This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

largesymbols”03 largesymbols”02

Under-Approximate Reachability Analysis for a Class of Linear Systems with Inputs

Mohamed Serry and Jun Liu Mohamed Serry is with the Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada (email: mserry@uwaterloo.ca).Jun Liu is with the Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada (e-mail: j.liu@uwaterloo.ca).This work was funded by NSERC DG, CRC, and ERA programs.
Abstract

Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.

Index Terms:
Under-approximations, linear uncertain systems, matrix lower bounds, Hausdorff distance.

I Introduction

Reachable sets and tubes of dynamical systems are central in control synthesis and verification applications, especially in the presence of uncertainties and constraints [1, 2]. Mere approximations of reachable sets and tubes are not sufficient in such frameworks. Instead, conservative estimations, i.e., over (outer)-approximations, are typically utilized to ensure all possible behaviors of a given control system are accounted for, which explains the sheer number of over-approximation methods in the literature [3, 4].

In the last few years, there has been a growing interest in additionally under-approximating reachable sets and tubes for synthesis and verification (see, e.g., [5, 6, 7, 8]), because under-approximations can be used in estimating subsets of the states that are attainable under given control constraints [9], obtaining subsets of the initial states from which all trajectories fulfill safety and reachability specifications [10], solving falsification problems: verifying if reachable sets/tubes intersect with unsafe sets [11], and measuring the accuracy of computed over-approximations. Motivated by the aforementioned applications, we aim in this paper at investigating under-approximations of forward reachable sets and tubes for continuous-time LTI systems with uncertainties or constraints on the initial and input values, where we attempt to overcome some of the limitations associated with available methods in the literature.

Optimal control-based polytopic approaches [12, 13] were proposed for linear systems with uncertain inputs and initial conditions. These methods rely on obtaining boundary points of reachable sets, associated with specified direction vectors, and then computing the convex hull of the obtained boundary points. Given a reachable set, the convergence of the polytopic approaches requires computing an increasing number of boundary points until the whole reachable set boundary is obtained, which is computationally expensive, especially if the dimension of the reachable set is high. An ellipsoidal method was proposed in [14] for controllable linear systems with ellipsoidal initial and input sets. The method relies on solving initial value problems, derived from maximal principles similar to those presented in [13], to obtain ellipsoidal subsets that touch a given reachable set at some boundary points, depending on specified direction vectors. The accuracy of the ellipsoidal method of [14] in under-approximating a given reachable set is increased by evaluating an increasing number of ellipsoids, which necessitates considering an increasing number of direction vectors, and then taking their union. The aforementioned optimal control-based approaches [12, 13, 14] assume the ability to compute transition matrices and their integrals exactly, and that is not feasible in general. In addition, when under-approximating a reachable tube, the mentioned approaches use non-convex representations for the under-approximations, which are challenging to analyze in the contexts of verification and synthesis (see the introduction in [15]).

In [16], a set-propagation technique was proposed, yielding convergent under-approximations of forward reachable sets and tubes for a general class of linear systems with uncertainties or constraints on the initial and input values, where the under-approximations of reachable sets and tubes are given as convex sets and finite unions of convex sets, respectively, which can be analysed with relative ease. However, the method in [16], like the approaches in [17, 12, 13, 14], assumes the ability to compute transition matrices and their integrals exactly. A similar set-propagation approach was proposed in [18] for LTI systems, which relies on computing Minkowski differences to under-approximate reachable tubes. The method in [18] also suffers from the issue of the method in [16], in addition to the computational hurdle of evaluating Minkowski differences (see, e.g., [19]).

The issue of evaluating transition matrices and their integrals exactly can be solved by adopting formally correct under-approximation methods that are designed for general nonlinear systems. For example, a formally correct interval arithmetic under-approximation approach was proposed in [8]; however, such a method lacks convergence guarantees, and may produce empty under-approximations. In [20], a novel method was proposed for nonlinear systems with uncertain initial conditions that depends on computing over-approximations and then scaling them down to obtain under-approximations. A drawback of the approach in [20] is that the scaling necessitates solving (sub-optimal) optimization problems that involve enclosures of boundaries of reachable sets, which can be computationally expensive (see the comparison in Section VII-C1). Finally, a recent approach has been proposed in [21] to under-approximate reachable sets when the system parameters (e.g. system matrices) are not known exactly , where collected trajectories (i.e., data) are utilized to estimate the system dynamics. Such an approach is highly valuable in applications when system identification cannot be attained, due, e.g., to failure or damage mid-operation. However, this approach is conservative (i.e., convergence cannot be attained in general) as it considers the set of all systems that can generate the collected trajectories, while fulfilling some specified assumptions.

In this work, we present a novel efficient approach that results in under-approximations of forward finite-time reachable sets and tubes for a class of LTI systems with inputs, where approximations of the matrix exponential and its integral are used, first-order convergence guarantees are provided, and approximations of reachable sets and tubes are given as convex sets and finite unions of convex sets, respectively. Our approach is fundamentally based on set-based recursive relations (see, e.g., [22, 16]), where truncation errors are accounted for in an under-approximating manner, utilizing matrix lower bounds [23].

II Preliminaries

Let \mathbb{R}, +\mathbb{R}_{+}, \mathbb{Z}, +\mathbb{Z}_{+}, and \mathbb{C} denote the sets of real numbers, non-negative real numbers, integers, non-negative integers, and complex numbers, respectively, and :=+{0}\mathbb{N}\mathrel{:=}\mathbb{Z}_{+}\setminus\{0\}. Let [a,b][a,b], \orbracka,b\clbrack\orbrack a,b\clbrack, [a,b\clbrack[a,b\clbrack, and \orbracka,b]\orbrack a,b] denote closed, open, and half-open intervals, respectively, with end points aa and bb, and [a;b][a;b], \orbracka;b\clbrack\orbrack a;b\clbrack, [a;b\clbrack[a;b\clbrack, and \orbracka;b]\orbrack a;b] stand for their discrete counterparts, e.g., [a;b]=[a,b][a;b]=[a,b]\cap\mathbb{Z}, and [1;4\clbrack={1,2,3}[1;4\clbrack=\{1,2,3\}. Given any map f:ABf\colon A\to B, the image of a subset CAC\subseteq A under ff is given by f(C)={f(c)|cC}f(C)=\left\{f(c)\,\middle|\,c\in C\right\}. The identity map XX:xxX\to X\colon x\mapsto x is denoted by id\operatorname{id}, where the domain of definition XX will always be clear form the context. The Minkowski sum of M,NnM,N\subseteq\mathbb{R}^{n} is defined as M+N:={y+z|yM,zN}M+N\mathrel{:=}\left\{y+z\,\middle|\,y\in M,z\in N\right\}. By \|\cdot\| we denote any norm on n\mathbb{R}^{n}, the norm of a non-empty subset MnM\subseteq\mathbb{R}^{n} is defined by M:=supxMx\|M\|\mathrel{:=}\sup_{x\in M}\|x\|, 𝐁nn\mathbf{B}_{n}\subseteq\mathbb{R}^{n} is the closed unit ball w.r.t. \|\cdot\|, and the maximum norm on n\mathbb{R}^{n} is denoted by \|\cdot\|_{\infty} (x=max{|xi||i[1;n]},xn\|x\|_{\infty}=\max\left\{|x_{i}|\,\middle|\,i\in[1;n]\right\},~{}x\in\mathbb{R}^{n}). Given norms on n\mathbb{R}^{n} and m\mathbb{R}^{m}, n×m\mathbb{R}^{n\times m} is endowed with the usual matrix norm, A=supx1Ax\|A\|=\sup_{\|x\|\leq 1}\|Ax\| for An×mA\in\mathbb{R}^{n\times m}, e.g., the matrix norm of AA induced by the maximum norm is A=maxi[1;n]j=1m|Ai,j|\|A\|_{\infty}=\max_{i\in[1;n]}\sum_{j=1}^{m}\left|A_{i,j}\right|. Given a square matrix An×nA\in\mathbb{R}^{n\times n}, ρ(A)\rho(A) denotes the spectral radius of AA, i.e., ρ(A):=max{|λ|,λ is an eigenvalue of A}\rho(A)\mathrel{:=}\max\{\left|\lambda\right|,~{}\lambda\textrm{ is an eigenvalue of }A\}. The spectral radius satisfies the property below, which follows from [24, proof of Lemma 5.6.10, p. 348]).

Lemma 1.

Let An×nA\in\mathbb{R}^{n\times n}. For each ϵ>0\epsilon>0, there exists an induced matrix norm ϵ\|\cdot\|_{\epsilon} such that Aϵρ(A)+ϵ\|A\|_{\epsilon}\leq\rho(A)+\epsilon.

Given An×mA\in\mathbb{R}^{n\times m}, rank(A)\mathrm{rank}(A), col(A)\mathrm{col}(A), and Am×nA^{\dagger}\in\mathbb{R}^{m\times n} denote the rank, the column space, and the Moore–Penrose inverse of AA, respectively (A=A1A^{\dagger}=A^{-1} if AA is invertible). The following lemma provides a sufficient condition to check invertibility.

Lemma 2.

Let P,P~n×nP,\tilde{P}\in\mathbb{R}^{n\times n}, and PP be invertible. If PP~P1<1\|P-\tilde{P}\|\|{P}^{-1}\|<1, then P~\tilde{P} is invertible.

Proof.

See, e.g., [25, proof of Theorem 5.7, p. 111]. ∎

Given An×m{0}A\in\mathbb{R}^{n\times m}\setminus\{0\}, Al\|A\|_{l} denotes the matrix lower bound of AA w.r.t. \|\cdot\|, which is defined as Al:=max{m|ycol(A),xms.t.Ax=yandmxy},\|A\|_{l}\mathrel{:=}\max\{m\in\mathbb{R}~{}|~{}\forall y\in\mathrm{col}(A),\exists x\in\mathbb{R}^{m}~{}\mathrm{s.t.}~{}Ax=y~{}\mathrm{and}~{}m\|x\|\leq\|y\|\}, see [23]. Matrix lower bounds satisfy the following properties, which are essential in our derivation of the proposed method.

Lemma 3.

Let An×mA\in\mathbb{R}^{n\times m} and Bm×pB\in\mathbb{R}^{m\times p}, where rank(A)=n\mathrm{rank}(A)=n and rank(B)=m\mathrm{rank}(B)=m (full row rank). Then:

  1. (a)

    Al𝐁nA𝐁m\|A\|_{l}\mathbf{B}_{n}\subseteq A\mathbf{B}_{m} (follows from [23, Lemma 2.3]).

  2. (b)

    1/AAl{1}/{\|A^{\dagger}\|}\leq\|A\|_{l} (follows from [23, Lemma 2.2]).

  3. (c)

    AlBlABl\|A\|_{l}\|B\|_{l}\leq\|AB\|_{l} (follows from [23, Lemma 4.4]).

The collection of full-dimensional subsets of n\mathbb{R}^{n} that are affine transformations of closed unit balls is denoted by 𝔸n\mathbb{A}_{n}, where, in this work, saying Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n} implies that cnc\in\mathbb{R}^{n}, Gn×pG\in\mathbb{R}^{n\times p}, and rank(G)=n\mathrm{rank}(G)=n. Integration of single-valued functions presented herein is always understood in the sense of Bochner. Given a non-empty subset XnX\subseteq\mathbb{R}^{n} and a measurable subset SS\subseteq\mathbb{R}, XSX^{S} denotes the set of Lebesgue measurable maps with domain SS and values in XX. Given a non-empty compact subset WmW\subseteq\mathbb{R}^{m}, a compact interval [a,b][a,b]\subset\mathbb{R}, and an integrable matrix-valued function F:[a,b]n×mF:[a,b]\to\mathbb{R}^{n\times m}, we define the set-valued integral abF(t)Wdt:=wW[a,b]abF(t)w(t)dt.\int_{a}^{b}F(t)W\mathrm{d}t\mathrel{:=}\bigcup_{w\in W^{[a,b]}}\int_{a}^{b}F(t)w(t)\mathrm{d}t. The Hausdorff distance 𝔡(Ω,Γ)\mathfrak{d}(\Omega,\Gamma) of two non-empty bounded subsets Ω,Γn\Omega,\Gamma\subseteq\mathbb{R}^{n} w.r.t. \|\cdot\| is defined as 𝔡(Ω,Γ):=inf{ε>0|ΩΓ+ε𝐁n,ΓΩ+ε𝐁n}.\mathfrak{d}(\Omega,\Gamma)\mathrel{:=}\inf\left\{\varepsilon>0\,\middle|\,\Omega\subseteq\Gamma+\varepsilon\mathbf{B}_{n},\Gamma\subseteq\Omega+\varepsilon\mathbf{B}_{n}\right\}. The Hausdorff distance satisfies the triangle inequality, in addition to the following set of properties.

Lemma 4 (Hausdorff distance).

Let Ω,Ω,Γ,Γn\Omega,\Omega^{\prime},\Gamma,\Gamma^{\prime}\subseteq\mathbb{R}^{n} be non-empty and bounded, and let A,Bm×nA,B\in\mathbb{R}^{m\times n}. Then, the following hold (see [15, Lemma A.2]):

  1. (a)

    𝔡(Ω+Γ,Ω+Γ)𝔡(Ω,Ω)+𝔡(Γ,Γ)\mathfrak{d}(\Omega+\Gamma,\Omega^{\prime}+\Gamma^{\prime})\leq\mathfrak{d}(\Omega,\Omega^{\prime})+\mathfrak{d}(\Gamma,\Gamma^{\prime}).

  2. (b)

    𝔡(AΩ,AΓ)A𝔡(Ω,Γ)\mathfrak{d}(A\Omega,A\Gamma)\leq\|A\|\mathfrak{d}(\Omega,\Gamma).

  3. (c)

    𝔡(AΩ,BΩ)ABΩ\mathfrak{d}(A\Omega,B\Omega)\leq\|A-B\|\|\Omega\| (implying 𝔡(Ω,0)Ω\mathfrak{d}(\Omega,0)\leq\|\Omega\|).

  4. (d)

    Let (Ωi)iI(\Omega_{i})_{i\in I} and (Γi)iI(\Gamma_{i})_{i\in I} be families of non-empty subsets of n\mathbb{R}^{n}. Then, 𝔡(iIΩi,iIΓi)supiI𝔡(Ωi,Γi)\mathfrak{d}\left(\cup_{i\in I}\Omega_{i},\cup_{i\in I}\Gamma_{i}\right)\leq\sup_{i\in I}\mathfrak{d}(\Omega_{i},\Gamma_{i}).

III System Description and Problem Formulation

In this paper, we consider the LTI system

x˙(t)=Ax(t)+u(t)\dot{x}(t)=Ax(t)+u(t) (1)

over the time interval [0,T][0,T], where x(t)nx(t)\in\mathbb{R}^{n} is the system state, u(t)nu(t)\in\mathbb{R}^{n} is the input, and An×nA\in\mathbb{R}^{n\times n} is the system matrix. The initial value x(0)x(0) and the input u(t),t[0,T]u(t),~{}t\in[0,T] belong to known sets X0X_{0} and UU, respectively. Let TT, AA, X0X_{0}, and UU be fixed and assume that:

  1. 1.

