This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Unitalities and mapping spaces in AA_{\infty}-categories

Hiro Lee Tanaka
Abstract

We prove, over any base ring, that the infinity-category of strictly unital A-infinity-categories (and strictly unital functors) is equivalent to the infinity-category of unital A-infinity-categories (and unital functors). We also identify various models for internal homs and mapping spaces in the infinity-categories of dg-categories and of A-infinity–categories, generalizing results of Toën and Faonte.

1 Introduction

Fix a commutative unital base ring 𝐤\mathbf{k} and let AA be an AA_{\infty}-category over 𝐤\mathbf{k}. We recall two notions of unitality.

Given an object XX, a closed degree-zero element ehomA(X,X)e\in\hom_{A}(X,X) is called a unit if for every object WW, the chain maps

m2(e,):homA(W,X)homA(W,X)andm2(,e):homA(X,W)homA(X,W)m^{2}(e,-):\hom_{A}(W,X)\to\hom_{A}(W,X)\qquad\text{and}\qquad m^{2}(-,e):\hom_{A}(X,W)\to\hom_{A}(X,W) (1)

are homotopic to the identity chain maps. AA is called unital if every object XX admits a unit, and a functor between two unital AA_{\infty}-categories is called unital if units are sent to units. We let 𝔸{\mathbb{A}}_{\infty} denote the category (in the classical sense) of unital AA_{\infty}-categories and unital functors.

A closed degree-zero ehomA(X,X)e\in\hom_{A}(X,X) is a strict unit if mnm^{n} (n3n\geq 3) vanishes whenever at least one of the nn inputs is ee, and if the maps (1) are the identity chain maps. We say that AA is strictly unital if every object admits a strict unit, and a functor among strictly unital AA_{\infty}-categories is called strictly unital if the image of every strict unit is a strict unit. 𝔸str{\mathbb{A}}_{\infty}^{\operatorname{str}} denotes the category (in the classical sense) of strictly unital AA_{\infty}-categories and strictly unital functors.

Finally, a functor ff of unital AA_{\infty}-categories is called a quasi-equivalence if ff is an equivalence of cohomology categories (i.e., essentially surjective on cohomology categories, and the maps of morphism complexes are all quasi-isomorphisms). Abusing notation, we let

𝐰𝔸str,𝐰𝔸\mathbf{w}\subset{\mathbb{A}}_{\infty}^{\operatorname{str}},\qquad\mathbf{w}\subset{\mathbb{A}}_{\infty}

denote the collection of quasi-equivalences in each category. The 𝐰\mathbf{w} is meant to convey the term “weak equivalences” from homotopy theory, or from the theory of model categories.

1.1 Main results

Our first main result states that the \infty-category of strictly unital AA_{\infty}-categories is equivalent to the \infty-category of unital AA_{\infty}-categories. We refer to Remark 2.1 for more on localizations of \infty-categories.

Theorem 1.1.

The inclusion j:𝔸str𝔸j:{\mathbb{A}}_{\infty}^{\operatorname{str}}\hookrightarrow{\mathbb{A}}_{\infty} induces an equivalence of \infty-categorical localizations

𝔸str[𝐰1]𝔸[𝐰1].{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]\to{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}].
Remark 1.2.

The proof method of Theorem 1.1 is different from that employed by Pascaleff (and later by Canonaco-Ornaghi-Stellari) [33, 3]. The cited works utilize a Dwyer-Kan adjunction between relative categories, but in practice one need not use the full power of an adjunction. Indeed, a basic fact about localizations of \infty-categories (manifested as Proposition 2.3 below) allows one to construct left and right inverses to the putative equivalence of \infty-categories, without any demand that the left and right inverses be adjoints to the putative equivalence – nor equal! The intuition is that if a natural transformation η\eta, before passing to localizations, happens to consist of morphisms in 𝐰\mathbf{w}, then η\eta must induce a natural equivalence after localization.

Now let dgCat𝔸strdgCat\to{\mathbb{A}}_{\infty}^{\operatorname{str}} be the inclusion of dg-categories and dg-functors into strictly unital AA_{\infty}-categories and strictly unital AA_{\infty} functors. Results of Pascaleff (over a field) and Canonaco-Ornaghi-Stellari (over a commutative ring) [33, 3] show that this inclusion induces an equivalence of \infty-categories upon localization. Thus, an immediate corollary of Theorem 1.1 is:

Corollary 1.3.

The inclusion dgCat𝔸dgCat\to{\mathbb{A}}_{\infty} induces an equivalence of \infty-categories

dgCat[𝐰1]𝔸[𝐰1].dgCat[\mathbf{w}^{-1}]\to{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}].
Notation 1.4.

We let

𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}

denote 𝔸[𝐰1]{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}]. We refer to it as the \infty-category of AA_{\infty}-categories (over 𝐤\mathbf{k}). Implicit in the nomenclature is that all objects and morphisms are unital.

In general, computing the mapping spaces of a localization such as 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} is a difficult task. However, we build upon the works [13, 33, 3] to prove 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} has internal homs. Moreover, we prove that the \infty-categorical Gepner-Haugseng self-enrichment of 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} (see Corollary 7.4.10 of [13]) and the point-set Lyubashenko self-enrichment (by dg co-categories; see Section 4 of [24]) are compatible when one considers sufficiently cofibrant AA_{\infty}-categories (see Definition 3.6). This allows us to compute mapping spaces in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}:

Theorem 1.5.

Let AA and BB be unital AA_{\infty}-categories, and AAA^{\prime}\to A any quasi-equivalence from an AA_{\infty}-category with homotopically projective morphism complexes. Then:

  1. (a)

    The internal hom object hom¯𝒞atA(A,B)\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B) is equivalent in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} to the AA_{\infty}-category

    𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)

    of unital AA_{\infty}-functors.

  2. (b)

    The mapping space hom𝒞atA(A,B)\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B) is homotopy equivalent to the space

    N(𝖥𝗎𝗇A(A,B))N(\mathsf{Fun}_{A_{\infty}}(A^{\prime},B))^{\sim}

    where NN is the AA_{\infty}-nerve and N()N(-)^{\sim} denotes the largest \infty-groupoid contained in the nerve.

In fact, we record many names for internal hom objects and mapping spaces – see Theorems 3.34, 3.35, 3.36, and 3.37, which subsume Theorem 1.5.

Remark 1.6.

It is necessary to replace AA by a well-behaved AA^{\prime}. For example, take 𝐤=\mathbf{k}=\mathbb{Z} and let AA be the AA_{\infty}-category with one object and endomorphism ring /2\mathbb{Z}/2\mathbb{Z}. Take AA^{\prime} to be a semifree resolution – e.g., the dga ×2\mathbb{Z}\xrightarrow{\times 2}\mathbb{Z}. Then 𝖥𝗎𝗇(A,A)\mathsf{Fun}(A,A^{\prime}) is empty while 𝖥𝗎𝗇(A,A)\mathsf{Fun}(A^{\prime},A^{\prime}) is not. That is, functor AA_{\infty}-categories are not invariant under arbitrary quasi-equivalences in the domain variable. However, AA_{\infty}-categories with homotopically projective morphism complexes admit a Whitehead theorem (Proposition 3.45), ensuring the invariance of functor categories under quasi-equivalences among such AA_{\infty}-categories (Proposition 3.46).

Remark 1.7.

The category of unital AA_{\infty}-categories has no model structure (for one thing, it does not admit all equalizers – see Section 1.5 of [2]). Regardless, as we have hinted above, there is a good class of objects that behave as though they deserve the labels of cofibrant and fibrant: AA_{\infty}-categories with homotopically projective morphism complexes. (See Remark 3.6 and Section 3.11.) The good behavior of this class of AA_{\infty}-categories is exploited throughout Section 3.

Remark 1.8.

If AA is a unital AA_{\infty}-category, one can always find a quasi-equivalence AAA^{\prime}\to A from a unital AA_{\infty}-category AA^{\prime} with homotopically projective morphism complexes. To see this, recall that the Yoneda embedding induces a map A𝒴(A)A\to\mathcal{Y}(A) where 𝒴(A)\mathcal{Y}(A) is a dg-category, and the map is invertible up to natural equivalence of AA_{\infty} functors. (See the proof of Proposition 3.47.) Moreover, there exists a cofibrant replacement quasi-equivalence A𝒴(A)A^{\prime}\to\mathcal{Y}(A) of dg-categories by the Tabuada model structure, and any cofibrant dg-category has homotopically projective morphism complexes. (See Notation 3.11.) Letting 𝒴(A)A\mathcal{Y}(A)\to A be a homotopy inverse, the composition A𝒴(A)AA^{\prime}\to\mathcal{Y}(A)\to A establishes the claim.

Remark 1.9.

For most models of Fukaya categories, the morphism complexes are free as graded modules. Hence most models of Fukaya categories have homotopically projective morphism complexes.

Remark 1.10.

Theorem 1.5 contrasts with the dg case. There, even when AA is cofibrant, the dg-category of dg-functors from AA to BB is rarely expected to compute the correct mapping spaces in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}. Instead, the usual representative (as identified by Toën [38]) for computing the internal hom dg-category has been the dg-category of cofibrant right quasi-representable modules over AopBA^{\operatorname{op}}\otimes B. Indeed, it seems one strong motivation for the work [3] was to give a representative of an internal hom object identifiable as a functor category. We build upon ibid. to indeed show that AA_{\infty} functor spaces between dg-categories computes the correct mapping space in the \infty-category 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}. (See Theorem 3.35.)

1.2 Five equivalent \infty-categories

Let us explain the following equivalences of \infty-categories:

𝒞atdg\textstyle{\mathcal{C}\!\operatorname{at}_{dg}}dgCat[𝐰1]\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}[31, 35]\scriptstyle{\sim}[15]\scriptstyle{\sim}[33, 3]𝒞at𝖢𝗁𝖺𝗂𝗇k\textstyle{\mathcal{C}\!\operatorname{at}_{\infty}^{\mathsf{Chain}_{k}}}𝔸str[𝐰1]\textstyle{{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}Thm1.1𝔸[𝐰1].\textstyle{{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}].}
(2)

First, the top row: Recall that over an arbitrary base ring 𝐤\mathbf{k}, Haugseng [15] proved that the \infty-category of dg-categories models the \infty-category of \infty-categories enriched in chain complexes. More accurately, Haugseng proved111This is Theorem 5.8 of [15], taking 𝐕{\bf V} to be the projective model structure on chain complexes over a ring 𝐤\mathbf{k}. that the localization of the 1-category 𝖽𝗀\mathsf{dg} of dg-categories, along quasi-equivalences, is equivalent to the \infty-category 𝒞at𝖢𝗁𝖺𝗂𝗇k\mathcal{C}\!\operatorname{at}_{\infty}^{\mathsf{Chain}_{k}} of \infty-categories enriched in chain complexes over 𝐤\mathbf{k}.

On the other hand, 𝖽𝗀[𝐰1]\mathsf{dg}[\mathbf{w}^{-1}] admits the Tabuada model structure [35] on dg-categories222This is a special case of Muro’s model structure on enriched categories [31].. Above, we have used 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} to denote a quasi-category obtained from the model structure on dg-categories. There are many ways to obtain such a quasi-category. (A tautological construction is to localize the 1-category 𝖽𝗀\mathsf{dg} along quasi-equivalences, which would make the left-pointing arrow definitionally an equality. Another is to take a simplicial localization – for example, the hammock localization of Dwyer-Kan – and then the nerve of the resulting simplicial category. We have no need to choose a model in this work.) In short, the top row consists of equivalences between various models all deserving to be called an \infty-category of dg-categories.

We now visit the middle column. It is a result of Pascaleff [33] (over any field) and Canonaco-Oranghi-Stellari [3] (over any ring) that the inclusion of 𝖽𝗀\mathsf{dg} into 𝔸str{\mathbb{A}}_{\infty}^{\operatorname{str}} induces an equivalence of their \infty-categorical localizations along 𝐰\mathbf{w}. (The strictness in 𝔸str{\mathbb{A}}_{\infty}^{\operatorname{str}} is necessary to employ a bar-cobar type adjunction.) Theorem 1.1 removes the strict-unitality conditions on objects and functors.

The upper-right model, 𝒞at𝖢𝗁𝖺𝗂𝗇k\mathcal{C}\!\operatorname{at}_{\infty}^{\mathsf{Chain}_{k}}, is arguably the most formally well-behaved definition of AA_{\infty}-categories. In contrast, the bottom two \infty-categories have definitions that depend on a choice of a particular model for a 𝐤\mathbf{k}-linear E1E_{1} operad (e.g., taking cellular chains on a particular cellular presentation of the associahedra), and hence driven by particular choices of formulas. The equivalences above exhibit one giant compatibility check of various approaches – \infty-categorical, model-categorical, and formula-driven – that have been taken to articulate the single theory captured in the equivalence class of the above \infty-categories.

Remark 1.11.

Some authors who work only in the stable setting (i.e., where every category is assumed to be pretriangulated) will define a 𝐤\mathbf{k}-linear stable presentable \infty-category to be an \infty-category equipped with an action of the \infty-category 𝐤𝖬𝗈𝖽\mathbf{k}\mathsf{Mod} (where the action 𝐤𝖬𝗈𝖽×𝒞𝒞\mathbf{k}\mathsf{Mod}\times\mathcal{C}\to\mathcal{C} preserves colimits in each variable, and 𝐤𝖬𝗈𝖽\mathbf{k}\mathsf{Mod} is the \infty-category of possibly unbounded 𝐤\mathbf{k}-linear chain complexes). Such an action endows the morphisms of 𝒞\mathcal{C} with the structure of 𝐤\mathbf{k}-linear chain complexes. (This is most easily verified if one uses that 𝐤\mathbf{k}-linear chain complexes are the same thing as H𝐤H\mathbf{k}-linear spectra.)

However, such a definition requires that 𝒞\mathcal{C} has a plentiful supply of colimits, so we avoid it here. The equivalences in (2) require no assumptions of presentability or (co)completeness of the AA_{\infty}-categories/dg-categories in question, nor on their idempotent-completeness. Hence the collection of AA_{\infty}-categories considered here is more general than those that are articulable by trying to define an AA_{\infty}-category as an \infty-category with all colimits receiving a colimit-preserving action from 𝐤𝖬𝗈𝖽\mathbf{k}\mathsf{Mod}.

1.3 Applications

1.3.1 Avoiding specific unitalities

Prior to this work, the community only had a proof that (a localization of) the strictly unital 𝔸str{\mathbb{A}}_{\infty}^{\operatorname{str}} models the \infty-category of AA_{\infty}-categories. However, in practice, natural constructions give rise to unital AA_{\infty}-categories and unital functors among them (where neither the functors nor the AA_{\infty}-categories need be strictly unital). For a geometric example, consider many models of Fukaya categories. For an algebraic example in the present work, consider the natural transformation id𝒞atAτ\operatorname{id}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}\to\tau in (25), which is a natural tranformation of unital functors, but not of strictly unital functors. Contorting a natural, unital construction to fit into a strictly unital framework can be painful, and can now be avoided using Theorem 1.1. (Or, if one prefers to look under the hood, one may make use of (25) liberally.)

As an application, suppose one has an invariant of AA_{\infty}-categories that is most easily defined for strictly unital AA_{\infty}-categories, or whose functoriality is most easily proven for strictly unital functors – so one can produce a functor F:𝔸str𝒟F:{\mathbb{A}}_{\infty}^{\operatorname{str}}\to\mathcal{D}, where the invariant is valued in 𝒟\mathcal{D}. If FF sends quasi-equivalences to equivalences in 𝒟\mathcal{D}, then it is formal that FF extends to a functor 𝔸str[𝐰1]𝒟{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]\to\mathcal{D}. Theorem 1.1 allows us to formally conclude that (an extension of) the invariant FF can also be defined homotopy-coherently for all (non-strictly) unital AA_{\infty}-categories and all (non-strictly) unital functors. Perhaps a more dramatic application is that, by the middle column of (2), a quasi-equivalence-invariant FF defined on dg-categories (rather than strictly unital AA_{\infty}-categories) also canonically extends to a homotopically well-behaved invariant of all unital AA_{\infty}-categories.

Even better, by the universal property of localizations, Theorem 1.1 shows that such an extension is unique up to contractibly canonical equivalence. Thus, the equivalence of two invariants (not just on individual AA_{\infty}-categories, but as invariants sensitive to spaces of functors) can be checked simply by comparing their values on strictly unital AA_{\infty}-categories (or dg-categories) and strictly unital functors (or dg functors). Two salient examples are Hochschild chains (as a functor from 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} to the \infty-category of chain complexes) or KK-theory (as a functor from 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} to the \infty-category of spectra – this functor factors, by definition, through the pretriangulated completion operation).

1.3.2 A coherent setting for inverting quasi-equivalences

Presenting the \infty-category of AA_{\infty}-categories as a localization is also useful when contemplating invariants that are valued in AA_{\infty}-categories. As an example, some natural constructions involving Fukaya categories take place in a setting where one must formally invert quasi-equivalences. (See the opening paragraphs of Section 2.2 in [12], diagram (A.19) of ibid., and the discussion preceding (11.12) of ibid.)

In particular, when claims are made of certain maps factoring – as in the stop-removal-is-localization result (Lemma 3.12 of ibid.) – one must specify in what category the maps factor. In the \infty-category of AA_{\infty}-categories, the inversion of the quasi-equivalence in (3.5) of ibid. may be performed homotopy-coherently, and contractibly-uniquely, allowing for the desired factorization up to canonical homotopy. Importantly, if one is to remove more than one (component of) a stop successively, a claim at the level of the homotopy category of AA_{\infty}-categories is not sufficient to conclude that the diagram relating successive stop-removals and localizations is homotopy coherent. In the \infty-category of AA_{\infty}-categories, however, this coherence follows automatically.

Combined with the localization results of [20], one can in fact conclude not only the coherence of successive stop removals, but their equivariance and continuity with respect to the relevant actions of self-embedding spaces of sectors.

1.3.3 Mapping spaces and Hochschild cochains

Finally, Theorem 1.5 shows that the above applications give rise to desirable properties regarding mapping spaces. A functor out of (or to) 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} indeed gives rise to coherent maps out of (or to) spaces of functors. (This is also a satisfying coda to a well-known problem for dg-categories: In the infinity-category of dg-categories, a morphism does not always admit an easy interpretation as a dg functor – Toën’s resolution instead invited us to examine cofibrant right quasirepresentable bimodules. The paper [3] demonstrates an improvement by instead being able to think of a map in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} as an AA_{\infty} functor between dg-categories.) As a final point, we note that by combining our two main results, a not-strictly-unital AA_{\infty}-functor between two strictly unital AA_{\infty}-categories can, canonically, be homotoped to a strictly unital one (so long as the domain AA_{\infty}-category has homotopically projective mapping complexes).

To illustrate the utility of having characterizations of mapping spaces, we present two immediate applications of Theorem 1.5. Proofs are given at the end of the paper. Note also that for any two AA_{\infty}-categories A,BA,B, the unital functors ABA\to B form the objects of an AA_{\infty}-category 𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A,B). We take the cohomology groups of its morphism complexes repeatedly in the following:

Corollary 1.12.

Let AA^{\prime} be a unital AA_{\infty}-category with homotopically projective mapping complexes. Let BB be any unital AA_{\infty}-category. Then

  1. (a)
    π0hom𝒞atA(A,B){unital functors f:AB}/\pi_{0}\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B)\cong\{\text{unital functors $f:A^{\prime}\to B$}\}/\sim

    where the equivalence relation is homotopy (i.e., natural transformations that are invertible). That is, π0\pi_{0} of mapping spaces in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} are computed as homotopy classes of unital AA_{\infty}-functors.

  2. (b)

    Now suppose f,g:ABf,g:A^{\prime}\to B are homotopic functors (i.e., related by natural equivalence). Then

    π1(hom𝒞atA(A,B),f)(H0hom𝖥𝗎𝗇A(A,B)(f,g))×\pi_{1}(\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B),f)\cong\left(H^{0}\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,g)\right)^{\times}

    where the superscript ×\times indicates the (cohomology classes of) the homotopy-invertible natural transformations from ff to gg.

  3. (c)

    And for all i1i\geq 1,

    πi+1(hom𝒞atA(A,B),f)Hihom𝖥𝗎𝗇A(A,B)(f,g).\pi_{i+1}(\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B),f)\cong H^{-i}\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,g).

    That is, the negative cohomology groups of the complex of natural transformations are the higher homotopy groups of the mapping spaces in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

  4. (d)

    Further, choosing an AA_{\infty}-category AA^{\prime} with homotopically projective morphism complexes, we have

    π1((𝒞atA),A)(π0hom𝒞atA(A,A))×({unital functors f:AA}/)×\pi_{1}((\mathcal{C}\!\operatorname{at}_{A_{\infty}})^{\sim},A^{\prime})\cong(\pi_{0}\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},A^{\prime}))^{\times}\cong(\{\text{unital functors $f:A^{\prime}\to A^{\prime}$}\}/\sim)^{\times}

    where the superscript ×\times indicates we are only considering those endofunctors that are, up to natural equivalence, invertible.

  5. (e)

    And

    π2((𝒞atA),A)π1(hom𝒞atA(A,A),idA)(H0hom𝖥𝗎𝗇A(A,B)(f,g))×.\pi_{2}((\mathcal{C}\!\operatorname{at}_{A_{\infty}})^{\sim},A^{\prime})\cong\pi_{1}(\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},A^{\prime}),\operatorname{id}_{A})\cong\left(H^{0}\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,g)\right)^{\times}.
  6. (f)

    Finally, for all i3i\geq 3, we have

    πi((𝒞atA),A)πi1(hom𝒞atA(A,B),f)Hi+2hom𝖥𝗎𝗇A(A,B)(f,g).\pi_{i}((\mathcal{C}\!\operatorname{at}_{A_{\infty}})^{\sim},A^{\prime})\cong\pi_{i-1}(\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B),f)\cong H^{-i+2}\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,g).

Our final application concerns Hochschild cohomology of an AA_{\infty}-category. Let us state at the outset that there are two natural starting points for the definition of the Hochschild cochain complex of an AA_{\infty}-category AA. In either starting point, it is our desire to avoid presentations of Hochschild cochains that are rooted only in chain-complex-dependent formulas, so that universal characterizations are available to us.

First, one could define the notion of an (A,A)(A,A)-bimodule – which one most often defines as a functor AopA𝖢𝗁𝖺𝗂𝗇A^{\operatorname{op}}\otimes A\to\mathsf{Chain} – and prove that the hom pairing is an example of a bimodule. (One often calls this the diagonal bimodule.) Then one can define the Hochschild cochain complex to be the derived endomorphisms of the diagonal bimodule in the AA_{\infty}-category of bimodules. A coend construction (if one can construct a theory of coends for AA_{\infty}-categories) realizes a monoidal structure on the AA_{\infty}-category of (A,A)(A,A)-bimodules, with the diagonal bimodule as the unit. By Dunn addivitiy, this even exhibits the E2E_{2}-algebra structure on this definition of Hochschild cochains. However, as far as we know, there is no satisfactory \infty-categorical framework for enriched \infty-categories incorporating coends and an enriched Yoneda pairing. So the approach of this paragraph, with present technology, would require new inventions.

Another definition of Hochschild cochains of AA is as the endomorphisms of the identity functor. If one exhibits 𝖥𝗎𝗇A(A,A)\mathsf{Fun}_{A_{\infty}}(A,A) as a monoidal AA_{\infty}-category under composition, the identity functor is clearly the unit, and this exhibits an E2E_{2}-algebra structure on Hochschild cochains of AA, again by Dunn additivity. The approach of the present paragraph is already available to us: Theorem 1.5 exhibits the self-enrichment of 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} (induced by internal hom objects) as precisely modeled by functor AA_{\infty}-categories for objects with homotopically projective morphism complexes. This in particular exhibits the composition monoidal structure on internal endomorphisms. Hence, if AA has homotopically projective morphism complexes, we obtain a workable definition of Hochschild cochains of AA:

CH(A):=homhom¯𝒞atA(A,A)(idA,idA)hom𝖥𝗎𝗇A(A,A)(idA,idA).CH(A):=\hom_{\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,A)}(\operatorname{id}_{A},\operatorname{id}_{A})\simeq\hom_{\mathsf{Fun}_{A_{\infty}}(A,A)}(\operatorname{id}_{A},\operatorname{id}_{A}). (3)

We take this to be our definition of Hochschild cochains. When one has a concrete model for AA, the last equivalence above produces a cochain complex model. (And when AA lacks homotopically projective morphism complexes, one may replace AA with a quasi-equivalent AA^{\prime} having homotopically projective morphism complexes to compute CH(A)CH(A). This is always possible by Remark 1.8.)

