \delta_{0} and t ∞ t_{\infty} ,
S ( ϕ , t ∞ , κ 0 , δ 0 ) = { x = e i ϕ t | Re t > t ∞ , | Im t | < κ 0 } ∖ ⋃ σ ∈ 𝒫 0 { | x − σ | < δ 0 } S(\phi,t_{\infty},\kappa_{0},\delta_{0})=\{x=e^{i\phi}t\,|\,\mathrm{Re\,}t>t_{\infty},\,\,\,|\mathrm{Im\,}t|<\kappa_{0}\}\setminus\bigcup_{\sigma\in\mathcal{P}_{0}}\{|x-\sigma|<\delta_{0}\}
with
𝒫 0 = { σ | sn ( ( σ − x 0 ) / 2 ; A ϕ 1 / 2 ) = ∞ } = { x 0 + Ω 𝐚 ℤ + Ω 𝐛 ( 2 ℤ + 1 ) } , \mathcal{P}_{0}=\{\sigma\,|\,\mathrm{sn}((\sigma-x_{0})/2;A^{1/2}_{\phi})=\infty\}=\{x_{0}+\Omega_{\mathbf{a}}\mathbb{Z}+\Omega_{\mathbf{b}}(2\mathbb{Z}+1)\},
and
S ˇ ( ϕ , t ∞ , κ 0 , δ 0 ) = S ( ϕ , t ∞ , κ 0 , δ 0 ) ∖ ⋃ σ ∈ 𝒬 { | x − σ | < δ 0 } \check{S}(\phi,t_{\infty},\kappa_{0},\delta_{0})={S}(\phi,t_{\infty},\kappa_{0},\delta_{0})\setminus\bigcup_{\sigma\in\mathcal{Q}}\{|x-\sigma|<\delta_{0}\}
with
𝒬 = { σ | sn ( ( σ − x 0 ) / 2 ; A ϕ 1 / 2 ) = ± A ϕ − 1 / 2 , ± 1 } . \mathcal{Q}=\{{\sigma}\,|\,\mathrm{sn}(({\sigma}-x_{0})/2;A^{1/2}_{\phi})=\pm A^{-1/2}_{\phi},\pm 1\}.
For σ = e i ϕ t σ ∈ 𝒬 \sigma=e^{i\phi}t_{\sigma}\in\mathcal{Q} let l ( σ ) l(\sigma) be the line
defined
by x = e i ϕ ( Re t σ + i η ) x=e^{i\phi}(\mathrm{Re\,}t_{\sigma}+i\eta) with η ≥ Im t σ \eta\geq\mathrm{Im\,}t_{\sigma}
if Im t σ ≥ 0 \mathrm{Im\,}t_{\sigma}\geq 0 (respectively, η ≤ Im t σ \eta\leq\mathrm{Im\,}t_{\sigma} if
Im t σ < 0 \mathrm{Im\,}t_{\sigma}<0 ). Let
S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) denote
S ˇ ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}(\phi,t_{\infty},\kappa_{0},\delta_{0}) with cuts along the lines
l ( σ ) l(\sigma) for all σ ∈ 𝒬 , \sigma\in\mathcal{Q}, where some local segments
contained in l ( σ ) l(\sigma) may be replaced with arcs, if necessary, not to
touch another circle | x − σ ′ | = δ 0 |x-\sigma^{\prime}|=\delta_{0} with σ ′ ∈ 𝒫 0 ∪ 𝒬 , \sigma^{\prime}\in\mathcal{P}_{0}\cup\mathcal{Q}, σ ′ ≠ σ . \sigma^{\prime}\not=\sigma.
(4) For Im τ > 0 , \mathrm{Im\,}\tau>0,
ϑ ( z , τ ) = ∑ n ∈ ℤ e π i τ n 2 + 2 π i z n \vartheta(z,\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau n^{2}+2\pi izn}
with ϑ ′ ( z , τ ) = ( d / d z ) ϑ ( z , τ ) \vartheta^{\prime}(z,\tau)=(d/dz)\vartheta(z,\tau) is the ϑ \vartheta -function
[3 ] , [12 ] . Note that ϑ ( z ± 1 , τ ) = ϑ ( z , τ ) , \vartheta(z\pm 1,\tau)=\vartheta(z,\tau),
ϑ ( z ± τ , τ ) = e − π i ( τ ± 2 z ) ϑ ( z , τ ) , \vartheta(z\pm\tau,\tau)=e^{-\pi i(\tau\pm 2z)}\vartheta(z,\tau),
(5) We write f ≪ g f\ll g or g ≫ f g\gg f if f = O ( g ) . f=O(g).
3. System of integral equations
To prove our theorems, we recall the following facts [10 , Section 6] .
(1) For the solution y ( x ) y(x) of (PV ), ( ψ ( x ) , b ( x ) ) (\psi(x),b(x)) with
ψ ( x ) = ( y ( x ) + 1 ) ( y ( x ) − 1 ) − 1 \psi(x)=(y(x)+1)(y(x)-1)^{-1} solves a system of equations
4 ( ψ ′ ) 2 = \displaystyle 4(\psi^{\prime})^{2}=
( 1 − ψ 2 ) ( A ϕ − ψ 2 ) − ( 1 − ψ 2 ) ( 4 ( θ 0 + θ 1 ) ψ − b ) x − 1 \displaystyle(1-\psi^{2})(A_{\phi}-\psi^{2})-(1-\psi^{2})(4(\theta_{0}+\theta_{1})\psi-b)x^{-1}
+ 4 ( 2 ( θ 0 − θ 1 ) θ ∞ ψ + ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) x − 2 , \displaystyle+4(2(\theta_{0}-\theta_{1})\theta_{\infty}\psi+(\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})x^{-2},
(3.1)
b ′ = \displaystyle b^{\prime}=
− 2 ( A ϕ − ψ 2 ) + 4 ψ ′ + ( 4 ( θ 0 + θ 1 ) ψ − b ) x − 1 , \displaystyle-2(A_{\phi}-\psi^{2})+4\psi^{\prime}+(4(\theta_{0}+\theta_{1})\psi-b)x^{-1},
(3.2)
where b = b ( x ) b=b(x) is as defined in Section 2 by using the Lagrangian
a ϕ , Lag . a_{\phi,\mathrm{Lag}}.
(2) ψ 0 ( x ) \psi_{0}(x) and b 0 ( x ) b_{0}(x) are bounded in S ( ϕ , t ∞ , κ 0 , δ 0 ) S(\phi,t_{\infty},\kappa_{0},\delta_{0}) and fulfil
4 ( ψ 0 ′ ) 2 \displaystyle 4(\psi^{\prime}_{0})^{2}
= ( 1 − ψ 0 2 ) ( A ϕ − ψ 0 2 ) , \displaystyle=(1-\psi_{0}^{2})(A_{\phi}-\psi_{0}^{2}),
(3.3)
b 0 ′ \displaystyle b^{\prime}_{0}
= − 2 ( A ϕ − ψ 0 2 ) + 4 ψ 0 ′ \displaystyle=-2(A_{\phi}-\psi_{0}^{2})+4\psi_{0}^{\prime}
(3.4)
[10 ] , which at least formally approximates system (3.1 ), (3.2 ).
Proposition 3.1 .
Equations (3.1 ), (3.2 ) admit a solution ( ψ ( x ) , b ( x ) ) (\psi(x),b(x)) such that
ψ ( x ) = ψ 0 ( x + h ( x ) ) \psi(x)=\psi_{0}(x+h(x)) with h ( x ) ≪ x − 2 / 9 + ε h(x)\ll x^{-2/9+\varepsilon} and
b ( x ) − b 0 ( x ) ≪ x − 2 / 9 + ε b(x)-b_{0}(x)\ll x^{-2/9+\varepsilon} as x → ∞ x\to\infty through S ( ϕ , t ∞ , κ 0 , δ 0 ) S(\phi,t_{\infty},\kappa_{0},\delta_{0}) for any 0 < ε < 2 / 9 . 0<\varepsilon<2/9.
Furthermore b 0 ( x ) b_{0}(x) and b ( x ) b(x) are bounded.
Proof..
As in [11 , Section 5] , the correction function b ∗ ( x ) := e i ϕ B ϕ ( t ) b^{*}(x):=e^{i\phi}B_{\phi}(t) admits the asymptotic expression b ∗ ( x ) − b 0 ( x ) ≪ x − 2 / 9 + ε , b^{*}(x)-b_{0}(x)\ll x^{-2/9+\varepsilon}, which follows from [11 , (5.5)] with δ = 2 / 9 − ε . \delta=2/9-\varepsilon. (Here we note that, in the argument of [11 , Sectios 4 and 5] as well, δ \delta is so chosen in accordance with the annulus 𝒜 ε \mathcal{A}_{\varepsilon} in [10 , p. 64] .) By the justification scheme [11 , Section 5] with [7 ] , for b ( x ) b(x) corresponding to the Lagrangian a ϕ , Lag a_{\phi,\mathrm{Lag}} as well, the estimate b ( x ) − b 0 ( x ) ≪ x − 2 / 9 + ε b(x)-b_{0}(x)\ll x^{-2/9+\varepsilon}
remains valid.