    The time interval [0,T][0,T] is compact and T>0T>0.

  2. 2.

    X0=cx+Gx𝐁px𝔸nX_{0}=c_{x}+G_{x}\mathbf{B}_{p_{x}}\in\mathbb{A}_{n} and U=cu+Gu𝐁pu𝔸nU=c_{u}+G_{u}\mathbf{B}_{p_{u}}\in\mathbb{A}_{n}, where cx,cu,Gxc_{x},c_{u},G_{x}, and GuG_{u} are known.

Given an initial value x(0)=x0x(0)=x_{0} and an integrable input signal v:[0,T]nv:[0,T]\rightarrow\mathbb{R}^{n}, the unique solution, φ(,x0,v)\varphi(\cdot,x_{0},v), to system (1), generated by x0x_{0} and v()v(\cdot), on [0,T][0,T] is given by [26, Theorem 6.5.1, p. 114]

φ(t,x0,v)=etAx0+0te(ts)Av(s)ds,t[0,T].\varphi(t,x_{0},v)=\mathrm{e}^{tA}x_{0}+\int_{0}^{t}\mathrm{e}^{(t-s)A}v(s)\mathrm{d}s,~{}t\in[0,T].

Herein, e()A\mathrm{e}^{(\cdot)A} (or exp(()A)\exp((\cdot)A)) is the matrix exponential function, which has the Taylor series expansion exp(tA)=j=0(tA)j/j!.\exp(tA)=\sum_{j=0}^{\infty}{(tA)^{j}}/{j!}. Define

(t,k):=j=0k1(tA)jj!,𝒯(t,k):=0t(s,k)ds=j=0k1tj+1Aj(j+1)!,\mathcal{L}(t,k)\mathrel{:=}\sum_{j=0}^{k-1}\frac{(tA)^{j}}{j!},\quad\mathcal{T}(t,k)\mathrel{:=}\int_{0}^{t}\mathcal{L}(s,k)\mathrm{d}s=\sum_{j=0}^{k-1}\frac{t^{j+1}A^{j}}{(j+1)!},

where (t,k)\mathcal{L}(t,k) is the truncated (k1)(k-1)th-order Taylor expansion of exp(tA)\exp(tA) and 𝒯(t,k)\mathcal{T}(t,k) is its definite integral. It is easy to verify that, for all t+t\in\mathbb{R}_{+} and kk\in\mathbb{N},

etA\displaystyle\|\mathrm{e}^{tA}\| etA,(t,k)etA,\displaystyle\leq\mathrm{e}^{t\|A\|},~{}\|\mathcal{L}(t,k)\|\leq\mathrm{e}^{t\|A\|}, (2)
etA(t,k)\displaystyle\|\mathrm{e}^{tA}-\mathcal{L}(t,k)\| θ(tA,k)(tA)kk!etA,\displaystyle\leq\theta(t\|A\|,k)\leq\frac{(t\|A\|)^{k}}{k!}\mathrm{e}^{t\|A\|}, (3)

where θ:+×+\theta\colon\mathbb{R}_{+}\times\mathbb{N}\rightarrow\mathbb{R}_{+} is defined as

θ(r,p):=erj=0p1rjj!=j=prjj!,r+,p.\theta(r,p)\mathrel{:=}\mathrm{e}^{r}-\sum_{j=0}^{p-1}\frac{r^{j}}{j!}=\sum_{j=p}^{\infty}\frac{r^{j}}{j!},~{}r\in\mathbb{R}_{+},~{}p\in\mathbb{N}. (4)

The function θ\theta is infinitely differentiable and monotonically increasing in its first argument, and monotonically decreasing in its second argument, with a greatest lower bound of zero.

Let (t)\mathcal{R}(t) denote the forward reachable set of system (1)\eqref{eq:LinearSystem} at time t[0,T]t\in[0,T], with initial values in X0X_{0}, and input signals with values in UU. In other words,

(t):=etAX0+0tesAUds,t[0,T].\mathcal{R}(t)\mathrel{:=}\mathrm{e}^{tA}X_{0}+\int_{0}^{t}\mathrm{e}^{sA}U\mathrm{d}s,~{}t\in[0,T]. (5)

The set exp(tA)X0\exp(tA)X_{0} is referred to as the homogeneous reachable set at time tt and is denoted by h(t)\mathcal{R}_{h}(t), and the set 0texp(sA)Uds\int_{0}^{t}\exp(sA)U\mathrm{d}s is referred to as the input reachable set at time tt and is denoted by u(t)\mathcal{R}_{u}(t). Furthermore, let [a,b][0,T][a,b]\subseteq[0,T]. Then, ([a,b])=t[a,b](t)\mathcal{R}([a,b])=\bigcup_{t\in[a,b]}\mathcal{R}(t) is the reachable tube over the time interval [a,b][a,b]. In this paper, we aim to compute arbitrarily precise under-approximations of h(T)\mathcal{R}_{h}(T), u(T)\mathcal{R}_{u}(T), (T)\mathcal{R}(T), and ([0,T])\mathcal{R}([0,T]), utilizing the approximations \mathcal{L} and 𝒯\mathcal{T}.

Remark 1 (Applications of under-approximations).

In this work, we focus on under-approximating forward finite reachable sets for linear systems with uncertainties or constraints on the initial values and inputs. Under-approximations can be beneficial in control synthesis and verification applications. For example, let us consider the case when the input set UU corresponds to a disturbance set, and XUSnX_{\mathrm{US}}\subset\mathbb{R}^{n} be an unsafe set. If ([0,T])\mathcal{R}([0,T]), or an under-approximation of it, intersects with XUSX_{\mathrm{US}}, then this indicates that the initial set X0X_{0}, for sure, does not satisfy safety specifications (see the framework of falsification, e.g., in [11]).

Moreover, let XtargetnX_{\mathrm{target}}\subseteq\mathbb{R}^{n} be a target set, and let the set UU correspond to a control input set. Define the backward reachable set (see, e.g., [27])

bw(Xtarget,T):=eT(A)Xtarget+eT(A)(u(T)).\mathcal{R}_{\mathrm{bw}}(X_{\mathrm{target}},T)\mathrel{:=}\mathrm{e}^{T(-A)}X_{\mathrm{target}}+\mathrm{e}^{T(-A)}(-\mathcal{R}_{u}(T)).

If an initial value of interest x0nx_{0}\in\mathbb{R}^{n} belongs to bw(Xtarget,T)\mathcal{R}_{\mathrm{bw}}(X_{\mathrm{target}},T), or an under-approximation of it, then the existence of a control signal with values in UU, driving x0x_{0} to XtargetX_{\mathrm{target}} in time TT, is guaranteed, and such a control signal can be obtained by, e.g., solving an associated constrained optimal control problem. Note that under-approximating bw(Xtarget,T)\mathcal{R}_{\mathrm{bw}}(X_{\mathrm{target}},T) requires under-approximating u(T)\mathcal{R}_{u}(T), exp(T(A))(u(T))\exp(T(-A))(-\mathcal{R}_{u}(T)), and exp(T(A))Xtarget\exp(T(-A))X_{\mathrm{target}}. In this work, we address directly how to under-approximate u(T)\mathcal{R}_{u}(T). Moreover, the tools in this work, and in particular Lemma 6, can be easily applied to under-approximate exp(T(A))(u(T))\exp(T(-A))(-\mathcal{R}_{u}(T)), and exp(T(A))Xtarget\exp(T(-A))X_{\mathrm{target}}.

IV Proposed method

In this section, we thoroughly derive the proposed method. The convergence guarantees of the method are discussed in Section VI.

We start with the following theoretical recursive relation, which is algorithmically similar to efficient over-approximation methods in the literature [9], and is the basis of the proposed method of this work.

Lemma 5.

Given NN\in\mathbb{N}, define τ=T/N\tau=T/N,

S0N\displaystyle S_{0}^{N} =X0,\displaystyle=X_{0}, SiN\displaystyle S_{i}^{N} =eτASi1N,i[1;N],\displaystyle=\mathrm{e}^{\tau A}S_{i-1}^{N},~{}i\in[1;N], (6a)
V0N\displaystyle V_{0}^{N} =u(τ),\displaystyle=\mathcal{R}_{u}(\tau), ViN\displaystyle V_{i}^{N} =eτAVi1N,i[1;N],\displaystyle=\mathrm{e}^{\tau A}V_{i-1}^{N},~{}i\in[1;N], (6b)
W0N\displaystyle W_{0}^{N} ={0},\displaystyle=\{0\}, WiN\displaystyle W_{i}^{N} =Wi1N+Vi1N,i[1;N],\displaystyle=W_{i-1}^{N}+V_{i-1}^{N},~{}i\in[1;N], (6c)
ΓiN\displaystyle\Gamma_{i}^{N} =SiN+WiN,i[0;N].\displaystyle=S_{i}^{N}+W_{i}^{N},~{}i\in[0;N]. (6d)

Then, for all i[0;N],i\in[0;N], SiN=h(iτ),S_{i}^{N}=\mathcal{R}_{h}(i\tau), WiN=u(iτ),W_{i}^{N}=\mathcal{R}_{u}(i\tau), and ΓiN=(iτ)\Gamma_{i}^{N}=\mathcal{R}(i\tau). Moreover, i=0NΓiN([0,T])\bigcup_{i=0}^{N}\Gamma_{i}^{N}\subseteq\mathcal{R}([0,T]).

Proof.

By induction, SiN=exp(iτA)X0=h(iτ),i[0;N]S_{i}^{N}=\exp(i\tau A)X_{0}=\mathcal{R}_{h}(i\tau),~{}i\in[0;N]. According to [28, Corollary 3.6.2, p. 118], WiN=u(iτ),i[0;N]{W}_{i}^{N}=\mathcal{R}_{u}(i\tau),~{}i\in[0;N]. Therefore, ΓiN=SiN+WiN=h(iτ)+u(iτ)=(iτ),i[0;N]\Gamma_{i}^{N}=S_{i}^{N}+W_{i}^{N}=\mathcal{R}_{h}(i\tau)+\mathcal{R}_{u}(i\tau)=\mathcal{R}(i\tau),~{}i\in[0;N]. The last claim follows from i[0;N]ΓiN=i[0;N](iτ)t[0,T](t)=([0,T])\bigcup_{i\in[0;N]}\Gamma_{i}^{N}=\bigcup_{i\in[0;N]}\mathcal{R}(i\tau)\subseteq\bigcup_{t\in[0,T]}\mathcal{R}(t)=\mathcal{R}([0,T]). ∎

The algorithm in Lemma 5, in theory, addresses the under-approximation problem of this work; however, this algorithm cannot be implemented exactly in general. In the next sections, we address the challenges in implementing this theoretical algorithm and propose a practically implementable method, which is the main contribution of this work.

IV-A Under-approximating the image of the matrix exponential

The first obstacle in implementing the algorithm in Lemma 5 is that recursive computations of the images of the matrix exponential are required (see the definitions of SiNS_{i}^{N} and ViNV_{i}^{N} in Equations (6a) and (6b), respectively), and exact computations of such images are not feasible in general as the exact value of the matrix exponential is generally not known. The following technical lemma provides an insight into how to replace the aforementioned images with under-approximations, where approximations of the matrix exponential can be utilized.

Lemma 6.

Let P,P~n×mP,\tilde{P}\in\mathbb{R}^{n\times m} and Ω=c+G𝐁p𝔸m\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{m}. Assume that PP is of full row rank and that (P~P)cPGl\|(\tilde{P}-P)c\|\leq\|PG\|_{l}. Then, P~(c+αG𝐁p)PΩ\tilde{P}(c+\alpha G\mathbf{B}_{p})\subseteq P\Omega for any α[0,αm(Ω,P,P~)]\alpha\in[0,\alpha_{m}(\Omega,P,\tilde{P})], where

αm(Ω,P,P~):=PGl(P~P)cPGl+(P~P)G.\alpha_{m}(\Omega,P,\tilde{P})\mathrel{:=}\frac{\|PG\|_{l}-\|(\tilde{P}-P)c\|}{\|PG\|_{l}+\|(\tilde{P}-P)G\|}. (7)
Proof.

Fix α[0,αm(Ω,P,P~)]\alpha\in[0,\alpha_{m}(\Omega,P,\tilde{P})]. Note that α\alpha satisfies (P~P)c+α(P~P)G(1α)PGl\|(\tilde{P}-P)c\|+\alpha\|(\tilde{P}-P)G\|\leq(1-\alpha)\|PG\|_{l}. Define F:=P~(c+αG𝐁p)F\mathrel{:=}\tilde{P}(c+\alpha G\mathbf{B}_{p}). Then, using Lemma 3(a),

F\displaystyle F\subseteq Pc+(P~P)c+α(P~P)G𝐁p+αPG𝐁p\displaystyle Pc+(\tilde{P}-P)c+\alpha(\tilde{P}-P)G\mathbf{B}_{p}+\alpha PG\mathbf{B}_{p}
\displaystyle\subseteq Pc+(P~P)c𝐁n+α(P~P)G𝐁n+αPG𝐁p\displaystyle Pc+\|(\tilde{P}-P)c\|\mathbf{B}_{n}+\alpha\|(\tilde{P}-P)G\|\mathbf{B}_{n}+\alpha PG\mathbf{B}_{p}
=\displaystyle= Pc+((P~P)c+α(P~P)G)𝐁n+αPG𝐁p\displaystyle Pc+\left(\|(\tilde{P}-P)c\|+\alpha\|(\tilde{P}-P)G\|\right)\mathbf{B}_{n}+\alpha PG\mathbf{B}_{p}
\displaystyle\subseteq Pc+(1α)PGl𝐁n+αPG𝐁p\displaystyle Pc+(1-\alpha)\|PG\|_{l}\mathbf{B}_{n}+\alpha PG\mathbf{B}_{p}
\displaystyle\subseteq Pc+(1α)PG𝐁p+αPG𝐁p=P(c+G𝐁p)=PΩ.\displaystyle Pc+(1-\alpha)PG\mathbf{B}_{p}+\alpha PG\mathbf{B}_{p}=P(c+G\mathbf{B}_{p})=P\Omega.

Lemma 6 can be explained intuitively as follows. The set P(c+G𝐁p)P(c+G\mathbf{B}_{p}) needs to be under-approximated utilizing an approximation of PP (our approximation is P~\tilde{P} in this case). The set P~(c+G𝐁p)\tilde{P}(c+G\mathbf{B}_{p}) resembles an approximation of P(c+G𝐁p)P(c+G\mathbf{B}_{p}); however, it is not an under-approximation. By utilizing estimates of the approximation errors, the set P(c+G𝐁p)P(c+G\mathbf{B}_{p}) is deflated, by introducing the parameter α[0,αm(c+G𝐁p,P,P~)]\alpha\in[0,\alpha_{m}(c+G\mathbf{B}_{p},P,\tilde{P})], where αm\alpha_{m} is defined by (7), making the set P(c+αG𝐁p)P(c+\alpha G\mathbf{B}_{p}) the desired under-approximation (see Figure 1).

