This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uniform Bounds for Maximal Flat Periods on SL(n,)SL(n,\mathbb{R})

Phillip Harris
Abstract.

Let XX be a compact locally symmetric space associated to SL(n,)SL(n,\mathbb{R}) and YXY\subset X a maximal flat submanifold, not necessarily closed. Using a Euclidean approximation, we give an upper bound in the spectral aspect for Maass forms integrated against a smooth cutoff function on YY.

1. Introduction

Let GG be a noncompact semisimple Lie group with Iwasawa decomposition G=NAKG=NAK and Lie algebras 𝔤=𝔫+𝔞+𝔨\mathfrak{g}=\mathfrak{n+a+k}. Let G/KG/K be the associated symmetric space and X=Γ\G/KX=\Gamma\backslash G/K a compact quotient. Let (fi)iL2(X)(f_{i})_{i}\in L^{2}(X) be an orthonormal basis of Maass forms with spectral parameters νi𝔞\nu_{i}\in\mathfrak{a}^{*}_{\mathbb{C}}. Let YXY\subset X be a maximal flat submanifold (not necessarily closed) and bCc(Y)b\in C_{c}^{\infty}(Y) a smooth cutoff function. We are interested in the growth of the flat periods

𝒫i=Yfi(x)b(x)𝑑x\mathcal{P}_{i}=\int_{Y}f_{i}(x)b(x)dx

with respect to νi\nu_{i}.

There is a general bound for Laplace eigenfunctions on compact manifolds due to Zelditch [7] which in our case gives

|𝒫i|νi(dimXdimY1)/2=νi(n2n2)/4.\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}\ll\mathinner{\!\left\lVert\nu_{i}\right\rVert}^{(\dim X-\dim Y-1)/2}=\mathinner{\!\left\lVert\nu_{i}\right\rVert}^{(n^{2}-n-2)/4}.

Michels [5] was the first to study flat periods on higher rank locally symmetric spaces. His work implies111This result for Maass forms follows from applying the trace formula argument in Section 2.2 to Michels’ bound for spherical functions. an averaged estimate for flat periods, as follows. Let XX be a compact locally symmetric space of noncompact type, of rank rr. Let Σ𝔞\Sigma\subset\mathfrak{a}^{*} be the restricted roots of XX and Σ+\Sigma^{+} be the positive roots. Define the set of “generic points” (𝔞)gen𝔞(\mathfrak{a^{*}})^{\text{gen}}\subset\mathfrak{a^{*}} to be the set of points that are regular and that do not lie in any proper subspace spanned by roots. Fix a closed cone D(𝔞)genD\subset(\mathfrak{a^{*}})^{\text{gen}}. Let β:𝔞\beta\mathrel{\mathop{\ordinarycolon}}\mathfrak{a}^{*}\to\mathbb{R} be the Plancherel density. Then there exists C>0C>0 such that uniformly for λD\lambda\in D we have

ReνiλC|𝒫i|2β(λ)(1+λ)r.\sum_{\mathinner{\!\left\lVert\operatorname{Re}\nu_{i}-\lambda\right\rVert}\leq C}\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}^{2}\ll\beta(\lambda)(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-r}.

In other words, consider all periods 𝒫i\mathcal{P}_{i} such that Reνi\operatorname{Re}\nu_{i} lies in a ball of fixed radius around λ\lambda, then their average norm squared is (1+λ)r\ll(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-r}. For certain choices of XX and YY enumerated in [5, Theorem 1.3] Michels proves a lower bound (replacing \ll with \asymp).

For XX associated to SL(n,)SL(n,\mathbb{R}), we give an estimate uniform in λ\lambda, elucidating the behavior on the non-generic set.

Theorem 1.

Uniformly for λ=diag(λ1,,λn)𝔞\lambda=\textup{diag}(\lambda_{1},\dots,\lambda_{n})\in\mathfrak{a}^{*} we have

Reνiλ1|𝒫i|2β~(λ)(1+λ)n+1Ln(λ)\displaystyle\sum_{\mathinner{\!\left\lVert\operatorname{Re}\nu_{i}-\lambda\right\rVert}\leq 1}\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}^{2}\ll\tilde{\beta}(\lambda)(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda)

with the implied constant depending only on nn and the test function bb. Here β~(λ)=αΣ+1+|λ,α|\tilde{\beta}(\lambda)=\prod_{\alpha\in\Sigma^{+}}1+\mathinner{\!\left\lvert\langle\lambda,\alpha\rangle\right\rvert} is essentially the maximum of β\beta taken over a ball around λ\lambda. The function Ln(λ)L_{n}(\lambda) is Weyl invariant, and in the Weyl chamber 222This is opposite from the canonical positive chamber. with λ1λn\lambda_{1}\leq\dots\leq\lambda_{n}, we define it as follows. Define logx=log(2+x)\log^{\prime}x=\log(2+x). For n4n\neq 4,

Ln(λ):=(logλ1+|λ2|+|λn1|)n2,L_{n}(\lambda)\mathrel{\mathop{\ordinarycolon}}=\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-2},

and for n=4n=4,

L4(λ):=(logλ1+|λ2|+|λ3|)2logλ1+|λ1λ2|+|λ3λ4|.L_{4}(\lambda)\mathrel{\mathop{\ordinarycolon}}=\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}\right\rvert}}\right)^{2}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert}}.

Since β~(λ)λn(n1)/2\tilde{\beta}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{n(n-1)/2} we obtain |𝒫i|νi(n23n+2)/4Ln(νi)1/2\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}\ll\mathinner{\!\left\lVert\nu_{i}\right\rVert}^{(n^{2}-3n+2)/4}L_{n}(\nu_{i})^{1/2}, an improvement on the bound for general manifolds. The factor Ln(λ)L_{n}(\lambda) can be given a geometric interpretation, namely, it grows when λ\lambda is collinear with a root. In the n=4n=4 case, it grows when λ\lambda is collinear with a root or a sum of two orthogonal roots.

1.1. Outline of the proof

Using a standard pre-trace formula argument, we reduce the period estimate to an estimate for spherical functions: let ASL(n,)A\subset SL(n,\mathbb{R}) be the diagonal subgroup and bCc(A)b\in C^{\infty}_{c}(A), then

(1) Aφλ(g)b(g)𝑑gb(1+λ)n+1Ln(λ).\int_{A}\varphi_{\lambda}(g)b(g)dg\ll_{b}(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

We use a theorem of Duistermaat to linearize the problem, replacing the spherical function φλ\varphi_{\lambda} on the Lie group with a “Euclidean” approximation on the Lie algebra. The problem then reduces to the following random matrix lemma: Let λ𝔞\lambda\in\mathfrak{a}^{*} be regular. For a real n×nn\times n matrix AA, let d(A)=1inAii2d(A)=\sum_{1\leq i\leq n}A_{ii}^{2} be the size of the diagonal. Choose kSO(n)k\in SO(n) at random according to the Haar measure, then

Prob[d(kλk1)<1](1+λ)n+1Ln(λ).\textup{Prob}[d(k\lambda k^{-1})<1]\asymp(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

While we were unable to prove a lower bound in Theorem 1, this lemma and Michels’ lower bounds are at least suggestive that our upper bound is sharp.

2. Proof of theorem 1

2.1. Preliminaries and Notation

The notation ABA\ll B means there exists C>0C>0 such that ACBA\leq CB, and ABA\asymp B means ABAA\ll B\ll A. The implied constant CC may always depend on the dimension nn and bump function bb; any other dependency is indicated with a subscript. When AA is a matrix, A\mathinner{\!\left\lVert A\right\rVert} will denote the Frobenius norm A2=ij|Aij|2\mathinner{\!\left\lVert A\right\rVert}^{2}=\sum_{ij}\mathinner{\!\left\lvert A_{ij}\right\rvert}^{2}. Indicator functions are denoted 𝟏S(x)\mathbf{1}_{S}(x) where SS is a set or 𝟏[P(x)]\mathbf{1}[P(x)] where PP is a predicate.

Let G=SL(n,)G=SL(n,\mathbb{R}). We write the Iwasawa decomposition G=NAKG=NAK, where NN is the upper triangular subgroup with 1’s on the diagonal, AA is the diagonal subgroup and KK is SO(n)SO(n). We have the corresponding Lie algebra decomposition 𝔤=𝔫+𝔞+𝔨\mathfrak{g=n+a+k} and the Cartan decomposition 𝔤=𝔭+𝔨\mathfrak{g=p+k}. Then X=Γ\G/KX=\Gamma\backslash G/K for some cocompact lattice ΓG\Gamma\subset G, and YY lies in the image of gAgA for some gGg\in G. Using a partition of unity we may assume the support of bb is small, say, having diameter <R/100<R/100 where RR is the injectivity radius of XX, and lift bb to Cc(gA)C^{\infty}_{c}(gA).

2.2. Spherical Functions and the Trace Formula

Let H:G𝔞H\mathrel{\mathop{\ordinarycolon}}G\to\mathfrak{a} be the smooth map satisfying gNeH(g)Kg\in Ne^{H(g)}K for all gGg\in G (sometimes called the Iwasawa projection [5]). Let ρ\rho be the half sum of the positive roots and WW be the Weyl group. Recall the spherical functions

φλ(g)=Ke(iλ+ρ)H(kg)𝑑k,\varphi_{\lambda}(g)=\int_{K}e^{(i\lambda+\rho)H(kg)}dk,

the Harish-Chandra transform

f^(λ)=Gf(x)φλ(x)𝑑xfCc(K\G/K),\widehat{f}(\lambda)=\int_{G}f(x)\varphi_{-\lambda}(x)dx\,\,\,\,\,\,\,\,\,f\in C^{\infty}_{c}(K\backslash G/K),

and its inverse

f(x)=1|W|𝔞φλ(x)f^(λ)β(λ)𝑑λ.f(x)=\frac{1}{\mathinner{\!\left\lvert W\right\rvert}}\int_{\mathfrak{a^{*}}}\varphi_{\lambda}(x)\widehat{f}(\lambda)\beta(\lambda)d\lambda.

In order to prove Theorem 1 we use the pre-trace formula for SL(n,)SL(n,\mathbb{R}). Let kCc(K\G/K)k\in C^{\infty}_{c}(K\backslash G/K) be a bi-KK-invariant test function and

K(x,y)=γΓk(x1γy)K(x,y)=\sum_{\gamma\in\Gamma}k(x^{-1}\gamma y)

be the corresponding automorphic kernel on XX. Then the pre-trace formula [6] states

γΓk(x1γy)=ik^(νi)fi(x)fi(y)¯\sum_{\gamma\in\Gamma}k(x^{-1}\gamma y)=\sum_{i}\widehat{k}(-\nu_{i})f_{i}(x)\overline{f_{i}(y)}

where k^\widehat{k} is the Harish-Chandra transform of kk. Integrating against b(x)b(y)Cc(gA×gA)b(x)b(y)\in C_{c}^{\infty}(gA\times gA) we obtain

(2) gAgAγΓk(x1γy)b(x)b(y)dxdy=ik^(νi)|𝒫i|2.\int_{gA}\int_{gA}\sum_{\gamma\in\Gamma}k(x^{-1}\gamma y)b(x)b(y)dxdy=\sum_{i}\widehat{k}(-\nu_{i})\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}^{2}.

Next we construct a kk such that k^\widehat{k} concentrates around a given λ0\lambda_{0}. Recall that the spectral parameters of Maass forms satisfy Wνi=Wνi¯W\nu_{i}=W\overline{\nu_{i}} and Imνiρ\mathinner{\!\left\lVert\operatorname{Im}\nu_{i}\right\rVert}\leq\mathinner{\!\left\lVert\rho\right\rVert}. Define Ω={λ𝔞:Wλ=Wλ¯,Imλρ}\Omega=\{\lambda\in\mathfrak{a}^{*}_{\mathbb{C}}\mathrel{\mathop{\ordinarycolon}}W\lambda=W\overline{\lambda},\mathinner{\!\left\lVert\operatorname{Im}\lambda\right\rVert}\leq\mathinner{\!\left\lVert\rho\right\rVert}\} [1, Lemma 4.1]. Using the Paley-Wiener theorem for the Harish-Chandra transform we construct kk with the following properties:

  1. (1)

    kk is supported in a ball of radius R/100R/100, where RR is the injectivity radius of XX.

  2. (2)

    k^(λ)0\widehat{k}(\lambda)\geq 0 for λΩ\lambda\in\Omega.

  3. (3)

    k^(λ)1\widehat{k}(\lambda)\geq 1 for λΩ\lambda\in\Omega with Re λλ01\mathinner{\!\left\lVert\text{Re }\lambda-\lambda_{0}\right\rVert}\leq 1.

  4. (4)

    k^(λ)N(1+λλ0)N\widehat{k}(\lambda)\ll_{N}(1+\mathinner{\!\left\lVert\lambda-\lambda_{0}\right\rVert})^{-N} for νΩ\nu\in\Omega uniformly in λ0\lambda_{0}.

The details of this construction may be found in [1, Section 4.1].

By property (1), all terms except γ=e\gamma=e on the geometric side drop out. By properties (2) and (3) we have

gAgAk(x1y)b(x)b(y)𝑑x𝑑yReνiλ01|𝒫i|2.\int_{gA}\int_{gA}k(x^{-1}y)b(x)b(y)dxdy\geq\sum_{\mathinner{\!\left\lVert\operatorname{Re}\nu_{i}-\lambda_{0}\right\rVert}\leq 1}\mathinner{\!\left\lvert\mathcal{P}_{i}\right\rvert}^{2}.

Note that x1yAx^{-1}y\in A. Defining b1(z)=gAb(x)b(xz)𝑑xCc(A)b_{1}(z)=\int_{gA}b(x)b(xz)dx\in C^{\infty}_{c}(A) and changing variables z=x1yz=x^{-1}y the left hand side becomes

gAgAk(x1y)b(x)b(y)𝑑x𝑑y\displaystyle\int_{gA}\int_{gA}k(x^{-1}y)b(x)b(y)dxdy =Ak(z)b1(z)𝑑z\displaystyle=\int_{A}k(z)b_{1}(z)\,dz
=A(1|W|𝔞φλ(z)k^(λ)β(λ)𝑑μ)b1(z)𝑑z\displaystyle=\int_{A}\left(\frac{1}{\mathinner{\!\left\lvert W\right\rvert}}\int_{\mathfrak{a^{*}}}\varphi_{\lambda}(z)\widehat{k}(\lambda)\beta(\lambda)\,d\mu\right)b_{1}(z)dz
=1|W|𝔞k^(λ)β(λ)(Aφλ(z)b1(z)𝑑z)𝑑λ.\displaystyle=\frac{1}{\mathinner{\!\left\lvert W\right\rvert}}\int_{\mathfrak{a^{*}}}\widehat{k}(\lambda)\beta(\lambda)\left(\int_{A}\varphi_{\lambda}(z)b_{1}(z)dz\right)\,d\lambda.

The task is now to bound the integral of a spherical function φλ\varphi_{\lambda} against a smooth cutoff function on AA. In other words, we need the following bound: for bCc(A)b\in C^{\infty}_{c}(A),

Aφλ(z)b(z)𝑑zb(1+λ)n+1Ln(λ).\int_{A}\varphi_{\lambda}(z)b(z)dz\ll_{b}(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

With this bound, Theorem 1 follows from the rapid decay of k^\widehat{k} away from λ0-\lambda_{0} (property 4) and the polynomial growth of β\beta.

