This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Unimodality of a refinement of Lassalle’s sequence

Mihir Singhal Massachusetts Institute of Technology, Cambridge, MA 02139. Email: mihirs@mit.edu.
Abstract

Defant, Engen, and Miller defined a refinement of Lassalle’s sequence Ak+1A_{k+1} by considering uniquely sorted permutations of length 2k+12k+1 whose first element is \ell. They showed that each such sequence is symmetric in \ell and conjectured that these sequences are unimodal. We prove that the sequences are unimodal.

1 Introduction

We study a refinement of Lassalle’s sequence introduced by Defant, Engen, and Miller [5]. Lassalle’s sequence was originally defined by Lassalle in [9] by the recurrence

Am=(1)m1Cm+j1m1(1)j1(2m12m2j1)AmjCj,A_{m}=(-1)^{m-1}C_{m}+\sum_{j-1}^{m-1}(-1)^{j-1}\binom{2m-1}{2m-2j-1}A_{m-j}C_{j},

with the initial condition A1=1A_{1}=1, and where the Ck=(2kk)/(k+1)C_{k}=\binom{2k}{k}/(k+1) are the Catalan numbers. In [9] Lassalle proved the sequence had positive terms, and the sequence has been further explored in [2, 7, 11, 12]. This sequence also has relations with noncommutative probability: (1)m1Am(-1)^{m-1}A_{m} is the (2m)(2m)-th classical cumulant of the standard semicircular probability distribution. More details about the connection between noncommutative probability and stack sorting can be found in [4].

We are interested in combinatorial interpretations of Lassalle’s sequence, particularly those found by Josuat-Vergès in [7] and by Defant, Engen, and Miller in [5].

Defant, Engen, and Miller’s interpretation of Lassalle’s sequence came chronologically after that of Josuat-Vergès, but we will discuss it first. The interpretation involves the stack-sorting map, which was originally defined by West [13] as a slight modification of an algorithm originally defined by Knuth [8]. Since we will not end up working directly with this map, we will not fully define the map, instead referring readers to [5] for the definition. Essentially, the stack-sorting map “partially sorts” a permutation, in such a way that any permutation can be sorted via enough applications of the stack-sorting map. If π\pi is a permutation, let s(π)s(\pi) denote its image under stack sorting. We say that a permutation is uniquely sorted if there is a unique permutation which stack-sorts to it. That is to say, π\pi is uniquely sorted if s1(π)s^{-1}(\pi) has size 1. (Uniquely sorted permutations have also been studied further in [3, 10].) Defant, Engen, and Miller proved in [5] that Ak+1A_{k+1} counts the total number of uniquely sorted permutations of length 2k+12k+1. Furthermore, they defined the sequences (Ak+1())12k+1(A_{k+1}(\ell))_{1\leq\ell\leq 2k+1}, letting Ak+1()A_{k+1}(\ell) equal the number of uniquely sorted permutations of length 2k+12k+1 whose first element is \ell. Note that the sum of each such sequence is Ak+1A_{k+1}, so these may be regarded as refinements of Lassalle’s sequence. They proved that each such sequence is symmetric (in \ell), and conjectured that these sequences are unimodal, and furthermore, log-concave. In this paper we will prove the former.

Theorem 1.1.

For every kk, the sequence (Ak+1())12k+1(A_{k+1}(\ell))_{1\leq\ell\leq 2k+1} is unimodal.

Using 3.3, which is a recursion-like identity for a generalization of these sequences, we also (with computer assistance) verify the following.

Proposition 1.2.

For all k53k\leq 53, the sequence (Ak+1())12k+1(A_{k+1}(\ell))_{1\leq\ell\leq 2k+1} is log-concave.

2 Orientations of partition crossing graphs

In this section we will describe Josuat-Vergès’s interpretation of the Lassalle sequence, which will be useful to us in order to prove 1.1. First we will need some definitions.

Let 𝒫(n)\mathcal{P}(n) denote the set of partitions of {0,,n1}\{0,\dots,n-1\}, and if nn is even, also let (n)𝒫(n)\mathcal{M}(n)\subset\mathcal{P}(n) denote the set of matchings on {0,,n1}\{0,\dots,n-1\}, where a matching is just a partition containing only blocks of size 2.

If ρ𝒫(n)\rho\in\mathcal{P}(n) and B,BB,B^{\prime} are blocks in ρ\rho, then we say that BB and BB^{\prime} form a crossing if there exist i,kBi,k\in B and j,Bj,\ell\in B^{\prime} such that either i<j<k<i<j<k<\ell or i>j>k>i>j>k>\ell. If we put the elements of {0,,n1}\{0,\dots,n-1\} in order on a circle, and represent each block by the polygon whose vertices are its elements, then two blocks form a crossing exactly when their corresponding polygons intersect. Note that in the special case where ρ\rho is a matching, all its blocks are represented by line segments.

Now define the crossing graph G(ρ)G(\rho) of a partition ρ\rho to be the graph whose vertices are the blocks of ρ\rho and with an edge between two blocks if and only if they form a crossing. Define an orientation rr of the edges of G(ρ)G(\rho) to be root-connected with root BB if it is acyclic and the block BρB\in\rho is the only source in the orientation. Equivalently, rr is root-connected with root BB if it is acyclic and there exists a path from BB to every other vertex in G(ρ)G(\rho). (Note that G(ρ)G(\rho) must be connected in order for it to have a root-connected orientation.) Greene and Zaslavsky in [6] proved that the number of root-connected orientations of G(ρ)G(\rho) with any fixed root is TG(ρ)(1,0)T_{G(\rho)}(1,0), where TG(ρ)T_{G(\rho)} is the Tutte polynomial of G(ρ)G(\rho), defined in [1].

Let 𝒫~(n)\widetilde{\mathcal{P}}(n) denote the set of pairs (ρ,r)(\rho,r), where ρ𝒫(n)\rho\in\mathcal{P}(n) and rr is a root-connected orientation of G(ρ)G(\rho), where the root is the block containing 0. Similarly let ~(n)\widetilde{\mathcal{M}}(n) denote the subset of elements (ρ,r)(\rho,r) of 𝒫~(n)\widetilde{\mathcal{P}}(n) such that ρ(n)\rho\in\mathcal{M}(n). Josuat-Vergès proved that Lassalle’s sequence Ak+1A_{k+1} counts the number of elements of ~(2k+2)\widetilde{\mathcal{M}}(2k+2). Furthermore, Defant, Engen, and Miller proved by bijection that the refinement Ak+1()A_{k+1}(\ell) can also be counted by root-connected orientations of matchings:

Proposition 2.1 ([5]).

The number of pairs (ρ,r)(\rho,r) of matchings ρ(2k+2)\rho\in\mathcal{M}(2k+2) and root-connected orientations rr of G(ρ)G(\rho) with root {0,}\{0,\ell\} is Ak+1()A_{k+1}(\ell).

This is the interpretation of the sequence Ak+1()A_{k+1}(\ell) which we will use to prove unimodality.

3 Proof of unimodality

We will now prove 1.1. First we will need to define a slight generalization of ~(n)\widetilde{\mathcal{M}}(n), where we allow the root to be a set of any size.

For a set S{0,,n1}S\subset\{0,\dots,n-1\}, let S(n)\mathcal{M}_{S}(n) denote the set of partitions of {0,,n1}\{0,\dots,n-1\} in which one of the blocks is SS and all other blocks have 2 elements. Let ~S(n)\widetilde{\mathcal{M}}_{S}(n) denote the set of (ρ,r)(\rho,r) such that ρS(n)\rho\in\mathcal{M}_{S}(n) and rr is a root-connected orientation of G(ρ)G(\rho) with root SS. Then, let Ak+1(S)A_{k+1}(S) be the size of the set ~S(|S|+2k)\widetilde{\mathcal{M}}_{S}(|S|+2k). We then have Ak+1()=Ak+1({0,})A_{k+1}(\ell)=A_{k+1}(\{0,\ell\}).

