This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two new lower bounds for the smallest singular value

Shun Xu111Email: xushun@mail.ustc.edu.cn
Abstract

In this paper, we obtain two new lower bounds for the smallest singular value of nonsingular matrices which is better than the bound presented by Zou [1], Lin and Xie [2] under certain circumstances.

keywords:
Singular values, Frobenius norm, determinant.
journal: Applied Mathematics and Computation
\affiliation

[inst1]organization=School of Mathematical Sciences, addressline=University of Science and Technology of China, city=Hefei, postcode=230026, country=China

1 Introduction

Let Mn(n2)M_{n}(n\geqslant 2) be the space of n×nn\times n complex matrices. Let σi\sigma_{i} (i=1,,n)(i=1,\cdots,n) be the singular values of AMnA\in M_{n} which is nonsingular and suppose that σ1σ2σn1σn>0\sigma_{1}\geqslant\sigma_{2}\geqslant\cdots\geqslant\sigma_{n-1}\geqslant\sigma_{n}>0. For A=[aij]MnA=\left[a_{ij}\right]\in M_{n}, the Frobenius norm of AA is defined by

AF=(i,j=1n|aij|2)1/2=tr(AHA)12\|A\|_{F}=\left(\sum_{i,j=1}^{n}\left|a_{ij}\right|^{2}\right)^{1/2}={\rm tr}\left(A^{H}A\right)^{\frac{1}{2}}

where AHA^{H} is the conjugate transpose of AA. The relationship between the Frobenius norm and singular values is

AF2=σ12+σ22++σn2\|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}

It is well known that lower bounds for the smallest singular value σn\sigma_{n} of a nonsingular matrix AMnA\in M_{n} have many potential theoretical and practical applications [3, 4]. Yu and Gu [5] obtained a lower bound for σn\sigma_{n} as follows:

σn|detA|(n1AF2)(n1)/2=l>0\sigma_{n}\geqslant|\det A|\cdot\left(\frac{n-1}{\|A\|_{F}^{2}}\right)^{(n-1)/2}=l>0

The above inequality is also shown in [6]. In [1], Zou improved the above inequality by showing that

σn|detA|(n1AF2l2)(n1)/2=l0\sigma_{n}\geqslant|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{(n-1)/2}=l_{0}

In [2], Lin, Minghua and Xie, Mengyan improve a lower bound for smallest singular value of matrices by showing that aa is the smallest positive solution to the equation

x2(AF2x2)n1=|detA|2(n1)n1.x^{2}\left(\|A\|_{F}^{2}-x^{2}\right)^{n-1}=|{\det}A|^{2}(n-1)^{n-1}.

and σa>l0\sigma\geqslant a>l_{0}.

In this paper, we obtain two new lower bounds for the smallest singular value of nonsingular matrices. We give some numerical examples which will show that our result is better than l0l_{0} and aa under certain circumstances.

2 Main results

Lemma 1.

Let

l0=|detA|(n1AF2l2)(n1)/2l_{0}=|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{(n-1)/2}

then σn>l0\sigma_{n}>l_{0}.

Proof.

In [1], we have

σn|detA|(n1AF2σn2)(n1)/2\sigma_{n}\geqslant|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}}\right)^{(n-1)/2}

since σnl0>l\sigma_{n}\geqslant l_{0}>l, thus

σ\displaystyle\sigma |detA|(n1AF2σn2)(n1)/2\displaystyle\geqslant|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}}\right)^{(n-1)/2}
|detA|(n1AF2l02)(n1)/2\displaystyle\geqslant|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l_{0}^{2}}\right)^{(n-1)/2}
>|detA|(n1AF2l2)(n1)/2=l0\displaystyle>|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{(n-1)/2}=l_{0}

so σn>l0\sigma_{n}>l_{0}. ∎

Theorem 1.

Let AMnA\in M_{n} be nonsingular. Then

(l02+|det(l02InAHA)|(n1AF2nl02)n1)1/2=l1\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-nl_{0}^{2}}\right)^{n-1}\right)^{1/2}=l_{1}

then σnl1\sigma_{n}\geqslant l_{1}, where

l=|detA|(n1AF2)n12,l0=|detA|(n1AF2l2)n12l=\left|\det A\right|\left(\frac{n-1}{\|A\|_{F}^{2}}\right)^{\frac{n{-1}}{2}},l_{0}=\left|\det A\right|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{\frac{n{-1}}{2}}
Proof.