Let us remark that the the two approaches above should yield equivalent answers because any theory of bimodules will allow for a natural map hom¯𝒞atA(A,B)Bimod(A,B)\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B)\to\operatorname{Bimod}(A,B) that is fully faithful (and the essential image would be the so-called graphical bimodules).

Taking (3) to be our definition of Hochschild cochains (well-defined up to quasi-isomorphism) and defining Hochschild cohomology HHHH^{*} to be the cohomology of (3), we have the following. One can view it as an AA_{\infty}-version of Corollary 8.3 of [38]. We refer the reader to Theorem 4.5 of [8] for another proof in the case 𝐤\mathbf{k} is a field.

Corollary 1.13.

Let AA^{\prime} be a unital AA_{\infty}-category with homotopically projective morphism complexes. Letting HH0(A)×HH^{0}(A^{\prime})^{\times} denote the multiplicatively invertible elements of HH0(A)HH^{0}(A^{\prime}), we have

π2((𝒞atA),A)π1(hom𝒞atA(A,A),idA)(HH0(A))×.\pi_{2}((\mathcal{C}\!\operatorname{at}_{A_{\infty}})^{\sim},A^{\prime})\cong\pi_{1}(\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},A^{\prime}),\operatorname{id}_{A})\cong(HH^{0}(A^{\prime}))^{\times}.

For all i1i\geq 1, we have

πi+2((𝒞atA),A)HHi(A).\pi_{i+2}((\mathcal{C}\!\operatorname{at}_{A_{\infty}})^{\sim},A^{\prime})\cong HH^{-i}(A^{\prime}).

1.3.4 Universal properties of quotients and localizations

By virtue of our mapping space computations, we can now verify that constructions of localizations and quotients in the literature indeed satisfy the \infty-categorical universal properties that the names imply. This is the subject of [32].

1.4 Acknowledgments

We thank Alberto Canonaco, Mattia Ornaghi, and Paolo Stellari for very helpful feedback on earlier drafts, catching some mistakes, and asking clarifying questions that greatly improved the exposition. We also thank them for sharing with us a different proof of Lemma 2.17 (their proof will appear in  [3]) and for greatly simplifying the proof of Lemma 2.27 (their simplification now appears here; the more computationally involved, old proof has been relegated to the appendix of this work). The author was supported by a Sloan Research Fellowship and by an NSF CAREER Award during the writing of this work.

2 Unitalities

2.1 A fact about localizations of infinity-categories

Recollection 2.1.

If 𝒞\mathcal{C} is a category and WW is some collection of morphisms in 𝒞\mathcal{C} (or, equivalently, the subcategory generated by the collection), the notation 𝒞[W1]\mathcal{C}[W^{-1}] denotes the \infty-categorical localization of 𝒞\mathcal{C} along WW. Informally, 𝒞[W1]\mathcal{C}[W^{-1}] is equipped with a functor 𝒞𝒞[W1]\mathcal{C}\to\mathcal{C}[W^{-1}], and this functor exhibits 𝒞[W1]\mathcal{C}[W^{-1}] as the initial \infty-category in which the morphisms in WW become invertible. Note that WW and WW^{\prime} necessarily define the same localization if they define the same homotopy classes of morphisms. In particular, one may specify a localization by specifying homotopy classes of morphisms in 𝒞\mathcal{C}. (For a point-set model, one takes WW to consist of all morphisms in 𝒞\mathcal{C} contained in these homotopy classes).

There are many models for this localization. The reader may take 𝒞[W1]\mathcal{C}[W^{-1}] to be the quasi-category obtained as the homotopy pushout of quasi-categories

N(W)\textstyle{N(W)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N(𝒞)\textstyle{N(\mathcal{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|N(W)|\textstyle{|N(W)|\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒞[W1].\textstyle{\mathcal{C}[W^{-1}].}

Here, N(𝒞)N(\mathcal{C}) is the nerve of 𝒞\mathcal{C}, |X||X| is a Kan-fibrant replacement of the simplicial set XX, and 𝒞[W1]\mathcal{C}[W^{-1}] may be modeled by taking a set-theoretic pushout of simplicial sets, then Joyal-fibrantly replacing the result.

In practice, one often utilizes the model-categorical power of marked simplicial sets as developed in Section 3.1 of [21] (and, in the notation of loc. cit., one often gets away with just setting the base simplicial set SS to be a point, e.g., S=Δ0S=\Delta^{0}). Further using the notation of Definition 3.1.0.1 of [21], the localization 𝒞[W1]\mathcal{C}[W^{-1}] is a fibrant replacement of the pair (X,)(X,\mathcal{E}) where \mathcal{E} is the collection of edges in WW.

Recollection 2.2.

There is an \infty-category 𝒲𝒞at\mathcal{WC}\!\operatorname{at}_{\infty} (Construction 4.1.3.1 of [22]) whose objects are pairs (𝒞,W)(\mathcal{C},W) consisting of an \infty-category 𝒞\mathcal{C} and a (not necessarily full) subcategory WW of the homotopy category ho𝒞\operatorname{ho}\mathcal{C} containing all isomorphisms in ho𝒞\operatorname{ho}\mathcal{C}. (One may equivalently think of WW as the maximal sub-simplicial-set of 𝒞\mathcal{C} whose image in ho𝒞\operatorname{ho}\mathcal{C} is the subcategory in question.)

The space of morphisms hom𝒲𝒞at((𝒞,W),(𝒞,W))\hom_{\mathcal{WC}\!\operatorname{at}_{\infty}}((\mathcal{C},W),(\mathcal{C}^{\prime},W^{\prime})) is identified with the connected components of hom𝒞at(𝒞,𝒞)\hom_{\mathcal{C}\!\operatorname{at}_{\infty}}(\mathcal{C},\mathcal{C}^{\prime}) spanned by those functors for whom (after passing to homotopy categories) the image of WW is contained in WW^{\prime}. There is a functor

𝕃:𝒲𝒞at𝒞at\mathbb{L}:\mathcal{WC}\!\operatorname{at}_{\infty}\to\mathcal{C}\!\operatorname{at}_{\infty}

which on objects sends (𝒞,𝒲)(\mathcal{C},\mathcal{W}) to the localization 𝒞[𝒲1]\mathcal{C}[\mathcal{W}^{-1}], and which commutes with products (Proposition 4.1.3.2 of [22]).

Fix a functor η:Δ1×𝒞𝒞\eta:\Delta^{1}\times\mathcal{C}\to\mathcal{C}^{\prime}. We let f0f_{0} and f1f_{1} denote the restrictions of η\eta to {0}×𝒞\{0\}\times\mathcal{C} and to {1}×𝒞\{1\}\times\mathcal{C}, respectively (so that η\eta is a natural transformation from f0f_{0} to f1f_{1}).

Proposition 2.3.

Suppose that η\eta (after passing to homotopy categories) sends Δ1×W\Delta^{1}\times W inside WW^{\prime}. Then η\eta induces a homotopy (i.e., a natural equivalence – not just a natural transformation) from 𝕃(f0)\mathbb{L}(f_{0}) to 𝕃(f1)\mathbb{L}(f_{1}).

Proof.

η\eta defines a morphism in 𝒲𝒞at\mathcal{WC}\!\operatorname{at}_{\infty}

(Δ1×𝒞,Δ1×W)(𝒞,W)(\Delta^{1}\times\mathcal{C},\Delta^{1}\times W)\to(\mathcal{C}^{\prime},W^{\prime})

hence a morphism in 𝒞at\mathcal{C}\!\operatorname{at}_{\infty}

𝕃η:Δ1[(Δ1)1]×𝒞[W1](Δ1×𝒞)[(Δ1×W)1]𝕃η𝒞[(W)1].\mathbb{L}\eta:\Delta^{1}[(\Delta^{1})^{-1}]\times\mathcal{C}[W^{-1}]\simeq(\Delta^{1}\times\mathcal{C})[(\Delta^{1}\times W)^{-1}]\xrightarrow{\mathbb{L}\eta}\mathcal{C}^{\prime}[(W^{\prime})^{-1}].

(The first equivalence uses the fact that 𝕃\mathbb{L} commutes with products – see Recollection 2.2). Of course, the localization |Δ1|:=Δ1[(Δ1)1]|\Delta^{1}|:=\Delta^{1}[(\Delta^{1})^{-1}] inverts the unique non-degenerate edges 010\to 1 in Δ1\Delta^{1} and receives a map Δ1|Δ1|\Delta^{1}\to|\Delta^{1}| that is a bijection on objects. In particular, 𝕃η\mathbb{L}\eta exhibits an invertible-up-to-homotopy natural transformation (and all the data exhibiting the homotopy-invertibility) from 𝕃f0\mathbb{L}f_{0} to 𝕃f1\mathbb{L}f_{1}. ∎

2.2 Notation, conventions, and useful examples

We assume the reader is familiar with AA_{\infty}-categories. We include this section to set notation and sign conventions.

Notation 2.4 (ss).

We let ss be the shift operator on chain complexes and on graded 𝐤\mathbf{k}-modules, so that s𝐤s\mathbf{k} is a copy of 𝐤\mathbf{k} in cohomological degree -1. For example, the mapping cone of a chain map f:ABf:A\to B decomposes, as a graded 𝐤\mathbf{k}-module, as BsAB\oplus sA. As another example, we have hom(A,sB)shom(A,B)hom(s1A,B)\hom(A,sB)\cong s\hom(A,B)\cong\hom(s^{-1}A,B) as chain complexes. Note ss is the chain-complex analogue of the reduced suspension Σ\Sigma of pointed spaces and of spectra.

Convention 2.5 (Signs for AA_{\infty}-operations).

Given integers α,β,γ\alpha,\beta,\gamma, define

=(α,β,γ):=α+βγ.\star=\star(\alpha,\beta,\gamma):=\alpha+\beta\gamma. (4)

Assume we have kk-ary operations mkm^{k} of (cohomological) degree 2k2-k. Given two positive integers klk\leq l, we define

mlk:=(1)idαmβidγm^{k}_{l}:=\sum(-1)^{\star}\operatorname{id}^{\otimes\alpha}\otimes m^{\beta}\otimes\operatorname{id}^{\otimes\gamma}

where the summation runs through α,γ0\alpha,\gamma\geq 0 and β1\beta\geq 1 satisfying α+β+γ=l\alpha+\beta+\gamma=l and β=k\beta=k. Note mkk=mkm^{k}_{k}=m^{k}. We say that the collection of kk-ary operations {mk}k1\{m^{k}\}_{k\geq 1} satisfies the AA_{\infty} relations if for all l1l\geq 1,

1klmlk+1mlk=0.\sum_{1\leq k\leq l}m^{l-k+1}m^{k}_{l}=0. (5)
Remark 2.6 (Relating some sign conventions).

All AA_{\infty} sign conventions depend on a choice of the function \star. Our convention follows that of Getzler-Jones [14] and Keller [18] – this is the standard convention that is forced upon us if we choose to formula the Koszul dual notion of dg-coalgebra as satisfying a quadratic equation with no signs, and if we employ the Koszul sign rule. Another convention is that used by Lyubashenko and coauthors – see (2.3.2) of [24] – and in works such as [3]. The sign difference in these two conventions owes to right-versus-left ordering of compositions, and one can easily work out that the sign differences correspond to reversing orientations of cells in associahedra.

Example 2.7.

For l=1,2,3l=1,2,3 the equation (5) becomes

0\displaystyle 0 =m1m1\displaystyle=m^{1}m^{1}
0\displaystyle 0 =m1m2m2(m1id+idm1)\displaystyle=m^{1}m^{2}-m^{2}(m^{1}\otimes\operatorname{id}+\operatorname{id}\otimes m^{1})
0\displaystyle 0 =m1m3+m3(m1idid+idm1id+ididm1)+m2(m2ididm2).\displaystyle=m^{1}m^{3}+m^{3}(m^{1}\otimes\operatorname{id}\otimes\operatorname{id}+\operatorname{id}\otimes m^{1}\otimes\operatorname{id}+\operatorname{id}\otimes\operatorname{id}\otimes m^{1})+m^{2}(m^{2}\otimes\operatorname{id}-\operatorname{id}\otimes m^{2}).

Thus m1m^{1} is a differential for a cochain complex. m2m^{2} is a chain map (i.e., satisfies the Leibnix rule). And m3m^{3} exhibits a homotopy from m2(m2id)m^{2}(m^{2}\otimes\operatorname{id}) to m2(idm2)m^{2}(\operatorname{id}\otimes m^{2}).

Recollection 2.8 (Augmentations and naturality).

Given an AA_{\infty}-category AA, one has an augmented AA_{\infty}-category A+A^{+}, obtained by formally adjoining strict units to AA. Concretely, we have

homA+(X,Y):={homA(X,Y)XYhomA(X,X)𝐤X=Y.\hom_{A^{+}}(X,Y):=\begin{cases}\hom_{A}(X,Y)&X\neq Y\\ \hom_{A}(X,X)\oplus\mathbf{k}&X=Y.\end{cases}

We will often call the adjoined strict units the augmentation units, and denote the augmentation unit of an object XobAX\in\operatorname{ob}A by 1X1_{X}. Any AA_{\infty}-functor f:ABf:A\to B induces a strictly unital functor f+:A+B+f^{+}:A^{+}\to B^{+}. One has idA+=idA+\operatorname{id}_{A}^{+}=\operatorname{id}_{A^{+}} and (fg)+=f+g+(f\circ g)^{+}=f^{+}\circ g^{+}.

The (non-unital) inclusion AA+A\to A^{+} is natural: For any ff, the compositions AA+B+A\to A^{+}\to B^{+} and ABB+A\to B\to B^{+} are equal.

Recollection 2.9 (Twisted complexes).

Given an AA_{\infty}-category AA, we let 𝖳𝗐A\mathsf{Tw}A denote the AA_{\infty}-category of twisted complexes (of objects in AA). We refer to Section 7 of [18] for details and for one sign convention. In [1], the notation A𝗍𝗋A^{\mathsf{tr}} is used in place of 𝖳𝗐A\mathsf{Tw}A.

Example 2.10 (Morphisms between cones are cones).

If UU and TT are cochain complexes with a chain map f:UTf:U\to T, the cone Cone(f)\operatorname{Cone}(f) is a cochain complex TsUT\oplus sU with differential

tsu(dt±fu)±sdu.t\oplus su\mapsto(dt\pm fu)\oplus\pm sdu.

There are multiple sign conventions for what one means by the mapping cone. Even if one demands the Koszul-sign inspired identity d(su)=s(du)d(su)=-s(du), either of the differentials

(dtfu)sdu,(dt+fu)sdu(dt-fu)\oplus-sdu,\qquad(dt+fu)\oplus-sdu

leads to a fine theory of cones in homological algebra. (For example, the map tsutsut\oplus su\mapsto t\oplus-su realizes a natural chain complex isomorphism between the two mapping cones.) Yet another differential for the mapping cone is (dt+(1)ufu)sdu(dt+(-1)^{u}fu)\oplus sdu, and one can check this model for the mapping cone is isomorphic to the previous two. We will refer to a chain complex isomorphic to any of these as a mapping cone for ff, though we may take certain isomorphisms for granted and say “the” mapping cone from time to time.

We will often make use of the following: For any closed degree zero morphism gg in AA, the morphism complexes hom𝖳𝗐A(X,Cone(g))\hom_{\mathsf{Tw}A}(X,\operatorname{Cone}(g)) are also mapping cones for any X𝖳𝗐AX\in\mathsf{Tw}A.

Example 2.11.

To see an example of the above claim, fix an object XX and a unit ehomA(W,W)e\in\hom_{A}(W,W). Then hom𝖳𝗐A(Cone(e),X)\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),X) and hom𝖳𝗐A(X,Cone(e))\hom_{\mathsf{Tw}A}(X,\operatorname{Cone}(e)) are both acyclic – in fact, they are mapping cones of a quasi-isomorphism. For example,

hom𝖳𝗐A(X,Cone(e))=homA(X,W)shomA(X,W)\hom_{\mathsf{Tw}A}(X,\operatorname{Cone}(e))=\hom_{A}(X,W)\oplus s\hom_{A}(X,W)

with differential

m𝖳𝗐A1:psq(m1p±m2(e,q))sm1(q).m^{1}_{\mathsf{Tw}A}:p\oplus sq\mapsto(m^{1}p\pm m^{2}(e,q))\oplus-sm^{1}(q).

We recognize this as the differential for a mapping cone of the chain map m2(e,)m^{2}(e,-). Likewise, hom𝖳𝗐A(Cone(e),X)\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),X) is a (shift of) the mapping cone for the map m2(,e)m^{2}(-,e). Because ee is a unit, each mapping complex is a mapping cone of a homotopy-invertible chain map. Hence hom𝖳𝗐A(X,Cone(e))\hom_{\mathsf{Tw}A}(X,\operatorname{Cone}(e)) and hom𝖳𝗐A(Cone(e),X)\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),X) are acyclic.

Example 2.12.

Suppose we have two degree 0, closed elements fhomA(X,Y)f\in\hom_{A}(X,Y) and ghomA(X,Y)g\in\hom_{A}(X^{\prime},Y^{\prime}). Then we can represent hom𝖳𝗐A(Cone(f),Cone(g))\hom_{\mathsf{Tw}A}(\operatorname{Cone}(f),\operatorname{Cone}(g)) as a matrix of graded 𝐤\mathbf{k}-modules:

(𝐤homA(Y,Y)s1𝐤homA(X,Y)s𝐤homA(Y,X)𝐤homA(X,X).)\left(\begin{array}[]{cc}\mathbf{k}\otimes\hom_{A}(Y,Y^{\prime})&s^{-1}\mathbf{k}\otimes\hom_{A}(X,Y)\\ s\mathbf{k}\otimes\hom_{A}(Y,X^{\prime})&\mathbf{k}\otimes\hom_{A}(X,X^{\prime}).\end{array}\right)

Writing 11 for the unit of 𝐤\mathbf{k}, we denote the generator of s1𝐤s^{-1}\mathbf{k} as s11s^{-1}1 and likewise we write s1s𝐤s1\in s\mathbf{k}. Then m𝖳𝗐A1m^{1}_{\mathsf{Tw}A} of the element

𝐱=(ps11xs1qy)hom𝖳𝗐A(Cone(f),Cone(g))\mathbf{x}=\left(\begin{array}[]{cc}p&s^{-1}1\otimes x\\ s1\otimes q&y\end{array}\right)\in\hom_{\mathsf{Tw}A}(\operatorname{Cone}(f),\operatorname{Cone}(g)) (6)

is given up to sign by

m𝖳𝗐A1𝐱=(m1p±m2(g,q)s11(±m1x±m2(p,f)±m2(g,y)±m3(g,q,f))s1(±m1q)m1y±m2(q,f))m^{1}_{\mathsf{Tw}A}\mathbf{x}=\left(\begin{array}[]{cc}m^{1}p\pm m^{2}(g,q)&s^{-1}1\otimes(\pm m^{1}x\pm m^{2}(p,f)\pm m^{2}(g,y)\pm m^{3}(g,q,f))\\ s1\otimes(\pm m^{1}q)&m^{1}y\pm m^{2}(q,f)\end{array}\right) (7)
Example 2.13.

Fix two units e,ee,e^{\prime} for objects W,WW,W^{\prime}, respectively. We claim hom𝖳𝗐A(Cone(e),Cone(e))\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),\operatorname{Cone}(e^{\prime})) is acyclic – it will again be the mapping cone of a homotopy-invertible map.

To see this, we note that (as a graded 𝐤\mathbf{k}-module) this complex is a tensor product of a matrix algebra End(𝐤s𝐤)\operatorname{End}(\mathbf{k}\oplus s\mathbf{k}) with homA(W,W)\hom_{A}(W,W^{\prime}):

hom𝖳𝗐A(Cone(e),Cone(e))(hom(𝐤,𝐤)hom(s𝐤,𝐤)hom(𝐤,s𝐤)hom(s𝐤,s𝐤))homA(W,W).\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),\operatorname{Cone}(e^{\prime}))\cong\left(\begin{array}[]{cc}\hom(\mathbf{k},\mathbf{k})&\hom(s\mathbf{k},\mathbf{k})\\ \hom(\mathbf{k},s\mathbf{k})&\hom(s\mathbf{k},s\mathbf{k})\\ \end{array}\right)\otimes\hom_{A}(W,W^{\prime}).

We fix elements of this matrix algebra

a=(1000),b=(0100),c=(0010),d=(0001).a=\left(\begin{array}[]{cc}1&0\\ 0&0\\ \end{array}\right),\qquad b=\left(\begin{array}[]{cc}0&1\\ 0&0\\ \end{array}\right),\qquad c=\left(\begin{array}[]{cc}0&0\\ 1&0\\ \end{array}\right),\qquad d=\left(\begin{array}[]{cc}0&0\\ 0&1\\ \end{array}\right). (8)

(Here, bb is the degree 1 isomorphism sending 1s𝐤1\in s\mathbf{k} to 1𝐤1\in\mathbf{k}. Likewise, cc is a degree -1 isomorphism, while dd is a degree 0 isomorphism.) Then any element in hom𝖳𝗐A(Cone(e),Cone(e))\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),\operatorname{Cone}(e^{\prime})) can be written

ap+bx+cq+dyhom𝖳𝗐A(Cone(e),Cone(e))a\otimes p+b\otimes x+c\otimes q+d\otimes y\in\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),\operatorname{Cone}(e^{\prime})) (9)

for a unique quadruplet p,q,x,yhomA(W,W)p,q,x,y\in\hom_{A}(W,W^{\prime}).

Using the differential (7), we see that hom𝖳𝗐A(Cone(e),Cone(e))\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e),\operatorname{Cone}(e^{\prime})) is (a shift of) the mapping cone of the endomorphism

Z=(m2(,e)±m3(e,,e)m2(,e))(hom(𝐤,𝐤)hom𝖳𝗐A(W,W)hom(𝐤,s𝐤)hom𝖳𝗐A(W,W)).Z=\left(\begin{array}[]{c}m^{2}(-,e)\pm m^{3}(e^{\prime},\bullet,e)\\ m^{2}(\bullet,e)\end{array}\right)\in\left(\begin{array}[]{c}\hom(\mathbf{k},\mathbf{k})\otimes\hom_{\mathsf{Tw}A}(W,W^{\prime})\\ \hom(\mathbf{k},s\mathbf{k})\otimes\hom_{\mathsf{Tw}A}(W,W^{\prime})\end{array}\right). (10)

We claim that ZZ admits a homotopy inverse, namely the map

W=(m2(,e1)m2(,e1)).W=\left(\begin{array}[]{c}m^{2}(-,e_{1})\\ m^{2}(\bullet,e_{1})\end{array}\right).

To see this, observe the homotopies of operators

m2(m3(e2,,e1),e1)\displaystyle m^{2}(m^{3}(e_{2},\bullet,e_{1}),e_{1}) m2(e2,m3(,e1,e1))+m3(m2(e2,),e1,e1)\displaystyle\sim-m^{2}(e_{2},m^{3}(\bullet,e_{1},e_{1}))+m^{3}(m^{2}(e_{2},\bullet),e_{1},e_{1})
m3(e2,m2(,e1),e1)+m3(e2,,m2(e1,e1))\displaystyle\qquad-m^{3}(e_{2},m^{2}(\bullet,e_{1}),e_{1})+m^{3}(e_{2},\bullet,m^{2}(e_{1},e_{1}))
m3(,e1,e1)+m3(,e1,e1)\displaystyle\sim-m^{3}(\bullet,e_{1},e_{1})+m^{3}(\bullet,e_{1},e_{1})
m3(e2,,e1)+m3(e2,,e1)\displaystyle\qquad-m^{3}(e_{2},\bullet,e_{1})+m^{3}(e_{2},\bullet,e_{1})
=0.\displaystyle=0. (11)

The first homotopy is due to the AA_{\infty} relation for m4(e2,,e1,e1)m^{4}(e_{2},\bullet,e_{1},e_{1}) and the fact that the eie_{i} are closed. The second homotopy uses the assumption that eie_{i} are units, so that m2(e2,)m^{2}(e_{2},\bullet) and m2(,e1)m^{2}(\bullet,e_{1}) are homotopic to the identity map. We then have that

WZ()\displaystyle WZ\left(\begin{array}[]{c}-\\ \bullet\end{array}\right) =(m2(m2(,e1))±m2(m3(e2,,e1),e1)m2(m2(,e1),e1))\displaystyle=\left(\begin{array}[]{c}m^{2}(m^{2}(-,e_{1}))\pm m^{2}(m^{3}(e_{2},\bullet,e_{1}),e_{1})\\ m^{2}(m^{2}(\bullet,e_{1}),e_{1})\end{array}\right) (16)
(m2(,e1)±0m2(,e1))\displaystyle\sim\left(\begin{array}[]{c}m^{2}(-,e_{1})\pm 0\\ m^{2}(\bullet,e_{1})\end{array}\right) (19)
()\displaystyle\sim\left(\begin{array}[]{c}-\\ \bullet\end{array}\right) (22)

where the first homotopy uses (11) and the fact that e1e_{1} is a unit. The last homotopy uses that e1e_{1} is a unit again. A similar argument shows that ZWidZW\sim\operatorname{id}, showing that ZZ is homotopy invertible.