Refer to caption
Figure 1: Schematic representation of the result of Lemma 6: the set P(c+G𝐁p)P(c+G\mathbf{B}_{p}) (black), its approximation P~(c+G𝐁p)\tilde{P}(c+G\mathbf{B}_{p}) (red), and the under-approximation P~(c+αG𝐁p)\tilde{P}(c+\alpha G\mathbf{B}_{p}) (blue) (unit balls herein are w.r.t. the maximum norm), where α[0,αm(c+G𝐁p,P,P~)]\alpha\in[0,\alpha_{m}(c+G\mathbf{B}_{p},P,\tilde{P})] and αm\alpha_{m} is defined by (7) .

Utilizing Lemma 6, we can obtain under-approximations of the images of the matrix exponential using truncated Taylor expansions as shown in Corollary 1 below. Before doing so, we first introduce the deflation function λ\lambda, which plays a major role in determining the extent of which the considered sets in our analysis need to be “shrunk” in order to obtain under-approximations.

Definition 1 (Deflation coefficient).

Given t+t\in\mathbb{R}_{+}, Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, and kk\in\mathbb{N}, define the deflation parameter

λ(t,Ω,k):=1etAθ(tA,k)Gc1+etAθ(tA,k)GG.\lambda(t,\Omega,k)\mathrel{:=}\frac{1-\mathrm{e}^{t\|A\|}\theta(t\|A\|,k)\|G^{\dagger}\|\|c\|}{1+\mathrm{e}^{t\|A\|}\theta(t\|A\|,k)\|G^{\dagger}\|\|G\|}. (8)
Corollary 1.

Given Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, and t+t\in\mathbb{R}_{+}, then for all kk\in\mathbb{N} such that λ(t,Ω,k)0\lambda(t,\Omega,k)\geq 0, we have (t,k)[c+λ(t,Ω,k)G]exp(tA)Ω.\mathcal{L}(t,k)[c+\lambda(t,\Omega,k)G]\subseteq\exp(tA)\Omega.

Proof.

The corollary follows from Lemma 6 (with P~=(t,k)\tilde{P}=\mathcal{L}(t,k) and P=exp(tA)P=\exp(tA)) by verifying that

αm(Ω,etA,(t,k))\displaystyle\alpha_{m}(\Omega,\mathrm{e}^{tA},\mathcal{L}(t,k)) =etAGl((t,k)etA)cetAGl+((t,k)etA)G.\displaystyle=\frac{\|\mathrm{e}^{tA}G\|_{l}-\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})c\|}{\|\mathrm{e}^{tA}G\|_{l}+\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})G\|}.
(GetA)1((t,k)etA)c(GetA)1+((t,k)etA)G\displaystyle\geq\frac{(\|G^{\dagger}\|\|\mathrm{e}^{-tA}\|)^{-1}-\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})c\|}{(\|G^{\dagger}\|\|\mathrm{e}^{-tA}\|)^{-1}+\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})G\|}
1GetA((t,k)etA)c1+GetA((t,k)etA)G\displaystyle\geq\frac{1-\|G^{\dagger}\|\mathrm{e}^{t\|A\|}\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})c\|}{1+\|G^{\dagger}\|\mathrm{e}^{t\|A\|}\|(\mathcal{L}(t,k)-\mathrm{e}^{tA})G\|}
1etAGθ(tA,k)c1+etAGθ(tA,k)G\displaystyle\geq\frac{1-\mathrm{e}^{t\|A\|}\|G^{\dagger}\|\theta(t\|A\|,k)\|c\|}{1+\mathrm{e}^{t\|A\|}\|G^{\dagger}\|\theta(t\|A\|,k)\|G\|}
=λ(t,Ω,k)0,\displaystyle=\lambda(t,\Omega,k)\geq 0,

where we have used Lemma 3(b),(c). ∎

IV-B Invertible truncated Taylor series of the matrix exponential

In the algorithm presented in Lemma 5, images of the matrix exponential (the sets SiNS_{i}^{N} and ViNV_{i}^{N}) are computed recursively. As we aim to adopt Corollary 1 to replace these exact images with under-approximations, it is important that each under-approximation is in the class 𝔸n\mathbb{A}_{n} (cf. Ω\Omega in Corollary 1). This necessitates that:

  1. 1.

    the set X0X_{0} is in 𝔸n\mathbb{A}_{n}, which holds by assumption;

  2. 2.

    the under-approximation of u(τ)\mathcal{R}_{u}(\tau), which we derive and discuss in Sections IV-C and IV-D, is in 𝔸n\mathbb{A}_{n}; and

  3. 3.

    in each iteration of the method, when under-approximating SiNS_{i}^{N} and ViNV_{i}^{N} using Corollary 1, the values of the function λ\lambda are positive, and the values of \mathcal{L} are invertible.

The positivity of λ\lambda can be imposed by setting the number of Taylor terms in \mathcal{L} to be sufficiently large (see Section IV-E for details).

Unfortunately, the invertibility of truncated Taylor expansions of the matrix exponential is not guaranteed in general. For example, if A=idA=-\operatorname{id}, then (1,2)=0\mathcal{L}(1,2)=0 (not invertible). The following lemma provides an efficient way to check the invertibility of (t,k)\mathcal{L}(t,k).

Lemma 7.

Let t+t\in\mathbb{R}_{+} and define

kmin(t):=min{k|θ(tρ(A),k)etρ(A)<1}.k_{\min}(t)\mathrel{:=}\min\left\{k\in\mathbb{N}\,\middle|\,\theta(t\rho(A),k)\mathrm{e}^{t\rho(A)}<1\right\}. (9)

Then, (t,k)\mathcal{L}(t,k) is invertible for all k[kmin(t);\clbrackk\in[k_{\min}(t);\infty\clbrack.

Proof.

First, we note that kmin(t)k_{\min}(t) is well-defined (finite) as limkθ(r,k)=0\lim_{k\rightarrow\infty}\theta(r,k)=0 for any r+r\in\mathbb{R}_{+} and that the inequality θ(tρ(A),k)exp(tρ(A))<1\theta(t\rho(A),k)\exp(t\rho(A))<1 holds for any k[kmin(t);\clbrackk\in[k_{\min}(t);\infty\clbrack as θ\theta is monotonically decreasing with respect to its second argument. Fix k[kmin(t);\clbrackk\in[k_{\min}(t);\infty\clbrack. The continuity of θ(t(),k)exp(t())\theta(t(\cdot),k)\exp(t(\cdot)) implies the existence of some ε>0\varepsilon>0 such that θ(t(ρ(A)+ε),k)exp(t(ρ(A)+ε))<1.\theta(t(\rho(A)+\varepsilon),k)\exp(t(\rho(A)+\varepsilon))<1. Using Lemma 1, there exists an induced matrix norm ε\|\cdot\|_{\varepsilon} such that Aερ(A)+ε\|A\|_{\varepsilon}\leq\rho(A)+\varepsilon. Hence, using estimates (2) and (3) and the increasing monotonicity of θ(t(),k)exp(t())\theta(t(\cdot),k)\exp(t(\cdot)),

etA(t,k)ε(etA)1ε\displaystyle\|\mathrm{e}^{tA}-\mathcal{L}(t,k)\|_{\varepsilon}\|(\mathrm{e}^{tA})^{-1}\|_{\varepsilon} =etA(t,k)εetAε\displaystyle=\|\mathrm{e}^{tA}-\mathcal{L}(t,k)\|_{\varepsilon}\|\mathrm{e}^{-tA}\|_{\varepsilon}
θ(tAε,k)etAε\displaystyle\leq\theta(t\|A\|_{\varepsilon},k)\mathrm{e}^{t\|A\|_{\varepsilon}}
θ(t(ρ(A)+ε),k)et(ρ(A)+ε)<1.\displaystyle\leq\theta(t(\rho(A)+\varepsilon),k)\mathrm{e}^{t(\rho(A)+\varepsilon)}<1.

Finally, using Lemma 2, (t,k)\mathcal{L}(t,k) is invertible. ∎

IV-C Under-approximating input reachable sets

The second main issue with implementing the Algorithm in Lemma 5 is the requirement to evaluate the input reachable set u(τ)\mathcal{R}_{u}(\tau) exactly, which is generally not possible. The following lemma is the starting point to address this issue.

Lemma 8.

Let I=[a,b]I=[a,b] be a compact interval, P,P~:In×mP,\tilde{P}:I\rightarrow\mathbb{R}^{n\times m} be continuous matrix-valued functions, and Ω=c+G𝐁p𝔸m\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{m}. Assume that rank(P(s))=n\mathrm{rank}(P(s))=n for all sIs\in I. Moreover, assume supsI(P~(s)P(s))cinfsIP(s)Gl\sup_{s\in I}\|(\tilde{P}(s)-P(s))c\|\leq\inf_{s\in I}\|P(s)G\|_{l}. Then, IP~(s)ds(c+αG𝐁p)IP(s)Ωds\int_{I}\tilde{P}(s)\mathrm{d}s(c+\alpha G\mathbf{B}_{p})\subseteq\int_{I}P(s)\Omega\mathrm{d}s for any α[0,γm(Ω,t1,t2,P,P~)]\alpha\in[0,\gamma_{m}(\Omega,t_{1},t_{2},P,\tilde{P})], where

γm(Ω,I,P,P~):=infsIP(s)GlsupsIPd(s)cinfsIP(s)Gl+supsIPd(s)G,\gamma_{m}(\Omega,I,P,\tilde{P})\mathrel{:=}\frac{\inf_{s\in I}\|P(s)G\|_{l}-\sup_{s\in I}\|P_{d}(s)c\|}{\inf_{s\in I}\|P(s)G\|_{l}+\sup_{s\in I}\|P_{d}(s)G\|}, (10)

and Pd(s):=P~(s)P(s),sIP_{d}(s)\mathrel{:=}\tilde{P}(s)-P(s),~{}s\in I.

Proof.

Fix α[0,γm(Ω,I,P,P~)]\alpha\in[0,\gamma_{m}(\Omega,I,P,\tilde{P})] and define

μ=supsI(P~(s)P(s))c+αsupsI(P~(s)P(s))G.\mu=\sup_{s\in I}\|(\tilde{P}(s)-P(s))c\|+\alpha\sup_{s\in I}\|(\tilde{P}(s)-P(s))G\|.

Then, α\alpha satisfies μ(1α)infsIP(s)Gl.\mu\leq(1-\alpha)\inf_{s\in I}\|P(s)G\|_{l}. Let yIP~(s)ds(c+αG𝐁p)y\in\int_{I}\tilde{P}(s)\mathrm{d}s(c+\alpha G\mathbf{B}_{p}). Then, there exists x𝐁px\in\mathbf{B}_{p} such that y=IP~(s)ds(c+αGx)=If(s)dsy=\int_{I}\tilde{P}(s)\mathrm{d}s(c+\alpha Gx)=\int_{I}f(s)\mathrm{d}s, where f(s)=P~(s)(c+αGx)f(s)=\tilde{P}(s)(c+\alpha Gx). Therefore, using Lemma 3(a), we have, for all sIs\in I,

f(s)=\displaystyle f(s)= P(s)c+(P~(s)P(s))c\displaystyle P(s)c+(\tilde{P}(s)-P(s))c
+α(P~(s)P(s))Gx+αP(s)Gx\displaystyle+\alpha(\tilde{P}(s)-P(s))Gx+\alpha P(s)Gx
\displaystyle\subseteq P(s)c+μ𝐁n+αP(s)G𝐁p\displaystyle P(s)c+\mu\mathbf{B}_{n}+\alpha P(s)G\mathbf{B}_{p}
\displaystyle\subseteq P(s)c+(1α)infzIP(z)Gl𝐁n+αP(s)G𝐁p\displaystyle P(s)c+(1-\alpha)\inf_{z\in I}\|P(z)G\|_{l}\mathbf{B}_{n}+\alpha P(s)G\mathbf{B}_{p}
\displaystyle\subseteq P(s)c+(1α)P(s)Gl𝐁n+αP(s)G𝐁p\displaystyle P(s)c+(1-\alpha)\|P(s)G\|_{l}\mathbf{B}_{n}+\alpha P(s)G\mathbf{B}_{p}
\displaystyle\subseteq P(s)c+(1α)P(s)G𝐁p+αP(s)G𝐁p=P(s)Ω.\displaystyle P(s)c+(1-\alpha)P(s)G\mathbf{B}_{p}+\alpha P(s)G\mathbf{B}_{p}=P(s)\Omega.

Using [29, Theorem 8.2.10, p. 316], there exists gΩIg\in\Omega^{I} such that f(s)=P(s)g(s)f(s)=P(s)g(s) for almost all sI.s\in I. Hence, y=IP(s)g(s)dsIP(s)Ωdsy=\int_{I}P(s)g(s)\mathrm{d}s\in\int_{I}P(s)\Omega\mathrm{d}s, which completes the proof. ∎

The logic of Lemma 8 is similar to that of Lemma 6, where the set-valued integral IP(s)(c+G𝐁p)ds\int_{I}P(s)(c+G\mathbf{B}_{p})\mathrm{d}s is under-approximated by a deflated version of the set IP~(s)ds(c+G𝐁p)\int_{I}\tilde{P}(s)\mathrm{d}s(c+G\mathbf{B}_{p}), utilizing the approximating matrix function P~\tilde{P}. Note that the set representation of IP~(s)ds(c+G𝐁p)\int_{I}\tilde{P}(s)\mathrm{d}s(c+G\mathbf{B}_{p}) (linear transformation of (c+G𝐁p)(c+G\mathbf{B}_{p}) under IP~(s)ds\int_{I}\tilde{P}(s)\mathrm{d}s) is simpler than that of the original set-valued integral, making it more appealing in set-valued computations. The deflation herein is obtained based on estimates of approximation errors as seen in the definition of γm\gamma_{m} given by Equation (10).

Lemma 8 provides a sufficient tool to under-approximate the input reachable set as seen in the following corollary.

Corollary 2.

Given Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, and t+t\in\mathbb{R}_{+}, then for all kk\in\mathbb{N} such that λ(t,Ω,k)0\lambda(t,\Omega,k)\geq 0, we have 𝒯(t,k)(c+λ(t,Ω,k)G𝐁p)0texp(sA)Ωds.\mathcal{T}(t,k)(c+\lambda(t,\Omega,k)G\mathbf{B}_{p})\subseteq\int_{0}^{t}\exp(sA)\Omega\mathrm{d}s.

Proof.