Let 0<λ<σn20<\lambda<\sigma_{n}^{2}, denote

|(λσ12)(λσ22)(λσn12)|(σ12++σn12(n1)λn1)n1\left|\left(\lambda-\sigma_{1}^{2}\right)\left(\lambda-\sigma_{2}^{2}\right)\cdots\left(\lambda-\sigma_{n-1}^{2}\right)\right|\leqslant\left(\frac{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}{n-1}\right)^{n-1}

Since

|(λσ12)(λσ22)(λσn12)|\displaystyle\left|\left(\lambda-\sigma_{1}^{2}\right)\left(\lambda-\sigma_{2}^{2}\right)\cdots\left(\lambda-\sigma_{n-1}^{2}\right)\right| =|(λσ12)(λσ22)(λσn2)|σn2λ\displaystyle=\frac{\left|\left(\lambda-\sigma_{1}^{2}\right)\left(\lambda-\sigma_{2}^{2}\right)\cdots\left(\lambda-\sigma_{n}^{2}\right)\right|}{\sigma_{n}^{2}-\lambda}
=|det(λInAHA)|σn2λ\displaystyle=\frac{|\det(\lambda I_{n}-A^{H}A)|}{\sigma_{n}^{2}-\lambda}

then

|det(λInAHA)|σn2λ(σ12++σn12(n1)λn1)n1\frac{|\det(\lambda I_{n}-A^{H}A)|}{\sigma_{n}^{2}-\lambda}\leqslant\left(\frac{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}{n-1}\right)^{n-1}
σn2λ+|det(λInAHA)|(n1σ12++σn12(n1)λ)n1\sigma_{n}^{2}\geqslant\lambda+|\det(\lambda I_{n}-A^{H}A)|\left(\frac{n-1}{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}\right)^{n-1}
σn(λ+|det(λInAHA)|(n1σ12++σn12(n1)λ)n1)1/2\sigma_{n}\geqslant\left(\lambda+|\det(\lambda I_{n}-A^{H}A)|\left(\frac{n-1}{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}\right)^{n-1}\right)^{1/2}

By Lemma 1, l0<σnl_{0}<\sigma_{n}, l02<σn2l_{0}^{2}<\sigma_{n}^{2}, let λ=l02\lambda=l_{0}^{2}, then

σn(l02+|det(l02InAHA)|(n1AF2σn2(n1)l02)n1)1/2\sigma_{n}\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2} (1)

Therefore

σn(l02+|det(l02InAHA)|(n1AF2nl02)n1)1/2\sigma_{n}\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-nl_{0}^{2}}\right)^{n-1}\right)^{1/2}

Theorem 2.

Let AMnA\in M_{n} be nonsingular. Let

bk+1=(l02+|det(l02InAHA)|(n1AF2(n1)l02bk2)n1)1/2,k=1,2,b_{k+1}=\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}-b_{k}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots

with l=|detA|(n1AF2)n12,l0=|detA|(n1AF2l2)n12l=\left|\det A\right|\left(\frac{n-1}{\|A\|_{F}^{2}}\right)^{\frac{n{-1}}{2}},l_{0}=\left|\det A\right|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{\frac{n{-1}}{2}}

b1=(l02+|det(l02InAHA)|(n1AF2(n1)l02)n1)1/2b_{1}=\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}

then 0<bk<bk+1σn,k=1,2,0<b_{k}<b_{k+1}\leqslant\sigma_{n},k=1,2,\cdots, limkbk\lim_{k\to\infty}b_{k} exists.

Proof.

We show by induction on kk that

σnbk+1>bk>0\sigma_{n}\geqslant b_{k+1}>b_{k}>0

By (1), we have

σn\displaystyle\sigma_{n} (l02+|det(l02InAHA)|(n1AF2σn2(n1)l02)n1)1/2\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}
(l02+|det(l02InAHA)|(n1AF2(n1)l02)n1)1/2=b1\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{1}

so σnb1\sigma_{n}\geqslant b_{1}, then

σn\displaystyle\sigma_{n} (l02+|det(l02InAHA)|(n1AF2σn2(n1)l02)n1)1/2\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}
(l02+|det(l02InAHA)|(n1AF2(n1)l02b12)n1)1/2=b2\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}-b_{1}^{2}}\right)^{n-1}\right)^{1/2}=b_{2}
>(l02+|det(l02InAHA)|(n1AF2(n1)l02)n1)1/2=b1>0\displaystyle>\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{1}>0

When k=1k=1, we have

σnb2>b1>0\sigma_{n}\geqslant b_{2}>b_{1}>0

Assume that our claim is true for k=mk=m, that is σnbm+1>bm>0.\sigma_{n}\geqslant b_{m+1}>b_{m}>0. Now we consider the case when k=m+1k=m+1. By (1), we have

σn\displaystyle\sigma_{n} (l02+|det(l02InAHA)|(n1AF2σn2(n1)l02)n1)1/2\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-\sigma_{n}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}
(l02+|det(l02InAHA)|(n1AF2bm+12(n1)l02)n1)1/2=bm+2\displaystyle\geqslant\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-b_{m+1}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{m+2}
>(l02+|det(l02InAHA)|(n1AF2bm2(n1)l02)n1)1/2=bm+1>0\displaystyle>\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-b_{m}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{m+1}>0

Hence σnbm+2>bm+1>0\sigma_{n}\geqslant b_{m+2}>b_{m+1}>0. This proves σnbk+1>bk>0,k=1,2,\sigma_{n}\geqslant b_{k+1}>b_{k}>0,k=1,2,\cdots. By the well known monotone convergence theorem, limkbk\lim_{k\to\infty}b_{k} exists. ∎

Theorem 3.