Recollection 2.14 (Localizations and naturality).

Given a collection of closed degree zero morphisms IAI\subset A, one can form the localization A[I1]A[I^{-1}]. We model this following [11]: An object of A[I1]A[I^{-1}] is an object of AA, while each morphism complex

homA[I1](X,Y)\hom_{A[I^{-1}]}(X,Y)

is defined as a bar construction, which as a graded 𝐤\mathbf{k}-module decomposes as

l1f1,,fl1sl1(homTwA(Cl1,Y)|homTwA(Cl2,Cl1)||homTwA(C1,C2)|homTwA(X,C1)).\bigoplus_{l\geq 1}\bigoplus_{f_{1},\ldots,f_{l-1}}s^{l-1}\left(\hom_{\operatorname{Tw}A}(C_{l-1},Y)|\hom_{\operatorname{Tw}A}(C_{l-2},C_{l-1})|\ldots|\hom_{\operatorname{Tw}A}(C_{1},C_{2})|\hom_{\operatorname{Tw}A}(X,C_{1})\right). (23)

Here, we have used the vertical bar || in place of a tensor product over 𝐤\mathbf{k}. Each Ci:=Cone(fi)C_{i}:=\operatorname{Cone}(f_{i}) is a mapping cone for some morphism fif_{i} in II; as indicated in the subscripts of hom\hom, we treat these mapping cones as objects of TwA\operatorname{Tw}A. The l=1l=1 summand is simply homA(X,Y)=homTwA(X,Y)\hom_{A}(X,Y)=\hom_{\operatorname{Tw}A}(X,Y). The above morphism complex is filtered by word-length, ll. Given objects X0,,XNX_{0},\ldots,X_{N} of AA, the operation mA[I1]Nm^{N}_{A[I^{-1}]} on the sub-complex of words of length lN,,l1l_{N},\ldots,l_{1} is a summation

(1)idαmTwAβidγ\sum(-1)^{\ast}\operatorname{id}^{\otimes\alpha}\otimes m^{\beta}_{\operatorname{Tw}A}\otimes\operatorname{id}^{\otimes\gamma} (24)

where 0αlN10\leq\alpha\leq l_{N}-1, 0γl110\leq\gamma\leq l_{1}-1, and α+β+γ=l1++lN\alpha+\beta+\gamma=l_{1}+\ldots+l_{N}. The sign (1)(-1)^{\ast} depends on further conventions in one’s model of AA_{\infty}-categories. For one convention, we refer to Lyubashenko-Ovsienko [27], where the above formula is presented in cocategory form in equation (2.2.1). (Using the notation of ibid., set 𝒞=𝖳𝗐A\mathcal{C}=\mathsf{Tw}A and set =Cone(I)\mathcal{B}=\operatorname{Cone}(I) to be the full subcategory of 𝒞\mathcal{C} consisting of mapping cones of elements in II. One obtains the quotient category 𝖣(𝒞|)\mathsf{D}(\mathcal{C}|\mathcal{B}) in ibid., and the localization 𝒞[I1]\mathcal{C}[I^{-1}] is the full subcategory of 𝖣(𝒞|)\mathsf{D}(\mathcal{C}|\mathcal{B}) spanned by objects of AA.)

The inclusion of the word-length 1 morphisms defines a functor AA[I1]A\to A[I^{-1}]. If f:ABf:A\to B sends elements of IAI_{A} to elements of IBI_{B}, then one has an induced functor A[IA1]B[IB1]A[I_{A}^{-1}]\to B[I_{B}^{-1}], and this construction respects composition (of functors respecting II).

Localization is natural: If f:ABf:A\to B sends elements of IAI_{A} to elements of IBI_{B}, then ABB[IB1]A\to B\to B[I_{B}^{-1}] and AA[IA1]B[IB1]A\to A[I_{A}^{-1}]\to B[I_{B}^{-1}] are the same map (Corollary 3.2 of [27]).

We will need the following notion:

Definition 2.15.

Let AA be an AA_{\infty}-category and BAB\subset A a full subcategory. We say that a functor f:AEf:A\to E is contractible along BB if for every X,YobBX,Y\in\operatorname{ob}B, the chain map

homA(X,Y)homE(fX,fY)\hom_{A}(X,Y)\to\hom_{E}(fX,fY)

is null-homotopic.

2.3 A right inverse

Notation 2.16.

(idA\operatorname{id}_{A} and τ\tau) Given a unital AA_{\infty}-category AA, let idA\operatorname{id}_{A} denote the collection of units in AA. Then idA\operatorname{id}_{A} is also a collection of closed, degree-zero morphisms in A+A^{+}. We set

τ(A):=A+[idA1].\tau(A):=A^{+}[\operatorname{id}_{A}^{-1}].

That is, τ(A)\tau(A) is a localization of A+A^{+} along the units of AA. Any unital functor f:ABf:A\to B induces a strictly unital map

τ(f):A+[idA1]B+[idB1].\tau(f):A^{+}[\operatorname{id}_{A}^{-1}]\to B^{+}[\operatorname{id}_{B}^{-1}].

We thus obtain a functor (in the classical sense)

τ:𝔸𝔸str,AA+[idA1],fτ(f).\tau:{\mathbb{A}}_{\infty}\to{\mathbb{A}}_{\infty}^{\operatorname{str}},\qquad A\mapsto A^{+}[\operatorname{id}_{A}^{-1}],\qquad f\mapsto\tau(f).

By naturality of augmentation and localization, any unital functor f:ABf:A\to B fits into a commutative diagram of AA_{\infty}-categories

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}A+\textstyle{A^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f+\scriptstyle{f^{+}}A+[idA1]\textstyle{A^{+}[\operatorname{id}_{A}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ(f)\scriptstyle{\tau(f)}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B+\textstyle{B^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B+[idB1].\textstyle{B^{+}[\operatorname{id}_{B}^{-1}].} (25)

The main goal of this section is to prove:

Lemma 2.17.

For any unital AA, the inclusion AA+[idA1]A\to A^{+}[\operatorname{id}_{A}^{-1}] is a quasi-equivalence of AA_{\infty}-categories.

Remark 2.18.

After we circulated the present pre-print, Canonaco-Ornaghi-Stellari found a different proof of the above result. Theirs will appear in [3].

Remark 2.19.

We caution that A+[idA1]A^{+}[\operatorname{id}_{A}^{-1}] is a localization of A+A^{+} along the units of AA – not along the units of A+A^{+}. In particular, when AA is unital, the map A+A+[idA1]A^{+}\to A^{+}[\operatorname{id}_{A}^{-1}] is never a quasi-equivalence. To see this, if XX is an object of AA and eXe_{X} is a unit in XX, we note that 1X1_{X} and eXe_{X} are not cohomologous in homA+(X,X)\hom_{A^{+}}(X,X). However, because eXe_{X} is homotopy-idempotent in AA, eXe_{X} becomes a unit of XX in the localization – in particular, [1X]=[eX]HA+[idA1]0(X,X)[1_{X}]=[e_{X}]\in H^{0}_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,X). (If eXe_{X} is a strict unit, the reader may easily verify this by using the word 1|(1XeX)1|(1_{X}-e_{X}) in the localization. When eXe_{X} is a unit, one must also utilize the element realizing the cohomology-level equality [m2(eX,eX)]=[eX][m^{2}(e_{X},e_{X})]=[e_{X}].) This in particular shows that the map A+A+[idA1]A^{+}\to A^{+}[\operatorname{id}_{A}^{-1}] is not even an injection on cohomology.

For a concrete example, the reader may wish to contemplate the example of AA having one object XX whose endomorphism complex is the base ring 𝐤\mathbf{k}.

Remark 2.20.

We think of τ(A)\tau(A) as a “tautologous” (hence the τ\tau) strict replacement for AA.

Remark 2.21.

Assume Lemma 2.17. Then the map AA+[idA1]A\to A^{+}[\operatorname{id}_{A}^{-1}] is unital (because it is a quasi-equivalence). Further, the commutativity of (25) tells us that if f:ABf:A\to B is a quasi-equivalence, then so is τ(f)\tau(f). In particular, τ\tau passes to the localization:

𝔸[𝐰1]𝔸str[𝐰1].{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}]\to{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}].

The commutativity of (25) also tells us that the inclusion AA[idA1]A\to A[\operatorname{id}_{A}^{-1}] defines a natural transformation η:id𝔸jτ\eta:\operatorname{id}_{{\mathbb{A}}_{\infty}}\to j\circ\tau, where j:𝔸str𝔸j:{\mathbb{A}}_{\infty}^{\operatorname{str}}\hookrightarrow{\mathbb{A}}_{\infty} is the inclusion. Passing to the localization 𝔸[𝐰1]{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}], Lemma 2.17 and Proposition 2.3 imply that the induced natural transformation 𝕃η\mathbb{L}\eta is in fact a natural equivalence. Thus, the functor induced by jj has a homotopy right inverse: the functor induced by τ\tau.

Before proving Lemma 2.17, we gather two preliminary results (Propositions 2.22 and 2.23). They are intuitively clear (and useful!) statements whose proofs we could not locate in the literature, so we record them here as they may be of independent interest to the AA_{\infty}-category user.

Proposition 2.22.

Let AA be a unital AA_{\infty}-category and fix two objects X,YAX,Y\in A, along with two degree 0 closed morphisms f,ghomA(X,Y)f,g\in\hom_{A}(X,Y) in the same cohomology class (i.e., ff and gg are homotopic). Then the objects Cone(f)\operatorname{Cone}(f) and Cone(g)\operatorname{Cone}(g) in 𝖳𝗐A\mathsf{Tw}A are isomorphic in H0(𝖳𝗐A)H^{0}(\mathsf{Tw}A).

Proof.

While it is possible to prove the proposition explicitly using AA_{\infty} relations, we invoke a different argument. First observe that the claim is true if AA is a dg-category. Our goal is to reduce the claim to the dg-category case.

Let us recall the Yoneda embedding 𝒴:𝖳𝗐A𝖥𝗎𝗇A(𝖳𝗐A)op,𝖢𝗁𝖺𝗂𝗇𝐤)\mathcal{Y}:\mathsf{Tw}A\to\mathsf{Fun}_{A_{\infty}}(\mathsf{Tw}A)^{\operatorname{op}},\mathsf{Chain}_{\mathbf{k}}). We will let 𝒴(𝖳𝗐A)\mathcal{Y}(\mathsf{Tw}A) denote the full subcategory of 𝖥𝗎𝗇A((𝖳𝗐A)op,𝖢𝗁𝖺𝗂𝗇𝐤)\mathsf{Fun}_{A_{\infty}}((\mathsf{Tw}A)^{\operatorname{op}},\mathsf{Chain}_{\mathbf{k}}) spanned by 𝒴(ob𝖳𝗐A)\mathcal{Y}(\operatorname{ob}\mathsf{Tw}A).

Then the map 𝖳𝗐A𝒴(𝖳𝗐A)\mathsf{Tw}A\to\mathcal{Y}(\mathsf{Tw}A) is an equivalence of AA_{\infty}-categories, meaning it admits an inverse up to natural equivalence. (See Corollary A.9 of [25] and the references there.) In particular, it is a quasi-equivalence. By Proposition 13.19 of [1], the induced functor of H0H^{0} categories is triangulated. All we will need to know about the pretriangulated structures of the domain in codomain is that mapping cone sequences gives rise to examples of distinguished triangles (see Definition 13.18 of ibid., taking n=1n=1): In particular, by the triangulated category axioms, we find that in the 0th cohomology category H0(𝒴(𝖳𝗐A))H^{0}(\mathcal{Y}(\mathsf{Tw}A)), there exist isomorphisms

Cone(𝒴(f))𝒴(Cone(f)),Cone(𝒴(g))𝒴(Cone(g))H0(𝒴(𝖳𝗐A)).\operatorname{Cone}(\mathcal{Y}(f))\cong\mathcal{Y}(\operatorname{Cone}(f)),\qquad\operatorname{Cone}(\mathcal{Y}(g))\cong\mathcal{Y}(\operatorname{Cone}(g))\qquad\in H^{0}(\mathcal{Y}(\mathsf{Tw}A)).

(and likewise for gg). Because 𝖳𝗐A𝒴(𝖳𝗐A)\mathsf{Tw}A\to\mathcal{Y}(\mathsf{Tw}A) is a quasi-equivalence, the hypothesis that [f]=[g]H0homA(X,Y)[f]=[g]\in H^{0}\hom_{A}(X,Y) implies that [𝒴(f)]=[𝒴(g)][\mathcal{Y}(f)]=[\mathcal{Y}(g)]. Appealing to the dg-category case, we conclude that

Cone(𝒴(f))Cone(𝒴(g))H0(𝒴(𝖳𝗐𝒜)).\operatorname{Cone}(\mathcal{Y}(f))\cong\operatorname{Cone}(\mathcal{Y}(g))\in H^{0}(\mathcal{Y}(\mathsf{Tw}\mathcal{A})).

We conclude from the above two inline equations that

𝒴(Cone(f))𝒴(Cone(g)).\mathcal{Y}(\operatorname{Cone}(f))\cong\mathcal{Y}(\operatorname{Cone}(g)).

Because the Yoneda embedding is an equivalence onto its image, we have

Cone(f)Cone(g)H0(𝖳𝗐A).\operatorname{Cone}(f)\cong\operatorname{Cone}(g)\in H^{0}(\mathsf{Tw}A).

Proposition 2.23.

Fix a unital AA_{\infty}-category AA. Suppose that W0WW_{0}\subset W are collections of degree-zero, closed morphisms in AA such that W0W_{0} and WW define the same collection of morphisms in the cohomology category H0AH^{0}A. The functor

A[W01]A[W1]A[W_{0}^{-1}]\to A[W^{-1}]

is a quasi-equivalence. In particular, up to quasi-equivalence, a localization A[W1]A[W^{-1}] is determined by H0(W)H^{0}(W).

Proof of Proposition 2.23..

Let Cone(W0)𝖳𝗐A\operatorname{Cone}(W_{0})\subset\mathsf{Tw}A denote the full subcategory whose objects are mapping cones of the morphisms w0W0w_{0}\in W_{0}. We let Cone(W)𝖳𝗐A\operatorname{Cone}(W)\subset\mathsf{Tw}A be the full subcategory spanned by mapping cones morphisms wWw\in W.

By Recollection 2.14, the localizations A[W01]A[W_{0}^{-1}] and A[W1]A[W^{-1}] are defined using the construction from [26] of the quotient AA_{\infty}-categories

D0:=𝖣(𝖳𝗐A|Cone(W0)),D:=𝖣(𝖳𝗐A|Cone(W)).D_{0}:=\mathsf{D}(\mathsf{Tw}A|\operatorname{Cone}(W_{0})),\qquad D:=\mathsf{D}(\mathsf{Tw}A|\operatorname{Cone}(W)).

One has maps p0:𝖳𝗐AD0p_{0}:\mathsf{Tw}A\to D_{0} and p:𝖳𝗐ADp:\mathsf{Tw}A\to D. Moreover, by the naturality of quotients (Corollary 3.2 of [27]), the identity map of 𝖳𝗐A\mathsf{Tw}A induces an AA_{\infty}-functor D0DD_{0}\to D, fitting into a commuting diagram

𝖳𝗐A\textstyle{\mathsf{Tw}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p0\scriptstyle{p_{0}}=\scriptstyle{=}D0\textstyle{D_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}𝖳𝗐A\textstyle{\mathsf{Tw}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}D.\textstyle{D.}

Every functor above acts as the identity on objects.

We set another piece of notation. If AA is an AA_{\infty}-category and BAB\subset A is a full subcategory, for an arbitrary AA_{\infty}-category EE, let

𝖥𝗎𝗇A(A,E)modB𝖥𝗎𝗇A(A,E)\mathsf{Fun}_{A_{\infty}}(A,E)_{\text{mod}B}\subset\mathsf{Fun}_{A_{\infty}}(A,E)

denote the full subcategory of those functors FF for which FF is contractible along BB (Definition 2.15). Then the quotient category 𝖣(A|B)\mathsf{D}(A|B) satisfies the following property: For any AA_{\infty}-category EE, the restriction along A𝖣(A|B)A\to\mathsf{D}(A|B)

𝖥𝗎𝗇A(𝖣(A|B),E)𝖥𝗎𝗇A(A,E)modB\mathsf{Fun}_{A_{\infty}}(\mathsf{D}(A|B),E)\to\mathsf{Fun}_{A_{\infty}}(A,E)_{\text{mod}B}

admits an inverse up to natural equivalence. (To see this, combine Theorem 1.3 of [26], which proves the universal property for the model 𝗊(A|B)\mathsf{q}(A|B) of the quotient, then invoke Proposition 7.4 of ibid., which states that there is a functor 𝗊(A|B)𝖣(A|B)\mathsf{q}(A|B)\to\mathsf{D}(A|B) admitting an inverse up to natural equivalence.)

We now claim that the functor j:D0Dj:D_{0}\to D is a quasi-equivalence of AA_{\infty}-categories. This will take a few paragraphs.

Combining the observations above, any AA_{\infty}-category EE induces a commutative diagram of AA_{\infty}-categories

𝖥𝗎𝗇A(𝖳𝗐A,E)modCone(W0)\textstyle{\mathsf{Fun}_{A_{\infty}}(\mathsf{Tw}A,E)_{\text{mod}\operatorname{Cone}(W_{0})}}𝖥𝗎𝗇A(D0,E)\textstyle{\mathsf{Fun}_{A_{\infty}}(D_{0},E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}𝖥𝗎𝗇A(𝖳𝗐A,E)modCone(W)\textstyle{\mathsf{Fun}_{A_{\infty}}(\mathsf{Tw}A,E)_{\text{mod}\operatorname{Cone}(W)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖥𝗎𝗇A(D,E)\textstyle{\mathsf{Fun}_{A_{\infty}}(D,E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}j\scriptstyle{j^{*}} (26)

where the horizontal arrows admit inverses up to natural equivalence. The righthand vertical arrow is the restriction along j:D0Dj:D_{0}\to D, while the lefthand verticle arrow is the full inclusion induced by the observation that if a functor FF is contractible along all of Cone(W)\operatorname{Cone}(W), it is in particular contractible along Cone(W0)\operatorname{Cone}(W_{0}).

In fact, the lefthand vertical arrow in (26) is not only an injection on objects, but a bijection on objects. To see this, we need only prove that if F:𝖳𝗐AEF:\mathsf{Tw}A\to E is contractible along Cone(id0)\operatorname{Cone}(\operatorname{id}_{0}), then it is contractible along Cone(W)\operatorname{Cone}(W). This is straightforward: By hypothesis of unit, any wWw\in W is cohomologous to some w0W0w_{0}\in W_{0}. Thus, by Proposition 2.22, we have an isomorphism in H0(𝖳𝗐A)H^{0}(\mathsf{Tw}A) from Cone(w0)\operatorname{Cone}(w_{0}) to Cone(w)\operatorname{Cone}(w). So let us choose such a representative homotopy-invertible map:

aX:Cone(w0)Cone(w)a^{X}:\operatorname{Cone}(w_{0})\to\operatorname{Cone}(w)

in 𝖳𝗐A\mathsf{Tw}A. Then the for any other wWw^{\prime}\in W with cohomologous w0W0w_{0}^{\prime}\in W_{0}, the definition of AA_{\infty}-functor gives rise to a homotopy-commuting diagram of cochain complexes and chain maps

hom𝖳𝗐A(Cone(w0),Cone(w0))\textstyle{\hom_{\mathsf{Tw}A}(\operatorname{Cone}(w_{0}),\operatorname{Cone}(w_{0}^{\prime}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}(aX)(aY)\scriptstyle{(a^{X})^{\ast}(a^{Y})_{\ast}}F\scriptstyle{F}hom𝖳𝗐A(Cone(w),Cone(w))\textstyle{\hom_{\mathsf{Tw}A}(\operatorname{Cone}(w),\operatorname{Cone}(w^{\prime}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\scriptstyle{F}homE(FCone(e0X),FCone(w0)\textstyle{\hom_{E}(F\operatorname{Cone}(e_{0}^{X}),F\operatorname{Cone}(w_{0}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}(FaX)(FaY)\scriptstyle{(Fa^{X})^{\ast}(Fa^{Y})_{\ast}}homE(FCone(w),FCone(w)).\textstyle{\hom_{E}(F\operatorname{Cone}(w),F\operatorname{Cone}(w^{\prime})).}

(There is ambiguity in the notation (aX)(aY)(a^{X})^{\ast}(a^{Y})_{\ast}, as one could mean either of

m2(m2(aY,),aX),m2(aY,m2(,aX)),\bullet\mapsto m^{2}(m^{2}(a^{Y},\bullet),a^{X}),\qquad\bullet\mapsto m^{2}(a^{Y},m^{2}(\bullet,a^{X})),

and of course these two operations are homotopic by the AA_{\infty}-relations; so the diagram commutes up to homotopy regardless of which of the above one means.) Because aXa^{X} and aYa^{Y} are homotopy invertible, so are their push- and pull- maps; so the horizontal arrows are homotopy equivalences of chain complexes. In particular, if the lefthand downward arrow is null-homotopic, so is the righthand downward arrow. This proves that the lefthand vertical arrow in (26) is a bijection on objects.

In particular, the arrow is an isomorphism of AA_{\infty}-categories. We conclude from the other equivalences in (26) that the restriction map

j:𝖥𝗎𝗇A(D,E)𝖥𝗎𝗇A(D0,E)j^{*}:\mathsf{Fun}_{A_{\infty}}(D,E)\to\mathsf{Fun}_{A_{\infty}}(D_{0},E)

admits an inverse up to natural equivalence.

Setting E=D0E=D_{0} and choosing a homotopy inverse gg to jj^{*}, we see there exists a functor g(idD0)=F:DD0g(\operatorname{id}_{D_{0}})=F:D\to D_{0} for which jF=Fjj^{*}F=F\circ j admits a natural equivalence to idD0\operatorname{id}_{D_{0}}. On the other hand, the restriction FF^{*} must be homotopic to gg by uniqueness of inverses. We conclude that FF and jj are inverse functors up to homotopy.

This proves our claim that jj is a quasi-equivalence (in fact, it is invertible up to natural equivalence).

We conclude the proof of Corollary 2.26 as follows: A[W01]A[W_{0}^{-1}] is the full subcategory of D0D_{0} spanned by obA\operatorname{ob}A. Likewise, A[W1]A[W^{-1}] is the full subcategory of DD spanned by obA\operatorname{ob}A. Because j:D0Dj:D_{0}\to D is the identity on objects, the result follows. ∎

Remark 2.24 (Understanding hom complexes).

Fix a unital AA_{\infty}-category AA and fix two objects X,YAX,Y\in A. Let us understand the morphism complex homA+[idA1](X,Y)\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y) using Recollection 2.14. For l2l\geq 2, the llth associated graded of the length filtration (i.e., the quotient of the length l\leq l words by the length l1\leq l-1 words) is – as a chain complex, and after a shift of sl+1s^{-l+1} – a direct sum

e1,,el1hom𝖳𝗐A+(Cl1,Y)|hom𝖳𝗐A+(Cl2,Cl1)||hom𝖳𝗐A+(X,C1)\bigoplus_{e_{1},\ldots,e_{l-1}}\hom_{\mathsf{Tw}A^{+}}(C_{l-1},Y)|\hom_{\mathsf{Tw}A^{+}}(C_{l-2},C_{l-1})|\ldots|\hom_{\mathsf{Tw}A^{+}}(X,C_{1}) (27)

where each ei:WiWie_{i}:W_{i}\to W_{i} is a unit in AA and Ci=Cone(ei)𝖳𝗐A+C_{i}=\operatorname{Cone}(e_{i})\in\mathsf{Tw}A^{+}. (We set W0=XW_{0}=X and Wl=YW_{l}=Y for brevity of notation.)