This follows by verifying that γm(Ω,I,e()A,(,k))λ(t,Ω,k)0\gamma_{m}(\Omega,I,\mathrm{e}^{(\cdot)A},\mathcal{L}(\cdot,k))\geq\lambda(t,\Omega,k)\geq 0, where the detailed estimates, which are similar to those presented in the proof of Corollary 1, are omitted for brevity. ∎

IV-D Invertibility of the integral of the matrix exponential

Corollary 2 establishes how the input reachable set u(τ)\mathcal{R}_{u}(\tau) required in the algorithm in Lemma 5 can be replaced by an under-approximation that is an affine transformation of a unit ball (not necessarily full-dimensional) as U𝔸nU\in\mathbb{A}_{n} by assumption. A blind implementation of the corollary may, however, lead to another issue if the under-approximation of u(τ)\mathcal{R}_{u}(\tau) is not a full dimensional set (i.e., not in 𝔸n\mathbb{A}_{n}). As we mentioned in Section IV-E, we need the under-approximation of u(τ)\mathcal{R}_{u}(\tau) to be in 𝔸n\mathbb{A}_{n}. This, as can be seen from Corollary 2, is attained if the utilized value of λ\lambda is positive and the value of the approximating function 𝒯\mathcal{T} is invertible. The first requirement can be fulfilled by setting the number of Taylor series terms of the approximation 𝒯\mathcal{T} to be large and we elaborate regarding that in Section IV-E. What is left is to ensure the invertibility of the value of 𝒯\mathcal{T}, which we can ensure if the integral of the matrix exponential itself is invertible.

To further investigate the invertibility requirement, let us first introduce the set 𝕀\mathbb{I} of positive tt values such that 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s is invertible, i.e.,

𝕀:={t+|0texp(sA)dsis invertible}.\mathbb{I}\mathrel{:=}\left\{t\in\mathbb{R}_{+}\,\middle|\,\int_{0}^{t}\exp(sA)\mathrm{d}s~{}\textrm{is invertible}\right\}.

This set can be deduced exactly from the eigenvalues of AA as shown in the lemma below (see, e.g., [28, Lemma 3.4.1, p. 100]).

Lemma 9.

Let t+{0}t\in\mathbb{R}_{+}\setminus\{0\}, then 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s is invertible iff 2πz𝐢/t2\pi z\mathbf{i}/t is not an eigenvalue of AA for any z{0}z\in\mathbb{Z}\setminus\{0\}, where 𝐢=1\mathbf{i}=\sqrt{-1}.

We can see from Lemma 9 that the invertibility of 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s fails at only a countable number of values of tt. Hence, in practice, the invertibility is likely always fulfilled. Furthermore, we can use Lemma 9 to show that 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s is always invertible for tt sufficiently small, but nonzero (which is the case as we use it with t=τt=\tau). For a given system matrix AA, the following lemma derives a fixed open interval on which the matrix exponential is guaranteed to be invertible.

Lemma 10.

Let E={m+|m=|λ|,Av=λv,λ,vn,(λ)=0}{0}E=\{m\in\mathbb{R}_{+}~{}|~{}m=\left|\lambda\right|,~{}Av=\lambda v,~{}\lambda\in\mathbb{C},~{}v\in\mathbb{C}^{n},~{}\Re(\lambda)=0\}\setminus\{0\} be the set of absolute values of the purely imaginary (nonzero) eigenvalues of AA. If EE is non-empty, set tmax=2π/maxEt_{\max}=2\pi/\max{E}, otherwise tmax=t_{\max}=\infty. Then, 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s is invertible for all t\orbrack0,tmax\clbrackt\in\orbrack 0,t_{\max}\clbrack.

As can be seen from Lemma 10, we can always find, based on the eigenvalues of the system matrix AA, which is fixed and known for a given system, a non-empty open interval with zero as a left limit point on which the integral of the matrix exponential is guaranteed to be invertible. In our proposed method, we are interested in an under-approximation of u(τ)\mathcal{R}_{u}(\tau), where τ\tau is typically small as it corresponds to the time step size of the method (τ=T/N\tau=T/N). Therefore, the invertibility of 0τexp(sA)ds\int_{0}^{\tau}\exp(sA)\mathrm{d}s can always be fulfilled if we set the time discretization parameter NN to be sufficiently large (but still finite), depending on the eigenvalues of AA.

If the invertibility of the integral of the matrix exponential is fulfilled (t𝕀t\in\mathbb{I}), we can obtain a finite kk\in\mathbb{N} such that the truncated Taylor series of 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s, 𝒯(t,k)\mathcal{T}(t,k), is invertible. The existence of a finite kk, such that 𝒯(t,k)\mathcal{T}(t,k) is invertible, follows from the invertibility of 0texp(sA)ds\int_{0}^{t}\exp(sA)\mathrm{d}s (t𝕀t\in\mathbb{I}), the fact that limk𝒯(t,k)=0texp(sA)ds\lim_{k\rightarrow\infty}\mathcal{T}(t,k)=\int_{0}^{t}\exp(sA)\mathrm{d}s, and the continuity of the matrix inverse (Lemma 2).

IV-E Determining the number of Taylor series terms

Next, we aim to determine the number of Taylor series terms used in the approximations \mathcal{L} and 𝒯\mathcal{T}. First, note that the under-approximations introduced in Corollaries 1 and 2 depend on the deflation function λ\lambda. In this work, we propose simple criteria, that determine the number of Taylor series terms, which aim to maximize the values of λ\lambda, while incorporating the full-dimensionality considerations discussed in Sections IV-E and IV-D. Notice that for any given t+t\in\mathbb{R}_{+} and Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, the function λ(t,Ω,)\lambda(t,\Omega,\cdot) is bounded above with the least upper bound of 11. Our goal is to choose the minimum value of kk such that the deflation coefficient is larger than some design parameter ϵ[0,1\clbrack\epsilon\in[0,1\clbrack, while ensuring the invertibility of the approximations of the matrix exponential and its integral. Therefore, we introduce the following parameters associated with the number of Taylor series terms used in under-approximating homogeneous and input reachable sets.

Definition 2.

Given Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, t+t\in\mathbb{R}_{+}, t¯𝕀\bar{t}\in\mathbb{I}, and ϵ[0,1\clbrack\epsilon\in[0,1\clbrack. κ(t,Ω,ϵ)\kappa(t,\Omega,\epsilon) is defined as

κ(t,Ω,ϵ):=min({k[kmin(t);\clbrack|λ(t,Ω,k)>ϵ}[2;\clbrack).\kappa(t,\Omega,\epsilon)\mathrel{:=}\min\left(\left\{k\in[k_{\min}(t);\infty\clbrack\,\middle|\,\lambda(t,\Omega,k)>\epsilon\right\}\cap[2;\infty\clbrack\right). (11)

Moreover, η(t¯,Ω,ϵ)\eta(\bar{t},\Omega,{\epsilon}) is defined as

η(t¯,Ω,ϵ):=min{k|λ(t¯,Ω,k)>ϵ,𝒯(t¯,k)is invertible}.\eta(\bar{t},\Omega,{\epsilon})\mathrel{:=}\min\{k\in\mathbb{N}~{}|~{}\lambda(\bar{t},\Omega,k)>{\epsilon},\mathcal{T}(\bar{t},k)~{}\textrm{is invertible}\}. (12)

As shown in the proof of Lemma 7, kmin(t)k_{\min}(t) is well-defined. Since λ(t,Ω,k)1\lambda(t,\Omega,k)\rightarrow 1, as kk\rightarrow\infty, κ(t,Ω,ϵ)\kappa(t,\Omega,\epsilon) is also well-defined for any ϵ[0,1\clbrack\epsilon\in[0,1\clbrack. Note that, the lower bound of 2 used in the definition of κ(t,Ω,ϵ)\kappa(t,\Omega,{\epsilon}) is of importance only when deducing the convergence guarantees in Section VI. The well-definiteness of η(t¯,Ω,ϵ)\eta(\bar{t},\Omega,\epsilon) follows from the fact that limkλ(t¯,Ω,k)=1\lim_{k\rightarrow\infty}\lambda(\bar{t},\Omega,k)=1 and the invertibility argument at the end of Section IV-D.

IV-F Under-approximations of reachable sets and tubes

The previous sections have established the tools necessary for the proposed method. Next, we introduce the operators, \mathcal{H} and \mathcal{I}, which are designed based on Corollaries 1 and 2, in addition to the criteria introduced in (11) and (12), to obtain full-dimensional under-approximations of homogeneous and input reachable sets, using approximations of the matrix exponential and its integral.

Definition 3.

We define the homogeneous and input under-approximation operators :+×𝔸n×\orbrack0,1]𝔸n\mathcal{H}\colon\mathbb{R}_{+}\times\mathbb{A}_{n}\times\orbrack 0,1]\rightarrow\mathbb{A}_{n} and :𝕀×𝔸n×\orbrack0,1]𝔸n\mathcal{I}\colon\mathbb{I}\times\mathbb{A}_{n}\times\orbrack 0,1]\rightarrow\mathbb{A}_{n} as follows:

(t,Ω,ϵ):=(t,κ(t,Ω,ϵ))[c+λ(t,Ω,κ(t,Ω,ϵ))G𝐁p],\mathcal{H}(t,\Omega,\epsilon)\mathrel{:=}\mathcal{L}(t,\kappa(t,\Omega,\epsilon))[c+\lambda(t,\Omega,\kappa(t,\Omega,\epsilon))G\mathbf{B}_{p}], (13)
(t¯,Ω,ϵ):=𝒯(t¯,η(t¯,Ω,ϵ))[c+λ(t¯,Ω,η(t¯,Ω,ϵ))G𝐁p],\mathcal{I}(\bar{t},\Omega,\epsilon)\mathrel{:=}\mathcal{T}(\bar{t},\eta(\bar{t},\Omega,\epsilon))[c+\lambda(\bar{t},\Omega,\eta(\bar{t},\Omega,{\epsilon}))G\mathbf{B}_{p}], (14)

where t+t\in\mathbb{R}_{+}, t¯𝕀\bar{t}\in\mathbb{I}, Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, and ϵ[0,1\clbrack\epsilon\in[0,1\clbrack.

Now, we are ready to introduce the proposed method.

Theorem 11.

Given NN\in\mathbb{N} and ϵh,ϵu[0,1\clbrack\epsilon_{h},{\epsilon}_{u}\in[0,1\clbrack, define τ=T/N\tau=T/N, and assume τ𝕀\tau\in\mathbb{I}. Moreover, define

𝒮0N\displaystyle\mathcal{S}_{0}^{N} =X0,\displaystyle=X_{0}, 𝒮iN\displaystyle\mathcal{S}_{i}^{N} =(τ,Si1N,ϵh),i[1;N],\displaystyle=\mathcal{H}(\tau,S_{i-1}^{N},\epsilon_{h}),~{}i\in[1;N], (15a)
𝒱0N\displaystyle\mathcal{V}_{0}^{N} =(τ,U,ϵu),\displaystyle=\mathcal{I}(\tau,U,{\epsilon}_{u}), 𝒱iN\displaystyle\mathcal{V}_{i}^{N} =(τ,𝒱i1N,ϵh),i[1;N],\displaystyle=\mathcal{H}(\tau,\mathcal{V}_{i-1}^{N},\epsilon_{h}),~{}i\in[1;N], (15b)
𝒲0N\displaystyle\mathcal{W}_{0}^{N} ={0},\displaystyle=\{0\}, 𝒲iN\displaystyle\mathcal{W}_{i}^{N} =𝒲i1N+𝒱i1N,i[1;N],\displaystyle=\mathcal{W}_{i-1}^{N}+\mathcal{V}_{i-1}^{N},~{}i\in[1;N], (15c)
ΛiN\displaystyle\Lambda_{i}^{N} =𝒮iN+𝒲iN,i[0;N].\displaystyle=\mathcal{S}_{i}^{N}+\mathcal{W}_{i}^{N},~{}i\in[0;N]. (15d)

Recall the definitions of {SiN}i=0N\{S_{i}^{N}\}_{i=0}^{N}, {ViN}i=0N\{V_{i}^{N}\}_{i=0}^{N}, {WiN}i=0N\{W_{i}^{N}\}_{i=0}^{N} and {ΓiN}i=0N\{\Gamma_{i}^{N}\}_{i=0}^{N} given in Lemma 5. Then, 𝒮iNSiN=h(iτ)\mathcal{S}_{i}^{N}\subseteq S_{i}^{N}=\mathcal{R}_{h}(i\tau), 𝒱iNViN\mathcal{V}_{i}^{N}\subseteq V_{i}^{N}, 𝒲iNWiN=u(iτ)\mathcal{W}_{i}^{N}\subseteq W_{i}^{N}=\mathcal{R}_{u}(i\tau), and ΛiNΓiN=(iτ)\Lambda_{i}^{N}\subseteq\Gamma_{i}^{N}=\mathcal{R}(i\tau) for all i[0;N]i\in[0;N]. Furthermore, i=0NΛiN([0,T])\bigcup_{i=0}^{N}\Lambda_{i}^{N}\subseteq\mathcal{R}([0,T]).

Proof.

We have S0N=𝒮0N=X0S_{0}^{N}=\mathcal{S}_{0}^{N}=X_{0}. Assume that 𝒮iNSin\mathcal{S}_{i}^{N}\subseteq S_{i}^{n} for some i[0;N1]i\in[0;N-1], then, using Corollary 1, 𝒮i+1N=(τ,𝒮iN,ϵh)exp(τA)𝒮iNexp(τA)SiN=Si+1N.\mathcal{S}_{i+1}^{N}=\mathcal{H}(\tau,\mathcal{S}_{i}^{N},\epsilon_{h})\subseteq\exp(\tau A)\mathcal{S}_{i}^{N}\subseteq\exp(\tau A)S_{i}^{N}=S_{i+1}^{N}. Therefore, using induction, 𝒮iNSiN\mathcal{S}_{i}^{N}\subseteq S_{i}^{N} for all i[0;N]i\in[0;N]. Similarly, and using Corollary 2, we have 𝒱iNViN\mathcal{V}_{i}^{N}\subseteq V_{i}^{N} for all i[0;N]i\in[0;N]. Hence, for all i[0;N]i\in[0;N], 𝒲iNWiN\mathcal{W}_{i}^{N}\subseteq W_{i}^{N}. Moreover, for all i[0;N]i\in[0;N], ΛiN=𝒮iN+𝒲iNSiN+WiN=ΓiN=(iτ)\Lambda_{i}^{N}=\mathcal{S}_{i}^{N}+\mathcal{W}_{i}^{N}\subseteq{S}_{i}^{N}+{W}_{i}^{N}=\Gamma_{i}^{N}=\mathcal{R}(i\tau). Finally, i=0NΛiNi[0;N](iτ)t[0,T](t)=([0,T])\bigcup_{i=0}^{N}\Lambda_{i}^{N}\subseteq\bigcup_{i\in[0;N]}\mathcal{R}(i\tau)\subseteq\bigcup_{t\in[0,T]}\mathcal{R}(t)=\mathcal{R}([0,T]). ∎

Remark 2 (Assumptions on initial and input sets).

