This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Utrecht University, Netherlands and https://www.uu.nl/staff/IvanderGiessen/i.vandergiessen@uu.nl Utrecht University, Netherlands and https://www.uu.nl/medewerkers/RJalaliKeshavarzr.jalalikeshavarz@uu.nl TU Wien, Austria and https://sites.google.com/site/kuznets/roman@logic.at \Copyright2021 Iris van der Giessen, Raheleh Jalali, and Roman Kuznets \ccsdesc[500]Theory of Computation—Logic—Proof theory \ccsdesc[500]Theory of Computation—Logic—Modal and temporal logics \fundingIris van der Giessen and Raheleh Jalali acknowledge the support of the Netherlands Organization for Scientific Research under grant 639.073.807. Roman Kuznets is funded by the Austrian Science Fund (FWF) ByzDEL project P 33600. \hideLIPIcs

Uniform interpolation via nested sequents and hypersequents

Iris van der Giessen    Raheleh Jalali    Roman Kuznets
Abstract

A modular proof-theoretic framework was recently developed to prove Craig interpolation for normal modal logics based on generalizations of sequent calculi (e.g., nested sequents, hypersequents, and labelled sequents). In this paper, we turn to uniform interpolation, which is stronger than Craig interpolation. We develop a constructive method for proving uniform interpolation via nested sequents and apply it to reprove the uniform interpolation property for normal modal logics 𝖪{\sf K}𝖣{\sf D}, and 𝖳{\sf T}. We then use the know-how developed for nested sequents to apply the same method to hypersequents and obtain the first direct proof of uniform interpolation for 𝖲𝟧{\sf S5} via a cut-free sequent-like calculus. While our method is proof-theoretic, the definition of uniform interpolation for nested sequents and hypersequents also uses semantic notions, including bisimulation modulo an atomic proposition.

keywords:
uniform interpolation, nested sequents, hypersequents, modal logic

1 Introduction

Uniform interpolation is stronger than Craig interpolation and provides a simulation of quantifiers in a logic. Similar to Craig interpolation, uniform interpolation is useful in computer science, for example, in quantifier elimination procedures [11] or in knowledge representation to perform tasks such as forgetting irrelevant information in descriptive logics [16]. This shows the practical value of uniform interpolation. The goal of this paper is to expand the reach of proof-theoretic method of proving uniform interpolation.

A propositional (modal) logic 𝖫{\sf L} admits the Craig interpolation property (CIP) if for any formulas φ\varphi and ψ\psi such that 𝖫φψ\vdash_{\sf L}\varphi\rightarrow\psi, there is an interpolant θ\theta containing only atomic propositions that occur in both φ\varphi and ψ\psi such that 𝖫φθ\vdash_{\sf L}\varphi\rightarrow\theta and 𝖫θψ\vdash_{\sf L}\theta\rightarrow\psi. One could say that the purpose of the interpolant is to state the reason ψ\psi follows from φ\varphi by using the common language of the two. Logic 𝖫{\sf L} has the uniform interpolation property (UIP) if for each formula φ\varphi and each atomic proposition pp there are uniform interpolants pφ\exists p\varphi and pφ\forall p\varphi containing only atomic propositions occurring in φ\varphi except for pp such that for all formulas ψ\psi not containing pp:

𝖫φψ𝖫pφψ and 𝖫ψφ𝖫ψpφ.\vdash_{\sf L}\varphi\rightarrow\psi\ \Leftrightarrow\ \vdash_{\sf L}\exists p\varphi\rightarrow\psi\ \ \quad\text{ and }\quad\ \ \vdash_{\sf L}\psi\rightarrow\varphi\ \Leftrightarrow\ \vdash_{\sf L}\psi\rightarrow\forall p\varphi.

It is well known that this property is stronger than Craig interpolation. Indeed, by computing uniform interpolants consecutively, it is possible to remove a given set of atomic propositions and construct a formula that would uniformly serve as a Craig interpolant for a fixed φ\varphi and all ψ\psi with a given common language.

Analytic sequent calculi can be used to prove the CIP constructively. For the UIP, terminating cut-free sequent calculi play a similar role. Whereas for the CIP the syntactic proofs are often straightforward, the case of the UIP is much more complicated. Pitts provided a first syntactic proof of this kind, establishing the UIP for 𝖨𝖯𝖢{\sf IPC} [24]. Bílková successfully adjusted the method to (re)prove the UIP for several modal logics including 𝖪,𝖳{\sf K},{\sf T}, and 𝖦𝖫{\sf GL} [2]. Iemhoff provided a modular method for (intuitionistic) modal logics and intermediate logics with sequent calculi consisting of so-called focused rules, among others establishing the UIP for 𝖣{\sf D} [14, 15].

There are also algebraic and model-theoretic methods. The UIP for 𝖦𝖫{\sf GL} and 𝖪{\sf K} is due to Shavrukov [28] and Ghilardi [12] respectively. Interestingly, modal logics 𝖲𝟦{\sf S4} and 𝖪𝟦{\sf K4} do not enjoy the UIP [2, 13] despite enjoying the CIP. Visser provided purely semantic proofs for 𝖪{\sf K}𝖦𝖫{\sf GL}, and 𝖨𝖯𝖢{\sf IPC} based on bounded bisimulation up to atomic propositions [31]. This method was later applied to prove the stronger Lyndon UIP for a wide range of modal logics [17]. The semantic interpretation of uniform interpolation is called bisimulation quantifiers, see [7] for an extended explanation. Bisimulations will also play a role in the current paper.

The proof-theoretic approach has two advantages. First, it enables one to find interpolants constructively rather than merely prove their existence.111More precisely, the method enables one to find interpolants efficiently rather than by an exhaustive search of all formulas, the search that terminates due to the proven existence of an interpolant. Second, it can turn uniform interpolation into a powerful tool in the study of existence of proof systems. Negative results are obtained in [14, 15] stating that logics without the UIP cannot have certain natural sequent calculi. As a consequence, 𝖪𝟦{\sf K4} and 𝖲𝟦{\sf S4} do not possess such proof systems. Similar negative results are obtained for modal and substructural logics in [29] and [30] using the CIP and UIP. These methods are based on calculi with regular sequents.

The goal of this paper is to extend the same line of research to multisequent formalisms such as hypersequents and nested sequents222Nested sequents are also known as tree-hypersequents [25] or deep sequents [5] in the literature.. Such forms of sequent calculi have recently been adapted to prove the CIP of modal logics via nested sequents [10] and hypersequents [18]. A modular proof-theoretic framework encompassing these and also labelled sequents was provided in [19]. The same ideas were extended to multisequent calculi for intermediate logics [21]. The method combines syntactic and semantic reasoning. Generalized Craig interpolants are constructed using the calculus in a purely syntactic manner, but the method’s correctness uses semantic notions from Kripke models of the underlying logic.

This paper extends this method providing proof-theoretic proofs for the UIP based on nested sequents for 𝖪{\sf K}𝖣{\sf D}, and 𝖳{\sf T} and on hypersequents for 𝖲𝟧{\sf S5}. The UIP for these logics has been known, but we provide a new method that can hopefully be extended to other logics. Similar to [19], we combine syntactic and semantic reasoning. We use the terminating calculi to define the uniform interpolants and then provide model modifications and use bisimulations to prove the correctness of these interpolants.

Bílková [3] also provided a syntactic method for uniform interpolation for 𝖪{\sf K} based on nested sequents. She presented proofs based on two nested calculi for 𝖪{\sf K}: one with a standard modality and another that is based on a different modal language with a cover modality \nabla. Bílková’s method for nested sequents is closely related to her work based on regular sequents in [2]. The main difference with our method is that we exploit the treelike structure of nested sequents reflecting the treelike models for 𝖪{\sf K} by incorporating semantic arguments while the algorithm for the interpolant computation remains fully syntactic. We intend our method to form a good basis for generalizing to other logics with multisequent calculi.

The paper is organized as follows. In Sect. 2, we introduce the nested sequent calculi for 𝖪{\sf K}𝖳{\sf T}, and 𝖣{\sf D}, as well as model modifications invariant under bisimulation. In Sect. 3, we present our method to prove uniform interpolation for 𝖪{\sf K}𝖳{\sf T}, and 𝖣{\sf D}. In Sect. 4, we show how the method can be adjusted to hypersequents for 𝖲𝟧{\sf S5}. Section 5 concludes the paper and maps the immediate next steps.

2 Preliminaries

Definition 2.1.

Modal formulas in negation normal form are defined by the following grammar φ\coloncolonequalspp¯(φφ)(φφ)φφ\varphi\coloncolonequals\bot\mid\top\mid p\mid\overline{p}\mid(\varphi\land\varphi)\mid(\varphi\lor\varphi)\mid\Box\varphi\mid\Diamond\varphi where \bot and \top are Boolean constants, pp is an atomic proposition from a countable set Prop, and p¯\overline{p} is the negation of pp for each p𝖯𝗋𝗈𝗉p\in{\sf Prop}. The set Lit of literals consists of all atomic propositions and their negations, with \ell used to denote its elements. Literals and Boolean constants are atomic formulas.

We define φ¯\overline{\varphi} (or ¬φ\neg\varphi) recursively as usual using De Morgan’s laws to push the negation inwards. φψ\colonequalsφ¯ψ\varphi\to\psi\colonequals\overline{\varphi}\lor\psi.

Definition 2.2.

Nested sequents Γ\Gamma are recursively defined in the following form:

φ1,,φn,[Γ1],,[Γm]\varphi_{1},\dots,\varphi_{n},[\Gamma_{1}],\dots,[\Gamma_{m}]

is a nested sequent where φ1,,φn\varphi_{1},\dots,\varphi_{n} are modal formulas for n0n\geq 0 and Γ1,,Γm\Gamma_{1},\dots,\Gamma_{m} are nested sequents for m0m\geq 0. We call brackets [][\enspace] a structural box. The formula interpretation ι\iota of a nested sequent is defined recursively by

ι(φ1,,φn,[Γ1],,[Γm])\colonequalsφ1φnι(Γ1)ι(Γm).\iota(\varphi_{1},\dots,\varphi_{n},[\Gamma_{1}],\dots,[\Gamma_{m}])\colonequals\varphi_{1}\lor\dots\lor\varphi_{n}\lor\Box\iota(\Gamma_{1})\lor\dots\lor\Box\iota(\Gamma_{m}).

One way of looking at a nested sequent is to consider a tree of ordinary (one-sided) sequents, i.e., of multisets of formulas. Each structural box in the nested sequent creates a child in the tree. In order to be able to reason about formulas in a particular tree node, we introduce labels. A label is a finite sequence of natural numbers. We denote labels by σ,τ,\sigma,\tau,\dots; a label σn\sigma\ast n (or simply σn\sigma n) denotes the label σ\sigma extended by the natural number nn.

Definition 2.3 (Labeling).

For a nested sequent Γ\Gamma and label σ\sigma we define a labeling function lσl_{\sigma} to recursively label structural boxes in nested sequents as follows:

lσ(φ1,,φn,[Γ1],,[Γm])\colonequalsφ1,,φn,[lσ1(Γ1)]σ1,,[lσm(Γm)]σm.l_{\sigma}(\varphi_{1},\dots,\varphi_{n},[\Gamma_{1}],\dots,[\Gamma_{m}])\colonequals\varphi_{1},\dots,\varphi_{n},[l_{\sigma*1}(\Gamma_{1})]_{\sigma*1},\dots,[l_{\sigma*m}(\Gamma_{m})]_{\sigma*m}.

Let σ(Γ)\mathcal{L}_{\sigma}(\Gamma) be the set of labels occurring in lσ(Γ)l_{\sigma}(\Gamma) plus label σ\sigma (for formulas outside all structural boxes). Define the labeled nested sequent l(Γ)\colonequalsl1(Γ)l(\Gamma)\colonequals l_{1}(\Gamma), and let (Γ)\colonequals1(Γ)\mathcal{L}(\Gamma)\colonequals\mathcal{L}_{1}(\Gamma).333Labeled nested sequents are closely related to labelled sequents from [23] but retain the nested notation.

Formulas in a nested sequent Γ\Gamma are labeled according to the labeling of the structural boxes containing them. We write 1:φΓ1:\varphi\in\Gamma iff the formula φ\varphi occurs in Γ\Gamma outside all structural boxes. Otherwise, σ:φΓ\sigma:\varphi\in\Gamma whenever φ\varphi occurs in l(Γ)l(\Gamma) within a structural box labeled σ\sigma.

The set (Γ)\mathcal{L}(\Gamma) can be considered as the set of nodes of the corresponding tree of Γ\Gamma, with 11 being the root of this tree. Often, we do not distinguish between a nested sequent Γ\Gamma and its labeled sequent l(Γ)l(\Gamma). For example, we say that σΓ\sigma\in\Gamma if σ(Γ)\sigma\in\mathcal{L}(\Gamma).

Example 2.4.

Consider a nested sequent Γ=φ,[p,ψ],[p¯,φ,[χ]]\Gamma=\varphi,[p,\psi],\bigl{[}\overline{p},\varphi,[\chi]\bigr{]}. The corresponding labeled nested sequent is l(Γ)=φ,[p,ψ]11,[p¯,φ,[χ]121]12l(\Gamma)=\varphi,[p,\psi]_{11},\left[\overline{p},\varphi,[\chi]_{121}\right]_{12} with (Γ)={1,11,12,121}\mathcal{L}(\Gamma)=\{1,11,12,121\}. The corresponding tree is pictured as follows, where each node is labeled on the left and marked by its formulas on the right (in particular, here 1:φΓ1:\varphi\in\Gamma and 121:χΓ121:\chi\in\Gamma, but 12:χΓ12:\chi\notin\Gamma):

1φ\varphi11p,ψp,\psi12p¯,φ\overline{p},\varphi 121χ\chi

Following [5], we will work with contexts in rules to signify that the rules can be applied in an arbitrary node of the nested sequent. We will work with unary contexts which are nested sequents with exactly one hole, denoted by the symbol {}\{\>\}. Such contexts are denoted by Γ{}\Gamma\{\>\}. The insertion Γ{Δ}\Gamma\{\Delta\} of a nested sequent Δ\Delta into a context Γ{}\Gamma\{\>\} is obtained by replacing the occurrence {}\{\>\} with Δ\Delta. The hole {}\{\>\} can be labeled the same way as formulas. We write Γ{}σ\Gamma\{\>\}_{\sigma} to denote the label of the hole.

Example 2.5.

Γ{}=φ,[p,ψ],[p¯,{}]\Gamma^{\prime}\{\>\}=\varphi,[p,\psi],[\overline{p},\{\>\}] is a context. Its labeled context is Γ{}12=φ,[p,ψ]11,[p¯,{}]12\Gamma^{\prime}\{\>\}_{12}=\varphi,[p,\psi]_{11},[\overline{p},\{\>\}]_{12}. Let Δ=φ,[χ]\Delta=\varphi,[\chi]. Then Γ{Δ}\Gamma^{\prime}\{\Delta\} equals Γ\Gamma from Example 2.4.

Definition 2.6 (Variables).

Whether XX is a formula, or a sequence/set/multiset of formulas, or a nested sequent/context, or some other formula-based object, we denote by 𝑉𝑎𝑟(X)𝖯𝗋𝗈𝗉\mathit{Var}(X)\subseteq{\sf Prop} the set of atomic propositions occurring in XX (note that pp may also occur in the form of p¯\overline{p}).

In this paper we use nested sequent calculi for classical modal logics 𝖪{\sf K}, 𝖣{\sf D}, and 𝖳{\sf T} from [5]. Recall that 𝖪{\sf K} consists of all classical tautologies, the 𝗄{\sf k}-axiom (φψ)(φψ)\Box(\varphi\rightarrow\psi)\rightarrow(\Box\varphi\rightarrow\Box\psi) and is closed under modus ponens (from φψ\varphi\rightarrow\psi and φ\varphi, infer ψ\psi) and necessitation (from φ\varphi, infer φ\Box\varphi). Further, 𝖣\colonequals𝖪+φφ{\sf D}\colonequals{\sf K}+\Box\varphi\rightarrow\Diamond\varphi and 𝖳\colonequals𝖪+φφ{\sf T}\colonequals{\sf K}+\Box\varphi\rightarrow\varphi. We now introduce nested sequent calculi and then Kripke semantics for these logics.

The terminating nested sequent calculus NK for the modal logic K consists of all rules in the first two rows in Fig. 1 plus the rule k. This calculus is an extension of the multiset-based version from [5] to the language with Boolean constants \bot and \top, necessitating an addition of the rule 𝗂𝖽\mathsf{id_{\top}} for handling these (cf. also the treatment of Boolean constants in [10]). The nested calculus ND (NT) for the modal logic D (T) is obtained by adding to NK the rule 𝖽{\sf d} (𝗍{\sf t}). As shown in [5], the nested sequent calculi 𝖭𝖪{\sf NK}, 𝖭𝖣{\sf ND}, and 𝖭𝖳{\sf NT} are sound and complete for modal logics 𝖪{\sf K}, 𝖣{\sf D}, and 𝖳{\sf T} respectively, i.e., a nested sequent Γ\Gamma is derivable in 𝖭𝖪{\sf NK} (𝖭𝖣{\sf ND}𝖭𝖳{\sf NT}) if and only if its formula interpretation ι(Γ)\iota(\Gamma) is a theorem of 𝖪{\sf K} (𝖣{\sf D}𝖳{\sf T}).