2.3. Euclidean Approximation of Spherical Functions

Let 𝔤=𝔨+𝔭\mathfrak{g=k+p} be the Cartan decomposition. For X𝔭,kKX\in\mathfrak{p},k\in K write k.X=kXk1k.X=kXk^{-1} for the adjoint action of KK on 𝔭\mathfrak{p}. Let π:𝔭𝔞\pi\mathrel{\mathop{\ordinarycolon}}\mathfrak{p}\to\mathfrak{a} be the orthogonal projection with respect to the Killing form. By a theorem of Duistermaat [3, Equation 1.11], there exists a nonnegative analytic function aC(𝔭)a\in C^{\infty}(\mathfrak{p}) such that

φλ(eX)=Keiλ,π(k.X)a(k.X)dk\varphi_{\lambda}(e^{X})=\int_{K}e^{\langle i\lambda,\pi(k.X)\rangle}a(k.X)dk

where dkdk is the Haar measure. Changing variables z=eXz=e^{X} and using Duistermaat’s formula gives

():=Aφλ(z)b(z)dz\displaystyle(*)\mathrel{\mathop{\ordinarycolon}}=\int_{A}\varphi_{\lambda}(z)b(z)dz =𝔞Keiλ,π(k.X)a(k.X)b(eX)dXdk\displaystyle=\int_{\mathfrak{a}}\int_{K}e^{\langle i\lambda,\pi(k.X)\rangle}a(k.X)b(e^{X})dXdk
=K(𝔞eik1.λ,Xa(k.X)b(eX)dX)dk,\displaystyle=\int_{K}\left(\int_{\mathfrak{a}}e^{\langle ik^{-1}.\lambda,X\rangle}a(k.X)b(e^{X})dX\right)dk,

where in the second line we extend λ𝔞\lambda\in\mathfrak{a}^{*} to 𝔭\mathfrak{p}^{*} by pulling back along π\pi, and replace the adjoint action with the coadjoint action. Let c(k,X):=a(k.X)b(eX)c(k,X)\mathrel{\mathop{\ordinarycolon}}=a(k.X)b(e^{X}) and note that cCc(K×𝔞)c\in C^{\infty}_{c}(K\times\mathfrak{a}). Let c^(k,ξ)C(K×𝔞)\widehat{c}(k,\xi)\in C^{\infty}(K\times\mathfrak{a}^{*}) be the Fourier transform of cc in the second variable. Then the inner integral is just c^\widehat{c} evaluated at the frequency ξ=π(k1.λ)\xi=-\pi^{*}(k^{-1}.\lambda), where π:𝔭𝔞\pi^{*}\mathrel{\mathop{\ordinarycolon}}\mathfrak{p}^{*}\to\mathfrak{a}^{*} is restriction:

()=Kc^(k,π(k1.λ))dk.(*)=\int_{K}\widehat{c}(k,-\pi^{*}(k^{-1}.\lambda))dk.

Since c^(k,ξ)\widehat{c}(k,\xi) has rapid decay in ξ\xi for all kk and KK is compact, supkc^(k,ξ)\sup_{k}\widehat{c}(k,\xi) also has rapid decay in ξ\xi. Let BB be the indicator function of the unit ball on 𝔞\mathfrak{a^{*}}, pulled back along π\pi^{*} to 𝔭\mathfrak{p^{*}}. Taking the supremum in the first variable and upper bounding in the second variable by balls gives

|()|r=1drKB(r1(k1.λ))dk\mathinner{\!\left\lvert(*)\right\rvert}\leq\sum_{r=1}^{\infty}d_{r}\int_{K}B(r^{-1}(k^{-1}.\lambda))dk

where the sequence drd_{r} has rapid decay. Essentially, we want to know how much the coadjoint orbit K.λK.\lambda can concentrate near (𝔞)(\mathfrak{a^{*}})^{\perp}. It suffices to show the following lemma:

Lemma 1.

Let Symn()\text{Sym}_{n}(\mathbb{R}) be the set of real symmetric n×nn\times n matrices. For XSymn()X\in\text{Sym}_{n}(\mathbb{R}) let π(X)\pi(X) be the diagonal part of XX and B(X)=𝟏[π(X)<1]B(X)=\mathbf{1}[{\mathinner{\!\left\lVert\pi(X)\right\rVert}<1}]. Let λ=diag(λ1,,λn)\lambda=\text{diag}(\lambda_{1},\dots,\lambda_{n}) with λ1<λ2<<λn\lambda_{1}<\lambda_{2}<\dots<\lambda_{n}. Define

In(λ):=SO(n)B(k.λ)dkI_{n}(\lambda)\mathrel{\mathop{\ordinarycolon}}=\int_{SO(n)}B(k.\lambda)\,dk

and

An(λ):=(1+λ)n+1Ln(λ).A_{n}(\lambda)\mathrel{\mathop{\ordinarycolon}}=(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

Then if Trλ=0\operatorname{\operatorname{Tr}}\lambda=0 we have In(λ)An(λ)I_{n}(\lambda)\asymp A_{n}(\lambda).

Finally, since ()(*) is continuous in λ\lambda, we may perturb λ\lambda to be regular (i.e. λi<λi+1\lambda_{i}<\lambda_{i+1} rather than )\leq), then

|()|\displaystyle\mathinner{\!\left\lvert(*)\right\rvert} r=1dr(1+r1λ)n+1Ln(r1λ)\displaystyle\leq\sum_{r=1}^{\infty}d_{r}(1+r^{-1}\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(r^{-1}\lambda)
(1+λ)n+1Ln(λ).\displaystyle\ll(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

3. The coadjoint orbit K.λK.\lambda

The remainder of the paper will be proving Lemma 1.

3.1. Preliminaries

We note some properties of In(λ)I_{n}(\lambda) and An(λ)A_{n}(\lambda).

  • In(λ)I_{n}(\lambda) is monotone under scaling: if t1t\geq 1 then In(tλ)In(λ)I_{n}(t\lambda)\leq I_{n}(\lambda).

  • For a fixed C0C\geq 0, we have An(Cλ)CAn(λ)A_{n}(C\lambda)\asymp_{C}A_{n}(\lambda), and λλC\mathinner{\!\left\lVert\lambda-\lambda^{\prime}\right\rVert}\leq C implies An(λ)CAn(λ)A_{n}(\lambda)\asymp_{C}A_{n}(\lambda^{\prime}).

  • An estimate for In(λ)I_{n}(\lambda) when Trλ0\operatorname{\operatorname{Tr}}\lambda\neq 0 easily follows from the tracefree case. Write λ=λ0+(Trλ/n)I\lambda=\lambda_{0}+(\operatorname{\operatorname{Tr}}\lambda/n)I. Then

    π(k.λ)2\displaystyle\mathinner{\!\left\lVert\pi(k.\lambda)\right\rVert}^{2} =π(k.λ0)2+2π(k.λ0),(Trλ/n)I+π((Trλ/n)I)2\displaystyle=\mathinner{\!\left\lVert\pi(k.\lambda_{0})\right\rVert}^{2}+2\langle\pi(k.\lambda_{0}),(\operatorname{\operatorname{Tr}}\lambda/n)I\rangle+\mathinner{\!\left\lVert\pi((\operatorname{\operatorname{Tr}}\lambda/n)I)\right\rVert}^{2}
    =π(k.λ0)2+(Trλ)2/n,\displaystyle=\mathinner{\!\left\lVert\pi(k.\lambda_{0})\right\rVert}^{2}+(\operatorname{\operatorname{Tr}}\lambda)^{2}/n,

    so π(k.λ)<1\mathinner{\!\left\lVert\pi(k.\lambda)\right\rVert}<1 if and only if π(k.λ0)<1(Trλ)2/n\mathinner{\!\left\lVert\pi(k.\lambda_{0})\right\rVert}<\sqrt{1-(\operatorname{\operatorname{Tr}}\lambda)^{2}/n}. Thus

    (3) In(λ)={In(λ0/1(Trλ)2/n)|Trλ|n0|Trλ|>n.\displaystyle I_{n}(\lambda)=\begin{cases}I_{n}(\lambda_{0}/\sqrt{1-(\operatorname{\operatorname{Tr}}\lambda)^{2}/n})&\mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\lambda\right\rvert}\leq\sqrt{n}\\ 0&\mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\lambda\right\rvert}>\sqrt{n}\end{cases}.

We also note the following soft lower bound for In(λ)I_{n}(\lambda).

Lemma 2.

In(λ)(1+λ)dimSO(n)I_{n}(\lambda)\gg(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-\dim SO(n)}.

Proof.

An easy inductive argument shows that for all λ\lambda with Trλ=0\operatorname{\operatorname{Tr}}\lambda=0, there exists some k0SO(n)k_{0}\in SO(n) such that π(k0.λ)=0\pi(k_{0}.\lambda)=0. Indeed, suppose λ1<0<λ2\lambda_{1}<0<\lambda_{2}, and let RθSO(2)R_{\theta}\in SO(2) act on the first two coordinates. Then acting by a quarter-turn swaps λ1\lambda_{1} and λ2\lambda_{2}:

Rπ/2.[λ1λ2]\displaystyle R_{\pi/2}.\begin{bmatrix}\lambda_{1}&&\\ &\lambda_{2}&\\ &&\ddots\end{bmatrix} =[λ2λ1],\displaystyle=\begin{bmatrix}\lambda_{2}&&\\ &\lambda_{1}&\\ &&\ddots\end{bmatrix},

so by continuity there exists θ\theta such that Rθ.λR_{\theta}.\lambda has a 0 in the upper left corner, etc.

Choose X𝔰𝔬(n)X\in\mathfrak{so}(n) with X<1/100\mathinner{\!\left\lVert X\right\rVert}<1/100. Taylor expansion gives

(expX)k0.λ\displaystyle(\exp X)k_{0}.\lambda =k0.λ+X(k0.λ)(k0.λ)X+12(X2(k0.λ)2X(k0.λ)X+(k0.λ)X2)+\displaystyle=k_{0}.\lambda+X(k_{0}.\lambda)-(k_{0}.\lambda)X+\frac{1}{2}\left(X^{2}(k_{0}.\lambda)-2X(k_{0}.\lambda)X+(k_{0}.\lambda)X^{2}\right)+\dots

Thus π((expX)k0.λ)Xλ\mathinner{\!\left\lVert\pi((\exp X)k_{0}.\lambda)\right\rVert}\ll\mathinner{\!\left\lVert X\right\rVert}\mathinner{\!\left\lVert\lambda\right\rVert}, and π(k.λ)<1\mathinner{\!\left\lVert\pi(k.\lambda)\right\rVert}<1 on a ball of radius min(1/100,λ1)\gg\min(1/100,\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}) around k0k_{0}. ∎

Since (1+λ)dimSO(n)In(λ)1(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-\dim SO(n)}\ll I_{n}(\lambda)\leq 1, in the rest of the proof we may assume that λ\mathinner{\!\left\lVert\lambda\right\rVert} is greater than some constant depending only on nn and prove In(λ)λn+1Ln(λ)I_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}L_{n}(\lambda) instead of In(λ)(1+λ)n+1Ln(λ)I_{n}(\lambda)\asymp(1+\mathinner{\!\left\lVert\lambda\right\rVert})^{-n+1}L_{n}(\lambda).

3.2. Inductive step

For n=2n=2, we write λ=[a00a],k=[cosθsinθsinθcosθ]\lambda=\begin{bmatrix}-a&0\\ 0&a\end{bmatrix},k=\begin{bmatrix}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{bmatrix} and easily evaluate the integral:

SO(2)B(k.λ)dk\displaystyle\int_{SO(2)}B(k.\lambda)dk =12π02πB([acos2θasin2θasin2θacos2θ])𝑑θ\displaystyle=\frac{1}{2\pi}\int_{0}^{2\pi}B\left(\left[\begin{matrix}-a\cos 2\theta&a\sin 2\theta\\ a\sin 2\theta&a\cos 2\theta\end{matrix}\right]\right)d\theta
=12π02π𝟙[2a2cos2(2θ)<1]𝑑θ\displaystyle=\frac{1}{2\pi}\int_{0}^{2\pi}\mathbb{1}[2a^{2}\cos^{2}(2\theta)<1]d\theta
(1+|a|)1.\displaystyle\asymp(1+\mathinner{\!\left\lvert a\right\rvert})^{-1}.

So in the remainder of the proof assume n3n\geq 3.

Let e1,,ene_{1},\dots,e_{n} be basis vectors for n\mathbb{R}^{n} and let SO(n1)SO(n)SO(n-1)\subset SO(n) be the subgroup fixing ene_{n}. Let Π:Symn()Symn1()\Pi\mathrel{\mathop{\ordinarycolon}}\text{Sym}_{n}(\mathbb{R})\to\text{Sym}_{n-1}(\mathbb{R}) be the projection to the upper left n1×n1n-1\times n-1 submatrix; we have Π(k.X)=k.Π(X)\Pi(k^{\prime}.X)=k^{\prime}.\Pi(X) for kSO(n1)k^{\prime}\in SO(n-1). Let π\pi^{\prime} and BB^{\prime} be the (n1)(n-1)-dimensional versions of π\pi and BB. Let X=k.λX=k.\lambda. We have π(X)2=π(Π(X))2+Xnn2\mathinner{\!\left\lVert\pi(X)\right\rVert}^{2}=\mathinner{\!\left\lVert\pi^{\prime}(\Pi(X))\right\rVert}^{2}+X_{nn}^{2}, so B(X)B(Π(X))B(X)\leq B^{\prime}(\Pi(X)) and

(4) In(λ)SO(n)B(Π(k.λ))dk.\displaystyle I_{n}(\lambda)\leq\int_{SO(n)}B^{\prime}(\Pi(k.\lambda))\,dk.

On the other hand, since TrX=0\operatorname{\operatorname{Tr}}X=0 we have Xnn=i=1n1XiiX_{nn}=-\sum_{i=1}^{n-1}X_{ii} and by Cauchy-Schwarz Xnn2(n1)i=1n1Xii2=(n1)π(Π(X))2X_{nn}^{2}\leq(n-1)\sum_{i=1}^{n-1}X_{ii}^{2}=(n-1)\mathinner{\!\left\lVert\pi^{\prime}(\Pi(X))\right\rVert}^{2}, so π(X)nπ(Π(X))\mathinner{\!\left\lVert\pi(X)\right\rVert}\leq\sqrt{n}\mathinner{\!\left\lVert\pi^{\prime}(\Pi(X))\right\rVert} and

In(λ)SO(n)B(nΠ(k.λ))dk.\displaystyle I_{n}(\lambda)\geq\int_{SO(n)}B^{\prime}(\sqrt{n}\Pi(k.\lambda))\,dk.

To do the induction we will convert the integral over SO(n)SO(n) to an integral over SO(n1)SO(n-1):

Lemma 3.

Define

:={[μ1μn1]:λi<μi<λi+1}\displaystyle\mathcal{M}\mathrel{\mathop{\ordinarycolon}}=\left\{\left[\begin{matrix}\mu_{1}&&\\ &\ddots&\\ &&\mu_{n-1}\end{matrix}\right]\mathrel{\mathop{\ordinarycolon}}\lambda_{i}<\mu_{i}<\lambda_{i+1}\right\}

and

J(μ):=1i<jn1|μiμj|1in1jn1|λiμj|1/2.\displaystyle J(\mu)\mathrel{\mathop{\ordinarycolon}}=\frac{\prod_{1\leq i<j\leq n-1}\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}}{\prod_{\begin{subarray}{c}1\leq i\leq n\\ 1\leq j\leq n-1\end{subarray}}\mathinner{\!\left\lvert\lambda_{i}-\mu_{j}\right\rvert}^{1/2}}.

For any non-negative f:Symn1()f\mathrel{\mathop{\ordinarycolon}}\text{Sym}_{n-1}(\mathbb{R})\to\mathbb{R}, we have

(5) SO(n)f(Π(k.λ))dk=cnSO(n1)f(k.μ)dkJ(μ)dμ.\displaystyle\int_{SO(n)}f(\Pi(k.\lambda))\,dk=c_{n}\int_{\mathcal{M}}\int_{SO(n-1)}f(k^{\prime}.\mu)\,dk^{\prime}J(\mu)\,d\mu.

for some absolute constant cn>0c_{n}>0.