In Section III, it was assumed that both the initial and input sets are in 𝔸n\mathbb{A}_{n}. This assumption can be slightly relaxed if one of these sets is strictly equal to {0}\{0\}. For example, if X0={0}X_{0}=\{0\}, then (t)=u(t),t[0,T]\mathcal{R}(t)=\mathcal{R}_{u}(t),~{}t\in[0,T]. The proposed method can be implemented in this case by considering computing the sets 𝒲iN,i[0;N]\mathcal{W}_{i}^{N},~{}i\in[0;N], which are independent of X0X_{0}, and omitting the computations of 𝒮iN,i[0;N]\mathcal{S}_{i}^{N},~{}i\in[0;N]. Similarly, if U={0}U=\{0\}, we have (t)=h(t),t[0,T]\mathcal{R}(t)=\mathcal{R}_{h}(t),~{}t\in[0,T], and the proposed method can be implemented by considering the computations of 𝒮iN,i[0;N]\mathcal{S}_{i}^{N},~{}i\in[0;N], only, which are independent of UU.

V Implementation using zonotopes and memory complexity

Fix NN\in\mathbb{N} and recall the definitions of {𝒮iN}i=0N\{\mathcal{S}_{i}^{N}\}_{i=0}^{N}, {𝒱iN}i=0N\{\mathcal{V}_{i}^{N}\}_{i=0}^{N}, {𝒲iN}i=0N\{\mathcal{W}_{i}^{N}\}_{i=0}^{N} and {ΛiN}i=0N\{\Lambda_{i}^{N}\}_{i=0}^{N} in Theorem 11. The computations of 𝒮iN,𝒱iN,i[0;N]\mathcal{S}_{i}^{N},~{}\mathcal{V}_{i}^{N},~{}i\in[0;N] are straightforward for any arbitrary norm on n\mathbb{R}^{n} since these sets are simply full-dimensional affine transformations of unit balls. However, the computations of {𝒲iN}i=0N\{\mathcal{W}_{i}^{N}\}_{i=0}^{N} and {ΛiN}i=0N\{\Lambda_{i}^{N}\}_{i=0}^{N} involve Minkowski sums, whose explicit expressions are generally unknown. If the embedded norm is the maximum norm, then Minkowski sums can be computed explicitly. Hence, we implement the proposed method using zonotopes, i.e., affine transformations of closed unit balls w.r.t. the maximum norm.

Given cnc\in\mathbb{R}^{n}, Gn×pG\in\mathbb{R}^{n\times p}, a zonotope 𝒵(c,G)n\mathcal{Z}(c,G)\subseteq\mathbb{R}^{n} is defined by c+G𝐁pc+G\mathbf{B}_{p}^{\infty}, where 𝐁p\mathbf{B}_{p}^{\infty} denotes the pp-dimensional closed unit ball w.r.t. the maximum norm. The columns of GG are referred to as the generators of 𝒵(c,G)\mathcal{Z}(c,G) and the ratio p/np/n is referred to as the order of 𝒵(c,G)\mathcal{Z}(c,G) and is denoted by o(𝒵(c,G))o(\mathcal{Z}(c,G)) (e.g., the order of 𝐁n\mathbf{B}_{n}^{\infty} is one). Herein, the number of generators of 𝒵(c,G)\mathcal{Z}(c,G) is denoted by Gen(𝒵(c,G))\mathrm{Gen}(\mathcal{Z}(c,G)). For any two zonotopes 𝒵(c,G),𝒵(c~,G~)n\mathcal{Z}(c,G),\mathcal{Z}(\tilde{c},\tilde{G})\subseteq\mathbb{R}^{n} and any linear transformation Lm×nL\in\mathbb{R}^{m\times n}, 𝒵(c,G)+𝒵(c~,G~)=𝒵(c+c~,[G,G~])\mathcal{Z}(c,G)+\mathcal{Z}(\tilde{c},\tilde{G})=\mathcal{Z}(c+\tilde{c},[G,\tilde{G}]) and L𝒵(c,G)=𝒵(Lc,LG).L\mathcal{Z}(c,G)=\mathcal{Z}(Lc,LG).

Let us analyze the memory complexity of the proposed method implemented with zonotopes. We have Gen(X0)=o(X0)n\mathrm{Gen}(X_{0})=o(X_{0})n and Gen(U)=o(U)n\mathrm{Gen}(U)=o(U)n. As affinely transforming zonotopes preserves their orders, we have Gen(𝒮iN)=o(X0)n,i[0;N]\mathrm{Gen}(\mathcal{S}_{i}^{N})=o(X_{0})n,~{}i\in[0;N], and Gen(𝒱iN)=o(U)n,i[0;N]\mathrm{Gen}(\mathcal{V}_{i}^{N})=o(U)n,~{}i\in[0;N]. The sequence {𝒲iN}i=0N\{\mathcal{W}_{i}^{N}\}_{i=0}^{N} is computed as 𝒲iN=j=0i1𝒱jN,i[0;N].\mathcal{W}_{i}^{N}=\sum_{j=0}^{i-1}\mathcal{V}_{j}^{N},~{}i\in[0;N]. Hence, Gen(𝒲iN)=io(U)n,i[0;N].\mathrm{Gen}(\mathcal{W}_{i}^{N})=io(U)n,~{}i\in[0;N]. Consequently, as ΛiN=𝒮iN+𝒲iN,i[0;N]\Lambda_{i}^{N}=\mathcal{S}_{i}^{N}+\mathcal{W}_{i}^{N},~{}i\in[0;N], Gen(ΛiN)=o(X0)n+io(U)n,i[0;N].\mathrm{Gen}(\Lambda_{i}^{N})=o(X_{0})n+io(U)n,~{}i\in[0;N]. Finally, the total number of generators from the sequence {ΛiN}i=0N\{\Lambda_{i}^{N}\}_{i=0}^{N} is i=0NGen(ΛiN)=(N+1)o(X0)n+N(N+1)o(U)n/2\sum_{i=0}^{N}\mathrm{Gen}(\Lambda_{i}^{N})=(N+1)o(X_{0})n+N(N+1)o(U)n/2. This shows that the total number of generators stored is of order N2nN^{2}n and that gives a space complexity of order N2n2N^{2}n^{2} (second order in the argument NN), which is identical, e.g., to the space complexity of the over-approximation method in [15]. However, if we store only the sets 𝒮iN,𝒱iN\mathcal{S}_{i}^{N},~{}\mathcal{V}_{i}^{N}i[0;N]i\in[0;N] (the sets prior to Minkowski sum computations), the space complexity is reduced to be of order Nn2Nn^{2} (first order in the argument NN), where the sets 𝒲iN,ΛiN,i[0;N]\mathcal{W}_{i}^{N},~{}\Lambda_{i}^{N},~{}i\in[0;N], can be computed afterwards when needed by means of Minkowski sums, which are computationally inexpensive [30]. This approach was proposed in [9] in order to lower memory complexity, also resulting in a first order memory complexity with respect to the argument NN. In Section VII-C, we explore empirically the time efficiency of the proposed method via means of numerical simulations.

As shown above, Minkowski sums of zonotopes increase the number of generators to be stored. This may limit the applicability of our zonotopic implementation to cases when the discretization parameter NN is not significantly large as the proposed method incorporates iterative Minkowski sums. This issue can be overcome by implementing zonotopic order reductions that replace a given zonotope with a zonotopic under-approximation with less generators, which lessen the memory requirement, with the price of reduced accuracy. For example, a given zonotope can be first inscribed by another zonotope, with a less number of generators, using one of the standard over-approximating order reduction techniques (see, e.g., [31]), and then the over-approximating zonotope can be scaled down to be contained in the original zonotope by utilizing linear programming (see [32]). Furthermore, a zonotope can be under-approximated by choosing a subset of its generators, based on some specified criteria, and replacing the chosen generators by their sum (or difference) [7, 33]. In fact, these two approaches have been implemented in the 2021 version of the reachability software CORA [34]. In Section VII, we will explore the influence of order reduction techniques on the under-approximations obtained using our proposed method.

VI Convergence

In Section IV, we have introduced the proposed method and proved its under-approximate capability. The proposed method requires to assign values to the parameters ϵh\epsilon_{h} and ϵu{\epsilon}_{u} in the interval [0,1\clbrack[0,1\clbrack. The closer the values of ϵh\epsilon_{h} and ϵu{\epsilon}_{u} to one, the higher the approximation accuracy. Herein, we show that if we choose ϵh=11/N2\epsilon_{h}=1-1/N^{2} and ϵu=11/N\epsilon_{u}=1-1/N, then the proposed method generates convergent under-approximations, as NN approaches \infty, with first-order convergence guarantees, in the sense of the Hausdorff distance, and that is the second main result of this work.

Theorem 12.

Let NN\in\mathbb{N}, τ=T/N\tau=T/N, ϵh=11/N2\epsilon_{h}=1-1/N^{2}, and ϵu=11/N\epsilon_{u}=1-1/N. Assume τ𝕀\tau\in\mathbb{I} and that τA1\tau\|A\|\leq 1. Define {𝒮iN}i=0N\{\mathcal{S}_{i}^{N}\}_{i=0}^{N}, {𝒱iN}i=0N\{\mathcal{V}_{i}^{N}\}_{i=0}^{N}, {𝒲iN}i=0N\{\mathcal{W}_{i}^{N}\}_{i=0}^{N}, and {ΛiN}i=0N\{\Lambda_{i}^{N}\}_{i=0}^{N} as in Theorem 11. Then, there exist constants D1,D2,D3,D4+D_{1},D_{2},D_{3},D_{4}\in\mathbb{R}_{+} that are independent of NN, such that, for all i[0;N]i\in[0;N], 𝔡(𝒮iN,h(iτ))D1τ\mathfrak{d}(\mathcal{S}_{i}^{N},\mathcal{R}_{h}(i\tau))\leq D_{1}\tau, 𝔡(𝒲iN,u(iτ))D2τ\mathfrak{d}(\mathcal{W}_{i}^{N},\mathcal{R}_{u}(i\tau))\leq D_{2}\tau, 𝔡(ΛiN,(iτ))D3τ,\mathfrak{d}(\Lambda_{i}^{N},\mathcal{R}(i\tau))\leq D_{3}\tau, and 𝔡(i=0NΛiN,([0,T]))D4τ.\mathfrak{d}(\bigcup_{i=0}^{N}\Lambda_{i}^{N},\mathcal{R}([0,T]))\leq D_{4}\tau.

Next, we state some technical results that are necessary in the proof of Theorem 12. The proofs of Lemmas 14, 15, and 16 are given in the Appendix.

Lemma 13 (Semigroup property of reachable sets [35]).

Given 0abT0\leq a\leq b\leq T, (b)=exp((ba)A)(a)+0(ba)exp(sA)Uds.\mathcal{R}(b)=\exp((b-a)A)\mathcal{R}(a)+\int_{0}^{(b-a)}\exp(sA)U\mathrm{d}s.

Lemma 14.

Let Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, ϵ[0,1\clbrack\epsilon\in[0,1\clbrack, and t[0,T]t\in[0,T]. Assume tA1t\|A\|\leq 1. Then,

𝔡((t,Ω,ϵ),etAΩ)(2(1ϵ)+(tA)2)eTAΩ.\mathfrak{d}(\mathcal{H}(t,\Omega,\epsilon),\mathrm{e}^{tA}\Omega)\leq(2(1-\epsilon)+(t\|A\|)^{2})\mathrm{e}^{T\|A\|}\|\Omega\|.
Lemma 15.

Let Ω=c+G𝐁p𝔸n\Omega=c+G\mathbf{B}_{p}\in\mathbb{A}_{n}, ϵ[0,1\clbrack\epsilon\in[0,1\clbrack, and t𝕀[0,T]t\in\mathbb{I}\cap[0,T]. Assume tA1t\|A\|\leq 1. Then,

𝔡((t,Ω,ϵ),0tesAΩds)2((1ϵ)t+t2A)eTAΩ.\mathfrak{d}(\mathcal{I}(t,\Omega,{\epsilon}),\int_{0}^{t}\mathrm{e}^{sA}\Omega\mathrm{d}s)\leq 2((1-\epsilon)t+t^{2}\|A\|)\mathrm{e}^{T\|A\|}\|\Omega\|.
Lemma 16.

Let NN\in\mathbb{N}, τ=T/N\tau=T/N, and {SiN}i=0N\{S_{i}^{N}\}_{i=0}^{N} and {ViN}i=0N\{V_{i}^{N}\}_{i=0}^{N} be defined as in Equations (6a) and (6b), respectively. Then, SiNexp(TA)X0\|S_{i}^{N}\|\leq\exp(T\|A\|)\|X_{0}\| and ViNτexp(2TA)U\|V_{i}^{N}\|\leq\tau\exp(2T\|A\|)\|U\| for all i[0;N]i\in[0;N].

Now, we are ready to prove Theorem 12.

Proof of Theorem 12.

Recall the definitions of {SiN}i=0N\{S_{i}^{N}\}_{i=0}^{N}, {ViN}i=0N\{V_{i}^{N}\}_{i=0}^{N}, {WiN}i=0N\{W_{i}^{N}\}_{i=0}^{N} and {ΓiN}i=0N\{\Gamma_{i}^{N}\}_{i=0}^{N} in Lemma 5. Note that according to Lemma 5, SiN=h(iτ),WiN=u(iτ)S_{i}^{N}=\mathcal{R}_{h}(i\tau),~{}W_{i}^{N}=\mathcal{R}_{u}(i\tau) and ΓiN=(iτ)\Gamma_{i}^{N}=\mathcal{R}(i\tau) for all i[0;N]i\in[0;N]. Assume without loss of generality that A0A\neq 0 (the case when A=0A=0 is trivial). Let pi=𝔡(SiN,𝒮iN),i[0;N]p_{i}=\mathfrak{d}(S_{i}^{N},\mathcal{S}_{i}^{N}),~{}i\in[0;N]. We have p0=0p_{0}=0 as S0N=𝒮0N=X0S_{0}^{N}=\mathcal{S}_{0}^{N}=X_{0}. For i[1;N]i\in[1;N], we have, using the definitions of SiNS_{i}^{N} and 𝒮iN\mathcal{S}_{i}^{N} in Equations (6a) and (15a), respectively, the triangle inequality, and Lemma 4(b),

pi\displaystyle p_{i} 𝔡(eτASi1N,eτA𝒮i1N)+𝔡(eτA𝒮i1N,(τ,𝒮i1N,ϵh))\displaystyle\leq\mathfrak{d}(\mathrm{e}^{\tau A}S_{i-1}^{N},\mathrm{e}^{\tau A}\mathcal{S}_{i-1}^{N})+\mathfrak{d}(\mathrm{e}^{\tau A}\mathcal{S}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{S}_{i-1}^{N},\epsilon_{h}))
eτApi1+𝔡(eτA𝒮i1N,(τ,𝒮i1N,ϵh)).\displaystyle\leq\mathrm{e}^{\tau\|A\|}p_{i-1}+\mathfrak{d}(\mathrm{e}^{\tau A}\mathcal{S}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{S}_{i-1}^{N},\epsilon_{h})).