𝗂𝖽𝖯\scriptstyle\mathsf{id_{P}}\; Γ{p,p¯}\Gamma\{p,\overline{p}\}    𝗂𝖽\scriptstyle\mathsf{id_{\top}}\; Γ{}\Gamma\{\top\}    Γ{φψ,φ,ψ}\Gamma\{\varphi\lor\psi,\varphi,\psi\} \scriptstyle\lor\; Γ{φψ}\Gamma\{\varphi\lor\psi\} Γ{φψ,φ}\Gamma\{\varphi\land\psi,\varphi\}Γ{φψ,ψ}\Gamma\{\varphi\land\psi,\psi\} \scriptstyle\land\; Γ{φψ}\Gamma\{\varphi\land\psi\}    Γ{φ,[φ]}\Gamma\{\Box\varphi,[\varphi]\} \scriptstyle\Box\; Γ{φ}\Gamma\{\Box\varphi\} Γ{φ,[Δ,φ]}\Gamma\{\Diamond\varphi,[\Delta,\varphi]\} 𝗄\scriptstyle\mathsf{k}\; Γ{φ,[Δ]}\Gamma\{\Diamond\varphi,[\Delta]\}    Γ{φ,[φ]}\Gamma\{\Diamond\varphi,[\varphi]\} 𝖽\scriptstyle{\sf d}\; Γ{φ}\Gamma\{\Diamond\varphi\}    Γ{φ,φ}\Gamma\{\Diamond\varphi,\varphi\} 𝗍\scriptstyle{\sf t}\; Γ{φ}\Gamma\{\Diamond\varphi\}

Figure 1: Terminating nested rules: the principal formula is not saturated.
Definition 2.7 (Saturation).

Consider a sequent Γ=Γ{θ}σ\Gamma=\Gamma^{\prime}\{\theta\}_{\sigma}, i.e., σ:θΓ\sigma:\theta\in\Gamma. The formula θ\theta is 𝖪{\sf K}-saturated in Γ\Gamma if the following conditions hold depending on the form of θ\theta:

  • θ\theta is an atomic formula;

  • if θ=φψ\theta=\varphi\lor\psi, then both σ:φΓ\sigma:\varphi\in\Gamma and σ:ψΓ\sigma:\psi\in\Gamma;

  • if θ=φψ\theta=\varphi\land\psi, then either σ:φΓ\sigma:\varphi\in\Gamma or σ:ψΓ\sigma:\psi\in\Gamma;

  • if θ=φ\theta=\Box\varphi, then there is a label σn(Γ)\sigma\ast n\in\mathcal{L}(\Gamma) such that σn:φΓ\sigma\ast n:\varphi\in\Gamma.

The formula θ\theta of the form φ\Diamond\varphi is

  • 𝖪{\sf K}-saturated in Γ\Gamma w.r.t. σn(Γ)\sigma\ast n\in\mathcal{L}(\Gamma) if σn:φΓ\sigma\ast n:\varphi\in\Gamma;

  • 𝖣{\sf D}-saturated in Γ\Gamma if there is a label σn(Γ)\sigma\ast n\in\mathcal{L}(\Gamma);

  • 𝖳{\sf T}-saturated in Γ\Gamma if σ:φΓ\sigma:\varphi\in\Gamma.

A nested sequent Γ\Gamma is 𝖪{\sf K}-saturated if (1)(1) it is neither of the form Γ{p,p¯}\Gamma^{\prime}\{p,\overline{p}\} for some atomic proposition p𝖯𝗋𝗈𝗉p\in{\sf Prop} nor of the form Γ{}\Gamma^{\prime}\{\top\}; (2)(2) all its formulas σ:φ\sigma:\Diamond\varphi are 𝖪{\sf K}-saturated w.r.t. every child of σ\sigma; and (3)(3) all its other formulas are 𝖪{\sf K}-saturated in Γ\Gamma. A nested sequent is 𝖣{\sf D}-saturated (𝖳({\sf T}-saturated)) if it is 𝖪{\sf K}-saturated and all its formulas σ:φ\sigma:\Diamond\varphi are 𝖣{\sf D}-saturated (𝖳({\sf T}-saturated)) in Γ\Gamma.

Example 2.8.

The sequent Γ=[φ]\Gamma=[\Diamond\varphi] is 𝖪{\sf K}-saturated but neither 𝖣{\sf D}-saturated nor 𝖳{\sf T}-saturated. Indeed, for the logic 𝖣{\sf D} we would need 11n:φ1*1*n:\varphi to be present for some nn and for the logic 𝖳{\sf T} we would need to have 11:φ1*1:\varphi in order to saturate 11:φΓ1*1:\Diamond\varphi\in\Gamma.

The rules from Fig. 1 with embedded contraction are sometimes called Kleene’d rules. Following [5], in order to ensure finite proof search, we only apply a rule when the principal formula in the conclusion is not saturated w.r.t. this rule, i.e., φψ\varphi\lor\psi, φψ\varphi\land\psi, and φ\Box\varphi are not 𝖪{\sf K}-saturated, φ\Diamond\varphi in the rule k is not 𝖪{\sf K}-saturated w.r.t. the label of the bracket containing Δ\Delta, φ\Diamond\varphi in the rule d is not 𝖣{\sf D}-saturated, and φ\Diamond\varphi in the rule t is not 𝖳{\sf T}-saturated. Since for Kleene’d rules principal formulas are preserved in the premises, the number of applications of each of the rules 𝗄\mathsf{k}, 𝖽\mathsf{d}, and 𝗍\mathsf{t} is bounded. The way to think of a saturated sequent is that in a bottom-up proof search when we reach a saturated sequent, it does not make sense to apply more rules as these would only lead to duplications.

Theorem 2.9 (Brünnler [5]).

The calculi for 𝖪,𝖣{\sf K},{\sf D}, and 𝖳{\sf T} in Fig. 1 are terminating.

Intuitively, nested sequents capture the tree structure of Kripke models for modal logics. We define truth for nested sequents in Kripke models and then recall relevant facts about bisimulations and introduce model modifications that we use in the proof of uniform interpolation.

Definition 2.10.

A Kripke model is a triple =(W,R,V)\mathcal{M}=(W,R,V), where WW\neq\varnothing is a set of worlds or nodes, RW×WR\subseteq W\times W, and V:𝖯𝗋𝗈𝗉2WV:{\sf Prop}\to 2^{W} is a valuation function mapping each atomic proposition p𝖯𝗋𝗈𝗉p\in{\sf Prop} to a set V(p)V(p) of worlds from WW. If vRwvRw, we say that ww is accessible from vv, or that vv is a parent of ww, or that ww is a child of vv. We define ,wφ\mathcal{M},w\models\varphi by induction on the construction of φ\varphi as usual: ,w\mathcal{M},w\models\top and ,w⊧̸\mathcal{M},w\not\models\bot; for p𝖯𝗋𝗈𝗉p\in{\sf Prop}, we have ,wp\mathcal{M},w\models p iff wV(p)w\in V(p) and ,wp¯\mathcal{M},w\models\overline{p} iff wV(p)w\notin V(p); we have ,wφψ\mathcal{M},w\models\varphi\wedge\psi (,wφψ)(\mathcal{M},w\models\varphi\vee\psi) iff ,wφ\mathcal{M},w\models\varphi and (or) ,wψ\mathcal{M},w\models\psi; finally, ,wφ\mathcal{M},w\models\Box\varphi iff ,vφ\mathcal{M},v\models\varphi whenever wRvwRv and ,wφ\mathcal{M},w\models\Diamond\varphi iff ,vφ\mathcal{M},v\models\varphi for some wRvwRv. A formula φ\varphi is valid in \mathcal{M}, denoted φ\mathcal{M}\models\varphi, when ,wφ\mathcal{M},w\models\varphi for all wWw\in W.

A model =(W,R,V)\mathcal{M}^{\prime}=(W^{\prime},R^{\prime},V^{\prime}) is a submodel of =(W,R,V)\mathcal{M}=(W,R,V) when WWW^{\prime}\subseteq W, R=R(W×W)R^{\prime}=R\cap(W^{\prime}\times W^{\prime}), and V(p)=V(p)WV^{\prime}(p)=V(p)\cap W^{\prime} for each p𝖯𝗋𝗈𝗉p\in{\sf Prop}. A submodel generated by wWw\in W, denoted w=(Ww,Rw,Vw)\mathcal{M}_{w}=(W_{w},R_{w},V_{w}), is the smallest submodel =(W,R,V)\mathcal{M}^{\prime}=(W^{\prime},R^{\prime},V^{\prime}) of \mathcal{M} such that (1)(1) wWw\in W^{\prime} and (2)(2) vWv\in W^{\prime} whenever xRvxRv and xWx\in W^{\prime}.

We will use models based on finite intransitive directed trees, usually denoting the root ρ\rho. For 𝖳{\sf T}, the accessibility relation RR is required to be reflexive, i.e., wWwRw\forall w\in WwRw. For 𝖣{\sf D}, the accessibility relation RR must be serial, i.e., wWvWwRv\forall w\in W\exists v\in WwRv. Note that such seriality implies reflexivity of the leaves of the tree. Finally, we assume RR to be irreflexive for 𝖪{\sf K}. From now on we call these models 𝖳{\sf T}-models, 𝖣{\sf D}-models, and 𝖪{\sf K}-models respectively.

Theorem 2.11.

If 𝖫{𝖪,𝖣,𝖳}{\sf L}\in\{{\sf K},{\sf D},{\sf T}\}, then 𝖫φ\vdash_{\sf L}\varphi iff φ\mathcal{M}\models\varphi for each 𝖫{\sf L}-model \mathcal{M}.

Following [19], we now extend the definitions of truth and validity to nested sequents.

Definition 2.12.

A (treelike) multiworld interpretation of a nested sequent Γ\Gamma into a model =(W,R,V)\mathcal{M}=(W,R,V) is a function :(Γ)W\mathcal{I}:\mathcal{L}(\Gamma)\rightarrow W from labels in Γ\Gamma to worlds of \mathcal{M} such that (σ)R(σn)\mathcal{I}(\sigma)R\mathcal{I}(\sigma\ast n) whenever {σ,σn}(Γ)\{\sigma,\sigma\ast n\}\subseteq\mathcal{L}(\Gamma). Then

,Γ,(σ)φ for some σ:φΓ.\mathcal{M},\mathcal{I}\models\Gamma\qquad\Longleftrightarrow\qquad\mathcal{M},\mathcal{I}(\sigma)\models\varphi\text{ for some }\sigma:\varphi\in\Gamma.

Γ\Gamma is valid in \mathcal{M}, denoted Γ\mathcal{M}\models\Gamma, means that ,Γ\mathcal{M},\mathcal{I}\models\Gamma for all multiworld interpretations \mathcal{I} of Γ\Gamma into \mathcal{M}.

The following lemma, which can be easily proved by induction on the structure of Γ\Gamma, implies completeness for validity of nested sequents.

Lemma 2.13.

For a nested sequent Γ\Gamma and a model \mathcal{M}, we have Γ\mathcal{M}\models\Gamma iff ι(Γ).\mathcal{M}\models\iota(\Gamma).

Proof 2.14.

By induction on the structure of Γ\Gamma, we prove that ,⊧̸Γ\mathcal{M},\mathcal{I}\not\models\Gamma implies ,(1)⊧̸ι(Γ)\mathcal{M},\mathcal{I}(1)\not\models\iota(\Gamma) for one direction and that ,w⊧̸ι(Γ)\mathcal{M},w\not\models\iota(\Gamma) implies ,⊧̸Γ\mathcal{M},\mathcal{I}\not\models\Gamma for some \mathcal{I} such that (1)=w\mathcal{I}(1)=w for the other direction. Let Γ\Gamma be of the form φ1,,φn,[Γ1],,[Γm]\varphi_{1},\dots,\varphi_{n},[\Gamma_{1}],\dots,[\Gamma_{m}].

First suppose ,⊧̸Γ\mathcal{M},\mathcal{I}\not\models\Gamma. Then for all σ:ψΓ\sigma:\psi\in\Gamma we have ,(σ)⊧̸ψ\mathcal{M},\mathcal{I}(\sigma)\not\models\psi, in particular, ,(1)⊧̸φi\mathcal{M},\mathcal{I}(1)\not\models\varphi_{i} for all ii. In addition, we show that ,(1)⊧̸ι(Γj)\mathcal{M},\mathcal{I}(1)\not\models\Box\iota(\Gamma_{j}) for all jj. To prove this, we define j\mathcal{I}_{j} as follows: j(1σ)\colonequals(1jσ)\mathcal{I}_{j}(1*\sigma^{\prime})\colonequals\mathcal{I}(1*j*\sigma^{\prime}) for each 1σ(Γj)1*\sigma^{\prime}\in\mathcal{L}(\Gamma_{j}); in particular, j(1)\colonequals(1j)\mathcal{I}_{j}(1)\colonequals\mathcal{I}(1*j). It is easy to see that j\mathcal{I}_{j} is a multiworld interpretation of Γj\Gamma_{j} into \mathcal{M} and that ,j⊧̸Γj\mathcal{M},\mathcal{I}_{j}\not\models\Gamma_{j}. Thus, by induction hypothesis, ,j(1)⊧̸ι(Γj)\mathcal{M},\mathcal{I}_{j}(1)\not\models\iota(\Gamma_{j}), i.e., ,(1j)⊧̸ι(Γj)\mathcal{M},\mathcal{I}(1*j)\not\models\iota(\Gamma_{j}). Since (1)R(1j)\mathcal{I}(1)R\mathcal{I}(1*j), it follows that ,(1)⊧̸ι(Γj)\mathcal{M},\mathcal{I}(1)\not\models\Box\iota(\Gamma_{j}). We conclude that ,(1)⊧̸ι(Γ)\mathcal{M},\mathcal{I}(1)\not\models\iota(\Gamma).

Now suppose ,w⊧̸ι(Γ)\mathcal{M},w\not\models\iota(\Gamma). For each jj, there is a world vjv_{j} such that wRvjwRv_{j} and ,vj⊧̸ι(Γj)\mathcal{M},v_{j}\not\models\iota(\Gamma_{j}). By induction hypothesis, there exists a multiworld interpretation j\mathcal{I}_{j} of Γj\Gamma_{j} into \mathcal{M} such that j(1)=vj\mathcal{I}_{j}(1)=v_{j} and ,j⊧̸Γj\mathcal{M},\mathcal{I}_{j}\not\models\Gamma_{j}. Define \mathcal{I} as follows: (1)\colonequalsw\mathcal{I}(1)\colonequals w and (1jσ)\colonequalsj(1σ)\mathcal{I}(1*j*\sigma)\colonequals\mathcal{I}_{j}(1*\sigma). We immediately have ,⊧̸Γ\mathcal{M},\mathcal{I}\not\models\Gamma.

We now define bisimulations modulo an atomic proposition pp, similar to the ones from [7, 31], where uniform interpolation is studied on the basis of bisimulation quantifiers. While those papers focus on purely semantic methods, we embed the semantic tool of bisimulation into our constructive proof-theoretic approach in Sect. 3. Our bisimulations behave largely like standard bisimulations except they do not have to preserve the truth of formulas with occurrences of pp.

Definition 2.15 (Bisimilarity).

A bisimulation up to an atomic proposition pp between models =(W,R,V)\mathcal{M}=(W,R,V) and =(W,R,V)\mathcal{M}^{\prime}=(W^{\prime},R^{\prime},V^{\prime}) is a non-empty binary relation ZW×WZ\subseteq W\times W^{\prime} such that the following conditions hold for all wWw\in W and wWw^{\prime}\in W^{\prime} with wZwwZw^{\prime}:

atomsp.

wV(q)w\in V(q) iff wV(q)w^{\prime}\in V^{\prime}(q) for all q𝖯𝗋𝗈𝗉{p}q\in{\sf Prop}\setminus\{p\};

forth.

if wRvwRv, then there exists vWv^{\prime}\in W^{\prime} such that vZvvZv^{\prime} and wRvw^{\prime}R^{\prime}v^{\prime}; and

back.

if wRvw^{\prime}R^{\prime}v^{\prime}, then there exists vWv\in W such that vZvvZv^{\prime} and wRvwRv.

When wZwwZw^{\prime}, we write (,w)p(,w)(\mathcal{M},w)\sim_{p}(\mathcal{M}^{\prime},w^{\prime}). Further, we write (,)p(,)(\mathcal{M},\mathcal{I})\sim_{p}(\mathcal{M}^{\prime},\mathcal{I}^{\prime}) for functions :XW\mathcal{I}:X\to W and :XW\mathcal{I}^{\prime}:X\to W^{\prime} with a common domain XX if there is a bisimulation ZZ up to pp between \mathcal{M} and \mathcal{M}^{\prime} such that (σ)Z(σ)\mathcal{I}(\sigma)Z\mathcal{I}^{\prime}(\sigma) for each σX\sigma\in X.

The main property of bisimulations is truth preservation for modal formulas. The following theorem is proved the same way as [4, Theorem 2.20].

Theorem 2.16.

If (,w)p(,w)(\mathcal{M},w)\sim_{p}(\mathcal{M}^{\prime},w^{\prime}), then for all formulas φ\varphi with p𝑉𝑎𝑟(φ)p\notin\mathit{Var}(\varphi), we have ,wφ\mathcal{M},w\models\varphi iff ,wφ\mathcal{M}^{\prime},w^{\prime}\models\varphi.

We are interested in manipulations of treelike models that preserve bisimulations up to pp, in particular, in duplicating a part of a model or replacing it with a bisimilar model.

Definition 2.17 (Model transformations).

Let =(W,R,V)\mathcal{M}=(W,R,V) be an intransitive tree (possibly with some reflexive worlds), w=(Ww,Rw,Vw)\mathcal{M}_{w}=(W_{w},R_{w},V_{w}) be its subtree with root wWw\in W, and 𝒩=(WN,RN,VN)\mathcal{N}=(W_{N},R_{N},V_{N}) be another tree with root ρNWN\rho_{N}\in W_{N}. A model \colonequals(W,R,V)\mathcal{M}^{\prime}\colonequals(W^{\prime},R^{\prime},V^{\prime}) is the result of replacing the subtree w\mathcal{M}_{w} with 𝒩\mathcal{N} in \mathcal{M} if

W\displaystyle W^{\prime} \colonequals(WWw)WN,\displaystyle\colonequals(W\setminus W_{w})\sqcup W_{N},
R\displaystyle R^{\prime} \colonequals(R(WWw)2)RN{(v,ρN)vRw},\displaystyle\colonequals\bigl{(}R\cap(W\setminus W_{w})^{2}\bigr{)}\sqcup R_{N}\sqcup\bigl{\{}(v,\rho_{N})\mid vRw\bigr{\}},
V(q)\displaystyle V^{\prime}(q) \colonequals(V(q)Ww)VN(q) for all q𝖯𝗋𝗈𝗉.\displaystyle\colonequals\bigl{(}V(q)\setminus W_{w}\bigr{)}\sqcup V_{N}(q)\text{ for all $q\in{\sf Prop}$}.