Let n=|S|+2kn=|S|+2k. We first note some basic properties of the function Ak+1(S)A_{k+1}(S). Each such property will be accompanied by a visual depiction of it, where the elements of {0,,n1}\{0,\dots,n-1\} are placed (equally spaced and clockwise) on a circle and SS is represented by a polygon whose vertices are its elements. First, the property of rotation states that we can rotate the elements of SS on the circle without changing Ak+1(S)A_{k+1}(S).

Fact 3.1 (Rotation).

We have, for any integer rr, Ak+1(S)=Ak+1(S+r)A_{k+1}(S)=A_{k+1}(S+r), where S+rS+r denotes elementwise addition of rr to SS and elements are taken mod nn.

Ak+1=Ak+1A_{k+1}\leavevmode\hbox to67.55pt{\vbox to75.09pt{\pgfpicture\makeatletter\hbox{\hskip 38.89896pt\lower-36.19113pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{20.11916pt}{-20.11916pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{35.56595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.14883pt}{25.14883pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@moveto{20.83029pt}{-20.11916pt}\pgfsys@curveto{20.83029pt}{-19.72641pt}{20.5119pt}{-19.40802pt}{20.11916pt}{-19.40802pt}\pgfsys@curveto{19.72641pt}{-19.40802pt}{19.40802pt}{-19.72641pt}{19.40802pt}{-20.11916pt}\pgfsys@curveto{19.40802pt}{-20.5119pt}{19.72641pt}{-20.83029pt}{20.11916pt}{-20.83029pt}\pgfsys@curveto{20.5119pt}{-20.83029pt}{20.83029pt}{-20.5119pt}{20.83029pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.14883pt}{-25.14883pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.60988pt}{-32.85812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-35.56595pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad=\quad A_{k+1}\leavevmode\hbox to72.38pt{\vbox to72.38pt{\pgfpicture\makeatletter\hbox{\hskip 36.19113pt\lower-36.19113pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{10.88815pt}{26.28676pt}\pgfsys@lineto{26.28676pt}{10.88815pt}\pgfsys@lineto{10.88815pt}{-26.28676pt}\pgfsys@lineto{-20.11916pt}{-20.11916pt}\pgfsys@lineto{-26.28676pt}{10.88815pt}\pgfsys@lineto{10.88815pt}{26.28676pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{10.88815pt}{26.28676pt}\pgfsys@moveto{11.59929pt}{26.28676pt}\pgfsys@curveto{11.59929pt}{26.6795pt}{11.2809pt}{26.9979pt}{10.88815pt}{26.9979pt}\pgfsys@curveto{10.4954pt}{26.9979pt}{10.17702pt}{26.6795pt}{10.17702pt}{26.28676pt}\pgfsys@curveto{10.17702pt}{25.89401pt}{10.4954pt}{25.57562pt}{10.88815pt}{25.57562pt}\pgfsys@curveto{11.2809pt}{25.57562pt}{11.59929pt}{25.89401pt}{11.59929pt}{26.28676pt}\pgfsys@closepath\pgfsys@moveto{10.88815pt}{26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.60988pt}{32.85812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{26.28676pt}{10.88815pt}\pgfsys@moveto{26.9979pt}{10.88815pt}\pgfsys@curveto{26.9979pt}{11.2809pt}{26.6795pt}{11.59929pt}{26.28676pt}{11.59929pt}\pgfsys@curveto{25.89401pt}{11.59929pt}{25.57562pt}{11.2809pt}{25.57562pt}{10.88815pt}\pgfsys@curveto{25.57562pt}{10.4954pt}{25.89401pt}{10.17702pt}{26.28676pt}{10.17702pt}\pgfsys@curveto{26.6795pt}{10.17702pt}{26.9979pt}{10.4954pt}{26.9979pt}{10.88815pt}\pgfsys@closepath\pgfsys@moveto{26.28676pt}{10.88815pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.85812pt}{13.60988pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{10.88815pt}{-26.28676pt}\pgfsys@moveto{11.59929pt}{-26.28676pt}\pgfsys@curveto{11.59929pt}{-25.89401pt}{11.2809pt}{-25.57562pt}{10.88815pt}{-25.57562pt}\pgfsys@curveto{10.4954pt}{-25.57562pt}{10.17702pt}{-25.89401pt}{10.17702pt}{-26.28676pt}\pgfsys@curveto{10.17702pt}{-26.6795pt}{10.4954pt}{-26.9979pt}{10.88815pt}{-26.9979pt}\pgfsys@curveto{11.2809pt}{-26.9979pt}{11.59929pt}{-26.6795pt}{11.59929pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.60988pt}{-32.85812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-20.11916pt}{-20.11916pt}\pgfsys@moveto{-19.40802pt}{-20.11916pt}\pgfsys@curveto{-19.40802pt}{-19.72641pt}{-19.72641pt}{-19.40802pt}{-20.11916pt}{-19.40802pt}\pgfsys@curveto{-20.5119pt}{-19.40802pt}{-20.83029pt}{-19.72641pt}{-20.83029pt}{-20.11916pt}\pgfsys@curveto{-20.83029pt}{-20.5119pt}{-20.5119pt}{-20.83029pt}{-20.11916pt}{-20.83029pt}\pgfsys@curveto{-19.72641pt}{-20.83029pt}{-19.40802pt}{-20.5119pt}{-19.40802pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{-20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.14883pt}{-25.14883pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-26.28676pt}{10.88815pt}\pgfsys@moveto{-25.57562pt}{10.88815pt}\pgfsys@curveto{-25.57562pt}{11.2809pt}{-25.89401pt}{11.59929pt}{-26.28676pt}{11.59929pt}\pgfsys@curveto{-26.6795pt}{11.59929pt}{-26.9979pt}{11.2809pt}{-26.9979pt}{10.88815pt}\pgfsys@curveto{-26.9979pt}{10.4954pt}{-26.6795pt}{10.17702pt}{-26.28676pt}{10.17702pt}\pgfsys@curveto{-25.89401pt}{10.17702pt}{-25.57562pt}{10.4954pt}{-25.57562pt}{10.88815pt}\pgfsys@closepath\pgfsys@moveto{-26.28676pt}{10.88815pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-32.85812pt}{13.60988pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

We will generally use the property of rotation implicitly throughout this proof.

The property of merging states that if SS contains two consecutive elements then we can merge these two points on the circle into one point, reducing the size of SS by 1 and also reducing nn by 1. Note that this doesn’t affect any crossings. To state this, we will let S={a1,,am}S=\{a_{1},\dots,a_{m}\}, where m1m\geq 1 and a1<<ama_{1}<\dots<a_{m}. We allow indices to “wrap around” the circle, so that am+1=a1+na_{m+1}=a_{1}+n, and so on.

Fact 3.2 (Merging).