∎
From Proposition 3.1 with (3.3 ), it follows that
2 ψ ′ ( x ) = 2 ( 1 + h ′ ( x ) ) ψ 0 ′ ( x + h ( x ) ) = ( 1 + h ′ ) ( 1 − ψ 0 ( x + h ) 2 ) ( A ϕ − ψ 0 ( x + h ) 2 ) = ( 1 + h ′ ) ( 1 − ψ 2 ) ( A ϕ − ψ 2 ) . 2\psi^{\prime}(x)=2(1+h^{\prime}(x))\psi^{\prime}_{0}(x+h(x))=(1+h^{\prime})\sqrt{(1-\psi_{0}(x+h)^{2})(A_{\phi}-\psi_{0}(x+h)^{2})}=(1+h^{\prime})\sqrt{(1-\psi^{2})(A_{\phi}-\psi^{2})}.
Then (3.1 ) becomes ( 1 + h ′ ) 2 = 1 − 2 F 1 ( ψ , b ) x − 1 + 2 F 2 ( ψ ) x − 2 (1+h^{\prime})^{2}=1-2F_{1}(\psi,b)x^{-1}+2F_{2}(\psi)x^{-2} ,
which yields
h ′ = − F 1 ( ψ , b ) x − 1 + ( F 2 ( ψ ) − 1 2 F 1 ( ψ , b ) 2 ) x − 2 + O ( x − 3 ) h^{\prime}=-F_{1}(\psi,b)x^{-1}+(F_{2}(\psi)-\tfrac{1}{2}F_{1}(\psi,b)^{2})x^{-2}+O(x^{-3})
(3.5)
in S ˇ ( ϕ , t ∞ , κ 0 , δ 0 ) , \check{S}(\phi,t_{\infty},\kappa_{0},\delta_{0}), where
F 1 ( ψ , b ) = 4 ( θ 0 + θ 1 ) ψ − b 2 ( A ϕ − ψ 2 ) , F 2 ( ψ ) = 2 ( 2 ( θ 0 − θ 1 ) θ ∞ ψ + ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) ( 1 − ψ 2 ) ( A ϕ − ψ 2 ) . F_{1}(\psi,b)=\frac{4(\theta_{0}+\theta_{1})\psi-b}{2(A_{\phi}-\psi^{2})},\quad F_{2}(\psi)=\frac{2(2(\theta_{0}-\theta_{1})\theta_{\infty}\psi+(\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})}{(1-\psi^{2})(A_{\phi}-\psi^{2})}.
Using ψ = ψ 0 + ψ 0 ′ h + O ( h 2 ) , \psi=\psi_{0}+\psi^{\prime}_{0}h+O(h^{2}), we have
h ′ = \displaystyle h^{\prime}=
− F 1 ( ψ 0 , b ) x − 1 + ( F 2 ( ψ 0 ) − 1 2 F 1 ( ψ 0 , b ) 2 ) x − 2 \displaystyle-F_{1}(\psi_{0},b)x^{-1}+(F_{2}(\psi_{0})-\tfrac{1}{2}F_{1}(\psi_{0},b)^{2})x^{-2}
− ( F 1 ) ψ ( ψ 0 , b ) ψ 0 ′ h x − 1 + O ( x − 1 ( | x − 1 | + | h | ) 2 ) . \displaystyle-(F_{1})_{\psi}(\psi_{0},b)\psi^{\prime}_{0}hx^{-1}+O(x^{-1}(|x^{-1}|+|h|)^{2}).
(3.6)
In what follows we suppose that, for a positive number μ ≤ 1 \mu\leq 1 ,
h ( x ) ≪ x − μ h(x)\ll x^{-\mu}\phantom{---------}
(3.7)
in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) .
By Proposition 3.1 ,
estimate (3.7 ) is true if, say, μ = 1 / 9 . \mu=1/9.
Let { x ν } ⊂ S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \{x_{\nu}\}\subset\check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) be
a given sequence such that | x 1 | < ⋯ < | x ν | < ⋯ , |x_{1}|<\cdots<|x_{\nu}|<\cdots, | x ν | → ∞ |x_{\nu}|\to\infty . Then, by (3.2 ) and (3.4 )
b ( x ) − b ( x ν ) = ∫ x ν x ( 4 ψ ′ − 2 ( A ϕ − ψ 2 ) ) 𝑑 ξ + ∫ x ν x ( 4 ( θ 0 + θ 1 ) ψ − b ) d ξ ξ , \displaystyle b(x)-b(x_{\nu})=\int^{x}_{x_{\nu}}(4\psi^{\prime}-2(A_{\phi}-\psi^{2}))d\xi+\int^{x}_{x_{\nu}}(4(\theta_{0}+\theta_{1})\psi-b)\frac{d\xi}{\xi},
b 0 ( x ) − b 0 ( x ν ) = ∫ x ν x ( 4 ψ 0 ′ − 2 ( A ϕ − ψ 0 2 ) ) 𝑑 ξ , \displaystyle b_{0}(x)-b_{0}(x_{\nu})=\int^{x}_{x_{\nu}}(4\psi^{\prime}_{0}-2(A_{\phi}-\psi_{0}^{2}))d\xi,
from which we derive, for x ∈ S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) x\in\check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) with | x | < | x ν | |x|<|x_{\nu}| ,
b ( x ) − b 0 ( x ) − \displaystyle b(x)-b_{0}(x)-
( b ( x ν ) − b 0 ( x ν ) ) = 4 ( ψ ( x ) − ψ 0 ( x ) − ( ψ ( x ν ) − ψ 0 ( x ν ) ) ) \displaystyle(b(x_{\nu})-b_{0}(x_{\nu}))=4(\psi(x)-\psi_{0}(x)-(\psi(x_{\nu})-\psi_{0}(x_{\nu})))
+ 2 ∫ x ν x ( ψ 2 − ψ 0 2 ) 𝑑 ξ + 2 ∫ x ν x ( A ϕ − ψ 2 ) F 1 ( ψ , b ) d ξ ξ . \displaystyle+2\int^{x}_{x_{\nu}}(\psi^{2}-\psi_{0}^{2})d\xi+2\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})F_{1}(\psi,b)\frac{d\xi}{\xi}.
(3.8)
In this equality, by (3.7 ) and Proposition 3.1 ,
ψ ( x ) − ψ 0 ( x ) − ( ψ ( x ν ) − ψ 0 ( x ν ) ) ≪ | h ( x ) | + | h ( x ν ) | ≪ | x − μ | + | x ν − μ | , \displaystyle\psi(x)-\psi_{0}(x)-(\psi(x_{\nu})-\psi_{0}(x_{\nu}))\ll|h(x)|+|h(x_{\nu})|\ll|x^{-\mu}|+|x_{\nu}^{-\mu}|,
b ( x ν ) − b 0 ( x ν ) ≪ x ν − 2 / 9 + ε . \displaystyle b(x_{\nu})-b_{0}(x_{\nu})\ll x_{\nu}^{-2/9+\varepsilon}.
Furthermore,
2 ∫ x ν x ( ψ 2 − ψ 0 2 ) 𝑑 ξ \displaystyle 2\int^{x}_{x_{\nu}}(\psi^{2}-\psi_{0}^{2})d\xi
= 2 ∫ x ν x ( ( ψ 0 2 ) ′ h + ( ψ 0 2 ) ′′ 2 h 2 + ⋯ + ( ψ 0 2 ) ( p ) p ! h p + O ( h p + 1 ) ) 𝑑 ξ \displaystyle=2\int^{x}_{x_{\nu}}\Bigl{(}(\psi_{0}^{2})^{\prime}h+\frac{(\psi_{0}^{2})^{\prime\prime}}{2}h^{2}+\cdots+\frac{(\psi_{0}^{2})^{(p)}}{p!}h^{p}+O(h^{p+1})\Bigr{)}d\xi
= − 2 ∫ x ν x ( ψ 0 2 + ( ψ 0 2 ) ′ h + ⋯ + ( ψ 0 2 ) ( p − 1 ) ( p − 1 ) ! h p − 1 ) h ′ 𝑑 ξ + O ( | x − μ | + | x ν − μ | ) , \displaystyle=-2\int^{x}_{x_{\nu}}\Bigl{(}\psi_{0}^{2}+(\psi_{0}^{2})^{\prime}h+\cdots+\frac{(\psi_{0}^{2})^{(p-1)}}{(p-1)!}h^{p-1}\Bigr{)}h^{\prime}d\xi+O(|x^{-\mu}|+|x_{\nu}^{-\mu}|),
if − ( p + 1 ) μ + 1 ≤ − μ , -(p+1)\mu+1\leq-\mu, i.e. − p μ + 1 ≤ 0 -p\mu+1\leq 0 ; and by (3.5 ) and
(3.7 ),
2 ∫ x ν x ( A ϕ − ψ 2 ) F 1 ( ψ , b ) d ξ ξ = \displaystyle 2\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})F_{1}(\psi,b)\frac{d\xi}{\xi}=
− 2 ∫ x ν x ( A ϕ − ψ 2 ) ( h ′ + O ( ξ − 2 ) ) 𝑑 ξ \displaystyle-2\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})(h^{\prime}+O(\xi^{-2}))d\xi
= \displaystyle=
− 2 ∫ x ν x ( A ϕ − ψ 2 ) h ′ 𝑑 ξ + O ( | x − 1 | + | x ν − 1 | ) , \displaystyle-2\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})h^{\prime}d\xi+O(|x^{-1}|+|x_{\nu}^{-1}|),
where
− 2 ∫ x ν x ( A ϕ − ψ 2 ) h ′ 𝑑 ξ \displaystyle-2\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})h^{\prime}d\xi
= \displaystyle=
2 ∫ x ν x ( ψ 0 2 + ( ψ 0 2 ) ′ h + ⋯ + ( ψ 0 2 ) ( p − 1 ) ( p − 1 ) ! h p − 1 ) h ′ 𝑑 ξ + O ( | x − μ | + | x ν − μ | ) , \displaystyle 2\int^{x}_{x_{\nu}}\Bigl{(}\psi_{0}^{2}+(\psi_{0}^{2})^{\prime}h+\cdots+\frac{(\psi_{0}^{2})^{(p-1)}}{(p-1)!}h^{p-1}\Bigr{)}h^{\prime}d\xi+O(|x^{-\mu}|+|x_{\nu}^{-\mu}|),
since h ′ ≪ ξ − 1 h^{\prime}\ll\xi^{-1} by (3.6 ) and (3.7 ).