Using Lemma 14 and the fact that ϵh=1(τ/T)2\epsilon_{h}=1-(\tau/T)^{2}, the term 𝔡(exp(τA)𝒮i1N,(τ,𝒮i1N,ϵh))\mathfrak{d}(\exp(\tau A)\mathcal{S}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{S}_{i-1}^{N},\epsilon_{h})) is bounded above by C1𝒮i1Nτ2,C_{1}\|\mathcal{S}_{i-1}^{N}\|\tau^{2}, where C1=(2/T2+A2)exp(TA).C_{1}=({2}/{T^{2}}+\|A\|^{2})\exp(T\|A\|). Moreover, using the fact that 𝒮i1NSi1N,i[1;N]\mathcal{S}_{i-1}^{N}\subseteq S_{i-1}^{N},~{}i\in[1;N], as shown in Theorem 11, and Lemma 16, we have 𝒮i1NSi1NM=exp(TA)X0,i[1;N+1].\|\mathcal{S}_{i-1}^{N}\|\leq\|{S}_{i-1}^{N}\|\leq M=\exp(T\|A\|)\|X_{0}\|,~{}i\in[1;N+1]. Therefore, piexp(τA)pi1+C1Mτ2,i[1;N].p_{i}\leq\exp(\tau\|A\|)p_{i-1}+C_{1}M\tau^{2},~{}i\in[1;N]. Using induction, we have, for all i[0;N]i\in[0;N],

pieiτA1eτA1C1Mτ2eTA1τAC1Mτ2=D1τ,p_{i}\leq\frac{\mathrm{e}^{i\tau\|A\|}-1}{\mathrm{e}^{\tau\|A\|}-1}C_{1}M\tau^{2}\leq\frac{\mathrm{e}^{T\|A\|}-1}{\tau\|A\|}C_{1}M\tau^{2}=D_{1}\tau, (16)

where D1=(exp(TA)1)C1M/A.D_{1}=(\exp(T\|A\|)-1)C_{1}M/\|A\|. Similarly, let qi=𝔡(ViN,𝒱iN),i[0;N]q_{i}=\mathfrak{d}(V_{i}^{N},\mathcal{V}_{i}^{N}),~{}i\in[0;N]. We have, using Lemma 15 and the fact that ϵu=1τ/T{\epsilon}_{u}=1-\tau/T, q0=𝔡(0τexp(sA)Uds,(τ,U,ϵu))C2τ2,q_{0}=\mathfrak{d}(\int_{0}^{\tau}\exp(sA)U\mathrm{d}s,\mathcal{I}(\tau,U,{\epsilon}_{u}))\leq C_{2}\tau^{2}, where C2=2(1/T+A)exp(TA)U.C_{2}=2(1/T+\|A\|)\exp(T\|A\|)\|U\|. The remaining terms, qi,i[1;N]q_{i},~{}i\in[1;N], can be bounded using the triangular inequality and Lemma 4(b), where we deduce the recursive inequality qieτAqi1+𝔡(exp(τA)𝒱i1N,(τ,𝒱i1N,ϵh)),i[1;N].q_{i}\leq\mathrm{e}^{\tau\|A\|}q_{i-1}+\mathfrak{d}(\exp(\tau A)\mathcal{V}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{V}_{i-1}^{N},\epsilon_{h})),~{}i\in[1;N]. Now, for the term 𝔡(exp(τA)𝒱i1N,(τ,𝒱i1N,ϵh))\mathfrak{d}(\exp(\tau A)\mathcal{V}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{V}_{i-1}^{N},\epsilon_{h})), we use Lemma 14, which results in the inequality 𝔡(exp(τA)𝒱i1N,(τ,𝒱i1N,ϵh))C1𝒱i1Nτ2.\mathfrak{d}(\exp(\tau A)\mathcal{V}_{i-1}^{N},\mathcal{H}(\tau,\mathcal{V}_{i-1}^{N},\epsilon_{h}))\leq C_{1}\|\mathcal{V}_{i-1}^{N}\|\tau^{2}. Using 𝒱i1NVi1N,i[1;N]\mathcal{V}_{i-1}^{N}\subseteq V_{i-1}^{N},~{}i\in[1;N] from Theorem 11, and Lemma 16, the sequence {𝒱i1N}i=1N+1\{\|\mathcal{V}_{i-1}^{N}\|\}_{i=1}^{N+1} is bounded above by τM~\tau\tilde{M}, where M~=exp(2TA)U.\tilde{M}=\exp(2T\|A\|)\|U\|. Hence, qiexp(τA)qi1+C1M~τ3,i[1;N],q_{i}\leq\exp(\tau\|A\|)q_{i-1}+C_{1}\tilde{M}\tau^{3},~{}i\in[1;N], and by induction, we obtain, for all i[0;N]i\in[0;N],

qieiτAC2τ2+eiτA1eτA1C1M~τ3eiτAC2τ2+eiτAτAC1M~τ3=eiτAC3τ2,\begin{split}q_{i}&\leq\mathrm{e}^{i\tau\|A\|}C_{2}\tau^{2}+\frac{\mathrm{e}^{i\tau\|A\|}-1}{\mathrm{e}^{\tau\|A\|}-1}C_{1}\tilde{M}\tau^{3}\\ &\leq\mathrm{e}^{i\tau\|A\|}C_{2}\tau^{2}+\frac{\mathrm{e}^{i\tau\|A\|}}{\tau\|A\|}C_{1}\tilde{M}\tau^{3}=\mathrm{e}^{i\tau\|A\|}C_{3}\tau^{2},\end{split} (17)

where C3=C2+C1M~/A.C_{3}=C_{2}+{C_{1}\tilde{M}}/{\|A\|}. Next, define ri=𝔡(WiN,𝒲iN),i[0;N]r_{i}=\mathfrak{d}(W_{i}^{N},\mathcal{W}_{i}^{N}),~{}i\in[0;N]. Then, r0=0r_{0}=0 as W0N=𝒲0N={0}W_{0}^{N}=\mathcal{W}_{0}^{N}=\{0\} and, for i[1;N]i\in[1;N], riri1+qi1,r_{i}\leq r_{i-1}+q_{i-1}, where we have utilized Lemma 4(a). Using induction, the sequence {ri}i=0N\{r_{i}\}_{i=0}^{N} is bounded above as follows: rij=0i1qj,i[0;N],r_{i}\leq\sum_{j=0}^{i-1}q_{j},~{}i\in[0;N], where j=01()=0\sum_{j=0}^{-1}(\cdot)=0. Hence, using estimate (17),

rij=0i1ejτAC3τ2eiτA1eτA1C3τ2eTA1τAC3τ2=D2τ,\begin{split}r_{i}&\leq\sum_{j=0}^{i-1}\mathrm{e}^{j\tau\|A\|}C_{3}\tau^{2}\leq\frac{\mathrm{e}^{i\tau\|A\|}-1}{\mathrm{e}^{\tau\|A\|}-1}C_{3}\tau^{2}\\ &\leq\frac{\mathrm{e}^{T\|A\|}-1}{\tau\|A\|}C_{3}\tau^{2}=D_{2}\tau,\end{split} (18)

where D2=(exp(TA)1)C3/A.D_{2}=(\exp(T\|A\|)-1)C_{3}/\|A\|. Let si=𝔡(ΓiN,ΛiN),i[0;N]s_{i}=\mathfrak{d}(\Gamma_{i}^{N},\Lambda_{i}^{N}),~{}i\in[0;N]. Using Lemma 4(a), we have, for all i[0;N]i\in[0;N], sipi+ri.s_{i}\leq p_{i}+r_{i}. By incorporating the bounds (16) and (18), we get, for i[0;N]i\in[0;N],

siD1τ+D2τ=D3τ,s_{i}\leq D_{1}\tau+D_{2}\tau=D_{3}\tau, (19)

where D3=D1+D2D_{3}={D_{1}}+D_{2}.

Now, we prove the last claim of the theorem. Note that, using the definition of reachable sets given in Equation (5),

(t)K:=eTA(X0+TU),t[0,T].\|\mathcal{R}(t)\|\leq K\mathrel{:=}\mathrm{e}^{T\|A\|}\left(\|X_{0}\|+T\|U\|\right),~{}t\in[0,T]. (20)

Define ~N(t)=Λi~(t)N\tilde{\mathcal{R}}_{N}(t)=\Lambda_{\tilde{i}(t)}^{N}, where i~(t)=t/τ\tilde{i}(t)=\lfloor t/\tau\rfloor (floor of t/τt/\tau). Note that i=0NΛiN=t[0,T]~N(t)\bigcup_{i=0}^{N}\Lambda_{i}^{N}=\bigcup_{t\in[0,T]}\tilde{\mathcal{R}}_{N}(t) and that, using Theorem 11, ~N(t)(t),t[0,T].\tilde{\mathcal{R}}_{N}(t)\subseteq\mathcal{R}(t),~{}t\in[0,T]. Using Lemma 4(d), the Hausdorff distance between i=0NΛiN\bigcup_{i=0}^{N}\Lambda_{i}^{N} and ([0,T])\mathcal{R}([0,T]) satisfies the inequality

𝔡(i=0NΛiN,([0,T]))supt[0,T]𝔡(~N(t),(t)).\mathfrak{d}(\bigcup_{i=0}^{N}\Lambda_{i}^{N},\mathcal{R}([0,T]))\leq\sup_{t\in[0,T]}\mathfrak{d}(\tilde{\mathcal{R}}_{N}(t),\mathcal{R}(t)). (21)

Let t[0,T]t\in[0,T] and set i=t/τi=\lfloor t/\tau\rfloor. Then, ~N(t)=ΛiN\tilde{\mathcal{R}}_{N}(t)=\Lambda_{i}^{N}. Using the triangular inequality,

𝔡((t),~N(t))𝔡((t),(iτ))+𝔡((iτ),ΛiN).\mathfrak{d}(\mathcal{R}(t),\tilde{\mathcal{R}}_{N}(t))\leq\mathfrak{d}(\mathcal{R}(t),\mathcal{R}(i\tau))+\mathfrak{d}(\mathcal{R}(i\tau),\Lambda_{i}^{N}).

Let us estimate 𝔡((t),(iτ))\mathfrak{d}(\mathcal{R}(t),\mathcal{R}(i\tau)). Note that 0tiττT0\leq t-i\tau\leq\tau\leq T. Using Lemma 13, (t)\mathcal{R}(t) can be written as (t)=exp((tiτ)A)(iτ)+0(tiτ)exp(sA)Uds.\mathcal{R}(t)=\exp((t-i\tau)A)\mathcal{R}(i\tau)+\int_{0}^{(t-i\tau)}\exp(sA)U\mathrm{d}s. Hence, using Lemma 4(a),(c) and estimates (2) and (20) (below, Δ\Delta denotes tiτt-i\tau),

𝔡((t),(iτ))\displaystyle\mathfrak{d}(\mathcal{R}(t),\mathcal{R}(i\tau)) 𝔡(eΔA(iτ),(iτ))+𝔡(0ΔesAUds,0)\displaystyle\leq\mathfrak{d}(\mathrm{e}^{\Delta A}\mathcal{R}(i\tau),\mathcal{R}(i\tau))+\mathfrak{d}(\int_{0}^{\Delta}\mathrm{e}^{sA}U\mathrm{d}s,0)
eΔAid(iτ)+U0ΔesAds\displaystyle\leq\|\mathrm{e}^{\Delta A}-\operatorname{id}\|\|\mathcal{R}(i\tau)\|+\|U\|\int_{0}^{\Delta}\mathrm{e}^{s\|A\|}\mathrm{d}s
KΔAeΔA+UΔeTAC4τ,\displaystyle\leq K\Delta\|A\|\mathrm{e}^{\Delta\|A\|}+\|U\|\Delta\mathrm{e}^{T\|A\|}\leq C_{4}\tau,

where C4=(KA+U)exp(TA)C_{4}=(K\|A\|+\|U\|)\exp(T\|A\|). Moreover, using (16), we have, 𝔡((iτ),ΛiN)C4τ\mathfrak{d}(\mathcal{R}(i\tau),\Lambda_{i}^{N})\leq C_{4}\tau. Therefore, 𝔡((t),~N(t))D4τ,\mathfrak{d}(\mathcal{R}(t),\tilde{\mathcal{R}}_{N}(t))\leq D_{4}\tau, where D4=C4+D3D_{4}=C_{4}+D_{3}. As the choice of t[0,T]t\in[0,T] is arbitrary and in view of (21), the proof is complete. ∎

VII Numerical Examples

In this section, we illustrate the proposed method through three numerical examples. The proposed method is implemented using zonotopes in MATLAB (2019a) and run on an AMD Ryzen 5 2500U/2GHz processor. Plots of zonotopes, scaling-based under-approximations [20], and reduced-order zonotopic under-approximations are produced using the software CORA (2021 version) [34]. For all the considered linear systems and values of the time discretization parameter NN, 0T/Nexp(sA)ds\int_{0}^{T/N}\exp(sA)\mathrm{d}s is invertible. The optimization problems associated with evaluating the parameters kmink_{\min}, κ\kappa, and η\eta, given in Equations (9), (11), and (12), respectively, are solved via brute force. The invertibility condition used in the definition of η\eta in (12) is checked using the 𝚛𝚊𝚗𝚔\mathtt{rank} function in MATLAB.

VII-A 2-D system with a closed-form reachable set

Consider an instance of system (1) (perturbed double integrator system), with A=(0010),U=[0,1]×[0,1],X0={(0,0)},A=\big{(}\begin{smallmatrix}0&0\\ 1&0\end{smallmatrix}\big{)},~{}U=[0,1]\times[0,1],~{}X_{0}=\{(0,0)^{\intercal}\}, and T=1T=1. Note that (T)=u(T)=0Texp(sA)U1ds+0TU2ds,\mathcal{R}(T)=\mathcal{R}_{u}(T)=\int_{0}^{T}\exp(sA)U_{1}\mathrm{d}s+\int_{0}^{T}U_{2}\mathrm{d}s, where U1=[0,1]×{0}U_{1}=[0,1]\times\{0\}, and U2={0}×[0,1]U_{2}=\{0\}\times[0,1]. The set 0Texp(sA)U1ds\int_{0}^{T}\exp(sA)U_{1}\mathrm{d}s is given explicitly as 0Texp(sA)U1ds={(x,y)2,x2/2yxx2/2,x[0,1]}\int_{0}^{T}\exp(sA)U_{1}\mathrm{d}s=\{(x,y)^{\intercal}\in\mathbb{R}^{2},~{}x^{2}/2\leq y\leq x-x^{2}/2,~{}x\in[0,1]\} (see [36, the formula of M2M_{2}, p. 363]), whereas, using [37, Theorem 3, p. 21], 0TU2ds={0}×[0,1]\int_{0}^{T}U_{2}\mathrm{d}s=\{0\}\times[0,1]. Hence, (T)={(x,y)2|x2/2yxx2/2+1,x[0,1]}\mathcal{R}(T)=\left\{(x,y)^{\intercal}\in\mathbb{R}^{2}\,\middle|\,x^{2}/2\leq y\leq x-x^{2}/2+1,~{}x\in[0,1]\right\}. In view of Remark 2, we aim to compute under-approximations of (T)\mathcal{R}(T) using the proposed method. Herein, we consider different values of the discretization parameters NN and set ϵh=11/N2\epsilon_{h}=1-1/N^{2} and ϵu=11/N\epsilon_{u}=1-1/N.