If aj+1=aj+1a_{j+1}=a_{j}+1, then

Ak+1({a1,,am})=Ak+1({a1,,aj,aj+21,,am1}).A_{k+1}(\{a_{1},\dots,a_{m}\})=A_{k+1}(\{a_{1},\dots,a_{j},a_{j+2}-1,\dots,a_{m}-1\}).
Ak+1aj1ajaj+1aj+2=Ak+1aj1ajaj+21A_{k+1}\leavevmode\hbox to80.6pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{26.28676pt}{-10.88815pt}\pgfsys@lineto{20.11916pt}{-20.11916pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{26.28676pt}{-10.88815pt}\pgfsys@moveto{26.9979pt}{-10.88815pt}\pgfsys@curveto{26.9979pt}{-10.4954pt}{26.6795pt}{-10.17702pt}{26.28676pt}{-10.17702pt}\pgfsys@curveto{25.89401pt}{-10.17702pt}{25.57562pt}{-10.4954pt}{25.57562pt}{-10.88815pt}\pgfsys@curveto{25.57562pt}{-11.2809pt}{25.89401pt}{-11.59929pt}{26.28676pt}{-11.59929pt}\pgfsys@curveto{26.6795pt}{-11.59929pt}{26.9979pt}{-11.2809pt}{26.9979pt}{-10.88815pt}\pgfsys@closepath\pgfsys@moveto{26.28676pt}{-10.88815pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.40335pt}{-14.6338pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@moveto{20.83029pt}{-20.11916pt}\pgfsys@curveto{20.83029pt}{-19.72641pt}{20.5119pt}{-19.40802pt}{20.11916pt}{-19.40802pt}\pgfsys@curveto{19.72641pt}{-19.40802pt}{19.40802pt}{-19.72641pt}{19.40802pt}{-20.11916pt}\pgfsys@curveto{19.40802pt}{-20.5119pt}{19.72641pt}{-20.83029pt}{20.11916pt}{-20.83029pt}\pgfsys@curveto{20.5119pt}{-20.83029pt}{20.83029pt}{-20.5119pt}{20.83029pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.80206pt}{-27.38289pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad=\quad A_{k+1}\leavevmode\hbox to78.25pt{\vbox to83.12pt{\pgfpicture\makeatletter\hbox{\hskip 40.11893pt\lower-42.79626pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{21.1442pt}{19.03854pt}\pgfsys@lineto{24.64087pt}{-14.22638pt}\pgfsys@lineto{-5.91579pt}{-27.83104pt}\pgfsys@lineto{-28.29689pt}{-2.97395pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@moveto{21.85533pt}{19.03854pt}\pgfsys@curveto{21.85533pt}{19.43129pt}{21.53694pt}{19.74968pt}{21.1442pt}{19.74968pt}\pgfsys@curveto{20.75145pt}{19.74968pt}{20.43306pt}{19.43129pt}{20.43306pt}{19.03854pt}\pgfsys@curveto{20.43306pt}{18.6458pt}{20.75145pt}{18.32741pt}{21.1442pt}{18.32741pt}\pgfsys@curveto{21.53694pt}{18.32741pt}{21.85533pt}{18.6458pt}{21.85533pt}{19.03854pt}\pgfsys@closepath\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.08447pt}{24.27034pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@moveto{25.352pt}{-14.22638pt}\pgfsys@curveto{25.352pt}{-13.83363pt}{25.03362pt}{-13.51524pt}{24.64087pt}{-13.51524pt}\pgfsys@curveto{24.24812pt}{-13.51524pt}{23.92973pt}{-13.83363pt}{23.92973pt}{-14.22638pt}\pgfsys@curveto{23.92973pt}{-14.61913pt}{24.24812pt}{-14.93752pt}{24.64087pt}{-14.93752pt}\pgfsys@curveto{25.03362pt}{-14.93752pt}{25.352pt}{-14.61913pt}{25.352pt}{-14.22638pt}\pgfsys@closepath\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.2634pt}{-18.97362pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@moveto{-5.20465pt}{-27.83104pt}\pgfsys@curveto{-5.20465pt}{-27.4383pt}{-5.52304pt}{-27.1199pt}{-5.91579pt}{-27.1199pt}\pgfsys@curveto{-6.30853pt}{-27.1199pt}{-6.62692pt}{-27.4383pt}{-6.62692pt}{-27.83104pt}\pgfsys@curveto{-6.62692pt}{-28.22379pt}{-6.30853pt}{-28.54218pt}{-5.91579pt}{-28.54218pt}\pgfsys@curveto{-5.52304pt}{-28.54218pt}{-5.20465pt}{-28.22379pt}{-5.20465pt}{-27.83104pt}\pgfsys@closepath\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.99176pt}{-37.40839pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+2}-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@moveto{-27.58575pt}{-2.97395pt}\pgfsys@curveto{-27.58575pt}{-2.5812pt}{-27.90414pt}{-2.26282pt}{-28.29689pt}{-2.26282pt}\pgfsys@curveto{-28.68964pt}{-2.26282pt}{-29.00803pt}{-2.5812pt}{-29.00803pt}{-2.97395pt}\pgfsys@curveto{-29.00803pt}{-3.3667pt}{-28.68964pt}{-3.68509pt}{-28.29689pt}{-3.68509pt}\pgfsys@curveto{-27.90414pt}{-3.68509pt}{-27.58575pt}{-3.3667pt}{-27.58575pt}{-2.97395pt}\pgfsys@closepath\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.78592pt}{-3.86613pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

Now we show a sort of recursion for Ak+1(S)A_{k+1}(S), which will be the main tool that we will use.

Proposition 3.3.

Suppose m2m\geq 2. Suppose that for some jj, ajaj+12a_{j}\leq a_{j+1}-2. Then, we have the following identity.