Insert these quantities with p p such
that − p μ + 1 ≤ 0 -p\mu+1\leq 0 into (3.8 ). Under the passage to the limit x ν → ∞ x_{\nu}\to\infty , we arrive at the estimate
b ( x ) − b 0 ( x ) ≪ x − μ b(x)-b_{0}(x)\ll x^{-\mu}
(3.9)
in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) . \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}).
Then equation (3.6 ) is written in the form
h ′ \displaystyle h^{\prime}
= − F 1 ( ψ 0 , b ) x − 1 + ( F 2 ( ψ 0 ) − 1 2 F 1 ( ψ 0 , b 0 ) 2 ) x − 2 − ( F 1 ) ψ ( ψ 0 , b 0 ) ψ 0 ′ h x − 1 + O ( x − 1 − 2 μ ) \displaystyle=-F_{1}(\psi_{0},b)x^{-1}+(F_{2}(\psi_{0})-\tfrac{1}{2}F_{1}(\psi_{0},b_{0})^{2})x^{-2}-(F_{1})_{\psi}(\psi_{0},b_{0})\psi_{0}^{\prime}hx^{-1}+O(x^{-1-2\mu})
= − F 1 ( ψ 0 , b 0 ) x − 1 + O ( x − 1 − μ ) . \displaystyle=-F_{1}(\psi_{0},b_{0})x^{-1}+O(x^{-1-\mu}).
(3.10)
For any sequence { x ν } ⊂ S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \{x_{\nu}\}\subset\check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) , integration of this yields
h ( x ) − h ( x ν ) \displaystyle h(x)-h(x_{\nu})
= \displaystyle=
− ∫ x ν x F 1 ( ψ 0 , b ) d ξ ξ + ∫ x ν x ( F 2 ( ψ 0 ) − 1 2 F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 − ℐ 0 + O ( | x − 2 μ | + | x ν − 2 μ | ) \displaystyle-\int^{x}_{x_{\nu}}F_{1}(\psi_{0},b)\frac{d\xi}{\xi}+\int^{x}_{x_{\nu}}(F_{2}(\psi_{0})-\tfrac{1}{2}F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi}{\xi^{2}}-\mathcal{I}_{0}+O(|x^{-2\mu}|+|x_{\nu}^{-2\mu}|)
with
ℐ 0 \displaystyle\mathcal{I}_{0}
= ∫ x ν x ( F 1 ) ψ ( ψ 0 , b 0 ) ψ 0 ′ h d ξ ξ \displaystyle=\int^{x}_{x_{\nu}}(F_{1})_{\psi}(\psi_{0},b_{0})\psi_{0}^{\prime}h\frac{d\xi}{\xi}
= ∫ x ν x ( F 1 ( ψ 0 , 0 ) ξ − ( 1 2 ( A ϕ − ψ 0 2 ) ) ξ b 0 ) h d ξ ξ \displaystyle=\int^{x}_{x_{\nu}}\Bigl{(}F_{1}(\psi_{0},0)_{\xi}-\Bigl{(}\frac{1}{2(A_{\phi}-\psi_{0}^{2})}\Bigr{)}_{\!\xi}b_{0}\Bigr{)}h\frac{d\xi}{\xi}
= ∫ x ν x ( F 1 ( ψ 0 , 0 ) F 1 ( ψ 0 , b 0 ) − b 0 F 1 ( ψ 0 , b 0 ) − b 0 ′ h ξ 2 ( A ϕ − ψ 0 2 ) ) d ξ ξ 2 + O ( | x − 1 − μ | + | x ν − 1 − μ | ) \displaystyle=\int^{x}_{x_{\nu}}\Bigl{(}F_{1}(\psi_{0},0)F_{1}(\psi_{0},b_{0})-\frac{b_{0}F_{1}(\psi_{0},b_{0})-b_{0}^{\prime}h\xi}{2(A_{\phi}-\psi_{0}^{2})}\Bigr{)}\frac{d\xi}{\xi^{2}}+O(|x^{-1-\mu}|+|x_{\nu}^{-1-\mu}|)
= ∫ x ν x F 1 ( ψ 0 , b 0 ) 2 d ξ ξ 2 + 1 2 ∫ x ν x b 0 ′ h A ϕ − ψ 0 2 d ξ ξ + O ( | x − 1 − μ | + | x ν − 1 − μ | ) , \displaystyle=\int^{x}_{x_{\nu}}F_{1}(\psi_{0},b_{0})^{2}\frac{d\xi}{\xi^{2}}+\frac{1}{2}\int^{x}_{x_{\nu}}\frac{b_{0}^{\prime}h}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}+O(|x^{-1-\mu}|+|x_{\nu}^{-1-\mu}|),
where the third line is due to integration by parts.
Hence we have, in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) ,
h ( x ) = \displaystyle h(x)=
− ∫ ∞ x F 1 ( ψ 0 , b ) d ξ ξ \displaystyle-\int^{x}_{\infty}F_{1}(\psi_{0},b)\frac{d\xi}{\xi}
+ ∫ ∞ x ( F 2 ( ψ 0 ) − 3 2 F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 − 1 2 ∫ ∞ x b 0 ′ h A ϕ − ψ 0 2 d ξ ξ + O ( x − 2 μ ) , \displaystyle+\int^{x}_{\infty}\Bigl{(}F_{2}(\psi_{0})-\frac{3}{2}F_{1}(\psi_{0},b_{0})^{2}\Bigr{)}\frac{d\xi}{\xi^{2}}-\frac{1}{2}\int^{x}_{\infty}\frac{b_{0}^{\prime}h}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}+O(x^{-2\mu}),
(3.11)
in which the convergence of ∫ ∞ x F 1 ( ψ 0 , b ) ξ − 1 𝑑 ξ \int^{x}_{\infty}F_{1}(\psi_{0},b)\xi^{-1}d\xi is
guaranteed by the absolute convergence of the remaining two integrals.
By (3.1 ) and (3.2 ),
b ′ = − ( A ϕ − ψ 2 ) + 4 ψ ′ − 4 ( ψ ′ ) 2 1 − ψ 2 + 2 ( A ϕ − ψ 2 ) F 2 ( ψ ) x − 2 . b^{\prime}=-(A_{\phi}-\psi^{2})+4\psi^{\prime}-\frac{4(\psi^{\prime})^{2}}{1-\psi^{2}}+2(A_{\phi}-\psi^{2})F_{2}(\psi)x^{-2}.
From this combined with (3.4 ) and 2 ψ ′ = ( 1 + h ′ ) ( 1 − ψ 2 ) ( A ϕ − ψ 2 ) , 2\psi^{\prime}=(1+h^{\prime})\sqrt{(1-\psi^{2})(A_{\phi}-\psi^{2})}, it follows that
( b − b 0 ) ′ = 2 ( ψ 2 − ψ 0 2 ) + 4 ( ψ − ψ 0 ) ′ − 2 h ′ ( A ϕ − ψ 2 ) ( 1 + h ′ / 2 ) + 2 ( A ϕ − ψ 2 ) F 2 ( ψ ) x − 2 , (b-b_{0})^{\prime}=2(\psi^{2}-\psi_{0}^{2})+4(\psi-\psi_{0})^{\prime}-2h^{\prime}(A_{\phi}-\psi^{2})(1+h^{\prime}/2)+2(A_{\phi}-\psi^{2})F_{2}(\psi)x^{-2},
and then, for any { x ν } ⊂ S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \{x_{\nu}\}\subset\check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) , χ := b − b 0 \chi:=b-b_{0} satisfies
χ ( x ) − χ ( x ν ) = \displaystyle\chi(x)-\chi(x_{\nu})=
4 ( ψ − ψ 0 ) − 4 ( ψ ( x ν ) − ψ 0 ( x ν ) ) + 2 ∫ x ν x ( ψ 2 − ψ 0 2 + h ′ ψ 2 ) 𝑑 ξ \displaystyle 4(\psi-\psi_{0})-4(\psi(x_{\nu})-\psi_{0}(x_{\nu}))+2\int^{x}_{x_{\nu}}(\psi^{2}-\psi_{0}^{2}+h^{\prime}\psi^{2})d\xi
− 2 A ϕ ( h ( x ) − h ( x ν ) ) − ∫ x ν x ( A ϕ − ψ 2 ) ( ( h ′ ) 2 − 2 F 2 ( ψ ) ξ − 2 ) 𝑑 ξ . \displaystyle-2A_{\phi}(h(x)-h(x_{\nu}))-\int^{x}_{x_{\nu}}(A_{\phi}-\psi^{2})((h^{\prime})^{2}-2F_{2}(\psi)\xi^{-2})d\xi.