Refer to caption
Figure 2: Under approximations of the reachable set of the double integrator system in Section VII-A with different values of the discretization parameter NN.

Figure 2 displays several under-approximations of (T)\mathcal{R}(T) with N{1,3,5,20}N\in\{1,3,5,20\}. The mentioned figure shows how the obtained approximations are indeed enclosed by the exact reachable set, in agreement with Theorem 11. Moreover, the mentioned Figure exhibits how the approximation accuracy of the proposed method increases as NN increases, which further supports the convergence result in Theorem 12. The computational time associated with evaluating the under-approximation with N=20N=20 is less than 0.003 seconds.

VII-B 5-D system

Herein, we adopt a five dimensional instance of system (1) from the literature, where matrix AA and the sets X0X_{0} and UU are given in [2, Equation 3.11, p. 39], and set T=1T=1. We aim to under-approximate the reachable tube ([0,T])\mathcal{R}([0,T]) using the proposed method with N{10,100}N\in\{10,100\}, where we set ϵh=11/N2\epsilon_{h}=1-1/N^{2} and ϵu=11/N\epsilon_{u}=1-1/N, and compute the sets ΛiN,i[1;N]\Lambda_{i}^{N},~{}i\in[1;N] (i=0NΛiN\cup_{i=0}^{N}\Lambda_{i}^{N} is the desired under-approximation herein). As the exact reachable tube is not known, we use the convergent over-approximation method of Serry and Reissig [15], with a refined time discretization (200 steps) and an accurate approximation of the matrix exponential, (,10)\mathcal{L}(\cdot,10), to produce an accurate representation of the reachable tube and use it as the basis of comparison. Furthermore, we additionally compute, for the case N=10N=10, a modified version of the under-approximation from the proposed method, where each set ΛiN\Lambda_{i}^{N} is under-approximated using order reduction based on summing generators (method sum in CORA). The zonotopes resulting from order reduction are at most of order 2.

Refer to caption
Refer to caption
Figure 3: x2x3x_{2}-x_{3} (top) and x4x5x_{4}-x_{5} (bottom) projections of the over-approximation (grey) of the reachable tube ([0,T])\mathcal{R}([0,T]) of the 5-D system in Section VII-B using the method in [15], the under-approximations from the proposed method given by the sets ΛiN,i[0;N]\Lambda_{i}^{N},~{}i\in[0;N] (black), with N=10N=10 (left) and N=100N=100 (right), and reduced-order under-approximations (yellow) of the sets ΛiN,i[0;N]\Lambda_{i}^{N},~{}i\in[0;N] in the case N=10N=10 .

Figure 3 displays two projections of the over-approximation and the under-approximations. As seen in the mentioned figure, the over-approximation (grey area) encloses the under-approximations (black areas) from the proposed method. Moreover, the reduced-order zonotopes (yellow areas) are enclosed by the sets ΛiN,i[0;N]\Lambda_{i}^{N},~{}i\in[0;N] from the proposed method (without the order reduction). We observe that for the case N=10N=10, the sets ΛiN,i[0;N]\Lambda_{i}^{N},~{}i\in[0;N] and their corresponding reduced-order under-approximations are almost over-lapping for the first few iterations (ii is small); however, the accuracy of the reduced-order under-approximations decays with each iteration due to their constrained order (2 in this case). This highlights the trade-off between accuracy and memory reduction when it comes to incorporating order reduction techniques in computing under-approximations. We easily observe that the under-approximation when N=100N=100 resembles the over-approximation more accurately, relative to the case when N=10N=10. This implies that the under-approximation with N=100N=100 also resembles the actual reachable tube more accurately, and this is a consequence of the convergence guarantees of Theorem 12. The computational times associated with evaluating the under-approximations from the proposed method (without order reduction) with N=10N=10 and N=100N=100 are 0.0199 and 0.0279 seconds, respectively.

VII-C Randomly generated systems

In this section, we study the performance of the proposed method on randomly generated linear systems, where the matrix exponentials associated with the generated systems are not known exactly.

VII-C1 Homogeneous linear systems

To compare the performance of the proposed method with the scaling method [20], we consider homogeneous linear systems (x˙=Ax\dot{x}=Ax), with randomly generated instances of matrix AA, using the MATLAB command rand, where n{2,4,6,8,10}n\in\{2,4,6,8,10\}, X0=𝐁nX_{0}=\mathbf{B}_{n}^{\infty}, and T=1T=1. For each instance of AA, we compute under-approximations of (T)=h(T)\mathcal{R}(T)=\mathcal{R}_{h}(T) using both the proposed method (see Remark 2) and the scaling method. The scaling method is implemented in the 2021 version of CORA, with settings tuned and approved by the first author of [20]. For our proposed method, we use N=100N=100, and set ϵh=11/N2\epsilon_{h}=1-1/N^{2}. The computational times and the volumes of the under-approximations from the two methods are listed in Table I.

TABLE I: Computational times and volumes of under-approximations from the proposed (with subscript p{p}) and scaling [20] (with subscript s{s}) methods for randomly generated homogeneous linear systems.
nn 2 4 6 8 10
tc,pt_{\mathrm{c},p} [s] 0.0150 0.0156 0.0138 0.0120 0.0179
tc,st_{\mathrm{c},s} [s] 1.5294 5.3289 16.7495 43.5934 96.3664
volp\mathrm{vol}_{p} 13.7889 94.3212 748.5102 5.5201e+03 1.0776e+05
vols\mathrm{vol}_{s} 13.5197 91.1578 715.6002 5.1814e+03 9.9622e+04

The table exhibits that the proposed method performs marginally better than the scaling method in terms of accuracy, with slightly larger volumes for the computed under-approximations. Most importantly, Table I displays how the proposed method outperforms the scaling method in terms of computational time while having better/comparable accuracy. This may be due to the fact that the proposed method obtains under-approximations by scaling intermediate sets, using simple optimization problems (Equations (11) and (12)), without the need to solve optimization problems that utilize enclosures of boundaries of reachable sets as in the scaling method.

VII-C2 Linear systems with input

Herein, we study empirically the time efficiency associated with obtaining the under-approximations ΛiN,i[1;N],\Lambda_{i}^{N},~{}i\in[1;N], from the proposed method. We consider instances of system (1), with nn ranging between 10 and 200, where X0=U=𝐁nX_{0}=U=\mathbf{B}_{n}^{\infty} , and T=1T=1. For each instance of nn, we randomly generate a corresponding matrix AA using the MATLAB command rand. The eigenvalues of each generated AA are checked not to be purely imaginary to ensure the invertibility of 0T/Nexp(sA)ds\int_{0}^{T/N}\exp(sA)\mathrm{d}s (see Lemma 9). For every nn, we estimate the computational time associated with implementing the proposed method, where we set N=100N=100 and ϵh=ϵu=0.8\epsilon_{h}=\epsilon_{u}=0.8.

Through our empirical exploration of the method performance, we noticed that for the randomly generated systems and set time interval, the reachable sets can be “narrow” especially when the dimension is high. Subsequently, the under-approximations obtained from the proposed method are nearly degenerate (ill-conditioned). This negatively influences the computations of the deflation parameter as the term GG\|G\|\|G^{\dagger}\| (condition number) in Equation (8) becomes significantly large. Consequently, the order of the approximation \mathcal{L}, which is determined using the definition of κ\kappa in Equation (11), may have to be substantially large in order for the deflation parameter values to be larger than the specified design parameter εh\varepsilon_{h}. To avoid these degenerate cases, we restrict our investigation herein to normalized system matrices, where each generated matrix AA is divided by its maximum norm. We note that normalized system matrices were considered in previous studies that investigated the performance of over-approximation methods (see, e.g., [38]).

Refer to caption
Figure 4: Computational time associated with evaluating {Λi}i=1N\{\Lambda_{i}\}_{i=1}^{N} as a function of nn for (normalized) randomly generated instances of system (1).

Figure 4 plots the recorded computational time, associated with the computations from the proposed method, as a function of the dimension nn. The mentioned figure exhibits the efficiency of the computations, for the considered randomly generated systems, as the computational time is less than 0.25 seconds for n50n\leq 50, less than 1.25 seconds for 50n10050\leq n\leq 100, and less than 7 seconds when n=200n=200. This numerical example highlights the potential role of the proposed method in real-time computations in different applications, such as falsification and control synthesis as highlighted in Remark 1, due to the relatively fast computations especially for moderate dimensions (n50n\leq 50).

VIII Conclusion

In this paper, we proposed a novel convergent method to under-approximate finite-time forward reachable sets and tubes of a class of continuous-time linear uncertain systems, where approximations of the matrix exponential and its integral are utilized. In future work, we aim to explore extensions and modifications of the proposed method to cover wider classes of systems, reduce computational cost, and increase accuracy. Furthermore, we seek to address how to obtain under-approximations in cases when the reachable sets are “almost” degenerate.

Aknowledgement

The authors thank Niklas Kochdumper (Stony Brook University, USA) for his useful guidance and for tuning the settings used for the scaling method implementation in CORA.

We will need the following lemma in the proofs of Lemmas 14 and 15.

Lemma 17.

Given Ω=c+G𝐁pn\Omega=c+G\mathbf{B}_{p}\subseteq\mathbb{R}^{n}, where cnc\in\mathbb{R}^{n} and Gn×pG\in\mathbb{R}^{n\times p}, we have cΩ\|c\|\leq\|\Omega\| and G=G𝐁p2Ω\|G\|=\|G\mathbf{B}_{p}\|\leq 2\|\Omega\|.

Proof.

The first inequality follows from the fact that cΩc\in\Omega. The second inequality is deduced as follows: G𝐁p=supb𝐁pGbsupb𝐁pGb+c+c=Ω+c2Ω.\|G\mathbf{B}_{p}\|=\sup_{b\in\mathbf{B}_{p}}\|Gb\|\leq\sup_{b\in\mathbf{B}_{p}}\|Gb+c\|+\|c\|=\|\Omega\|+\|c\|\leq 2\|\Omega\|.

Proof of Lemma 14.

For convenience, define H1=(t,Ω,ϵ),H2=(t,κ(t,Ω,ϵ))ΩH_{1}=\mathcal{H}(t,\Omega,\epsilon),H_{2}=\mathcal{L}(t,\kappa(t,\Omega,\epsilon))\Omega, and H3=exp(tA)ΩH_{3}=\exp(tA)\Omega. Using the definition of \mathcal{H} in Equation (13), the triangle inequality,

𝔡(H1,H3)𝔡(H1,H2)+𝔡(H2,H3).\mathfrak{d}(H_{1},H_{3})\leq\mathfrak{d}(H_{1},H_{2})+\mathfrak{d}(H_{2},H_{3}). (22)

Using Lemma 4(a),(c), we have

𝔡(H1,H2)|1λ(t,Ω,κ(t,Ω,ϵh))|(t,κ(t,Ω,ϵ))G𝐁p.\displaystyle\mathfrak{d}(H_{1},H_{2})\leq\left|1-\lambda(t,\Omega,\kappa(t,\Omega,\epsilon_{h}))\right|\|\mathcal{L}(t,\kappa(t,\Omega,\epsilon))\|\|G\mathbf{B}_{p}\|.

Note that, by the definition of κ\kappa given in Equation (11), ϵ<λ(t,Ω,κ(t,Ω,ϵ))<1\epsilon<\lambda(t,\Omega,\kappa(t,\Omega,\epsilon))<1, which indicates that |1λ(t,Ω,κ(t,Ω,ϵ))|1ϵ.\left|1-\lambda(t,\Omega,\kappa(t,\Omega,\epsilon))\right|\leq 1-\epsilon. Furthermore, using (2), (t,κ(t,Ω,ϵh))exp(tA)\|\mathcal{L}(t,\kappa(t,\Omega,\epsilon_{h}))\|\leq\exp(t\|A\|). Moreover, we have, using Lemma 17, G𝐁p2Ω\|G\mathbf{B}_{p}\|\leq 2\|\Omega\|. Hence,

𝔡(H1,H2)2(1ϵ)etAΩ.\mathfrak{d}(H_{1},H_{2})\leq 2(1-\epsilon)\mathrm{e}^{t\|A\|}\|\Omega\|. (23)

Next, we estimate 𝔡(H2,H3)\mathfrak{d}(H_{2},H_{3}), which, using Lemma 4(c), satisfies the inequality

𝔡(H2,H3)etA(t,κ(t,Ω,ϵ))Ω.\mathfrak{d}(H_{2},H_{3})\leq\|\mathrm{e}^{tA}-\mathcal{L}(t,\kappa(t,\Omega,\epsilon))\|\|\Omega\|.

As (t,κ(t,Ω,ϵ))\mathcal{L}(t,\kappa(t,\Omega,\epsilon)) is a Taylor approximation of exp(tA)\exp(tA) of, at least, first order (κ(t,Ω,ϵ)2\kappa(t,\Omega,\epsilon)\geq 2), and that tA1t\|A\|\leq 1, we have, using the bound (3), where the arguments of κ\kappa are dropped for convenience,

etA(t,κ)\displaystyle\|\mathrm{e}^{tA}-\mathcal{L}(t,\kappa)\| (tA)κetAκ!\displaystyle\leq{(t\|A\|)^{\kappa}}\frac{\mathrm{e}^{t\|A\|}}{\kappa!}
(tA)2etA2!\displaystyle\leq{(t\|A\|)^{2}}\frac{\mathrm{e}^{t\|A\|}}{2!}
(tA)2etA.\displaystyle\leq(t\|A\|)^{2}\mathrm{e}^{t\|A\|}.

Consequently,

𝔡(H2,H3)(tA)2etAΩ.\mathfrak{d}(H_{2},H_{3})\leq(t\|A\|)^{2}\mathrm{e}^{t\|A\|}\|\Omega\|. (24)

Combining estimates (22), (23), and (24) yields

𝔡((t,Ω,ϵ),etAΩ)\displaystyle\mathfrak{d}(\mathcal{H}(t,\Omega,\epsilon),\mathrm{e}^{tA}\Omega)\leq (2(1ϵ)+(tA)2)etAΩ\displaystyle(2(1-\epsilon)+(t\|A\|)^{2})\mathrm{e}^{t\|A\|}\|\Omega\|
\displaystyle\leq (2(1ϵ)+(tA)2)eTAΩ.\displaystyle(2(1-\epsilon)+(t\|A\|)^{2})\mathrm{e}^{T\|A\|}\|\Omega\|.