Ak+1({a1,,aj1,aj+1,aj+1,,am})Ak+1({a1,,aj1,aj,aj+1,,am})=aj<b<aj+11Ak({a1,,aj1,aj,b,aj+11,,am1})aj1<b<ajAk({a1,,aj1,b,aj,aj+11,,am1})A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j}+1,a_{j+1},\dots,a_{m}\})-A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})\\ =\sum_{a_{j}<b<a_{j+1}-1}A_{k}(\{a_{1},\dots,a_{j-1},a_{j},b,a_{j+1}-1,\dots,a_{m}-1\})\\ -\sum_{a_{j-1}<b<a_{j}}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j},a_{j+1}-1,\dots,a_{m}-1\}) (1)
Ak+1aj1aj+1aj+1Ak+1aj1ajaj+1=aj<b<aj+11Akaj1ajbaj+11aj1<b<ajAkaj1ajbaj+11A_{k+1}\leavevmode\hbox to78.16pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{20.11916pt}{-20.11916pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@moveto{20.83029pt}{-20.11916pt}\pgfsys@curveto{20.83029pt}{-19.72641pt}{20.5119pt}{-19.40802pt}{20.11916pt}{-19.40802pt}\pgfsys@curveto{19.72641pt}{-19.40802pt}{19.40802pt}{-19.72641pt}{19.40802pt}{-20.11916pt}\pgfsys@curveto{19.40802pt}{-20.5119pt}{19.72641pt}{-20.83029pt}{20.11916pt}{-20.83029pt}\pgfsys@curveto{20.5119pt}{-20.83029pt}{20.83029pt}{-20.5119pt}{20.83029pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.80206pt}{-27.38289pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad-\quad A_{k+1}\leavevmode\hbox to80.6pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{26.28676pt}{-10.88815pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{26.28676pt}{-10.88815pt}\pgfsys@moveto{26.9979pt}{-10.88815pt}\pgfsys@curveto{26.9979pt}{-10.4954pt}{26.6795pt}{-10.17702pt}{26.28676pt}{-10.17702pt}\pgfsys@curveto{25.89401pt}{-10.17702pt}{25.57562pt}{-10.4954pt}{25.57562pt}{-10.88815pt}\pgfsys@curveto{25.57562pt}{-11.2809pt}{25.89401pt}{-11.59929pt}{26.28676pt}{-11.59929pt}\pgfsys@curveto{26.6795pt}{-11.59929pt}{26.9979pt}{-11.2809pt}{26.9979pt}{-10.88815pt}\pgfsys@closepath\pgfsys@moveto{26.28676pt}{-10.88815pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.40335pt}{-14.6338pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ =\sum_{a_{j}<b<a_{j+1}-1}A_{k}\leavevmode\hbox to78.25pt{\vbox to83.12pt{\pgfpicture\makeatletter\hbox{\hskip 40.11893pt\lower-42.79626pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{21.1442pt}{19.03854pt}\pgfsys@lineto{24.64087pt}{-14.22638pt}\pgfsys@lineto{11.57281pt}{-25.99283pt}\pgfsys@lineto{-5.91579pt}{-27.83104pt}\pgfsys@lineto{-28.29689pt}{-2.97395pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@moveto{21.85533pt}{19.03854pt}\pgfsys@curveto{21.85533pt}{19.43129pt}{21.53694pt}{19.74968pt}{21.1442pt}{19.74968pt}\pgfsys@curveto{20.75145pt}{19.74968pt}{20.43306pt}{19.43129pt}{20.43306pt}{19.03854pt}\pgfsys@curveto{20.43306pt}{18.6458pt}{20.75145pt}{18.32741pt}{21.1442pt}{18.32741pt}\pgfsys@curveto{21.53694pt}{18.32741pt}{21.85533pt}{18.6458pt}{21.85533pt}{19.03854pt}\pgfsys@closepath\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.08447pt}{24.27034pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@moveto{25.352pt}{-14.22638pt}\pgfsys@curveto{25.352pt}{-13.83363pt}{25.03362pt}{-13.51524pt}{24.64087pt}{-13.51524pt}\pgfsys@curveto{24.24812pt}{-13.51524pt}{23.92973pt}{-13.83363pt}{23.92973pt}{-14.22638pt}\pgfsys@curveto{23.92973pt}{-14.61913pt}{24.24812pt}{-14.93752pt}{24.64087pt}{-14.93752pt}\pgfsys@curveto{25.03362pt}{-14.93752pt}{25.352pt}{-14.61913pt}{25.352pt}{-14.22638pt}\pgfsys@closepath\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.2634pt}{-18.97362pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{11.57281pt}{-25.99283pt}\pgfsys@moveto{12.28395pt}{-25.99283pt}\pgfsys@curveto{12.28395pt}{-25.60008pt}{11.96556pt}{-25.2817pt}{11.57281pt}{-25.2817pt}\pgfsys@curveto{11.18007pt}{-25.2817pt}{10.86168pt}{-25.60008pt}{10.86168pt}{-25.99283pt}\pgfsys@curveto{10.86168pt}{-26.38557pt}{11.18007pt}{-26.70396pt}{11.57281pt}{-26.70396pt}\pgfsys@curveto{11.96556pt}{-26.70396pt}{12.28395pt}{-26.38557pt}{12.28395pt}{-25.99283pt}\pgfsys@closepath\pgfsys@moveto{11.57281pt}{-25.99283pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.54224pt}{-36.22122pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@moveto{-5.20465pt}{-27.83104pt}\pgfsys@curveto{-5.20465pt}{-27.4383pt}{-5.52304pt}{-27.1199pt}{-5.91579pt}{-27.1199pt}\pgfsys@curveto{-6.30853pt}{-27.1199pt}{-6.62692pt}{-27.4383pt}{-6.62692pt}{-27.83104pt}\pgfsys@curveto{-6.62692pt}{-28.22379pt}{-6.30853pt}{-28.54218pt}{-5.91579pt}{-28.54218pt}\pgfsys@curveto{-5.52304pt}{-28.54218pt}{-5.20465pt}{-28.22379pt}{-5.20465pt}{-27.83104pt}\pgfsys@closepath\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.99176pt}{-37.40839pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@moveto{-27.58575pt}{-2.97395pt}\pgfsys@curveto{-27.58575pt}{-2.5812pt}{-27.90414pt}{-2.26282pt}{-28.29689pt}{-2.26282pt}\pgfsys@curveto{-28.68964pt}{-2.26282pt}{-29.00803pt}{-2.5812pt}{-29.00803pt}{-2.97395pt}\pgfsys@curveto{-29.00803pt}{-3.3667pt}{-28.68964pt}{-3.68509pt}{-28.29689pt}{-3.68509pt}\pgfsys@curveto{-27.90414pt}{-3.68509pt}{-27.58575pt}{-3.3667pt}{-27.58575pt}{-2.97395pt}\pgfsys@closepath\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.78592pt}{-3.86613pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad-\quad\sum_{a_{j-1}<b<a_{j}}A_{k}\leavevmode\hbox to81.74pt{\vbox to83.12pt{\pgfpicture\makeatletter\hbox{\hskip 40.11893pt\lower-42.79626pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{21.1442pt}{19.03854pt}\pgfsys@lineto{28.29689pt}{2.97395pt}\pgfsys@lineto{24.64087pt}{-14.22638pt}\pgfsys@lineto{-5.91579pt}{-27.83104pt}\pgfsys@lineto{-28.29689pt}{-2.97395pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@moveto{21.85533pt}{19.03854pt}\pgfsys@curveto{21.85533pt}{19.43129pt}{21.53694pt}{19.74968pt}{21.1442pt}{19.74968pt}\pgfsys@curveto{20.75145pt}{19.74968pt}{20.43306pt}{19.43129pt}{20.43306pt}{19.03854pt}\pgfsys@curveto{20.43306pt}{18.6458pt}{20.75145pt}{18.32741pt}{21.1442pt}{18.32741pt}\pgfsys@curveto{21.53694pt}{18.32741pt}{21.85533pt}{18.6458pt}{21.85533pt}{19.03854pt}\pgfsys@closepath\pgfsys@moveto{21.1442pt}{19.03854pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.08447pt}{24.27034pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@moveto{25.352pt}{-14.22638pt}\pgfsys@curveto{25.352pt}{-13.83363pt}{25.03362pt}{-13.51524pt}{24.64087pt}{-13.51524pt}\pgfsys@curveto{24.24812pt}{-13.51524pt}{23.92973pt}{-13.83363pt}{23.92973pt}{-14.22638pt}\pgfsys@curveto{23.92973pt}{-14.61913pt}{24.24812pt}{-14.93752pt}{24.64087pt}{-14.93752pt}\pgfsys@curveto{25.03362pt}{-14.93752pt}{25.352pt}{-14.61913pt}{25.352pt}{-14.22638pt}\pgfsys@closepath\pgfsys@moveto{24.64087pt}{-14.22638pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.2634pt}{-18.97362pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{28.29689pt}{2.97395pt}\pgfsys@moveto{29.00803pt}{2.97395pt}\pgfsys@curveto{29.00803pt}{3.3667pt}{28.68964pt}{3.68509pt}{28.29689pt}{3.68509pt}\pgfsys@curveto{27.90414pt}{3.68509pt}{27.58575pt}{3.3667pt}{27.58575pt}{2.97395pt}\pgfsys@curveto{27.58575pt}{2.5812pt}{27.90414pt}{2.26282pt}{28.29689pt}{2.26282pt}\pgfsys@curveto{28.68964pt}{2.26282pt}{29.00803pt}{2.5812pt}{29.00803pt}{2.97395pt}\pgfsys@closepath\pgfsys@moveto{28.29689pt}{2.97395pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.28384pt}{1.4356pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@moveto{-5.20465pt}{-27.83104pt}\pgfsys@curveto{-5.20465pt}{-27.4383pt}{-5.52304pt}{-27.1199pt}{-5.91579pt}{-27.1199pt}\pgfsys@curveto{-6.30853pt}{-27.1199pt}{-6.62692pt}{-27.4383pt}{-6.62692pt}{-27.83104pt}\pgfsys@curveto{-6.62692pt}{-28.22379pt}{-6.30853pt}{-28.54218pt}{-5.91579pt}{-28.54218pt}\pgfsys@curveto{-5.52304pt}{-28.54218pt}{-5.20465pt}{-28.22379pt}{-5.20465pt}{-27.83104pt}\pgfsys@closepath\pgfsys@moveto{-5.91579pt}{-27.83104pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.99176pt}{-37.40839pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@moveto{-27.58575pt}{-2.97395pt}\pgfsys@curveto{-27.58575pt}{-2.5812pt}{-27.90414pt}{-2.26282pt}{-28.29689pt}{-2.26282pt}\pgfsys@curveto{-28.68964pt}{-2.26282pt}{-29.00803pt}{-2.5812pt}{-29.00803pt}{-2.97395pt}\pgfsys@curveto{-29.00803pt}{-3.3667pt}{-28.68964pt}{-3.68509pt}{-28.29689pt}{-3.68509pt}\pgfsys@curveto{-27.90414pt}{-3.68509pt}{-27.58575pt}{-3.3667pt}{-27.58575pt}{-2.97395pt}\pgfsys@closepath\pgfsys@moveto{-28.29689pt}{-2.97395pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.78592pt}{-3.86613pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Proof.