Proof.

Let 𝒜Symn1()\mathcal{A}\subset\text{Sym}_{n-1}(\mathbb{R}) be the set of matrices conjugate to some μ\mu\in\mathcal{M}, equipped with the measure inherited from (n1)2\mathbb{R}^{(n-1)^{2}}. We will show both sides are proportional to

(6) 𝒜f(X)1in1jn1|λiμj(X)|1/2dX\displaystyle\int_{\mathcal{A}}f(X)\prod_{\begin{subarray}{c}1\leq i\leq n\\ 1\leq j\leq n-1\end{subarray}}\mathinner{\!\left\lvert\lambda_{i}-\mu_{j}(X)\right\rvert}^{-1/2}\,dX

where μj(X)\mu_{j}(X) is the jj-th highest eigenvalue of XX, viewed as a function on 𝒜\mathcal{A}. Define a map

F\displaystyle F :SO(n)Symn1()\displaystyle\mathrel{\mathop{\ordinarycolon}}SO(n)\to\text{Sym}_{n-1}(\mathbb{R})
F(k)\displaystyle F(k) =Π(k.λ).\displaystyle=\Pi(k.\lambda).

We begin by pushing the left hand side of (5) forward along FF to get (6). First we exclude the degenerate case where Π(k.λ)\Pi(k.\lambda) shares an eigenvalue with λ\lambda.

Lemma 4.

λi\lambda_{i} is an eigenvalue of Π(k.λ)\Pi(k.\lambda) if and only if ei,k1en=0\langle e_{i},k^{-1}e_{n}\rangle=0.

Proof.

By replacing λ\lambda with λλiI\lambda-\lambda_{i}I, we may assume without loss of generality that λi=0\lambda_{i}=0. Let P=IenenTP=I-e_{n}e_{n}^{T}, the projection killing the nn-th coordinate. Then for any ASymn()A\in\text{Sym}_{n}(\mathbb{R}),

PAP=[Π(A)000],\displaystyle PAP=\begin{bmatrix}\Pi(A)&0\\ 0&0\end{bmatrix},

so the eigenvalues of PAPPAP are the eigenvalues of Π(A)\Pi(A), with an extra multiplicity at 0.

Suppose λi\lambda_{i} is an eigenvalue of Π(k.λ)\Pi(k.\lambda), then Pkλk1Pv=0Pk\lambda k^{-1}Pv=0 for some vv with Pv0Pv\neq 0. If λk1Pv=0\lambda k^{-1}Pv=0, then k1Pv=ceik^{-1}Pv=ce_{i} for some c0c\neq 0, and ei,k1en=c1k1Pv,k1en=c1Pv,en=c1v,Pen=0\langle e_{i},k^{-1}e_{n}\rangle=c^{-1}\langle k^{-1}Pv,k^{-1}e_{n}\rangle=c^{-1}\langle Pv,e_{n}\rangle=c^{-1}\langle v,Pe_{n}\rangle=0. Otherwise, if Pkλk1Pv=0Pk\lambda k^{-1}Pv=0 and λk1Pv0\lambda k^{-1}Pv\neq 0 then kλk1Pv=cenk\lambda k^{-1}Pv=ce_{n} for some c0c\neq 0 and ei,k1en=c1ei,λk1Pv=c1λei,k1Pv=0\langle e_{i},k^{-1}e_{n}\rangle=c^{-1}\langle e_{i},\lambda k^{-1}Pv\rangle=c^{-1}\langle\lambda e_{i},k^{-1}Pv\rangle=0.

Conversely, if ei,k1en=0\langle e_{i},k^{-1}e_{n}\rangle=0 then Pkei=keiPke_{i}=ke_{i} and Pkλk1Pkei=Pkλei=0Pk\lambda k^{-1}Pke_{i}=Pk\lambda e_{i}=0, so keike_{i} is the desired eigenvector for Π(k.λ)\Pi(k.\lambda). ∎

Let 𝒮={kSO(n):ei,k1en=0 for some i }\mathcal{S}=\{k\in SO(n)\mathrel{\mathop{\ordinarycolon}}\langle e_{i},k^{-1}e_{n}\rangle=0\text{ for some $i$ }\}. Note that the quotient SO(n1)\𝒮SO(n-1)\backslash\mathcal{S} is the intersection of the sphere SnSO(n1)\SO(n)S^{n}\simeq SO(n-1)\backslash SO(n) with the coordinate planes, so 𝒮\mathcal{S} is negligible. A calculation implicit in Fan and Pall [4, Theorem 1 and pp.300-301] shows that F(SO(n)𝒮)=𝒜F(SO(n)-\mathcal{S})=\mathcal{A}.

Lemma 5 (Fan-Pall).

Let μ1μn1\mu_{1}\leq\dots\leq\mu_{n-1} and z1,,znz_{1},\dots,z_{n}\in\mathbb{R}. Suppose the matrix

(7) [μ1z1μn1zn1z1zn1zn]\left[\begin{matrix}\mu_{1}&&&z_{1}\\ &\ddots&&\vdots\\ &&\mu_{n-1}&z_{n-1}\\ z_{1}&\dots&z_{n-1}&z_{n}\\ \end{matrix}\right]

has eigenvalues λ1λn\lambda_{1}\leq\dots\leq\lambda_{n}. Then λ1μ1λ2μn1λn\lambda_{1}\leq\mu_{1}\leq\lambda_{2}\leq\dots\leq\mu_{n-1}\leq\lambda_{n}. Furthermore, if λiμj\lambda_{i}\neq\mu_{j} for all i,ji,j then

zi2=1jn|λjμi|1jn1ij|μiμj|z_{i}^{2}=\frac{\prod_{1\leq j\leq n}\mathinner{\!\left\lvert\lambda_{j}-\mu_{i}\right\rvert}}{\prod_{\begin{subarray}{c}1\leq j\leq n-1\\ i\neq j\end{subarray}}\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}}

for 1in11\leq i\leq n-1, and taking traces gives zn=iλijμjz_{n}=\sum_{i}\lambda_{i}-\sum_{j}\mu_{j}.

Conversely, for any μ\mu and λ\lambda satisfying λiμj\lambda_{i}\neq\mu_{j} the above choice of ziz_{i} gives a matrix with eigenvalues λ\lambda.

We check that FF restricted to SO(n)𝒮SO(n)-\mathcal{S} is a smooth covering and compute its differential. Let Y𝒜Y\in\mathcal{A}. Conjugating by SO(n1)SO(n-1) we may assume YY is diagonal. There are 2n12^{n-1} choices of XSymn()X\in\text{Sym}_{n}(\mathbb{R}) conjugate to λ\lambda such that Π(X)=Y\Pi(X)=Y, corresponding to choices of sign for the ziz_{i} in (7). Furthermore, since the centralizer of λ\lambda in SO(n)SO(n) consists of reflections through an even number of coordinate axes, for each XX there are 2n12^{n-1} choices of kSO(n)𝒮k\in SO(n)-\mathcal{S} such that k.λ=Xk.\lambda=X.

Let 𝔼𝕚𝕛\mathbb{E_{ij}} be the n×nn\times n matrix with a 11 at position (i,j)(i,j), a 1-1 at (j,i)(j,i) and 0 elsewhere. Then {𝔼𝕚𝕛k:1i<jn}\{\mathbb{E_{ij}}k\mathrel{\mathop{\ordinarycolon}}1\leq i<j\leq n\} is an orthonormal basis for TkSO(n)T_{k}SO(n) (up to some constant). Let 𝔽𝕚𝕛\mathbb{F_{ij}} be the n1×n1n-1\times n-1 matrix with a 11 at (i,j)(i,j) and (j,i)(j,i) (or a single 11 if i=ji=j). Then {𝔽𝕚𝕛:1ijn1}\{\mathbb{F_{ij}}\mathrel{\mathop{\ordinarycolon}}1\leq i\leq j\leq n-1\} is a orthonormal basis for TF(k)𝒜T_{F(k)}\mathcal{A}.

We calculate

DkF(𝔼𝕚𝕛k)\displaystyle D_{k}F(\mathbb{E_{ij}}k) =limt01t[Π((expt𝔼𝕚𝕛)k.λ)Π(k.λ)]\displaystyle=\lim_{t\to 0}\frac{1}{t}\left[\Pi((\exp t\mathbb{E_{ij}})k.\lambda)-\Pi(k.\lambda)\right]
=Π([𝔼𝕚𝕛,k.λ])\displaystyle=\Pi([\mathbb{E_{ij}},k.\lambda])
={(μjμi)𝔽ijj<nh=1n1zh(1+δih)𝔽ihj=n.\displaystyle=\begin{cases}(\mu_{j}-\mu_{i})\mathbb{F}_{ij}&j<n\\ \sum_{h=1}^{n-1}z_{h}(1+\delta_{ih})\mathbb{F}_{ih}&j=n\end{cases}.

The Jacobian determinant has one nonzero term (the one that associates 𝔼𝕚𝕛\mathbb{E_{ij}} to 𝔽𝕚𝕛\mathbb{F_{ij}} for j<nj<n and 𝔽𝕚𝕚\mathbb{F_{ii}} for j=nj=n). Hence

detDkF=1i<jn1(μjμi)1in12zi\displaystyle\det D_{k}F=\prod_{1\leq i<j\leq n-1}(\mu_{j}-\mu_{i})\prod_{1\leq i\leq n-1}2z_{i} =±2n11in1jn1|λiμj|1/2,\displaystyle=\pm 2^{n-1}\prod_{\begin{subarray}{c}1\leq i\leq n\\ 1\leq j\leq n-1\end{subarray}}\mathinner{\!\left\lvert\lambda_{i}-\mu_{j}\right\rvert}^{1/2},

which is nonvanishing everywhere. Thus FF defines a smooth 22n22^{2n-2}-fold covering, and pushing forward along FF we see that the left hand side of (5) is proportional to (6).

On the other hand, define

G:SO(n1)×𝒜\displaystyle G\mathrel{\mathop{\ordinarycolon}}SO(n-1)\times\mathcal{M}\to\mathcal{A}
G(k,μ)=k.μ.\displaystyle G(k^{\prime},\mu)=k^{\prime}.\mu.

It suffices to compute the differential at k=1k^{\prime}=1. Take {𝔼𝕚𝕛:1i<jn1}\{\mathbb{E_{ij}^{\prime}}\mathrel{\mathop{\ordinarycolon}}1\leq i<j\leq n-1\} as a basis for T1SO(n1)T_{1}SO(n-1) and let (ei)1in1(e_{i}^{\prime})_{1\leq i\leq n-1} be the obvious basis for TμT_{\mu}\mathcal{M}. Then

D(1,μ)G(𝔼𝕚𝕛,0)\displaystyle D_{(1,\mu)}G(\mathbb{E_{ij}^{\prime}},0) =[𝔼𝕚𝕛,μ]=(μjμi)𝔽𝕚𝕛\displaystyle=[\mathbb{E_{ij}^{\prime}},\mu]=(\mu_{j}-\mu_{i})\mathbb{F_{ij}^{\prime}}
D(1,μ)G(0,ei)\displaystyle D_{(1,\mu)}G(0,e_{i}^{\prime}) =𝔽𝕚𝕚\displaystyle=\mathbb{F_{ii}^{\prime}}

and the Jacobian determinant is ±1i<jn1|μiμj|\pm\prod_{1\leq i<j\leq n-1}\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}, so the right hand side of (5) pushes forward to (6).

Define

Jn(λ):=An1(μ)J(μ)dμ.J_{n}(\lambda)\mathrel{\mathop{\ordinarycolon}}=\int_{\mathcal{M}}A_{n-1}(\mu)J(\mu)\,d\mu.

The next step is to show In(n1λ)Jn(λ)In(λ/n)I_{n}(\sqrt{n-1}\lambda)\ll J_{n}(\lambda)\ll I_{n}(\lambda/\sqrt{n}). Then it will suffice to prove Jn(λ)λn+1Ln(λ)J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}L_{n}(\lambda). Applying Lemma 3 to Equation (4) we get

In(λ)\displaystyle I_{n}(\lambda) SO(n1)B(k.μ)dkJ(μ)dμ\displaystyle\ll\int_{\mathcal{M}}\int_{SO(n-1)}B^{\prime}(k^{\prime}.\mu)\,dk^{\prime}J(\mu)\,d\mu
=In1(μ)J(μ)𝑑μ.\displaystyle=\int_{\mathcal{M}}I_{n-1}(\mu)J(\mu)\,d\mu.

By Equation (3) we may restrict to the region where |Trμ|<n1\mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\mu\right\rvert}<\sqrt{n-1}, in which we have In1(μ)=In1(μ0/1(Trμ)2/(n1))I_{n-1}(\mu)=I_{n-1}(\mu_{0}/\sqrt{1-(\operatorname{\operatorname{Tr}}\mu)^{2}/(n-1)}), where μ0\mu_{0} is the tracefree part of μ\mu. By monotonicity, this is In1(μ0)\leq I_{n-1}(\mu_{0}), by induction In1(μ0)An1(μ0)I_{n-1}(\mu_{0})\asymp A_{n-1}(\mu_{0}) and since μ0μ\mathinner{\!\left\lVert\mu_{0}-\mu\right\rVert} is bounded, An1(μ0)An1(μ)A_{n-1}(\mu_{0})\asymp A_{n-1}(\mu). The upper bound now reads

In(λ)μ|Trμ|<n1An1(μ)J(μ)𝑑μ.I_{n}(\lambda)\ll\int_{\begin{subarray}{c}\mu\in\mathcal{M}\\ \mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\mu\right\rvert}<\sqrt{n-1}\end{subarray}}A_{n-1}(\mu)J(\mu)d\mu.

Scaling λ\lambda and μ\mu by n1\sqrt{n-1} this is equivalent to

In(n1λ)\displaystyle I_{n}(\sqrt{n-1}\lambda) μ|Trμ|<1An1(n1μ)J(μ)𝑑μ,\displaystyle\ll\int_{\begin{subarray}{c}\mu\in\mathcal{M}\\ \mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\mu\right\rvert}<1\end{subarray}}A_{n-1}(\sqrt{n-1}\mu)J(\mu)d\mu,

and since An1(n1μ)An1(μ)A_{n-1}(\sqrt{n-1}\mu)\asymp A_{n-1}(\mu) the RHS is Jn(λ)\asymp J_{n}(\lambda), so In(n1λ)Jn(λ)I_{n}(\sqrt{n-1}\lambda)\ll J_{n}(\lambda).

On the other hand, for the lower bound we have

In(λ)\displaystyle I_{n}(\lambda) SO(n1)B(nk.μ)dkJ(μ)dμ\displaystyle\gg\int_{\mathcal{M}}\int_{SO(n-1)}B^{\prime}(\sqrt{n}k^{\prime}.\mu)\,dk^{\prime}J(\mu)\,d\mu
=In1(nμ)J(μ)𝑑μ,\displaystyle=\int_{\mathcal{M}}I_{n-1}(\sqrt{n}\mu)J(\mu)\,d\mu,

and we may restrict the integral to the region where Trμ<1/n\operatorname{\operatorname{Tr}}\mu<1/\sqrt{n}, in which

In1(nμ)\displaystyle I_{n-1}(\sqrt{n}\mu) =In1(nμ0/1(Trnμ)2/(n1))\displaystyle=I_{n-1}(\sqrt{n}\mu_{0}/\sqrt{1-(\operatorname{\operatorname{Tr}}\sqrt{n}\mu)^{2}/(n-1)})
In1(nμ0/(n2)/(n1))\displaystyle\geq I_{n-1}(\sqrt{n}\mu_{0}/\sqrt{(n-2)/(n-1)})
An1(μ0)\displaystyle\asymp A_{n-1}(\mu_{0})
An1(μ).\displaystyle\asymp A_{n-1}(\mu).