Observing that
2 ∫ x ν x ( ψ 2 − ψ 0 2 + h ′ ψ 2 ) 𝑑 ξ \displaystyle 2\int^{x}_{x_{\nu}}(\psi^{2}-\psi_{0}^{2}+h^{\prime}\psi^{2})d\xi
= \displaystyle=
2 ∫ x ν x ( ( ψ 0 2 ) ′ h + ⋯ + ( ψ 0 2 ) ( p ) p ! h p \displaystyle 2\int^{x}_{x_{\nu}}\Bigl{(}(\psi_{0}^{2})^{\prime}h+\cdots+\frac{(\psi_{0}^{2})^{(p)}}{p!}h^{p}
+ h ′ ( ψ 0 2 + ⋯ + ( ψ 0 2 ) ( p − 1 ) ( p − 1 ) ! h p − 1 ) + O ( | h p + 1 | + | h p h ′ | ) ) d ξ \displaystyle\phantom{---}+h^{\prime}\Bigl{(}\psi_{0}^{2}+\cdots+\frac{(\psi_{0}^{2})^{(p-1)}}{(p-1)!}h^{p-1}\Bigr{)}+O(|h^{p+1}|+|h^{p}h^{\prime}|)\Bigr{)}d\xi
= \displaystyle=
2 ∫ x ν x ( ( ψ 0 2 h + ⋯ + ( ψ 0 2 ) ( p − 1 ) p ! h p ) ξ + O ( | ξ − μ ( p + 1 ) | + | ξ − μ p − 1 | ) ) 𝑑 ξ \displaystyle 2\int^{x}_{x_{\nu}}\Bigl{(}\Bigl{(}\psi_{0}^{2}h+\cdots+\frac{(\psi_{0}^{2})^{(p-1)}}{p!}h^{p}\Bigr{)}_{\!\xi}+O(|\xi^{-\mu(p+1)}|+|\xi^{-\mu p-1}|)\Bigr{)}d\xi
= \displaystyle=
2 ψ 0 2 h + O ( | h ( x ν ) | + | x − 2 μ | + | x ν − 2 μ | ) , \displaystyle 2\psi_{0}^{2}h+O(|h(x_{\nu})|+|x^{-2\mu}|+|x_{\nu}^{-2\mu}|),
if μ ( p − 1 ) ≥ 1 , \mu(p-1)\geq 1, and that ψ ( x ν ) − ψ 0 ( x ν ) ≪ h ( x ν ) ψ 0 ′ ( x ν ) , \psi(x_{\nu})-\psi_{0}(x_{\nu})\ll h(x_{\nu})\psi_{0}^{\prime}(x_{\nu}), and using (3.10 ) and (3.4 ), we have
χ = \displaystyle\chi=
( 4 ψ 0 ′ − 2 ( A ϕ − ψ 0 2 ) ) h + ∫ ∞ x ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 + O ( x − 2 μ ) \displaystyle(4\psi^{\prime}_{0}-2(A_{\phi}-\psi_{0}^{2}))h+\int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi}{\xi^{2}}+O(x^{-2\mu})
= \displaystyle=
b 0 ′ h + ∫ ∞ x ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 + O ( x − 2 μ ) . \displaystyle b^{\prime}_{0}h+\int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi}{\xi^{2}}+O(x^{-2\mu}).
Combining this with (3.9 ) and (3.11 ) we have the following.
Proposition 3.2 .
Under supposition (3.7 ) with 0 < μ ≤ 1 , 0<\mu\leq 1, h h and χ = b − b 0 \chi=b-b_{0}
satisfy
h = − ∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ \displaystyle h=-\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}
+ ∫ ∞ x ( F 2 ( ψ 0 ) − 3 2 F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 + 1 2 ∫ ∞ x χ − b 0 ′ h A ϕ − ψ 0 2 d ξ ξ + O ( x − 2 μ ) , \displaystyle\phantom{--}+\int^{x}_{\infty}\Bigl{(}F_{2}(\psi_{0})-\frac{3}{2}F_{1}(\psi_{0},b_{0})^{2}\Bigr{)}\frac{d\xi}{\xi^{2}}+\frac{1}{2}\int^{x}_{\infty}\frac{\chi-b_{0}^{\prime}h}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}+O(x^{-2\mu}),
χ − b 0 ′ h = ∫ ∞ x ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 + O ( x − 2 μ ) \displaystyle\chi-b^{\prime}_{0}h=\int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi}{\xi^{2}}+O(x^{-2\mu})
and χ ≪ x − μ \chi\ll x^{-\mu}
in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) ,
in which each integral converges.
4. Proofs of the main theorems
Theorems 2.1 and 2.2 are immediately derived from the
following proposition.
Proposition 4.1 .
Under supposition (3.7 ) with 0 < μ ≤ 1 , 0<\mu\leq 1,
h ( x ) = − 2 ( ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) A ϕ − 1 x − 1 − ∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ − 3 2 ∫ ∞ x F 1 ( ψ 0 , b 0 ) 2 d ξ ξ 2 + O ( x − 2 μ ) h(x)=-\frac{2((\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})}{A_{\phi}-1}x^{-1}-\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}-\frac{3}{2}\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})^{2}\frac{d\xi}{\xi^{2}}+O(x^{-2\mu})
in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) , where
∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ ≪ x − 1 , ∫ ∞ x F 1 ( ψ 0 , b 0 ) 2 d ξ ξ 2 ≪ x − 1 . \int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}\ll x^{-1},\quad\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})^{2}\frac{d\xi}{\xi^{2}}\ll x^{-1}.
Derivation of Theorems 2.1 and 2.2 .
By Proposition 3.1 or [11 , Theorem 2.1] , estimate
(3.7 ) with μ = 1 / 9 \mu=1/9 is valid, and Proposition 4.1
with μ = 1 / 9 \mu=1/9 leads us to (3.7 ) with h ( x ) ≪ x − 2 / 9 h(x)\ll x^{-2/9} in
S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) .
Then Proposition 4.1
with μ = 2 / 9 \mu=2/9 yields the asymptotic formula for h ( x ) h(x) with the error term
O ( x − 4 / 9 ) O(x^{-4/9}) and the estimate h ( x ) ≪ x − 4 / 9 . h(x)\ll x^{-4/9}. Twice more repetition
of this procedure leads us to the desired asymptotic formula for
h ( x ) h(x) of Theorem 2.2 in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) . \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}).
By Remark 2.1 , in S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) ,
( y ( x ) + 1 ) ( y ( x ) − 1 ) − 1 − A ϕ 1 / 2 sn ( ( x − x 0 ) / 2 ; A ϕ 1 / 2 ) ≪ ψ 0 ′ ( x ) h ( x ) , (y(x)+1)(y(x)-1)^{-1}-A_{\phi}^{1/2}\mathrm{sn}((x-x_{0})/2;A_{\phi}^{1/2})\ll\psi_{0}^{\prime}(x)h(x),
where the left-hand side is holomorphic in S ( ϕ 0 , t ∞ , κ 0 , δ 0 ) S(\phi_{0},t_{\infty},\kappa_{0},\delta_{0}) .
By the maximal modulus principle, we have Theorem 2.1 .
□ \square
Remark 4.1 .
By the argument above with (3.9 ) or Proposition 3.2 ,
in S ( ϕ , t ∞ , κ 0 , δ 0 ) S(\phi,t_{\infty},\kappa_{0},\delta_{0})
b ( x ) = b 0 ( x ) + O ( x − 1 ) . b(x)=b_{0}(x)+O(x^{-1}).
To complete the proofs of Theorems 2.1 and 2.2 it remains
to establish Proposition 4.1 .
The main part of the proof consists of evaluation of integrals, in which
the following primitive functions are used [10 , Lemma 6.3] .
Lemma 4.2 .
Let ν 0 = ( 1 + τ 0 ) / 2 \nu_{0}=(1+\tau_{0})/2 with τ 0 = Ω 𝐛 / Ω 𝐚 \tau_{0}=\Omega_{\mathbf{b}}/\Omega_{\mathbf{a}} .