Notation 2.25.

In contrast with our diligent use of ss in (23), we will often drop the shifts when expressing a single associated graded component, as we have in (27).

We will make use of the following corollary of Proposition 2.23 in the proof of Lemma 2.17:

Corollary 2.26.

Fix a unital AA_{\infty}-category AA. Using the axiom of choice, choose a unit e0e_{0} for every object XobAX\in\operatorname{ob}A, and let id0\operatorname{id}_{0} denote the collection {e0}XobA\{e_{0}\}_{X\in\operatorname{ob}A}. The functor

A+[id01]A+[idA1]A^{+}[\operatorname{id}_{0}^{-1}]\to A^{+}[\operatorname{id}_{A}^{-1}]

is a quasi-equivalence.

Proof of Lemma 2.17..

The inclusion is a bijection on objects. So it suffices to show that the maps on hom complexes are quasi-isomorphisms. To this end, fix two objects X,YobAX,Y\in\operatorname{ob}A.

When XYX\neq Y. Let us study the length filtration of homA+[idA1](X,Y)\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y) (Recollection 2.14). The length l=1l=1 part is homA(X,Y)\hom_{A}(X,Y) because XYX\neq Y. We now claim the llth associated gradeds for l2l\geq 2 are acyclic. Consider the direct summand of (27) corresponding to a tuple (e1,,el1)(e_{1},\ldots,e_{l-1}). Here, we treat this summand as a direct summand of the llth associated graded quotient – in particular, its differential involves only m𝖳𝗐A+1m^{1}_{\mathsf{Tw}A^{+}} terms.

Because XYX\neq Y, there exists at least one ii for which WiWi+1W_{i}\neq W_{i+1}.

  • If we can choose such an ii to satisfy l2i1l-2\geq i\geq 1, we have that

    hom𝖳𝗐A(Ci,Ci+1)=hom𝖳𝗐A+(Ci,Ci+1).\hom_{\mathsf{Tw}A}(C_{i},C_{i+1})=\hom_{\mathsf{Tw}A^{+}}(C_{i},C_{i+1}).

    On the other hand, hom𝖳𝗐A(Ci,Ci+1)\hom_{\mathsf{Tw}A}(C_{i},C_{i+1}) is a mapping cone for the morphism ZZ identified in (10). (Using the notation there, e=eie=e_{i} and e=ei+1e^{\prime}=e_{i+1}.) In particular, the direct summand is a mapping cone for the chain map

    id|(li1)|Z|id|i:=id||id|Z|id||id\operatorname{id}^{|(l-i-1)}|Z|\operatorname{id}^{|i}:=\operatorname{id}|\ldots|\operatorname{id}|Z|\operatorname{id}|\ldots|\operatorname{id}

    which is homotopy-invertible because ZZ is; so the direct summand is acyclic.

  • If i=0i=0 or i=l1i=l-1, then the direct summand is a mapping cone for the homotopy-invertible map id|(l1)|m2(e1,)\operatorname{id}^{|(l-1)}|m^{2}(e_{1},-) or m2(,el1)|id|(l1)m^{2}(-,e_{l-1})|\operatorname{id}^{|(l-1)}, so is acyclic.

All told, the llth associated graded is a direct sum of acyclic complexes, hence acyclic. This shows that the map homA(X,Y)homA+[idA1](X,Y)\hom_{A}(X,Y)\to\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y) is a quasi-isomorphism when XYX\neq Y.

When X=YX=Y. Choose a unit e0Xe_{0}^{X} for every object XobAX\in\operatorname{ob}A and consider the chain maps

homA(X,X)homA+[id01](X,X)homA+[idA1](X,X).\hom_{A}(X,X)\to\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X)\to\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,X).

Corollary 2.26 tells us the second map is a quasi-isomorphism, so it suffices to prove that the first arrow is a quasi-isomorphism.

Let 𝕋homA+[id01](X,X)\mathbb{T}\subset\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X) be the subcomplex whose length 1 filtration consists of all of homA+(X,X)\hom_{A^{+}}(X,X), and whose length l2l\geq 2 compoent consists of the summand in (27) for which e1==el1=e0Xid0e_{1}=\ldots=e_{l-1}=e_{0}^{X}\in\operatorname{id}_{0}. Then the quotient homA+[id01](X,X)/𝕋\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X)/\mathbb{T}, as a graded 𝐤\mathbf{k}-module, is isomorphic to a direct sum of those summands in (27) for which WiWi+1W_{i}\neq W_{i+1} for some ii (and – though this won’t matter – for which each eie_{i} is in id0\operatorname{id}_{0}). By a similar argument as in the case XYX\neq Y, we conclude that the length filtration of homA+[id01](X,X)/𝕋\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X)/\mathbb{T} has acyclic associated gradeds. In particular, we conclude that homA+[id01](X,X)/𝕋\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X)/\mathbb{T} is acylic, hence we are left to prove that the inclusion homA(X,X)𝕋\hom_{A}(X,X)\to\mathbb{T} is a quasi-isomorphism.

For this, consider the subcomplex SS𝕋\SS\subset\mathbb{T} where the length l=1l=1 component of SS\SS is isomorphic to homA(X,X)\hom_{A}(X,X), and the length l2l\geq 2 component of SS\SS is

hom𝖳𝗐A(Cone(e0X),X)|hom𝖳𝗐A+(Cone(e0X),Cone(e0X))||hom𝖳𝗐A+(X,Cone(e0X)).\hom_{\mathsf{Tw}A}(\operatorname{Cone}(e_{0}^{X}),X)|\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e_{0}^{X}),\operatorname{Cone}(e_{0}^{X}))|\ldots|\hom_{\mathsf{Tw}A^{+}}(X,\operatorname{Cone}(e_{0}^{X})). (28)

Note the (important!) subscript 𝖳𝗐A\mathsf{Tw}A in the first bar factor, in contrast to the 𝖳𝗐A+\mathsf{Tw}A^{+} subscripts in all other factors. We will prove the following two claims:

  1. (I)

    There exists a chain map t:𝕋SSt:\mathbb{T}\to\SS so that the composition 𝕋𝑡SS𝕋\mathbb{T}\xrightarrow{t}\SS\xrightarrow{\subset}\mathbb{T} is homotopic to the identity.

  2. (II)

    For the same map tt as above, the composition homA(X,X)𝕋𝑡SS\hom_{A}(X,X)\xrightarrow{\subset}\mathbb{T}\xrightarrow{t}\SS has image contained in homA(X,X)\hom_{A}(X,X). Moreover, this composition – treated as a self-chain-map of homA(X,X)\hom_{A}(X,X) – is homotopic to the identity map idhomA(X,X)\operatorname{id}_{\hom_{A}(X,X)}.

We first prove Claim (I).

Define a degree -1 operator HH on 𝕋\mathbb{T} acting on generators by

𝐱l||𝐱1\displaystyle\mathbf{x}_{l}|\ldots|\mathbf{x}_{1} (a1X)|𝐱l||𝐱1\displaystyle\mapsto(a\otimes 1_{X})|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}
hom𝖳𝗐A+(Cone(el1),X)|hom𝖳𝗐A+(Cone(el1),Cone(el1))||hom𝖳𝗐A+(X,Cone(e1)).\displaystyle\in\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e_{l-1}),X)|\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e_{l-1}),\operatorname{Cone}(e_{l-1}))|\ldots|\hom_{\mathsf{Tw}A^{+}}(X,\operatorname{Cone}(e_{1})).

Let us explain the notation.

  • Every e1,e2,,el1e_{1},e_{2},\ldots,e_{l-1} is equal to e0Xe^{X}_{0}, but we have written the bar notation above to be explicit about the length of H(𝐱l||𝐱1)H(\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}). In particular, note that HH increases length filtration by 1.

  • a1Xa\otimes 1_{X} follows the notation from (9). For brevity of notation, we are identifying hom(,X)\hom(-,X) with a subcomplex of hom(,Cone(e0X))\hom(-,\operatorname{Cone}(e_{0}^{X})), setting q=y=0q=y=0.

  • 1XhomA+(X,X)1_{X}\in\hom_{A^{+}}(X,X) is the augmentation unit of XX (Recollection 2.8).

  • In the image of HH, the letter 𝐱l\mathbf{x}_{l} is now an element of hom𝖳𝗐A+(Cone(el1),Cone(el1))\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e_{l-1}),\operatorname{Cone}(e_{l-1})) rather than an element of hom𝖳𝗐A+(Cone(el1),X)\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e_{l-1}),X); as before, the latter complex is the subcomplex for which q=y=0q=y=0.

Then HH is a homotopy between the maps

id𝕋and𝐱l||𝐱1±(be0X)|𝐱l||𝐱1\operatorname{id}_{\mathbb{T}}\qquad\text{and}\qquad\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}\mapsto\pm(b\otimes e_{0}^{X})|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}

where bb is as in (9). (We point out here the importance of working in homA+[id01](X,X)\hom_{A^{+}[\operatorname{id}_{0}^{-1}]}(X,X), and hence the utility of Corollary 2.26. To construct a homotopy as above inside homA+[idA1](X,X)\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,X) involves much more algebra.)

Next, choose a degree -1 endomorphism αhomA(X,X)\alpha\in\hom_{A}(X,X) realizing a homotopy from e0Xe_{0}^{X} to mA2(e0X,e0X)m^{2}_{A}(e_{0}^{X},e_{0}^{X}). Define the degree -1 operator G:𝕋𝕋G:\mathbb{T}\to\mathbb{T} by

G:𝐱l||𝐱1(bα)|𝐱l||𝐱1.G:\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}\mapsto(b\otimes\alpha)|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}.

Then GG is a homotopy between the maps sending 𝐱l||𝐱1\mathbf{x}_{l}|\ldots|\mathbf{x}_{1} to

±(be0X)|𝐱l||𝐱1and±(bmA2(e0X,e0X))|𝐱l||𝐱1.\pm(b\otimes e_{0}^{X})|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}\qquad{\text{and}}\qquad\pm(b\otimes m^{2}_{A}(e_{0}^{X},e_{0}^{X}))|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}.

(To see this, it is important to note that 𝐱l\mathbf{x}_{l} only has aa and bb tensor factors, and ba=bb=0.ba=bb=0.) Finally consider the degree -1 operator K:𝕋𝕋K:\mathbb{T}\to\mathbb{T}

K:𝐱l||𝐱1(ae0X)|𝐱l||𝐱1.K:\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}\mapsto(a\otimes e_{0}^{X})|\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}.

Then KK is a homotopy between the maps sending 𝐱l||𝐱1\mathbf{x}_{l}|\ldots|\mathbf{x}_{1} to

±(bm2(e0X,e0X))|𝐱1||𝐱1andk2±m𝖳𝗐A+k(ae0X,xl,,xlk+2)|xlk+1||x1.\pm(b\otimes m^{2}(e_{0}^{X},e_{0}^{X}))|\mathbf{x}_{1}|\ldots|\mathbf{x}_{1}\qquad{\text{and}}\qquad\sum_{k\geq 2}\pm m^{k}_{\mathsf{Tw}A^{+}}(a\otimes e_{0}^{X},x_{l},\ldots,x_{l-k+2})|x_{l-k+1}|\ldots|x_{1}.

We call this last map tt^{\prime}. Then the degree -1 maps H,G,KH,G,K combine to define a homotopy

id𝕋t.\operatorname{id}_{\mathbb{T}}\sim t^{\prime}. (29)

We now note that tt^{\prime} has image contained in SS\SS. We accordingly define tt as having the same effect as tt^{\prime}, but as a map with codomain SS\SS:

t:𝕋SS,𝐱l||𝐱1k2±m𝖳𝗐A+k(ae0X,xl,,xlk+2)|xlk+1||x1.t:\mathbb{T}\to\SS,\qquad\mathbf{x}_{l}|\ldots|\mathbf{x}_{1}\mapsto\sum_{k\geq 2}\pm m^{k}_{\mathsf{Tw}A^{+}}(a\otimes e_{0}^{X},x_{l},\ldots,x_{l-k+2})|x_{l-k+1}|\ldots|x_{1}.

By definition, tt^{\prime} is the composition 𝕋𝑡SS𝕋\mathbb{T}\xrightarrow{t}\SS\xrightarrow{\subset}\mathbb{T}, so Claim (I) follows from (29).

We now prove Claim (II). We see that for an element xhomA(X,X)x\in\hom_{A}(X,X),

t(x)=mA2(e0X,x).t(x)=m^{2}_{A}(e_{0}^{X},x).

So indeed t(homA(X,X))homA(X,X)t(\hom_{A}(X,X))\subset\hom_{A}(X,X). On the other hand, by definition of unit, the map mA2(e0X,)m^{2}_{A}(e_{0}^{X},-) is chain-homotopic to the identity map. We have proven the claim.

Recall we were left to prove that homA(X,X)𝕋\hom_{A}(X,X)\to\mathbb{T} is a quasi-isomorphism. By observing (using the same old trick as above) that the length filtration on SS\SS has contractible associated gradeds for l2l\geq 2, we see that the inclusion homA(X,X)SS\hom_{A}(X,X)\to\SS is a quasi-isomorphism. And our two claims give rise to the following homotopy-commuting diagram of cochain complexes:

homA(X,X)\textstyle{\hom_{A}(X,X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}\scriptstyle{\subset}𝕋\textstyle{\mathbb{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id𝕋\scriptstyle{\operatorname{id}_{\mathbb{T}}}t\scriptstyle{t}SS\textstyle{\SS\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subset}𝕋\textstyle{\mathbb{T}}

It follows that the inclusion homA(X,X)𝕋\hom_{A}(X,X)\to\mathbb{T} is a quasi-isomorphism, as desired. ∎

2.4 Proof of Theorem 1.1

Lemma 2.27.

The functor 𝔸str[𝐰1]𝔸[𝐰1]{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]\to{\mathbb{A}}_{\infty}[\mathbf{w}^{-1}] induced by jj admits a left inverse up to natural equivalence.

The following proof is due to Canonaco-Ornaghi-Stellari, who relayed it to me in private communication. We thank them for generously sharing their ideas and allowing us to include their proof, greatly simplifying the present exposition! The old, computational proof has been banished to the appendix, in case the computations and observations there are of use to others.

Proof.

There is an endofunctor τ:𝔸str𝔸str\tau^{\prime}:{\mathbb{A}}_{\infty}^{\operatorname{str}}\to{\mathbb{A}}_{\infty}^{\operatorname{str}} sending AA to A[idA1]A[\operatorname{id}_{A}^{-1}], and this is equipped with a natural transformation η\eta^{\prime} via the obvious inclusions

ηA:AA[idA1].\eta^{\prime}_{A}:A\to A[\operatorname{id}_{A}^{-1}].

The same strategy as the proof of Lemma 2.17 – noting that the length 1 piece of homA[idA1](X,Y)\hom_{A[\operatorname{id}_{A}^{-1}]}(X,Y) is equal to homA(X,Y)\hom_{A}(X,Y), and that all length l2l\geq 2 filtered pieces are direct sums of acyclic complexes – shows that ηA\eta^{\prime}_{A} is a quasi-equivalence for all AA. In particular, τ\tau^{\prime} respects quasi-equivalences and induces an endofunctor of 𝔸str[𝐰1]{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}].

Because ηA\eta_{A}^{\prime} factors the quasi-equivalence AA+[idA1]A\to A^{+}[\operatorname{id}_{A}^{-1}] in Lemma 2.17, we conclude that the map

A[idA1]A+[idA1]A[\operatorname{id}_{A}^{-1}]\to A^{+}[\operatorname{id}_{A}^{-1}] (30)

is also a quasi-equivalence.

On the other hand, we have functors AA+AA\to A^{+}\to A (the first map is a non-unital inclusion; the second, which identifies the strict and augmentation units, is strictly unital). These functors respect idA\operatorname{id}_{A} as sets, so we have induced maps of localizations

A[idA1]A+[idA1]ηA′′A[idA1].A[\operatorname{id}_{A}^{-1}]\to A^{+}[\operatorname{id}_{A}^{-1}]\xrightarrow{\eta^{\prime\prime}_{A}}A[\operatorname{id}_{A}^{-1}].

Because the composition AA+AA\to A^{+}\to A is the identity functor of AA, the above composition is the identify functor of A[idA1]A[\operatorname{id}_{A}^{-1}] (hence a quasi-equivalence). The first map is a quasi-equivalence as already noted in (30). It follows that the second map ηA′′\eta^{\prime\prime}_{A} is a quasi-equivalence. The map ηA′′\eta^{\prime\prime}_{A} is natural in AA, so we witness natural transformations

id𝔸str\textstyle{\operatorname{id}_{{\mathbb{A}}_{\infty}^{\operatorname{str}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta^{\prime}}τ\textstyle{\tau^{\prime}}τj\textstyle{\tau\circ j\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η′′\scriptstyle{\eta^{\prime\prime}}

where ηA\eta^{\prime}_{A} and ηA′′\eta^{\prime\prime}_{A} are quasi-equivalences for all AA. By Proposition 2.3, the natural transformations induced by η\eta^{\prime} and η′′\eta^{\prime\prime} are natural equivalences upon localizing along 𝐰\mathbf{w}.

Thus, the functor induced by τj\tau\circ j is naturally equivalent to the identity functor, and this exhibits the functor induced by τ\tau as a left inverse to the functor induced by jj. ∎

Proof of Theorem 1.1..

The functor induced by jj admits a right inverse (Remark 2.21) and a left inverse (Lemma 2.27) up to homotopy. ∎

3 Internal homs and mapping spaces

The main results of this section – Theorems 3.34, 3.35, 3.36, and 3.37 – rely on many structural results in the study of AA_{\infty}-categories and in the study of \infty-categories. While basic knowledge in both areas is assumed, we include proofs of some well-known results, together with references for filling in the details, to invite more readers into the fold.

The bulk of this section is occupied with the task of comparing structures arising from the theory of \infty-categories (which are completely formalism-driven) with known dg- and model-categorical constructions (which are formula- and point-set-driven). For example, we identify the monoidal structure in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} (Proposition 3.29), thereby characterizing the internal hom¯\underline{\hom} objects, and we identify the right adjoint to (39) (Proposition 3.39) thereby computing mapping spaces.

3.1 The \infty-category of chain complexes

Proposition 3.1.

Let CC be a model category with functorial cofibrant resolutions – i.e., a functor Q:CCQ:C\to C whose images are all cofibrant, equipped with a natural transformation QidQ\to\operatorname{id} consisting of weak equivalences. We let CCC^{\circ}\subset C be the full subcategory of cofibrant objects. Then the map of \infty-categorical localizations (along weak equivalences)

C[W1]C[W1]C^{\circ}[W^{-1}]\to C[W^{-1}]

is an equivalence of \infty-categories.

Proof.

Let i:CCi:C^{\circ}\to C denote the inclusion. Then QiQ\circ i enjoys a natural transformation to idC\operatorname{id}_{C^{\circ}} consisting of weak equivalences. Likewise, iQi\circ Q enjoys a natural transformation of weak equivalences to idC\operatorname{id}_{C}. Thus, upon passage to the localizations, the induced functors of QQ and ii are mutually inverse functors of \infty-categories. ∎

The following is a special case of Proposition 4.1.3.4 of [22], and Example 4.1.3.6 of ibid.

Proposition 3.2 (Localization is symmetric monoidal).

Let CC be a monoidal category, and WCW\subset C a class of morphisms containing identities. Further assume that WWWW\otimes W\subset W. Then there exists a symmetric monoidal structure on the \infty-category C[W1]C[W^{-1}] for which

  1. (i)

    the localization map of \infty-categories CC[W1]C\to C[W^{-1}] has a natural promotion to a symmetric monoidal functor, and

  2. (ii)

    C[W1]C[W^{-1}] is universal for symmetric monoidal functors out of CC sending WW to equivalences.

Moreover, the assignment (C,W)C[W1](C,W)\mapsto C[W^{-1}] is itself symmetric monoidal. (In particular, it is functorial with respect to the direct product of pairs (C,W)(C,W) and maps CCC\to C^{\prime} sending WW to WW^{\prime}.)

Corollary 3.3.

Let CC be a symmetric monoidal model category, meaning the monoidal unit is cofibrant, the monoidal structure is closed, and :C×CC\otimes:C\times C\to C is a (left) Quillen bifunctor. Then the localization map CC[W1]C^{\circ}\to C^{\circ}[W^{-1}] (of cofibrant objects along weak equivalences) has a natural promotion to a symmetric monoidal functor.

Remark 3.4.

To be absolutely innocent of abuse, one should technically write N(C)C[W1]N(C^{\circ})\to C^{\circ}[W^{-1}] for the localization map – as CC^{\circ} is a category, and N(C)N(C^{\circ}) is the nerve (thereby rendering CC^{\circ} an \infty-category). We note that if KK is a symmetric monoidal category, then N(K)N(K) is a symmetric monoidal \infty-category (Example 2.1.2.21 of [22]).

Example 3.5.

Let 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} denote the 1-category of (possibly unbounded) chain complexes over our commutative ring 𝐤\mathbf{k}. We endow 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} with the projective model structure.333See Hovey’s book on model categories [17], Proposition 4.2.13. Though not every projective complex is cofibrant, it is true that every cofibrant object is a complex of projectives. It is well-known that 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} is a symmetric monoidal model category with functorial cofibrant replacements (because 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} is combinatorial, for example). Then:

  1. (a)

    Letting 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ} denote the full subcategory of fibrant and cofibrant objects, the induced functor

    𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]\to\mathsf{Chain}[\mathbf{quis}^{-1}]

    (where we have localized along quasi-isomorphisms) is an equivalence of \infty-categories (Proposition 3.1).

  2. (b)

    𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} is symmetric monoidal under the usual tensor product =𝐤\otimes=\otimes_{\mathbf{k}}, and the tensor product of two cofibrant chain complexes is cofibrant, while preserving quasi-isomorphisms of cofibrant chain complexes. By Proposition 3.2, there is an induced symmetric monoidal structure on the localization, and the functor

    𝖢𝗁𝖺𝗂𝗇𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathsf{Chain}^{\circ}\to\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]

    is a symmetric monoidal functor of symmetric monoidal \infty-categories.

In fact, there is a larger class of chain complexes than the cofibrant chain complexes that is useful to pick out: The homotopically projective complexes (see below). We do not know whether there is a model structure on (possibly unbounded) chain complexes for which the homotopically projective objects are precisely the cofibrant objects.

Definition 3.6.

Recall that a chain complex of 𝐤\mathbf{k}-modules MM is homotopically projective if H(N)0Hhom(M,N)0H^{*}(N)\cong 0\implies H^{*}\hom(M,N)\cong 0. MM is called homotopically flat if H(N)0H(M𝐤N)0H^{*}(N)\cong 0\implies H^{*}(M\otimes_{\mathbf{k}}N)\cong 0.

Remark 3.7.

By the tensor-hom adjunction, it is clear that the tensor product of homotopically projective complexes is homotopically projective. It is a result of Spaltenstein that every homotopically projective complex is homotopically flat.444Proposition 5.8 of [34]. Note that Spaltenstein uses the term KK-flat and KK-projective, while we follow the terminology of Drinfeld [5]. Moreover, every cofibrant chain complex (in the projective model structure) is homotopically projective (Lemma 2.3.8 of [17]).

Proposition 3.8 (Whitehead’s Theorem for homotopically projective objects).

Let XX and YY be homotopically projective chain complexes over 𝐤\mathbf{k}. If f:XYf:X\to Y is a quasi-isomorphism, then ff admits an inverse chain map up to homotopy.

Proof.

Because YY is homotopically projective, there exists a homotopy right inverse g:YXg:Y\to X – so fgfg is chain homotopic to idY\operatorname{id}_{Y} (Proposition 1.4 of [34]). It follows that gg is a quasi-isomorphism. Because XX is homotopically projective, gg admits a homotopy right inverse. By uniqueness of 2-sided inverses, we see that ff and gg are mutually homotopy-inverse chain maps.

Proposition 3.9.