So

In(λ)μ|Trμ|<1/nAn1(μ)J(μ)𝑑μ,\displaystyle I_{n}(\lambda)\gg\int_{\begin{subarray}{c}\mu\in\mathcal{M}\\ \mathinner{\!\left\lvert\operatorname{\operatorname{Tr}}\mu\right\rvert}<1/\sqrt{n}\end{subarray}}A_{n-1}(\mu)J(\mu)\,d\mu,

and scaling λ\lambda and μ\mu by 1/n1/\sqrt{n} we get In(λ/n)Jn(λ)I_{n}(\lambda/\sqrt{n})\gg J_{n}(\lambda).

Our strategy for showing Jn(λ)λn+1Ln(λ)J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}L_{n}(\lambda) will be to simplify Jn(λ)J_{n}(\lambda) to a convolution. Define

\displaystyle\mathcal{H} :={μ:|iμi|<1}\displaystyle\mathrel{\mathop{\ordinarycolon}}={\textstyle\{\mu\in\mathcal{M}\mathrel{\mathop{\ordinarycolon}}\mathinner{\!\left\lvert\sum_{i}\mu_{i}\right\rvert}<1\}}
Fi(x)\displaystyle F_{i}(x) :=𝟏[λi,λi+1]|λix|1/2|λi+1x|1/2\displaystyle\mathrel{\mathop{\ordinarycolon}}=\mathbf{1}_{[\lambda_{i},\lambda_{i+1}]}\mathinner{\!\left\lvert\lambda_{i}-x\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{i+1}-x\right\rvert}^{-1/2}
κi,j\displaystyle\kappa_{i,j} :=|μiμj||λiμj|1/2|λj+1μi|1/2.\displaystyle\mathrel{\mathop{\ordinarycolon}}=\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}\mathinner{\!\left\lvert\lambda_{i}-\mu_{j}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{j+1}-\mu_{i}\right\rvert}^{-1/2}.

Then

(8) Jn(λ)=(1+μ)n+2Ln1(μ)1i<jn1κi,j1in1Fi(μi)dμ.\displaystyle J_{n}(\lambda)=\int_{\mathcal{H}}(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}L_{n-1}(\mu)\prod_{1\leq i<j\leq n-1}\kappa_{i,j}\prod_{1\leq i\leq n-1}F_{i}(\mu_{i})\,d\mu.

Note that

Fi(x)𝟙[λi,λi+1]|λiλi+1|1/2(|λix|1/2+|λi+1x|1/2),F_{i}(x)\asymp\mathbb{1}_{[\lambda_{i},\lambda_{i+1}]}\mathinner{\!\left\lvert\lambda_{i}-\lambda_{i+1}\right\rvert}^{-1/2}\left(\mathinner{\!\left\lvert\lambda_{i}-x\right\rvert}^{-1/2}+\mathinner{\!\left\lvert\lambda_{i+1}-x\right\rvert}^{-1/2}\right),

implying Fi(x)𝑑x1\int F_{i}(x)dx\asymp 1. Also, κi,j1\kappa_{i,j}\leq 1 on \mathcal{H}. If we can eliminate the factors (1+μ)n+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}, Ln1(μ)L_{n-1}(\mu), and κi,j\kappa_{i,j} then the integral becomes simply a convolution evaluated at 0:

1in1Fi(μi)dμ\displaystyle\int_{\mathcal{H}}\prod_{1\leq i\leq n-1}F_{i}(\mu_{i})\,d\mu =𝟏[1,1](iμi)1in1Fi(μi)dμn1dμ1\displaystyle=\int\dots\int{\textstyle\mathbf{1}_{[-1,1]}\left(-\sum_{i}\mu_{i}\right)}\prod_{1\leq i\leq n-1}F_{i}(\mu_{i})\,d\mu_{n-1}\dots d\mu_{1}
=(𝟏[1,1](1in1Fi))(0).\displaystyle=\left(\mathbf{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{1\leq i\leq n-1}F_{i}\right)\right)(0).

Let d=λnλ1d=\lambda_{n}-\lambda_{1} and let di=λi+1λid_{i}=\lambda_{i+1}-\lambda_{i} be the “spectral gaps.” Then Lemma 1 follows from the following cases:

First, by Lemma 6, we have unconditionally that Jn(λ)λn+1J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

  • Let II be the index of the largest gap. Suppose dI>(11/100n)dd_{I}>(1-1/100n)d. Then:

    • If (n,I)(4,2)(n,I)\neq(4,2), then Ln(λ)1L_{n}(\lambda)\asymp 1 and it remains to show Jn(λ)λn+1J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}. See Lemma 9.

    • If (n,I)=(4,2)(n,I)=(4,2), then the exceptional term term in Ln(λ)L_{n}(\lambda) is large. See Lemma 10.

  • Otherwise, let I<JI<J be the two largest gaps, breaking ties arbitrarily. Then (11/100n)ddI,dJd/100n2(1-1/100n)d\geq d_{I},d_{J}\geq d/100n^{2}.

    • If (I,J)(1,n1)(I,J)\neq(1,n-1) then Ln(λ)1L_{n}(\lambda)\asymp 1 and it remains to show Jn(λ)λn+1J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}. See Lemma 11.

    • If (I,J)=(1,n1)(I,J)=(1,n-1) then the main term in Ln(λ)L_{n}(\lambda) is large. See Lemma 13.

4. Convolution Bounds

4.1. The general lower bound

Lemma 6.

For all λ\lambda with λ1<λ2<<λn\lambda_{1}<\lambda_{2}<\dots<\lambda_{n}, we have Jn(λ)λn+1J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

Proof.

Applying the inequalities Ln(μ)1L_{n}(\mu)\gg 1 and (1+μ)n+2λn+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2} to the definition of Jn(λ)J_{n}(\lambda) gives

Jn(λ)λn+21i<jn1κi,j1in1Fi(μi)dμ.J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}\int_{\mathcal{H}}\prod_{1\leq i<j\leq n-1}\kappa_{i,j}\prod_{1\leq i\leq n-1}F_{i}(\mu_{i})\,d\mu.

We define a subset of \mathcal{H} on which the κi,j\kappa_{i,j} are bounded away from 0. Let θ=λ1/d\theta=-\lambda_{1}/d. From (n1)λ1+λnλ1+λ2++λn=0(n-1)\lambda_{1}+\lambda_{n}\leq\lambda_{1}+\lambda_{2}+\dots+\lambda_{n}=0 we deduce λ1d/n\lambda_{1}\leq-d/n and similarly λ1+(n1)λnλ1+λ2++λn=0(n1)dnλ1\lambda_{1}+(n-1)\lambda_{n}\geq\lambda_{1}+\lambda_{2}+\dots+\lambda_{n}=0\implies(n-1)d\geq-n\lambda_{1}. Thus 1/nθ11/n1/n\leq\theta\leq 1-1/n. Let mi=θλi+(1θ)λi+1m_{i}=\theta\lambda_{i}+(1-\theta)\lambda_{i+1}. Then 1in1mi=0\sum_{1\leq i\leq n-1}m_{i}=0. Define intervals Mi[λi,λi+1]M_{i}\subset[\lambda_{i},\lambda_{i+1}] centered on the mim_{i}, given by

Mi=[midi/2n,mi+di/2n]M_{i}=[m_{i}-d_{i}/2n,m_{i}+d_{i}/2n]

and restrict the integral to the set

={μ:μiMi,|iμi|<1}.\mathcal{H}^{\prime}=\{\mu\mathrel{\mathop{\ordinarycolon}}\mu_{i}\in M_{i},{\textstyle\mathinner{\!\left\lvert\sum_{i}\mu_{i}\right\rvert}}<1\}\subset\mathcal{H}.

Then for μ\mu\in\mathcal{H}^{\prime} we have

|μiμj||μiλj+1|=|μiλj|+|λjμj||μiλj|+|λjλj+1||λjμj||λjλj+1|12n,\frac{\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}}{\mathinner{\!\left\lvert\mu_{i}-\lambda_{j+1}\right\rvert}}=\frac{\mathinner{\!\left\lvert\mu_{i}-\lambda_{j}\right\rvert}+\mathinner{\!\left\lvert\lambda_{j}-\mu_{j}\right\rvert}}{\mathinner{\!\left\lvert\mu_{i}-\lambda_{j}\right\rvert}+\mathinner{\!\left\lvert\lambda_{j}-\lambda_{j+1}\right\rvert}}\geq\frac{\mathinner{\!\left\lvert\lambda_{j}-\mu_{j}\right\rvert}}{\mathinner{\!\left\lvert\lambda_{j}-\lambda_{j+1}\right\rvert}}\geq\frac{1}{2n},

and similarly |μiμj|/|λiμj|1/2n\mathinner{\!\left\lvert\mu_{i}-\mu_{j}\right\rvert}/\mathinner{\!\left\lvert\lambda_{i}-\mu_{j}\right\rvert}\geq 1/2n, so κij1/2n\kappa_{ij}\geq 1/2n. Also, for μiMi\mu_{i}\in M_{i} we have

Fi(μi)|λiλi+1|1/2(|λiμi|1/2+|λi+1μi|1/2)di1.\displaystyle F_{i}(\mu_{i})\asymp\mathinner{\!\left\lvert\lambda_{i}-\lambda_{i+1}\right\rvert}^{-1/2}\left(\mathinner{\!\left\lvert\lambda_{i}-\mu_{i}\right\rvert}^{-1/2}+\mathinner{\!\left\lvert\lambda_{i+1}-\mu_{i}\right\rvert}^{-1/2}\right)\gg d_{i}^{-1}.

Applying the lower bounds for κi,j\kappa_{i,j} and FiF_{i} gives

Jn(λ)λn+21in1di1𝟏Mi(μi)dμi,J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}\int_{\mathcal{H}^{\prime}}\prod_{1\leq i\leq n-1}d_{i}^{-1}\mathbf{1}_{M_{i}}(\mu_{i})d\mu_{i},

and this is equivalent to a convolution

Jn(λ)\displaystyle J_{n}(\lambda) λn+2G(0)\displaystyle\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}G(0)
G\displaystyle G =𝟏[1,1](1in1di1𝟏Mi).\displaystyle=\mathbf{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{1\leq i\leq n-1}d_{i}^{-1}\mathbf{1}_{M_{i}}\right).

Since imi=0\sum_{i}m_{i}=0 we can translate each factor to be centered at 0,

G\displaystyle G =𝟏[1,1](1in1di1𝟏[di/2n,di/2n]).\displaystyle=\mathbf{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{1\leq i\leq n-1}d_{i}^{-1}\mathbf{1}_{[-d_{i}/2n,d_{i}/2n]}\right).

Then by the following Lemma, G(x)G(x) is maximized at x=0x=0.

Lemma 7.

For a sequence of reals ai0a_{i}\geq 0 let

fn(x)=1in𝟏[ai,ai](x)f_{n}(x)=\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{1\leq i\leq n}\mathbf{1}_{[-a_{i},a_{i}]}(x)

then fnf_{n} is maximized at 0 for all nn.

Proof.

The fnf_{n} are obviously even. We prove a stronger statement, that fnf_{n} is nonincreasing on [0,)[0,\infty). The case n=1n=1 is trivial. For n>1n>1 and x>0x>0 we have

fn(x)\displaystyle f_{n}(x) =𝟏[an,an](xy)fn1(y)𝑑y\displaystyle=\int\mathbf{1}_{[-a_{n},a_{n}]}(x-y)f_{n-1}(y)dy
=xanx+anfn1(y)𝑑y\displaystyle=\int_{x-a_{n}}^{x+a_{n}}f_{n-1}(y)dy

implying, for 0<x<x0<x<x^{\prime}

fn(x)fn(x)\displaystyle f_{n}(x)-f_{n}(x^{\prime}) =xanx+anfn1(y)𝑑yxanx+anfn1(y)𝑑y\displaystyle=\int_{x-a_{n}}^{x+a_{n}}f_{n-1}(y)dy-\int_{x^{\prime}-a_{n}}^{x^{\prime}+a_{n}}f_{n-1}(y)dy
=xanxanfn1(y)𝑑yx+anx+anfn1(y)𝑑y\displaystyle=\int_{x-a_{n}}^{x^{\prime}-a_{n}}f_{n-1}(y)dy-\int_{x+a_{n}}^{x^{\prime}+a_{n}}f_{n-1}(y)dy
=xxfn1(yan)fn1(y+an)dy,\displaystyle=\int_{x}^{x^{\prime}}f_{n-1}(y-a_{n})-f_{n-1}(y+a_{n})dy,

and by induction the integrand is 0\geq 0. ∎

Finally, note that G(x)𝑑x=2idi1𝟏Mi11\int G(x)dx=2\prod_{i}\mathinner{\!\left\lVert d_{i}^{-1}\mathbf{1}_{M_{i}}\right\rVert}_{1}\gg 1 and G(x)G(x) is supported in an interval of length λ\ll\mathinner{\!\left\lVert\lambda\right\rVert}. Thus, G(0)λ1G(0)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-1} and we are done. ∎

4.2. Monotone rearrangement

To upper bound various convolutions, we introduce the following convenient tool [2]. For f:[0,)f\mathrel{\mathop{\ordinarycolon}}\mathbb{R}\to[0,\infty) define the level set

{f>t}={x:f(x)>t},\{f>t\}=\{x\in\mathbb{R}\mathrel{\mathop{\ordinarycolon}}f(x)>t\},

and the “layer cake representation” of ff,

f(x)=𝟏{f>t}(x)𝑑t.f(x)=\int\mathbf{1}_{\{f>t\}}(x)\,dt.

For a set SS\subset\mathbb{R} define the rearranged set S=[0,μ(S))S^{*}=[0,\mu(S)). Finally define the monotone rearrangement

f(x)=𝟏{f>t}(x)𝑑t.f^{*}(x)=\int\mathbf{1}_{\{f>t\}^{*}}(x)\,dt.

For example, the monotone rearrangement of 𝟏[a,b]\mathbf{1}_{[a,b]} is 𝟏[0,ba]\mathbf{1}_{[0,b-a]}, and the monotone rearrangement of

f(x)\displaystyle f(x) =𝟏[a,b]|ax|1/2|bx|1/2\displaystyle=\mathbf{1}_{[a,b]}\mathinner{\!\left\lvert a-x\right\rvert}^{-1/2}\mathinner{\!\left\lvert b-x\right\rvert}^{-1/2}

is

f(x)\displaystyle f^{*}(x) =𝟏[0,ba](x/2)1/2((ba)x/2)1/2\displaystyle=\mathbf{1}_{[0,b-a]}(x/2)^{-1/2}((b-a)-x/2)^{-1/2}
(ba)1/2x1/2.\displaystyle\ll(b-a)^{-1/2}x^{-1/2}.

We note basic properties such as fgfgf\leq g\implies f^{*}\leq g^{*} and (af)=af(af)^{*}=af^{*}. The real workhorse is the nn-ary Hardy-Littlewood Rearrangement inequality:

Lemma 8.

