This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Pierre Auger Collaboration

Ultrahigh-energy neutrino follow-up of Gravitational Wave events
GW150914 and GW151226 with the Pierre Auger Observatory

A. Aab Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    P. Abreu Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    M. Aglietta Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Italy    I. Al Samarai Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    I.F.M. Albuquerque Universidade de São Paulo, Inst. de Física, São Paulo, Brazil    I. Allekotte Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    A. Almela Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    J. Alvarez Castillo Universidad Nacional Autónoma de México, México    J. Alvarez-Muñiz Universidad de Santiago de Compostela, Spain    M. Ambrosio INFN, Sezione di Napoli, Italy    G.A. Anastasi Gran Sasso Science Institute (INFN), L’Aquila, Italy    L. Anchordoqui Department of Physics and Astronomy, Lehman College, City University of New York, USA    B. Andrada Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    S. Andringa Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    C. Aramo INFN, Sezione di Napoli, Italy    F. Arqueros Universidad Complutense de Madrid, Spain    N. Arsene University of Bucharest, Physics Department, Romania    H. Asorey Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina Universidad Industrial de Santander, Colombia    P. Assis Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    J. Aublin Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    G. Avila Observatorio Pierre Auger, Argentina Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Argentina    A.M. Badescu University Politehnica of Bucharest, Romania    A. Balaceanu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    R.J. Barreira Luz Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    C. Baus Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    J.J. Beatty Ohio State University, USA    K.H. Becker Bergische Universität Wuppertal, Department of Physics, Germany    J.A. Bellido University of Adelaide, Australia    C. Berat Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, France    M.E. Bertaina Università Torino, Dipartimento di Fisica, Italy INFN, Sezione di Torino, Italy    X. Bertou Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    P.L. Biermann Max-Planck-Institut für Radioastronomie, Bonn, Germany    P. Billoir Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    J. Biteau Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    S.G. Blaess University of Adelaide, Australia    A. Blanco Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    J. Blazek Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    C. Bleve Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    M. Boháčová Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    D. Boncioli INFN Laboratori Nazionali del Gran Sasso, Italy now at Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany    C. Bonifazi Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil    N. Borodai Institute of Nuclear Physics PAN, Poland    A.M. Botti Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    J. Brack Colorado State University, USA    I. Brancus “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    T. Bretz RWTH Aachen University, III. Physikalisches Institut A, Germany    A. Bridgeman Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    F.L. Briechle RWTH Aachen University, III. Physikalisches Institut A, Germany    P. Buchholz Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    A. Bueno Universidad de Granada and C.A.F.P.E., Spain    S. Buitink Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    M. Buscemi Università di Catania, Dipartimento di Fisica e Astronomia, Italy INFN, Sezione di Catania, Italy    K.S. Caballero-Mora Universidad Autónoma de Chiapas, México    L. Caccianiga Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    A. Cancio Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    F. Canfora Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    L. Caramete Institute of Space Science, Romania    R. Caruso Università di Catania, Dipartimento di Fisica e Astronomia, Italy INFN, Sezione di Catania, Italy    A. Castellina Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Italy    G. Cataldi INFN, Sezione di Lecce, Italy    L. Cazon Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    R. Cester Università Torino, Dipartimento di Fisica, Italy INFN, Sezione di Torino, Italy    A.G. Chavez Universidad Michoacana de San Nicolás de Hidalgo, México    J.A. Chinellato Universidade Estadual de Campinas (UNICAMP), Brazil    J. Chudoba Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    R.W. Clay University of Adelaide, Australia    R. Colalillo Università di Napoli “Federico II“, Dipartimento di Fisica “Ettore Pancini“, Italy INFN, Sezione di Napoli, Italy    A. Coleman Pennsylvania State University, USA    L. Collica INFN, Sezione di Torino, Italy    M.R. Coluccia Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    R. Conceição Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    F. Contreras Observatorio Pierre Auger, Argentina Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Argentina    M.J. Cooper University of Adelaide, Australia    S. Coutu Pennsylvania State University, USA    C.E. Covault Case Western Reserve University, USA    J. Cronin University of Chicago, USA    S. D’Amico Università del Salento, Dipartimento di Ingegneria, Italy INFN, Sezione di Lecce, Italy    B. Daniel Universidade Estadual de Campinas (UNICAMP), Brazil    S. Dasso Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Argentina Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires, Argentina    K. Daumiller Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    B.R. Dawson University of Adelaide, Australia    R.M. de Almeida Universidade Federal Fluminense, Brazil    S.J. de Jong Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Netherlands    G. De Mauro Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    J.R.T. de Mello Neto Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil    I. De Mitri Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    J. de Oliveira Universidade Federal Fluminense, Brazil    V. de Souza Universidade de São Paulo, Inst. de Física de São Carlos, São Carlos, Brazil    J. Debatin Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    O. Deligny Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    C. Di Giulio Università di Roma “Tor Vergata”, Dipartimento di Fisica, Italy INFN, Sezione di Roma “Tor Vergata“, Italy    A. Di Matteo Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, Italy INFN, Gruppo Collegato dell’Aquila, Italy    M.L. Díaz Castro Universidade Estadual de Campinas (UNICAMP), Brazil    F. Diogo Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    C. Dobrigkeit Universidade Estadual de Campinas (UNICAMP), Brazil    J.C. D’Olivo Universidad Nacional Autónoma de México, México    A. Dorofeev Colorado State University, USA    R.C. dos Anjos Universidade Federal do Paraná, Setor Palotina, Brazil    M.T. Dova IFLP, Universidad Nacional de La Plata and CONICET, Argentina    A. Dundovic Universität Hamburg, II. Institut für Theoretische Physik, Germany    J. Ebr Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    R. Engel Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Erdmann RWTH Aachen University, III. Physikalisches Institut A, Germany    M. Erfani Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    C.O. Escobar Fermi National Accelerator Laboratory, USA Universidade Estadual de Campinas (UNICAMP), Brazil    J. Espadanal Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    A. Etchegoyen Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    H. Falcke Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Netherlands    K. Fang University of Chicago, USA    G. Farrar New York University, USA    A.C. Fauth Universidade Estadual de Campinas (UNICAMP), Brazil    N. Fazzini Fermi National Accelerator Laboratory, USA    B. Fick Michigan Technological University, USA    J.M. Figueira Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    A. Filipčič Experimental Particle Physics Department, J. Stefan Institute, Slovenia Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    O. Fratu University Politehnica of Bucharest, Romania    M.M. Freire Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Argentina    T. Fujii University of Chicago, USA    A. Fuster Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    R. Gaior Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    B. García Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM) and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Argentina    D. Garcia-Pinto Universidad Complutense de Madrid, Spain    F. Gaté    H. Gemmeke Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    A. Gherghel-Lascu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    P.L. Ghia Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    U. Giaccari Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil    M. Giammarchi INFN, Sezione di Milano, Italy    M. Giller University of Łódź, Faculty of Astrophysics, Poland    D. Głas University of Łódź, Faculty of High-Energy Astrophysics, Poland    C. Glaser RWTH Aachen University, III. Physikalisches Institut A, Germany    H. Glass Fermi National Accelerator Laboratory, USA    G. Golup Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    M. Gómez Berisso Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    P.F. Gómez Vitale Observatorio Pierre Auger, Argentina Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Argentina    N. González Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    