Let b=limkbkb=\lim_{k\rightarrow\infty}b_{k},

f(x)=(l02+|det(l02InAHA)|(n1AF2x2(n1)l02)n1)1/2f(x)=\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-x^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}

then bb is the smallest positive solution to the equation x=f(x)x=f(x),and σnb\sigma_{n}\geqslant b.

Proof.

Let x0x_{0} is the smallest positive solution to the equation x=f(x)x=f(x), we show by induction on kk that x0>bk,k=1,2,x_{0}>b_{k},k=1,2,\cdots. When k=1k=1

x0\displaystyle x_{0} =(l02+|det(l02InAHA)|(n1AF2x02(n1)l02)n1)1/2\displaystyle=\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-x_{0}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}
>(l02+|det(l02InAHA)|(n1AF2(n1)l02)n1)1/2=b1\displaystyle>\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{1}

Assume that our claim is true for k=mk=m, that is σn>bm\sigma_{n}>b_{m}. Now we consider the case when k=m+1k=m+1.

x0\displaystyle x_{0} =(l02+|det(l02InAHA)|(n1AF2x02(n1)l02)n1)1/2\displaystyle=\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-x_{0}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}
>(l02+|det(l02InAHA)|(n1AF2bm2(n1)l02)n1)1/2=bm+1\displaystyle>\left(l_{0}^{2}+|\det(l_{0}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-b_{m}^{2}-(n-1)l_{0}^{2}}\right)^{n-1}\right)^{1/2}=b_{m+1}

Hence x0>bm+1x_{0}>b_{m+1}. This proves x0>bk,k=1,2,x_{0}>b_{k},k=1,2,\cdots. Since bb is a positive solution to the equation x=f(x)x=f(x) and x0>bk,k=1,2,x_{0}>b_{k},k=1,2,\cdots, then b=x0b=x_{0}. Therefore bb is the smallest positive solution to the equation x=f(x)x=f(x) and σnb\sigma_{n}\geqslant b. ∎

Therefore we obtain two new lower bounds l1l_{1} and bb for the smallest singular value of nonsingular matrices.

3 Numerical examples

We use Examples 1 and Example 2 to compare the values of l,l0,l1l,l_{0},l_{1}.

Example 1.

Let

A=[443342410]A=\left[\begin{array}[]{ccc}4&-4&-3\\ 3&4&2\\ 4&1&0\end{array}\right]

Then σmin=0.0231\sigma_{\min}=0.0231, and

l=0.0229885l=0.0229885
l0=0.0229886l_{0}=0.0229886

Our result:

l1=0.0230691l_{1}=0.0230691
Example 2.

Let

A=[400150054]A=\left[\begin{array}[]{ccc}4&0&0\\ -1&5&0\\ 0&5&4\end{array}\right]

Then

l=1.92771l=1.92771
l0=2.01806l_{0}=2.01806

Our result:

l1=2.31515l_{1}=2.31515

Next we use the following example to compare the values of a,b,l1a,b,l_{1}.

Example 3.

Let

A=[320195057]A=\left[\begin{array}[]{lll}3&2&0\\ 1&9&5\\ 0&5&7\end{array}\right]

Then

a=1.0367a=1.0367

Our result:

l1=1.3434l_{1}=1.3434
b=1.3455b=1.3455

4 Acknowledgments

I would like to express my sincere gratitude to professor Xiao-Wu Chen from University of Science and Technology of China.

References

  • [1] L. Zou, A lower bound for the smallest singular value, J. Math. Inequal 6 (4) (2012) 625–629.
  • [2] M. Lin, M. Xie, On some lower bounds for smallest singular value of matrices, Applied Mathematics Letters 121 (2021) 107411.
  • [3] R. A. Horn, C. R. Johnson, Matrix analysis, New York (1985).
  • [4] R. A. Horn, R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, 1994.
  • [5] Y. Yisheng, G. Dunhe, A note on a lower bound for the smallest singular value, Linear algebra and its Applications 253 (1-3) (1997) 25–38.
  • [6] G. Piazza, T. Politi, An upper bound for the condition number of a matrix in spectral norm, Journal of Computational and Applied Mathematics 143 (1) (2002) 141–144.