Let 𝖢𝗁𝖺𝗂𝗇hproj𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\operatorname{hproj}}\subset\mathsf{Chain} denote the full subcategory consisting of homotopically projective chain complexes. Then the symmetric monoidal inclusion 𝖢𝗁𝖺𝗂𝗇𝖢𝗁𝖺𝗂𝗇hproj\mathsf{Chain}^{\circ}\to\mathsf{Chain}^{\operatorname{hproj}} induces a symmetric monoidal equivalences of \infty-categories

𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]𝖢𝗁𝖺𝗂𝗇hproj[𝐪𝐮𝐢𝐬1].\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]\to\mathsf{Chain}^{\operatorname{hproj}}[\mathbf{quis}^{-1}].
Proof.

Localize the functors 𝖢𝗁𝖺𝗂𝗇𝖢𝗁𝖺𝗂𝗇hproj𝖢𝗁𝖺𝗂𝗇𝑄𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ}\subset\mathsf{Chain}^{\operatorname{hproj}}\subset\mathsf{Chain}\xrightarrow{Q}\mathsf{Chain}^{\circ} along 𝐪𝐮𝐢𝐬\mathbf{quis} and use Proposition 3.1. Apply Proposition 3.2 for the symmetric monoidal enhancement. ∎

Definition 3.10.

By the \infty-category of chain complexes over 𝐤\mathbf{k}, we mean any of the equivalent \infty-categorical localizations

𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]𝖢𝗁𝖺𝗂𝗇hproj[𝐪𝐮𝐢𝐬1]𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]\simeq\mathsf{Chain}^{\operatorname{hproj}}[\mathbf{quis}^{-1}]\simeq\mathsf{Chain}[\mathbf{quis}^{-1}]

where 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} is the 1-category of (possibly unbounded) 𝐤\mathbf{k}-linear chain complexes, and 𝐪𝐮𝐢𝐬\mathbf{quis} is the collection of quasi-isomorphisms.

By the symmetric monoidal \infty-category of chain complexes over 𝐤\mathbf{k}, we mean any of the above endowed with the symmetric monoidal structure induced by Proposition 3.2. (We caution we do not make use of the proposition for 𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathsf{Chain}[\mathbf{quis}^{-1}]. Instead, we must pushforward/pullback the symmetric monoidal structure to 𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathsf{Chain}[\mathbf{quis}^{-1}] along any of the above equivalences.)

3.2 Categories of dg-categories

Notation 3.11.

Fixing our base ring 𝐤\mathbf{k}, we let dgCatdgCat denote the usual category of 𝐤\mathbf{k}-linear dg-categories. We have full subcategories

dgCatdgCatcofdgCathprojdgCatdgCat^{\circ}\subset dgCat_{\operatorname{cof}}\subset dgCat_{\operatorname{hproj}}\subset dgCat

where

  • dgCatdgCat^{\circ} consists of the cofibrant dg-categories with respect to the Tabuada model strcuture.

  • dgCatcofdgCat_{\operatorname{cof}} consists of dg-categories whose morphism complexes are cofibrant chain complexes in the projective model structure for 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}. (All cofibrant dg-categories have cofibrant morphism complexes by Proposition 2.3(3) of [38].) Finally,

  • dgCathprojdgCat_{\operatorname{hproj}} consists of dg-categories whose morphism complexes are homotopically projective. (All cofibrant chain complexes are homotopically projective by Remark 3.7.)

Remark 3.12.

dgCatcofdgCat_{\operatorname{cof}} and dgCathprojdgCat_{\operatorname{hproj}} have the pleasant property that if ff and gg are functors in these categories and are quasi-equivalences, then gfg\otimes f is also a quasi-equivalence. (This is because homotopically projective complexes are homotopically flat.) Moreover, the class of cofibrant chain complexes is closed under \otimes, as is the class of homotopically projective chain complexes – so dgCatcofdgCat_{\operatorname{cof}} and dgCathprojdgCat_{\operatorname{hproj}} are a symmetric monoidal subcategory of dgCatdgCat. (This last property is not enjoyed by dgCatdgCat^{\circ}.)

3.3 Enrichments

Notation 3.13 (Algcat\operatorname{Alg}_{\operatorname{cat}}).

For a monoidal \infty-category 𝒱\mathcal{V}, one has an \infty-category

Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})

defined by Gepner-Haugseng. Informally, Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) is an \infty-category where an object is the data of

  1. (i)

    a space XX of objects,

  2. (ii)

    a map from X×XX\times X to the space of objects of 𝒱\mathcal{V} – in particular, for all x,yXx,y\in X, an object hom(x,y)𝒱\hom(x,y)\in\mathcal{V} – and

  3. (iii)

    coherence data for a composition operation.555See the discussion after Definition 2.3.4 for a non-infinity-categorical example. A near-geodesic path of reading for the \infty-categorical case is: from Definition 4.3.1, see Corollary 4.2.8, then Definition 4.2.4. See also (the paragraph preceding) Definition 2.4.5, and Remark 2.4.7, of ibid.

A morphism in Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) is a map of object spaces along with data specifying coherent compatibilities of the composition operations. We refer to Definition 4.3.1 of [13] for details.

Algcat(𝒱)SetAlgcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}}\subset\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})

is the full subcategory of Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) whose spaces of objects are discrete (see Theorem 5.3.17 of [13]). That is, an object of Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} has a space of objects whose connected components are all contractible.

The assignment 𝒱Algcat(𝒱)SetAlgcat(𝒱)\mathcal{V}\mapsto\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}}\subset\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) is functorial with respect to monoidal functors in the 𝒱\mathcal{V} variable – in fact, with respect to lax monoidal functors in the 𝒱\mathcal{V} variable (Lemma 4.3.9 of [13]).

Example 3.14 (dg-categories).

If 𝒱\mathcal{V} is (the nerve of) an ordinary category, then every object of Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} is isomorphic to a 𝒱\mathcal{V}-enriched category in the usual sense. Importantly, the only equivalences in Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} are enriched functors that induce a bijection on the set of objects, and an isomorphism on the morphism objects.

As a sub-example, if 𝒱=𝖢𝗁𝖺𝗂𝗇\mathcal{V}=\mathsf{Chain} is the usual category of chain complexes over 𝐤\mathbf{k}, Algcat(𝖢𝗁𝖺𝗂𝗇)Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}} is equivalent as an \infty-category to the usual category of dg-categories over 𝐤\mathbf{k}. A morphism in Algcat(𝖢𝗁𝖺𝗂𝗇)Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}} is an equivalence if and only if it is an isomorphism of dg-categories in the usual sense. In particular, quasi-equivalences are not invertible in Algcat(𝖢𝗁𝖺𝗂𝗇)Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}}.

Remark 3.15 (From Algcat\operatorname{Alg}_{\operatorname{cat}} to enriched \infty-categories).

Let 𝒱\mathcal{V} be a monoidal \infty-category. In Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}), one can give sensible definitions of what it means for a morphism to be essentially surjective, or to be fully faithful (Section 5.3 of ibid). As already noted, essentially surjective and fully faithful functors are not typically invertible in Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}). In this sense, Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) is a precursor to the \infty-category of 𝒱\mathcal{V}-enriched \infty-categories.

When 𝒱\mathcal{V} is presentably monoidal (Definition 3.1.24 of [13]) the \infty-category of 𝒱\mathcal{V}-enriched \infty-categories is obtained by localizing Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) along the essentially surjective and fully faithful functors:666Strictly speaking, this is only true when 𝒱\mathcal{V} is presentably monoidal – see Corollary 5.6.4 of [13].

𝒞at𝒱:=Algcat(𝒱)[FFES1]Algcat(𝒱)Set[FFES1].\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}}:=\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})[\operatorname{FFES}^{-1}]\simeq\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}}[\operatorname{FFES}^{-1}]. (31)

Note the equivalence: It is a theorem that localizing Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} by the fully faithful and essentially surjective functors recovers the localization of Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) along the fully faithful and essentially surjective functors (Theorem 5.3.17 of ibid.).

Example 3.16.

Let 𝒮paces\mathcal{S}\!\operatorname{paces} denote the \infty-category of spaces, for example modeled as the \infty-category of Kan complexes. We take direct product to be the symmetric monoidal structure. Then 𝒞at𝒮paces\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{S}\!\operatorname{paces}} is equivalent to the \infty-category of \infty-categories. See for example Section 4.4 of [13] and Theorem 5.4.6 of ibid.

3.4 Equivalent models of 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} and 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}

We have three equivalent models for the \infty-category of chain complexes (Definition 3.10). Accordingly:

Notation 3.17.

Fix a commutative ring 𝐤\mathbf{k}. We define

𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}

to be any of the equivalent \infty-categories

  • Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set[FFES1]\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}[\operatorname{FFES}^{-1}]

  • Algcat(𝖢𝗁𝖺𝗂𝗇hproj[𝐪𝐮𝐢𝐬1])Set[FFES1]\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\operatorname{hproj}}[\mathbf{quis}^{-1}])_{\operatorname{Set}}[\operatorname{FFES}^{-1}], or

  • Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set[FFES1]\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}[\mathbf{quis}^{-1}])_{\operatorname{Set}}[\operatorname{FFES}^{-1}].

We refer to 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} as the \infty-category of dg-categories.

Remark 3.18.

If 𝒱\mathcal{V} is the \infty-category of chain complexes (Definition 3.10), 𝒱\mathcal{V} is presentably symmetric monoidal. So by Remark 3.15, 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} is by definition the \infty-category of \infty-categories enriched over (the \infty-category of) chain complexes.

Remark 3.19.

We will often prefer to model 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} using 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ} and 𝖢𝗁𝖺𝗂𝗇hproj\mathsf{Chain}^{\operatorname{hproj}} for the reason that the symmetric monoidal structure is directly induced by localization, and does not need to be defined by pulling back along equivalences of \infty-categories.

We will now construct888A more general construction is given in Definition 5.1 of [15]. For the reader’s benefit, we note a notational subtley of ibid. : In the paragraph before Definition 3.2 of ibid, the author makes clear that 𝐕[W1]{\bf V}[W^{-1}] refers to 𝐕[W1]{\bf V}^{\circ}[W^{-1}] – the localization of the subcategory of cofibrant objects. a natural comparison map

dgCat[𝐰1]𝒞atdg.dgCat[\mathbf{w}^{-1}]\to\mathcal{C}\!\operatorname{at}_{dg}. (32)

For brevity we will use the model 𝒞atdg=Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set[FFES1]\mathcal{C}\!\operatorname{at}_{dg}=\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}[\operatorname{FFES}^{-1}] though the model using 𝖢𝗁𝖺𝗂𝗇hproj\mathsf{Chain}^{\operatorname{hproj}} works equally well.

Construction 3.20 (The map (32)).

By Example 3.5, one has symmetric monoidal functors of \infty-categories

𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]𝖢𝗁𝖺𝗂𝗇𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]\leftarrow\mathsf{Chain}^{\circ}\to\mathsf{Chain} (33)

where we treat the ordinary categories 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} and 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ} as \infty-categories (by, say, taking their nerves). This induces the top row in the following diagram of \infty-categories:

Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])SetAlgcat(𝖢𝗁𝖺𝗂𝗇)SetAlgcat(𝖢𝗁𝖺𝗂𝗇)SetdgCatcofdgCatdgCat
.
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 50.49454pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&\crcr}}}\ignorespaces{\hbox{\kern-50.49454pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}}$}}}}}}}{\hbox{\kern 74.49454pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ})_{\operatorname{Set}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 50.49455pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 171.70581pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 171.70581pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}}}$}}}}}}}{\hbox{\kern-3.0pt\raise-39.93596pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 91.05376pt\raise-39.93596pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{dgCat_{\operatorname{cof}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 190.36504pt\raise-39.93596pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 111.10017pt\raise-19.96799pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 111.10017pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 190.36504pt\raise-39.93596pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{dgCat\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 206.91144pt\raise-19.96799pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 206.91144pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-79.05023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 93.15376pt\raise-79.05023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{dgCat^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 111.10017pt\raise-44.8804pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 194.80142pt\raise-44.8804pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces.
(34)

Because 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} and 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ} are ordinary categories, the topmost vertical arrows are equivalences (Example 3.14). Because cofibrant dg-categories have cofibrant mapping complexes,999Proposition 2.3(3) of [38]. A more general result for model categories that are not 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain} is invoked in Corollary 3.15 of [15]. dgCatdgCat^{\circ} is a (full) subcategory of dgCatcofdgCat_{\operatorname{cof}}. Composition of the leftmost arrows in (34) thus induce a map

dgCatAlgcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set.dgCat^{\circ}\to\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}.

Further, if a functor of dg-categories is a quasi-equivalence, it is essentially surjective and fully faithful as a morphism in Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}. Thus, (34) passes to localizations:

𝒞atdg\textstyle{\mathcal{C}\!\operatorname{at}_{dg}}Algcat(𝖢𝗁𝖺𝗂𝗇)Set[FFES1]\textstyle{\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ})_{\operatorname{Set}}[\operatorname{FFES}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\otimes}\scriptstyle{\simeq}Algcat(𝖢𝗁𝖺𝗂𝗇)Set[FFES1]\textstyle{\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}}[\operatorname{FFES}^{-1}]}dgCatcof[𝐰1]\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}\scriptstyle{\simeq}\scriptstyle{\otimes}dgCat[𝐰1]\textstyle{dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}dgCat[𝐰1]\textstyle{dgCat^{\circ}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}\scriptstyle{\simeq}
(35)

(To justify that the topmost vertical arrows are still equivalences, we note that the FFES\operatorname{FFES} maps in Algcat(𝖢𝗁𝖺𝗂𝗇)Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}} are quasi-equivalences.) Any of the obvious composition of morphisms in the above diagram determines (up to homotopy) the desired map (32).

Remark 3.21.

There are more equivalences in (35) than in (34). Let us explain why. Because dgCatdgCat has a cofibrant replacement functor, Proposition 3.1 allows us to find a homotopy inverse to the map 𝒞atdg[𝐪𝐮𝐢𝐬1]𝒞atdg[𝐪𝐮𝐢𝐬1]\mathcal{C}\!\operatorname{at}_{dg}^{\circ}[\mathbf{quis}^{-1}]\to\mathcal{C}\!\operatorname{at}_{dg}[\mathbf{quis}^{-1}]. In fact, the entire bottom triangle in (34) becomes a diagram of equivalences of \infty-categories as we explain in Remark 3.22.

Remark 3.22.

Because, after localization along quasi-equivalences, cofibrant replacement is naturally equivalent to the identity functor, we have a diagram of \infty-categories

dgCatcof[𝐰1]\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{\operatorname{id}}dgCat[𝐰1]\textstyle{dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\scriptstyle{Q}\scriptstyle{\simeq}dgCat[𝐰1]\textstyle{dgCat^{\circ}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dgCatcof[𝐰1].\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}].}

Together with the equivalence (32), we see that the map dgCat[𝐰1]dgCatcof[𝐰1]dgCat[\mathbf{w}^{-1}]\to dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}] admits both a left and a right inverse. Thus, the natural cofibrant replacement map induces an equivalence

dgCat[𝐰1]dgCatcof[𝐰1].dgCat[\mathbf{w}^{-1}]\to dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}].

A similar argument shows that the induced functors to/from dgCathproj[𝐰1]dgCat_{\operatorname{hproj}}[\mathbf{w}^{-1}] are also equivalences.

The following result is due to Haugseng. We refer to his work for details.

Theorem 3.23 (Corollary 5.7 of [15]).

The map (32) is an equivalence of \infty-categories.

As a result, every arrow in (35) is an equivalence of \infty-categories. So each of the \infty-categories appearing in (35) is equivalent to 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}.

On the other hand, it is a result of Pascaleff [33] and of Canonaco-Ornaghi-Stellari [3] that the natural inclusion dgCat𝔸strdgCat\to{\mathbb{A}}_{\infty}^{\operatorname{str}} induces an equivalence of \infty-categories

𝒞atdg:=dgCat[𝐰1]𝔸str[𝐰1]=:𝒞atAstr.\mathcal{C}\!\operatorname{at}_{dg}:=dgCat[\mathbf{w}^{-1}]\to{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]=:\mathcal{C}\!\operatorname{at}_{A_{\infty}}^{\operatorname{str}}.

Theorem 1.1 states that the natural inclusion 𝔸str𝔸{\mathbb{A}}_{\infty}^{\operatorname{str}}\to{\mathbb{A}}_{\infty} induces an equivalence of \infty-categories

𝒞atAstr𝒞atA.\mathcal{C}\!\operatorname{at}_{A_{\infty}}^{\operatorname{str}}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

We conclude:

Theorem 3.24.

The inclusion dgCat𝔸dgCat\to{\mathbb{A}}_{\infty} (into the category of not-necessarily-strictly unital AA_{\infty}-categories and unital AA_{\infty}-functors) induces an equivalence of \infty-categories

i:𝒞atdg𝒞atA.i:\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}.
Remark 3.25.

We do not endeavor here to create point-set models of homotopy (co)limits and homotopy-coherent tensor products of (not necessarily strictly) unital AA_{\infty}-categories. But via the equivalence i:𝒞atdg𝒞atAi:\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}, we may conclude that 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} enjoys all the formal properties of 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} (such as admitting all limits and colimits and being presentable). Further, we use ii to transfer the symmetric monoidal structure of 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} (which we will review shortly) to 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

We conclude that this endows 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} with the structure of a presentably symmetric monoidal \infty-category.

3.5 Monoidal structure on enrichments and on 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}

Let 𝒱\mathcal{V} be a symmetric monoidal \infty-category. Gepner-Haugseng define a symmetric monoidal tensor product on 𝒞at𝒱\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}}. In fact, 𝒞at𝒱\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}} is obtained as a localization of Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) (and the monoidal structure is induced by this localization), so for most arguments (as ours here) it will suffice to understand the monoidal structure on Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) as laid out in ibid.

Parsing the discussions there,101010 For details the reader may consult Proposition 3.6.14, (the discussion before) Lemma 3.6.15, Proposition 4.3.11, (the proof of) Lemma 5.7.10, and Proposition 5.7.14 of [13]. we arrive at the following informal description of the symmetric monoidal structure \otimes on Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}). We have that

  1. (i)

    ob(AB)obA×obB\operatorname{ob}(A\otimes B)\simeq\operatorname{ob}A\times\operatorname{ob}B, and

  2. (ii)

    homAB((a,b),(a,b))homA(a,a)𝒱homB(b,b)\hom_{A\otimes B}((a,b),(a^{\prime},b^{\prime}))\simeq\hom_{A}(a,a^{\prime})\otimes^{\mathcal{V}}\hom_{B}(b,b^{\prime}). That is, morphism spaces are determined using the composition

    (obA×obA)×(obB×obB)\textstyle{(\operatorname{ob}A\times\operatorname{ob}A)\times(\operatorname{ob}B\times\operatorname{ob}B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}homA×homB\scriptstyle{\hom_{A}\times\hom_{B}}ob𝒱×ob𝒱\textstyle{\operatorname{ob}\mathcal{V}\times\operatorname{ob}\mathcal{V}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒱\scriptstyle{\otimes^{\mathcal{V}}}ob𝒱\textstyle{\operatorname{ob}\mathcal{V}}

    where the last arrow is the monoidal product of 𝒱\mathcal{V}.

From the above description (because direct products of discrete spaces are discrete) it is clear that Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} is a symmetric monoidal subcategory of Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}).

Example 3.26.

When 𝒱\mathcal{V} is an ordinary category, and when restricted to the subcategory Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}}, the above endows Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} with the usual tensor product of 𝒱\mathcal{V}-enriched categories. (To verify this fact is the only reason we explicated the monoidal structure on Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}).)

In particular, the symmetric monoidal structure on

Algcat(𝖢𝗁𝖺𝗂𝗇)Set,Algcat(𝖢𝗁𝖺𝗂𝗇)Set,andAlgcat(𝖢𝗁𝖺𝗂𝗇hproj)Set\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain})_{\operatorname{Set}},\qquad\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ})_{\operatorname{Set}},\qquad\text{and}\qquad\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\operatorname{hproj}})_{\operatorname{Set}}

is the usual tensor product of dg-categories: ob(AB)=obA×obB\operatorname{ob}(A\otimes B)=\operatorname{ob}A\times\operatorname{ob}B, and homAB((a,b),(a,b))=homA(a,a)𝐤homB(b,b)\hom_{A\otimes B}((a,b),(a^{\prime},b^{\prime}))=\hom_{A}(a,a^{\prime})\otimes_{\mathbf{k}}\hom_{B}(b,b^{\prime}).

Remark 3.27.

The assigments 𝒱Algcat(𝒱)Set\mathcal{V}\mapsto\operatorname{Alg}_{\operatorname{cat}}({\mathcal{V}})_{\operatorname{Set}} and 𝒱Algcat(𝒱)\mathcal{V}\mapsto\operatorname{Alg}_{\operatorname{cat}}({\mathcal{V}}) are functorial for symmetric monoidal 𝒱\mathcal{V} and symmetric monoidal functors between them (Proposition 4.3.11 of [13]).

There are now two potential symmetric monoidal structures on 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}:

  1. (i)

    A symmetric monoidal structure induced by the localization

    Algcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])SetAlgcat(𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1])Set[FFES1].\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}\to\operatorname{Alg}_{\operatorname{cat}}(\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}])_{\operatorname{Set}}[\operatorname{FFES}^{-1}].

    (This is the symmetric monoidal structure guaranteed by the work of Gepner-Haugseng. Note we could use 𝖢𝗁𝖺𝗂𝗇hproj\mathsf{Chain}^{\operatorname{hproj}} in place of 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}^{\circ} and obtain an equivalent symmetric monoidal structure.)

  2. (ii)

    A symmetric monoidal structure induced by the localization

    dgCatcofdgCatcof[𝐰1]dgCat_{\operatorname{cof}}\to dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]

    and pulling back to 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} using the equivalence of Remark 3.22 and composing with (32). (We could use dgCathprojdgCat_{\operatorname{hproj}} instead of dgCatcofdgCat_{\operatorname{cof}} and obtain an equivalent symmetric monoidal structure.)

Proposition 3.28.

The above two symmetric monoidal structures are equivalent.

Proof.

In (35), the two arrows labeled by \otimes have natural symmetric monoidal structures induced by localization.

(This is because the corresponding arrows in (34) are symmetric monoidal functors. We note that the other arrows in (34) do not induce symmetric monoidal structures on the maps between localizations – dgCatdgCat^{\circ} is not a monoidal subcategory of dgCatdgCat, and the tensor product of dgCatdgCat does not preserve quasi-equivalences.)

Aside from the domains and codomains of those two arrows, all \infty-categories in (35) have symmetric monoidal structures defined by pulling back symmetric monoidal structures through the equivalences in (35) that are not labeled by \otimes symbols. (These induced structures are well-defined up to symmetric monoidal equivalence, because (35) is a coherent diagram of \infty-categories).

Because the composition of the two \otimes-labeled symmetric monoidal functors in (35) is underlied by an equivalence of \infty-categories by Theorem 3.23, the result follows by the universal property of symmetric monoidal structures induced by localizations (Proposition 3.2 (ii)). ∎

3.6 Identification with the derived tensor product

By Section 3.5, we have a canonical symmetric monoidal structure on 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} induced by the symmetric monoidal structure of (cofibrant or homotopically projective) chain complexes. This induces a symmetric monoidal structure on dgCat[𝐰1]dgCat[\mathbf{w}^{-1}] via the equivalence (32). On the other hand, we have a classical derived tensor product on the homotopy category hodgCat[𝐰1]\operatorname{ho}dgCat[\mathbf{w}^{-1}]. We now equate these monoidal structures.

Proposition 3.29.

The monoidal structure on dgCat[𝐰1]dgCat[\mathbf{w}^{-1}] from Section 3.5 is, at the level of the homotopy category, naturally equivalent to the derived tensor product of dg-categories (in the sense of Toën).

Proof.

For this proof only, we abuse notation and let Q:dgCatdgCatcofQ:dgCat\to dgCat_{\operatorname{cof}} denote the cofibrant replacement functor with codomain dgCatcofdgCat_{\operatorname{cof}}. QQ induces an equivalence Q¯\underline{Q} of localized \infty-categories (Remark 3.22).