B. Gookin Colorado State University, USA    A. Gorgi Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Italy    P. Gorham University of Hawaii, USA    P. Gouffon Universidade de São Paulo, Inst. de Física, São Paulo, Brazil    A.F. Grillo INFN Laboratori Nazionali del Gran Sasso, Italy    T.D. Grubb University of Adelaide, Australia    F. Guarino Università di Napoli “Federico II“, Dipartimento di Fisica “Ettore Pancini“, Italy INFN, Sezione di Napoli, Italy    G.P. Guedes Universidade Estadual de Feira de Santana (UEFS), Brazil    M.R. Hampel Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    P. Hansen IFLP, Universidad Nacional de La Plata and CONICET, Argentina    D. Harari Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    T.A. Harrison University of Adelaide, Australia    J.L. Harton Colorado State University, USA    Q. Hasankiadeh KVI – Center for Advanced Radiation Technology, University of Groningen, Netherlands    A. Haungs Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    T. Hebbeker RWTH Aachen University, III. Physikalisches Institut A, Germany    D. Heck Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    P. Heimann Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    A.E. Herve Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    G.C. Hill University of Adelaide, Australia    C. Hojvat Fermi National Accelerator Laboratory, USA    E. Holt Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    P. Homola Institute of Nuclear Physics PAN, Poland    J.R. Hörandel Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Netherlands    P. Horvath Palacky University, RCPTM, Czech Republic    M. Hrabovský Palacky University, RCPTM, Czech Republic    T. Huege Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    J. Hulsman Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    A. Insolia Università di Catania, Dipartimento di Fisica e Astronomia, Italy INFN, Sezione di Catania, Italy    P.G. Isar Institute of Space Science, Romania    I. Jandt Bergische Universität Wuppertal, Department of Physics, Germany    S. Jansen Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Netherlands    J.A. Johnsen Colorado School of Mines, USA    M. Josebachuili Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    A. Kääpä Bergische Universität Wuppertal, Department of Physics, Germany    O. Kambeitz Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    K.H. Kampert Bergische Universität Wuppertal, Department of Physics, Germany    P. Kasper Fermi National Accelerator Laboratory, USA    I. Katkov Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    B. Keilhauer Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    E. Kemp Universidade Estadual de Campinas (UNICAMP), Brazil    J. Kemp RWTH Aachen University, III. Physikalisches Institut A, Germany    R.M. Kieckhafer Michigan Technological University, USA    H.O. Klages Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Kleifges Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    J. Kleinfeller Observatorio Pierre Auger, Argentina    R. Krause RWTH Aachen University, III. Physikalisches Institut A, Germany    N. Krohm Bergische Universität Wuppertal, Department of Physics, Germany    D. Kuempel RWTH Aachen University, III. Physikalisches Institut A, Germany    G. Kukec Mezek Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    N. Kunka Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    A. Kuotb Awad Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    D. LaHurd Case Western Reserve University, USA    M. Lauscher RWTH Aachen University, III. Physikalisches Institut A, Germany    P. Lebrun Fermi National Accelerator Laboratory, USA    R. Legumina University of Łódź, Faculty of Astrophysics, Poland    M.A. Leigui de Oliveira Universidade Federal do ABC (UFABC), Brazil    A. Letessier-Selvon Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    I. Lhenry-Yvon Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    K. Link Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    L. Lopes Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    R. López Benemérita Universidad Autónoma de Puebla (BUAP), México    A. López Casado Universidad de Santiago de Compostela, Spain    Q. Luce Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    A. Lucero Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    M. Malacari University of Chicago, USA    M. Mallamaci Università di Milano, Dipartimento di Fisica, Italy INFN, Sezione di Milano, Italy    D. Mandat Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    P. Mantsch Fermi National Accelerator Laboratory, USA    A.G. Mariazzi IFLP, Universidad Nacional de La Plata and CONICET, Argentina    I.C. Mariş Universidad de Granada and C.A.F.P.E., Spain    G. Marsella Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    D. Martello Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    H. Martinez Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México    O. Martínez Bravo Benemérita Universidad Autónoma de Puebla (BUAP), México    J.J. Masías Meza Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires, Argentina    H.J. Mathes Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    S. Mathys Bergische Universität Wuppertal, Department of Physics, Germany    J. Matthews Louisiana State University, USA    J.A.J. Matthews University of New Mexico, USA    G. Matthiae Università di Roma “Tor Vergata”, Dipartimento di Fisica, Italy INFN, Sezione di Roma “Tor Vergata“, Italy    E. Mayotte Bergische Universität Wuppertal, Department of Physics, Germany    P.O. Mazur Fermi National Accelerator Laboratory, USA    C. Medina Colorado School of Mines, USA    G. Medina-Tanco Universidad Nacional Autónoma de México, México    D. Melo Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    A. Menshikov Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    S. Messina KVI – Center for Advanced Radiation Technology, University of Groningen, Netherlands    M.I. Micheletti Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Argentina    L. Middendorf RWTH Aachen University, III. Physikalisches Institut A, Germany    I.A. Minaya Universidad Complutense de Madrid, Spain    L. Miramonti Università di Milano, Dipartimento di Fisica, Italy INFN, Sezione di Milano, Italy    B. Mitrica “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    D. Mockler Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    L. Molina-Bueno Universidad de Granada and C.A.F.P.E., Spain    S. Mollerach Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    F. Montanet Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, France    C. Morello Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Italy    M. Mostafá Pennsylvania State University, USA    G. Müller RWTH Aachen University, III. Physikalisches Institut A, Germany    M.A. Muller Universidade Estadual de Campinas (UNICAMP), Brazil Universidade Federal de Pelotas, Brazil    S. Müller Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    I. Naranjo Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    L. Nellen Universidad Nacional Autónoma de México, México    J. Neuser Bergische Universität Wuppertal, Department of Physics, Germany    P.H. Nguyen University of Adelaide, Australia    M. Niculescu-Oglinzanu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    M. Niechciol Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    L. Niemietz Bergische Universität Wuppertal, Department of Physics, Germany    T. Niggemann RWTH Aachen University, III. Physikalisches Institut A, Germany    D. Nitz Michigan Technological University, USA    D. Nosek University Prague, Institute of Particle and Nuclear Physics, Czech Republic    V. Novotny University Prague, Institute of Particle and Nuclear Physics, Czech Republic    H. Nožka Palacky University, RCPTM, Czech Republic    L.A. Núñez Universidad Industrial de Santander, Colombia    L. Ochilo Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    F. Oikonomou Pennsylvania State University, USA    A. Olinto University of Chicago, USA    D. Pakk Selmi-Dei Universidade Estadual de Campinas (UNICAMP), Brazil    M. Palatka Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    J. Pallotta Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina    P. Papenbreer Bergische Universität Wuppertal, Department of Physics, Germany    G. Parente Universidad de Santiago de Compostela, Spain    A. Parra Benemérita Universidad Autónoma de Puebla (BUAP), México    T. Paul Northeastern University, USA Department of Physics and Astronomy, Lehman College, City University of New York, USA    M. Pech Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    F. Pedreira Universidad de Santiago de Compostela, Spain    J. Pȩkala Institute of Nuclear Physics PAN, Poland    R. Pelayo Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), México    J. Peña-Rodriguez Universidad Industrial de Santander, Colombia    L. A. S. Pereira Universidade Estadual de Campinas (UNICAMP), Brazil    L. Perrone Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    C. Peters RWTH Aachen University, III. Physikalisches Institut A, Germany    S. Petrera Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, Italy Gran Sasso Science Institute (INFN), L’Aquila, Italy INFN, Gruppo Collegato dell’Aquila, Italy    J. Phuntsok Pennsylvania State University, USA    R. Piegaia Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires, Argentina    T. Pierog Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    P. Pieroni Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires, Argentina    M. Pimenta Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    V. Pirronello Università di Catania, Dipartimento di Fisica e Astronomia, Italy INFN, Sezione di Catania, Italy    