A model ′′\colonequals(W′′,R′′,V′′)\mathcal{M}^{\prime\prime}\colonequals(W^{\prime\prime},R^{\prime\prime},V^{\prime\prime}) is the result of duplicating ((cloning)) w\mathcal{M}_{w} in \mathcal{M} if another copy444Here vc\colonequals(v,c)v^{c}\colonequals(v,c), Wwc\colonequals{vcvWw}W_{w}^{c}\colonequals\{v^{c}\mid v\in W_{w}\}, Rwc\colonequals{(vc,uc)(v,u)Rw}R_{w}^{c}\colonequals\{(v^{c},u^{c})\mid(v,u)\in R_{w}\}, and Vwc(q)\colonequals{vcvVw(q)}V_{w}^{c}(q)\colonequals\{v^{c}\mid v\in V_{w}(q)\}. wc\colonequals(Wwc,Rwc,Vwc)\mathcal{M}^{c}_{w}\colonequals(W_{w}^{c},R^{c}_{w},V^{c}_{w}) of w\mathcal{M}_{w} is inserted alongside ((as a subtree of)) w\mathcal{M}_{w}, i.e., if

W′′\colonequalsWWwc,\displaystyle W^{\prime\prime}\colonequals W\sqcup W^{c}_{w},
R′′\colonequalsRRwc{(v,wc)vRw}(duplicating)orR′′\colonequalsRRwc{(w,wc)}(cloning),\displaystyle R^{\prime\prime}\colonequals R\sqcup R^{c}_{w}\sqcup\bigl{\{}(v,w^{c})\mid vRw\bigr{\}}\text{$($duplicating\/$)$}\quad\text{or}\quad R^{\prime\prime}\colonequals R\sqcup R^{c}_{w}\sqcup\bigl{\{}(w,w^{c})\bigr{\}}\text{$($cloning\/$)$},
V′′(q)\colonequalsV(q)Vwc(q) for all q𝖯𝗋𝗈𝗉.\displaystyle V^{\prime\prime}(q)\colonequals V(q)\sqcup V^{c}_{w}(q)\text{ for all $q\in{\sf Prop}$}.
Lemma 2.18.

In the setup from Def. 2.17, let ZWN×WwZ\subseteq W_{N}\times W_{w} be a bisimulation demonstrating that (𝒩,ρN)p(w,w)(\mathcal{N},\rho_{N})\sim_{p}(\mathcal{M}_{w},w). Then, for \mathcal{M}^{\prime} obtained by replacing w\mathcal{M}_{w} with 𝒩\mathcal{N} in \mathcal{M} we have that (,v)p(,v)(\mathcal{M}^{\prime},v)\sim_{p}(\mathcal{M},v) for all vWWwv\in W\setminus W_{w} and that (,uN)p(,u)(\mathcal{M}^{\prime},u_{N})\sim_{p}(\mathcal{M},u) whenever uNZuu_{N}Zu. Moreover, if both \mathcal{M} and 𝒩\mathcal{N} are 𝖪{\sf K}-models (𝖣({\sf D}-models, 𝖳{\sf T}-models)), then so is \mathcal{M}^{\prime}.

For ′′\mathcal{M}^{\prime\prime} obtained by duplicating w\mathcal{M}_{w} in \mathcal{M}, we have (′′,v)p(,v)(\mathcal{M}^{\prime\prime},v)\sim_{p}(\mathcal{M},v) for all vWv\in W and, in addition, (′′,uc)p(,u)(\mathcal{M}^{\prime\prime},u^{c})\sim_{p}(\mathcal{M},u) for all uWwu\in W_{w}. If \mathcal{M} is a 𝖪{\sf K}-model (𝖣({\sf D}-model, 𝖳{\sf T}-model)) not rooted at ww, so is ′′\mathcal{M}^{\prime\prime}.

The same holds for cloning if wRwwRw, except that cloning does not preserve 𝖣{\sf D}-models.

Proof 2.19.

It is easy to see that one bisimulation witnesses all the stated bisimilarities in each case: Z\colonequals{(v,v)vWWw}ZZ^{\prime}\colonequals\{(v,v)\mid v\in W\setminus W_{w}\}\sqcup Z for replacing or Z′′\colonequals{(v,v)vW}{(uc,u)uWw}Z^{\prime\prime}\colonequals\{(v,v)\mid v\in W\}\sqcup\{(u^{c},u)\mid u\in W_{w}\} for duplicating and cloning. Both the tree structure and reflexivity of worlds are preserved by all operations. Leaves are preserved by replacement and duplication, whereas cloning turns a leaf ww into a non-leaf without removing its reflexivity as required in 𝖣{\sf D}-models.

3 Uniform interpolation for nested sequents

In this section we prove the uniform interpolation theorem for 𝖪{\sf K}, 𝖳{\sf T}, and 𝖣{\sf D} via their nested sequent calculi 𝖭𝖪,𝖭𝖳{\sf NK},{\sf NT}, and 𝖭𝖣{\sf ND} respectively. We define a new notion of uniform interpolation for nested sequents in Def. 3.15 that involves Kripke semantics. We then prove in Lemma 3.13 that this implies the standard definition of uniform interpolation.

Definition 3.1 (Uniform interpolation property).

A logic 𝖫{\sf L} in a language containing an implication \to and Boolean constants \bot and \top (primary or defined) has the uniform interpolation property, or UIP, if for every formula φ\varphi in the logic and atomic proposition pp, there exist formulas pφ\forall p\varphi and pφ\exists p\varphi such that

  1. (i)

    𝑉𝑎𝑟(pφ)𝑉𝑎𝑟(φ){p}\mathit{Var}(\exists p\varphi)\subseteq\mathit{Var}(\varphi)\setminus\{p\} and 𝑉𝑎𝑟(pφ)𝑉𝑎𝑟(φ){p}\mathit{Var}(\forall p\varphi)\subseteq\mathit{Var}(\varphi)\setminus\{p\},

  2. (ii)

    𝖫φpφ and 𝖫pφφ,\vdash_{\sf L}\varphi\to\exists p\varphi\text{ and }\vdash_{\sf L}\forall p\varphi\to\varphi, and

  3. (iii)

    for each formula ψ\psi with p𝑉𝑎𝑟(ψ)p\notin\mathit{Var}(\psi):

    𝖫φψ𝖫pφψ𝖫ψφ𝖫ψpφ.\vdash_{\sf L}\varphi\to\psi\ \Rightarrow\ \vdash_{\sf L}\exists p\varphi\to\psi\qquad\vdash_{\sf L}\psi\to\varphi\ \Rightarrow\ \vdash_{\sf L}\psi\to\forall p\varphi.

For classical-based logics, the existence of left-interpolants ensures the existence of right-interpolants, and vice versa. Assuming pφ\forall p\varphi is defined for each formula φ\varphi, we can define pφ:=¬pφ¯\exists p\varphi:=\neg\forall p\overline{\varphi}. Thus, from now on, we focus on pφ\forall p\varphi.

We import some of the notation from [19] in order to formulate the uniform interpolation property for nested sequents.

Definition 3.2.

Multiformulas are defined by the grammar

\coloncolonequalsσ:φ(∧⃝)(∨⃝),\mho\coloncolonequals\sigma:\varphi\mid(\mho\mathbin{\varowedge}\mho)\mid(\mho\mathbin{\varovee}\mho),

where σ\sigma is a label and φ\varphi is a formula. We write ()\mathcal{L}(\mho) for the set of labels occurring in \mho.

Remark 3.3.

The symbol \mho is pronounced ‘mho’, which is the reverse of ‘ohm’ the same way as \mho is the reverse of Ω\Omega, the symbol for ohm in physics.

Definition 3.4 (Suitability).

A multiworld interpretation \mathcal{I} of a sequent Γ\Gamma is suitable for a multiformula \mho if ()(Γ)\mathcal{L}(\mho)\subseteq\mathcal{L}(\Gamma), in which case we call it a multiworld interpretation of \mho into \mathcal{M}.

Definition 3.5 (Truth for multiformulas).

Let \mathcal{I} be a multiworld interpretation of a multiformula \mho into a model \mathcal{M}. We define ,\mathcal{M},\mathcal{I}\models\mho recursively as follows:

{listliketab}\storestyleof

enumerate ,σ:φ\mathcal{M},\mathcal{I}\models\sigma:\varphi iff   ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\varphi, ,1∧⃝2\mathcal{M},\mathcal{I}\models\mho_{1}\mathbin{\varowedge}\mho_{2} iff   ,i\mathcal{M},\mathcal{I}\models\mho_{i} for both i=1,2i=1,2, ,1∨⃝2\mathcal{M},\mathcal{I}\models\mho_{1}\mathbin{\varovee}\mho_{2} iff   ,i\mathcal{M},\mathcal{I}\models\mho_{i} for at least one i=1,2i=1,2.

Note that (i)()\mathcal{L}(\mho_{i})\subseteq\mathcal{L}(\mho), meaning that \mathcal{I} is also a multiworld interpretation of each i\mho_{i} into \mathcal{M}.

We define the label-erasing function 𝖿𝗈𝗋𝗆{\sf form} from multiformulas to formulas, as well as multiformula equivalence, and list some of the latter’s easily provable properties.

Definition 3.6.

The function 𝖿𝗈𝗋𝗆{\sf form} from multiformulas to formulas is defined as follows:

𝖿𝗈𝗋𝗆(σ:φ)\displaystyle{\sf form}(\sigma:\varphi) \colonequalsφ,\displaystyle\colonequals\varphi,
𝖿𝗈𝗋𝗆(1∧⃝2)\displaystyle{\sf form}(\mho_{1}\mathbin{\varowedge}\mho_{2}) \colonequals𝖿𝗈𝗋𝗆(1)𝖿𝗈𝗋𝗆(2),\displaystyle\colonequals{\sf form}(\mho_{1})\land{\sf form}(\mho_{2}),
𝖿𝗈𝗋𝗆(1∨⃝2)\displaystyle{\sf form}(\mho_{1}\mathbin{\varovee}\mho_{2}) \colonequals𝖿𝗈𝗋𝗆(1)𝖿𝗈𝗋𝗆(2).\displaystyle\colonequals{\sf form}(\mho_{1})\lor{\sf form}(\mho_{2}).
Definition 3.7 (Multiformula equivalence).

Multiformulas 1\mho_{1} and 2\mho_{2} are equivalent, denoted 12\mho_{1}\equiv\mho_{2}, iff (1)=(2)\mathcal{L}(\mho_{1})=\mathcal{L}(\mho_{2}) and ,1,2\mathcal{M},\mathcal{I}\vDash\mho_{1}\,\Leftrightarrow\,\mathcal{M},\mathcal{I}\vDash\mho_{2} for any multiworld interpretation \mathcal{I} of 1\mho_{1} into a model \mathcal{M}.

Lemma 3.8 (Equivalence property).

For any multiformula \mho, label σ\sigma, and formulas φ\varphi and ψ\psi,

  • ∧⃝∨⃝\mho\mathbin{\varowedge}\mho\equiv\mho\mathbin{\varovee}\mho\equiv\mho,

  • σ:φ∧⃝σ:ψσ:(φψ)\sigma:\varphi\mathbin{\varowedge}\sigma:\psi\equiv\sigma:(\varphi\wedge\psi), and

  • σ:φ∨⃝σ:ψσ:(φψ)\sigma:\varphi\mathbin{\varovee}\sigma:\psi\equiv\sigma:(\varphi\vee\psi).

Lemma 3.9 (Normal forms).

For each multiformula \mho, there exists an equivalent multiformula d\mho^{d} (c)(\mho^{c}) in SDNF ((SCNF)) such that d\mho^{d} (c)(\mho^{c}) is a ∨⃝\mathbin{\varovee}-disjunction (∧⃝(\mathbin{\varowedge}-conjunction)) of ∧⃝\mathbin{\varowedge}-conjunctions (∨⃝(\mathbin{\varovee}-disjunctions)) of labeled formulas σ:φ\sigma:\varphi such that each disjunct ((conjunct)) contains exactly one occurrence of each label σ()\sigma\in\mathcal{L}(\mho).

Proof 3.10.

Since ∨⃝\mathbin{\varovee} and ∧⃝\mathbin{\varowedge} behave classically, one can employ the standard transformation into the DNF/CNF. In order to ensure one label per disjunct/conjunct rule, multiple labels can be combined using Lemma 3.8, whereas missing labels can be added in the form of σ:\sigma:\bot (σ:\sigma:\top).

We now introduce the uniform interpolation property for nested sequents. Here, the uniform interpolants are multiformulas instead of formulas.

Definition 3.11 (NUIP).

Let a nested sequent calculus 𝖭𝖫{\sf NL} be sound and complete w.r.t. a logic 𝖫{\sf L}. We say that NL has the nested-sequent uniform interpolation property, or NUIP, if for each nested sequent Γ\Gamma and atomic proposition pp there exists a multiformula Ap(Γ)A_{p}(\Gamma), called a nested uniform interpolant, such that

  1. (i)

    𝑉𝑎𝑟(Ap(Γ))𝑉𝑎𝑟(Γ){p}\mathit{Var}\bigl{(}A_{p}(\Gamma)\bigr{)}\subseteq\mathit{Var}(\Gamma)\setminus\{p\} and (Ap(Γ))(Γ)\mathcal{L}\bigl{(}A_{p}(\Gamma)\bigr{)}\subseteq\mathcal{L}(\Gamma);

  2. (ii)

    for each multiworld interpretation \mathcal{I} of Γ\Gamma into an 𝖫{\sf L}-model \mathcal{M}

    ,Ap(Γ)implies,Γ;\mathcal{M},\mathcal{I}\models A_{p}(\Gamma)\quad\text{implies}\quad\mathcal{M},\mathcal{I}\models\Gamma;
  3. (iii)

    for each nested sequent Σ\Sigma with p𝑉𝑎𝑟(Σ)p\notin\mathit{Var}(\Sigma) and (Σ)=(Γ)\mathcal{L}(\Sigma)=\mathcal{L}(\Gamma) and for each multiworld interpretation \mathcal{I} of Γ\Gamma into an 𝖫{\sf L}-model \mathcal{M},

    ,⊧̸Ap(Γ) and ,⊧̸Σimply,⊧̸Γ and ,⊧̸Σ\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma)\text{ and }\mathcal{M},\mathcal{I}\not\models\Sigma\quad\text{imply}\quad\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma\text{ and }\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Sigma

    for some multiworld interpretation \mathcal{I}^{\prime} of Γ\Gamma into some 𝖫{\sf L}-model \mathcal{M}^{\prime}.

The condition on labels in (i) ensures that interpretations of Γ\Gamma are suitable for Ap(Γ)A_{p}(\Gamma).

Remark 3.12.

Bílková’s definition in [3] differs in several ways. Apart from a minor difference in condition (iii), our definition involves semantic notions and uses multiformula interpolants instead of formulas.

Lemma 3.13.

If a nested calculus NL has the NUIP, then its logic 𝖫{\sf L} has the UIP.

Proof 3.14.

To show the existence of pφ\forall p\varphi, consider a nested uniform interpolant Ap(φ)A_{p}(\varphi) of the nested sequent φ\varphi, with (φ)={1}\mathcal{L}(\varphi)=\{1\}. By Lemma 3.9, w.l.o.g. we can assume that Ap(φ)=1:ξA_{p}(\varphi)=1:\xi. Let pφ\colonequalsξ\forall p\varphi\colonequals\xi. We establish the UIP properties based on the corresponding NUIP properties.

By NUIP(i), 𝑉𝑎𝑟(pφ)=𝑉𝑎𝑟(1:ξ)𝑉𝑎𝑟(φ){p}\mathit{Var}(\forall p\varphi)=\mathit{Var}(1:\xi)\subseteq\mathit{Var}(\varphi)\setminus\{p\} which establishes UIP(i) (cf. Def. 3.1).

For UIP(ii) we use a semantic argument. Assume towards a contradiction that 𝖫ξφ\nvdash_{\sf L}\xi\to\varphi, in which case by completeness ,w⊧̸ξφ\mathcal{M},w\not\models\xi\to\varphi for some 𝖫{\sf L}-model =(W,R,V)\mathcal{M}=(W,R,V) and wWw\in W. Consider a multiworld interpretation \mathcal{I} of sequent φ\varphi into \mathcal{M} such that (1)\colonequalsw\mathcal{I}(1)\colonequals w. Then ,1:ξ\mathcal{M},\mathcal{I}\models 1:\xi but ,⊧̸φ\mathcal{M},\mathcal{I}\not\models\varphi, in contradiction to NUIP(ii). Hence, 𝖫pφφ\vdash_{\sf L}\forall p\varphi\to\varphi as required.

Finally, for UIP(iii), let p𝑉𝑎𝑟(ψ)p\notin\mathit{Var}(\psi) and suppose 𝖫ψξ\nvdash_{\sf L}\psi\to\xi. Once again, by completeness, ,w⊧̸ψξ\mathcal{M},w\not\models\psi\to\xi for some 𝖫{\sf L}-model =(W,R,V)\mathcal{M}=(W,R,V) and wWw\in W. Consider the nested sequent ψ¯\overline{\psi}, with (ψ¯)=(φ)={1}\mathcal{L}(\overline{\psi})=\mathcal{L}(\varphi)=\{1\}, and a multiworld interpretation \mathcal{I} of sequent φ\varphi into \mathcal{M} with (1)\colonequalsw\mathcal{I}(1)\colonequals w. Then ,⊧̸1:ξ\mathcal{M},\mathcal{I}\not\models 1:\xi and ,⊧̸ψ¯\mathcal{M},\mathcal{I}\not\models\overline{\psi}. By NUIP(iii), there must exist an 𝖫{\sf L}-model \mathcal{M}^{\prime} and a multiworld interpretation \mathcal{I}^{\prime} of sequent φ\varphi into \mathcal{M}^{\prime} such that ,⊧̸φ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\varphi and ,⊧̸ψ¯\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\overline{\psi}. In other words, ,(1)⊧̸φ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(1)\not\models\varphi and ,(1)ψ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(1)\models\psi. Thus, by soundness of 𝖫{\sf L}, we have 𝖫ψφ\nvdash_{\sf L}\psi\to\varphi, thus completing the proof of UIP(iii).