Let S={a1,,aj1,aj,aj+1,,am}S=\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\} and S={a1,,aj1,aj+1,aj+1,,am}S^{\prime}=\{a_{1},\dots,a_{j-1},a_{j}+1,a_{j+1},\dots,a_{m}\}. We define a correspondence between some elements of ~S(n)\widetilde{\mathcal{M}}_{S}(n) and some elements of ~S(n)\widetilde{\mathcal{M}}_{S^{\prime}}(n) (where n=m+2kn=m+2k as usual). To find the corresponding element to any (ρ,r)~S(n)(\rho,r)\in\widetilde{\mathcal{M}}_{S}(n), just swap aja_{j} with aj+1a_{j}+1 in ρ\rho. Keep all orientations the same in rr. Note that this may create or remove an edge with SS (which becomes SS^{\prime}); if a new edge is created, direct it away from SS^{\prime} so that SS^{\prime} is still a source. This correspondence is defined for all (ρ,r)(\rho,r) such that SS^{\prime} is still the only source in the resulting partition and orientation. Note that this correspondence is injective since SS must be a source in rr, so edges leaving SS can be deleted without loss of information. The inverse of this correspondence can be obtained by the exact same process. The correspondence is illustrated in Fig. 1.

aj1aj+1ajaj+1baj1aj+1aj+1baj\leavevmode\hbox to81.43pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{23.65752pt}{-15.80756pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@lineto{20.11916pt}{-20.11916pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{23.65752pt}{-15.80756pt}\pgfsys@moveto{24.36865pt}{-15.80756pt}\pgfsys@curveto{24.36865pt}{-15.41481pt}{24.05026pt}{-15.09642pt}{23.65752pt}{-15.09642pt}\pgfsys@curveto{23.26477pt}{-15.09642pt}{22.94638pt}{-15.41481pt}{22.94638pt}{-15.80756pt}\pgfsys@curveto{22.94638pt}{-16.2003pt}{23.26477pt}{-16.51869pt}{23.65752pt}{-16.51869pt}\pgfsys@curveto{24.05026pt}{-16.51869pt}{24.36865pt}{-16.2003pt}{24.36865pt}{-15.80756pt}\pgfsys@closepath\pgfsys@moveto{23.65752pt}{-15.80756pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.18771pt}{-17.27173pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@moveto{20.83029pt}{-20.11916pt}\pgfsys@curveto{20.83029pt}{-19.72641pt}{20.5119pt}{-19.40802pt}{20.11916pt}{-19.40802pt}\pgfsys@curveto{19.72641pt}{-19.40802pt}{19.40802pt}{-19.72641pt}{19.40802pt}{-20.11916pt}\pgfsys@curveto{19.40802pt}{-20.5119pt}{19.72641pt}{-20.83029pt}{20.11916pt}{-20.83029pt}\pgfsys@curveto{20.5119pt}{-20.83029pt}{20.83029pt}{-20.5119pt}{20.83029pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.80206pt}{-27.38289pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@moveto{28.61728pt}{5.55066pt}\pgfsys@curveto{28.61728pt}{5.9434pt}{28.29889pt}{6.2618pt}{27.90614pt}{6.2618pt}\pgfsys@curveto{27.5134pt}{6.2618pt}{27.195pt}{5.9434pt}{27.195pt}{5.55066pt}\pgfsys@curveto{27.195pt}{5.15791pt}{27.5134pt}{4.83952pt}{27.90614pt}{4.83952pt}\pgfsys@curveto{28.29889pt}{4.83952pt}{28.61728pt}{5.15791pt}{28.61728pt}{5.55066pt}\pgfsys@closepath\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.77588pt}{4.7851pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\longleftrightarrow\leavevmode\hbox to81.43pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{20.11916pt}{-20.11916pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@lineto{23.65752pt}{-15.80756pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@moveto{20.83029pt}{-20.11916pt}\pgfsys@curveto{20.83029pt}{-19.72641pt}{20.5119pt}{-19.40802pt}{20.11916pt}{-19.40802pt}\pgfsys@curveto{19.72641pt}{-19.40802pt}{19.40802pt}{-19.72641pt}{19.40802pt}{-20.11916pt}\pgfsys@curveto{19.40802pt}{-20.5119pt}{19.72641pt}{-20.83029pt}{20.11916pt}{-20.83029pt}\pgfsys@curveto{20.5119pt}{-20.83029pt}{20.83029pt}{-20.5119pt}{20.83029pt}{-20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{-20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.80206pt}{-27.38289pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@moveto{28.61728pt}{5.55066pt}\pgfsys@curveto{28.61728pt}{5.9434pt}{28.29889pt}{6.2618pt}{27.90614pt}{6.2618pt}\pgfsys@curveto{27.5134pt}{6.2618pt}{27.195pt}{5.9434pt}{27.195pt}{5.55066pt}\pgfsys@curveto{27.195pt}{5.15791pt}{27.5134pt}{4.83952pt}{27.90614pt}{4.83952pt}\pgfsys@curveto{28.29889pt}{4.83952pt}{28.61728pt}{5.15791pt}{28.61728pt}{5.55066pt}\pgfsys@closepath\pgfsys@moveto{27.90614pt}{5.55066pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.77588pt}{4.7851pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\pgfsys@color@rgb@stroke{0}{0}{1}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,1}{}\pgfsys@moveto{23.65752pt}{-15.80756pt}\pgfsys@moveto{24.36865pt}{-15.80756pt}\pgfsys@curveto{24.36865pt}{-15.41481pt}{24.05026pt}{-15.09642pt}{23.65752pt}{-15.09642pt}\pgfsys@curveto{23.26477pt}{-15.09642pt}{22.94638pt}{-15.41481pt}{22.94638pt}{-15.80756pt}\pgfsys@curveto{22.94638pt}{-16.2003pt}{23.26477pt}{-16.51869pt}{23.65752pt}{-16.51869pt}\pgfsys@curveto{24.05026pt}{-16.51869pt}{24.36865pt}{-16.2003pt}{24.36865pt}{-15.80756pt}\pgfsys@closepath\pgfsys@moveto{23.65752pt}{-15.80756pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.18771pt}{-17.27173pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Figure 1: The (partial) correspondence between ~S(n)\widetilde{\mathcal{M}}_{S}(n) and ~S(n)\widetilde{\mathcal{M}}_{S^{\prime}}(n). This removes a crossing when aj1<b<aja_{j-1}<b<a_{j}, and creates a crossing when aj+1<b<aj+1a_{j}+1<b<a_{j+1}.

Let MM be the set of (ρ,r)~S(n)(\rho,r)\in\widetilde{\mathcal{M}}_{S}(n) with no corresponding element in ~S(n)\widetilde{\mathcal{M}}_{S^{\prime}}(n), and let MM^{\prime} similarly be the set of (ρ,r)~S(n)(\rho,r)\in\widetilde{\mathcal{M}}_{S^{\prime}}(n) with no corresponding element in ~S(n)\widetilde{\mathcal{M}}_{S}(n). Note that the left-hand side of (1) is just equal to |M||M||M^{\prime}|-|M|.