M. Platino Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    M. Plum RWTH Aachen University, III. Physikalisches Institut A, Germany    C. Porowski Institute of Nuclear Physics PAN, Poland    R.R. Prado Universidade de São Paulo, Inst. de Física de São Carlos, São Carlos, Brazil    P. Privitera University of Chicago, USA    M. Prouza Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    E.J. Quel Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina    S. Querchfeld Bergische Universität Wuppertal, Department of Physics, Germany    S. Quinn Case Western Reserve University, USA    R. Ramos-Pollan Universidad Industrial de Santander, Colombia    J. Rautenberg Bergische Universität Wuppertal, Department of Physics, Germany    D. Ravignani Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    D. Reinert RWTH Aachen University, III. Physikalisches Institut A, Germany    B. Revenu SUBATECH, École des Mines de Nantes, CNRS-IN2P3, Université de Nantes    J. Ridky Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    M. Risse Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    P. Ristori Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina    V. Rizi Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, Italy INFN, Gruppo Collegato dell’Aquila, Italy    W. Rodrigues de Carvalho Universidade de São Paulo, Inst. de Física, São Paulo, Brazil    G. Rodriguez Fernandez Università di Roma “Tor Vergata”, Dipartimento di Fisica, Italy INFN, Sezione di Roma “Tor Vergata“, Italy    J. Rodriguez Rojo Observatorio Pierre Auger, Argentina    D. Rogozin Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Roth Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    E. Roulet Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    A.C. Rovero Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Argentina    S.J. Saffi University of Adelaide, Australia    A. Saftoiu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    H. Salazar Benemérita Universidad Autónoma de Puebla (BUAP), México    A. Saleh Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    F. Salesa Greus Pennsylvania State University, USA    G. Salina INFN, Sezione di Roma “Tor Vergata“, Italy    J.D. Sanabria Gomez Universidad Industrial de Santander, Colombia    F. Sánchez Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    P. Sanchez-Lucas Universidad de Granada and C.A.F.P.E., Spain    E.M. Santos Universidade de São Paulo, Inst. de Física, São Paulo, Brazil    E. Santos Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    F. Sarazin Colorado School of Mines, USA    B. Sarkar Bergische Universität Wuppertal, Department of Physics, Germany    R. Sarmento Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    C.A. Sarmiento Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    R. Sato Observatorio Pierre Auger, Argentina    M. Schauer Bergische Universität Wuppertal, Department of Physics, Germany    V. Scherini Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    H. Schieler Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Schimp Bergische Universität Wuppertal, Department of Physics, Germany    D. Schmidt Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    O. Scholten KVI – Center for Advanced Radiation Technology, University of Groningen, Netherlands also at Vrije Universiteit Brussels, Brussels, Belgium    P. Schovánek Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    F.G. Schröder Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    A. Schulz Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    J. Schulz Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    J. Schumacher RWTH Aachen University, III. Physikalisches Institut A, Germany    S.J. Sciutto IFLP, Universidad Nacional de La Plata and CONICET, Argentina    A. Segreto INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Italy INFN, Sezione di Catania, Italy    M. Settimo Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, France    A. Shadkam Louisiana State University, USA    R.C. Shellard Centro Brasileiro de Pesquisas Fisicas (CBPF), Brazil    G. Sigl Universität Hamburg, II. Institut für Theoretische Physik, Germany    G. Silli Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    O. Sima University of Bucharest, Physics Department, Romania    A. Śmiałkowski University of Łódź, Faculty of Astrophysics, Poland    R. Šmída Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    G.R. Snow University of Nebraska, USA    P. Sommers Pennsylvania State University, USA    S. Sonntag Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    J. Sorokin University of Adelaide, Australia    R. Squartini Observatorio Pierre Auger, Argentina    D. Stanca “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania    S. Stanič Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    J. Stasielak Institute of Nuclear Physics PAN, Poland    P. Stassi Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, France    F. Strafella Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy INFN, Sezione di Lecce, Italy    F. Suarez Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    M. Suarez Durán Universidad Industrial de Santander, Colombia    T. Sudholz University of Adelaide, Australia    T. Suomijärvi Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    A.D. Supanitsky Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Argentina    J. Swain Northeastern University, USA    Z. Szadkowski University of Łódź, Faculty of High-Energy Astrophysics, Poland    A. Taboada Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IEKP), Germany    O.A. Taborda Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina    A. Tapia Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    V.M. Theodoro Universidade Estadual de Campinas (UNICAMP), Brazil    C. Timmermans Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Netherlands Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    C.J. Todero Peixoto Universidade de São Paulo, Escola de Engenharia de Lorena, Brazil    L. Tomankova Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    B. Tomé Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal    G. Torralba Elipe Universidad de Santiago de Compostela, Spain    D. Torres Machado Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil    M. Torri Università di Milano, Dipartimento di Fisica, Italy    P. Travnicek Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    M. Trini Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    R. Ulrich Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Unger New York University, USA Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    M. Urban RWTH Aachen University, III. Physikalisches Institut A, Germany    J.F. Valdés Galicia Universidad Nacional Autónoma de México, México    I. Valiño Universidad de Santiago de Compostela, Spain    L. Valore Università di Napoli “Federico II“, Dipartimento di Fisica “Ettore Pancini“, Italy INFN, Sezione di Napoli, Italy    G. van Aar Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    P. van Bodegom University of Adelaide, Australia    A.M. van den Berg KVI – Center for Advanced Radiation Technology, University of Groningen, Netherlands    A. van Vliet Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    E. Varela Benemérita Universidad Autónoma de Puebla (BUAP), México    B. Vargas Cárdenas Universidad Nacional Autónoma de México, México    G. Varner University of Hawaii, USA    J.R. Vázquez Universidad Complutense de Madrid, Spain    R.A. Vázquez Universidad de Santiago de Compostela, Spain    D. Veberič Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    I.D. Vergara Quispe IFLP, Universidad Nacional de La Plata and CONICET, Argentina    V. Verzi INFN, Sezione di Roma “Tor Vergata“, Italy    J. Vicha Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic    L. Villaseñor Universidad Michoacana de San Nicolás de Hidalgo, México    S. Vorobiov Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    H. Wahlberg IFLP, Universidad Nacional de La Plata and CONICET, Argentina    O. Wainberg Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina    D. Walz RWTH Aachen University, III. Physikalisches Institut A, Germany    A.A. Watson School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom    M. Weber Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    A. Weindl Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany    L. Wiencke Colorado School of Mines, USA    H. Wilczyński Institute of Nuclear Physics PAN, Poland    T. Winchen Bergische Universität Wuppertal, Department of Physics, Germany    D. Wittkowski Bergische Universität Wuppertal, Department of Physics, Germany    B. Wundheiler Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    S. Wykes Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen, Netherlands    L. Yang Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    D. Yelos Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    A. Yushkov Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina    E. Zas Universidad de Santiago de Compostela, Spain    D. Zavrtanik Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia Experimental Particle Physics Department, J. Stefan Institute, Slovenia    M. Zavrtanik Experimental Particle Physics Department, J. Stefan Institute, Slovenia Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia    A. Zepeda Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México    B. Zimmermann Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik (IPE), Germany    M. Ziolkowski Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany    Z. Zong Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France    F. Zuccarello Università di Catania, Dipartimento di Fisica e Astronomia, Italy INFN, Sezione di Catania, Italy auger˙spokespersons@fnal.gov http://www.auger.org
(August 4, 2016)
Abstract