For f1,,fn:[0,)f_{1},\dots,f_{n}\mathrel{\mathop{\ordinarycolon}}\mathbb{R}\to[0,\infty) we have

i=1nfi(x)dxi=1nfi(x)dx.\int\prod_{i=1}^{n}f_{i}(x)dx\leq\int\prod_{i=1}^{n}f_{i}^{*}(x)\,dx.
Proof.
f1(x)fn(x)𝑑x\displaystyle\int_{\mathbb{R}}f_{1}(x)\dots f_{n}(x)\,dx =00𝟏{f1>t1}(x)𝟏{fn>tn}(x)𝑑tn𝑑t1𝑑x\displaystyle=\int_{\mathbb{R}}\int_{0}^{\infty}\dots\int_{0}^{\infty}\mathbf{1}_{\{f_{1}>t_{1}\}}(x)\dots\mathbf{1}_{\{f_{n}>t_{n}\}}(x)\,dt_{n}\dots\,dt_{1}\,dx
=00μ({f1>t1}{fn>tn})𝑑tn𝑑t1\displaystyle=\int_{0}^{\infty}\dots\int_{0}^{\infty}\mu(\{f_{1}>t_{1}\}\cap\dots\cap\{f_{n}>t_{n}\})\,dt_{n}\dots\,dt_{1}
00μ({f1>t1}{fn>tn})𝑑tn𝑑t1\displaystyle\leq\int_{0}^{\infty}\dots\int_{0}^{\infty}\mu(\{f^{*}_{1}>t_{1}\}\cap\dots\cap\{f^{*}_{n}>t_{n}\})\,dt_{n}\dots\,dt_{1}
=f1(x)fn(x)𝑑x.\displaystyle=\int_{\mathbb{R}}f^{*}_{1}(x)\dots f^{*}_{n}(x)\,dx.

For n=2n=2 this implies fgf,g\mathinner{\!\left\lVert f*g\right\rVert}_{\infty}\leq\langle f^{*},g^{*}\rangle, where fgf*g is the convolution of ff and gg. We also note the following inequalities for 0<a<b0<a<b:

(9) abx1/2(logTx)k𝑑x\displaystyle\int_{a}^{b}x^{-1/2}\left(\log^{\prime}\frac{T}{x}\right)^{k}\,dx kb1/2(logTb)k\displaystyle\ll_{k}b^{1/2}\left(\log^{\prime}\frac{T}{b}\right)^{k}
(10) abx1(logTx)k𝑑x\displaystyle\int_{a}^{b}x^{-1}\left(\log^{\prime}\frac{T}{x}\right)^{k}\,dx logba(logTa)k,\displaystyle\ll\log\frac{b}{a}\left(\log^{\prime}\frac{T}{a}\right)^{k},

the first of which can be verified by applying integration by parts kk times.

4.3. One Large Gap

In this section we assume there exists II such that dI>(11/(100n))dd_{I}>(1-1/(100n))d.

Let d=ddI=|λ1λI|+|λI+1λn|d/100nd^{\prime}=d-d_{I}=\mathinner{\!\left\lvert\lambda_{1}-\lambda_{I}\right\rvert}+\mathinner{\!\left\lvert\lambda_{I+1}-\lambda_{n}\right\rvert}\leq d/100n. We show that nn and II determine the positions of λi\lambda_{i} and μi\mu_{i} up to an O(d)O(d^{\prime}) error. Write ±C\pm C for an error of absolute value C\leq C. Then λi=λ1±d\lambda_{i}=\lambda_{1}\pm d^{\prime} for iIi\leq I and λi=λn±d\lambda_{i}=\lambda_{n}\pm d^{\prime} for i>Ii>I. Writing

0\displaystyle 0 =iλi\displaystyle=\sum_{i}\lambda_{i}
=Iλ1+(nI)λn±nd\displaystyle=I\lambda_{1}+(n-I)\lambda_{n}\pm nd^{\prime}

we get λn=Id/n±d\lambda_{n}=Id/n\pm d^{\prime} and λ1=(In)d/n±d\lambda_{1}=(I-n)d/n\pm d^{\prime}. Then

(11) λi={(In)dn±2diIIdn±2di>I\displaystyle\lambda_{i}=\begin{cases}\displaystyle{\frac{(I-n)d}{n}\pm 2d^{\prime}}&i\leq I\\ \displaystyle{\frac{Id}{n}\pm 2d^{\prime}}&i>I\end{cases}

and (using |iμi|1\mathinner{\!\left\lvert\sum_{i}\mu_{i}\right\rvert}\leq 1 to find μI\mu_{I})

(12) μi={(In)dn±2di<I(I2n)dn±(2nd+1)i=IIdn±2di>I\displaystyle\mu_{i}=\begin{cases}\displaystyle{\frac{(I-n)d}{n}\pm 2d^{\prime}}&i<I\\ \displaystyle{\frac{(I-2n)d}{n}\pm(2nd^{\prime}+1)}&i=I\\ \displaystyle{\frac{Id}{n}\pm 2d^{\prime}}&i>I\end{cases}

4.3.1. The upper bound when (n,I)(4,2)(n,I)\neq(4,2)

Lemma 9.

Assume there exists II such that dI>(11/(100n))dd_{I}>(1-1/(100n))d and (n,I)(4,2)(n,I)\neq(4,2). Then Ln(λ)1L_{n}(\lambda)\asymp 1 and Jn(λ)λn+1J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

By Equation 11 we have |λ2|d\mathinner{\!\left\lvert\lambda_{2}\right\rvert}\gg d so

logλ1+|λ2|+|λn1|1.\displaystyle\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\ll 1.

Also, if n=4n=4 but I2I\neq 2 then at least one of |λ1λ2|\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert} and |λ3λ4|\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert} is d\gg d so

logλ1+|λ1λ2|+|λ3λ4|1.\displaystyle\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert}}\ll 1.

Thus Ln(λ)1L_{n}(\lambda)\asymp 1, and by Lemma 6, Jn(λ)λn+1J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}, so it remains to show Jn(λ)λn+1J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

If I2I\geq 2 then |μ1|d\mathinner{\!\left\lvert\mu_{1}\right\rvert}\gg d, otherwise, if I=1I=1 then |μn1|d\mathinner{\!\left\lvert\mu_{n-1}\right\rvert}\gg d. Thus (1+μ)n+2λn+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}.

If n=4n=4 and I2I\neq 2 then |μ2|d\mathinner{\!\left\lvert\mu_{2}\right\rvert}\gg d and Ln1(μ)1L_{n-1}(\mu)\asymp 1.

If n5n\geq 5, then at least one of |μ2|\mathinner{\!\left\lvert\mu_{2}\right\rvert} and |μn2|\mathinner{\!\left\lvert\mu_{n-2}\right\rvert} must be d\gg d, so

logμ1+|μ2|+|μn2|1.\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\asymp 1.

If n=5n=5 then the exceptional factor in Ln1(μ)L_{n-1}(\mu) is also 1\asymp 1 since at least one of |μ1μ2|\mathinner{\!\left\lvert\mu_{1}-\mu_{2}\right\rvert} and |μ3μ4|\mathinner{\!\left\lvert\mu_{3}-\mu_{4}\right\rvert} must be d\gg d. Thus Ln1(μ)1L_{n-1}(\mu)\asymp 1 for n5n\geq 5.

Bounding κi,j1\kappa_{i,j}\leq 1 for all i,ji,j we get

Jn(λ)λn+2iFi(μi)dμ.J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}\int_{\mathcal{H}}\prod_{i}F_{i}(\mu_{i})\,d\mu.

By Equation (12) we have μI=(I2n)d/n±(2nd+1)\mu_{I}=(I-2n)d/n\pm(2nd^{\prime}+1). Then (taking dd sufficiently large) |λIμI|\mathinner{\!\left\lvert\lambda_{I}-\mu_{I}\right\rvert} and |λI+1μI|\mathinner{\!\left\lvert\lambda_{I+1}-\mu_{I}\right\rvert} are d\gg d so FI(t)λ1F_{I}(t)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}. Finally

Jn(λ)\displaystyle J_{n}(\lambda) λn+1iIFi(μi)dμ\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\int_{\mathcal{H}}\prod_{i\neq I}F_{i}(\mu_{i})\,d\mu
=λn+1(𝟏[1,1](iIFi))(0)\displaystyle=\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\left(\mathbf{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{i\neq I}F_{i}\right)\right)(0)
λn+1iIFi1\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\prod_{i\neq I}\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}
λn+1\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}

and we are done.

4.3.2. The case (n,I)=(4,2)(n,I)=(4,2)

Lemma 10.

Assume there exists II such that dI>(11/(100n))dd_{I}>(1-1/(100n))d and (n,I)=(4,2)(n,I)=(4,2). Then

Ln(λ)logλ1+|λ1λ2|+|λ3λ4|L_{n}(\lambda)\asymp\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert}}

, and Jn(λ)λn1Ln(λ)J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n_{1}}L_{n}(\lambda).

The proof proceeds similarly to Lemma 9, except that we cannot eliminate Ln1(μ)=logλ/(1+|μ2|)L_{n-1}(\mu)=\log^{\prime}\mathinner{\!\left\lVert\lambda\right\rVert}/(1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}). We write instead

Jn(λ)λn+2L(μ2)G(μ2)𝑑μ2.J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}\int_{-\infty}^{\infty}L(\mu_{2})G(\mu_{2})\,d\mu_{2}.

where

L(t)\displaystyle L(t) =logλ1+|t|\displaystyle=\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert t\right\rvert}}
G\displaystyle G =𝟏[1,1]F1F3.\displaystyle=\mathbf{1}_{[-1,1]}*F_{1}*F_{3}.

Using Young’s inequality and the fact that Fi11\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}\asymp 1 we have

Jn(λ)\displaystyle J_{n}(\lambda) λn+1L𝟏[1,1]F1F3\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\mathinner{\!\left\lVert L*\mathbf{1}_{[-1,1]}*F_{1}*F_{3}\right\rVert}_{\infty}
λn+1LF1𝟏[1,1]1F31\displaystyle\leq\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\mathinner{\!\left\lVert L*F_{1}\right\rVert}_{\infty}\mathinner{\!\left\lVert\mathbf{1}_{[-1,1]}\right\rVert}_{1}\mathinner{\!\left\lVert F_{3}\right\rVert}_{1}
λn+1LF1.\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\mathinner{\!\left\lVert L*F_{1}\right\rVert}_{\infty}.

Then using the Hardy-Littlewood rearrangement inequality and equation (9):

LF1\displaystyle\mathinner{\!\left\lVert L*F_{1}\right\rVert}_{\infty} L,F1\displaystyle\leq\langle L^{*},F^{*}_{1}\rangle
0d1logλ1+|x|d11/2x1/2dx\displaystyle\ll\int_{0}^{d_{1}}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert x\right\rvert}}d_{1}^{-1/2}x^{-1/2}\,dx
logλ1+d1,\displaystyle\ll\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+d_{1}},

so Jn(λ)λn+1λ1+d1J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+d_{1}} and similarly Jn(λ)λn+1logλ1+d3J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+d_{3}}. Together these imply

Jn(λ)λn+1logλ1+|λ1λ2|+|λ3λ4|J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert}}

as desired. For the lower bound, we restrict to \mathcal{H}^{\prime}, then since κi,j1\kappa_{i,j}\gg 1 for all i<ji<j, and (1+μ2λ2(1+\mathinner{\!\left\lVert\mu\right\rVert}^{-2}\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-2} we have

Jn(λ)λ2logλ1+|μ2|1i3Fi(μi)dμ.\displaystyle J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-2}\int_{\mathcal{H}^{\prime}}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}}\prod_{1\leq i\leq 3}F_{i}(\mu_{i})\,d\mu.

By Equation (12) we have |μ2|1+4d\mathinner{\!\left\lvert\mu_{2}\right\rvert}\leq 1+4d^{\prime} for μ\mu\in\mathcal{H}^{\prime}, so

Jn(λ)λ2logλ2+4d1i3Fi(μi)dμ\displaystyle J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-2}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{2+4d^{\prime}}\int_{\mathcal{H}^{\prime}}\prod_{1\leq i\leq 3}F_{i}(\mu_{i})\,d\mu

and using the same argument as in Lemma 6 the integral is λ1\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}. Finally since d=|λ1λ2|+|λ3λ4|d^{\prime}=\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert} we have

Jn(λ)λ3logλ1+|λ1λ2|+|λ3λ4|.\displaystyle J_{n}(\lambda)\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-3}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert}}.

4.4. Two Large Gaps

In this section we assume no index II satisfies dI>(11/100n)dd_{I}>(1-1/100n)d. This implies there exist indices I<JI<J such that dI,dJd/100n2d_{I},d_{J}\geq d/100n^{2}.

4.4.1. The case (I,J)(1,n1)(I,J)\neq(1,n-1)

Lemma 11.

Suppose there exist I<JI<J with (I,J)(1,n1)(I,J)\neq(1,n-1) such that dI,dJd/100n2d_{I},d_{J}\geq d/100n^{2}. Then Ln(λ)1L_{n}(\lambda)\asymp 1 and Jn(λ)λn+1J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

Proof.

If |λ2|+|λn1|d/100n2\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}\leq d/100n^{2}, then di<d/100n2d_{i}<d/100n^{2} for 2in22\leq i\leq n-2, forcing (I,J)=(1,n1)(I,J)=(1,n-1). Hence |λ2|+|λn1|λ\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}\gg\mathinner{\!\left\lVert\lambda\right\rVert} and the main term in Ln(λ)L_{n}(\lambda) is 1\ll 1. The exceptional term of Ln(λ)L_{n}(\lambda) is also 1\ll 1 since one of |λ1λ2|,|λ3λ4|\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert},\mathinner{\!\left\lvert\lambda_{3}-\lambda_{4}\right\rvert} must be dId_{I} or dJd_{J}. It remains to prove Jn(λ)λn+1J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}.

If n=3n=3 then (I,J)=(1,2)(I,J)=(1,2) is forced, so we must have n4n\geq 4. By symmetry (replacing λ1,,λn\lambda_{1},\dots,\lambda_{n} with λn,,λ1-\lambda_{n},\dots,-\lambda_{1}) we may assume Jn2J\leq n-2.

First we rewrite Ln1(μ)L_{n-1}(\mu) to depend solely on μJ\mu_{J}:

Lemma 12.

Under the assumptions of Lemma 11,

Ln1(μ)(μJ):=(logλ|λJμJ|)(logλ|λJ+1μJ|)n2(logλ|μJ|)n3.L_{n-1}(\mu)\ll\mathcal{L}(\mu_{J})\mathrel{\mathop{\ordinarycolon}}=\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{J}-\mu_{J}\right\rvert}}\right)\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{J}\right\rvert}}\right)^{n-2}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\mu_{J}\right\rvert}}\right)^{n-3}.
Proof.

If J=n2J=n-2 then bound

(logμ1+|μ2|+|μn2|)n3(logλ|μJ|)n3.\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\right)^{n-3}\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\mu_{J}\right\rvert}}\right)^{n-3}.

Otherwise, suppose Jn3J\leq n-3. Since 1I<J1\leq I<J we must have n5n\geq 5. If (I,J)=(1,2)(I,J)=(1,2) then |μ2|+|μn2||μ2μ3||μ2λ3|=|λJ+1μJ|\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}\geq\mathinner{\!\left\lvert\mu_{2}-\mu_{3}\right\rvert}\geq\mathinner{\!\left\lvert\mu_{2}-\lambda_{3}\right\rvert}=\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{J}\right\rvert} and

(logμ1+|μ2|+|μn2|)n3log(λ|λJ+1μJ|)n3.\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\right)^{n-3}\ll\log^{\prime}\left(\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{J}\right\rvert}}\right)^{n-3}.

Otherwise, if (I,J)(1,2)(I,J)\neq(1,2) then n6n\geq 6 is forced, and |μ2|+|μn2||μ2μn2||λ3λn2|dJλ\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}\geq\mathinner{\!\left\lvert\mu_{2}-\mu_{n-2}\right\rvert}\geq\mathinner{\!\left\lvert\lambda_{3}-\lambda_{n-2}\right\rvert}\geq d_{J}\gg\mathinner{\!\left\lVert\lambda\right\rVert}, so

(logμ1+|μ2|+|μn2|)n31.\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\right)^{n-3}\ll 1.