Consider the following diagram of \infty-categories:

dgCat[𝐰1]×dgCat[𝐰1]\textstyle{dgCat[\mathbf{w}^{-1}]\times dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dgCat×dgCat\textstyle{dgCat\times dgCat\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q×id\scriptstyle{Q\times\operatorname{id}}dgCatcof[𝐰1]×dgCat[𝐰1]\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\times dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dgCat[𝐰1]\textstyle{dgCat[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q¯\scriptstyle{\underline{Q}}dgCatcof×dgCat\textstyle{dgCat_{\operatorname{cof}}\times dgCat\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\otimes}id×Q\scriptstyle{\operatorname{id}\times Q}dgCat\textstyle{dgCat\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L\scriptstyle{L}dgCatcof[𝐰1]×dgCatcof[𝐰1]\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\times dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}¯\scriptstyle{\underline{\otimes}}dgCatcof[𝐰1]\textstyle{dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]}dgCatcof×dgCatcof\textstyle{dgCat_{\operatorname{cof}}\times dgCat_{\operatorname{cof}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\otimes}dgCatcof\textstyle{dgCat_{\operatorname{cof}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

In the foreground of the above diagram are solid arrows. These solid arrows are functors of ordinary categories. We warn that the solid rectangle in the foreground does not commute (and in particular, the solid three-dimensional rectangular diagram has no interior coherence that we will utilize), but it commutes up to two natural transformations. Namely, for every pair (A,B)(A,B) of dg-categories we have natural maps

Q(AB)ABAQ(B).Q(A\otimes B)\to A\otimes B\leftarrow A\otimes Q(B). (36)

The lefthand map is always a quasi-equivalence, and when AobdgCatcofA\in\operatorname{ob}dgCat_{\operatorname{cof}}, so is the righthand map.

The dashed arrows in the diagram are all maps induced from the solid arrows by the formal process of \infty-categorical localization, with the diagonally oriented dotted arrows being the natural map from a category to its (\infty-categorical) localization. (Note that we have used that localization commutes with products.) Importantly, because the natural maps in (36) are quasi-equivalences, the dashed rectangle in the background does commute (up to homotopy).

In what follows, we let L:dgCatdgCat[𝐰1]L:dgCat\to dgCat[\mathbf{w}^{-1}] denote the localization map (this is also labeled in the diagram). Because LL can be modeled to be a bijection at the level of objects, we let LALA denote the dg-category AA considered as an object in the localization.

The symmetric monoidal structure on dgCat[𝐰1]dgCat[\mathbf{w}^{-1}] induced by the equivalence Q¯:dgCat[𝐰1]dgCatcof[𝐰1]\underline{Q}:dgCat[\mathbf{w}^{-1}]\to dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}] has binary part, up to natural equivalence, given by

Q¯1¯(Q¯×Q¯)\underline{Q}^{-1}\circ\underline{\otimes}\circ(\underline{Q}\times\underline{Q})

where ¯\underline{\otimes} is the symmetric monoidal structure on dgCatcof[𝐰1]dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}] induced by the usual tensor product of dg-categories. The dashed diagram in the background, along with the homotopy-commutativity of the topmost rectangles containing the dotted diagonal arrows, tells us that the above composition is homotopic to a functor which, at the level of objects, is given by

(LA,LB)L(Q(A)B).(LA,LB)\mapsto L(Q(A)\otimes B).

This is precisely one formula for the derived tensor product of dg-categories.

The above discussion did not take care to verify all higher coherences (we only considered the binary term, and only up to unspecified natural equivalences). Thankfully, the discussion is sufficient to conclude that (at the level of homotopy categories) the monoidal functor on hodgCat[𝐰1]\operatorname{ho}dgCat[\mathbf{w}^{-1}] is naturally isomorphic to the assignment (LA,LB)L((Q(A))B)(LA,LB)\mapsto L((Q(A))\otimes B). ∎

3.7 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} has internal homs

Let 𝒞\mathcal{C} be a presentably monoidal \infty-category, so that for every object CC, the functor C:𝒞𝒞C\otimes-:\mathcal{C}\to\mathcal{C} preserves all colimits. Because 𝒞\mathcal{C} is presentable, the adjoint functor theorem (Corollary 5.5.2.9 of [21]) guarantees a right adjoint. Calling this right adjoint hom¯(C,)\underline{\hom}(C,-), we witness a natural equivalence of Kan complexes

hom𝒞(CD,E)hom𝒞(D,hom¯(C,E)).\hom_{\mathcal{C}}(C\otimes D,E)\simeq\hom_{\mathcal{C}}(D,\underline{\hom}(C,E)). (37)

As usual, we will refer to hom¯(C,E)\underline{\hom}(C,E) as an internal hom object of 𝒞\mathcal{C}. Note also that the unit of the monoidal structure on 𝒞\mathcal{C} determines a monoidal and colimit-preserving functor

𝒮paces𝒞\mathcal{S}\!\operatorname{paces}\to\mathcal{C} (38)

characterized by sending the Kan complex Δ0\Delta^{0} to the unit 1𝒞1_{\mathcal{C}}.

Proposition 3.30.

Let 𝒱\mathcal{V} be the \infty-category of chain complexes over a commutative ring 𝐤\mathbf{k} (Definition 3.10). The functor (38) is induced by the functor of 1-categories sending a simplicial set to its normalized complex of singular chains over 𝐤\mathbf{k}.

Proof.

It is well-known that the functor of 1-categories 𝗌𝖲𝖾𝗍𝖢𝗁𝖺𝗂𝗇\mathsf{sSet}\to\mathsf{Chain}^{\circ} sending a simplicial set to its normalized 𝐤\mathbf{k}-linear chain complex is lax symmetric monoidal.111111See Section 1 of [29], or VIII.8 of [28], or 2.5.7.12 of [23], for example. Moreover, this functor sends weak homotopy equivalences to quasi-isomorphisms – so by localizing both 1-categories along these classes of weak equivalences, one obtains121212This follows from the paragraph preceding 4.1.3.4 in [22]. a lax symmetric monoidal functor 𝒮paces𝖢𝗁𝖺𝗂𝗇[𝐪𝐮𝐢𝐬1]\mathcal{S}\!\operatorname{paces}\to\mathsf{Chain}^{\circ}[\mathbf{quis}^{-1}]. It is the content of the Eilenberg-Zilber Theorem that all the lax morphisms C(X)C(Y)C(X×Y)C_{*}(X)\otimes C_{*}(Y)\to C_{*}(X\times Y) are quasi-isomorphisms, so in fact this lax symmetric monoidal functor is a symmetric monoidal functor upon passage to the localizations. Noting that XC(X)X\mapsto C_{*}(X) preserves homotopy colimits and sends Δ0\Delta^{0} to the monoidal unit of 𝒱\mathcal{V}, we have verified the characterizing property of (38). ∎

Remark 3.31.

It is a result of Gepner-Haugseng (Proposition 5.7.16 of [13]) that if 𝒱\mathcal{V} is presentably monoidal, then so is the \infty-category 𝒞at𝒱\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}} of 𝒱\mathcal{V}-enriched \infty-categories. In particular, as in (37), one may contemplate the internal hom objects in 𝒞=𝒞at𝒱\mathcal{C}=\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}}.

Let 𝒱\mathcal{V} be the \infty-category of chain complexes over 𝐤\mathbf{k} (Definition 3.10). Then we have already seen in Section 3.4 the equivalences

𝒞atAdgCatcof[𝐰1]𝒞at𝒱=𝒞atdg\mathcal{C}\!\operatorname{at}_{A_{\infty}}\simeq dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]\simeq\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}}=\mathcal{C}\!\operatorname{at}_{dg}

We have also witnessed in Section 3.5 that the middle equivalence can be made symmetric monoidal for the natural tensor products on 𝒞at𝒱\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}} and dgCatcof[𝐰1]dgCat_{\operatorname{cof}}[\mathbf{w}^{-1}]. We endow 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} with the tensor product induced by the above equivalence. By Remark 3.31, 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} is presentably symmetric monoidal and hence has internal homs.

Remark 3.32 (The underlying \infty-category).

Because (38) is monoidal, it induces a functor from 𝒮paces\mathcal{S}\!\operatorname{paces}-enriched \infty-categories (which is to say, \infty-categories, by Example 3.16) to 𝒱\mathcal{V}-enriched \infty-categories:

𝒞at𝒞at𝒱.\mathcal{C}\!\operatorname{at}_{\infty}\to\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}}. (39)

Moreover, because (38) is a functor of presentably monoidal categories, so is (39) (Proposition 5.7.8 of [13]). In particular, (39) has a right adjoint. We call this right adjoint the underlying \infty-category functor.

We caution that Gepner-Haugseng uses a slightly different definition for the underlying \infty-category functor. (39) arises from a functor

Algcat(𝒮paces)Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{S}\!\operatorname{paces})\to\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) (40)

obtained by applying (38) on morphism spaces (Example 4.3.20 of [13]). When 𝒱\mathcal{V} is presentably symmetric monoidal, (40) is also. And the right adjoint to (40) is what is called the underlying \infty-category functor in Definition 5.1.10 of [13]. But we may localize along the fully faithful and essentially surjective morphisms to arrive at (39), so the effects of (39) and (40) are identical on objects.

Moreover, because 𝒞at𝒱\mathcal{C}\!\operatorname{at}_{\infty}^{\mathcal{V}} may be obtained by localizing Algcat(𝒱)\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V}) or by localizing the full subcategory Algcat(𝒱)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}} – see (31) – the underlying \infty-category functor may also be computed by taking the right adjoint to

Algcat(𝒮paces)SetAlgcat(𝒱)Set.\operatorname{Alg}_{\operatorname{cat}}(\mathcal{S}\!\operatorname{paces})_{\operatorname{Set}}\to\operatorname{Alg}_{\operatorname{cat}}(\mathcal{V})_{\operatorname{Set}}. (41)

(Note that (41) arises as the restriction of (40) to Algcat(𝒮paces)Set\operatorname{Alg}_{\operatorname{cat}}(\mathcal{S}\!\operatorname{paces})_{\operatorname{Set}}.) One may then localize (41) along the fully faithful and essentially surjective morphisms. This is how we will compute (the right adjoint to) (39).

(Note also that the localizations of (40) and of (41) are naturally identified thanks to the equivalence (31).)

When 𝒱\mathcal{V} is the \infty-category of chain complexes, we identify the right adjoint to (39) in Proposition 3.39 as induced by a well-known point-set construction called the dg nerve. (The dg nerve is due to Lurie – see Construction 1.3.1.6 of [22].)

3.8 Statement of theorems

Definition 3.33 (Split units).

Let AA be a strictly unital AA_{\infty}-category. We say that the units of AA split or that AA has split units, if for every object XX the map 𝐤homA(X,X)\mathbf{k}\to\hom_{A}(X,X) sending 1𝐤1_{\mathbf{k}} to the strict unit uXu_{X} splits as a map of graded 𝐤\mathbf{k}-modules (not necessarily as a map of complexes).

Theorem 3.34.

Let AA and BB be dg-categories. Then the following dg-categories are equivalent in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}:

  1. (a)

    The internal hom object hom¯𝒞atdg(A,B)\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{dg}}(A,B) in the \infty-category of dg-categories.

  2. (b)

    For any quasi-equivalence of dg-categories AAA^{\prime}\to A with AA^{\prime} a dg-category with homotopically projective morphism complexes, the dg-category hproj((A)opB)rqr)h-proj((A^{\prime})^{\operatorname{op}}\otimes B)^{rqr}) of right quasirepresentable homotopically projective bimodules.

  3. (c)

    For any AAA^{\prime}\to A as above, the dg-category 𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B) of unital AA_{\infty}-functors from AA^{\prime} to BB.

  4. (d)

    For any quasi-equivalence of AA_{\infty}-categories A′′AA^{\prime\prime}\to A with A′′A^{\prime\prime} a unital AA_{\infty}-category with homotopically projective morphism complexes, the dg-category 𝖥𝗎𝗇A(A′′,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime\prime},B) of unital AA_{\infty}-functors from A′′A^{\prime\prime} to BB.

  5. (e)

    For any quasi-equivalence AAA^{\prime}\to A for which AA^{\prime} is a dg-category with split units and homotopically projective morphism complexes, the dg-category 𝖥𝗎𝗇Astr(A,B)\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime},B) of strictly unital AA_{\infty}-functors from AA^{\prime} to BB.

  6. (f)

    For any strictly unital quasi-equivalence of AA_{\infty}-categories A′′AA^{\prime\prime}\to A with A′′A^{\prime\prime} a strictly unital AA_{\infty}-category with homotopically projective morphism complexes and split units, the dg-category 𝖥𝗎𝗇Astr(A′′,B)\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime\prime},B) of strictly unital AA_{\infty}-functors from A′′A^{\prime\prime} to BB.

The techniques of the proof will show that all equivalences except those involving (d) and (f) can be chosen to be natural in the homotopy category ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}. (See Remark 3.38.)

We also compute mapping spaces. In what follows, NN denotes the dg-nerve, and for an \infty-category XX, XX^{\sim} denotes the largest Kan complex inside XX.

Theorem 3.35.

Let AA and BB be dg-categories. Then the following Kan complexes are homotopy equivalent:

  1. (a)

    The mapping space hom𝒞atdg(A,B)\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(A,B).

  2. (b)

    For any quasi-equivalence of dg-categories AAA^{\prime}\to A with AA^{\prime} a dg-category with homotopically projective morphism complexes, the space N(hproj((A)opB)rqr)N(h-proj((A^{\prime})^{\operatorname{op}}\otimes B)^{rqr})^{\sim} of right quasirepresentable homotopically projective bimodules.

  3. (c)

    For any AAA^{\prime}\to A as above, the space N(𝖥𝗎𝗇A(A,B))N(\mathsf{Fun}_{A_{\infty}}(A^{\prime},B))^{\sim} of unital AA_{\infty}-functors from AA^{\prime} to BB.

  4. (d)

    For any quasi-equivalence of AA_{\infty}-categories A′′AA^{\prime\prime}\to A with A′′A^{\prime\prime} a unital AA_{\infty}-category with homotopically projective morphism complexes, the space N(𝖥𝗎𝗇A(A′′,B))N(\mathsf{Fun}_{A_{\infty}}(A^{\prime\prime},B))^{\sim} of unital AA_{\infty}-functors from A′′A^{\prime\prime} to BB.

  5. (e)

    For any quasi-equivalence AAA^{\prime}\to A for which AA^{\prime} is a dg-category with split units and homotopically projective morphism complexes, the space N(𝖥𝗎𝗇Astr(A,B))N(\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime},B))^{\sim} of strictly unital AA_{\infty}-functors from AA^{\prime} to BB.

  6. (f)

    For any strictly unital quasi-equivalence of AA_{\infty}-categories A′′AA^{\prime\prime}\to A with A′′A^{\prime\prime} a strictly unital AA_{\infty}-category with homotopically projective morphism complexes and split units, the space N(𝖥𝗎𝗇Astr(A′′,B))N(\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime\prime},B))^{\sim} of strictly unital AA_{\infty}-functors from A′′A^{\prime\prime} to BB.

All equivalences except those involving (d) and (f) can be chosen to be natural with respect to arrows in the homotopy category ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}. (See Remark 3.38.)

Below are the AA_{\infty} analogues:

Theorem 3.36.

Let AA and BB be unital AA_{\infty}-categories. Then the following AA_{\infty}-categories are equivalent in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}:

  1. (a)

    The internal hom hom¯𝒞atA(A,B)\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B) in the \infty-category of AA_{\infty}-categories.

  2. (b)

    For any quasi-equivalence of AA_{\infty}-categories AAA^{\prime}\to A with AA^{\prime} a unital AA_{\infty}-category with homotopically projective morphism complexes, the AA_{\infty}-category 𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B) of unital AA_{\infty}-functors from AA^{\prime} to BB.

  3. (c)

    Supposing BB is strictly unital, and fixing any strictly unital quasi-equivalence of AA_{\infty}-categories AAA^{\prime}\to A with AA^{\prime} a strictly unital AA_{\infty}-category with homotopically projective morphism complexes and split units: the AA_{\infty}-category 𝖥𝗎𝗇Astr(A,B)\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime},B) of strictly unital AA_{\infty}-functors from AA^{\prime} to BB.

As a corollary we obtain mapping space computations. Below, NN stands for the AA_{\infty} nerve (Recollection 3.40).

Theorem 3.37.

Let AA and BB be unital AA_{\infty}-categories. Then the following Kan complexes are homotopy equivalent:

  1. (a)

    The space hom𝒞atA(A,B)\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B) in the \infty-category of AA_{\infty}-categories.

  2. (b)

    For any quasi-equivalence of AA_{\infty}-categories AAA^{\prime}\to A with AA^{\prime} a unital AA_{\infty}-category with homotopically projective morphism complexes, the space N(𝖥𝗎𝗇A(A,B))N(\mathsf{Fun}_{A_{\infty}}(A^{\prime},B))^{\sim} of unital AA_{\infty}-functors from AA^{\prime} to BB.

  3. (c)

    Supposing BB is strictly unital, and fixing any strictly unital quasi-equivalence of AA_{\infty}-categories AAA^{\prime}\to A with AA^{\prime} a strictly unital AA_{\infty}-category with homotopically projective morphism complexes and split units: the space N(𝖥𝗎𝗇Astr(A,B))N(\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime},B))^{\sim} of strictly unital AA_{\infty}-functors from AA^{\prime} to BB.

Remark 3.38.

The reader will note that the term “naturally” is missing in the statement of Theorem 3.36 and 3.37. This is because our proof invokes the Yoneda embedding A𝒴(A)A\to\mathcal{Y}(A) for AA_{\infty}-categories, and the naturality of this embedding does not yet seem to appear in the literature. This is the same reason that naturality was not attained in some of the equivalences in Theorem 3.34 and 3.35.

To orient the reader further, let us say that all internal-hom results about 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} are being bootstrapped from the results about internal homs in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg}. To do this, one needs a way to turn AA_{\infty}-categories into dg-categories, and this is why we invoke the Yoneda embedding.

We will prove the above theorems in Section 3.12; we set up some notation and machinery in the interim.

3.9 The dg nerve is the underlying \infty-category

Proposition 3.39.

Let 𝒱\mathcal{V} be the \infty-category of chain complexes over some commutative ring 𝐤\mathbf{k}. Then the right adjoint to (39) is (equivalent to the functor induced by) the dg nerve.

Proof.

The dg nerve is a functor from the 1-category of dg-categories to the 1-category of simplicial sets, and is a right Quillen functor.131313Proposition 1.3.1.20 of [22]. Note that Lurie utilizes the Tabuada model structure there. This Quillen adjunction thus determines141414See Proposition 1.5.1 of [16] and Theorem 2.1 of [30]. an adjunction of \infty-categories

𝕃:𝒞at𝒞atdg.\mathbb{L}:\mathcal{C}\!\operatorname{at}_{\infty}\iff\mathcal{C}\!\operatorname{at}_{dg}.

We wish to see that the left adjoint 𝕃\mathbb{L} of this adjunction is equivalent to (39). Let 𝗌𝖲𝖾𝗍\mathsf{sSet} be the usual 1-category of simplicial sets and let 𝗌𝖲𝖾𝗍𝒞at=𝗌𝖲𝖾𝗍[𝐰1]\mathsf{sSet}\to\mathcal{C}\!\operatorname{at}_{\infty}=\mathsf{sSet}[\mathbf{w}^{-1}] be the localization with respect to weak equivalences in the Joyal model structure. Letting Δ¯\underline{\Delta} denote the usual category of finite non-empty linear ordinals, both

Δ¯𝗌𝖲𝖾𝗍and the compositionΔ¯𝗌𝖲𝖾𝗍𝒞at\underline{\Delta}\to\mathsf{sSet}\qquad\text{and the composition}\qquad\underline{\Delta}\to\mathsf{sSet}\to\mathcal{C}\!\operatorname{at}_{\infty}

are fully faithful functors. 𝒞at\mathcal{C}\!\operatorname{at}_{\infty} is generated by Δ¯\underline{\Delta} under colimits, so to see that the two left adjoints 𝕃\mathbb{L} and (39) are equivalent, it suffices to produce a natural equivalence between the composites

Δ¯𝗌𝖲𝖾𝗍𝒞at𝕃𝒞atdgandΔ¯𝗌𝖲𝖾𝗍𝒞at(39)𝒞atdg.\underline{\Delta}\to\mathsf{sSet}\to\mathcal{C}\!\operatorname{at}_{\infty}\xrightarrow{\mathbb{L}}\mathcal{C}\!\operatorname{at}_{dg}\qquad\text{and}\qquad\underline{\Delta}\to\mathsf{sSet}\to\mathcal{C}\!\operatorname{at}_{\infty}\xrightarrow{\eqref{eqn. free dg category}}\mathcal{C}\!\operatorname{at}_{dg}. (42)

The lefthand composite is easy to compute because we can compute the left adjoint to the dg nerve construction: The image 𝕃[Δk]\mathbb{L}[\Delta^{k}] of Δk\Delta^{k} is the dg category corepresenting the data of Construction 1.3.16 in [22].151515We warn that loc. cit. uses homological conventions, while the present paper uses cohomological conventions. For every i<ji<j, there exists a degree 0 morphism xi,j:ijx_{i,j}:i\to j. hom𝕃[Δk](i,j)\hom_{\mathbb{L}[\Delta^{k}]}(i,j) in degree 0 is a free 𝐤\mathbf{k}-module generated by words xin1,inxi0,i1x_{i_{n-1},i_{n}}\ldots x_{i_{0},i_{1}} with i0=i,in=ji_{0}=i,i_{n}=j, ia<ia+1i_{a}<i_{a+1} and n1n\geq 1. For every iobΔki\in\operatorname{ob}\Delta^{k} we think of hom(i,i)=𝐤=𝐤i\hom(i,i)=\mathbf{k}=\mathbf{k}\cdot\emptyset_{i} as generated by an empty word i\emptyset_{i} representing the identity of ii, and composition is given by concatenation of words. There are degree -1 elements that exhibit any two words generating hom𝕃[Δk](i,j)\hom_{\mathbb{L}[\Delta^{k}]}(i,j) as cohomologous (and higher degree elements exhibiting higher coboundaries), arranged so that hom𝕃[Δk](i,j)\hom_{\mathbb{L}[\Delta^{k}]}(i,j) is quasi-isomorphic to the chain complex 𝐤\mathbf{k} concentrated in degree 0.

Consider the dg-category 𝐤[k]\mathbf{k}\otimes[k], where hom𝐤[k](i,j)\hom_{\mathbf{k}\otimes[k]}(i,j) is 𝐤\mathbf{k} if iji\leq j and zero otherwise, with the obvious composition 𝐤𝐤𝐤\mathbf{k}\otimes\mathbf{k}\xrightarrow{\cong}\mathbf{k}. Then 𝕃[Δk]\mathbb{L}[\Delta^{k}] admits a natural (in the Δk\Delta^{k} variable) functor to 𝐤[k]\mathbf{k}\otimes[k] given by the identity on objects, sending all words to the generator of 𝐤=hom𝐤[k](i0,in)\mathbf{k}=\hom_{\mathbf{k}\otimes[k]}(i_{0},i_{n}), and sending all negative-degree elements to 0. This functor is a quasi-equivalence. (Indeed, one should think of 𝕃[Δk]\mathbb{L}[\Delta^{k}] as a resolution of 𝐤[k]\mathbf{k}\otimes[k].)

Now we seek to understand the righthand composite in (42). The \infty-category Δk\Delta^{k} is characterized as an \infty-category whose set of objects is in bijection with the poset [k][k], and where homΔk(i,j)pt\hom_{\Delta^{k}}(i,j)\simeq pt is a contractible space when iji\leq j (and is empty otherwise), with the obvious composition law. To understand (39), we may thus apply (38) on each morphism space – and (38) is modeled at the level of 1-categories as the normalized chain complex functor CC_{*} from the category of Kan complexes to 𝖢𝗁𝖺𝗂𝗇\mathsf{Chain}, then localizing along weak equivalences. Noting that C(pt)𝐤C_{*}(pt)\cong\mathbf{k}, we see that the righthand composite in (42) is equivalent to the assignment sending Δk\Delta^{k} to 𝐤[k]\mathbf{k}\otimes[k]. ∎

Recollection 3.40.

Recall also the notion of AA_{\infty} nerve, as constructed in [36] and by Faonte in [9]. This is a functor from the category of strictly unital AA_{\infty}-categories and strictly unital functors to the category of simplicial sets, with image landing in \infty-categories (i.e., quasi-categories). It is straightforward from the definitions (by choosing an appropriate sign convention) that the diagram

𝗌𝖲𝖾𝗍\textstyle{\mathsf{sSet}}dgCat\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces dgCat\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N\scriptstyle{N}i\scriptstyle{i}𝔸str\textstyle{{\mathbb{A}}_{\infty}^{\operatorname{str}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N\scriptstyle{N}

commutes. (That is, if AA is a dg-category, its dg-nerve is equal to its AA_{\infty}-nerve.)