On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy EνE_{\nu} above 100 PeV from point-like sources across the sky with equatorial declination from about 65-65^{\circ} to +60+60^{\circ}, and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth’s crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.

Ultrahigh-energy cosmic rays and neutrinos, gravitational waves, high-energy showers, detector arrays, Pierre Auger Observatory
pacs:
95.55.Vj, 95.85.Ry, 98.70.Sa
preprint: Published in PRD as DOI:10.1103/PhysRevD.94.122007

I Introduction

On September 14, 2015 at 09:50:45 UTC the Advanced LIGO detectors observed the first gravitational-wave transient GW150914 LIGO_GW150914 . The GW was inferred to have arisen from the merger of black holes in a binary system at a luminosity distance Ds=410180+160D_{s}=410^{+160}_{-180} Mpc. The estimated amount of energy released in the form of gravitational waves was EGW=3.00.5+0.5Mc2E_{\rm GW}=3.0^{+0.5}_{-0.5}\leavevmode\nobreak\ M_{\odot}c^{2} solar masses LIGO_GW150914 ; LIGO_GW150914_Properties . A second GW event GW151226 LIGO_GW151226 was detected at 03:38:53 UTC on December 26, 2015, also inferred to be produced by the merger of two black holes at a distance Ds=440190+180D_{s}=440^{+180}_{-190} Mpc. In this case the amount of energy released in the form of GW was EGW=1.00.2+0.1Mc2E_{\rm GW}=1.0^{+0.1}_{-0.2}\leavevmode\nobreak\ M_{\odot}c^{2} LIGO_GW151226 . A third candidate event, LVT151012, was observed on October 12, 2015 at 09:54:43 UTC. Although LVT151012 is consistent with a binary black-hole merger it is not significant enough to claim an unambiguous detection LIGO_3GW .

The observation of GW events with LIGO has motivated several models on the production of electromagnetic counterparts to GW in binary black-hole mergers Bartos_BH ; Stone_BH . Moreover, observations with the Fermi GBM detector have revealed the presence of a transient source above 50 keV, only 0.4 s after GW150914, with localization consistent with its direction Fermi_GBM_GW and with a possible association with a short gamma-ray burst Meszaros_GW_GRB ; Perna_GW_GRB ; Murase_GW_GRB . On the other hand, other gamma-ray and X-ray observatories did not find any potential counterpart either for GW150914 INTEGRAL_GW ; Fermi_LAT_GW ; XMM_GW ; AGILE_GW or for GW151226 Fermi_LAT_GBM_GW .

Mergers of black holes are a potential environment where cosmic rays can be accelerated to ultrahigh-energies (UHEs) provided there are magnetic fields and disk debris remaining from the formation of the black holes Kotera-Silk ; Murase_GW_GRB . These are two necessary ingredients to accelerate cosmic rays to ultrahigh energies through the Fermi mechanism at astrophysical sources (see for instance Gaisser_review ). The estimated rate of this type of mergers can account for the total energy observed in ultrahigh-energy cosmic rays (UHECRs) and their distribution in the sky Kotera-Silk . The UHE cosmic rays can interact with the surrounding matter or radiation to produce ultrahigh-energy gamma rays and neutrinos Kotera-Silk ; Murase_GW_GRB . Other models speculate on the possibility that protons could be accelerated up to 10\sim 10 EeV energies in a one-shot boost Anchordoqui_GW . Collisions of UHE protons with photon backgrounds and gas surrounding the black hole would produce UHE neutrinos. The remarkable power of GW150914 could produce a proton spectrum peaked at EeV energies with a lesser emission of neutrinos in the PeV energy range Anchordoqui_GW . Neutrino experiments with peak sensitivities in the TeV-PeV energy range such as IceCube and ANTARES have reported no neutrino candidates in spatial and temporal coincidence with GW150914 GW_IceCube_ANTARES .

With the surface detector (SD) of the Pierre Auger Observatory Auger_detector we can identify neutrino-induced air showers in the energy range above 100 PeV combined . Showers induced by neutrinos at large zenith angles can start their development deep in the atmosphere so that they have a considerable amount of electromagnetic component at the ground (“young” shower front). On the other hand, at large zenith angles the atmosphere is thick enough that the electromagnetic component of the more numerous nucleonic cosmic rays, which interact shortly after entering the atmosphere, gets absorbed and the shower front at ground level is dominated by muons (“old” shower front). The SD consists of 16601660 water-Cherenkov stations spread over an area of 3000km2{\sim}3000\leavevmode\nobreak\ {\rm km^{2}}, separated by 1.5km1.5\leavevmode\nobreak\ {\rm km} and arranged in a triangular grid. Although the SD is not separately sensitive to the muonic and electromagnetic components of the shower, nor to the depth at which the shower is initiated, the signals produced by the passage of shower particles, digitized with 25 ns time resolution Auger_detector , allow us to distinguish narrow traces in time induced by inclined showers initiated high in the atmosphere, from the broad signals expected in inclined showers initiated close to the ground. Applying this simple idea, with the SD of the Pierre Auger Observatory Auger_detector we can efficiently detect inclined showers and search for two types of neutrino-induced showers at energies above 100 PeV:

  1. 1.

    Earth-skimming (ES) showers induced by tau neutrinos (ντ\nu_{\tau}) that travel in a slightly upward direction. A ντ\nu_{\tau}\leavevmode\nobreak\ can skim the Earth’s crust and interact near the surface, inducing a tau lepton which escapes the Earth and decays in flight in the atmosphere, close to the SD. Typically, only ντ\nu_{\tau}\leavevmode\nobreak\ -induced showers with zenith angles 90<θ<9590^{\circ}<\theta<95^{\circ} may be identified.

  2. 2.

    Showers initiated by neutrinos of any flavor moving down at large zenith angles 75<θ<9075^{\circ}<\theta<90^{\circ} with respect to the vertical and that interact in the atmosphere close to the surface-detector array through charged-current or neutral-current interactions. These will be referred to as downward-going high zenith angle (DGH) neutrinos.

In previous publications combined ; DGH ; PRL_nutau ; nu_tau_long methods were established to identify inclined and deeply-initiated showers with the SD of the Pierre Auger Observatory. These were applied blindly to search for ES and DGH neutrinos in the data collected with the SD up to 20 June 2013. No neutrino candidate was found. As a result an upper limit to the diffuse flux of UHE neutrinos (i.e., from an ensemble of unresolved sources) was obtained in combined . Also the same analysis was applied to place upper limits on continuous (in time) point-like sources of UHE neutrinos Auger_PS .