As for the exceptional factor in Ln1(μ)L_{n-1}(\mu) that appears when n=5n=5, if J=3J=3 we bound

logμ1+|μ1μ2|+|μ3μ4|logλ|λJ+1μJ|,\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{1}-\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{3}-\mu_{4}\right\rvert}}\ll\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{J}\right\rvert}},

and if J=2J=2 we bound

λ|λJμJ|.\ll\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{J}-\mu_{J}\right\rvert}}.

Since μ|μ1μn1|dJλ\mathinner{\!\left\lVert\mu\right\rVert}\gg\mathinner{\!\left\lvert\mu_{1}-\mu_{n-1}\right\rvert}\gg d_{J}\gg\mathinner{\!\left\lVert\lambda\right\rVert}, we have (1+μ)n+2λn+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}.

Since |λJ+1μI|dJλ\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{I}\right\rvert}\geq d_{J}\gg\mathinner{\!\left\lVert\lambda\right\rVert} we have

κI,J\displaystyle\kappa_{I,J} =|λIμJ|1/2|λJ+1μI|1/2|μIμJ|\displaystyle=\mathinner{\!\left\lvert\lambda_{I}-\mu_{J}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{J+1}-\mu_{I}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\mu_{I}-\mu_{J}\right\rvert}
λ1/2|μIμJ|1/2,\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2}\mathinner{\!\left\lvert\mu_{I}-\mu_{J}\right\rvert}^{1/2},

and since |λJμn1|dJλ\mathinner{\!\left\lvert\lambda_{J}-\mu_{n-1}\right\rvert}\geq d_{J}\gg\mathinner{\!\left\lVert\lambda\right\rVert} we have

κJ,n1\displaystyle\kappa_{J,n-1} =|λJμn1|1/2|λnμJ|1/2|μJμn1|\displaystyle=\mathinner{\!\left\lvert\lambda_{J}-\mu_{n-1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{n}-\mu_{J}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\mu_{J}-\mu_{n-1}\right\rvert}
λ1/2|μJμn1|1/2\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2}\mathinner{\!\left\lvert\mu_{J}-\mu_{n-1}\right\rvert}^{1/2}
λ1/2|λnμJ|1/2.\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2}\mathinner{\!\left\lvert\lambda_{n}-\mu_{J}\right\rvert}^{1/2}.

Applying all the above inequalities, and κi,j1\kappa_{i,j}\leq 1 for all other pairs i,ji,j, to Equation (8) and converting to a convolution we have

Jn(λ)λn+1F(t)G(t)𝑑tJ_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\int F(t)G(-t)\,dt

where

F(t)\displaystyle F(t) =μI+μJ=tFI(μI)FJ(μJ)|μIμJ|1/2|μJλn|1/2(μJ)𝑑μJ\displaystyle=\int_{\mu_{I}+\mu_{J}=t}F_{I}(\mu_{I})F_{J}(\mu_{J})\mathinner{\!\left\lvert\mu_{I}-\mu_{J}\right\rvert}^{1/2}\mathinner{\!\left\lvert\mu_{J}-\lambda_{n}\right\rvert}^{1/2}\mathcal{L}(\mu_{J})\,d\mu_{J}
G(s)\displaystyle G(s) =(𝟏[1,1](iI,JFi))(s).\displaystyle=\left(\mathbf{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{i\neq I,J}F_{i}\right)\right)(s).

The estimation of F(t)F(t) is contained in Lemma 14, with

A=λI\displaystyle A=\lambda_{I} B=λI+1\displaystyle B=\lambda_{I+1} C=λJ\displaystyle C=\lambda_{J} D=λJ+1\displaystyle D=\lambda_{J+1} E=λn\displaystyle E=\lambda_{n} T=d,\displaystyle T=d, k=2n4\displaystyle k=2n-4

giving

F(t)(log|λJλI+1||λI+1+λJt|)k+1+(log|λnλJ+1||λI+λJ+1t|)k+1+\displaystyle F(t)\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lvert\lambda_{J}-\lambda_{I+1}\right\rvert}}{\mathinner{\!\left\lvert\lambda_{I+1}+\lambda_{J}-t\right\rvert}}\right)^{k+1}+\left(\log^{\prime}\frac{\mathinner{\!\left\lvert\lambda_{n}-\lambda_{J+1}\right\rvert}}{\mathinner{\!\left\lvert\lambda_{I}+\lambda_{J+1}-t\right\rvert}}\right)^{k+1}+
(logd|λI+λJt|)k+(logd|λI+1+λJ+1t|)k.\displaystyle\left(\log^{\prime}\frac{d}{\mathinner{\!\left\lvert\lambda_{I}+\lambda_{J}-t\right\rvert}}\right)^{k}+\left(\log^{\prime}\frac{d}{\mathinner{\!\left\lvert\lambda_{I+1}+\lambda_{J+1}-t\right\rvert}}\right)^{k}.

Let d=ddIdJd^{\prime}=d-d_{I}-d_{J}. Let H1(t)H_{1}(t) be the sum of the first two log terms and H2(t)H_{2}(t) be the sum of the second two log terms. We have |λJλI+1|,|λnλJ+1|<d\mathinner{\!\left\lvert\lambda_{J}-\lambda_{I+1}\right\rvert},\mathinner{\!\left\lvert\lambda_{n}-\lambda_{J+1}\right\rvert}<d^{\prime} so H1(t)(logdt)k+1H^{*}_{1}(t)\ll(\log^{\prime}\frac{d^{\prime}}{t})^{k+1}. Let dKd_{K} be the next largest gap after dId_{I} and dJd_{J}, we have dKd/(n3)d_{K}\geq d^{\prime}/(n-3). Then

H1(t)G(t)𝑑t\displaystyle\int H_{1}(t)G(-t)\,dt H1FKiI,J,KFi1\displaystyle\ll\mathinner{\!\left\lVert H_{1}*F_{K}\right\rVert}_{\infty}\prod_{i\neq I,J,K}\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}
H1,FK\displaystyle\ll\langle H^{*}_{1},F^{*}_{K}\rangle
0dK(logdx)k+1dK1/2x1/2𝑑x\displaystyle\ll\int_{0}^{d_{K}}\left(\log^{\prime}\frac{d^{\prime}}{x}\right)^{k+1}d_{K}^{-1/2}x^{-1/2}\,dx
(logddK)k+1\displaystyle\ll\left(\log^{\prime}\frac{d^{\prime}}{d_{K}}\right)^{k+1}
1,\displaystyle\ll 1,

as desired. To bound H2(t)G(t)𝑑t\int H_{2}(t)G(-t)dt there are two cases. First suppose dd/(100n)d^{\prime}\geq d/(100n). Then

H2(t)G(t)𝑑t\displaystyle\int H_{2}(t)G(-t)\,dt H2,FK\displaystyle\ll\langle H^{*}_{2},F^{*}_{K}\rangle
0dK(logdx)kdK1/2x1/2𝑑x\displaystyle\ll\int_{0}^{d_{K}}\left(\log^{\prime}\frac{d}{x}\right)^{k}d^{-1/2}_{K}x^{-1/2}\,dx
(logddK)k\displaystyle\ll\left(\log^{\prime}\frac{d}{d_{K}}\right)^{k}
1,\displaystyle\ll 1,

since dKdd_{K}\gg d. Otherwise d<d/(100n)d^{\prime}<d/(100n). If G(t)0G(-t)\neq 0 then

t\displaystyle t suppG\displaystyle\in-\operatorname{supp}G
[1,1]+1in1iI,J[λi+1,λi]\displaystyle\subset[-1,1]+\sum_{\begin{subarray}{c}1\leq i\leq n-1\\ i\neq I,J\end{subarray}}[-\lambda_{i+1},-\lambda_{i}]
=[1+λ1+λI+1+λJ+1,  1+λn+λI+λJ].\displaystyle=[-1+\lambda_{1}+\lambda_{I+1}+\lambda_{J+1},\,\,1+\lambda_{n}+\lambda_{I}+\lambda_{J}].

Recall that λ1<d/n\lambda_{1}<-d/n. Subtracting λI+λJ\lambda_{I}+\lambda_{J} from the lower bound for tt we get

tλIλJ\displaystyle t-\lambda_{I}-\lambda_{J} 1+λ1+dI+dJ\displaystyle\geq-1+\lambda_{1}+d_{I}+d_{J}
1d/n+dI+dJ\displaystyle\geq-1-d/n+d_{I}+d_{J}
1+(11/100n1/n)d\displaystyle\geq-1+(1-1/100n-1/n)d

so for sufficiently large λ\lambda, |tλIλJ|λ\mathinner{\!\left\lvert t-\lambda_{I}-\lambda_{J}\right\rvert}\gg\mathinner{\!\left\lVert\lambda\right\rVert}, and similarly |tλI+1+λJ+1|λ\mathinner{\!\left\lvert t-\lambda_{I+1}+\lambda_{J+1}\right\rvert}\gg\mathinner{\!\left\lVert\lambda\right\rVert}. Hence H2(t)1H_{2}(t)\ll 1 on the support of G(t)G(-t) and H2(t)G(t)𝑑t1\int H_{2}(t)G(-t)\,dt\ll 1 as desired. ∎

4.4.2. The case (I,J)=(1,n1)(I,J)=(1,n-1)

Lemma 13.

Let (I,J)=(1,n1)(I,J)=(1,n-1) and suppose dI,dJd/100n2d_{I},d_{J}\geq d/100n^{2}. Then

Ln(λ)(λ1+|λ2|+|λn1|)n2,L_{n}(\lambda)\asymp\left(\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-2},

and Jn(λ)λn+1Ln(λ)J_{n}(\lambda)\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}L_{n}(\lambda).

Proof.

Clearly the exceptional term in L4(λ)L_{4}(\lambda) is trivial when d1,d3λd_{1},d_{3}\gg\mathinner{\!\left\lVert\lambda\right\rVert}. We split into three cases: the upper bound for n=3n=3, the upper bound for n4n\geq 4, and the lower bound.

4.4.3. The upper bound when n=3n=3

Since |λ1λ2|,|λ2λ3|λ\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert},\mathinner{\!\left\lvert\lambda_{2}-\lambda_{3}\right\rvert}\gg\mathinner{\!\left\lVert\lambda\right\rVert} we have

(1+μ)1κ1,2\displaystyle(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-1}\kappa_{1,2} |λ1μ2|1/2|λ3μ1|1/2\displaystyle\ll\mathinner{\!\left\lvert\lambda_{1}-\mu_{2}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{3}-\mu_{1}\right\rvert}^{-1/2}
|λ1λ2|1/2|λ3λ2|1/2\displaystyle\ll\mathinner{\!\left\lvert\lambda_{1}-\lambda_{2}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{3}-\lambda_{2}\right\rvert}^{-1/2}
λ1.\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}.

Then

Jn(λ)λ111μ1+μ2=tλ1μ1λ2μ2λ3|λ1μ1|1/2|λ2μ1|1/2|λ2μ2|1/2|λ3μ2|1/2𝑑μ1𝑑t.\displaystyle J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\int_{-1}^{1}\int_{\begin{subarray}{c}\mu_{1}+\mu_{2}=t\\ \lambda_{1}\leq\mu_{1}\leq\lambda_{2}\leq\mu_{2}\leq\lambda_{3}\end{subarray}}\mathinner{\!\left\lvert\lambda_{1}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{2}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{2}-\mu_{2}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{3}-\mu_{2}\right\rvert}^{-1/2}\,d\mu_{1}\,dt.

By Lemma 15 the inner integral is

λ1(logλ|2λ2t|+logλ|λ1+λ3t|)=λ1(logλ|2λ2t|+logλ|λ2+t|),\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert 2\lambda_{2}-t\right\rvert}}+\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{1}+\lambda_{3}-t\right\rvert}}\right)=\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert 2\lambda_{2}-t\right\rvert}}+\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{2}+t\right\rvert}}\right),

and

Jn(λ)\displaystyle J_{n}(\lambda) λ211logλ|λ2+t|+logλ|2λ2t|dt\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-2}\int_{-1}^{1}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{2}+t\right\rvert}}+\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert 2\lambda_{2}-t\right\rvert}}\,dt
λ2logλ1+|λ2|\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-2}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}}

as desired.

For 2in22\leq i\leq n-2 we have

κ1,i\displaystyle\kappa_{1,i} =|μ1μi||λi+1μ1|1/2|λ1μi|1/2\displaystyle=\mathinner{\!\left\lvert\mu_{1}-\mu_{i}\right\rvert}\mathinner{\!\left\lvert\lambda_{i+1}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{1}-\mu_{i}\right\rvert}^{-1/2}
|μ1μi||λi+1μ1|1/2λ1/2\displaystyle\ll\mathinner{\!\left\lvert\mu_{1}-\mu_{i}\right\rvert}\mathinner{\!\left\lvert\lambda_{i+1}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2}
|μ1μi|1/2λ1/2\displaystyle\ll\mathinner{\!\left\lvert\mu_{1}-\mu_{i}\right\rvert}^{1/2}\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2}

and similarly κi,n|μiμn|1/2λ1/2\kappa_{i,n}\ll\mathinner{\!\left\lvert\mu_{i}-\mu_{n}\right\rvert}^{1/2}\mathinner{\!\left\lVert\lambda\right\rVert}^{-1/2} so by AM-GM, κ1,iκi,n|μ1μn1|λ1\kappa_{1,i}\kappa_{i,n}\ll\mathinner{\!\left\lvert\mu_{1}-\mu_{n-1}\right\rvert}\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}. Also, κ1,n|μ1μn1|λ1\kappa_{1,n}\ll\mathinner{\!\left\lvert\mu_{1}-\mu_{n-1}\right\rvert}\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}. We can use these factors to cancel (1+μ)n+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}, and the extra factor in Ln1(μ)L_{n-1}(\mu) if n=5n=5:

(logμ1+|μ1μ2|+|μ3μ4|)\displaystyle\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{1}-\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{3}-\mu_{4}\right\rvert}}\right) (1+μ)n+2κ1,n12in2κ1,iκi,n1\displaystyle(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}\kappa_{1,n-1}\prod_{2\leq i\leq n-2}\kappa_{1,i}\kappa_{i,n-1}
logμ|μ1μ2|μ1/2|μ1μ2|1/2λn+2\displaystyle\ll\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{\mathinner{\!\left\lvert\mu_{1}-\mu_{2}\right\rvert}}\mathinner{\!\left\lVert\mu\right\rVert}^{-1/2}\mathinner{\!\left\lvert\mu_{1}-\mu_{2}\right\rvert}^{1/2}\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}
λn+2,\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2},

where in the last line we use the fact that xlog(1/x)1x\log(1/x)\leq 1 for x1x\leq 1. Bound κi,j1\kappa_{i,j}\leq 1 for all remaining i,ji,j.

Bound

(logμ1+|μ2|+|μn2|)n3\displaystyle\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{2}\right\rvert}+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\right)^{n-3} (logμ1+|μn2|)n3.\displaystyle\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert\mu_{n-2}\right\rvert}}\right)^{n-3}.

Write

Jn(λ)λn+2F(t)G(t)𝑑t\displaystyle J_{n}(\lambda)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}\int F(t)G(-t)\,dt

where

F(t)\displaystyle F(t) =μ1+μn1=tλ1μ1λ2λn1μn1λnF1(μ1)Fn1(μn1)𝑑μ1\displaystyle=\int_{\begin{subarray}{c}\mu_{1}+\mu_{n-1}=t\\ \lambda_{1}\leq\mu_{1}\leq\lambda_{2}\\ \lambda_{n-1}\leq\mu_{n-1}\leq\lambda_{n}\end{subarray}}F_{1}(\mu_{1})F_{n-1}(\mu_{n-1})\,d\mu_{1}
G\displaystyle G =𝟏[1,1]Fn2L(i1,n2,n1Fi)\displaystyle=\mathbf{1}_{[-1,1]}*F^{L}_{n-2}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{i\neq 1,n-2,n-1}F_{i}\right)
Fn2L(x)\displaystyle F^{L}_{n-2}(x) =Fn2(x)(logμ1+|x|)n3.\displaystyle=F_{n-2}(x)\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\mu\right\rVert}}{1+\mathinner{\!\left\lvert x\right\rvert}}\right)^{n-3}.