We first count the size of MM. The only way for (ρ,r)(\rho,r) to be an element of MM is if switching aja_{j} and aj+1a_{j}+1 in ρ\rho causes an edge to be deleted, and as a result there is a new source other than SS^{\prime}. The deleted edge must have been from SS to a vertex of the form {b,aj+1}\{b,a_{j}+1\}, for aj1<b<aja_{j-1}<b<a_{j} (and conversely, any edge of such a form will have been deleted when switching aj,aj+1a_{j},a_{j}+1). Thus, the elements of MM are exactly those (ρ,r)(\rho,r) where {b,aj+1}\{b,a_{j}+1\} is a block in ρ\rho for some aj1<b<aja_{j-1}<b<a_{j} and where all edges are directed away from {b,aj+1}\{b,a_{j}+1\} except the one from SS.

Now, note that a block forms a crossing with SS or {b,aj+1}\{b,a_{j}+1\} exactly when it forms a crossing with S{b,aj+1}S\cup\{b,a_{j}+1\}. (This is evident visually from Fig. 1.) Thus, contracting the edge between SS and {b,aj+1}\{b,a_{j}+1\} in G(ρ)G(\rho) gives the crossing graph of the partition ρ\rho^{\prime} obtained by combining SS and {b,aj+1}\{b,a_{j}+1\} in ρ\rho. Since SS and {b,aj+1}\{b,a_{j}+1\} are the only two sources in the orientation rr (disregarding the edge between the two), the corresponding orientation rr^{\prime} of ρ\rho^{\prime} is also acyclic and has S{b,aj+1}S\cup\{b,a_{j}+1\} as the only source. Thus, (ρ,r)~S{b,aj+1}(n)(\rho^{\prime},r^{\prime})\in\widetilde{\mathcal{M}}_{S\cup\{b,a_{j}+1\}}(n). We can recover (ρ,r)(\rho,r) from (ρ,r)(\rho^{\prime},r^{\prime}) by replacing S{b,aj+1}S\cup\{b,a_{j}+1\} with SS and {b,aj+1}\{b,a_{j}+1\}, directing all edges from each of them outward, and directing the edge between them away from SS. Thus, we have a bijection between MM and the union of ~S{b,aj+1}(n)\widetilde{\mathcal{M}}_{S\cup\{b,a_{j}+1\}}(n) over all bb, so

|M|\displaystyle|M| =aj1<b<aj|~S{b,aj+1}(n)|\displaystyle=\sum_{a_{j-1}<b<a_{j}}|\widetilde{\mathcal{M}}_{S\cup\{b,a_{j}+1\}}(n)|
=aj1<b<ajAk(S{b,aj+1})\displaystyle=\sum_{a_{j-1}<b<a_{j}}A_{k}(S\cup\{b,a_{j}+1\})
=aj1<b<ajAk({a1,,aj1,b,aj,aj+1,aj+1,,am})\displaystyle=\sum_{a_{j-1}<b<a_{j}}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j},a_{j}+1,a_{j+1},\dots,a_{m}\})
=aj1<b<ajAk({a1,,aj1,b,aj,aj+11,,am1})\displaystyle=\sum_{a_{j-1}<b<a_{j}}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j},a_{j+1}-1,\dots,a_{m}-1\}) (by the merging property).

By an identical argument, we have

|M|\displaystyle|M^{\prime}| =aj+1<b<aj+1|~S{aj,b}(n)|\displaystyle=\sum_{a_{j}+1<b<a_{j+1}}|\widetilde{\mathcal{M}}_{S\cup\{a_{j},b\}}(n)|
=aj+1<b<aj+1Ak(S{aj,b})\displaystyle=\sum_{a_{j}+1<b<a_{j+1}}A_{k}(S\cup\{a_{j},b\})
=aj+1<b<aj+1Ak({a1,,aj1,aj,aj+1,b,aj+1,,am})\displaystyle=\sum_{a_{j}+1<b<a_{j+1}}A_{k}(\{a_{1},\dots,a_{j-1},a_{j},a_{j}+1,b,a_{j+1},\dots,a_{m}\})
=aj<b<aj+11Ak({a1,,aj1,aj,b,aj+11,,am1}).\displaystyle=\sum_{a_{j}<b<a_{j+1}-1}A_{k}(\{a_{1},\dots,a_{j-1},a_{j},b,a_{j+1}-1,\dots,a_{m}-1\}).

Thus, |M||M||M^{\prime}|-|M| equals the right hand side of (1), as desired. ∎

We now use 3.3 to prove one final property, which is that we can reflect aja_{j} over the midpoint of aj1,aj+1a_{j-1},a_{j+1}. As a consequence, Ak+1(S)A_{k+1}(S) depends only on the (unordered) multiset of differences {a2a1,a3a2,,am+1am}\{a_{2}-a_{1},a_{3}-a_{2},\dots,a_{m+1}-a_{m}\} (recall that the last difference here equals (a1+n)am(a_{1}+n)-a_{m}).

Fact 3.4 (Reflection).