In this paper we use the same identification criteria as in combined to search for neutrinos in temporal and spatial coincidence with GW150914 and GW151226, as well as with the GW candidate event LVT151012 LIGO_3GW . The search was performed within ±500\pm 500 s around the time of either GW event as well as in the period of 1 day after their occurrence. The choice of these two rather broad time windows is motivated by the association of mergers of compact systems and gamma-ray bursts (GRBs) Meszaros_GW_GRB ; Perna_GW_GRB ; GRB_review . The ±500\pm 500 s window Baret corresponds to an upper limit on the duration of the prompt phase of GRBs, when typically PeV neutrinos are thought to be produced in interactions of accelerated cosmic rays and the gamma rays within the GRB itself. The choice of the 1-day window after the GW event is a conservative upper limit on the duration of GRB afterglows, where ultrahigh-energy neutrinos are thought to be produced in interactions of UHECRs with the lower-energy photons of the GRB afterglow (see GRB_review for a review).

The results of the search allow us to set constraints on the emission of UHE neutrinos from the merger of two black holes. These constraints apply in the energy range [\sim 100 PeV, \sim 25 EeV] and are complementary to those of IceCube/ANTARES GW_IceCube_ANTARES which apply in the energy range [\sim 100 GeV, \sim 100 PeV].

II Results

The neutrino identification criteria applied to data collected with the Pierre Auger Observatory are summarized in reference combined . Firstly, inclined showers are selected in the different angular ranges of the ES and DGH channels. Secondly, deeply-penetrating showers are identified in the inclined-event sample through the broad time structure of the signals expected to be induced in the water-Cherenkov SD stations indicative of the presence of an electromagnetic component combined .

The sensitivity to UHE neutrinos in Auger is limited to large zenith angles. As a consequence at each instant in time, neutrinos can be detected efficiently only from a specific portion of the sky. A source at declination δ\delta and right ascension (RA) α\alpha (in equatorial coordinates) is seen at the latitude of Auger (λ=35.2\lambda=-35.2^{\circ}) and at a given sidereal time tt with a zenith angle θ(t)\theta(t) given by:

cosθ(t)=sinλsinδ+cosλcosδsin(2πt/Tα),\cos\theta(t)=\sin\lambda\,\sin\delta+\cos\lambda\,\cos\delta\,\sin(2\pi t/T-\alpha)\,\,, (1)

where TT is the duration of one sidereal day. From Eq. (1) it is straigthforward to calculate the fraction of a sidereal day a source at declination δ\delta is visible in the ES angular range (90, 95)(90^{\circ},\leavevmode\nobreak\ 95^{\circ}) and in the DGH one (75, 90)(75^{\circ},\leavevmode\nobreak\ 90^{\circ}). In Fig. 1 we show two sky maps in equatorial coordinates where the color scale indicates the fraction of a sidereal day during which each declination is seen in the ES (top plot) and DGH (bottom plot) field of view. The positions of GW150914 and GW151226 are not well constrained by data collected with the Advanced LIGO detectors but 90% CL contours are provided and are also shown in Fig. 1. At 90% CL the declination of the source of GW150914 can be between δ1.0\delta\sim-1.0^{\circ} and 14.5\sim-14.5^{\circ} or between δ38.5\delta\sim-38.5^{\circ} and 78.0\sim-78.0^{\circ}, and that of GW151226 between δ72.7\delta\sim-72.7^{\circ} and 60.9\sim 60.9^{\circ} as can be seen in Fig. 1. Both 90% CL declination ranges overlap with the field of view of the ES and DGH channels for fractions of one sidereal day that can reach up to 17%\sim 17\% and 35%\sim 35\%, respectively. If the emission took less time than a day these numbers could change significantly, depending on the sky position of the GW event relative to Auger during the emission time. The overlapping between the Auger field of view in the inclined directions and the 90% CL contour position of the GW event is larger for GW151226 as seen in Fig. 1 and also for LVT151012.

Refer to captionRefer to caption\begin{array}[]{c}\includegraphics[width=241.84842pt]{fraction_time_visible_ES_GW150914_GW151226_Fermi.png}\\ \includegraphics[width=241.84842pt]{fraction_time_visible_DGH_GW150914_GW151226_Fermi.png}\end{array}

Figure 1: Sky map in equatorial coordinates where the color scale indicates the fraction of one sidereal day for which a point-like source at declination δ\delta is visible to the SD of the Auger Observatory (latitude λ=35.2\lambda=-35.2^{\circ}) at zenith angle 90<θ<9590^{\circ}<\theta<95^{\circ} (top panel), and 75<θ<9075^{\circ}<\theta<90^{\circ} (bottom panel). The white solid lines indicate the 90% CL contour position of GW150914 LIGO_GW150914 ; LIGO_GW150914_Properties and the dashed white lines indicate the corresponding 90% CL contour position of GW151226 LIGO_GW151226 ; LIGO_3GW . The white star indicates the best-fit position of the GW150914 event obtained in combination with data from the Fermi-GBM instrument (see Fig. 10 in Fermi_GBM_GW ).

II.1 Searching for UHE neutrinos in coincidence with GW events

We searched for neutrino events in coincidence with GW150914, GW151226 and LVT151012 in two periods of time: ±500\pm 500 s around the UTC times at which they occurred, as well as in a period of 1 day after GW150914, GW151226 and LVT151012.

The performance of the SD array is monitored every minute and is rather stable in each of the ±500\pm 500 s and 1 day periods of time after either GW event. The average (root-mean squared, RMS) number of active stations during the search periods of the GW150914 and GW151226 events and of the LVT151012 candidate amount, respectively, to 97.5%\sim 97.5\% (1.5%\sim 1.5\%), 95.6%\sim 95.6\% (5.5%\sim 5.5\%) and 94.0%\sim 94.0\% (6.5%6.5\%) of the total number of stations in the SD array.

The arrival directions of cosmic rays are determined in Auger from the relative arrival times of the shower front in the triggered stations. The angular accuracy depends on the number of triggered stations, on the energy and on the zenith angle of the shower. Studies of cosmic ray-induced showers below 8080^{\circ} zenith angle have revealed that the angular resolution is better than 2.52.5^{\circ}, improving significantly as the number of triggered stations increases Bonifazi ; Auger_inclined_rec . Similar results are expected for neutrino-induced showers.

Unfortunately the field of view of the ES channel did not overlap within ±500\pm 500 s of the time of coalescence of event GW150914 with the 90% CL contour enclosing its position, see the top panel of Fig. 2. However there is a significant overlap in the case of GW151226 as can be seen in the bottom panel of Fig. 2 and also in the case of LVT151012. Also GW150914, GW151226 and LVT151012 are visible in the DGH angular range 75<θ<9075^{\circ}<\theta<90^{\circ} within ±500\pm 500 s of occurrence - see Fig. 2. In all cases a significant portion of the inferred position of the source is visible for a fraction of the time in 1 day after the corresponding GW event, as the Earth rotates and the field of view of the ES and DGH analyses moves through the sky (see Fig. 1).