Applying Lemma 15 and using d1,dn1λd_{1},d_{n-1}\gg\mathinner{\!\left\lVert\lambda\right\rVert} gives

F(t)λ1(logλ|λ1+λnt|+logλ|λ2+λn1t|).\displaystyle F(t)\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{1}+\lambda_{n}-t\right\rvert}}+\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{2}+\lambda_{n-1}-t\right\rvert}}\right).

By symmetry (replacing λ1,,λn\lambda_{1},\dots,\lambda_{n} with λn,,λ1-\lambda_{n},\dots,-\lambda_{1}) we may assume |λn1||λ2|\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}\geq\mathinner{\!\left\lvert\lambda_{2}\right\rvert}, which also implies λn10\lambda_{n-1}\geq 0. Now we split into three cases:

  • If λn1100\lambda_{n-1}\leq 100 then bound

    Fn2L(x)\displaystyle F^{L}_{n-2}(x) (logλ)n3Fn2(x)\displaystyle\ll(\log^{\prime}\mathinner{\!\left\lVert\lambda\right\rVert})^{n-3}F_{n-2}(x)

    and

    F(t)G(t)𝑑t\displaystyle\int F(t)G(-t)\,dt (logλ)n3F𝟏[1,1]i1,n1Fi1\displaystyle\ll(\log^{\prime}\mathinner{\!\left\lVert\lambda\right\rVert})^{n-3}\mathinner{\!\left\lVert F*\mathbf{1}_{[-1,1]}\right\rVert}_{\infty}\prod_{i\neq 1,n-1}\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}
    λ1(logλ)n302logλxdx\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}(\log^{\prime}\mathinner{\!\left\lVert\lambda\right\rVert})^{n-3}\int_{0}^{2}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{x}\,dx
    λ1(logλ)n2\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}(\log^{\prime}\mathinner{\!\left\lVert\lambda\right\rVert})^{n-2}
    λ1(logλ1+|λ2|+|λn1|)n2\displaystyle\asymp\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-2}

    and we are done.

  • Suppose λn1>100\lambda_{n-1}>100 and |λ2λn1||λn1|/100\mathinner{\!\left\lvert\lambda_{2}-\lambda_{n-1}\right\rvert}\leq\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}/100. Then λ2,,λn1>0\lambda_{2},\dots,\lambda_{n-1}>0 and λ2>10\lambda_{2}>10. Since Fn2LF^{L}_{n-2} is supported on [λn2,λn1][\lambda_{n-2},\lambda_{n-1}] we can bound

    Fn2L(x)\displaystyle F^{L}_{n-2}(x) (logλ|λn2|)n3Fn2(x)\displaystyle\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-3}F_{n-2}(x)
    (logλ1+|λ2|+|λn1|)n3Fn2(x).\displaystyle\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-3}F_{n-2}(x).

    For tt satisfying G(t)0G(-t)\neq 0 we have

    t\displaystyle t suppG\displaystyle\in-\operatorname{supp}G
    [12in2λi+1,12in2λi]\displaystyle\subset[-1-\sum_{2\leq i\leq n-2}\lambda_{i+1},1-\sum_{2\leq i\leq n-2}\lambda_{i}]
    =[1+λ1+λ2+λn,1+λ1+λn1+λn]\displaystyle=[-1+\lambda_{1}+\lambda_{2}+\lambda_{n},1+\lambda_{1}+\lambda_{n-1}+\lambda_{n}]

    so tλ1λnλ21|λ2|+|λn1|t-\lambda_{1}-\lambda_{n}\geq\lambda_{2}-1\gg\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}. On the other hand,

    λ2+λn1t\displaystyle\lambda_{2}+\lambda_{n-1}-t λ2+λn1(1+λ1+λn1+λn)\displaystyle\geq\lambda_{2}+\lambda_{n-1}-(1+\lambda_{1}+\lambda_{n-1}+\lambda_{n})
    λ21λ1λn\displaystyle\geq\lambda_{2}-1-\lambda_{1}-\lambda_{n}
    λ21+(λ2++λn1)\displaystyle\geq\lambda_{2}-1+(\lambda_{2}+\dots+\lambda_{n-1})
    (n1)λ21\displaystyle\geq(n-1)\lambda_{2}-1
    1+|λ2|+|λn1|.\displaystyle\gg 1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}.

    Thus

    F(t)\displaystyle F(t) λ1logλ1+|λ2|+|λn1|,\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}},

    and the result follows.

  • Finally suppose |λn1|>100\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}>100 and |λ2λn1||λn1|/100\mathinner{\!\left\lvert\lambda_{2}-\lambda_{n-1}\right\rvert}\geq\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}/100. Then |λ2λn1|1+|λ2|+|λn1|\mathinner{\!\left\lvert\lambda_{2}-\lambda_{n-1}\right\rvert}\asymp 1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}. If λn2<λn1/2\lambda_{n-2}<\lambda_{n-1}/2, then dn2>|λ2λn1|/4|λ2|+|λn2|d_{n-2}>\mathinner{\!\left\lvert\lambda_{2}-\lambda_{n-1}\right\rvert}/4\gg\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert} and by monotone rearrangement,

    F(t)G(t)𝑑t\displaystyle\int F(t)G(-t)\,dt λ1FFn2Li1,n2,n1Fi1\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\mathinner{\!\left\lVert F*F^{L}_{n-2}\right\rVert}_{\infty}\prod_{i\neq 1,n-2,n-1}\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}
    λ10dn2dn21/2x1/2(logλx)n2𝑑x\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\int_{0}^{d_{n-2}}d_{n-2}^{-1/2}x^{-1/2}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{x}\right)^{n-2}\,dx
    λ1(logλdn2)n2\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{d_{n-2}}\right)^{n-2}
    λ1(logλ1+|λ2|+|λn2|)n2\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-2}

    and we are done. Otherwise if λn2>λn1/2\lambda_{n-2}>\lambda_{n-1}/2 then

    Fn2L(x)\displaystyle F^{L}_{n-2}(x) (logλ|λn2|)n3Fn2(x)\displaystyle\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-3}F_{n-2}(x)
    (logλ1+|λ2|+|λn1|)n3Fn2(x).\displaystyle\ll\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-3}F_{n-2}(x).

    Choose 2Kn22\leq K\leq n-2 such that dKd_{K} is the next largest after dJd_{J}, then

    dK\displaystyle d_{K} >(ddIdJ)/(n3)\displaystyle>(d-d_{I}-d_{J})/(n-3)
    =|λ2λn1|/(n3)\displaystyle=\mathinner{\!\left\lvert\lambda_{2}-\lambda_{n-1}\right\rvert}/(n-3)
    1+|λ2|+|λn2|\displaystyle\gg 1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}

    and

    F(t)G(t)𝑑t\displaystyle\int F(t)G(-t)\,dt λ1(logλ1+|λ2|+|λn2|)n3FKi1,K,n1Fi1\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-3}\mathinner{\!\left\lVert F*K\right\rVert}_{\infty}\prod_{i\neq 1,K,n-1}\mathinner{\!\left\lVert F_{i}\right\rVert}_{1}
    λ1(logλ1+|λ2|+|λn2|)n30dKdK1/2x1/2logλxdx\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-3}\int_{0}^{d_{K}}d_{K}^{-1/2}x^{-1/2}\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{x}\,dx
    λ1(logλ1+|λ2|+|λn2|)n3(logλdK)\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-3}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{d_{K}}\right)
    λ1(logλ1+|λ2|+|λn2|)n2.\displaystyle\ll\mathinner{\!\left\lVert\lambda\right\rVert}^{-1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-2}\right\rvert}}\right)^{n-2}.

4.4.4. Lower bound when n3n\geq 3 and (I,J)=(1,n1)(I,J)=(1,n-1)

By assuming Ln(λ)L_{n}(\lambda) is larger than some constant, we may assume 1+|λ2|+|λn1|<d/(100n)1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}<d/(100n). This further implies |λ1+λn|=|λ2++λn1|d/100\mathinner{\!\left\lvert\lambda_{1}+\lambda_{n}\right\rvert}=\mathinner{\!\left\lvert\lambda_{2}+\dots+\lambda_{n-1}\right\rvert}\leq d/100, and since d=λnλ1d=\lambda_{n}-\lambda_{1}, we have λ1=(λ1+λnd)/2d/2+d/200d/3\lambda_{1}=(\lambda_{1}+\lambda_{n}-d)/2\leq-d/2+d/200\leq-d/3 and λnd/3\lambda_{n}\geq d/3.

Similarly to Section 4.1, we restrict the integral to the region

′′={μ:μiMi for 2in2,μ1<d/4,μn1>d/4},\displaystyle\mathcal{H}^{\prime\prime}=\{\mu\in\mathcal{H}\mathrel{\mathop{\ordinarycolon}}\mu_{i}\in M_{i}\text{ for }2\leq i\leq n-2,\,\,\mu_{1}<-d/4,\,\,\mu_{n-1}>d/4\},

on which we have κi,j1/4\kappa_{i,j}\geq 1/4 for all i<ji<j, and Fidi1𝟏MiF_{i}\gg d_{i}^{-1}\mathbf{1}_{M_{i}} for 2in22\leq i\leq n-2. Since λ2<μ2<μn2<λn1\lambda_{2}<\mu_{2}<\mu_{n-2}<\lambda_{n-1} we have

Ln1(μ)(logλ1+|λ2|+|λn1|)n3.\displaystyle L_{n-1}(\mu)\gg\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-3}.

Bound |λ2μ1|1/2|λn1μn1|1/2λ1\mathinner{\!\left\lvert\lambda_{2}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{n-1}-\mu_{n-1}\right\rvert}^{-1/2}\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-1} and (1+μ)n+2λn+2(1+\mathinner{\!\left\lVert\mu\right\rVert})^{-n+2}\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+2}. Using all the above inequalities gives

Jn(λ)\displaystyle J_{n}(\lambda)\gg λn+1(logλ1+|λ2|+|λn1|)n3×\displaystyle\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\left(\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}\right)^{n-3}\times
′′|λ1μ1|1/2|λnμn1|1/22in2Fi(μi)J(μ)dμ,\displaystyle\int_{\mathcal{H}^{\prime\prime}}\mathinner{\!\left\lvert\lambda_{1}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{n}-\mu_{n-1}\right\rvert}^{-1/2}\prod_{2\leq i\leq n-2}F_{i}(\mu_{i})J(\mu)d\mu,

which we rewrite as a convolution

Jn(λ)\displaystyle J_{n}(\lambda) λn+1F(t)G(t)𝑑t\displaystyle\gg\mathinner{\!\left\lVert\lambda\right\rVert}^{-n+1}\int F(t)G(-t)\,dt
F(t)\displaystyle F(t) =μ1+μn1=tλ1μ1d/4d/4μn1λn|λ1μ1|1/2|λnμn1|1/2𝑑μ\displaystyle=\int_{\begin{subarray}{c}\mu_{1}+\mu_{n-1}=t\\ \lambda_{1}\leq\mu_{1}\leq-d/4\\ d/4\leq\mu_{n-1}\leq\lambda_{n}\end{subarray}}\mathinner{\!\left\lvert\lambda_{1}-\mu_{1}\right\rvert}^{-1/2}\mathinner{\!\left\lvert\lambda_{n}-\mu_{n-1}\right\rvert}^{-1/2}d\mu
G\displaystyle G =𝟙[1,1](2in2di1𝟙Mi).\displaystyle=\mathbb{1}_{[-1,1]}*\left(\operatorname*{\text{\scalebox{1.5}{$\ast$}}}_{2\leq i\leq n-2}d_{i}^{-1}\mathbb{1}_{M_{i}}\right).

Since Mi[λ2,λn1]M_{i}\subset[\lambda_{2},\lambda_{n-1}] for 2in22\leq i\leq n-2, we have G(t)0|t|d/100G(-t)\neq 0\implies\mathinner{\!\left\lvert t\right\rvert}\leq d/100. If tλ1+λnt\leq\lambda_{1}+\lambda_{n}, then substituting y=μ1λ1y=\mu_{1}-\lambda_{1} in the equation for FF gives

F(t)\displaystyle F(t) =0td/4λ1y1/2(λn(t(y+λ1)))1/2𝑑y\displaystyle=\int_{0}^{t-d/4-\lambda_{1}}y^{-1/2}(\lambda_{n}-(t-(y+\lambda_{1})))^{-1/2}\,dy
=0td/4λ1y1/2(y+λ1+λnt)1/2𝑑y.\displaystyle=\int_{0}^{t-d/4-\lambda_{1}}y^{-1/2}(y+\lambda_{1}+\lambda_{n}-t)^{-1/2}\,dy.

Apply Lemma 17 with a=λ1+λnta=\lambda_{1}+\lambda_{n}-t and T=td/4λ1T=t-d/4-\lambda_{1}. The preceding inequalities for |t|,λ1\mathinner{\!\left\lvert t\right\rvert},\lambda_{1}, and |λ1+λn|\mathinner{\!\left\lvert\lambda_{1}+\lambda_{n}\right\rvert} ensure aTa\leq T. This gives

F(t)logλλ1+λnt.\displaystyle F(t)\gg\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\lambda_{1}+\lambda_{n}-t}.

Likewise if tλ1+λnt\geq\lambda_{1}+\lambda_{n} then

F(t)logλλ1+λnt,\displaystyle F(t)\gg\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\lambda_{1}+\lambda_{n}-t},

thus

F(t)logλ|t(λ1+λn)|.\displaystyle F(t)\gg\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert t-(\lambda_{1}+\lambda_{n})\right\rvert}}.

Since |λ1+λn||λ2|+|λn1|\mathinner{\!\left\lvert\lambda_{1}+\lambda_{n}\right\rvert}\ll\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert} we have |t(λ1+λn)||t|+|λ2|+|λn1|\mathinner{\!\left\lvert t-(\lambda_{1}+\lambda_{n})\right\rvert}\ll\mathinner{\!\left\lvert t\right\rvert}+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert} and

F(t)logλ|t|+|λ2|+|λn1|.\displaystyle F(t)\gg\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{\mathinner{\!\left\lvert t\right\rvert}+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert}}.

Meanwhile, we have G(t)𝑑t1\int G(t)\,dt\gg 1, and the support of GG is contained in an interval of radius 1+|λ2|+|λn1|\ll 1+\mathinner{\!\left\lvert\lambda_{2}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n-1}\right\rvert} around 0, so

F(t)G(t)𝑑tlogλ1+|λ1|+|λn|\displaystyle\int F(t)G(-t)\,dt\gg\log^{\prime}\frac{\mathinner{\!\left\lVert\lambda\right\rVert}}{1+\mathinner{\!\left\lvert\lambda_{1}\right\rvert}+\mathinner{\!\left\lvert\lambda_{n}\right\rvert}}

as desired. ∎

5. Lemmas

Here we have separated out the main calculation for the two large gaps case.

Lemma 14.