Because ii induces an equivalence of \infty-categories 𝒞atdg𝒞atA\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}, Proposition 3.39 thus implies:

Proposition 3.41.

The right adjoint to the composition

𝒞at\textstyle{\mathcal{C}\!\operatorname{at}_{\infty}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(39)\scriptstyle{\eqref{eqn. free dg category}}𝒞atdg\textstyle{\mathcal{C}\!\operatorname{at}_{dg}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}\scriptstyle{\simeq}𝒞atA\textstyle{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}

is, for strictly unital AA_{\infty}-categories, modeled by the AA_{\infty} nerve.

Remark 3.42 (Nerves for unital AA_{\infty}-categories).

When an AA_{\infty}-category AA is (not necessarily strictly) unital, the nerve N(A)N(A) produces a semisimplicial set – this is because a given object XobAX\in\operatorname{ob}A has no distinguished single morphism deserving the title of idX\operatorname{id}_{X}. Regardless, N(A)N(A) satisfies two special properties. (i) The weak Kan condition for semisimplicial sets, and (ii) every object admits an idempotent self-equivalence. It is a result of Steimle that any such semisimplicial sets admits an enhancement to a simplicial set, unique up to homotopy; and [37] explains how to make functors out of the resulting simplicial sets. Section 3.4 of [20] gives an account of the latter fact as well.

Because the results of this work do not require a point-set model for the putative nerve functor 𝔸𝗌𝖲𝖾𝗍{\mathbb{A}}_{\infty}\to\mathsf{sSet} to the category of simplicial sets, we do not pursue a detailed explication for the unital case of the nerve. (In fact, the AA_{\infty}-nerve seems more natural to model as a functor to semisimplicial sets; the desired map to 𝒞at\mathcal{C}\!\operatorname{at}_{\infty} is most easily modeled by localizing semisimplicial sets by a well-chosen class of morphisms to obtain a functor into 𝒞at\mathcal{C}\!\operatorname{at}_{\infty}).

Remark 3.43.

Let AA be a strictly unital AA_{\infty}-category and NANA its AA_{\infty} nerve. By definition, the objects of NANA are the objects of AA. We moreover have a natural isomorphism

HihomA(x,y)πihomNA(x,y)i0.H^{-i}\hom_{A}(x,y)\cong\pi_{i}\hom_{NA}(x,y)\qquad\forall i\geq 0.

One can verify this by hand straight from the definitions and from the usual Dold-Kan computations (see [36]). Or, one can utilize Proposition 3.41 and bootstrap the result from the case of dg-categories, which is proven in Remark 1.3.1.12 of [22].

3.10 Generalities on homotopy categories

Recall that if 𝒞\mathcal{C} is a model category, one has a well-defined notion of homotopy category. It has (at least) four different, naturally equivalent definitions:

  1. 1.

    One takes the \infty-categorical localization 𝒞[𝐰1]\mathcal{C}[\mathbf{w}^{-1}], and takes the homotopy category of this localization. By construction, this definition produces a category with the same objects as 𝒞\mathcal{C}, and has morphisms given by π0hom𝒞[𝐰1](X,Y)\pi_{0}\hom_{\mathcal{C}[\mathbf{w}^{-1}]}(X,Y). (This definition only depends on the weak equivalences of the model categorical structure.)

  2. 2.

    One takes the 11-categorical localization of 𝒞\mathcal{C} along 𝐰\mathbf{w}.161616See for example Gabriel-Zisman [10], 1.1 of Chapter 1. By construction, this definition produces a category with the same objects as 𝒞\mathcal{C}, and has morphisms given by diagrams of finite-length zig-zags, modulo natural relations. While a priori such a definition may result in a category with non-small morphism classes (see [19], Example 4.15) model-categorical arguments allow us to conclude a posteriori that the morphism sets are (small) sets. (This definition only depends on the weak equivalences of the model categorical structure.)

  3. 3.

    One takes the full subcategory of fibrant and cofibrant objects of 𝒞\mathcal{C}, then defines the set of morphisms from XX to YY to be the quotient hom𝒞(X,Y)/\hom_{\mathcal{C}}(X,Y)/{\sim} by the model-categorical relation of homotopy. (This definition uses more than just the weak equivalences in the model category structure.)

  4. 4.

    One defines the homotopy category to have the same collection of objects as 𝒞\mathcal{C}, then chooses for every object XX a fibrant-cofibrant replacement RQXQXXRQX\leftarrow QX\to X (this need not be done functorially at the level of 𝒞\mathcal{C}) and defines morphisms as hom𝒞(RQX,RQY)/\hom_{\mathcal{C}}(RQX,RQY)/{\sim}. It is an exercise that this results in a well-defined composition rule. (This definition uses more than just the weak equivalences in the model category structure.)

Remark 3.44.

The equivalence between (1) and (2) is Proposition 3.1 of [6], combined with the fact that hammock localization computes \infty-categorical localizations.171717See Proposition 1.2.1 of [16], where \infty-categorical localization is modeled using marked simplicial sets. This equivalence does not depend on 𝒞\mathcal{C} being a model category – this is relevant for us because 𝔸{\mathbb{A}}_{\infty} does not admit a model category structure.

As an aside, the equivalence holds even when the localizations may not be locally small. (One simply passes to a larger Grothendieck universe as needed to articulate categories with larger morphism sets.)

The equivalence between (3) and (4) follows by noting that the former is (by definition) a full subcategory of the latter, and its inclusion is essentially surjective because weak equivalences are isomorphisms in the latter (Proposition 5.8 of [7]).

The equivalence between (2) and (4) is Theorem 6.2 of [7].

3.11 Whitehead style results

Proposition 3.45 (Whitehead’s Theorem for homotopically projective AA_{\infty}-categories).

Let AA and BB be AA_{\infty}-categories whose morphism complexes are homotopically projective chain complexes. If f:ABf:A\to B is a quasi-isomorphism, then ff admits an inverse AA_{\infty}-functor up to natural equivalence.

Proof.

For all objects a,aobAa,a^{\prime}\in\operatorname{ob}A, ff induces a quasi-isomorphism fa,a:homA(a,a)homB(f(a),f(a))f_{a,a^{\prime}}:\hom_{A}(a,a^{\prime})\to\hom_{B}(f(a),f(a^{\prime})). By Proposition 3.8, we conclude:

each fa,af_{a,a^{\prime}} admits a homotopy-inverse chain map.

Because ff is essentially surjective, by the axiom of choice there exists a function h:obBobAh:\operatorname{ob}B\to\operatorname{ob}A so that there exists an isomorphism fh(b)bfh(b)\cong b in H0(B)H^{0}(B). Let p:fhbbp:fhb\to b be a representative for this isomorphism and r:bfhbr:b\to fhb be a representatives for the inverse; we can thus choose degree 1-1 elements whom(b,b)w\in\hom(b,b) and vhom(fhb,fhb)v\in\hom(fhb,fhb) whose differential realizes the equalities [m2(p,r)]=[eb][m^{2}(p,r)]=[e_{b}] and [m2(r,p)]=[efh(b)][m^{2}(r,p)]=[e_{fh(b)}] (here, ebe_{b} is a homotopy unit for bb). Let us abbreviate this simply as

ff admits the data of hh and of {(p,r,w,v)}bobB\{(p,r,w,v)\}_{b\in\operatorname{ob}B}.

The above two inline conditions are precisely the hypotheses laid out in Theorem 8.8 of [24] for ff to admit an inverse functor g:BAg:B\to A for which fgfg is homotopic to (i.e., naturally equivalent to) idB\operatorname{id}_{B} and gfgf is homotopic to idA\operatorname{id}_{A}. ∎

Proposition 3.46.

Suppose f:AAf:A\to A^{\prime} is a unital functor of unital AA_{\infty}-categories admitting an inverse up to natural equivalence. Then for all unital AA_{\infty}-categories BB, the pullback

𝖥𝗎𝗇A(A,B)𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)\to\mathsf{Fun}_{A_{\infty}}(A,B)

(between AA_{\infty}-categories of unital functors) is also a unital functor of unital AA_{\infty}-categories admitting an inverse up to natural equivalence.

Proof.

This follows from Section 6 of [24]. Indeed, a repeated application of equation (6.1.1) of ibid. – by doing work similar to the proof of Proposition 6.2 of ibid. – shows that functors f:AAf:A\to A^{\prime}, g:AAg:A^{\prime}\to A and natural equivalences fgidA,gfidAfg\sim\operatorname{id}_{A^{\prime}},gf\sim\operatorname{id}_{A} produce functors f,gf^{*},g^{*} and natural equivalences fgid𝖥𝗎𝗇Anonunital(A,B)f^{*}g^{*}\sim\operatorname{id}_{\mathsf{Fun}_{A_{\infty}}^{non-unital}(A^{\prime},B)} and gfid𝖥𝗎𝗇Anonunital(A,B)g^{*}f^{*}\sim\operatorname{id}_{\mathsf{Fun}_{A_{\infty}}^{non-unital}(A,B)}. Note that, a posteriori, we may conclude that gg^{*} and ff^{*} are unital functors by Theorem 8.8 of ibid. Finally, because ff is assumed unital (and hence gg is unital), both ff^{*} and gg^{*} preserve the full subcategories 𝖥𝗎𝗇A𝖥𝗎𝗇Anonunital\mathsf{Fun}_{A^{\infty}}\subset\mathsf{Fun}_{A^{\infty}}^{non-unital} of unital AA_{\infty}-functors. The restrictions of ff^{*} and gg^{*} to these full subcategories yields the result.

Proposition 3.47.

Fix AA and AA^{\prime}, two unital AA_{\infty}-categories with homotopically projective morphism complexes. Suppose one abstractly knows that AA and AA^{\prime} are isomorphic in the homotopy category ho𝒞atA\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}. Then there exists a unital functor of AA_{\infty}-categories AAA\to A^{\prime} admitting an inverse up to natural equivalence.

Proof.

By the Yoneda Lemma, any unital AA_{\infty}-category AA admits an AA_{\infty}-functor A𝒴(A)A\to\mathcal{Y}(A), where 𝒴(A)\mathcal{Y}(A) is characterized as the image of AA under the Yoneda embedding into 𝖥𝗎𝗇A(Aop,𝐤𝖬𝗈𝖽)\mathsf{Fun}_{A_{\infty}}(A^{\operatorname{op}},\mathbf{k}\mathsf{Mod}), and this functor is invertible up to natural equivalence.181818See Corollary A.9 of [25] and the references there. Because 𝒴(A)\mathcal{Y}(A) is a dg-category, it admits a cofibrant resolution A~𝒴(A)\tilde{A}\to\mathcal{Y}(A) in the model category of dg-categories. Because the maps dgCat𝔸str𝔸dgCat\to{\mathbb{A}}_{\infty}^{\operatorname{str}}\to{\mathbb{A}}_{\infty} induce equivalences191919Combine Theorem B of [3] and our Theorem 1.1. upon localizing along quasi-equivalences, the induced functor i:𝒞atdg𝒞atAi:\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}} is an equivalence of \infty-categories. It follows that A~\tilde{A} and A~\tilde{A^{\prime}} are abstractly isomorphic in ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}. On the other hand, both of these dg-categories are cofibrant (and every object of dgCatdgCat is fibrant), so by the equivalence of (1) and (3) in Section 3.10, we conclude that there are morphisms in

homdgCat(A~,A~)andhomdgCat(A~,A~)\hom_{dgCat}(\tilde{A},\tilde{A^{\prime}})\qquad\text{and}\qquad\hom_{dgCat}(\tilde{A^{\prime}},\tilde{A})

which descend to be mutually inverse isomorphisms in the homotopy category ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}. Pushing forward these morphisms along ii, we obtain the middle \leftrightarrow in the following collection of quasi-equivalences of AA_{\infty}-categories:

A𝒴(A)A~A~𝒴(A)A.A\leftrightarrow\mathcal{Y}(A)\leftarrow\tilde{A}\leftrightarrow\tilde{A^{\prime}}\to\mathcal{Y}(A^{\prime})\leftrightarrow A^{\prime}.

Here, \leftrightarrow denotes two quasi-equivalences that are mutually inverse up to natural equivalence. On the other hand, because A~\tilde{A} and AA both have homotopically projective morphism complexes, the composite quasi-equivalence AA~A\leftarrow\tilde{A} admits a homotopy inverse up to natural equivalence (Proposition 3.45). By composing the obvious arrows, one obtains a quasi-equivalence from AA to AA^{\prime}. This admits an inverse up to natural equivalences because both AA and AA^{\prime} have homotopically projective morphism complexes (Proposition 3.45 again). Noting that if a functor between unital AA_{\infty}-categories admits an inverse up to natural equivalence, it is automatic that the functor is unital (Corollary 8.9 of [24]), the claim is proven.

3.12 Computations of internal homs

Proof of Theorem 3.34.

We have seen that 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} is closed symmetric monoidal (Section 3.7). It follows that the homotopy category ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg} is closed symmetric monoidal, due to the natural bijections

homho𝒞atdg(C𝒞atdgD,E)\displaystyle\hom_{\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}}(C\otimes_{\mathcal{C}\!\operatorname{at}_{dg}}D,E) =π0hom𝒞atdg(C𝒞atdgD,E)\displaystyle=\pi_{0}\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(C\otimes_{\mathcal{C}\!\operatorname{at}_{dg}}D,E)
π0hom𝒞atdg(D,hom¯(C,E))\displaystyle\cong\pi_{0}\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(D,\underline{\hom}(C,E))
=homho𝒞atdg(D,hom¯(C,E))\displaystyle=\hom_{\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg}}(D,\underline{\hom}(C,E))

induced by (37).

On the other hand, we have already verified in Proposition 3.29 that – at the level of homotopy categories – the assignment (C,D)C𝒞atdgD(C,D)\mapsto C\otimes_{\mathcal{C}\!\operatorname{at}_{dg}}D is naturally isomorphic to the assignment (C,D)Q(C)D(C,D)\mapsto Q(C)\otimes D, where \otimes is the usual tensor product on the 1-category of dg-categories. Thus, hom¯(C,E)\underline{\hom}(C,E) is naturally isomorphic in ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg} to any dg-category HC,EH_{C,E} exhibiting the closedness of ho𝒞atdg\operatorname{ho}\mathcal{C}\!\operatorname{at}_{dg} under the monoidal structure (A,B)Q(A)B(A,B)\mapsto Q(A)\otimes B.

(a)(b)\eqref{item. internal hom in dgcat}\simeq\eqref{item. internal hom in dgcat rqr cofib modules}. One such HC,EH_{C,E} is identified by Toën (and improved upon) by Canonaco-Stellari: The dg-category of cofibrant (or, more generally, homotopically projective) quasi right representable modules over Aop𝕃BA^{\operatorname{op}}\otimes^{\mathbb{L}}B. (See Theorem 6.1 of [38] and Theorem 1.1 of [4].)

(a)(c)\eqref{item. internal hom in dgcat}\simeq\eqref{item. internal hom in dgcat unital cofibrant Aoo functors}. Another HC,EH_{C,E} is identified by Canonaco-Ornaghi-Stellari [3] as the dg-category of unital AA_{\infty}-functors from a homotopically projective replacement AA^{\prime} of AA, to BB (Theorem C of [3]).

(c)(d)\eqref{item. internal hom in dgcat unital cofibrant Aoo functors}\simeq\eqref{item. internal hom unital projective A'}. By Proposition 3.47, there exists a functor of AA_{\infty}-categories AA′′A^{\prime}\to A^{\prime\prime} admitting an inverse up to natural equivalence. By Proposition 3.46, this yields a functor admitting an inverse up to natural equivalence 𝖥𝗎𝗇A(A,B)𝖥𝗎𝗇A(A′′,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)\simeq\mathsf{Fun}_{A_{\infty}}(A^{\prime\prime},B). Because these functor AA_{\infty}-categories are dg-categories, we may identify them as in the images of the equivalence i:𝒞atdg𝒞atAi:\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}. Because ii is an equivalence of \infty-categories, we conclude that these functor dg-categories are equivalent in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} as well.

(c)(e)\eqref{item. internal hom in dgcat unital cofibrant Aoo functors}\simeq\eqref{item. internal hom in dgcat strictly unital split unit Aoo functors}. The natural functor of dg-categories from 𝖥𝗎𝗇Astr(A,B)\mathsf{Fun}_{A_{\infty}}^{\operatorname{str}}(A^{\prime},B) to 𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B) is an equivalence if AA^{\prime} is a dg-category with homotopically projective morphism complexes and split units (Remark 5.3 of [3]).

(d)(f)\eqref{item. internal hom unital projective A'}\simeq\eqref{item. internal hom unital projective split units A'}. It suffices to prove that when A′′A^{\prime\prime} is strictly unital, then the inclusion 𝖥𝗎𝗇Astr(A′′,B)𝖥𝗎𝗇A(A′′,B)\mathsf{Fun}_{A_{\infty}^{\operatorname{str}}}(A^{\prime\prime},B)\to\mathsf{Fun}_{A_{\infty}}(A^{\prime\prime},B) of strictly unital functors into unital functors is an equivalence of AA_{\infty}-categories. The inclusion is fully faithful by definition, so it remains to prove that any unital AA_{\infty}-functor is homotopic to a strictly unital one. This is Lemma 4.2 of [3].

Proof of Theorem 3.36.

(a)(b)\eqref{item. internal hom in Aoocat}\simeq\eqref{item. Aoo internal hom unital projective A'}. Let AAA^{\prime}\to A be a quasi-equivalence from a unital AA_{\infty}-category with homotopically projective morphism complexes. This induces an isomorphism of internal hom objects

hom¯𝒞atA(A,B)hom¯𝒞atA(A,B)ho𝒞atA.\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A,B)\cong\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B)\in\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

Choose AA_{\infty}-functors A𝒴(A),B𝒴(B)A^{\prime}\to\mathcal{Y}(A^{\prime}),B\to\mathcal{Y}(B) to dg-categories, admitting an inverse up to natural equivalence. (For example, by choosing the image of the Yoneda embedding as in the proof of Proposition 3.47.) We obtain another isomorphism of internal hom objects

hom¯𝒞atA(A,B)hom¯𝒞atA(𝒴(A),𝒴(B))ho𝒞atA.\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B)\cong\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(\mathcal{Y}(A^{\prime}),\mathcal{Y}(B))\in\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

On the other hand, because we have employed the symmetric monoidal structure on 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}} induced by the equivalence i:𝒞atdg𝒞atAi:\mathcal{C}\!\operatorname{at}_{dg}\to\mathcal{C}\!\operatorname{at}_{A_{\infty}}, we have an isomorphism between the internal hom object in 𝒞atdg\mathcal{C}\!\operatorname{at}_{dg} and the internal hom object in 𝒞atA\mathcal{C}\!\operatorname{at}_{A_{\infty}}:

hom¯𝒞atA(𝒴(A),𝒴(B))i(hom¯𝒞atdg(𝒴(A),𝒴(B)))ho𝒞atA.\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(\mathcal{Y}(A^{\prime}),\mathcal{Y}(B))\cong i(\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{dg}}(\mathcal{Y}(A^{\prime}),\mathcal{Y}(B)))\in\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

Now one may choose a homotopically projective replacement of dg-categories A~𝒴(A)\tilde{A^{\prime}}\to\mathcal{Y}(A^{\prime}) and invoke Theorem 3.34(c) to conclude that

i(hom¯𝒞atdg(𝒴(A),𝒴(B)))i(𝖥𝗎𝗇𝔸(A~,𝒴(B)))=𝖥𝗎𝗇𝔸(A~,𝒴(B)))ho𝒞atA.i(\underline{\hom}_{\mathcal{C}\!\operatorname{at}_{dg}}(\mathcal{Y}(A^{\prime}),\mathcal{Y}(B)))\cong i(\mathsf{Fun}_{{\mathbb{A}}_{\infty}}(\tilde{A^{\prime}},\mathcal{Y}(B)))=\mathsf{Fun}_{{\mathbb{A}}_{\infty}}(\tilde{A^{\prime}},\mathcal{Y}(B)))\in\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}.

To finish the proof, consider the homotopy inverse map 𝒴(A)A\mathcal{Y}(A^{\prime})\to A^{\prime} to the Yoneda equivalence, so that the composition A~𝒴(A)A\tilde{A^{\prime}}\to\mathcal{Y}(A^{\prime})\to A^{\prime} is a quasi-equivalence. Because both A~\tilde{A^{\prime}} and AA^{\prime} have homotopically projective mapping complexes, the quasi-equivalence A~A\tilde{A^{\prime}}\to A^{\prime} admits an inverse up to natural equivalence (Proposition 3.45.) Thus the functor categories out of A~\tilde{A^{\prime}} and out of AA^{\prime} are equivalent as AA_{\infty}-categories (Proposition 3.46). So we conclude

𝖥𝗎𝗇𝔸(A~,𝒴(B)))𝖥𝗎𝗇𝔸(A,𝒴(B)))𝖥𝗎𝗇𝔸(A,B)ho𝒞atA\mathsf{Fun}_{{\mathbb{A}}_{\infty}}(\tilde{A^{\prime}},\mathcal{Y}(B)))\cong\mathsf{Fun}_{{\mathbb{A}}_{\infty}}(A^{\prime},\mathcal{Y}(B)))\cong\mathsf{Fun}_{{\mathbb{A}}_{\infty}}(A^{\prime},B)\in\operatorname{ho}\mathcal{C}\!\operatorname{at}_{A_{\infty}}

where the last isomorphism follows because 𝒴(B)B\mathcal{Y}(B)\to B is a functor invertible up to natural equivalence. We are finished by tracing through the above isomorphisms.

(a)(c)\eqref{item. internal hom in Aoocat}\simeq\eqref{item. Aoo internal hom unital projective split units A'}. The proof is identical to that of the case (d)(f)\eqref{item. internal hom unital projective A'}\simeq\eqref{item. internal hom unital projective split units A'} in Theorem 3.34.

Proof of Theorem 3.35 and Theorem 3.37..

By setting DD to equal the unit dg-category 𝐤[0]\mathbf{k}\otimes[0], we have natural homotopy equivalences of Kan complexes

hom𝒞atdg(C,E)\displaystyle\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(C,E) hom𝒞atdg(C𝒞atdgD,E)\displaystyle\simeq\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(C\otimes_{\mathcal{C}\!\operatorname{at}_{dg}}D,E)
hom𝒞atdg(D,hom¯(C,E))\displaystyle\simeq\hom_{\mathcal{C}\!\operatorname{at}_{dg}}(D,\underline{\hom}(C,E))
hom𝒞at(Δ0,Nhom¯(C,E)))\displaystyle\simeq\hom_{\mathcal{C}\!\operatorname{at}_{\infty}}(\Delta^{0},N\underline{\hom}(C,E)))
N(hom¯(C,E)).\displaystyle\simeq N(\underline{\hom}(C,E))^{\sim}.

Because the dg-nerve NN is a right Quillen functor, it respects quasi-equivalences among fibrant objects – hence, among all objects (all objects are fibrant in the Tabuada model structure; see Proposition 2.3(1) of [38]). So the above homotopy type is determined by the quasi-equivalence class of hom¯(C,E)\underline{\hom}(C,E). This proves Theorem 3.35.

For the AA_{\infty}-case (Theorem 3.37), we can write a similar proof by utilizing Proposition 3.41. ∎

3.13 Proof of Corollary 1.12

Proof.

By Theorem 3.37 we have a homotopy equivalence

hom𝒞atA(A,B)N(𝖥𝗎𝗇A(A,B))\hom_{\mathcal{C}\!\operatorname{at}_{A_{\infty}}}(A^{\prime},B)\simeq N(\mathsf{Fun}_{A_{\infty}}(A^{\prime},B))^{\sim}

and in particular an induced bijection on π0\pi_{0} of both sides. By definition of the underlying \infty-groupoid XX^{\sim} of an \infty-category XX, π0(X)\pi_{0}(X^{\sim}) is computed by relating any two vertices of XX when they are related by an equivalence in XX. When XX is the nerve of 𝖥𝗎𝗇A(A,B)\mathsf{Fun}_{A_{\infty}}(A^{\prime},B), two functors f,g:ABf,g:A^{\prime}\to B are related if and only if there exists a natural equivalence from ff to gg – i.e., if and only if ff and gg are isomorphic in the cohomology category H0(𝖥𝗎𝗇A(A,B))H^{0}(\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)). This shows the first claim.