Refer to captionRefer to caption\begin{array}[]{c}\includegraphics[width=241.84842pt]{fov_Auger_GW150914.pdf}\\ \includegraphics[width=241.84842pt]{fov_Auger_GW151226.pdf}\end{array}

Figure 2: Instantaneous field of view of the ES (red band) and DGH (blue band) channels at the moment of coalescence of GW150914 (top panel) and of GW151226 (bottom panel). The black spots represent the 90% CL contour enclosing the positions of the corresponding GW events. Note that by chance the instantaneous field of view of Auger is approximately the same at the instants of occurrence of both GW events.

The search for UHE neutrinos in Auger data produced the following results:

  • No inclined showers passing the ES or DGH selection were found in the time window ±500\pm 500 s around GW150914 or GW151226.

  • A total of 24 inclined showers were found with the ES selection criteria, 1212 in each of the 1 day periods after GW150914 and GW151226 events, but none of them fulfilled the neutrino identification criteria. Also 24 and 22 inclined showers were found with the DGH selection 1 day after GW150914 and GW151226, respectively, with none of them identified as a neutrino candidate. All selected inclined events have properties compatible with background nucleonic cosmic-ray events.

  • Also, no neutrino candidates were found within ±500\pm 500 s around or 1 day after the UTC time of the GW candidate event LVT151012 LIGO_3GW .

II.2 Constraints on the sources of GW

The absence of neutrino candidates allows us to place upper limits to the UHE neutrino flux from GW150914 and GW151226 (in the following we restrict ourselves to the 2 confirmed GW events) as a function of equatorial declination δ\delta. The expected number of events for a neutrino flux dNGW/dEν(Eν){dN^{\rm GW}}/{dE_{\nu}}(E_{\nu}) from a point-like source at declination δ\delta is given by

NeventGW=EνdNνGWdEν(Eν)GW(Eν,δ)𝑑Eν,N^{\rm GW}_{\rm event}=\int_{E_{\nu}}\leavevmode\nobreak\ \frac{dN^{\rm GW}_{\nu}}{dE_{\nu}}(E_{\nu})\leavevmode\nobreak\ {\cal E}_{GW}(E_{\nu},\delta)\leavevmode\nobreak\ dE_{\nu}, (2)

where GW(Eν,δ){\cal E}_{\rm GW}(E_{\nu},\delta) is the effective exposure to a point-like flux of UHE neutrinos as a function of neutrino energy EνE_{\nu} and declination. For each channel ES and DGH we calculate the exposure to UHE neutrinos ES(Eν,δ){\cal E}^{\rm ES}(E_{\nu},\delta) and DGH(Eν,δ){\cal E}^{\rm DGH}(E_{\nu},\delta), respectively, following the procedure explained in combined ; DGH ; PRL_nutau ; nu_tau_long ; Auger_PS . The exposure is obtained by integrating the SD aperture (area ×\times solid angle) over the search period TsearchT_{\rm search}, multiplied by the neutrino cross section for each neutrino channel, and weighted by the selection and detection efficiency obtained from Monte Carlo simulations combined . When integrating over the search period, we only consider the fraction of time when the source is visible from the SD of Auger within the zenith angle range of the corresponding neutrino selection. In any of the search periods the performance of the SD array was very stable, in particular there were no large periods of inactivity as confirmed using the continuous monitoring of the Auger SD array.

Assuming a standard Eν2E_{\nu}^{-2} energy dependence for a constant UHE neutrino flux per flavor from the source of GW150914 or GW151226, namely, dNνGW/dEν=kGWEν2{dN^{\rm GW}_{\nu}}/{dE_{\nu}}=k^{\rm GW}E_{\nu}^{-2}, a 90%90\% CL upper limit on kGWk^{\rm GW} can be obtained as

kGW(δ)=2.39EνEν2GW(Eν,δ)𝑑Eν.k^{\rm GW}(\delta)=\frac{2.39}{\int_{E_{\nu}}\leavevmode\nobreak\ E^{-2}_{\nu}\leavevmode\nobreak\ {\cal E}_{\rm GW}(E_{\nu},\delta)\leavevmode\nobreak\ dE_{\nu}}. (3)

We applied Eq. (3) to obtain upper limits to the normalization of the flux kESGW(δ)k^{\rm GW}_{\rm ES}(\delta) and kDGHGW(δ)k^{\rm GW}_{\rm DGH}(\delta) in each channel. The combined upper limit to the normalization kGW(δ)k^{\rm GW}(\delta) of the flux is obtained as (kGW)1=(kESGW)1+(kDGHGW)1{(k^{\rm GW})}^{-1}={(k^{\rm GW}_{\rm ES})}^{-1}+{(k^{\rm GW}_{\rm DGH})}^{-1}.

Systematic uncertainties are incorporated in the upper limit in Eq. (3) and were taken into account using a semi-Bayesian extension Conrad of the Feldman and Cousins approach Feldman-Cousins (see Table II in combined for a detailed account of the main sources of systematic uncertainties).

From the limits to the flux normalization we obtained upper limits to the UHE neutrino spectral fluence radiated per flavor in a similar fashion to those obtained in GW_IceCube_ANTARES :

Eν2dNνdEν×Tsearch=kGW(δ)TsearchE_{\nu}^{2}\leavevmode\nobreak\ \frac{dN_{\nu}}{dE_{\nu}}\times T_{\rm search}=k^{\rm GW}(\delta)\leavevmode\nobreak\ T_{\rm search} (4)

where Tsearch=1day+ 500sT_{\rm search}=1\leavevmode\nobreak\ {\rm day}\leavevmode\nobreak\ +\leavevmode\nobreak\ 500\leavevmode\nobreak\ {\rm s} is the total search period interval. Here it is assumed that the sources of GW events emit UHE neutrinos continuously during the search period. The constraints on spectral fluence are shown in Fig. 3 and depend strongly on the source direction. The dependence is mainly driven by the fraction of the time a source at declination δ\delta is within the field of view of the ES and DGH analyses. The upper limit to the fluence is dominated by the intrinsically-larger sensitivity of the ES analysis to UHE neutrinos at energies above 100 PeV. The constraints on the spectral fluence are above 3GeVcm23\leavevmode\nobreak\ {\rm GeV\leavevmode\nobreak\ cm^{-2}} and are very similar for both GW150914 and GW151226 as shown in Fig. 3, since the performance and number of active water-Cherenkov stations of the SD array are equally stable in each of the 1-day periods of time after each GW event.

Refer to captionRefer to caption\begin{array}[]{c}\includegraphics[width=236.15796pt,angle={0}]{limits_diff_fluence_vs_declination_GW150914.pdf}\\ \includegraphics[width=236.15796pt,angle={0}]{limits_diff_fluence_vs_declination_GW151226.pdf}\end{array}


Figure 3: Top panel: Upper limits to the UHE neutrino spectral fluence per flavor (see Eq. (4)) from the source of GW150914 as a function of equatorial declination δ\delta. Fluences above the black solid line are excluded at 90% CL from the non-observation of UHE neutrino events in Auger. The 90% CL declination bands of the GW150914 are indicated in the plot by the shaded rectangles. Bottom panel: Same as the top panel for the GW event GW151226.