Then, for sn u = sn ( u ; A ϕ 1 / 2 ) , \mathrm{sn}\,u=\mathrm{sn}(u;A_{\phi}^{1/2}),
∫ 0 u d u 1 − sn 2 u = \displaystyle\int^{u}_{0}\frac{du}{1-\mathrm{sn}^{2}u}=
1 ( A ϕ − 1 ) Ω 𝐚 \displaystyle\frac{1}{(A_{\phi}-1)\Omega_{\mathbf{a}}}
× ( ℰ 𝐚 u + ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) + ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) + c 1 ) , \displaystyle\times\Bigl{(}\mathcal{E}_{\mathbf{a}}u+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+c_{1}\Bigr{)},
∫ 0 u sn u d u 1 − sn 2 u = \displaystyle\int^{u}_{0}\frac{\mathrm{sn}\,u\,du}{1-\mathrm{sn}^{2}u}=
1 ( A ϕ − 1 ) Ω 𝐚 ( ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) − ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) + c 2 ) , \displaystyle\frac{1}{(A_{\phi}-1)\Omega_{\mathbf{a}}}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+c_{2}\Bigr{)},
∫ 0 u d u 1 − A ϕ sn 2 u = \displaystyle\int^{u}_{0}\frac{du}{1-A_{\phi}\mathrm{sn}^{2}u}=
1 ( 1 − A ϕ ) Ω 𝐚 ( ℰ 𝐚 u + ϑ ′ ϑ ( u Ω 𝐚 − 1 4 , τ 0 ) + ϑ ′ ϑ ( u Ω 𝐚 + 1 4 , τ 0 ) ) + u , \displaystyle\frac{1}{(1-A_{\phi})\Omega_{\mathbf{a}}}\Bigl{(}\mathcal{E}_{\mathbf{a}}u+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4},\tau_{0}\Bigr{)}+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4},\tau_{0}\Bigr{)}\Bigr{)}+u,
∫ 0 u sn u d u 1 − A ϕ sn 2 u = \displaystyle\int^{u}_{0}\frac{\mathrm{sn}\,u\,du}{1-A_{\phi}\mathrm{sn}^{2}u}=
1 A ϕ 1 / 2 ( 1 − A ϕ ) Ω 𝐚 ( ϑ ′ ϑ ( u Ω 𝐚 + 1 4 , τ 0 ) − ϑ ′ ϑ ( u Ω 𝐚 − 1 4 , τ 0 ) + c 3 ) , \displaystyle\frac{1}{A_{\phi}^{1/2}(1-A_{\phi})\Omega_{\mathbf{a}}}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4},\tau_{0}\Bigr{)}-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4},\tau_{0}\Bigr{)}+c_{3}\Bigr{)},
∫ 0 u d u ( 1 − sn 2 u ) 2 = \displaystyle\int^{u}_{0}\frac{du}{(1-\mathrm{sn}^{2}u)^{2}}=
− 1 6 ( A ϕ − 1 ) 2 Ω 𝐚 ( ( d d u ) 2 + 4 ( 1 − 2 A ϕ ) ) ( ℰ 𝐚 u + ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) \displaystyle\frac{-1}{6(A_{\phi}-1)^{2}\Omega_{\mathbf{a}}}\Bigl{(}\Bigl{(}\frac{d}{du}\Bigr{)}^{\!2}+{4(1-2A_{\phi})}\Bigr{)}\Bigl{(}\mathcal{E}_{\mathbf{a}}u+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}
+ ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) ) − A ϕ 3 ( A ϕ − 1 ) u , \displaystyle+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}\Bigr{)}-\frac{A_{\phi}}{3(A_{\phi}-1)}u,
∫ 0 u sn u d u ( 1 − sn 2 u ) 2 = \displaystyle\int^{u}_{0}\frac{\mathrm{sn}\,u\,du}{(1-\mathrm{sn}^{2}u)^{2}}=
− 1 6 ( A ϕ − 1 ) 2 Ω 𝐚 ( ( d d u ) 2 + 1 − 5 A ϕ ) ( ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) \displaystyle\frac{-1}{6(A_{\phi}-1)^{2}\Omega_{\mathbf{a}}}\Bigl{(}\Bigl{(}\frac{d}{du}\Bigr{)}^{\!2}+1-5A_{\phi}\Bigr{)}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}
− ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) + c 4 ) , \displaystyle-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+c_{4}\Bigr{)},
where c j c_{j} ( 1 ≤ j ≤ 4 ) (1\leq j\leq 4) are some constants.
Proof..
Recall the notation 4 K = Ω 𝐚 , 4K=\Omega_{\mathbf{a}}, 2 i K ′ = Ω 𝐛 2iK^{\prime}=\Omega_{\mathbf{b}}
and k = A ϕ 1 / 2 . k=A_{\phi}^{1/2}. Observing the behaviours around the poles u = 2 K ± K u=2K\pm K ,
we have
( k 2 − 1 ) ( sn 2 u − 1 ) − 1 ≡ k 2 ( sn 2 ( u − K + i K ′ ) − 1 ) , (k^{2}-1)(\mathrm{sn}^{2}u-1)^{-1}\equiv k^{2}(\mathrm{sn}^{2}(u-K+iK^{\prime})-1),
and
k 2 ( sn 2 ( u − K \displaystyle k^{2}(\mathrm{sn}^{2}(u-K
+ i K ′ ) − 1 ) \displaystyle+iK^{\prime})-1)
+ \displaystyle+
1 Ω 𝐚 d d u ( ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) + ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) ) ≡ c 0 \displaystyle\frac{1}{\Omega_{\mathbf{a}}}\frac{d}{du}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}\Bigr{)}\equiv c_{0}
(cf. [3 ] , [12 ] ). Integration on [ − i K ′ , − i K ′ + K ] [-iK^{\prime},-iK^{\prime}+K] yields
c 0 = − ℰ 𝐚 / Ω 𝐚 , c_{0}=-\mathcal{E}_{\mathbf{a}}/\Omega_{\mathbf{a}}, which implies
the first formula. From
( k 2 − 1 ) 2 ( sn 2 u − 1 ) − 2 ≡ k 4 cn 4 ( u − K + i K ′ ) , (k^{2}-1)^{2}(\mathrm{sn}^{2}u-1)^{-2}\equiv k^{4}\mathrm{cn}^{4}(u-K+iK^{\prime}),
and
k 4 \displaystyle k^{4}
cn 4 ( u − K + i K ′ ) \displaystyle\mathrm{cn}^{4}(u-K+iK^{\prime})
+ \displaystyle+
( 1 6 Ω 𝐚 ( d d u ) 3 + 2 ( 1 − 2 k 2 ) 3 Ω 𝐚 d d u ) ( ϑ ′ ϑ ( u Ω 𝐚 − 1 4 + ν 0 , τ 0 ) + ϑ ′ ϑ ( u Ω 𝐚 + 1 4 + ν 0 , τ 0 ) ) ≡ c 0 \displaystyle\Bigl{(}\frac{1}{6\Omega_{\mathbf{a}}}\Bigl{(}\frac{d}{du}\Bigr{)}^{\!\!3}+\frac{2(1-2k^{2})}{3\Omega_{\mathbf{a}}}\frac{d}{du}\Bigr{)}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}-\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{u}{\Omega_{\mathbf{a}}}+\frac{1}{4}+\nu_{0},\tau_{0}\Bigr{)}\Bigr{)}\equiv c_{0}
with
k 4 ∫ 0 K cn 4 u 𝑑 u = 1 6 ( 2 k 2 − 1 ) ℰ 𝐚 + k 2 12 ( 1 − k 2 ) Ω 𝐚 , k^{4}\int^{K}_{0}\mathrm{cn}^{4}udu=\frac{1}{6}(2k^{2}-1)\mathcal{E}_{\mathbf{a}}+\frac{k^{2}}{12}(1-k^{2})\Omega_{\mathbf{a}},
the primitive function of ( sn 2 u − 1 ) − 2 (\mathrm{sn}^{2}u-1)^{-2} follows.