Since we use bisimulations up to pp to find a model \mathcal{M}^{\prime} in the NUIP(iii) condition, we replace it with a (possibly) stronger condition (iii):

Definition 3.15 (BNUIP).

A nested sequent calculus 𝖭𝖫\mathsf{NL} has the bisimulation nested-sequent uniform interpolation property, or BNUIP, if, in addition to conditions NUIP(i)–(ii) from Def. 3.11,

(iii)

for each 𝖫{\sf L}-model \mathcal{M} and multiworld interpretation \mathcal{I} of Γ\Gamma into \mathcal{M}, if ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma), then there are an 𝖫{\sf L}-model \mathcal{M}^{\prime} and multiworld interpretation \mathcal{I}^{\prime} of Γ\Gamma into \mathcal{M}^{\prime} such that (,)p(,)(\mathcal{M}^{\prime},\mathcal{I}^{\prime})\sim_{p}(\mathcal{M},\mathcal{I}) and ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma.

It easily follows from Theorem 2.16 that, like formulas, both nested sequents and multiformulas are invariant under bisimulations:

Lemma 3.16.

Let Γ\Gamma ()(\mho) be a sequent ((multiformula)) not containing pp and let \mathcal{I} and \mathcal{I}^{\prime} be multiworld interpretations of Γ\Gamma ()(\mho) into \mathcal{M} and \mathcal{M}^{\prime} respectively such that (,)p(,)(\mathcal{M},\mathcal{I})\sim_{p}(\mathcal{M}^{\prime},\mathcal{I}^{\prime}). Then ,Γ\mathcal{M},\mathcal{I}\models\Gamma iff ,Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\models\Gamma (,(\mathcal{M},\mathcal{I}\models\mho iff ,)\mathcal{M}^{\prime},\mathcal{I}^{\prime}\models\mho).

Proof 3.17.

If (,)p(,)(\mathcal{M},\mathcal{I})\sim_{p}(\mathcal{M}^{\prime},\mathcal{I}^{\prime}), then (,(σ))p(,(σ))(\mathcal{M},\mathcal{I}(\sigma))\sim_{p}(\mathcal{M},\mathcal{I}^{\prime}(\sigma)) for all labels σ\sigma in Γ\Gamma (\mho). By Theorem 2.16 we have ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\varphi iff ,(σ)φ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\models\varphi for all σ:φ\sigma:\varphi in Γ\Gamma (\mho). The statements easily follow from Defs. 2.12 and 3.5.

Lemma 3.18.

If Γ\Gamma and Ap(Γ)A_{p}(\Gamma) satisfy (iii) of Def. 3.15, then they satisfy (iii) of Def. 3.11.

Proof 3.19.

Let Σ\Sigma be a nested sequent with p𝑉𝑎𝑟(Σ)p\notin\mathit{Var}(\Sigma) and (Σ)=(Γ)\mathcal{L}(\Sigma)=\mathcal{L}(\Gamma). Let ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma) and ,⊧̸Σ\mathcal{M},\mathcal{I}\not\models\Sigma. By BNUIP(iii) we find an 𝖫{\sf L}-model \mathcal{M}^{\prime} and \mathcal{I}^{\prime} from Γ\Gamma into \mathcal{M}^{\prime} such that (,)p(,)(\mathcal{M}^{\prime},\mathcal{I}^{\prime})\sim_{p}(\mathcal{M},\mathcal{I}) and ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma. By Lemma 3.16, we also conclude ,⊧̸Σ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Sigma.

Corollary 3.20.

If a nested calculus NL has the BNUIP, then its logic 𝖫{\sf L} has the UIP.

3.1 Uniform interpolation for 𝖪{\sf K}

Γ\Gamma matches Ap(Γ)A_{p}(\Gamma) equals
Γ{}σ\Gamma^{\prime}\{\top\}_{\sigma} σ:\sigma:\top
Γ{p,p¯}σ\Gamma^{\prime}\{p,\overline{p}\}_{\sigma} σ:\sigma:\top
Γ{φψ}\Gamma^{\prime}\{\varphi\lor\psi\} Ap(Γ{φψ,φ,ψ})A_{p}\bigl{(}\Gamma^{\prime}\{\varphi\lor\psi,\varphi,\psi\}\bigr{)}
Γ{φψ}\Gamma^{\prime}\{\varphi\land\psi\} Ap(Γ{φψ,φ})∧⃝Ap(Γ{φψ,ψ})A_{p}\bigl{(}\Gamma^{\prime}\{\varphi\land\psi,\varphi\}\bigr{)}\mathbin{\varowedge}A_{p}\bigl{(}\Gamma^{\prime}\{\varphi\land\psi,\psi\}\bigr{)}
Γ{φ}σ\Gamma^{\prime}\{\Box\varphi\}_{\sigma} ∧⃝i=1m(σ:δi∨⃝∨⃝τσnτ:γi,τ)\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma:\Box\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right)
where nn is the smallest integer such that σn(Γ)\sigma\ast n\notin\mathcal{L}(\Gamma) and the SCNF
of Ap(Γ{φ,[φ]σn})A_{p}\bigl{(}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}\bigr{)} is ∧⃝i=1m(σn:δi∨⃝∨⃝τσnτ:γi,τ)\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma\ast n:\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right),
Γ{φ,[Δ]σn}\Gamma^{\prime}\{\Diamond\varphi,[\Delta]_{\sigma*n}\} Ap(Γ{φ,[Δ,φ]})A_{p}\bigl{(}\Gamma^{\prime}\{\Diamond\varphi,[\Delta,\varphi]\}\bigr{)}
Table 1: Recursive construction of Ap(Γ)A_{p}(\Gamma) for NK for Γ\Gamma that are not 𝖪{\sf K}-saturated.

In this section, we present our method of constructing nested uniform interpolants satisfying BNUIP for the calculus 𝖭𝖪{\sf NK}. It is based on Pitts’s method [24]. Interpolants Ap(Γ)A_{p}(\Gamma) are defined recursively on the basis of the terminating calculus from Fig. 1. If Γ\Gamma is not 𝖪{\sf K}-saturated, Ap(Γ)A_{p}(\Gamma) is defined recursively in Table 1 based on the form of Γ\Gamma. For rows 2–5, we assume that the formula displayed in the left column is not 𝖪{\sf K}-saturated in Γ\Gamma, whereas for φ\Diamond\varphi in the last row we assume it not to be 𝖪{\sf K}-saturated w.r.t. σn\sigma\ast n in Γ\Gamma.555Strictly speaking, this is a non-deterministic algorithm. Since the order does not affect our results, we do not specify it. However, it is more efficient to apply rows 1–2 of Table 1 first and row 5 last. Each row in the table corresponds to a rule in the proof search, where the left column in the table corresponds to the conclusion of a rule and the right column uses the premise(s) of the rule.

For 𝖪{\sf K}-saturated Γ\Gamma, we define Ap(Γ)A_{p}(\Gamma) recursively as follows:

Ap(Γ)\colonequals∨⃝σ:Γ𝖫𝗂𝗍{p,p¯}σ:∨⃝∨⃝τ(Γ)(ψ)τ:ψΓτ:Ap𝖿𝗈𝗋𝗆(τ:ψΓψ),A_{p}(\Gamma)\colonequals\mathop{{{{{\varovee}}}}}\limits_{\begin{subarray}{c}{\sigma:\ell}\in\Gamma\\ \ell\in{\sf Lit}\setminus\{p,\overline{p}\}\end{subarray}}\sigma:\ell\qquad\mathbin{\varovee}\qquad\mathop{{{{{\varovee}}}}}\limits_{\begin{subarray}{c}\tau\in\mathcal{L}(\Gamma)\\ (\exists\psi)\tau:\Diamond\psi\in\Gamma\end{subarray}}\tau:\Diamond A_{p}^{\sf form}\left(\bigvee\nolimits_{\tau:\Diamond\psi\in\Gamma}\psi\right), (1)

where Ap𝖿𝗈𝗋𝗆(Γ)\colonequals𝖿𝗈𝗋𝗆(Ap(Γ))A_{p}^{\sf form}(\Gamma)\colonequals{\sf form}\bigl{(}A_{p}(\Gamma)\bigr{)}. Since here we apply 𝖿𝗈𝗋𝗆{\sf form} to the multiformula Ap(Γ)A_{p}(\Gamma) with 1 being its only label, we have ,\mathcal{M},\mathcal{I}\models\mho iff ,(1)𝖿𝗈𝗋𝗆()\mathcal{M},\mathcal{I}(1)\models{\sf form}(\mho) for such multiformulas \mho. (As usual, we define the empty disjunction to be false, which in this format means ∨⃝\colonequals1:\mathop{{{{{\varovee}}}}}\limits\varnothing\colonequals 1:\bot.)

The construction of Ap(Γ)A_{p}(\Gamma) is well-defined (modulo a chosen order) because it terminates w.r.t. the following ordering on nested sequents. For a nested sequent Γ\Gamma, let d(Γ)d(\Gamma) be the number of its distinct diamond subformulas. Let \ll be the ordering in which the rules of 𝖭𝖪{\sf NK} terminate (see Lemma 2.9). Consider the lexicographical ordering based on the pair (d,)(d,\ll). For each row in Table 1, dd stays the same but the recursive calls are for premise(s) lower w.r.t. ordering \ll. The recursive call in (1) for 𝖪{\sf K}-saturated sequents, on the other hand, decreases dd because the set of diamond subformulas of τ:ψΓψ\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi is strictly smaller than that of Γ\Gamma. When d(Γ)=0d(\Gamma)=0 for a 𝖪{\sf K}-saturated Γ\Gamma, the second disjunct of (1) is empty and, thus, no new recursive calls are generated.

Example 3.21.

We use Lemmas 3.8 and 3.9 as necessary.

  1. 1.

    The algorithm for Ap(p,p¯)A_{p}(\Box p,\Box\overline{p}) calls the calculation of Ap(p,p¯,[p]11)A_{p}\left(\Box p,\Box\overline{p},[p]_{11}\right), which in turn calls Ap(p,p¯,[p]11,[p¯]12)A_{p}\left(\Box p,\Box\overline{p},[p]_{11},[\overline{p}]_{12}\right). The latter sequent is 𝖪{\sf K}-saturated, and the algorithm returns 1:∨⃝1:1:\bot\mathbin{\varovee}1:\bot, the first disjunct corresponding to the empty disjunction of literals other than pp and p¯\overline{p} and the second one representing the absent diamond formulas. Computing its SCNF we get Ap(p,p¯,[p]11,[p¯]12)1:∨⃝11:∨⃝12:A_{p}\left(\Box p,\Box\overline{p},[p]_{11},[\overline{p}]_{12}\right)\equiv 1:\bot\mathbin{\varovee}11:\bot\mathbin{\varovee}12:\bot. Applying the transformation from the penultimate row of Table 1, we first get

    Ap(p,p¯,[p]11)=1:∨⃝11:∨⃝1:1:∨⃝11:,A_{p}\left(\Box p,\Box\overline{p},[p]_{11}\right)=1:\bot\mathbin{\varovee}11:\bot\mathbin{\varovee}1:\Box\bot\equiv 1:\Box\bot\mathbin{\varovee}11:\bot,

    and finally Ap(p,p¯)=1:∨⃝1:1:A_{p}\left(\Box p,\Box\overline{p}\right)=1:\Box\bot\mathbin{\varovee}1:\Box\bot\equiv 1:\Box\bot. It is easy to check that 1:1:\Box\bot is indeed a bisimulation nested uniform interpolant of the nested sequent p,p¯\Box p,\Box\overline{p} w.r.t. pp, and, accordingly, \Box\bot is a uniform interpolant of the formula pp¯\Box p\lor\Box\overline{p}.

  2. 2.

    Consider the nested sequent Γ=p¯,qp,[q]\Gamma=\overline{p},\Diamond q\land\Diamond p,[q]. In the absence of boxes, the algorithm amounts to processing the 𝖪{\sf K}-saturated sequents in the leaves of the proof-search tree

      p¯,qp,q,[q]11\overline{p},\Diamond q\land\Diamond p,\Diamond q,[q]_{11}          p¯,qp,p,[q,p]11\overline{p},\Diamond q\land\Diamond p,\Diamond p,[q,p]_{11}       p¯,qp,p,[q]11\overline{p},\Diamond q\land\Diamond p,\Diamond p,[q]_{11}                        p¯,qp,[q]11\overline{p},\Diamond q\land\Diamond p,[q]_{11}

    We have

    Ap(p¯,qp,q,[q]11)\displaystyle A_{p}(\overline{p},\Diamond q\land\Diamond p,\Diamond q,[q]_{11}) =11:q∨⃝1:Ap𝖿𝗈𝗋𝗆(q)\displaystyle=11:q\mathbin{\varovee}1:\Diamond A_{p}^{\sf form}(q)
    Ap(p¯,qp,p,[q,p]11)\displaystyle A_{p}(\overline{p},\Diamond q\land\Diamond p,\Diamond p,[q,p]_{11}) =11:q∨⃝1:Ap𝖿𝗈𝗋𝗆(p).\displaystyle=11:q\mathbin{\varovee}1:\Diamond A_{p}^{\sf form}(p).

    Since formulas Ap𝖿𝗈𝗋𝗆(q)A^{\sf form}_{p}(q) and Ap𝖿𝗈𝗋𝗆(p)A^{\sf form}_{p}(p) can be simplified to qq and \bot respectively, putting everything together yields Ap(Γ)(11:q∨⃝1:q)∧⃝(11:q∨⃝1:)A_{p}(\Gamma)\equiv(11:q\mathbin{\varovee}1:\Diamond q)\mathbin{\varowedge}(11:q\mathbin{\varovee}1:\Diamond\bot), which is equivalent to 11:q11:q since \Diamond\bot can never be true. Again, it is easy to verify that 11:q11:q is a bisimulation nested uniform interpolant of p¯,qp,[q]11\overline{p},\Diamond q\land\Diamond p,[q]_{11} w.r.t. pp. For instance, if qq is false at (11)\mathcal{I}(11), then one can falsify the sequent by making pp true at (1)\mathcal{I}(1) and false everywhere else in the irreflexive intransitive finite treelike model.

Theorem 3.22.

The nested calculus 𝖭𝖪{\sf NK} has the BNUIP.

Proof 3.23.

It is easy to see that BNUIP(i) is satisfied. To prove BNUIP(ii), let Γ\Gamma be a nested sequent and \mathcal{I} be a multiworld interpretation of Γ\Gamma into a 𝖪{\sf K}-model =(W,R,V)\mathcal{M}=(W,R,V) such that ,Ap(Γ)\mathcal{M},\mathcal{I}\models A_{p}(\Gamma) (by BNUIP(i), \mathcal{I} is suitable for Ap(Γ)A_{p}(\Gamma)). We show ,Γ\mathcal{M},\mathcal{I}\models\Gamma by induction on the nested sequent ordering (d,)(d,\ll). Considering the construction of Ap(Γ)A_{p}(\Gamma), we treat the cases of Table 1 first and deal with the case of 𝖪{\sf K}-saturated Γ\Gamma last.

  • For rows 1–2 of Table 1, both Γ=Γ{p,p¯}σ\Gamma=\Gamma^{\prime}\{p,\overline{p}\}_{\sigma} and Γ=Γ{}σ\Gamma=\Gamma^{\prime}\{\top\}_{\sigma} hold in all models, under all interpretations.

  • For row 3, if Γ=Γ{φψ}σ\Gamma=\Gamma^{\prime}\{\varphi\lor\psi\}_{\sigma} and ,Ap(Γ{φψ,φ,ψ}σ)\mathcal{M},\mathcal{I}\models A_{p}(\Gamma^{\prime}\{\varphi\lor\psi,\varphi,\psi\}_{\sigma}), by induction hypothesis, we have ,Γ{φψ,φ,ψ}σ\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\varphi\lor\psi,\varphi,\psi\}_{\sigma}. Then ,Γ{φψ}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\varphi\lor\psi\} since either of ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\varphi or ,(σ)ψ\mathcal{M},\mathcal{I}(\sigma)\models\psi implies ,(σ)φψ\mathcal{M},\mathcal{I}(\sigma)\models\varphi\lor\psi.

  • For row 4, if Γ=Γ{φψ}\Gamma=\Gamma^{\prime}\{\varphi\land\psi\} and ,Ap(Γ{φψ,φ})∧⃝Ap(Γ{φψ,ψ})\mathcal{M},\mathcal{I}\models A_{p}(\Gamma^{\prime}\{\varphi\land\psi,\varphi\})\mathbin{\varowedge}A_{p}(\Gamma^{\prime}\{\varphi\land\psi,\psi\}), by induction hypothesis, ,Γ{φψ,φ}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\varphi\land\psi,\varphi\} and ,Γ{φψ,ψ}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\varphi\land\psi,\psi\}. Hence, ,Γ{φψ}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\varphi\land\psi\}.

  • For row 6, if Γ=Γ{φ,[Δ]σn}\Gamma=\Gamma^{\prime}\{\Diamond\varphi,[\Delta]_{\sigma\ast n}\} and ,Ap(Γ{φ,[Δ,φ]σn})\mathcal{M},\mathcal{I}\models A_{p}(\Gamma^{\prime}\{\Diamond\varphi,[\Delta,\varphi]_{\sigma\ast n}\}), by induction hypothesis, ,Γ{φ,[Δ,φ]σn}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\Diamond\varphi,[\Delta,\varphi]_{\sigma\ast n}\}. Since ,(σn)φ\mathcal{M},\mathcal{I}(\sigma\ast n)\models\varphi implies ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\Diamond\varphi, it follows that ,Γ{φ,[Δ]σn}\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\Diamond\varphi,[\Delta]_{\sigma\ast n}\}.