Assuming that the radiated spectrum has a Eν2E_{\nu}^{-2} dependence on neutrino energy above Eν=100E_{\nu}=100 PeV Gaisser_review , the corresponding upper limit to the total fluence is obtained by integrating the spectral fluence over the interval. Finally, it is straightforward to obtain constraints on the total energy radiated in neutrinos Eν,tot(δ)E_{\nu,{\rm tot}}(\delta) assuming the source is located at a luminosity distance DsD_{s}, Eν,tot(δ)=ν(δ)×4πDs2E_{\nu,{\rm tot}}(\delta)={{\cal F}_{\nu}}(\delta)\times 4\pi D_{s}^{2}. These constraints are shown in Fig. 4.

Refer to captionRefer to caption\begin{array}[]{c}\includegraphics[width=241.84842pt,angle={0}]{limits_total_energy_nus_vs_declination_distance_GW150914.pdf}\\ \includegraphics[width=241.84842pt,angle={0}]{limits_total_energy_nus_vs_declination_distance_GW151226.pdf}\end{array}

Figure 4: Top panel: Constraints on Eν,totE_{\nu,{\rm tot}} the energy radiated in UHE neutrinos (per flavor) from the source of GW150914 as a function of equatorial declination δ\delta. Energies above the black solid line - assuming the luminosity distance to the source is Ds=410D_{s}=410 Mpc - are excluded at the 90% CL from the non-observation of UHE neutrinos in Auger. The long-dashed line represents the constraints if the source is farther away at Ds=410+160D_{s}=410+160 Mpc, and the short-dashed line if the source is closer to Earth at Ds=410180D_{s}=410-180 Mpc corresponding to the 90% CL interval of possible distances to the source. For reference the dot-dashed black horizontal line represents EGW5.4×1054E_{\rm GW}\simeq 5.4\times 10^{54} erg, the inferred energy radiated in gravitational waves from GW150914 LIGO_GW150914 ; LIGO_GW150914_Properties . The limits 90% CL declination bands of the GW150914 are indicated in the plot by the shaded rectangles. Bottom panel: Same as the top panel for GW151226 but in this case Ds=440190+180D_{s}=440^{+180}_{-190} Mpc and the energy released in the form of GW is EGW1.8×1054E_{\rm GW}\simeq 1.8\times 10^{54} erg.

The most restrictive upper limits on the total energy emitted per flavor in UHE neutrinos are achieved at declination δ53\delta\sim-53^{\circ}

Eν,tot(δ=53)< 7.7×1053erg,forGW150914E_{\nu,{\rm tot}}(\delta=-53^{\circ})\leavevmode\nobreak\ <\leavevmode\nobreak\ 7.7\times 10^{53}{\rm erg},\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm for}\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm GW150914} (5)

and at δ55\delta\sim 55^{\circ}

Eν,tot(δ=55)< 7.9×1053erg,forGW151226.E_{\nu,{\rm tot}}(\delta=55^{\circ})\leavevmode\nobreak\ <\leavevmode\nobreak\ 7.9\times 10^{53}{\rm erg},\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm for}\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm GW151226}. (6)

The constraints on total energy can be expressed as fractions fνf_{\nu} of energy in UHE neutrinos Eν,totE_{\nu,{\rm tot}} relative to the energy radiated in gravitational waves EGWE_{\rm GW}. The most stringent upper limit on the fraction fνf_{\nu} of energy radiated in UHE neutrinos relative to the energy emitted in GW150914 is

fν(δ=53)< 14.3%forGW150914,f_{\nu}(\delta=-53^{\circ})\leavevmode\nobreak\ <\leavevmode\nobreak\ 14.3\%\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm for}\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm GW150914}, (7)

assuming the source is located at the central value of the 90% CL interval of distances Ds=410D_{s}=410 Mpc. This fraction changes from 4.5%\sim 4.5\% to 27.6%\sim 27.6\% as the source distance varies between the lower and upper limits of the 90%90\% CL interval Ds=(230,570)D_{s}=(230,570) Mpc quoted in LIGO_GW150914 .

For the case of GW151226 since the total energy released in GW is 3 times smaller the corresponding best upper limit on fνf_{\nu} is:

fν(δ=55)< 44.1%forGW151226,f_{\nu}(\delta=55^{\circ})\leavevmode\nobreak\ <\leavevmode\nobreak\ 44.1\%\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm for}\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm GW151226}, (8)

assuming the source is located at Ds=440D_{s}=440 Mpc.

III Discussion

The results in this work represent the first upper limits on UHE neutrino emission from an identified source of GW - the merger of two black holes - and the first follow-up of GW events with neutrinos of energies above 100 PeV.

The upper limits on fluence emitted in the form of UHE neutrinos are strongly declination-dependent. With the SD of the Pierre Auger Observatory we are sensitive to a large fraction of the declination range in which the sources of GW150914 and GW151226 could be located at the 90% CL as shown in Fig. 1.

While our most stringent upper limit to the total energy in the form of UHE neutrinos for the GW150914 event is 7.7×1053\sim 7.7\times 10^{53} erg per flavor at δ0=53\delta_{0}=-53^{\circ}, the IceCube/ANTARES best upper limit (νμ+ν¯μ)(\nu_{\mu}+\bar{\nu}_{\mu}) is 5.4×1051\sim 5.4\times 10^{51} erg at declinations close to the equator GW_IceCube_ANTARES . However, the IceCube/ANTARES limits apply in the energy range [100 GeV, 100 PeV] while the Auger limits apply in the complementary energy range [100 PeV, 25 EeV].

In Kotera-Silk it was argued that black-hole mergers would have sufficient luminosity to power the acceleration of cosmic rays up to 100 EeV. With a modest efficiency 0.03\lesssim 0.03 per GW event per unit of gravitational-wave energy release radiated in the form of UHECRs and given the inferred rate of BH mergers LIGO_3GW , a source population of this type could achieve the energy budget needed to explain the observed UHECRs Kotera-Silk . In this work we place a most stringent upper limit on the fraction of GW energy channeled into neutrinos of 14%\sim 14\%. If only 3%3\% of the energy of the GW is channeled into UHECRs Kotera-Silk , and the same energy goes into UHE neutrinos, then we would expect at most on the order of 0.50.5 events in Auger in coincidence with GW150914.