∎
4.1. Evaluation of integrals
Write
g ( s ) = ℰ 𝐚 2 s + ϑ ′ ϑ ( s Ω 𝐚 , τ 0 ) , g(s)=\frac{\mathcal{E}_{\mathbf{a}}}{2}s+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{s}{\Omega_{\mathbf{a}}},\tau_{0}\Bigr{)},
which is bounded for 2 s + x 0 ∈ S ( ϕ , t ∞ , κ 0 , δ 0 ) 2s+x_{0}\in{S}(\phi,t_{\infty},\kappa_{0},\delta_{0}) and
satisfies g ( ( x − x 0 ) / 2 ) = 𝔟 ( x ) . g((x-x_{0})/2)=\mathfrak{b}(x). Then, by Lemma 4.2 ,
∫ ∞ s sn σ 1 − sn 2 σ d σ σ ~ = 1 ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ s ( ϑ ′ ϑ ( σ − α 0 Ω 𝐚 ) − ϑ ′ ϑ ( σ + α 0 Ω 𝐚 ) ) σ d σ σ ~ \displaystyle\int^{s}_{\infty}\frac{\mathrm{sn}\,\sigma}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}}=\frac{1}{(A_{\phi}-1)\Omega_{\mathbf{a}}}\int^{s}_{\infty}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma-\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma+\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}\Bigr{)}_{\!\sigma}\frac{d\sigma}{\tilde{\sigma}}
≪ | ( ϑ ′ ϑ ( s − α 0 Ω 𝐚 ) − ϑ ′ ϑ ( s + α 0 Ω 𝐚 ) ) 1 s ~ | + | ∫ ∞ s ( ϑ ′ ϑ ( σ − α 0 Ω 𝐚 ) − ϑ ′ ϑ ( σ + α 0 Ω 𝐚 ) ) d σ σ ~ 2 | ≪ s − 1 \displaystyle\ll\biggl{|}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{s-\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{s+\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}\Bigr{)}\frac{1}{\tilde{s}}\biggr{|}+\biggl{|}\int^{s}_{\infty}\Bigl{(}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma-\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}-\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma+\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}\Bigr{)}\frac{d\sigma}{\tilde{\sigma}^{2}}\biggr{|}\ll s^{-1}
and
∫ ∞ s \displaystyle\int^{s}_{\infty}
1 1 − sn 2 σ d σ σ ~ = 1 ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ s ( ℰ 𝐚 σ + ϑ ′ ϑ ( σ − α 0 Ω 𝐚 ) + ϑ ′ ϑ ( σ + α 0 Ω 𝐚 ) ) σ d σ σ ~ \displaystyle\frac{1}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}}=\frac{1}{(A_{\phi}-1)\Omega_{\mathbf{a}}}\int^{s}_{\infty}\Bigl{(}\mathcal{E}_{\mathbf{a}}\sigma+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma-\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma+\alpha_{0}}{\Omega_{\mathbf{a}}}\Bigr{)}\Bigr{)}_{\!\sigma}\frac{d\sigma}{\tilde{\sigma}}
= 1 ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ s ( g ( σ − α 0 ) + g ( σ + α 0 ) ) σ d σ σ ~ \displaystyle=\frac{1}{(A_{\phi}-1)\Omega_{\mathbf{a}}}\int^{s}_{\infty}(g(\sigma-\alpha_{0})+g(\sigma+\alpha_{0}))_{\sigma}\frac{d\sigma}{\tilde{\sigma}}
≪ | ( g ( s − α 0 ) + g ( s + α 0 ) ) 1 s ~ | + | ∫ ∞ s ( g ( σ − α 0 ) + g ( σ + α 0 ) ) d σ σ ~ 2 | ≪ s − 1 \displaystyle\ll\Bigl{|}(g(s-\alpha_{0})+g(s+\alpha_{0}))\frac{1}{\tilde{s}}\Bigr{|}+\biggl{|}\int^{s}_{\infty}(g(\sigma-\alpha_{0})+g(\sigma+\alpha_{0}))\frac{d\sigma}{\tilde{\sigma}^{2}}\biggr{|}\ll s^{-1}
with σ ~ = σ + x 0 / 2 , \tilde{\sigma}=\sigma+x_{0}/2, s ~ = s + x 0 / 2 \tilde{s}=s+x_{0}/2 and
α 0 = ( 1 / 4 + ν 0 ) Ω 𝐚 \alpha_{0}=(1/4+\nu_{0})\Omega_{\mathbf{a}} , which also implies
the convergence of these integrals. Then we may write
∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ = ∫ ∞ x ( 4 ( θ 0 + θ 1 ) ψ 0 − b 0 ) 2 ( A ϕ − ψ 0 2 ) d ξ ξ \displaystyle\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}=\int^{x}_{\infty}\frac{(4(\theta_{0}+\theta_{1})\psi_{0}-b_{0})}{2(A_{\phi}-\psi_{0}^{2})}\frac{d\xi}{\xi}
= \displaystyle=
2 ( θ 0 + θ 1 ) ∫ ∞ x ψ 0 A ϕ − ψ 0 2 d ξ ξ − b 0 ( x 0 ) 2 ∫ ∞ x 1 A ϕ − ψ 0 2 d ξ ξ + 4 Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) A ϕ − ψ 0 2 d ξ ξ \displaystyle 2(\theta_{0}+\theta_{1})\int^{x}_{\infty}\frac{\psi_{0}}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}-\frac{b_{0}(x_{0})}{2}\int^{x}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}+\frac{4}{\Omega_{\mathbf{a}}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}
= \displaystyle=
2 ( θ 0 + θ 1 ) A ϕ 1 / 2 ∫ ∞ s sn σ 1 − sn 2 σ d σ σ ~ − b 0 ( x 0 ) 2 A ϕ ∫ ∞ s 1 1 − sn 2 σ d σ σ ~ + 4 A ϕ Ω 𝐚 ∫ ∞ s g ( σ ) 1 − sn 2 σ d σ σ ~ , \displaystyle\frac{2(\theta_{0}+\theta_{1})}{A_{\phi}^{1/2}}\int^{s}_{\infty}\frac{\mathrm{sn}\,\sigma}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}}-\frac{b_{0}(x_{0})}{2A_{\phi}}\int^{s}_{\infty}\frac{1}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}}+\frac{4}{A_{\phi}\Omega_{\mathbf{a}}}\int^{s}_{\infty}\frac{g(\sigma)}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}},
(4.1)
with σ = ( ξ − x 0 ) / 2 \sigma=(\xi-x_{0})/2 , s = ( x − x 0 ) / 2 , s=(x-x_{0})/2, b 0 ( x 0 ) = β 0 − 2 ℰ 𝐚 Ω 𝐚 − 1 x 0 b_{0}(x_{0})=\beta_{0}-{2\mathcal{E}_{\mathbf{a}}}\Omega_{\mathbf{a}}^{-1}x_{0} .
On the last two lines of (4.1 ) the first two integrals converge,
and consequently, by Proposition 3.2 , so the integral
containing 𝔟 ( ξ ) \mathfrak{b}(\xi) or g ( σ ) g(\sigma) . Let us evaluate it. Set
𝒥 0 := ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ s g ( σ ) 1 − sn 2 σ d σ σ ~ = ∫ ∞ s ( g ( σ − α 0 ) + g ( σ + α 0 ) ) σ g ( σ ) d σ σ ~ . \mathcal{J}_{0}:=(A_{\phi}-1)\Omega_{\mathbf{a}}\int^{s}_{\infty}\frac{g(\sigma)}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}}=\int^{s}_{\infty}(g(\sigma-\alpha_{0})+g(\sigma+\alpha_{0}))_{\sigma}g(\sigma)\frac{d\sigma}{\tilde{\sigma}}.
For any sequence { s ν } \{s_{\nu}\} with s ν = ( x ν − x 0 ) / 2 , s_{\nu}=(x_{\nu}-x_{0})/2,
∫ s ν s g σ ( σ + α 0 ) g ( σ ) d σ σ ~ = \displaystyle\int^{s}_{s_{\nu}}g_{\sigma}(\sigma+\alpha_{0})g(\sigma)\frac{d\sigma}{\tilde{\sigma}}=
g ( σ + α 0 ) g ( σ ) σ ~ − 1 ] s s ν \displaystyle g(\sigma+\alpha_{0})g(\sigma)\tilde{\sigma}^{-1}\Bigr{]}^{s}_{s_{\nu}}
− ∫ s ν s g ( σ + α 0 ) g σ ( σ ) d σ σ ~ + ∫ s ν s g ( σ + α 0 ) g ( σ ) d σ σ ~ 2 \displaystyle-\int^{s}_{s_{\nu}}g(\sigma+\alpha_{0})g_{\sigma}(\sigma)\frac{d\sigma}{\tilde{\sigma}}+\int^{s}_{s_{\nu}}g(\sigma+\alpha_{0})g(\sigma)\frac{d\sigma}{\tilde{\sigma}^{2}}
= \displaystyle=
− ∫ s ν + α 0 s + α 0 g ( ρ ) g ρ ( ρ − α 0 ) d ρ ρ ~ − α 0 + O ( s − 1 ) + O ( s ν − 1 ) \displaystyle-\int^{s+\alpha_{0}}_{s_{\nu}+\alpha_{0}}g(\rho)g_{\rho}(\rho-\alpha_{0})\frac{d\rho}{\tilde{\rho}-\alpha_{0}}+O(s^{-1})+O(s^{-1}_{\nu})
= \displaystyle=
− ∫ s ν s g σ ( σ − α 0 ) g ( σ ) d σ σ ~ + O ( s − 1 ) + O ( s ν − 1 ) , \displaystyle-\int^{s}_{s_{\nu}}g_{\sigma}(\sigma-\alpha_{0})g(\sigma)\frac{d\sigma}{\tilde{\sigma}}+O(s^{-1})+O(s^{-1}_{\nu}),
which implies ℐ 0 ≪ s − 1 . \mathcal{I}_{0}\ll s^{-1}.
Thus we have the following crucial estimate.
Proposition 4.3 .
In S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) ,
∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ = \displaystyle\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}=
2 ( θ 0 + θ 1 ) ∫ ∞ x ψ 0 A ϕ − ψ 0 2 d ξ ξ \displaystyle 2(\theta_{0}+\theta_{1})\int^{x}_{\infty}\frac{\psi_{0}}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}
− b 0 ( x 0 ) 2 ∫ ∞ x 1 A ϕ − ψ 0 2 d ξ ξ + 4 Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) A ϕ − ψ 0 2 d ξ ξ ≪ x − 1 , \displaystyle-\frac{b_{0}(x_{0})}{2}\int^{x}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}+\frac{4}{\Omega_{\mathbf{a}}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}\ll x^{-1},
where each integral on the right-hand side is O ( x − 1 ) . O(x^{-1}).