Proof of Lemma 15.

For convenience, define I1=(t,Ω,ϵ),I2=0texp(sA)dsΩI_{1}=\mathcal{I}(t,\Omega,{\epsilon}),~{}I_{2}=\int_{0}^{t}\exp(sA)\mathrm{d}s\Omega, and I3=0texp(sA)ΩdsI_{3}=\int_{0}^{t}\exp(sA)\Omega\mathrm{d}s. Using the triangular inequality,

𝔡(I1,I3)𝔡(I1,I2)+𝔡(I2,I3).\mathfrak{d}(I_{1},I_{3})\leq\mathfrak{d}\left(I_{1},I_{2}\right)+\mathfrak{d}\left(I_{2},I_{3}\right). (25)

The term 𝔡(I1,I2)\mathfrak{d}\left(I_{1},I_{2}\right) can be bounded above using the triangular inequality, the definition of \mathcal{I} given in Equation (14), and Lemma 4(a),(c), as follows:

𝔡(I1,I2)\displaystyle\mathfrak{d}(I_{1},I_{2})\leq 𝔡(I1,𝒯(t,η(t,Ω,ϵ))Ω)+𝔡(𝒯(t,η(t,Ω,ϵ))Ω,I2)\displaystyle\mathfrak{d}(I_{1},\mathcal{T}(t,\eta(t,\Omega,{\epsilon}))\Omega)+\mathfrak{d}(\mathcal{T}(t,\eta(t,\Omega,{\epsilon}))\Omega,I_{2})
\displaystyle\leq |1λ(t,Ω,η(t,Ω,ϵ))|𝒯(t,η(t,Ω,ϵ))G𝐁p\displaystyle\left|1-\lambda(t,\Omega,\eta(t,\Omega,{\epsilon}))\right|\|\mathcal{T}(t,\eta(t,\Omega,{\epsilon}))\|\|G\mathbf{B}_{p}\|
+0tesAds𝒯(t,η(t,Ω,ϵ))Ω.\displaystyle+\|\int_{0}^{t}\mathrm{e}^{sA}\mathrm{d}s-\mathcal{T}(t,\eta(t,\Omega,{\epsilon}))\|\|\Omega\|.

Using estimate (2), we obtain the bound

𝒯(t,η(t,Ω,ϵu))\displaystyle\|\mathcal{T}(t,\eta(t,\Omega,{\epsilon}_{u}))\| 0t(s,η(t,Ω,ϵu))ds\displaystyle\leq\int_{0}^{t}\|\mathcal{L}(s,\eta(t,\Omega,{\epsilon}_{u}))\|\mathrm{d}s
0tesAdstetA.\displaystyle\leq\int_{0}^{t}\mathrm{e}^{s\|A\|}\mathrm{d}s\leq t\mathrm{e}^{t\|A\|}.

Moreover, using the definition of η\eta in Equation (12), we have |1λ(t,Ω,η(t,Ω,ϵ))|1ϵ.\left|1-\lambda(t,\Omega,\eta(t,\Omega,{\epsilon}))\right|\leq 1-\epsilon. Also, using Lemma 17, we have G𝐁p2Ω\|G\mathbf{B}_{p}\|\leq 2\|\Omega\|. Besides that, using estimate (3) and the definition of η\eta, we have (the arguments of η\eta are dropped for convenience)

0tesAds𝒯(t,η)\displaystyle\|\int_{0}^{t}\mathrm{e}^{sA}\mathrm{d}s-\mathcal{T}(t,\eta)\| 0tesA(s,η)ds\displaystyle\leq\int_{0}^{t}\|\mathrm{e}^{sA}-\mathcal{L}(s,\eta)\|\mathrm{d}s
0t(sA)ηη!esAds\displaystyle\leq\int_{0}^{t}\frac{(s\|A\|)^{\eta}}{\eta!}\mathrm{e}^{s\|A\|}\mathrm{d}s
tAη!etA0tds\displaystyle\leq\frac{t\|A\|}{\eta!}\mathrm{e}^{t\|A\|}\int_{0}^{t}\mathrm{d}s
t2AetA,\displaystyle\leq t^{2}\|A\|\mathrm{e}^{t\|A\|},

where we have used the facts that η1\eta\geq 1 and sAtA1,s[0,t]s\|A\|\leq t\|A\|\leq 1,~{}s\in[0,t]. Therefore,

𝔡(I1,I2)2(1ϵ)tetAΩ+t2AetAΩ=(2(1ϵ)t+t2A)etAΩ.\begin{split}\mathfrak{d}(I_{1},I_{2})&\leq 2(1-\epsilon)t{\mathrm{e}^{t\|A\|}}\|\Omega\|+t^{2}\|A\|\mathrm{e}^{t\|A\|}\|\Omega\|\\ &=(2(1-\epsilon)t+t^{2}\|A\|)\mathrm{e}^{t\|A\|}\|\Omega\|.\end{split} (26)

Now, we estimate 𝔡(I2,I3)\mathfrak{d}\left(I_{2},I_{3}\right). Using [37, Theorem 3, p. 21], I2I_{2} can be rewritten as

I2\displaystyle I_{2} =(1t0tesAds)(tΩ)=(1t0tesAds)0tΩds\displaystyle=(\frac{1}{t}\int_{0}^{t}\mathrm{e}^{sA}\mathrm{d}s)(t\Omega)=(\frac{1}{t}\int_{0}^{t}\mathrm{e}^{sA}\mathrm{d}s)\int_{0}^{t}\Omega\mathrm{d}s
=0tBΩds,\displaystyle=\int_{0}^{t}B\Omega\mathrm{d}s,

where B=(1/t)0texp(sA)ds.B=({1}/{t})\int_{0}^{t}\exp(sA)\mathrm{d}s. Then, the Hausdorff distance between I2I_{2} and I3I_{3} can be estimated, using Lemma 4(c), as

𝔡(I2,I3)Ω0tBesAds.\mathfrak{d}(I_{2},I_{3})\leq\|\Omega\|\int_{0}^{t}\|B-\mathrm{e}^{sA}\|\mathrm{d}s.

Moreover, using the continuous differentiability of exp(()A)\exp((\cdot)A), the Ostrowski inequality in [39, Theorem 1], and estimate (2), we have

BesAtAetA,s[0,t].\|B-\mathrm{e}^{sA}\|\leq{t\|A\|\mathrm{e}^{t\|A\|}},~{}s\in[0,t].

Hence,

𝔡(I2,I3)Ω0ttAetAdst2ΩAetA.\mathfrak{d}(I_{2},I_{3})\leq\|\Omega\|\int_{0}^{t}{t\|A\|\mathrm{e}^{t\|A\|}}\mathrm{d}s\leq t^{2}\|\Omega\|\|A\|\mathrm{e}^{t\|A\|}. (27)

By combining the bounds (25), (26), and (27), we get

𝔡(I1,I3)\displaystyle\mathfrak{d}(I_{1},I_{3}) 2((1ϵ)t+t2A)etAΩ\displaystyle\leq 2((1-\epsilon)t+t^{2}\|A\|)\mathrm{e}^{t\|A\|}\|\Omega\|
2((1ϵ)t+t2A)eTAΩ.\displaystyle\leq 2((1-\epsilon)t+t^{2}\|A\|)\mathrm{e}^{T\|A\|}\|\Omega\|.

Proof of Lemma 16.

It can be shown using induction that SiN=exp(iτA)X0S_{i}^{N}=\exp(i\tau A)X_{0} and ViN=exp(iτA)0τexp(sA)UdsV_{i}^{N}=\exp(i\tau A)\int_{0}^{\tau}\exp(sA)U\mathrm{d}s for all i[0;N]i\in[0;N]. Hence,

SiNeiτAX0eTAX0\|S_{i}^{N}\|\leq\mathrm{e}^{i\tau\|A\|}\|X_{0}\|\leq\mathrm{e}^{T\|A\|}\|X_{0}\|

and

ViNeiτA0τesAdsUτe2TAU\|V_{i}^{N}\|\leq\mathrm{e}^{i\tau\|A\|}\int_{0}^{\tau}\mathrm{e}^{s\|A\|}\mathrm{d}s\|U\|\leq\tau\mathrm{e}^{2T\|A\|}\|U\|

for all i[0;N]i\in[0;N]. ∎

References

  • [1] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis of symbolic controllers,” IEEE Trans. Automat. Control, vol. 62, no. 4, pp. 1781–1796, 2016.
  • [2] M. Althoff, “Reachability analysis and its application to the safety assessment of autonomous cars,” Ph.D. dissertation, Technische Universität München, 7 Jul. 2010.
  • [3] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler, “Recent progress in continuous and hybrid reachability analysis,” in Proc. of CACSD, CCA, and ISIC, 2006, pp. 1582–1587.
  • [4] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability analysis,” Annual Review of Control, Robotics, and Autonomous Syst., vol. 4, pp. 369–395, 2021.
  • [5] Z. She and M. Li, “Over-and under-approximations of reachable sets with series representations of evolution functions,” IEEE Trans. Automat. Control, vol. 66, no. 3, pp. 1414–1421, 2020.
  • [6] H. Yin, M. Arcak, A. K. Packard, and P. Seiler, “Backward reachability for polynomial systems on a finite horizon,” IEEE Trans. Automat. Control, 2021.
  • [7] L. Yang and N. Ozay, “Scalable zonotopic under-approximation of backward reachable sets for uncertain linear systems,” arXiv preprint arXiv:2107.01724, 2021.
  • [8] E. Goubault and S. Putot, “Robust under-approximations and application to reachability of non-linear control systems with disturbances,” IEEE Control Syst. Lett., 2020.
  • [9] A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of reachable sets of linear time-invariant systems with inputs,” in Proc. of HSCC.   Springer, 2006, pp. 257–271.
  • [10] B. Xue, M. Fränzle, and N. Zhan, “Inner-approximating reachable sets for polynomial systems with time-varying uncertainties,” IEEE Trans. Automat. Control, 2019.
  • [11] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability analysis of continuous and hybrid systems,” in Proc. of HSCC.   Springer, 2004, pp. 142–156.
  • [12] T. Pecsvaradi and K. S. Narendra, “Reachable sets for linear dynamical systems,” Information and Control, vol. 19, pp. 319–344, 1971.
  • [13] P. Varaiya, “Reach set computation using optimal control,” in Verification of Digital and Hybrid Syst.   Springer, 2000, pp. 323–331.
  • [14] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis: internal approximation,” Syst. Control Lett., vol. 41, no. 3, pp. 201–211, 2000.
  • [15] M. Serry and G. Reissig, “Over-approximating reachable tubes of linear time-varying systems,” IEEE Trans. Automat. Control, 2021.
  • [16] M. Serry, “Convergent under-approximations of reachable sets and tubes: A piecewise constant approach,” J. Franklin Institute, vol. 358, no. 6, pp. 3215–3231, 2021.
  • [17] A. Hamadeh and J. Goncalves, “Reachability analysis of continuous-time piecewise affine systems,” Automatica, vol. 44, no. 12, p. 3189–3194, 2008.
  • [18] M. Fauré, J. Cieslak, D. Henry, A. Verhaegen, and F. Ankersen, “Reachable tube computation of uncertain LTI systems using support functions,” in Proc. of ECC.   IEEE, 2021, pp. 2670–2675.
  • [19] L. Yang, H. Zhang, J.-B. Jeannin, and N. Ozay, “Efficient backward reachability using the minkowski difference of constrained zonotopes,” IEEE Trans. Computer-Aided Design of Integrated Circ. and Syst., 2022.
  • [20] N. Kochdumper and M. Althoff, “Computing non-convex inner-approximations of reachable sets for nonlinear continuous systems,” in Proc. of CDC.   IEEE, 2020, pp. 2130–2137.
  • [21] T. Shafa and M. Ornik, “Reachability of nonlinear systems with unknown dynamics,” IEEE Trans. Automat. Control, 2022.
  • [22] V. Veliov, “Second-order discrete approximation to linear differential inclusions,” SIAM J. Numerical Anal., vol. 29, no. 2, pp. 439–451, 1992.
  • [23] J. F. Grcar, “A matrix lower bound,” Linear Algebra and its Applications, vol. 433, no. 1, pp. 203–220, 2010.
  • [24] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed.   Cambridge university press, 2013.
  • [25] B. D. MacCluer, Elementary Functional Analysis.   Springer, 2009.
  • [26] D. L. Lukes, Differential Equations, ser. Mathematics in Science and Engineering.   London: Academic Press Inc., 1982, vol. 162.
  • [27] I. M. Mitchell, “Comparing forward and backward reachability as tools for safety analysis,” in International Workshop on Hybrid Syst.: Computation and Control.   Springer, 2007, pp. 428–443.
  • [28] E. D. Sontag, Mathematical Control Theory, 2nd ed., ser. Texts in Applied Mathematics.   New York: Springer-Verlag, 1998, vol. 6.
  • [29] J.-P. Aubin and H. Frankowska, Set-valued Anal. in Control Theory.   Springer, 2000.
  • [30] M. Althoff and G. Frehse, “Combining zonotopes and support functions for efficient reachability analysis of linear systems,” in Proc. of CDC.   IEEE, 2016, pp. 7439–7446.
  • [31] A.-K. Kopetzki, B. Schürmann, and M. Althoff, “Methods for order reduction of zonotopes,” in Proc. of CDC, 2017, pp. 5626–5633.
  • [32] S. Sadraddini and R. Tedrake, “Linear encodings for polytope containment problems,” in Proc. of CDC.   IEEE, 2019, pp. 4367–4372.
  • [33] V. Raghuraman and J. P. Koeln, “Set operations and order reductions for constrained zonotopes,” Automatica, vol. 139, p. 110204, 2022.
  • [34] M. Althoff, “An introduction to CORA 2015,” in Proc. of the ARCH Workshop, vol. 34, 2015, pp. 120–151.
  • [35] F. L. Chernousko, State Estimation of Dynamic Systems.   CRC Press, 1994.
  • [36] R. Ferretti, “High-order approximations of linear control systems via Runge-Kutta schemes,” Computing, vol. 58, no. 4, pp. 351–364, 1997.
  • [37] J.-P. Aubin and A. Cellina, Differential Inclusions.   Springer, 1984.
  • [38] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Proc. of HSCC, vol. 3414.   Springer, 2005, pp. 291–305.
  • [39] N. S. Barnett, C. Buşe, P. Cerone, and S. S. Dragomir, “Ostrowski’s inequality for vector-valued functions and applications,” Computers & Mathematics with Applications, vol. 44, no. 5-6, pp. 559–572, 2002.