An upper bound to the diffuse single-flavor neutrino flux integrated over a source population of this type was estimated also in Kotera-Silk ,

Eν2dNνdEν|theorydiffuse(1.56.9)×108GeVcm2s1sr1,E_{\nu}^{2}\leavevmode\nobreak\ \frac{dN_{\nu}}{dE_{\nu}}\biggr{\rvert}^{\rm theory}_{\rm diffuse}\lesssim(1.5-6.9)\times 10^{-8}\leavevmode\nobreak\ {\rm GeV\leavevmode\nobreak\ cm^{-2}\leavevmode\nobreak\ s^{-1}\leavevmode\nobreak\ sr^{-1}}, (9)

depending on the evolution with redshift of the sources and assuming an optical depth τ=1\tau=1 to neutrino production in the debris surrounding the BH mergers. This upper bound is a factor between 3\sim 3 and 10 above the limit to the diffuse flux of UHE neutrinos obtained with Auger data up to 20 June 2013 in combined , namely,

Eν2dNνdEν|Augerdiffuse<6.4×109GeVcm2s1sr1.E_{\nu}^{2}\leavevmode\nobreak\ \frac{dN_{\nu}}{dE_{\nu}}\biggr{\rvert}^{\rm Auger}_{\rm diffuse}<6.4\times 10^{-9}\leavevmode\nobreak\ {\rm GeV\leavevmode\nobreak\ cm^{-2}\leavevmode\nobreak\ s^{-1}\leavevmode\nobreak\ sr^{-1}}. (10)

It is possible that there are no significant fluxes of UHE neutrinos associated with the coalescence of black holes, more phenomenological work in this area is needed. In the case that cosmic rays are indeed accelerated as suggested in Kotera-Silk , our constraints on the diffuse flux of UHE neutrinos would imply that either (1) the optical depth to neutrino production is significantly smaller than 1 as expected in GRB models; or (2) only a fraction of the luminosity that can be extracted from the BH can be invested in UHECRs acceleration, or (3) only a fraction of the energy of the protons goes into charged pions (that are the parents of the neutrinos); or (4) a combination of the three possibilities.

The Advanced LIGO-Virgo detection of GW150914 and GW151226 represents a breakthrough in our understanding of the Universe. Similar analyses to those presented in this work will be important to provide constraints on the progenitors of the GW emission. Given the inferred rate of events 9240Gpc3yr19-240\leavevmode\nobreak\ {\rm Gpc^{-3}yr^{-1}} LIGO_3GW new GW events can be expected in the near future, closer to Earth and/or more energetic, and/or produced by another type of source that is more likely to accelerate UHECRs and produce UHE neutrinos than the merger of two black holes, such as for instance binary neutron-star mergers, and core-collapse supernovae with rapidly-rotating cores NS_GW ; GW_review .

Finally, the detection of UHE neutrino candidates in Auger in coincidence with GW events could help in pinpointing the position of the source of GW with an accuracy that depends on the shower zenith angle and energy, ranging from less than 1deg2\sim 1\leavevmode\nobreak\ {\rm deg}^{2} to order 10deg210\leavevmode\nobreak\ {\rm deg}^{2} in the least favourable cases. This is to be compared with the currently known position of the two GW events, namely a few 100deg2100\leavevmode\nobreak\ {\rm deg}^{2}. Observations with Auger can significantly constrain the position of the source and help the follow-up of the GW events with optical and other observatories of electromagnetic radiation. This is an example where multimessenger observations (GW, neutrinos and photons) can reveal properties of the sources which may not be discerned from one type of signal alone.

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Comisión Nacional de Energía Atómica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; Grant No. MSMT CR LG15014, LO1305 and LM2015038 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN),Istituto Nazionale di Astrofisica (INAF), Ministero dell’Istruzione, dell’Universitá e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733, Mexico; Universidad Nacional Autónoma de México (UNAM), PAPIIT DGAPA-UNAM, Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 – 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No.194/2012 and PN 16 42 01 02; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) funds, Ministerio de Economía y Competitividad, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.

References

  • (1) B. P. Abbott et al. [LIGO Scientific Collab. and Virgo Collab.], Phys. Rev. Lett. 116, 061102 (2016).
  • (2) B. P. Abbott et al. [LIGO Scientific Collab. and Virgo Collab.], Phys. Rev. Lett. 116, 241102 (2016).
  • (3) B. P. Abbott et al. [LIGO Scientific Collab. and Virgo Collab.], Phys. Rev. Lett. 116, 241103 (2016).
  • (4) B. P. Abbott et al. [LIGO Scientific Collab. and Virgo Collab.], Phys. Rev. X 6, 041015 (2016).
  • (5) I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, arXiv:1602.03831v2 [astro-ph.HE].
  • (6) N.C. Stone, B.D. Metzger, Z. Haiman, Mon. Not. R. Astron. Soc. 464, 946 (2017).
  • (7) V. Connaughton et al. Astrophys. J. Lett. 826, L6 (2016).
  • (8) R. Moharana, S. Razzaque, N. Gupta, P. Mészáros, Phys. Rev. D 93, 123011 (2016).
  • (9) R. Perna, D. Lazzati, and B. Giacomazzo, Astrophys. J. Lett. 821 L18 (2016).
  • (10) K. Murase, K. Kashiyama, P. Mészáros, I. Shoemaker, and N. Senno, Astrophys. J. Lett. 822 L9 (2016).
  • (11) V. Savchenko et al. [INTEGRAL Collab.], Astrophys. J. Lett. 820, L36 (2016).
  • (12) M. Ackerman et al. [Fermi-LAT Collab.], Astrophys. J. Lett. 823, L2 (2016).
  • (13) E. Troja, A.M. Read, A. Tiengo, R. Salvaterra, Astrophys. J. Lett. 823, L8 (2016).
  • (14) M. Tavani et al. [AGILE Collab.], Astrophys. J. Lett. 825, L4 (2016).
  • (15) J.L. Racusin et al. [Fermi-LAT & Fermi-GBM Collabs.], arXiv:1606.04901v1 [astro-ph.HE], submitted to Astrophys. J.
  • (16) K. Kotera and J. Silk, Astrophys. J. Lett. 823, L29 (2016).
  • (17) T.K. Gaisser, F. Halzen, T. Stanev, Phys. Rep. 258, 173 (1995).
  • (18) L. A. Anchordoqui, Phys. Rev. D. 94, 023010 (2016).
  • (19) S. Adrián-Martínez et al. [LIGO & Virgo, IceCube and ANTARES Collabs.], Phys. Rev. D 93, 122010 (2016).
  • (20) A. Aab et al., [Pierre Auger Collab.], Nucl. Instrum. Meth. A 798, 172 (2015).
  • (21) A. Aab et al. [Pierre Auger Collab.], Phys. Rev. D 91, 092008 (2015).
  • (22) P. Abreu et al. [Pierre Auger Collab.], Phys. Rev. D 84, 122005 (2011).
  • (23) J. Abraham et al. [Pierre Auger Collab.], Phys. Rev. Lett. 100, 211101 (2008).
  • (24) J. Abraham et al. [Pierre Auger Collab.], Phys. Rev. D 79, 102001 (2009).
  • (25) P. Abreu et al. [Pierre Auger Collab.], Astrophys. J. Lett. 755, L4 (2012).
  • (26) B. Baret et al., Astropart. Phys. 35, 1 (2011).
  • (27) P. Mészáros, Rep. Prog. Phys. 69, 2259 (2006).
  • (28) C. Bonifazi for the Pierre Auger Collab., Nuclear Phys. Proc. Suppl. 190, 20 (2009).
  • (29) A. Aab et al. [Pierre Auger Collab.] JCAP 8, 019 (2014).
  • (30) J. Conrad et al., Phys. Rev. D 67, 012002 (2003).
  • (31) G. J. Feldman and R.D Cousins, Phys. Rev. D 57, 3873 (1998).
  • (32) I. Bartos, P. Brady and S. Márka, Class. Quantum Grav. 30, 123001 (2013).
  • (33) S. Ando et al., Rev. Mod. Phys. 85, 1401 (2013).