Suppose m2m\geq 2. Then, for all jj,

Ak+1({a1,,aj1,aj,aj+1,,am})=Ak+1({a1,,aj1,aj+1+aj1aj,aj+1,,am}).A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})=A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},a_{j+1},\dots,a_{m}\}).
Ak+1aj1ajaj+1=Ak+1aj1ajaj+1A_{k+1}\leavevmode\hbox to74.21pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{15.80756pt}{-23.65752pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{15.80756pt}{-23.65752pt}\pgfsys@moveto{16.51869pt}{-23.65752pt}\pgfsys@curveto{16.51869pt}{-23.26477pt}{16.2003pt}{-22.94638pt}{15.80756pt}{-22.94638pt}\pgfsys@curveto{15.41481pt}{-22.94638pt}{15.09642pt}{-23.26477pt}{15.09642pt}{-23.65752pt}\pgfsys@curveto{15.09642pt}{-24.05026pt}{15.41481pt}{-24.36865pt}{15.80756pt}{-24.36865pt}\pgfsys@curveto{16.2003pt}{-24.36865pt}{16.51869pt}{-24.05026pt}{16.51869pt}{-23.65752pt}\pgfsys@closepath\pgfsys@moveto{15.80756pt}{-23.65752pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.78044pt}{-31.23415pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad=\quad A_{k+1}\leavevmode\hbox to82.7pt{\vbox to80.36pt{\pgfpicture\makeatletter\hbox{\hskip 40.32167pt\lower-40.04013pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@curveto{28.45276pt}{15.71422pt}{15.71422pt}{28.45276pt}{0.0pt}{28.45276pt}\pgfsys@curveto{-15.71422pt}{28.45276pt}{-28.45276pt}{15.71422pt}{-28.45276pt}{0.0pt}\pgfsys@curveto{-28.45276pt}{-15.71422pt}{-15.71422pt}{-28.45276pt}{0.0pt}{-28.45276pt}\pgfsys@curveto{15.71422pt}{-28.45276pt}{28.45276pt}{-15.71422pt}{28.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{20.11916pt}{20.11916pt}\pgfsys@lineto{27.90614pt}{-5.55066pt}\pgfsys@lineto{-10.88815pt}{-26.28676pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@moveto{0.71114pt}{28.45276pt}\pgfsys@curveto{0.71114pt}{28.8455pt}{0.39275pt}{29.1639pt}{0.0pt}{29.1639pt}\pgfsys@curveto{-0.39275pt}{29.1639pt}{-0.71114pt}{28.8455pt}{-0.71114pt}{28.45276pt}\pgfsys@curveto{-0.71114pt}{28.06001pt}{-0.39275pt}{27.74162pt}{0.0pt}{27.74162pt}\pgfsys@curveto{0.39275pt}{27.74162pt}{0.71114pt}{28.06001pt}{0.71114pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{36.98866pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@moveto{20.83029pt}{20.11916pt}\pgfsys@curveto{20.83029pt}{20.5119pt}{20.5119pt}{20.83029pt}{20.11916pt}{20.83029pt}\pgfsys@curveto{19.72641pt}{20.83029pt}{19.40802pt}{20.5119pt}{19.40802pt}{20.11916pt}\pgfsys@curveto{19.40802pt}{19.72641pt}{19.72641pt}{19.40802pt}{20.11916pt}{19.40802pt}\pgfsys@curveto{20.5119pt}{19.40802pt}{20.83029pt}{19.72641pt}{20.83029pt}{20.11916pt}\pgfsys@closepath\pgfsys@moveto{20.11916pt}{20.11916pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.75204pt}{25.67526pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{27.90614pt}{-5.55066pt}\pgfsys@moveto{28.61728pt}{-5.55066pt}\pgfsys@curveto{28.61728pt}{-5.15791pt}{28.29889pt}{-4.83952pt}{27.90614pt}{-4.83952pt}\pgfsys@curveto{27.5134pt}{-4.83952pt}{27.195pt}{-5.15791pt}{27.195pt}{-5.55066pt}\pgfsys@curveto{27.195pt}{-5.9434pt}{27.5134pt}{-6.2618pt}{27.90614pt}{-6.2618pt}\pgfsys@curveto{28.29889pt}{-6.2618pt}{28.61728pt}{-5.9434pt}{28.61728pt}{-5.55066pt}\pgfsys@closepath\pgfsys@moveto{27.90614pt}{-5.55066pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.50856pt}{-7.69514pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@moveto{-10.17702pt}{-26.28676pt}\pgfsys@curveto{-10.17702pt}{-25.89401pt}{-10.4954pt}{-25.57562pt}{-10.88815pt}{-25.57562pt}\pgfsys@curveto{-11.2809pt}{-25.57562pt}{-11.59929pt}{-25.89401pt}{-11.59929pt}{-26.28676pt}\pgfsys@curveto{-11.59929pt}{-26.6795pt}{-11.2809pt}{-26.9979pt}{-10.88815pt}{-26.9979pt}\pgfsys@curveto{-10.4954pt}{-26.9979pt}{-10.17702pt}{-26.6795pt}{-10.17702pt}{-26.28676pt}\pgfsys@closepath\pgfsys@moveto{-10.88815pt}{-26.28676pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.42813pt}{-34.65225pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$a_{j+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-27.74162pt}{0.0pt}\pgfsys@curveto{-27.74162pt}{0.39275pt}{-28.06001pt}{0.71114pt}{-28.45276pt}{0.71114pt}\pgfsys@curveto{-28.8455pt}{0.71114pt}{-29.1639pt}{0.39275pt}{-29.1639pt}{0.0pt}\pgfsys@curveto{-29.1639pt}{-0.39275pt}{-28.8455pt}{-0.71114pt}{-28.45276pt}{-0.71114pt}\pgfsys@curveto{-28.06001pt}{-0.71114pt}{-27.74162pt}{-0.39275pt}{-27.74162pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.98866pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Proof.

We induct on kk and aja_{j}. The k=0k=0 case is obvious, and the aj=aj1+1a_{j}=a_{j-1}+1 case follows from the merging property. Thus, suppose that k>0,aj>aj1+1k>0,a_{j}>a_{j-1}+1 and assume the statement is true for k1k-1 and, fixing kk, also assume it is true for aj1a_{j}-1. We then apply 3.3 to {a1,,aj1,aj1,aj+1,,am}\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1},\dots,a_{m}\} and {a1,,aj1,aj+1+aj1aj,aj+1,,am}\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},a_{j+1},\dots,a_{m}\} to get the following:

Ak+1({a1,,aj1,aj,aj+1,,am})\displaystyle A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})
=Ak+1({a1,,aj1,aj1,aj+1,,am})\displaystyle\qquad\qquad=A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1},\dots,a_{m}\})
+aj1<b<aj+11Ak({a1,,aj1,aj1,b,aj+11,,am1})\displaystyle\qquad\qquad\qquad+\sum_{a_{j}-1<b<a_{j+1}-1}A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,b,a_{j+1}-1,\dots,a_{m}-1\})
aj1<b<aj1Ak({a1,,aj1,b,aj1,aj+11,,am1}),\displaystyle\qquad\qquad\qquad-\sum_{a_{j-1}<b<a_{j}-1}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j}-1,a_{j+1}-1,\dots,a_{m}-1\}), (2)

Ak+1({a1,,aj1,aj+1+aj1aj,aj+1,,am})\displaystyle A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},a_{j+1},\dots,a_{m}\})
=Ak+1({a1,,aj1,aj+1+aj1aj+1,aj+1,,am})\displaystyle\qquad\qquad=A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j}+1,a_{j+1},\dots,a_{m}\})
aj+1+aj1aj<b<aj+11Ak({a1,,aj1,aj+1+aj1aj,b,aj+11,,am1})\displaystyle\qquad\qquad\qquad-\sum_{a_{j+1}+a_{j-1}-a_{j}<b<a_{j+1}-1}A_{k}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},b,a_{j+1}-1,\dots,a_{m}-1\})
+aj1<b<aj+1+aj1ajAk({a1,,aj1,b,aj+1+aj1aj,aj+11,,am1}).\displaystyle\qquad\qquad\qquad+\sum_{a_{j-1}<b<a_{j+1}+a_{j-1}-a_{j}}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j+1}+a_{j-1}-a_{j},a_{j+1}-1,\dots,a_{m}-1\}). (3)

By the inductive hypothesis (for aj1a_{j}-1), we have

Ak+1({a1,,aj1,aj1,aj+1,,am})=Ak+1({a1,,aj1,aj+1+aj1aj+1,aj+1,,am}),\displaystyle A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1},\dots,a_{m}\})=A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j}+1,a_{j+1},\dots,a_{m}\}),

and by two successive applications each of the inductive hypothesis (for k1k-1), we also have

Ak({a1,,aj1,aj1,b,aj+11,,am1})\displaystyle A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,b,a_{j+1}-1,\dots,a_{m}-1\})
=Ak({a1,,aj1,b+aj1aj+1,b,aj+11,,am1})\displaystyle\qquad=A_{k}(\{a_{1},\dots,a_{j-1},b+a_{j-1}-a_{j}+1,b,a_{j+1}-1,\dots,a_{m}-1\})
=Ak({a1,,aj1,b+aj1aj+1,aj+1+aj1aj,aj+11,,am1}),\displaystyle\qquad=A_{k}(\{a_{1},\dots,a_{j-1},b+a_{j-1}-a_{j}+1,a_{j+1}+a_{j-1}-a_{j},a_{j+1}-1,\dots,a_{m}-1\}),
Ak({a1,,aj1,b,aj1,aj+11,,am1})\displaystyle A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j}-1,a_{j+1}-1,\dots,a_{m}-1\})
=Ak({a1,,aj1,b,b+aj+1aj,aj+11,,am1})\displaystyle\qquad=A_{k}(\{a_{1},\dots,a_{j-1},b,b+a_{j+1}-a_{j},a_{j+1}-1,\dots,a_{m}-1\})
=Ak({a1,,aj1,aj+1+aj1aj,b+aj+1aj,aj+11,,am1}).\displaystyle\qquad=A_{k}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},b+a_{j+1}-a_{j},a_{j+1}-1,\dots,a_{m}-1\}).

Thus, we can match the terms in the right hand side of (2) with those of (3), so

Ak+1({a1,,aj1,aj,aj+1,,am})=Ak+1({a1,,aj1,aj+1+aj1aj,aj+1,,am}),A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})=A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j+1}+a_{j-1}-a_{j},a_{j+1},\dots,a_{m}\}),

as desired. ∎

We now show the main theorem. In fact we will show the following which is a generalization of 1.1.

Theorem 3.5.