  • For row 5, let Γ=Γ{φ}σ\Gamma=\Gamma^{\prime}\{\Box\varphi\}_{\sigma}, and Ap(Γ{φ,[φ]σn})∧⃝i=1m(σn:δi∨⃝∨⃝τσnτ:γi,τ)A_{p}\bigl{(}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}\bigr{)}\equiv\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma\ast n:\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right) for some σn(Γ)\sigma\ast n\notin\mathcal{L}(\Gamma), and

    ,∧⃝i=1m(σ:δi∨⃝∨⃝τσnτ:γi,τ).\mathcal{M},\mathcal{I}\models\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma:\Box\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right). (2)

    For any vv such that (σ)Rv\mathcal{I}(\sigma)Rv, define a multiworld interpetation v\colonequals{(σn,v)}\mathcal{I}_{v}\colonequals\mathcal{I}\sqcup\{(\sigma\ast n,v)\} of Γ{φ,[φ]σn}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\} into \mathcal{M}. It follows from (2) that, for each ii, either ,v(τ)γi,τ\mathcal{M},\mathcal{I}_{v}(\tau)\models\gamma_{i,\tau} for some τ(Γ)\tau\in\mathcal{L}(\Gamma) or ,v(σn)δi\mathcal{M},\mathcal{I}_{v}(\sigma\ast n)\models\delta_{i}, meaning that ,vAp(Γ{φ,[φ]σn})\mathcal{M},\mathcal{I}_{v}\models A_{p}(\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}). By induction hypothesis, ,vΓ{φ,[φ]σn}\mathcal{M},\mathcal{I}_{v}\models\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\} whenever (σ)Rv\mathcal{I}(\sigma)Rv. Clearly, ,Γ\mathcal{M},\mathcal{I}\models\Gamma if ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\Box\varphi. Otherwise, there exists a vv such that (σ)Rv\mathcal{I}(\sigma)Rv and ,v⊧̸φ\mathcal{M},v\not\models\varphi. For this world ,vΓ{φ,[φ]σn}\mathcal{M},\mathcal{I}_{v}\models\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\} implies ,vΓ{φ}σ\mathcal{M},\mathcal{I}_{v}\models\Gamma^{\prime}\{\Box\varphi\}_{\sigma}, which yields ,Γ\mathcal{M},\mathcal{I}\models\Gamma because v\mathcal{I}_{v} agrees with \mathcal{I} on all labels from Γ\Gamma.

  • Finally, let Γ\Gamma be 𝖪{\sf K}-saturated and ,Ap(Γ)\mathcal{M},\mathcal{I}\models A_{p}(\Gamma) from (1). Clearly, ,Γ\mathcal{M},\mathcal{I}\models\Gamma if we have ,(σ)\mathcal{M},\mathcal{I}(\sigma)\models\ell for some σ:Γ\sigma:\ell\in\Gamma. Thus, it only remains to consider the case when ,(τ)Ap𝖿𝗈𝗋𝗆(τ:ψΓψ)\mathcal{M},\mathcal{I}(\tau)\models\Diamond A_{p}^{\sf form}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right) for some τ(Γ)\tau\in\mathcal{L}(\Gamma). Then ,vAp𝖿𝗈𝗋𝗆(τ:ψΓψ)\mathcal{M},v\models A_{p}^{\sf form}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right) for some vv such that (τ)Rv\mathcal{I}(\tau)Rv and, accordingly, ,𝒥Ap(τ:ψΓψ)\mathcal{M},\mathcal{J}\models A_{p}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right) for 𝒥\colonequals{(1,v)}\mathcal{J}\colonequals\{(1,v)\}. By induction hypothesis (for smaller dd), ,𝒥τ:ψΓψ\mathcal{M},\mathcal{J}\models\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi, and, hence, ,vψ\mathcal{M},v\models\psi for some τ:ψΓ\tau:\Diamond\psi\in\Gamma. Now ,Γ\mathcal{M},\mathcal{I}\models\Gamma follows from (τ)Rv\mathcal{I}(\tau)Rv. This case concludes the proof for (ii).

It only remains to prove BNUIP(iii). Let \mathcal{I} be a multiworld interpretation of Γ\Gamma into a 𝖪{\sf K}-model \mathcal{M} such that ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma). We must find another multiworld interpretation \mathcal{I}^{\prime} into some 𝖪{\sf K}-model \mathcal{M}^{\prime} such that (,)p(,)(\mathcal{M}^{\prime},\mathcal{I}^{\prime})\sim_{p}(\mathcal{M},\mathcal{I}) and ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma. We construct these \mathcal{M}^{\prime} and \mathcal{I}^{\prime} while simultaneously proving BNUIP(iii) by induction on the lexicographic order (d,)(d,\ll). Recall that 𝖪{\sf K}-models (and their submodels) are irreflexive intransitive trees.

  • Let Γ\Gamma be 𝖪{\sf K}-saturated and ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma) for Ap(Γ)A_{p}(\Gamma) from (1). We first briefly sketch the construction and the proof. The labeled literals σ:\sigma:\ell from (1) are used to determine the requisite truth values of atomic propositions other than pp in the worlds from Range()\mathrm{Range}(\mathcal{I}). With that in place, saturation conditions typically take care of the appropriate truth values for compound formulas, with the exception of diamond formulas. By contrast, truth values of pp are not (and cannot be) specified in Ap(Γ)A_{p}(\Gamma). To refute Γ\Gamma, they must generally be adjusted on a world-by-world basis, which prompts the additional requirement that \mathcal{I}^{\prime} be injective666It must be injective as a function, i.e., (σ)=(τ)\mathcal{I}^{\prime}(\sigma)=\mathcal{I}^{\prime}(\tau) implies σ=τ\sigma=\tau. in order to avoid incompatible requirements on the truth value of pp in a world (σ)=(τ)\mathcal{I}(\sigma)=\mathcal{I}(\tau) that originates from distinct nodes σ\sigma and τ\tau. Finally, for φ\Diamond\varphi to be false at a world wRange()w\in\mathrm{Range}(\mathcal{I}), one must falsify φ\varphi in all children of ww, including those outside Range()\mathrm{Range}(\mathcal{I}). This is achieved by replacing subtrees rooted in these “out-of-range” children with bisimilar models obtained by the induction hypothesis from the right disjunct of (1), as schematically depicted in Fig. 2. We now describe it in detail and prove that it falsifies Γ\Gamma.

    1. (1)

      First, we make the interpretation injective. It is easy to see (though tedious to describe in detail) that by a breadth-first recursion on nodes σ\sigma in Γ\Gamma, one can duplicate (σn)\mathcal{M}_{\mathcal{I}(\sigma\ast n)} according to Def. 2.17 whenever (σn)=(σm)\mathcal{I}(\sigma*n)=\mathcal{I}(\sigma\ast m) for some m<nm<n to obtain a model 𝒩\mathcal{N} and an injective multiworld interpretation 𝒥\mathcal{J} of Γ\Gamma into it such that (𝒩,𝒥)p(,)(\mathcal{N},\mathcal{J})\sim_{p}(\mathcal{M},\mathcal{I}). Thus, 𝒥(σ)𝒥(τ)\mathcal{J}(\sigma)\neq\mathcal{J}(\tau) whenever στ\sigma\neq\tau and 𝒩,𝒥⊧̸Ap(Γ)\mathcal{N},\mathcal{J}\not\models A_{p}(\Gamma) by Lemma 3.16.

      (σ)\mathcal{I}(\sigma)vvv\mathcal{M}_{v} (σn)\mathcal{I}(\sigma*n)(σm)\mathcal{I}(\sigma*m)w\mathcal{M}_{w} in \mathcal{M}
      (σ)\mathcal{I}^{\prime}(\sigma)ρσ,v\rho_{\sigma,v}𝒩σ,v\mathcal{N}_{\sigma,v} (σn)\mathcal{I}^{\prime}(\sigma*n)w\mathcal{M}_{w} (σm)\mathcal{I}^{\prime}(\sigma*m)wc\mathcal{M}^{c}_{w} in \mathcal{M}^{\prime}\leadsto  
      Figure 2: Main transformations for constructing model \mathcal{M}^{\prime}: circles represent worlds in 𝖱𝖺𝗇𝗀𝖾(){\sf Range}(\mathcal{I}).
    2. (2)

      Then we deal with out-of-range children. A model 𝒩\mathcal{N}^{\prime} is constructed from 𝒩\mathcal{N} by applying the following \Diamond-processing step for each node τ(Γ)\tau\in\mathcal{L}(\Gamma) that contains at least one formula of the form φ\Diamond\varphi (nodes can be chosen in any order). Start by setting 𝒩0\colonequals𝒩\mathcal{N}^{0}\colonequals\mathcal{N} and j\colonequals0j\colonequals 0:

      • \Diamond-processing step for τ\tau: Since 𝒩j,𝒥⊧̸Ap(Γ)\mathcal{N}^{j},\mathcal{J}\not\models A_{p}(\Gamma), it follows from the second disjunct in (1) that 𝒩j,𝒥(τ)⊧̸Ap𝖿𝗈𝗋𝗆(τ:ψΓψ)\mathcal{N}^{j},\mathcal{J}(\tau)\not\models\Diamond A_{p}^{\sf form}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right). Thus, 𝒩j,v⊧̸Ap𝖿𝗈𝗋𝗆(τ:ψΓψ)\mathcal{N}^{j},v\not\models A_{p}^{\sf form}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right) for any child vv of 𝒥(τ)\mathcal{J}(\tau) in 𝒩j\mathcal{N}^{j}, and, accordingly, 𝒩vj,v⊧̸Ap(τ:ψΓψ)\mathcal{N}^{j}_{v},\mathcal{I}_{v}\not\models A_{p}\left(\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi\right) for the multiworld interpretation v\colonequals{(1,v)}\mathcal{I}_{v}\colonequals\{(1,v)\} of sequent τ:ψΓψ\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi into the subtree 𝒩vj\mathcal{N}^{j}_{v} of 𝒩j\mathcal{N}^{j} with root vv. By the induction hypothesis for a smaller dd, there exists a 𝖪{\sf K}-model 𝒩τ,v\mathcal{N}_{\tau,v} with root ρτ,v\rho_{\tau,v} such that (𝒩vj,v)p(𝒩τ,v,ρτ,v)(\mathcal{N}^{j}_{v},v)\sim_{p}(\mathcal{N}_{\tau,v},\rho_{\tau,v}) and 𝒩τ,v,ρτ,v⊧̸τ:ψΓψ\mathcal{N}_{\tau,v},\rho_{\tau,v}\not\models\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi. Let 𝒩j+1\mathcal{N}^{j+1} be the result of replacing each subtree 𝒩vj\mathcal{N}^{j}_{v} for children vv of 𝒥(τ)\mathcal{J}(\tau) not in 𝖱𝖺𝗇𝗀𝖾(𝒥){\sf Range}(\mathcal{J}) with 𝒩τ,v\mathcal{N}_{\tau,v} in 𝒩j\mathcal{N}^{j} according to Def. 2.17. Note that all these subtrees are disjoint because the models are intransitive trees and, hence, these replacements do not interfere with one another. Note also that since 𝖱𝖺𝗇𝗀𝖾(𝒥){\sf Range}(\mathcal{J}) is downward closed and the roots of the replaced subtrees are outside, no world from the range is modified. Thus, 𝒥\mathcal{J} remains an injective interpretation into 𝒩j+1\mathcal{N}^{j+1}. Finally, it follows from Lemma 2.18 that (𝒩j,𝒥)p(𝒩j+1,𝒥)(\mathcal{N}^{j},\mathcal{J})\sim_{p}(\mathcal{N}^{j+1},\mathcal{J}). Hence, 𝒩j+1,𝒥⊧̸Ap(Γ)\mathcal{N}^{j+1},\mathcal{J}\not\models A_{p}(\Gamma).

      Let 𝒩=(W,R,V)\mathcal{N}^{\prime}=(W^{\prime},R^{\prime},V^{\prime}) be the model obtained after replacements for all τ\tau’s are completed (again they do not interfere with each other). Then (𝒩,𝒥)p(𝒩,𝒥)(\mathcal{N},\mathcal{J})\sim_{p}(\mathcal{N}^{\prime},\mathcal{J}) and, for each out-of-range child vv of 𝒥(τ)\mathcal{J}(\tau) in 𝒩\mathcal{N}, the world ρτ,v\rho_{\tau,v} is a child of 𝒥(τ)\mathcal{J}(\tau) in 𝒩\mathcal{N}^{\prime} and 𝒩,ρτ,v⊧̸τ:ψΓψ\mathcal{N}^{\prime},\rho_{\tau,v}\not\models\bigvee_{\tau:\Diamond\psi\in\Gamma}\psi. This accounts for all children of 𝒥(τ)\mathcal{J}(\tau) in 𝒩\mathcal{N}^{\prime}.

    3. (3)

      It remains to adjust the truth values of pp. We define \colonequals(W,R,Vp)\mathcal{M}^{\prime}\colonequals(W^{\prime},R^{\prime},V^{\prime}_{p}) by modifying the valuation VV^{\prime} of 𝒩\mathcal{N}^{\prime} as follows:

      Vp(q)\colonequals{V(q)if qp;V(p)(W𝖱𝖺𝗇𝗀𝖾(𝒥)){vWσ(v=𝒥(σ)&σ:p¯Γ)}if q=p.V_{p}^{\prime}(q)\colonequals\begin{cases}V^{\prime}(q)&\text{if $q\neq p$;}\\ V^{\prime}(p)\cap\bigl{(}W^{\prime}\setminus{\sf Range}(\mathcal{J})\bigr{)}\sqcup\{v\in W^{\prime}\mid\exists\sigma(v=\mathcal{J}(\sigma)\&\sigma\colon\overline{p}\in\Gamma)\}&\text{if $q=p$.}\end{cases}

      For \colonequals𝒥\mathcal{I}^{\prime}\colonequals\mathcal{J}, it immediately follows from the definition that

      ,(σ)⊧̸p¯\displaystyle\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models\overline{p} whenever σ:p¯Γ;\displaystyle\text{ whenever }\sigma:\overline{p}\in\Gamma; (3)
      ,(σ)⊧̸p\displaystyle\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models p whenever σ:pΓ\displaystyle\text{ whenever }\sigma:p\in\Gamma (4)

      (the latter follows from the injectivity of \mathcal{I}^{\prime} and Γ\Gamma being 𝖪{\sf K}-saturated). Moreover, since subtrees ρτ,v\mathcal{M}^{\prime}_{\rho_{\tau,v}} are disjoint from 𝖱𝖺𝗇𝗀𝖾(){\sf Range}(\mathcal{I}^{\prime}),

      ,ρτ,v⊧̸ψ whenever τ:ψΓ.\mathcal{M}^{\prime},\rho_{\tau,v}\not\models\psi\text{ whenever $\tau:\Diamond\psi\in\Gamma$}. (5)

    After these three steps, we have a model (,)p(𝒩,𝒥)p(𝒩,𝒥)p(,)(\mathcal{M}^{\prime},\mathcal{I}^{\prime})\sim_{p}(\mathcal{N}^{\prime},\mathcal{J})\sim_{p}(\mathcal{N},\mathcal{J})\sim_{p}(\mathcal{M},\mathcal{I}) that satisfies (3), (4), and (5). It remains to prove that ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma by showing that ,(σ)⊧̸φ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models\varphi for all σ:φΓ\sigma:\varphi\in\Gamma, which is done by induction on the structure of φ\varphi. For φ=\varphi=\bot this is trivial, while \top cannot occur in a 𝖪{\sf K}-saturated sequent. For φ{p,p¯}\varphi\in\{p,\overline{p}\}, this follows from (3) and (4). For any other literal φ𝖫𝗂𝗍{p,p¯}\varphi\in{\sf Lit}\setminus\{p,\overline{p}\}, according to (1), ,(σ)⊧̸φ\mathcal{M},\mathcal{I}(\sigma)\not\models\varphi because ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma), which transfers to \mathcal{M}^{\prime} and \mathcal{I}^{\prime} by bisimilarity up to pp. For compound formulas other that diamonds, the statement follows by the saturation of Γ\Gamma. For instance, if σ:ψΓ\sigma:\Box\psi\in\Gamma, we get σn:ψΓ\sigma\ast n:\psi\in\Gamma for some label σn\sigma\ast n by 𝖪{\sf K}-saturation. By induction hypothesis, ,(σn)⊧̸ψ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma\ast n)\not\models\psi. Since (σ)R(σn)\mathcal{I}^{\prime}(\sigma)R^{\prime}\mathcal{I}^{\prime}(\sigma\ast n), we conclude ,(σ)⊧̸ψ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models\Box\psi as required. Finally, let σ:ψΓ\sigma:\Diamond\psi\in\Gamma. To falsify ψ\Diamond\psi at (σ)\mathcal{I}^{\prime}(\sigma), we need to show that ,u⊧̸ψ\mathcal{M}^{\prime},u\not\models\psi whenever (σ)Ru\mathcal{I}^{\prime}(\sigma)R^{\prime}u. If u=(σn)u=\mathcal{I}^{\prime}(\sigma\ast n) for some label σn(Γ)\sigma\ast n\in\mathcal{L}(\Gamma), saturation ensures that σn:ψΓ\sigma\ast n:\psi\in\Gamma, hence, ,u⊧̸ψ\mathcal{M}^{\prime},u\not\models\psi by induction hypothesis. The only other children of (σ)\mathcal{I}^{\prime}(\sigma) are u=ρσ,vu=\rho_{\sigma,v}, for which ,u⊧̸ψ\mathcal{M}^{\prime},u\not\models\psi follows from (5). This completes the proof of BNUIP(iii) for 𝖪{\sf K}-saturated sequents.

  • Now we treat all sequents that are not 𝖪{\sf K}-saturated based on Table 1. Ap(Γ{}σ)=Ap(Γ{p,p¯}σ)=σ:A_{p}(\Gamma^{\prime}\{\top\}_{\sigma})=A_{p}(\Gamma^{\prime}\{p,\overline{p}\}_{\sigma})=\sigma:\top, which cannot be false, thus, BNUIP(iii) for them is vacuously true.