Observe that
∫ ∞ x F 2 ( ψ 0 ) d ξ ξ 2 = \displaystyle\int^{x}_{\infty}F_{2}(\psi_{0})\frac{d\xi}{\xi^{2}}=
∫ ∞ x 2 ( 2 ( θ 0 − θ 1 ) θ ∞ ψ 0 + ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) ( 1 − ψ 0 2 ) ( A ϕ − ψ 0 2 ) d ξ ξ 2 \displaystyle\int^{x}_{\infty}\frac{2(2(\theta_{0}-\theta_{1})\theta_{\infty}\psi_{0}+(\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})}{(1-\psi_{0}^{2})(A_{\phi}-\psi_{0}^{2})}\frac{d\xi}{\xi^{2}}
= \displaystyle=
1 A ϕ ( A ϕ − 1 ) ( 2 ( θ 0 − θ 1 ) θ ∞ A ϕ 1 / 2 ∫ ∞ s ( A ϕ sn σ 1 − A ϕ sn 2 σ − sn σ 1 − sn 2 σ ) d σ σ ~ 2 \displaystyle\frac{1}{A_{\phi}(A_{\phi}-1)}\biggl{(}2(\theta_{0}-\theta_{1})\theta_{\infty}A_{\phi}^{1/2}\int^{s}_{\infty}\Bigl{(}\frac{A_{\phi}\mathrm{sn}\,\sigma}{1-A_{\phi}\mathrm{sn}^{2}\sigma}-\frac{\mathrm{sn}\,\sigma}{1-\mathrm{sn}^{2}\sigma}\Bigr{)}\frac{d\sigma}{\tilde{\sigma}^{2}}
+ ( ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) ∫ ∞ s ( A ϕ 1 − A ϕ sn 2 σ − 1 1 − sn 2 σ ) d σ σ ~ 2 ) . \displaystyle+((\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})\int^{s}_{\infty}\Bigl{(}\frac{A_{\phi}}{1-A_{\phi}\mathrm{sn}^{2}\sigma}-\frac{1}{1-\mathrm{sn}^{2}\sigma}\Bigr{)}\frac{d\sigma}{\tilde{\sigma}^{2}}\biggr{)}.
In the last line
∫ ∞ s A ϕ 1 − A ϕ sn 2 σ d σ σ ~ 2 = \displaystyle\int^{s}_{\infty}\frac{A_{\phi}}{1-A_{\phi}\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}^{2}}=
A ϕ ∫ ∞ s ( g ( σ − Ω 𝐚 / 4 ) + g ( σ + Ω 𝐚 / 4 ) ( 1 − A ϕ ) Ω 𝐚 + σ ) σ d σ σ ~ 2 \displaystyle{A_{\phi}}\int^{s}_{\infty}\Bigl{(}\frac{g(\sigma-\Omega_{\mathbf{a}}/4)+g(\sigma+\Omega_{\mathbf{a}}/4)}{(1-A_{\phi})\Omega_{\mathbf{a}}}+\sigma\Bigr{)}_{\!\sigma}\frac{d\sigma}{\tilde{\sigma}^{2}}
= \displaystyle=
− A ϕ s − 1 + O ( s − 2 ) , \displaystyle-A_{\phi}s^{-1}+O(s^{-2}),
and the remaining three integrals are O ( s − 2 ) . O(s^{-2}). Thus we have the following.
Proposition 4.4 .
In S ˇ cut ( ϕ , t ∞ , κ 0 , δ 0 ) \check{S}_{\mathrm{cut}}(\phi,t_{\infty},\kappa_{0},\delta_{0}) ,
∫ ∞ x F 2 ( ψ 0 ) d ξ ξ 2 = − 2 ( ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) A ϕ − 1 x − 1 + O ( x − 2 ) . \int^{x}_{\infty}F_{2}(\psi_{0})\frac{d\xi}{\xi^{2}}=-\frac{2((\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})}{A_{\phi}-1}x^{-1}+O(x^{-2}).
4.2. Proof of Proposition 4.1
By Proposition 3.2 , we have
h ( x ) = − ∫ ∞ x F 1 ( ψ 0 , b 0 ) d ξ ξ + ∫ ∞ x ( F 2 ( ψ 0 ) − 3 2 F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 + 1 2 𝒥 1 + O ( x − 2 μ ) h(x)=-\int^{x}_{\infty}F_{1}(\psi_{0},b_{0})\frac{d\xi}{\xi}+\int^{x}_{\infty}\Bigl{(}F_{2}(\psi_{0})-\frac{3}{2}F_{1}(\psi_{0},b_{0})^{2}\Bigr{)}\frac{d\xi}{\xi^{2}}+\frac{1}{2}\mathcal{J}_{1}+O(x^{-2\mu})
(4.2)
with
𝒥 1 = ∫ ∞ x 1 A ϕ − ψ 0 2 ∫ ∞ ξ ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ 1 ξ 1 2 d ξ ξ . \mathcal{J}_{1}=\int^{x}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\int^{\xi}_{\infty}(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi_{1}}{\xi_{1}^{2}}\frac{d\xi}{\xi}.
Then
𝒥 1 = \displaystyle\mathcal{J}_{1}=
∫ ∞ x 1 A ϕ − ψ 0 2 d ξ ξ ⋅ ∫ ∞ x ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ 1 ξ 1 2 \displaystyle\int^{x}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}\cdot\int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi_{1}}{\xi_{1}^{2}}
− ∫ ∞ x ∫ ∞ ξ 1 A ϕ − ψ 0 2 d ξ 1 ξ 1 ⋅ ( A ϕ − ψ 0 2 ) ( 2 F 2 ( ψ 0 ) − F 1 ( ψ 0 , b 0 ) 2 ) d ξ ξ 2 ≪ x − 2 , \displaystyle-\int^{x}_{\infty}\int^{\xi}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi_{1}}{\xi_{1}}\cdot(A_{\phi}-\psi_{0}^{2})(2F_{2}(\psi_{0})-F_{1}(\psi_{0},b_{0})^{2})\frac{d\xi}{\xi^{2}}\ll x^{-2},
since ∫ ∞ x ( A ϕ − ψ 0 2 ) − 1 ξ − 1 𝑑 ξ ≪ x − 1 . \int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})^{-1}\xi^{-1}d\xi\ll x^{-1}.
Insertion of 𝒥 1 \mathcal{J}_{1} into (4.2 ) combined with Propositions
4.3 and 4.4 yields the desired expression of h ( x ) . h(x).
Thus we have Proposition 4.1 .
4.3. Further calculation of integrals for h ( x ) h(x)
In the expression of h ( x ) h(x) in Proposition 4.1 , the second
integral becomes
∫ ∞ x \displaystyle\int^{x}_{\infty}
F 1 ( ψ 0 , b 0 ) 2 d ξ ξ 2 = 2 A ϕ ( θ 0 + θ 1 ) 2 ∫ ∞ s ( 1 ( 1 − sn 2 σ ) 2 − 1 1 − sn 2 σ ) d σ σ ~ 2 \displaystyle F_{1}(\psi_{0},b_{0})^{2}\frac{d\xi}{\xi^{2}}=\frac{2}{A_{\phi}}(\theta_{0}+\theta_{1})^{2}\int^{s}_{\infty}\Bigl{(}\frac{1}{(1-\mathrm{sn}^{2}\sigma)^{2}}-\frac{1}{1-\mathrm{sn}^{2}\sigma}\Bigr{)}\frac{d\sigma}{\tilde{\sigma}^{2}}
− ( θ 0 + θ 1 ) A ϕ 3 / 2 ∫ ∞ s ( b 0 ( x 0 ) − 8 Ω 𝐚 − 1 g ( σ ) ) sn σ ( 1 − sn 2 σ ) 2 d σ σ ~ 2 \displaystyle-\frac{(\theta_{0}+\theta_{1})}{A_{\phi}^{3/2}}\int^{s}_{\infty}\frac{(b_{0}(x_{0})-8\Omega^{-1}_{\mathbf{a}}g(\sigma))\mathrm{sn}\,\sigma}{(1-\mathrm{sn}^{2}\sigma)^{2}}\frac{d\sigma}{\tilde{\sigma}^{2}}
+ 1 8 A ϕ 2 ∫ ∞ s b 0 ( x 0 ) 2 − 16 Ω 𝐚 − 1 b 0 ( x 0 ) g ( σ ) + 64 Ω 𝐚 − 2 g ( σ ) 2 ) ( 1 − sn 2 σ ) 2 d σ σ ~ 2 \displaystyle+\frac{1}{8A_{\phi}^{2}}\int^{s}_{\infty}\frac{b_{0}(x_{0})^{2}-16\Omega^{-1}_{\mathbf{a}}b_{0}(x_{0})g(\sigma)+64\Omega^{-2}_{\mathbf{a}}g(\sigma)^{2})}{(1-\mathrm{sn}^{2}\sigma)^{2}}\frac{d\sigma}{\tilde{\sigma}^{2}}
= \displaystyle=
4 ( θ 0 + θ 1 ) 2 3 ( A ϕ − 1 ) x − 1 + b 0 ( x 0 ) 2 12 A ϕ ( A ϕ − 1 ) x − 1 + 4 b 0 ( x 0 ) 3 A ϕ ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) d ξ ξ 2 \displaystyle\frac{4(\theta_{0}+\theta_{1})^{2}}{3(A_{\phi}-1)}x^{-1}+\frac{b_{0}(x_{0})^{2}}{12A_{\phi}(A_{\phi}-1)}x^{-1}+\frac{4b_{0}(x_{0})}{3A_{\phi}(A_{\phi}-1)\Omega_{\mathbf{a}}}\int^{x}_{\infty}\mathfrak{b}(\xi)\frac{d\xi}{\xi^{2}}
+ 16 ( θ 0 + θ 1 ) Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) ψ 0 ( A ϕ − ψ 0 2 ) 2 d ξ ξ 2 + 16 Ω 𝐚 2 ∫ ∞ x 𝔟 ( ξ ) 2 ( A ϕ − ψ 0 2 ) 2 d ξ ξ 2 + O ( x − 2 ) . \displaystyle+\frac{16(\theta_{0}+\theta_{1})}{\Omega_{\mathbf{a}}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)\psi_{0}}{(A_{\phi}-\psi_{0}^{2})^{2}}\frac{d\xi}{\xi^{2}}+\frac{16}{\Omega_{\mathbf{a}}^{2}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)^{2}}{(A_{\phi}-\psi_{0}^{2})^{2}}\frac{d\xi}{\xi^{2}}+O(x^{-2}).