Let m2m\geq 2, and fix all aia_{i} except aja_{j}. Then, Ak+1({a1,,aj1,aj,aj+1,,am})A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\}) forms a symmetric and unimodal sequence in aja_{j}, as aja_{j} ranges in the interval (aj1,aj+1)(a_{j-1},a_{j+1}).

Proof.

Symmetry follows from the reflection property. We now induct on kk; the k=0k=0 case is obvious because there is only one possibility for aja_{j}. Thus assume the statement is true for k1k-1.

Without loss of generality, by symmetry assume aj+1ajajaj1a_{j+1}-a_{j}\geq a_{j}-a_{j-1}; we will show that if ajaj1+2a_{j}\geq a_{j-1}+2, then

Ak+1({a1,,aj1,aj,aj+1,,am})Ak+1({a1,,aj1,aj1,aj+1,,am}).A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})\geq A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1},\dots,a_{m}\}).

Indeed, by 3.3, we have

Ak+1({a1,,aj1,aj,aj+1,,am})Ak+1({a1,,aj1,aj1,aj+1,,am})\displaystyle A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j},a_{j+1},\dots,a_{m}\})-A_{k+1}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1},\dots,a_{m}\})
=\displaystyle={} aj1<b<aj+11Ak({a1,,aj1,aj1,b,aj+11,,am1})\displaystyle\sum_{a_{j}-1<b<a_{j+1}-1}A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,b,a_{j+1}-1,\dots,a_{m}-1\})
aj1<b<aj1Ak({a1,,aj1,b,aj1,aj+11,,am1})\displaystyle\qquad-\sum_{a_{j-1}<b<a_{j}-1}A_{k}(\{a_{1},\dots,a_{j-1},b,a_{j}-1,a_{j+1}-1,\dots,a_{m}-1\})
\displaystyle\geq{} 0<c<ajaj11(Ak({a1,,aj1,aj1,aj+11c,aj+11,,am1})\displaystyle\sum_{0<c<a_{j}-a_{j-1}-1}\Big{(}A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1}-1-c,a_{j+1}-1,\dots,a_{m}-1\})
Ak({a1,,aj1,aj1+c,aj1,aj+11,,am1}))\displaystyle\qquad\qquad\qquad\qquad-A_{k}(\{a_{1},\dots,a_{j-1},a_{j-1}+c,a_{j}-1,a_{j+1}-1,\dots,a_{m}-1\})\Big{)}
\displaystyle\geq{} 0<c<ajaj11(Ak({a1,,aj1,aj1,aj+11c,aj+11,,am1})\displaystyle\sum_{0<c<a_{j}-a_{j-1}-1}\Big{(}A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1}-1-c,a_{j+1}-1,\dots,a_{m}-1\})
Ak({a1,,aj1,aj1c,aj1,aj+11,,am1}))\displaystyle\qquad\qquad\qquad\qquad-A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1-c,a_{j}-1,a_{j+1}-1,\dots,a_{m}-1\})\Big{)}
\displaystyle\geq{} 0<c<ajaj11(Ak({a1,,aj1,aj1,aj+11c,aj+11,,am1})\displaystyle\sum_{0<c<a_{j}-a_{j-1}-1}\Big{(}A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1,a_{j+1}-1-c,a_{j+1}-1,\dots,a_{m}-1\})
Ak({a1,,aj1,aj1c,aj+11c,aj+11,,am1}))\displaystyle\qquad\qquad\qquad\qquad-A_{k}(\{a_{1},\dots,a_{j-1},a_{j}-1-c,a_{j+1}-1-c,a_{j+1}-1,\dots,a_{m}-1\})\Big{)}
\displaystyle\geq{} 0<c<ajaj110\displaystyle\sum_{0<c<a_{j}-a_{j-1}-1}0
=\displaystyle={} 0,\displaystyle 0,

where the last inequality is by the inductive hypothesis, using the fact that aj1a_{j}-1 is closer to the center of the interval (aj1,aj+11c)(a_{j-1},a_{j+1}-1-c) than aj1ca_{j}-1-c. (This is because (aj1)aj1>(aj1c)aj1(a_{j}-1)-a_{j-1}>(a_{j}-1-c)-a_{j-1} and (aj+11c)(aj1)>(aj1c)aj1(a_{j+1}-1-c)-(a_{j}-1)>(a_{j}-1-c)-a_{j-1}, where the latter follows from the assumption that aj+1ajajaj1a_{j+1}-a_{j}\geq a_{j}-a_{j-1}.)

Thus the induction is complete and we are done. ∎

4 Conclusion

The main remaining open question is Defant, Engen, and Miller’s conjecture of log-concavity:

Conjecture 4.1 ([5]).

The sequence (Ak+1())12k+1(A_{k+1}(\ell))_{1\leq\ell\leq 2k+1} is log-concave for every nonnegative integer kk.

It turns out that the recursion 3.3 actually allows us to more efficiently compute the sequence elements Ak+1()A_{k+1}(\ell). Using this recursion, we used a computer program to verify that 4.1 is true for all k53k\leq 53. However, the problem remains open for large kk.

5 Acknowledgments

This research was conducted at the University of Minnesota, Duluth REU and was supported by NSF-DMS grant 1949884 and NSA grant H98230-20-1-0009. Thanks to Joe Gallian for running the REU program and providing helpful comments. Thanks also to Colin Defant for suggesting the problem and for useful comments.

References

  • [1] M. Aigner “A Course in Enumeration”, Graduate Texts in Mathematics Springer Berlin Heidelberg, 2007
  • [2] William Y.. Chen, Jeremy J.. Guo and Larry X.. Wang “Zeta Functions and the Log Behaviour of Combinatorial Sequences” In Proceedings of the Edinburgh Mathematical Society 58.3 Cambridge University Press, 2015, pp. 637–651 DOI: 10.1017/S0013091515000036
  • [3] Colin Defant “Catalan intervals and uniquely sorted permutations” In Journal of Combinatorial Theory, Series A 174, 2020, pp. 105250 DOI: 10.1016/j.jcta.2020.105250
  • [4] Colin Defant “Troupes, Cumulants, and Stack-Sorting”, 2020 arXiv:2004.11367 [math.CO]
  • [5] Colin Defant, Michael Engen and Jordan A. Miller “Stack-sorting, set partitions, and Lassalle’s sequence” In Journal of Combinatorial Theory, Series A 175, 2020, pp. 105275 DOI: 10.1016/j.jcta.2020.105275
  • [6] Curtis Greene and Thomas Zaslavsky “On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs” In Transactions of the American Mathematical Society 280, 1983, pp. 97–126 DOI: 10.1090/S0002-9947-1983-0712251-1
  • [7] Matthieu Josuat-Vergès “Cumulants of the qq-semicircular Law, Tutte Polynomials, and Heaps” In Canadian Journal of Mathematics 65.4 Cambridge University Press, 2013, pp. 863–878 DOI: 10.4153/CJM-2012-042-9
  • [8] Donald E. Knuth “The Art of Computer Programming, Volume 1: Fundamental Algorithms” USA: Addison Wesley Longman Publishing Co., Inc., 1997
  • [9] Michel Lassalle “Two integer sequences related to Catalan numbers” In Journal of Combinatorial Theory, Series A 119.4, 2012, pp. 923–935 DOI: 10.1016/j.jcta.2012.01.002
  • [10] Hanna Mularczyk “Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations”, 2020 arXiv:1908.04025 [math.CO]
  • [11] Lenny Tevlin “Statistics on Lattice Walks and q-Lassalle Numbers” In Discrete Mathematics & Theoretical Computer Science, 2015, pp. 841–852
  • [12] Yi Wang and BaoXuan Zhu “Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences” In Science in China A: Mathematics 57.11, 2014, pp. 2429–2435 DOI: 10.1007/s11425-014-4851-x
  • [13] Julian West “Permutations with restricted subsequences and stack-sortable permutations”, 1990