  • For non-saturated Γ{φψ}\Gamma^{\prime}\{\varphi\lor\psi\}, Γ{φψ}\Gamma^{\prime}\{\varphi\land\psi\}, and Γ{φ,[Δ]}\Gamma^{\prime}\{\Diamond\varphi,[\Delta]\}, the requisite statement easily follows by induction hypothesis. For instance, for the last of the three, one obtains (,)p(,)(\mathcal{M}^{\prime},\mathcal{I}^{\prime})\sim_{p}(\mathcal{M},\mathcal{I}) such that ,⊧̸Γ{φ,[Δ,φ]}\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma^{\prime}\{\Diamond\varphi,[\Delta,\varphi]\}. Since Γ{φ,[Δ]}\Gamma^{\prime}\{\Diamond\varphi,[\Delta]\} consists of some of these formulas in the same nodes, clearly it is also falsified by ,\mathcal{M}^{\prime},\mathcal{I}^{\prime}.

  • For the remaining case, assume ,⊧̸Ap(Γ{φ}σ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma^{\prime}\{\Box\varphi\}_{\sigma}), i.e.,

    ,⊧̸∧⃝i=1m(σ:δi∨⃝∨⃝τσnτ:γi,τ)\mathcal{M},\mathcal{I}\not\models\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma:\Box\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right) (6)

    where

    Ap(Γ{φ,[φ]σn})∧⃝i=1m(σn:δi∨⃝∨⃝τσnτ:γi,τ).A_{p}\bigl{(}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}\bigr{)}\equiv\mathop{{{{{\varowedge}}}}}\limits_{i=1}^{m}\left(\sigma\ast n:\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits_{\tau\neq\sigma\ast n}\tau:\gamma_{i,\tau}\right). (7)

    By (6), for some ii, we have ,(σ)⊧̸δi\mathcal{M},\mathcal{I}(\sigma)\not\models\Box\delta_{i} and ,(τ)⊧̸γi,τ\mathcal{M},\mathcal{I}(\tau)\not\models\gamma_{i,\tau} for all τσn\tau\neq\sigma\ast n. The former means that ,v⊧̸δi\mathcal{M},v\not\models\delta_{i} for some vv such that (σ)Rv\mathcal{I}(\sigma)Rv. Therefore, a multiworld interpretation 𝒥\colonequals{(σn,v)}\mathcal{J}\colonequals\mathcal{I}\sqcup\{(\sigma\ast n,v)\} of Γ{φ,[φ]σn}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\} into \mathcal{M} falsifies (7), and, by induction hypothesis, there is a multiworld interpretation 𝒥\mathcal{J}^{\prime} into a 𝖪{\sf K}-model \mathcal{M}^{\prime} such that (,𝒥)p(,𝒥)(\mathcal{M}^{\prime},\mathcal{J}^{\prime})\sim_{p}(\mathcal{M},\mathcal{J}) and ,𝒥⊧̸Γ{φ,[φ]σn}\mathcal{M}^{\prime},\mathcal{J}^{\prime}\not\models\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}. For \colonequals𝒥𝖣𝗈𝗆()\mathcal{I}^{\prime}\colonequals\mathcal{J}^{\prime}\upharpoonright{\sf Dom}(\mathcal{I}), it is easy to see that (,)p(,)(\mathcal{M},\mathcal{I})\sim_{p}(\mathcal{M}^{\prime},\mathcal{I}^{\prime}) and ,⊧̸Γ{φ}σ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma^{\prime}\{\Box\varphi\}_{\sigma} because all formulas from Γ{φ}σ\Gamma^{\prime}\{\Box\varphi\}_{\sigma} are present in Γ{φ,[φ]σn}\Gamma^{\prime}\{\Box\varphi,[\varphi]_{\sigma\ast n}\}.

This concludes the proof of BNUIP(iii), as well as of BNUIP.

This implies the UIP for 𝖪{\sf K}, first proved by Ghilardi [12].

Corollary 3.24.

Logic 𝖪{\sf K} has the uniform interpolation property.

Remark 3.25.

Note that the structure of models as irreflexive intransitive trees was substantially used to ensure that the replacements applied to the original model do not interfere with each other. The fact that each world has at most one parent provided the modularity necessary to implement various requirements on the sequent-refuting model.

Example 3.26.

In Example 3.21 we saw that Ap(p,p¯)1:A_{p}(\Box p,\Box\overline{p})\equiv 1:\Box\bot. We now use this example to demonstrate the importance of injectivity in BNUIP(iii). Indeed, suppose ,⊧̸1:\mathcal{M},\mathcal{I}\not\models 1:\Box\bot, i.e., (1)\mathcal{I}(1) has at least one child. Assume this is the only child, as in a model depicted on the left:

(1)\mathcal{I}(1)𝒥(1)\mathcal{J}(1)𝒥(11)\mathcal{J}(11)𝒥(12)\mathcal{J}(12)

For a saturation p,p¯,[p]11,[p¯]12\Box p,\Box\overline{p},[p]_{11},[\overline{p}]_{12} of this sequent, we found an interpolant in SCNF: namely, 1:∨⃝11:∨⃝12:1:\bot\mathbin{\varovee}11:\bot\mathbin{\varovee}12:\bot. A multiworld interpretation 𝒥\mathcal{J} mapping both 1111 and 1212 to the only child of 𝒥(1)\colonequals(1)\mathcal{J}(1)\colonequals\mathcal{I}(1) yields the picture on the right. Clearly, the SCNF is false: ,𝒥⊧̸1:∨⃝11:∨⃝12:\mathcal{M},\mathcal{J}\not\models 1:\bot\mathbin{\varovee}11:\bot\mathbin{\varovee}12:\bot. But, without forcing 𝒥\mathcal{J} to be injective, it is impossible to make p,p¯\Box p,\Box\overline{p} false at 𝒥(1)\mathcal{J}(1): whichever truth value pp has at 𝒥(11)\mathcal{J}(11), it makes one of the boxes true.

3.2 Uniform interpolation for 𝖣{\sf D} and 𝖳{\sf T}

Γ\Gamma matches Ap(Γ)A_{p}(\Gamma) equals
Γ{φ}\Gamma^{\prime}\{\Diamond\varphi\} in logic 𝖳{\sf T} Ap(Γ{φ,φ})A_{p}(\Gamma^{\prime}\{\Diamond\varphi,\varphi\})
Γ{φ}σ\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma} in logic 𝖣{\sf D} ∨⃝i=1m(σ:δi∧⃝∧⃝τσ1τ:γi,τ)\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma:\Diamond\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right) where the SDNF of
Ap(Γ{φ,[φ]σ1})A_{p}(\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\}) is ∨⃝i=1m(σ1:δi∧⃝∧⃝τσ1τ:γi,τ)\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma\ast 1:\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right)
Table 2: Additional recursive rules for constructing Ap(Γ)A_{p}(\Gamma) for Γ\Gamma that are not 𝖳{\sf T}-saturated (top row) or not 𝖣{\sf D}-saturated (bottom row).

The proof for 𝖪{\sf K} can be adjusted to prove the same result for 𝖣{\sf D} and 𝖳{\sf T}.

Theorem 3.27.

The nested sequent calculi 𝖭𝖣{\sf ND} and 𝖭𝖳{\sf NT} have the BNUIP.

Proof 3.28.

We follow the structure of the proof of Theorem 3.22 for 𝖪{\sf K} and only describe deviations from it. If Γ\Gamma is not 𝖣{\sf D}-saturated (𝖳{\sf T}-saturated), then cases in Table 1 are appended with the bottom row (top row) of Table 2, which is applied only if φ\Diamond\varphi is not 𝖣{\sf D}-saturated (𝖳{\sf T}-saturated) in Γ\Gamma. For 𝖣{\sf D}-/𝖳{\sf T}-saturated Γ\Gamma, we define Ap(Γ)A_{p}(\Gamma) by (1) as in the previous section. BNUIP(i) is clearly satisfied by either row in Table 2.

Let us first show BNUIP(ii) for 𝖭𝖳{\sf NT}. Although 𝖳{\sf T}-models are reflexive, this does not affect the reasoning for either saturated sequents or non-saturated box formulas. The only new case is applying the top row of Table 2 to a non-𝖳{\sf T}-saturated σ:φ\sigma:\Diamond\varphi in Γ\Gamma. Assume ,Ap(Γ{φ,φ}σ)\mathcal{M},\mathcal{I}\models A_{p}(\Gamma^{\prime}\{\Diamond\varphi,\varphi\}_{\sigma}) for a 𝖳{\sf T}-model \mathcal{M}. By induction hypothesis, ,Γ{φ,φ}σ\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\Diamond\varphi,\varphi\}_{\sigma}. Since ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\varphi implies ,(σ)φ\mathcal{M},\mathcal{I}(\sigma)\models\Diamond\varphi by reflexivity, the desired ,Γ{φ}σ\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma} follows.

For BNUIP(iii) for 𝖳{\sf T}-saturated sequents, we have to modify the construction in step (1) on p. 1 of an injective multiworld interpretation 𝒥\mathcal{J} into a new 𝖳{\sf T}-model 𝒩\mathcal{N} out of the given \mathcal{I} into \mathcal{M} where ,⊧̸Ap(Γ)\mathcal{M},\mathcal{I}\not\models A_{p}(\Gamma). In the case of 𝖪{\sf K}, the breadth-first order of injectifying the interpretations of sequent nodes could only yield one situation of σn\sigma\ast n being conflated with some already processed τ\tau: namely, when τ=σm\tau=\sigma\ast m is a sibling. This can still happen for 𝖳{\sf T}-models and is processed the same way. But, due to reflexivity, there is now another possibility: conflating with the parent τ=σ\tau=\sigma. In this case, cloning is used (see Fig. 4) instead of or in addition to duplication, which produces a bisimilar 𝖳{\sf T}-model by Lemma 2.18. Having intransitive trees that are reflexive rather than irreflexive in step (2) on p. 2 does not affect the argument. The proof that ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma for the given 𝖳{\sf T}-saturated Γ\Gamma in step (3) on p. 3 requires an adjustment only for the case of σ:ψΓ\sigma:\Diamond\psi\in\Gamma. It is additionally necessary to show that ,(σ)⊧̸ψ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models\psi for the reflexive loop at (σ)\mathcal{I}^{\prime}(\sigma). This is resolved by observing that σ:ψΓ\sigma:\psi\in\Gamma due to 𝖳{\sf T}-saturation and, hence, ψ\psi must also be false in (σ)\mathcal{I}^{\prime}(\sigma) by induction hypothesis.

(σn)\mathcal{I}(\sigma*n)(σ)\mathcal{I}(\sigma)w\mathcal{M}_{w}in \mathcal{M}
(σ)\mathcal{I}^{\prime}(\sigma)w\mathcal{M}_{w}(σn)\mathcal{I}^{\prime}(\sigma*n)wc\mathcal{M}^{c}_{w}in \mathcal{M}^{\prime}
Figure 3: Additional transformation for constructing 𝖳{\sf T}-model \mathcal{M}^{\prime} for reflexive nodes: cloning.

Finally, for BNUIP(iii) for non-𝖳{\sf T}-saturated sequents, we gain a new case when the top row of Table 2 is used, but it is clear that ,⊧̸Γ{φ,φ}\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma^{\prime}\{\Diamond\varphi,\varphi\} obtained by induction hypothesis directly implies ,⊧̸Γ{φ}\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma^{\prime}\{\Diamond\varphi\}. This completes the proof of BNUIP for 𝖭𝖳{\sf NT}.

For BNUIP(ii) for 𝖭𝖣{\sf ND}, the only new case is applying the bottom row of Table 2 to a non-𝖣{\sf D}-saturated σ:φ\sigma:\Diamond\varphi in Γ=Γ{φ}σ\Gamma=\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma}. Let

,∨⃝i=1m(σ:δi∧⃝∧⃝τσ1τ:γi,τ)\mathcal{M},\mathcal{I}\models\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma:\Diamond\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right)

for some multiworld interpretation \mathcal{I} into a 𝖣{\sf D}-model =(W,R,V)\mathcal{M}=(W,R,V) where

Ap(Γ{φ,[φ]σ1})∨⃝i=1m(σ1:δi∧⃝∧⃝τσ1τ:γi,τ).A_{p}(\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\})\equiv\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma\ast 1:\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right).

Then, for some ii, we have ,(τ)γi,τ\mathcal{M},\mathcal{I}(\tau)\models\gamma_{i,\tau} for all τ(Γ)\tau\in\mathcal{L}(\Gamma) and ,(σ)δi\mathcal{M},\mathcal{I}(\sigma)\models\Diamond\delta_{i}. Thus, ,vδi\mathcal{M},v\models\delta_{i} for some vv such that (σ)Rv\mathcal{I}(\sigma)Rv. Since φ\Diamond\varphi is not 𝖣{\sf D}-saturated in Γ{φ}σ\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma}, it follows that v\colonequals{(σ1,v)}\mathcal{I}_{v}\colonequals\mathcal{I}\sqcup\{(\sigma\ast 1,v)\} is a multiworld interpretation of Γ{φ,[φ]σ1}\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\} into \mathcal{M} such that ,vAp(Γ{φ,[φ]σ1})\mathcal{M},\mathcal{I}_{v}\models A_{p}(\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\}). By induction hypothesis, ,vΓ{φ,[φ]σ1}\mathcal{M},\mathcal{I}_{v}\models\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\}, from which it easily follows that ,Γ{φ}σ\mathcal{M},\mathcal{I}\models\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma}.

(σn)\mathcal{I}(\sigma*n)(σnk)\mathcal{I}(\sigma*n*k)(σm)\mathcal{I}(\sigma*m)(σ)\mathcal{I}(\sigma)in \mathcal{M}
i(σ)\mathcal{I}_{i}(\sigma)i(σn)\mathcal{I}_{i}(\sigma*n)i(σnk)\mathcal{I}_{i}(\sigma*n*k)wσnw_{\sigma*n}i(σm)\mathcal{I}_{i}(\sigma*m)wσmw_{\sigma*m}in i\mathcal{M}_{i}
Figure 4: Additional transformation for constructing 𝖣{\sf D}-model i\mathcal{M}_{i} for reflexive leaves.

For BNUIP(iii) for 𝖣{\sf D}-saturated sequent, we must change step (1) to preserve 𝖣{\sf D}-models. By Lemma 2.18, duplication used for 𝖪{\sf K} preserves 𝖣{\sf D}-models when applied to non-leaves of 𝖣{\sf D}-models because they are irreflexive. Now consider the case when w=(σ)w=\mathcal{I}(\sigma) is a leaf of a model =(W,R,V)\mathcal{M}=(W,R,V), but node σ\sigma has children in the sequent tree, which \mathcal{I} can only map to ww. To ensure injectivity, we construct an intermediate model i\mathcal{M}_{i} separating σ\sigma from its children as follows (see Fig. 4):

Wi\displaystyle W_{i} \colonequalsW{wσnσn(Γ)}\displaystyle\colonequals W\sqcup\{w_{\sigma\ast n}\mid\sigma\ast n\in\mathcal{L}(\Gamma)\}
Ri\displaystyle R_{i} \colonequalsR{(w,w)}{(w,wσn),(wσn,wσn)σn(Γ)}\displaystyle\colonequals R\setminus\{(w,w)\}\sqcup\{(w,w_{\sigma\ast n}),(w_{\sigma\ast n},w_{\sigma\ast n})\mid\sigma\ast n\in\mathcal{L}(\Gamma)\}
Vi(q)\displaystyle V_{i}(q) \colonequals{V(q){wσnσn(Γ)}if wV(q),V(q)if wV(q).\displaystyle\colonequals\begin{cases}V(q)\sqcup\{w_{\sigma\ast n}\mid\sigma\ast n\in\mathcal{L}(\Gamma)\}&\text{if $w\in V(q)$},\\ V(q)&\text{if $w\notin V(q)$}.\end{cases}

Accordingly, i(τ)\colonequalswσn\mathcal{I}_{i}(\tau)\colonequals w_{\sigma\ast n} if τ\tau is a descendant of this σn\sigma\ast n (or σn\sigma\ast n itself) or i(τ)\colonequals(τ)\mathcal{I}_{i}(\tau)\colonequals\mathcal{I}(\tau) if τ\tau is not a descendant of any of σn\sigma\ast n. By reasoning similar to Lemma 2.18, it is easy to show that i\mathcal{M}_{i} is a 𝖣{\sf D}-model and (i,i)p(,)(\mathcal{M}_{i},\mathcal{I}_{i})\sim_{p}(\mathcal{M},\mathcal{I}) with all wσnw_{\sigma\ast n} being bisimilar to ww. The replacements of step (2) preserve 𝖣{\sf D}-models by Lemma 2.18. Step (3) requires no changes either. The only subtlety in the proof that ,⊧̸Γ\mathcal{M}^{\prime},\mathcal{I}^{\prime}\not\models\Gamma for a 𝖣{\sf D}-saturated Γ\Gamma is for σ:ψΓ\sigma:\Diamond\psi\in\Gamma. The argument for ,(σ)⊧̸ψ\mathcal{M}^{\prime},\mathcal{I}^{\prime}(\sigma)\not\models\Diamond\psi does work the same way as in 𝖪{\sf K} for the following reason. Since this ψ\Diamond\psi is 𝖣{\sf D}-saturated, node σ\sigma must have a child in the sequent tree. Injectivity of the constructed \mathcal{I}^{\prime} means that (σ)\mathcal{I}^{\prime}(\sigma) is not a leaf in the 𝖣{\sf D}-model \mathcal{M}^{\prime} and, hence, not reflexive.

The only remaining new case is the application of the bottom row of Table 2 for a non-𝖣{\sf D}-saturated σ:φ\sigma:\Diamond\varphi, i.e., when node σ\sigma is a leaf of the sequent tree, in BNUIP(iii). Let

,⊧̸∨⃝i=1m(σ:δi∧⃝∧⃝τσ1τ:γi,τ).{}\mathcal{M},\mathcal{I}\not\models\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma:\Diamond\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right).