(4.3)
This is obtained by using
∫ ∞ s 1 ( 1 − sn 2 σ ) 2 d σ σ ~ 2 = A ϕ 3 ( A ϕ − 1 ) s − 1 + O ( s − 2 ) , \displaystyle\int^{s}_{\infty}\frac{1}{(1-\mathrm{sn}^{2}\sigma)^{2}}\frac{d\sigma}{\tilde{\sigma}^{2}}=\frac{A_{\phi}}{3(A_{\phi}-1)}s^{-1}+O(s^{-2}),
∫ ∞ s 1 1 − sn 2 σ d σ σ ~ 2 ≪ s − 2 , ∫ ∞ s sn σ ( 1 − sn 2 σ ) 2 d σ σ ~ 2 ≪ s − 2 \displaystyle\int^{s}_{\infty}\frac{1}{1-\mathrm{sn}^{2}\sigma}\frac{d\sigma}{\tilde{\sigma}^{2}}\ll s^{-2},\quad\int^{s}_{\infty}\frac{\mathrm{sn}\,\sigma}{(1-\mathrm{sn}^{2}\sigma)^{2}}\frac{d\sigma}{\tilde{\sigma}^{2}}\ll s^{-2}
and
∫ ∞ s g ( σ ) ( 1 − sn 2 σ ) 2 d σ σ ~ 2 = − A ϕ 3 ( A ϕ − 1 ) ∫ ∞ s g ( σ ) d σ σ ~ 2 + O ( s − 2 ) . \int^{s}_{\infty}\frac{g(\sigma)}{(1-\mathrm{sn}^{2}\sigma)^{2}}\frac{d\sigma}{\tilde{\sigma}^{2}}=-\frac{A_{\phi}}{3(A_{\phi}-1)}\int^{s}_{\infty}g(\sigma)\frac{d\sigma}{\tilde{\sigma}^{2}}+O(s^{-2}).
In deriving the last equality we note the following:
∫ ∞ s ( g ( σ + α 0 ) + g ( σ − α 0 ) ) σ g ( σ ) d σ σ ~ 2 , ∫ ∞ s ( g σ ( σ + α 0 ) + g σ ( σ − α 0 ) ) σ g σ ( σ ) d σ σ ~ 2 ≪ s − 2 , \int^{s}_{\infty}(g(\sigma+\alpha_{0})+g(\sigma-\alpha_{0}))_{\sigma}g(\sigma)\frac{d\sigma}{\tilde{\sigma}^{2}},\,\,\,\int^{s}_{\infty}(g_{\sigma}(\sigma+\alpha_{0})+g_{\sigma}(\sigma-\alpha_{0}))_{\sigma}g_{\sigma}(\sigma)\frac{d\sigma}{\tilde{\sigma}^{2}}\ll s^{-2},
which are shown by the same way as in the proof of 𝒥 0 ≪ s − 1 \mathcal{J}_{0}\ll s^{-1}
in Section 4.1 .
By (4.1 ) and (4.3 ), h ( x ) h(x) is written in the form
h ( x ) = \displaystyle h(x)=
− 2 ( 2 θ 0 2 + 2 θ 1 2 + θ ∞ 2 ) A ϕ − 1 x − 1 − 2 ( θ 0 + θ 1 ) ∫ ∞ x ψ 0 A ϕ − ψ 0 2 d ξ ξ \displaystyle-\frac{2(2\theta_{0}^{2}+2\theta_{1}^{2}+\theta_{\infty}^{2})}{A_{\phi}-1}x^{-1}-2(\theta_{0}+\theta_{1})\int^{x}_{\infty}\frac{\psi_{0}}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}
+ b 0 ( x 0 ) 2 ∫ ∞ x 1 A ϕ − ψ 0 2 d ξ ξ − 4 Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) A ϕ − ψ 0 2 d ξ ξ \displaystyle+\frac{b_{0}(x_{0})}{2}\int^{x}_{\infty}\frac{1}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}-\frac{4}{\Omega_{\mathbf{a}}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi}
− b 0 ( x 0 ) 2 8 A ϕ ( A ϕ − 1 ) x − 1 − 2 b 0 ( x 0 ) A ϕ ( A ϕ − 1 ) Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) d ξ ξ 2 \displaystyle-\frac{b_{0}(x_{0})^{2}}{8A_{\phi}(A_{\phi}-1)}x^{-1}-\frac{2b_{0}(x_{0})}{A_{\phi}(A_{\phi}-1)\Omega_{\mathbf{a}}}\int^{x}_{\infty}\mathfrak{b}(\xi)\frac{d\xi}{\xi^{2}}
− 24 Ω 𝐚 ( θ 0 + θ 1 ) ∫ ∞ x 𝔟 ( ξ ) ψ 0 ( A ϕ − ψ 0 2 ) 2 d ξ ξ 2 − 24 Ω 𝐚 2 ∫ ∞ x 𝔟 ( ξ ) 2 ( A ϕ − ψ 0 2 ) 2 d ξ ξ 2 + O ( x − 2 ) . \displaystyle-\frac{24}{\Omega_{\mathbf{a}}}(\theta_{0}+\theta_{1})\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)\psi_{0}}{(A_{\phi}-\psi_{0}^{2})^{2}}\frac{d\xi}{\xi^{2}}-\frac{24}{\Omega_{\mathbf{a}}^{2}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)^{2}}{(A_{\phi}-\psi_{0}^{2})^{2}}\frac{d\xi}{\xi^{2}}+O(x^{-2}).
4.4. Proof of Theorem 2.3
Recalling Remark 4.1 and combining
∫ ∞ x ( A ϕ − ψ 0 2 ) F 2 ( ψ 0 ) d ξ ξ 2 = − 2 ( ( θ 0 − θ 1 ) 2 + θ ∞ 2 ) x − 1 + O ( x − 2 ) \int^{x}_{\infty}(A_{\phi}-\psi_{0}^{2})F_{2}(\psi_{0})\frac{d\xi}{\xi^{2}}=-2((\theta_{0}-\theta_{1})^{2}+\theta_{\infty}^{2})x^{-1}+O(x^{-2})
with the second equality of Proposition 3.2 , we obtain Theorem
2.3 by the same argument as in the derivation of Theorems 2.1
and 2.2 . Furthermore we have
b ( x ) = \displaystyle b(x)=
b 0 ( x ) + b 0 ′ ( x ) h ( x ) − 4 ( 2 θ 0 2 + 2 θ 1 2 + θ ∞ 2 ) x − 1 \displaystyle b_{0}(x)+b^{\prime}_{0}(x)h(x)-4(2\theta_{0}^{2}+2\theta_{1}^{2}+\theta_{\infty}^{2})x^{-1}
− 16 ( θ 0 + θ 1 ) Ω 𝐚 ∫ ∞ x 𝔟 ( ξ ) ψ 0 A ϕ − ψ 0 2 d ξ ξ 2 − 16 Ω 𝐚 2 ∫ ∞ x 𝔟 ( ξ ) 2 A ϕ − ψ 0 2 d ξ ξ 2 + O ( x − 2 ) \displaystyle-\frac{16(\theta_{0}+\theta_{1})}{\Omega_{\mathbf{a}}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)\psi_{0}}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi^{2}}-\frac{16}{\Omega_{\mathbf{a}}^{2}}\int^{x}_{\infty}\frac{\mathfrak{b}(\xi)^{2}}{A_{\phi}-\psi_{0}^{2}}\frac{d\xi}{\xi^{2}}+O(x^{-2})
as in Remark 2.2 .