Let ABCDEA\leq B\leq C\leq D\leq E, TT, and (Li)1ik(L_{i})_{1\leq i\leq k} be given with |AE|T\mathinner{\!\left\lvert A-E\right\rvert}\leq T. Then for A+CtB+DA+C\leq t\leq B+D,

()=x+y=tAxBCyD(|xA||xB||yC||yD|)1/2|xy|1/2|yE|1/21iklogT|Liy|dx\displaystyle(*)=\int_{\begin{subarray}{c}x+y=t\\ A\leq x\leq B\\ C\leq y\leq D\end{subarray}}\left(\mathinner{\!\left\lvert x-A\right\rvert}\mathinner{\!\left\lvert x-B\right\rvert}\mathinner{\!\left\lvert y-C\right\rvert}\mathinner{\!\left\lvert y-D\right\rvert}\right)^{-1/2}\mathinner{\!\left\lvert x-y\right\rvert}^{1/2}\mathinner{\!\left\lvert y-E\right\rvert}^{1/2}\prod_{1\leq i\leq k}\log^{\prime}\frac{T}{\mathinner{\!\left\lvert L_{i}-y\right\rvert}}\,dx

is bounded above by

kT|AB|1/2|CD|1/2×\displaystyle\ll_{k}T\mathinner{\!\left\lvert A-B\right\rvert}^{-1/2}\mathinner{\!\left\lvert C-D\right\rvert}^{-1/2}\times
[(log|BC||B+Ct|)k+1+(log|DE||A+Dt|)k+1+(logT|A+Ct|)k+(logT|B+Dt|)k].\displaystyle\left[\left(\log^{\prime}\frac{\mathinner{\!\left\lvert B-C\right\rvert}}{\mathinner{\!\left\lvert B+C-t\right\rvert}}\right)^{k+1}+\left(\log^{\prime}\frac{\mathinner{\!\left\lvert D-E\right\rvert}}{\mathinner{\!\left\lvert A+D-t\right\rvert}}\right)^{k+1}+\left(\log^{\prime}\frac{T}{\mathinner{\!\left\lvert A+C-t\right\rvert}}\right)^{k}+\left(\log^{\prime}\frac{T}{\mathinner{\!\left\lvert B+D-t\right\rvert}}\right)^{k}\right].
Proof.

For x[P,Q]x\in[P,Q] we have

(13) |xP|1/2|xQ|1/2|PQ|1/2(|xP|1/2+|xQ|1/2).\displaystyle\mathinner{\!\left\lvert x-P\right\rvert}^{-1/2}\mathinner{\!\left\lvert x-Q\right\rvert}^{-1/2}\ll\mathinner{\!\left\lvert P-Q\right\rvert}^{-1/2}\left(\mathinner{\!\left\lvert x-P\right\rvert}^{-1/2}+\mathinner{\!\left\lvert x-Q\right\rvert}^{-1/2}\right).

Using this identity twice with (P,Q)=(A,B)(P,Q)=(A,B) and (P,Q)=(C,D)(P,Q)=(C,D) and substituting y=txy=t-x gives

()|AB|1/2|CD|1/2X{A,B}Y{C,D}I(X,Y)\displaystyle(*)\ll\mathinner{\!\left\lvert A-B\right\rvert}^{-1/2}\mathinner{\!\left\lvert C-D\right\rvert}^{-1/2}\sum_{\begin{subarray}{c}X\in\{A,B\}\\ Y\in\{C,D\}\end{subarray}}I(X,Y)

where I(X,Y)=I(X,Y)=

max(A,tD)min(B,tC)|xX|1/2|xt+Y|1/2|2xt|1/2|xt+E|1/21iklogT|Lit+x|dx.\displaystyle\int\limits_{\max(A,t-D)}^{\min(B,t-C)}\mathinner{\!\left\lvert x-X\right\rvert}^{-1/2}\mathinner{\!\left\lvert x-t+Y\right\rvert}^{-1/2}\mathinner{\!\left\lvert 2x-t\right\rvert}^{1/2}\mathinner{\!\left\lvert x-t+E\right\rvert}^{1/2}\prod_{1\leq i\leq k}\log^{\prime}\frac{T}{\mathinner{\!\left\lvert L_{i}-t+x\right\rvert}}dx.

First consider I(A,C)I(A,C). Extend the bounds of the integral to [A,tC][A,t-C]. Bound |2xt|1/2|xt+E|1/2T\mathinner{\!\left\lvert 2x-t\right\rvert}^{1/2}\mathinner{\!\left\lvert x-t+E\right\rvert}^{1/2}\ll T. Then

I(A,C)TAtC|xA|1/2|x(tC)|1/21iklogT|Lit+x|dxI(A,C)\ll T\int_{A}^{t-C}\mathinner{\!\left\lvert x-A\right\rvert}^{-1/2}\mathinner{\!\left\lvert x-(t-C)\right\rvert}^{-1/2}\prod_{1\leq i\leq k}\log^{\prime}\frac{T}{\mathinner{\!\left\lvert L_{i}-t+x\right\rvert}}\,dx

and using Equation (13) with (P,Q)=(A,tC)(P,Q)=(A,t-C) and then using monotone rearrangement on each factor we obtain

I(A,C)T|tCA|1/20tCAx1/2(logTx)k𝑑xkT(logT|A+Ct|)k.I(A,C)\ll T\mathinner{\!\left\lvert t-C-A\right\rvert}^{-1/2}\int_{0}^{t-C-A}x^{-1/2}\left(\log^{\prime}\frac{T}{x}\right)^{k}\,dx\ll_{k}T\left(\log^{\prime}\frac{T}{\mathinner{\!\left\lvert A+C-t\right\rvert}}\right)^{k}.

The calculation for I(B,D)I(B,D) is similar to I(A,C)I(A,C).

Now consider I(A,D)I(A,D). Bound |2xt|1/2T1/2\mathinner{\!\left\lvert 2x-t\right\rvert}^{1/2}\ll T^{1/2}. Suppose tA+Dt\leq A+D. Substitute x=xAx^{\prime}=x-A. The integral now runs from 0 to BAB-A, extend it to [0,T][0,T]. The integral now reads

T1/20T|x|1/2|x+A+Dt|1/2|x+A+Et|1/21iklogT|Lit+x+A|dx.T^{1/2}\int_{0}^{T}\mathinner{\!\left\lvert x^{\prime}\right\rvert}^{-1/2}\mathinner{\!\left\lvert x^{\prime}+A+D-t\right\rvert}^{-1/2}\mathinner{\!\left\lvert x^{\prime}+A+E-t\right\rvert}^{1/2}\prod_{1\leq i\leq k}\log^{\prime}\frac{T}{\mathinner{\!\left\lvert L_{i}-t+x^{\prime}+A\right\rvert}}\,dx.

Applying Lemma 16 with a=A+Dta=A+D-t and b=A+Etb=A+E-t gives

I(A,D)\displaystyle I(A,D) kT(logA+EtA+Dt)k+1\displaystyle\ll_{k}T\left(\log^{\prime}\frac{A+E-t}{A+D-t}\right)^{k+1}
=T(log(1+EDA+Dt))k+1\displaystyle=T\left(\log^{\prime}\left(1+\frac{E-D}{A+D-t}\right)\right)^{k+1}
T(log|DE||A+Dt|)k+1.\displaystyle\ll T\left(\log^{\prime}\frac{\mathinner{\!\left\lvert D-E\right\rvert}}{\mathinner{\!\left\lvert A+D-t\right\rvert}}\right)^{k+1}.

If tA+Dt\geq A+D, then substitute x=xt+Dx^{\prime}=x-t+D, extend the bounds of the integral to [0,T][0,T], and apply Lemma 16 with a=tAD,b=EDa=t-A-D,b=E-D. The calculation for I(B,C)I(B,C) is similar. ∎

Lemma 15.

Let ABCDA\leq B\leq C\leq D be given with |AD|T\mathinner{\!\left\lvert A-D\right\rvert}\leq T. Then for A+BtC+DA+B\leq t\leq C+D,

x+y=tAxBCyD(|xA||xB||yC||yD|)1/2𝑑x\displaystyle\int_{\begin{subarray}{c}x+y=t\\ A\leq x\leq B\\ C\leq y\leq D\end{subarray}}\left(\mathinner{\!\left\lvert x-A\right\rvert}\mathinner{\!\left\lvert x-B\right\rvert}\mathinner{\!\left\lvert y-C\right\rvert}\mathinner{\!\left\lvert y-D\right\rvert}\right)^{-1/2}\,dx

is bounded above by

|AB|1/2|CD|1/2(logT|B+Ct|+logT|A+Dt|).\displaystyle\ll\mathinner{\!\left\lvert A-B\right\rvert}^{-1/2}\mathinner{\!\left\lvert C-D\right\rvert}^{-1/2}\left(\log^{\prime}\frac{T}{\mathinner{\!\left\lvert B+C-t\right\rvert}}+\log^{\prime}\frac{T}{\mathinner{\!\left\lvert A+D-t\right\rvert}}\right).
Proof.

Substitute A,B,C+T,D+T,D+2T,3T,t+TA,B,C+T,D+T,D+2T,3T,t+T for A,B,C,D,E,T,tA,B,C,D,E,T,t in Lemma 14. We obtain that

x+y=t+TAxBC+TyD+T(|xA||xB||yCT||yDT|)1/2|xy|1/2|yE2T|1/2𝑑x\displaystyle\int_{\begin{subarray}{c}x+y=t+T\\ A\leq x\leq B\\ C+T\leq y\leq D+T\end{subarray}}\left(\mathinner{\!\left\lvert x-A\right\rvert}\mathinner{\!\left\lvert x-B\right\rvert}\mathinner{\!\left\lvert y-C-T\right\rvert}\mathinner{\!\left\lvert y-D-T\right\rvert}\right)^{-1/2}\mathinner{\!\left\lvert x-y\right\rvert}^{1/2}\mathinner{\!\left\lvert y-E-2T\right\rvert}^{1/2}\,dx

is \ll than

T|AB|1/2|CD|1/2(logT+|BC||B+Ct|+logT+|DE||A+Dt|).\displaystyle T\mathinner{\!\left\lvert A-B\right\rvert}^{-1/2}\mathinner{\!\left\lvert C-D\right\rvert}^{-1/2}\left(\log^{\prime}\frac{T+\mathinner{\!\left\lvert B-C\right\rvert}}{\mathinner{\!\left\lvert B+C-t\right\rvert}}+\log^{\prime}\frac{T+\mathinner{\!\left\lvert D-E\right\rvert}}{\mathinner{\!\left\lvert A+D-t\right\rvert}}\right).

Note that |xy|,|yE2T|\mathinner{\!\left\lvert x-y\right\rvert},\mathinner{\!\left\lvert y-E-2T\right\rvert} in the integrand and T+|BC|,T+|DE|T+\mathinner{\!\left\lvert B-C\right\rvert},T+\mathinner{\!\left\lvert D-E\right\rvert} on the right hand side are all T\asymp T, so dividing both sides by TT gives the desired inequality. ∎

Lemma 16.

For 0<a,b<T0<a,b<T and all L1,,LkL_{1},\dots,L_{k} we have

0T\displaystyle\int_{0}^{T} x1/2(x+a)1/2(x+b)1/21iklogT|Li+x|dxkT1/2(logba)k+1.\displaystyle x^{-1/2}(x+a)^{-1/2}(x+b)^{1/2}\prod_{1\leq i\leq k}\log^{\prime}\frac{T}{\mathinner{\!\left\lvert L_{i}+x\right\rvert}}\,dx\ll_{k}T^{1/2}\left(\log^{\prime}\frac{b}{a}\right)^{k+1}.
Proof.

Since x1/2(x+a)1/2(x+b)1/2x^{-1/2}(x+a)^{-1/2}(x+b)^{1/2} is decreasing on [0,T][0,T], we may use monotone rearrangement and assume Li=0L_{i}=0 for all ii. If 0<a<b<T0<a<b<T then the integral is

[a1/2b1/20ax1/2+b1/2abx1+bTx1/2](logTx)kdx\displaystyle\ll\left[a^{-1/2}b^{1/2}\int_{0}^{a}x^{-1/2}+b^{1/2}\int_{a}^{b}x^{-1}+\int_{b}^{T}x^{-1/2}\right]\left(\log^{\prime}\frac{T}{x}\right)^{k}\,dx
kb1/2(logTa)k+b1/2(logba)(logTa)k+T1/2\displaystyle\ll_{k}b^{1/2}\left(\log^{\prime}\frac{T}{a}\right)^{k}+b^{1/2}\left(\log^{\prime}\frac{b}{a}\right)\left(\log^{\prime}\frac{T}{a}\right)^{k}+T^{1/2}
kT1/2b1/2T1/2(logTb+logba)k+T1/2b1/2T1/2(logba)(logTb+logba)k+T1/2\displaystyle\ll_{k}T^{1/2}\frac{b^{1/2}}{T^{1/2}}\left(\log^{\prime}\frac{T}{b}+\log^{\prime}\frac{b}{a}\right)^{k}+T^{1/2}\frac{b^{1/2}}{T^{1/2}}\left(\log\frac{b}{a}\right)\left(\log^{\prime}\frac{T}{b}+\log^{\prime}\frac{b}{a}\right)^{k}+T^{1/2}
kT1/2(logba)k+1\displaystyle\ll_{k}T^{1/2}\left(\log^{\prime}\frac{b}{a}\right)^{k+1}

where on the third line, we use the fact that (b/T)1/2(log(T/b))kk1(b/T)^{1/2}(\log^{\prime}(T/b))^{k}\ll_{k}1. Otherwise if 0<b<a<T0<b<a<T then x1/2(x+a)1/2(x+b)1/2x1/2x^{-1/2}(x+a)^{-1/2}(x+b)^{1/2}\leq x^{-1/2} and the integral is

0Tx1/2(logTx)k𝑑xkT1/2.\displaystyle\leq\int_{0}^{T}x^{-1/2}\left(\log^{\prime}\frac{T}{x}\right)^{k}\,dx\ll_{k}T^{1/2}.

Lemma 17.

For 0<aT0<a\leq T,

0Tx1/2(x+a)1/2𝑑xlog(T/a).\displaystyle\int_{0}^{T}x^{-1/2}(x+a)^{-1/2}\,dx\asymp\log^{\prime}(T/a).
Proof.
0Tx1/2(x+a)1/2𝑑x\displaystyle\int_{0}^{T}x^{-1/2}(x+a)^{-1/2}\,dx =0ax1/2(x+a)1/2𝑑x+aTx1/2(x+a)1/2𝑑x\displaystyle=\int_{0}^{a}x^{-1/2}(x+a)^{-1/2}\,dx+\int_{a}^{T}x^{-1/2}(x+a)^{-1/2}\,dx
a1/20ax1/2𝑑x+aTx1𝑑x\displaystyle\asymp a^{-1/2}\int_{0}^{a}x^{-1/2}\,dx+\int_{a}^{T}x^{-1}\,dx
1+log(T/a).\displaystyle\asymp 1+\log(T/a).

References

  • [1] Farrell Brumley and Simon Marshall. Lower bounds for maass forms on semisimple groups. Compositio Mathematica, 156(5):959–1003, 2020.
  • [2] Almut Burchard. A short course on rearrangement inequalities. Lecture notes, IMDEA Winter School, Madrid, 2009.
  • [3] JJ Duistermaat. On the similarity between the Iwasawa projection and the diagonal part. Mem. Soc. Math. France, (15):129–138, 1984.
  • [4] Ky Fan and Gordon Pall. Imbedding conditions for Hermitian and normal matrices. Canadian Journal of Mathematics, 9:298–304, 1957.
  • [5] Bart Michels. The maximal growth of automorphic periods and oscillatory integrals for maximal flat submanifold. PhD thesis, Paris 13, 2022.
  • [6] T. Tamagawa. On Selberg’s trace formula. J. Fac. Sci. Univ. Tokyo, page 363–386, 1960.
  • [7] Steven Zelditch. Kuznecov sum formulae and Szegö limit formulae on manifolds. Communications in partial differential equations, 17(1-2):221–260, 1992.