By seriality of \mathcal{M}, there exists a world vWv\in W such that (σ)Rv\mathcal{I}(\sigma)Rv. Then 𝒥\colonequals{(σ1,v)}\mathcal{J}\colonequals\mathcal{I}^{\prime}\sqcup\{(\sigma\ast 1,v)\} is a multiworld interpretation of Γ{φ,[φ]σ1}\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\} into \mathcal{M} such that

,𝒥⊧̸∨⃝i=1m(σ1:δi∧⃝∧⃝τσ1τ:γi,τ).\mathcal{M},\mathcal{J}\not\models\mathop{{{{{\varovee}}}}}\limits_{i=1}^{m}\left(\sigma\ast 1:\delta_{i}\mathbin{\varowedge}\mathop{{{{{\varowedge}}}}}\limits_{\tau\neq\sigma\ast 1}\tau:\gamma_{i,\tau}\right).

By induction hypothesis, there is a multiworld interpretation 𝒥\mathcal{J}^{\prime} of Γ{φ,[φ]σ1}\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\} into some 𝖣{\sf D}-model \mathcal{M}^{\prime} such that (,𝒥)p(,𝒥)(\mathcal{M}^{\prime},\mathcal{J}^{\prime})\sim_{p}(\mathcal{M},\mathcal{J}) and ,𝒥⊧̸Γ{φ,[φ]σ1}\mathcal{M}^{\prime},\mathcal{J}^{\prime}\not\models\Gamma^{\prime}\{\Diamond\varphi,[\varphi]_{\sigma\ast 1}\}. Similar to the case of φ\Box\varphi for 𝖪{\sf K}, restricting this 𝒥\mathcal{J}^{\prime} to the labels of Γ\Gamma yields a multiworld interpretation bisimilar to \mathcal{I} and refuting Γ=Γ{φ}σ\Gamma=\Gamma^{\prime}\{\Diamond\varphi\}_{\sigma}.

4 Uniform interpolation for S5

The uniform interpolation property easily follows for logics satisfying local tabularity and the Craig interpolation property [6]. A logic is locally tabular if there are only finitely many pairwise nonequivalent formulas for each finite set of atomic propositions. Examples of locally tabular logics are classical propositional logic and 𝖲𝟧{\sf S5}. In this case, the left interpolant pφ\forall p\varphi can be taken to be the disjunction of all formulas ψ\psi without pp implying φ\varphi (accordingly, the right interpolant pφ\exists p\varphi is the conjunction of all formulas ψ\psi without pp implied by φ\varphi).

Although proving uniform interpolation for 𝖲𝟧{\sf S5} is therefore simple, we want to use our method applied to a hypersequent calculus for 𝖲𝟧{\sf S5}, which provides a direct construction for the interpolants. Important for our method are the form of Kripke models and the structure of the proof system. For 𝖪{\sf K}, 𝖳{\sf T}, and 𝖣{\sf D} we used intransitive treelike models and nested sequents mimicking this treelike structure, which fit well with the recursive step of our method. 𝖲𝟧{\sf S5} is complete with respect to single finite clusters, i.e., finite models with the total accessibility relation. In the rest of this section we only work with these kinds of models, i.e., it is assumed that R=W×WR=W\times W.

Cut-free hypersequent calculi for 𝖲𝟧{\sf S5} were first (independently) introduced in [1, 22, 26]. A hypersequent has the form 𝒢=Γ1Γn\mathcal{G}=\Gamma_{1}\mid\cdots\mid\Gamma_{n} where Γi\Gamma_{i}’s are multisets of formulas in negation normal form, and its corresponding formula ι(𝒢)\colonequals(Γ1)(Γn)\iota(\mathcal{G})\colonequals\Box\big{(}\bigvee\Gamma_{1}\big{)}\vee\dots\vee\Box\big{(}\bigvee\Gamma_{n}\big{)}. We use letters 𝒢\mathcal{G} and \mathcal{H} to denote hypersequents. Among the many existing hypersequent calculi, we use the one closest to tableaus. The hypersequent rules for 𝖲𝟧{\sf S5} used here are presented in Fig. 5. These modal rules can be found (as derived rules) in [9]. They are the sequent-style equivalent of what Fitting called there the “Simple 𝖲𝟧{\sf S5} Tableau System,” i.e., prefixed tableaus with prefixes being integers rather than sequences of integers, and are used to reduce hypersequent completeness to tableau completeness. The same rules can be obtained by Kleene’ing the 𝖲𝟧{\sf S5} hypersequent calculus from [27] as explained in [20, Sect. 5] (strictly speaking, rules in [20] are grafted hypersequent rules for K5, but the crown rules for these grafted hypersequents are exactly the hypersequent rules for 𝖲𝟧{\sf S5}; another minor difference is that we are using one-sides sequents and negation normal form). Being Kleene’d, these rules form a terminating calculus for 𝖲𝟧{\sf S5} under the proviso that 𝗄{\sf k} and 𝗍{\sf t} be applied only if the principal φ\Diamond\varphi in their conclusion is saturated w.r.t. the component of the active formula φ\varphi and that all the other rules are applied only when their principal formula is not saturated in the conclusion, as defined presently.

𝗂𝖽𝖯\scriptstyle\mathsf{id_{P}}\; 𝒢Γ,p,p¯\mathcal{G}\mid\Gamma,{p,\overline{p}}    𝗂𝖽\scriptstyle\mathsf{id_{\top}}\; 𝒢Γ,\mathcal{G}\mid\Gamma,{\top} 𝒢Γ,φψ,φ,ψ\mathcal{G}\mid\Gamma,\varphi\vee\psi,\varphi,\psi \scriptstyle\lor\; 𝒢Γ,φψ\mathcal{G}\mid\Gamma,\varphi\vee\psi    𝒢Γ,φψ,φ\mathcal{G}\mid\Gamma,\varphi\wedge\psi,\varphi𝒢Γ,φψ,ψ\mathcal{G}\mid\Gamma,\varphi\wedge\psi,\psi \scriptstyle\land\; 𝒢Γ,φψ\mathcal{G}\mid\Gamma,\varphi\wedge\psi 𝒢Γ,φφ\mathcal{G}\mid\Gamma,\Box\varphi\mid\varphi \scriptstyle\Box\; 𝒢Γ,φ\mathcal{G}\mid\Gamma,\Box\varphi    𝒢Γ,φΔ,φ\mathcal{G}\mid\Gamma,\Diamond\varphi\mid\Delta,\varphi 𝗄\scriptstyle\mathsf{k}\; 𝒢Γ,φΔ\mathcal{G}\mid\Gamma,\Diamond\varphi\mid\Delta    𝒢Γ,φ,φ\mathcal{G}\mid\Gamma,\Diamond\varphi,\varphi 𝗍\scriptstyle{\sf t}\; 𝒢Γ,φ\mathcal{G}\mid\Gamma,\Diamond\varphi

Figure 5: Terminating hypersequent rules for 𝖲𝟧{\sf S5}
Definition 4.1 (Saturation in hypersequents).

A formula θ\theta is saturated in a hypersequent Γ,θ\mathcal{H}\mid\Gamma,\theta if it satisfies the following conditions according to the form of θ\theta:

  • θ\theta is an atomic formula;

  • if θ=φψ\theta=\varphi\lor\psi, then both φ\varphi and ψ\psi are in Γ\Gamma;

  • if θ=φψ\theta=\varphi\land\psi, then at least one of φ\varphi or ψ\psi is in Γ\Gamma;

  • if θ=φ\theta=\Box\varphi, then φ\varphi is either in \mathcal{H} or in Γ\Gamma;

The formula θ=φ\theta=\Diamond\varphi is saturated with respect to a sequent component of \mathcal{H} if φ\varphi is in that sequent component. A hypersequent 𝒢\mathcal{G} is saturated if all diamond formulas in it are saturated w.r.t. each sequent component of 𝒢\mathcal{G}, all other formulas are saturated, and, additionally, 𝒢\mathcal{G} is neither of the form Γ,\mathcal{H}\mid\Gamma,\top nor of the form Γ,p,p¯\mathcal{H}\mid\Gamma,p,\overline{p} for any atomic proposition p𝖯𝗋𝗈𝗉p\in{\sf Prop}.

Labels for hypersequents are natural numbers. For a hypersequent 𝒢=Γ1Γn\mathcal{G}=\Gamma_{1}\mid\cdots\mid\Gamma_{n} we use the set of labels (𝒢)={1,,n}\mathcal{L}(\mathcal{G})=\{1,\dots,n\}. We define multiworld interpretations and multiformulas for hypersequents by analogy with nested sequents, but now using natural numbers as labels.777Strictly speaking, these labels impose an ordering on the sequent components turning it into a sequence of sequents rather than a multiset of sequents. Since permuting sequent components is both trivial and tedious, we continue with the multiset representation, stating labels explicitly if necessary.

Definition 4.2.

A cluster-like multiworld interpretation of a hypersequent 𝒢=Γ1Γn\mathcal{G}=\Gamma_{1}\mid\cdots\mid\Gamma_{n} into an 𝖲𝟧{\sf S5}-model =(W,W×W,V)\mathcal{M}=(W,W\times W,V) is a function :{1,,n}W\mathcal{I}:\{1,\dots,n\}\to W.

Within this section, by “multiworld interpretation” we always mean “cluster-like multiworld interpretation.” Note that there is no restriction on the image of \mathcal{I}, because we work with 𝖲𝟧{\sf S5}-models where all worlds are related to each other. For a fixed multiworld interpretation \mathcal{I}, we usually write wiw_{i} instead of (i)\mathcal{I}(i) and represent the whole \mathcal{I} by w1,,wnw_{1},\dots,w_{n}. A multiworld interpretation w1,,wnw_{1},\dots,w_{n} is injective if the worlds wiw_{i} are pairwise disjoint. The rest of the definitions and results for hypersequents are completely analogous to the nested sequent setting (modulo the change of labels into natural numbers). The analog of Def. 2.12 is

Definition 4.3.

Let \mathcal{M} be a model with worlds w1,,wnw_{1},\dots,w_{n} and let 𝒢=Γ1Γn\mathcal{G}=\Gamma_{1}\mid\dots\mid\Gamma_{n} be a hypersequent. We say that ,w1,,wn𝒢\mathcal{M},w_{1},\dots,w_{n}\models\mathcal{G} iff

,wiφ for some i and φΓi.\mathcal{M},w_{i}\models\varphi\text{ for some }i\text{ and }\varphi\in\Gamma_{i}.

A hypersequent 𝒢\mathcal{G} is valid in a model \mathcal{M}, denoted 𝒢\mathcal{M}\models\mathcal{G}, when ,w1,,wn𝒢\mathcal{M},w_{1},\dots,w_{n}\models\mathcal{G} for all multiworld interpretations w1,,wnw_{1},\dots,w_{n} of 𝒢\mathcal{G} into \mathcal{M}.

We have completeness for the validity of hypersequents, i.e., 𝒢 iff ι(𝒢),\mathcal{M}\models\mathcal{G}\text{ if{f} }\mathcal{M}\models\iota(\mathcal{G}), for all hypersequents 𝒢\mathcal{G} and 𝖲𝟧{\sf S5}-models \mathcal{M}.

A multiformula is similarly defined as in Def. 3.2, where we now use natural numbers as labels instead of sequences of natural numbers, i.e., use nn instead of σ\sigma. All definitions and lemmas about multiformulas based on nested sequents also apply to the hypersequent setting (Def. 3.4 until Lemma 3.9).

Uniform interpolation for hypersequents is defined in the same way as for nested sequents. All definitions and lemmas between Def. 3.11 and Cor. 3.20 are naturally adapted to the hypersequent setting. Instead of NUIP and BNUIP we now speak of the hypersequent uniform interpolation property (HUIP) and the bisimulation hypersequent uniform interpolation property (BHUIP) respectively.

So far, everything goes analogously to the nested sequent case. Even defining the uniform interpolants seems to work analogously. However, when performing the inductive proof (analogous to Theorem 3.22) ensuring that those are actual uniform interpolants, one runs into a problem in the recursive case for saturated sequents. Roughly speaking, the problem is caused by the fact that in 𝖲𝟧{\sf S5}-models, the truth of a formula in one world generally depends on all the worlds, including its immediate “parent.” Contrast this with treelike models where the truth of a formula in a world is fully determined by its descendants which are disjoint from its parent, as well as from its siblings and their descendants. The reason this feature of cluster-like models is problematic is that changing the valuation of pp in a later recursive call may conflict with valuations of pp necessitated by the preceding one.

To circumvent this problem, we use a special property of 𝖲𝟧{\sf S5}: every modal formula is 𝖲𝟧{\sf S5}-equivalent to a formula of modal depth 1 (see [8, Sect. 5.13], where Fitting proved this in order to establish Craig interpolation for 𝖲𝟧{\sf S5}). This means that we can restrict ourselves to formulas where each literal qq or q¯\overline{q} is under the scope of at most one modality. Therefore, after stripping this one modality away, the resulting formulas are purely propositional, meaning that no further recursive calls are needed and, at the same time, that their truth values depends on the valuation in only one world instead of all worlds in the model. This resolves the aforementioned conflict between recursive calls.

𝒢\mathcal{G} matches Ap(𝒢)A_{p}(\mathcal{G}) equals
𝒢{Γ,}k\mathcal{G}^{\prime}\mid\{\Gamma,\top\}_{k} k:k:\top
𝒢{Γ,p,p¯}k\mathcal{G}^{\prime}\mid\{\Gamma,p,\overline{p}\}_{k} k:k:\top
𝒢Γ,φψ\mathcal{G}^{\prime}\mid\Gamma,\varphi\lor\psi Ap(𝒢Γ,φ,ψ,φψ)A_{p}(\mathcal{G}^{\prime}\mid\Gamma,\varphi,\psi,\varphi\lor\psi)
𝒢Γ,φψ\mathcal{G}^{\prime}\mid\Gamma,\varphi\land\psi Ap(𝒢Γ,φ,φψ)∧⃝Ap(𝒢Γ,ψ,φψ)A_{p}(\mathcal{G}^{\prime}\mid\Gamma,\varphi,\varphi\land\psi)\mathbin{\varowedge}A_{p}(\mathcal{G}^{\prime}\mid\Gamma,\psi,\varphi\land\psi)
𝒢{Γ,φ}k\mathcal{G}^{\prime}\mid\{\Gamma,\Box\varphi\}_{k} ∧⃝i=1m(k:δi∨⃝∨⃝jk(j:γi,j))\mathop{{{{{\varowedge}}}}}\limits\nolimits_{i=1}^{m}\left(k:\Box\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits\nolimits_{j\leq k}(j:\gamma_{i,j})\right) where the SCNF of
Ap(𝒢{Γ,φ}kφ)A_{p}(\mathcal{G}^{\prime}\mid\{\Gamma,\Box\varphi\}_{k}\mid\varphi) is ∧⃝i=1m(k+1:δi∨⃝∨⃝jk(j:γi,j))\mathop{{{{{\varowedge}}}}}\limits\nolimits_{i=1}^{m}\left(k+1:\delta_{i}\mathbin{\varovee}\mathop{{{{{\varovee}}}}}\limits\nolimits_{j\leq k}(j:\gamma_{i,j})\right)
𝒢Γ,φ\mathcal{G}^{\prime}\mid\Gamma,\Diamond\varphi Ap(𝒢Γ,φ,φ)A_{p}(\mathcal{G}^{\prime}\mid\Gamma,\Diamond\varphi,\varphi)
𝒢Γ,φΔ\mathcal{G}^{\prime}\mid\Gamma,\Diamond\varphi\mid\Delta Ap(𝒢Γ,φΔ,φ)A_{p}(\mathcal{G}^{\prime}\mid\Gamma,\Diamond\varphi\mid\Delta,\varphi)
Table 3: Recursive construction of Ap(Γ)A_{p}(\Gamma) for 𝖲𝟧{\sf S5}-hypersequents for 𝒢\mathcal{G} that are not saturated.

So from now on, we only consider hypersequents 𝒢=Γ1Γn\mathcal{G}=\Gamma_{1}\mid\cdots\mid\Gamma_{n}, where each Γi\Gamma_{i} contains only formulas of modal depth 1\leq 1. With that in mind, we define multiformula interpolants Ap(𝒢)A_{p}(\mathcal{G}) for hypersequents 𝒢\mathcal{G}. If 𝒢\mathcal{G} is not saturated, Ap(𝒢)A_{p}(\mathcal{G}) is defined in Table 3 following the finite proof-search tree of the hypersequent. In particular, φψ\varphi\lor\psi, φψ\varphi\land\psi, and φ\Box\varphi must be non-saturated; in the rule for φ\Box\varphi, w.l.o.g. we assume kk to be the largest label; the penultimate row is applied only if φ\Diamond\varphi is not saturated w.r.t. its own component; and the last row is only applied if φ\Diamond\varphi is not saturated w.r.t. the component containing the displayed Δ\Delta.

For saturated 𝒢\mathcal{G}, we define

Ap(𝒢)\colonequals∨⃝k:𝒢𝖫𝗂𝗍{p,p¯}k:∨⃝1:p(ψ𝒢ψ)A_{p}(\mathcal{G})\qquad\colonequals\qquad\mathop{{{{{\varovee}}}}}\limits_{\begin{subarray}{c}{k:\ell}\in\mathcal{G}\\ \ell\in{\sf Lit}\setminus\{p,\overline{p}\}\end{subarray}}k:\ell\quad\mathbin{\varovee}\quad 1:\Diamond\forall p\left(\bigvee\nolimits_{\Diamond\psi\in\mathcal{G}}\psi\right) (8)

where (p)ξ(\forall p)\xi represents the uniform interpolant of a propositional formula ξ\xi w.r.t. classical propositional logic. Any known algorithm for its computation can be used. The construction of Ap(𝒢)A_{p}(\mathcal{G}) is well-defined because the recursion in Table 3 terminates by the termination of the rules.

Theorem 4.4.

Logic 𝖲𝟧{\sf S5} has the BHUIP.

Proof 4.5.

We follow the proof of Theorem 3.22 showing the three condition for BHUIP. It is easily seen that Ap(𝒢)A_{p}(\mathcal{G}) does not contain pp and that its labels are from 𝒢\mathcal{G}.

For BHUIP(ii), let w1,,wnw_{1},\dots,w_{n} be a multiworld interpretation of a hypersequent 𝒢\mathcal{G}, and of the multiformula Ap(𝒢)A_{p}(\mathcal{G}), into an 𝖲𝟧{\sf S5}-model =(W,W×W,V)\mathcal{M}=(W,W\!\times\!W,V). We use induction to show

,w1,,wnAp(𝒢) implies ,w1,,wn𝒢.\mathcal{M},w_{1},\dots,w_{n}\models A_{p}(\mathcal{G})\qquad\text{ implies }\qquad\mathcal{M},w_{1},\dots,w_{n}\models\mathcal{G}.

First we treat some cases from Table 3 and then we consider the case where 𝒢\mathcal{G} is saturated.

  • Both 𝒢{Γ,p,p¯}k\mathcal{G}\mid\{\Gamma,p,\overline{p}\}_{k} and 𝒢{Γ,}k\mathcal{G}\mid\{\Gamma,\top\}_{k} hold in all models, under all interpretations.

  • Boolean cases work the same way as for nested sequents.

  • The case of φ\Box\varphi is also very similar. The only difference from the nested case for 𝖪{\sf K} is that instead of considering only children of the node where φ\Box\varphi needs to be true in a treelike model, here we have to consider all worlds in the model. Otherwise, the reasoning is the same.

  • The penultimate row of Table 3 can be processed the same way as the row for 𝖳{\sf T} in Table 2 because 𝖲𝟧{\sf S5}-models are similarly reflexive.

  • The last row of Table 3 works the same way as the last row of Table 1 because the interpretation of the label with φ\varphi is in both cases accessible from the interpretation of the label with φ\Diamond\varphi.

  • Finally, if 𝒢\mathcal{G} is saturated, let ,w1,,wnAp(𝒢)\mathcal{M},w_{1},\dots,w_{n}\models A_{p}(\mathcal{G}) for Ap(𝒢)A_{p}(\mathcal{G}) from (8). As for nested sequents, the case of ,w1,,wnk:\mathcal{M},w_{1},\dots,w_{n}\models k:\ell with k:𝒢k:\ell\in\mathcal{G} is straightforward. It remains to consider the case when, ,w1p(ψ𝒢ψ).\mathcal{M},w_{1}\models\Diamond\forall p\left(\bigvee_{\Diamond\psi\in\mathcal{G}}\psi\right). This means that there is a vWv\in W such that ,vp(ψ𝒢ψ)\mathcal{M},v\models\forall p\left(\bigvee_{\Diamond\psi\in\mathcal{G}}\psi\right). Since pξξ\forall p\xi\to\xi is a propositional tautology for any ξ\xi by Def. 3.1, we have ,vψ\mathcal{M},v\models\psi for some ψ𝒢\Diamond\psi\in\mathcal{G}. Therefore ,wkψ\mathcal{M},w_{k}\models\Diamond\psi for all kk, including the label of the component containing ψ\Diamond\psi. Thus, ,w1,,wn𝒢\mathcal{M},w_{1},\dots,w_{n}\models\mathcal{G}.

For BHUIP(iii), let w1,,wnw_{1},\dots,w_{n} a multiworld interpretation of 𝒢\mathcal{G} into an 𝖲𝟧{\sf S5}-model =(W,W×W,V)\mathcal{M}=(W,W\!\times\!W,V) such that ,w1,,wn⊧̸Ap(𝒢).\mathcal{M},w_{1},\dots,w_{n}\not\models A_{p}(\mathcal{G}). We need to find worlds w1,,wnw^{\prime}_{1},\dots,w^{\prime}_{n} from another 𝖲𝟧{\sf S5}-model =(W,W×W,V)\mathcal{M}^{\prime}=(W^{\prime},W^{\prime}\!\times\!W^{\prime},V^{\prime}) such that (,w1,,wn)p(,w1,,wn)(\mathcal{M},w_{1},\dots,w_{n})\sim_{p}(\mathcal{M}^{\prime},w^{\prime}_{1},\dots,w^{\prime}_{n}) and ,w1,,wn⊧̸𝒢.\mathcal{M}^{\prime},w^{\prime}_{1},\dots,w^{\prime}_{n}\not\models\mathcal{G}. We define \mathcal{M}^{\prime} and w1,.wnw^{\prime}_{1},\dots.w^{\prime}_{n} and prove BHUIP(iii) by simultaneous recursion. We first consider the case where 𝒢\mathcal{G} is saturated, then we show several cases following Table 3.

  • For 𝒢\mathcal{G} being saturated, we assume ,w1,,wn⊧̸Ap(𝒢)\mathcal{M},w_{1},\dots,w_{n}\not\models A_{p}(\mathcal{G}) for Ap(𝒢)A_{p}(\mathcal{G}) from (8). We have three steps in the construction of model \mathcal{M}^{\prime}, which can be compared to the steps of the construction in Theorem 3.22.

    1. (1)

      Whenever wi=wjw_{i}=w_{j}, duplicate this world, until all wiw_{i}’s are distinct. Clearly, this yields a pp-bisimilar model 𝒩=(W,W×W,V𝒩)\mathcal{N}=(W^{\prime},W^{\prime}\!\times\!W^{\prime},V_{\mathcal{N}}) with WWW^{\prime}\supseteq W and an injective multiworld interpretation w1,,wnw^{\prime}_{1},\dots,w^{\prime}_{n} of 𝒢\mathcal{G} into 𝒩\mathcal{N} such that 𝒩,w1,,wn⊧̸Ap(𝒢)\mathcal{N},w^{\prime}_{1},\dots,w^{\prime}_{n}\not\models A_{p}(\mathcal{G}).

    2. (2)

      Now we construct a model 𝒩\mathcal{N}^{\prime} from 𝒩\mathcal{N} by changing valuations of pp in all worlds v{w1,,wn}v\notin\{w^{\prime}_{1},\dots,w^{\prime}_{n}\}. It follows from the last disjunct in (8) that 𝒩,v⊧̸p(ψ𝒢ψ)\mathcal{N},v\not\models\forall p\left(\bigvee\nolimits_{\Diamond\psi\in\mathcal{G}}\psi\right) for all such vv. It is a straightforward consequence of Def. 3.1 for the purely propositional formula ψ𝒢ψ\bigvee\nolimits_{\Diamond\psi\in\mathcal{G}}\psi that it is possible to modify the valuation V𝒩(p)V_{\mathcal{N}}(p) in such a way that for the resulting 𝒩\colonequals(W,W×W,V𝒩)\mathcal{N}^{\prime}\colonequals(W^{\prime},W^{\prime}\!\times\!W^{\prime},V^{\prime}_{\mathcal{N}}) we have 𝒩,v⊧̸ψ𝒢ψ\mathcal{N}^{\prime},v\not\models\bigvee\nolimits_{\Diamond\psi\in\mathcal{G}}\psi for all worlds v{w1,,wn}v\notin\{w^{\prime}_{1},\dots,w^{\prime}_{n}\}. Changing only truth values of pp results in a pp-bisimilar model.

    3. (3)

      Finally, we define model \colonequals(W,W×W,Vp)\mathcal{M}^{\prime}\colonequals(W^{\prime},W^{\prime}\!\times\!W^{\prime},V^{\prime}_{p}) to be the same as model 𝒩\mathcal{N}^{\prime} except for valuations of pp as follows: Vp(p)\colonequalsV𝒩(p){wkk:p¯𝒢}{wkk:p𝒢}V^{\prime}_{p}(p)\colonequals V^{\prime}_{\mathcal{N}}(p)\sqcup\{w^{\prime}_{k}\mid k:\overline{p}\in\mathcal{G}\}\setminus\{w^{\prime}_{k}\mid k:p\in\mathcal{G}\}. Note that the resulting model is still pp-bisimilar and, moreover, ,v⊧̸ψ𝒢ψ\mathcal{M}^{\prime},v\not\models\bigvee_{\Diamond\psi\in\mathcal{G}}\psi still holds for all v{w1,,wn}v\notin\{w^{\prime}_{1},\dots,w^{\prime}_{n}\}.

    This finishes the construction.

    Now we prove that ,wk⊧̸φ\mathcal{M}^{\prime},w^{\prime}_{k}\not\models\varphi whenever k:φ𝒢k:\varphi\in\mathcal{G} by induction on the structure of φ\varphi.

    • We leave the cases for \top, \bot, pp, p¯\overline{p}, ψψ\psi\lor\psi^{\prime}, and ψψ\psi\land\psi^{\prime}, which are analogous to 𝖪{\sf K}, to the reader.

    • If k:ψ𝒢k:\Box\psi\in\mathcal{G}, then by saturation, there is a label ll such that l:ψ𝒢l:\psi\in\mathcal{G}. By induction hypothesis, ,wl⊧̸ψ\mathcal{M}^{\prime},w^{\prime}_{l}\not\models\psi. Therefore, ,wk⊧̸φ\mathcal{M}^{\prime},w^{\prime}_{k}\not\models\Box\varphi.

    • If k:ψ𝒢k:\Diamond\psi\in\mathcal{G}, then for each vWv\in W^{\prime} we have to prove ,v⊧̸ψ\mathcal{M}^{\prime},v\not\models\psi. First, consider v=wlv=w^{\prime}_{l} for some ll. Since 𝒢\mathcal{G} is saturated, l:ψ𝒢l:\psi\in\mathcal{G}. By induction hypothesis ,wl⊧̸ψ\mathcal{M}^{\prime},w^{\prime}_{l}\not\models\psi. Otherwise, if v{w1,,wn}v\notin\{w^{\prime}_{1},\dots,w^{\prime}_{n}\}, the falsity of ψ\psi was assured in step (3). Thus, ,wk⊧̸ψ\mathcal{M}^{\prime},w^{\prime}_{k}\not\models\Diamond\psi.

There is nothing new for non-saturated cases from Table 3. Most of them work the same way as for 𝖪{\sf K}, with the exception of the penultimate row that works the same way as for 𝖳{\sf T} and uses reflexivity of 𝖲𝟧{\sf S5}-models.

5 Conclusion

We have developed a constructive method of proving uniform interpolation based on generalized sequent calculi such as nested sequents and hypersequents. While this is an important and natural step to further exploit these formalisms, much remains to be done. This method works well for the non-transitive logics 𝖪{\sf K}, 𝖣{\sf D}, and 𝖳{\sf T} but meets with difficulties, e.g., for 𝖲𝟧{\sf S5}, which is also known to enjoy uniform interpolation. And while we successfully adapted the method to hypersequents to cover this logic, the adaptation relies on the reduction to uniform interpolation for classical propositional logic and, thus, is not fully recursive. There are other logics in the so-called modal cube between 𝖪{\sf K} and 𝖲𝟧{\sf S5} with the UIP, for which it remains to find the right formalism and adaptation of our method. Another natural direction of future work is intermediate logics, where exactly seven logics are known to have the UIP.

References

  • [1] Arnon Avron. The method of hypersequents in the proof theory of propositional non-classical logics. In Wilfrid Hodges, Martin Hyland, Charles Steinhorn, and John Truss, editors, Logic: from Foundations to Applications: European Logic Colloquium, pages 1–32. Clarendon Press, 1996.
  • [2] Marta Bílková. Interpolation in Modal Logics. PhD thesis, Charles University Prague, 2006. Available from: https://dspace.cuni.cz/handle/20.500.11956/15732.
  • [3] Marta Bílková. A note on uniform interpolation proofs in modal deep inference calculi. In Nick Bezhanishvili, Sebastian Löbner, Kerstin Schwabe, and Luca Spada, editors, Logic, Language, and Computation, 8th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2009, Bakuriani, Georgia, September 2009, Revised Selected Papers, volume 6618 of Lecture Notes in Artificial Intelligence, pages 30–45. Springer, 2011. doi:10.1007/978-3-642-22303-7_3.
  • [4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/CBO9781107050884.
  • [5] Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic, 48(6):551–577, July 2009. doi:10.1007/s00153-009-0137-3.
  • [6] Alexander Chagrov and Michael Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides. Clarendon Press, 1997.
  • [7] Giovanna D’Agostino. Uniform interpolation, bisimulation quantifiers, and fixed points. In Balder D. ten Cate and Henk W. Zeevat, editors, Logic, Language, and Computation, 6th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2005, Batumi, Georgia, September 2005, Revised Selected Papers, volume 4363 of Lecture Notes in Artificial Intelligence, pages 96–116. Springer, 2007. doi:10.1007/978-3-540-75144-1_8.
  • [8] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library. Springer, 1983. doi:10.1007/978-94-017-2794-5.
  • [9] Melvin Fitting. Modal proof theory. In Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 85–138. Elsevier, 2007. doi:10.1016/S1570-2464(07)80005-X.
  • [10] Melvin Fitting and Roman Kuznets. Modal interpolation via nested sequents. Annals of Pure and Applied Logic, 166(3):274–305, March 2015. doi:10.1016/j.apal.2014.11.002.
  • [11] Dov M. Gabbay, Renate A. Schmidt, and Andrzej Szalas. Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications, volume 12 of Studies in Logic. College Publications, 2008.
  • [12] Silvio Ghilardi. An algebraic theory of normal forms. Annals of Pure and Applied Logic, 71(3):189–245, February 1995. doi:10.1016/0168-0072(93)E0084-2.
  • [13] Silvio Ghilardi and Marek Zawadowski. Undefinability of propositional quantifiers in the modal system S4. Studia Logica, 55(2):259–271, June 1995. doi:10.1007/BF01061237.
  • [14] Rosalie Iemhoff. Uniform interpolation and sequent calculi in modal logic. Archive for Mathematical Logic, 58(1–2):155–181, February 2019. doi:10.1007/s00153-018-0629-0.
  • [15] Rosalie Iemhoff. Uniform interpolation and the existence of sequent calculi. Annals of Pure and Applied Logic, 170(11):102711, November 2019. doi:10.1016/j.apal.2019.05.008.
  • [16] Patrick Koopmann. Practical Uniform Interpolation for Expressive Description Logics. PhD thesis, University of Manchester, 2015. Available from: https://www.research.manchester.ac.uk/portal/files/54574261/FULL_TEXT.PDF.
  • [17] Taishi Kurahashi. Uniform Lyndon interpolation property in propositional modal logics. Archive for Mathematical Logic, 59(5–6):659–678, August 2020. doi:10.1007/s00153-020-00713-y.
  • [18] Roman Kuznets. Craig interpolation via hypersequents. In Dieter Probst and Peter Schuster, editors, Concepts of Proof in Mathematics, Philosophy, and Computer Science, volume 6 of Ontos Mathematical Logic, pages 193–214. De Gruyter, 2016. doi:10.1515/9781501502620-012.
  • [19] Roman Kuznets. Multicomponent proof-theoretic method for proving interpolation properties. Annals of Pure and Applied Logic, 169(12):1369–1418, December 2018. doi:10.1016/j.apal.2018.08.007.
  • [20] Roman Kuznets and Björn Lellmann. Grafting hypersequents onto nested sequents. Logic Journal of IGPL, 24(3):375–423, June 2016. doi:10.1093/jigpal/jzw005.
  • [21] Roman Kuznets and Björn Lellmann. Interpolation for intermediate logics via hyper- and linear nested sequents. In Guram Bezhanishvili, Giovanna D’Agostino, George Metcalfe, and Thomas Studer, editors, Advances in Modal Logic, Volume 12, pages 473–492. College Publications, 2018. Available from: http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf.
  • [22] G. E. Minc. On some calculi of modal logic. In V. P. Orevkov, editor, The Calculi of Symbolic Logic. I, volume 98 (1968) of Proceedings of the Steklov Institute of Mathematics, pages 97–124. AMS, 1971. Originally published in Russian. Available from: http://mi.mathnet.ru/eng/tm/v98/p88.
  • [23] Sara Negri and Jan von Plato. Proof Analysis: A Contribution to Hilbert’s Last Problem. Cambridge University Press, 2011. doi:10.1017/CBO9781139003513.
  • [24] Andrew M. Pitts. On an interpretation of second order quantification in first order intuitionistic propositional logic. Journal of Symbolic Logic, 57(1):33–52, March 1992. doi:10.2307/2275175.
  • [25] F. Poggiolesi. The method of tree-hypersequents for modal propositional logic. In David Makinson, Jacek Malinowski, and Heinrich Wansing, editors, Towards Mathematical Philosophy, Papers from the Studia Logica conference Trends in Logic IV, volume 28 of Trends in Logic, pages 31–51. Springer, 2009. doi:10.1007/978-1-4020-9084-4_3.
  • [26] Garrel Pottinger. Uniform, cut-free formulations of TT, S4S_{4}, and S5S_{5}. Journal of Symbolic Logic, 48(3):900, September 1983. Abstract. doi:10.2307/2273495.
  • [27] Greg Restall. Proofnets for S5: Sequents and circuits for modal logic. In Costas Dimitracopoulos, Ludomir Newelski, Dag Normann, and John R. Steel, editors, Logic Colloquium 2005, volume 28 of Lecture Notes in Logic, pages 151–172. ASL, 2007. doi:10.1017/CBO9780511546464.012.
  • [28] V. Yu. Shavrukov. Subalgebras of diagonalizable algebras of theories containing arithmetic. Dissertationes Mathematicae, 323, 1993. Available from: http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf.
  • [29] Amirhossein Akbar Tabatabai and Raheleh Jalali. Universal proof theory: Semi-analytic rules and Craig interpolation. E-print 1808.06256, arXiv, 2018. arXiv:1808.06256.
  • [30] Amirhossein Akbar Tabatabai and Raheleh Jalali. Universal proof theory: Semi-analytic rules and uniform interpolation. E-print 1808.06258, arXiv, 2018. arXiv:1808.06258.
  • [31] Albert Visser. Uniform interpolation and layered bisimulation. In Petr Hájek, editor, Gödel ’96: Logical Foundations of Mathematics, Computer Science and Physics — Kurt Gödel’s Legacy, volume 6 of Lecture Notes in Logic, pages 139–164. ASL, 1996. doi:10.1017/9781316716939.010.