When ff and gg are isomorphic in H0𝖥𝗎𝗇A(A,B)H^{0}\mathsf{Fun}_{A_{\infty}}(A^{\prime},B), one has a homotopy equivalence of chain complexes

hom𝖥𝗎𝗇A(A,B)(f,g)hom𝖥𝗎𝗇A(A,B)(f,f).\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,g)\simeq\hom_{\mathsf{Fun}_{A_{\infty}}(A^{\prime},B)}(f,f).

So the rest of the claims are reduced to the case f=gf=g.

We recall some generalities on the AA_{\infty}-nerve. First, if CC is an AA_{\infty}-category, the space homN(C)(x,x)\hom_{N(C)}(x,x) is homotopy equivalent to the Dold-Kan construction applied to the chain complex homC(x,x)\hom_{C}(x,x). See for example Proposition 2.3.12 of [36]. Further, morphisms fhomC0(x,x)f\in\hom^{0}_{C}(x,x) that are invertible up to homotopy are sent to edges xxx\to x in N(C)N(C) that are homotopy invertible. On the other hand, homotopy classes of such homotopy-invertible edges is one model for π1(N(C),x)\pi_{1}(N(C)^{\sim},x). So we find that

π1(N(C),x)H0(homC(x,x))×.\pi_{1}(N(C)^{\sim},x)\cong H^{0}(\hom_{C}(x,x))^{\times}.

Finally, going back to the fact that the Dold-Kan construction applied to homC(x,x)\hom_{C}(x,x) is homotopy equivalent to homN(C)(x,x)\hom_{N(C)}(x,x), and noting that the homotopy groups of the latter are isomorphic to those of homN(C)(x,x)\hom_{N(C)^{\sim}}(x,x), we find isomorphisms

πihomN(C)(x,x)HihomC(x,x),i1\pi_{i}\hom_{N(C)^{\sim}}(x,x)\cong H^{-i}\hom_{C}(x,x),\qquad i\geq 1

For any \infty-category 𝒞\mathcal{C}, the space hom𝒞(x,x)\hom_{\mathcal{C}}(x,x) is homotopy equivalent to the based loop space of 𝒞\mathcal{C}^{\sim} based at xx, so we find

πi+1N(C)(x,x)HihomC(x,x).\pi_{i+1}N(C)^{\sim}(x,x)\cong H^{-i}\hom_{C}(x,x).

The claims of the Corollary follow by taking C=𝖥𝗎𝗇A(A,B)C=\mathsf{Fun}_{A_{\infty}}(A,B). ∎

3.14 Proof of Corollary 1.13

Proof.

This is immediate from Corollary 1.12 by taking B=AB=A^{\prime} and f=g=idAf=g=\operatorname{id}_{A^{\prime}}. ∎

4 Appendix: Alternate proof of Lemma 2.27

Here we provide an alternate proof of Lemma 2.27 through explicit computation.

4.1 The ideal 𝕀\mathbb{I}

Fix an AA_{\infty}-category AA. Recall that an AA_{\infty}-ideal II of AA is a collection of graded 𝐤\mathbf{k}-modules

I(X,Y)homA(X,Y),X,YobAI(X,Y)\subset\hom_{A}(X,Y),\qquad X,Y\in\operatorname{ob}A

such that for all k1k\geq 1, mk(𝐱k,,𝐱1)m^{k}(\mathbf{x}_{k},\ldots,\mathbf{x}_{1}) is an element of II whenever at least one of 𝐱i\mathbf{x}_{i} is in II. One may then define the quotient AA_{\infty}-category A/IA/I to have the same objects as AA, with morphism complexes

homA/I(X,Y):=homA(X,Y)/I(X,Y)\hom_{A/I}(X,Y):=\hom_{A}(X,Y)/I(X,Y)

with AA_{\infty}-operations induced by those of AA. Given a collection of morphisms KK of AA, the AA_{\infty}-ideal generated by KK is the smallest AA_{\infty}-ideal containing KK.

Notation 4.1 (𝕀\mathbb{I}).

Let AA be a strictly unital AA_{\infty}-category. For every object XobAX\in\operatorname{ob}A, let uXu_{X} denote the strict unit of XX. Consider the AA_{\infty}-category A+[idA1]A^{+}[\operatorname{id}_{A}^{-1}], and let 1XhomA+(X,X)1_{X}\in\hom_{A^{+}}(X,X) denote the augmentation unit of XX. We let 𝕀\mathbb{I} denote the AA_{\infty}-ideal inside A+[idA1]A^{+}[\operatorname{id}_{A}^{-1}] generated by the elements

1XuXhomA+(X,X)homA+[idA1](X,X)XobA.1_{X}-u_{X}\in\hom_{A^{+}}(X,X)\subset\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,X)\qquad X\in\operatorname{ob}A.

In general it is difficult to concretely describe the ideal generated by a collection of elements. 𝕀\mathbb{I} admits a tractable description:

Proposition 4.2.

For every pair of objects X,YobAX,Y\in\operatorname{ob}A, the complex 𝕀(X,Y)\mathbb{I}(X,Y) is – as a graded 𝐤\mathbf{k}-module – spanned by:

  • elements of length 11 that are scalar multiples of 1XuX1_{X}-u_{X} when X=YX=Y. (When XYX\neq Y, the length-1 filtered piece of 𝕀(X,Y)\mathbb{I}(X,Y) is zero.)

  • elements of length l2l\geq 2 of the form

    𝐱l||𝐱i+1|𝐰|𝐱i1||𝐱1,1il,\mathbf{x}_{l}|\ldots|\mathbf{x}_{i+1}|\mathbf{w}|\mathbf{x}_{i-1}|\ldots|\mathbf{x}_{1},\qquad 1\leq i\leq l, (43)

    where 𝐰\mathbf{w} is some 𝐤\mathbf{k}-linear combination of

    a(1XuX),b(1XuX),c(1XuX),andd(1XuX).a\otimes(1_{X}-u_{X}),\qquad b\otimes(1_{X}-u_{X}),\qquad c\otimes(1_{X}-u_{X}),\qquad\text{and}\qquad d\otimes(1_{X}-u_{X}).

    Here, we are invoking the notation from (8) and (9). When i=1i=1, 𝐰\mathbf{w} of course contains no bb and no dd terms. Likewise when i=li=l, 𝐰\mathbf{w} contains no cc and no dd terms.

Proof.

Let 𝕁(X,Y)\mathbb{J}(X,Y) denote the graded 𝐤\mathbf{k}-module spanned by the elements described in the Proposition. We will first show that 𝕁(X,Y)𝕀(X,Y)\mathbb{J}(X,Y)\subset\mathbb{I}(X,Y).

Fix WobAW\in\operatorname{ob}A and a unit ehomA(W,W)e\in\hom_{A}(W,W). Let us compute mA+[idA1]2m^{2}_{A^{+}[\operatorname{id}_{A}^{-1}]} along the subcomplex

(hom𝖳𝗐A+(Cone(e),Y)|hom𝖳𝗐A+(X,Cone(e)))\displaystyle\left(\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e),Y)|\hom_{\mathsf{Tw}A^{+}}(X,\operatorname{Cone}(e))\right) homA+(X,X)\displaystyle\bigotimes\hom_{A^{+}}(X,X)
homA+[idA1](X,Y)\displaystyle\subset\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y) homA+[idA1](X,X).\displaystyle\bigotimes\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,X).

We have by definition (24) that

mA+[idA1]2(𝐱2|𝐱1(1XuX))\displaystyle m^{2}_{A^{+}[\operatorname{id}_{A}^{-1}]}\left(\mathbf{x}_{2}|\mathbf{x}_{1}\bigotimes(1_{X}-u_{X})\right) =m𝖳𝗐A+3(𝐱2𝐱1(1XuX))\displaystyle=m^{3}_{\mathsf{Tw}A^{+}}(\mathbf{x}_{2}\otimes\mathbf{x}_{1}\otimes(1_{X}-u_{X}))
±𝐱2|m𝖳𝗐A+2(𝐱1(1XuX))\displaystyle\qquad\pm\mathbf{x}_{2}|m^{2}_{\mathsf{Tw}A^{+}}(\mathbf{x}_{1}\otimes(1_{X}-u_{X}))
=±𝐱2|m𝖳𝗐A+2(𝐱1(1XuX))\displaystyle=\pm\mathbf{x}_{2}|m^{2}_{\mathsf{Tw}A^{+}}(\mathbf{x}_{1}\otimes(1_{X}-u_{X}))

where the m3m^{3} term vanishes because 1X1_{X} and uXu_{X} are strict units (in A+A^{+} and in AA, respectively). Now, using the notation from (8) and (9), let us write

𝐱1=ap1+cq1.\mathbf{x}_{1}=a\otimes p_{1}+c\otimes q_{1}.

Then

m𝖳𝗐A+2(𝐱1(1XuX))=amA+2(p1(1XuX))±cmA+2(q1(1XuX)).m^{2}_{\mathsf{Tw}A^{+}}(\mathbf{x}_{1}\otimes(1_{X}-u_{X}))=a\otimes m^{2}_{A^{+}}(p_{1}\otimes(1_{X}-u_{X}))\pm c\otimes m^{2}_{A^{+}}(q_{1}\otimes(1_{X}-u_{X})).

(We note that the higher mkm^{k} terms in the definition of m𝖳𝗐A+2m^{2}_{\mathsf{Tw}A^{+}} again vanish because 1X,uX1_{X},u_{X} are strict units.) We see that this element is zero unless W=XW=X; and even then, it is only sensitive to the 1X1_{X} components of p1p_{1} and of q1q_{1}. In particular, m𝖳𝗐A+2(𝐱1(1XuX))m^{2}_{\mathsf{Tw}A^{+}}(\mathbf{x}_{1}\otimes(1_{X}-u_{X})) is a linear combination of terms of the form

a(1XuX)andc(1XuX).a\otimes(1_{X}-u_{X})\qquad\text{and}\qquad c\otimes(1_{X}-u_{X}). (44)

We conclude that mA+[idA1]2(𝐱2|𝐱1(1XuX))m^{2}_{A^{+}[\operatorname{id}_{A}^{-1}]}\left(\mathbf{x}_{2}|\mathbf{x}_{1}\bigotimes(1_{X}-u_{X})\right) is a linear combination of words of the form

𝐱2|(a(1XuX))and𝐱2|(c(1XuX)).\mathbf{x}_{2}|(a\otimes(1_{X}-u_{X}))\qquad\text{and}\qquad\mathbf{x}_{2}|(c\otimes(1_{X}-u_{X})).

A similar argument computing mA+[idA1]2m^{2}_{A^{+}[\operatorname{id}_{A}^{-1}]} along

homA+(X,X)(hom𝖳𝗐A+(Cone(e),X)|hom𝖳𝗐A+(Y,Cone(e)))\hom_{A^{+}}(X,X)\bigotimes\left(\hom_{\mathsf{Tw}A^{+}}(\operatorname{Cone}(e),X)|\hom_{\mathsf{Tw}A^{+}}(Y,\operatorname{Cone}(e))\right)

shows that 𝕀\mathbb{I} also contains words of length 2 of the form

(a(1XuX))|𝐱1and(b(1XuX))|𝐱1.(a\otimes(1_{X}-u_{X}))|\mathbf{x}_{1}\qquad\text{and}\qquad(b\otimes(1_{X}-u_{X}))|\mathbf{x}_{1}.

Now note that when computing mA+[idA1]km^{k}_{A^{+}[\operatorname{id}_{A}^{-1}]}, any m𝖳𝗐A+km^{k}_{\mathsf{Tw}A^{+}} terms containing a 1XuX1_{X}-u_{X} factor vanishes. Thus, by repeating the above arguments and noting that cb=dcb=d, we conclude that any element of 𝕁(X,Y)\mathbb{J}(X,Y) can be written as a linear combination of elements obtained by successively applying AA_{\infty}-operations to elements of the form 1XuX1_{X}-u_{X}. Thus 𝕁(X,Y)𝕀(X,Y).\mathbb{J}(X,Y)\subset\mathbb{I}(X,Y).

It now suffices to show that 𝕁(X,Y)\mathbb{J}(X,Y) is an AA_{\infty}-ideal. So fix objects X(0),,X(N)obAX^{(0)},\ldots,X^{(N)}\in\operatorname{ob}A and an element of the form

𝐱(N)𝐱(1)homA+[idA1](X(N1),X(N))homA+[idA1](X(0),X(1))\mathbf{x}^{(N)}\otimes\ldots\otimes\mathbf{x}^{(1)}\in\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X^{(N-1)},X^{(N)})\otimes\ldots\otimes\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X^{(0)},X^{(1)})

where we assume each 𝐱(j)\mathbf{x}^{(j)} is a single word of length ljl_{j}:

𝐱(j)=𝐱lj(j)||𝐱1(j)hom𝖳𝗐A+(Clj1(j),X(j))||hom𝖳𝗐A+(X(j1),C1(j)).\mathbf{x}^{(j)}=\mathbf{x}^{(j)}_{l_{j}}|\ldots|\mathbf{x}^{(j)}_{1}\in\hom_{\mathsf{Tw}A^{+}}(C^{(j)}_{l_{j}-1},X^{(j)})|\ldots|\hom_{\mathsf{Tw}A^{+}}(X^{(j-1)},C^{(j)}_{1}).

Here, for each 1klj1\leq k\leq l_{j}, we have Ck(j)=Cone(ek(j))C^{(j)}_{k}=\operatorname{Cone}(e^{(j)}_{k}) for some unit ek(j)homA(Wk(j),Wk(j))e^{(j)}_{k}\in\hom_{A}(W^{(j)}_{k},W^{(j)}_{k}). We claim: If for some iNi\leq N, 𝐱i𝕁(X(i1),X(i))\mathbf{x}^{i}\in\mathbb{J}(X^{(i-1)},X^{(i)}), then

mA+[idA1]N(𝐱(N)𝐱(1))𝕁(X(0),X(N)).m^{N}_{A^{+}[\operatorname{id}_{A}^{-1}]}(\mathbf{x}^{(N)}\otimes\ldots\otimes\mathbf{x}^{(1)})\in\mathbb{J}(X^{(0)},X^{(N)}).

Writing mA+[idA1]Nm^{N}_{A^{+}[\operatorname{id}_{A}^{-1}]} as the summation in (24), it suffices to check that the four terms

m𝖳𝗐A+β(,a(1XuX),),m𝖳𝗐A+β(,b(1XuX),),m^{\beta}_{\mathsf{Tw}A^{+}}(\ldots,a\otimes(1_{X}-u_{X}),\ldots),\qquad m^{\beta}_{\mathsf{Tw}A^{+}}(\ldots,b\otimes(1_{X}-u_{X}),\ldots),
m𝖳𝗐A+β(,c(1XuX),),m𝖳𝗐A+β(,d(1XuX),)m^{\beta}_{\mathsf{Tw}A^{+}}(\ldots,c\otimes(1_{X}-u_{X}),\ldots),\qquad m^{\beta}_{\mathsf{Tw}A^{+}}(\ldots,d\otimes(1_{X}-u_{X}),\ldots)

are all elements of 𝕁\mathbb{J}. When β3\beta\geq 3, this is obvious because the above terms vanish: 1X1_{X} and uXu_{X} are strict units (in A+A^{+} and in AA, respectively). When β=2\beta=2, the claim follows by repeating the computations surrounding (44).

We are left only to check that 𝕁\mathbb{J} is closed under mA+[idA1]1m^{1}_{A^{+}[\operatorname{id}_{A}^{-1}]}. This follows by noting that (i) mA+1(1X)=0m^{1}_{A^{+}}(1_{X})=0 and mA+1(uX)=0m^{1}_{A^{+}}(u_{X})=0, and (ii) For any morphism ff in AA (and in particular, for any unit in AA) we have:

mA+2(f,1XuX)=ff=0\displaystyle m^{2}_{A^{+}}(f,1_{X}-u_{X})=f-f=0
mA+2(1XuX,f)=ff=0\displaystyle m^{2}_{A^{+}}(1_{X}-u_{X},f)=f-f=0
mA+3(1XuX,f,1XuX)=0.\displaystyle m^{3}_{A^{+}}(1_{X}-u_{X},f,1_{X}-u_{X})=0.

In particular, m𝖳𝗐A+1(z(1XuX))=0m^{1}_{\mathsf{Tw}A^{+}}(z\otimes(1_{X}-u_{X}))=0 when zz equals any of a,b,c,da,b,c,d. ∎

4.2 A left inverse

Suppose that AA and BB are strictly unital. Then any strictly unital functor f:ABf:A\to B respects strict units, so the induced functor A+[idA1]B+[idB1]A^{+}[\operatorname{id}_{A}^{-1}]\to B^{+}[\operatorname{id}_{B}^{-1}] respects the AA_{\infty}-ideals 𝕀A\mathbb{I}_{A} and 𝕀B\mathbb{I}_{B} defined in Notation 4.1. In particular, the construction AA+[idA1]/𝕀AA\mapsto A^{+}[\operatorname{id}_{A}^{-1}]/\mathbb{I}_{A} is a functor from 𝔸str{\mathbb{A}}_{\infty}^{\operatorname{str}} to itself.

Notation 4.3.

τ/𝕀\tau_{/\mathbb{I}} denotes the functor (in the classical sense)

τ/𝕀:𝔸str𝔸str,AA+[idA1]/𝕀.\tau_{/\mathbb{I}}:{\mathbb{A}}_{\infty}^{\operatorname{str}}\to{\mathbb{A}}_{\infty}^{\operatorname{str}},\qquad A\mapsto A^{+}[\operatorname{id}_{A}^{-1}]/\mathbb{I}.
Remark 4.4.

For any strictly unital functor f:ABf:A\to B, the induced diagram

A+[idA1]\textstyle{A^{+}[\operatorname{id}_{A}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B+[idB1]\textstyle{B^{+}[\operatorname{id}_{B}^{-1}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A+[idA1]/𝕀A\textstyle{A^{+}[\operatorname{id}_{A}^{-1}]/\mathbb{I}_{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B+[idB1]/𝕀B\textstyle{B^{+}[\operatorname{id}_{B}^{-1}]/\mathbb{I}_{B}} (45)

commutes. Note all arrows above are strictly unital functors. So we have witnessed a natural transformation

τjτ/𝕀.\tau\circ j\to\tau_{/\mathbb{I}}.
Lemma 4.5.

For any strictly unital AA, every map in the composition

AA[idA1]A+[idA1]A+[idA1]/𝕀A\to A[\operatorname{id}_{A}^{-1}]\to A^{+}[\operatorname{id}_{A}^{-1}]\to A^{+}[\operatorname{id}_{A}^{-1}]/\mathbb{I}

is a quasi-equivalence of AA_{\infty}-categories.

Proof.

Each map is a bijection on objects so it suffices to show that each map induces a quasi-isomorphism on all hom complexes.

Fix two objects X,YobAX,Y\in\operatorname{ob}A. Let

Fl+homA+[idA1](X,Y)andFlhomA[idA1](X,Y)F^{+}_{\leq l}\subset\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y)\qquad\text{and}\qquad F_{\leq l}\subset\hom_{A[\operatorname{id}_{A}^{-1}]}(X,Y)

denote the subcomplexes of words of length l\leq l. We let

GlhomA+[idA1](X,Y)/𝕀(X,Y)G_{\leq l}\subset\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y)/\mathbb{I}(X,Y)

denote the image of Fl+F^{+}_{\leq l} in the quotient. Then for each l1l\geq 1, the associated graded complex Gl/Gl1G_{\leq l}/G_{\leq l-1} is identified with the complex Fl/Fl1F_{\leq l}/F_{\leq l-1}. (This is a consequence of Proposition 4.2.)

On the other hand, for l2l\geq 2, the llth associated graded piece of FF_{\leq\bullet} is a direct sum of contractible chain complexes. After all, the summand

hom𝖳𝗐A(Cl1,Y)|hom𝖳𝗐A(Cl2,Cl1)||hom𝖳𝗐A(X,C1)\hom_{\mathsf{Tw}A}(C_{l-1},Y)|\hom_{\mathsf{Tw}A}(C_{l-2},C_{l-1})|\ldots|\hom_{\mathsf{Tw}A}(X,C_{1})

associated to a choice of units e1,,el1e_{1},\ldots,e_{l-1}, is a mapping cone of a morphism of the form

±m2(,el1)|id||id.\pm m^{2}(-,e_{l-1})|\operatorname{id}|\ldots|\operatorname{id}.

(See Example 2.11.) By definition of units, m2(,el1)|id||idm^{2}(-,e_{l-1})|\operatorname{id}|\ldots|\operatorname{id} is a homotopy-invertible chain map, so the summand is contractible. (We used a similar argument in the proof of Lemma 2.17.)

And of course, F1F_{\leq 1} is precisely homA(X,Y)\hom_{A}(X,Y). We conclude that each of the maps

homA(X,Y)homA[idA1](X,Y)homA+[idA1](X,Y)/𝕀(X,Y)\hom_{A}(X,Y)\to\hom_{A[\operatorname{id}_{A}^{-1}]}(X,Y)\to\hom_{A^{+}[\operatorname{id}_{A}^{-1}]}(X,Y)/\mathbb{I}(X,Y)

are quasi-isomorphisms. By applying Lemma 2.17, the result follows. ∎

Remark 4.6.

Though the natural inclusion AA+[idA1]A\to A^{+}[\operatorname{id}_{A}^{-1}] is not a strictly unital functor, if we compose with the quotient map, the result

AA+[idA1]/𝕀A\to A^{+}[\operatorname{id}_{A}^{-1}]/\mathbb{I} (46)

is strictly unital. We see (46) is natural in the AA variable by combining (25) and (45).

Alternate proof of Lemma 2.27..

We have natural transformations of functors (in the classical sense)

id𝔸str(46)τ/𝕀Remark 4.4τj.\operatorname{id}_{{\mathbb{A}}_{\infty}^{\operatorname{str}}}\xrightarrow{\eqref{eqn. A to mod I}}\tau_{/\mathbb{I}}\xleftarrow{\text{Remark\leavevmode\nobreak\ \ref{remark. nat trans tau to tau mod I}}}\tau\circ j. (47)

The naturality of (46) – along with the two-out-of-three property for quasi-equivalences – shows that τ/𝕀\tau_{/\mathbb{I}} respects quasi-equivalences, so induces an endofunctor of 𝔸str[𝐰1]{\mathbb{A}}_{\infty}^{\operatorname{str}}[\mathbf{w}^{-1}]. By Lemma 4.5 and Proposition 2.3, the natural transformations induced by (47) are natural equivalences upon localizing along 𝐰\mathbf{w}.

Thus, the functor induced by τj\tau\circ j is naturally equivalent to the identity functor, and this exhibits the functor induced by τ\tau as a left inverse to the functor induced by jj. ∎

References

  • [1] Yu. Bespalov, V. Lyubashenko, and O. Manzyuk. Pretriangulated AA_{\infty}-categories. Kyïv: Instytut Matematyky NAN Ukraïny, 2008.
  • [2] Alberto Canonaco, Mattia Ornaghi, and Paolo Stellari. Localizations of the category of AA_{\infty} categories and internal Homs. Doc. Math., 24:2463–2492, 2019.
  • [3] Alberto Canonaco, Mattia Ornaghi, and Paolo Stellari. Localizations of the category of A{A}_{\infty} categories and internal Homs over a ring, 2024. arXiv:2404.06610.
  • [4] Alberto Canonaco and Paolo Stellari. Internal homs via extensions of dg functors. Adv. Math., 277:100–123, 2015.
  • [5] Vladimir Drinfeld. DG quotients of DG categories. J. Algebra, 272(2):643–691, 2004.
  • [6] W. G. Dwyer and D. M. Kan. Calculating simplicial localizations. J. Pure Appl. Algebra, 18:17–35, 1980.
  • [7] W. G. Dwyer and J. Spalinski. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. Amsterdam: North-Holland, 1995.
  • [8] Giovanni Faonte. A{A}_{\infty} functors and homotopy theory of dg-categories. Journal of Noncommutative Geometry, 11(3):957–1001, 2017.
  • [9] Giovanni Faonte. Simplicial nerve of an 𝒜\mathcal{A}_{\infty}-category. Theory Appl. Categ., 32:31–52, 2017.
  • [10] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory., volume 35 of Ergeb. Math. Grenzgeb. Springer-Verlag, Berlin, 1967.
  • [11] Sheel Ganatra, John Pardon, and Vivek Shende. Covariantly functorial wrapped Floer theory on Liouville sectors. Publ. Math., Inst. Hautes Étud. Sci., 131:73–200, 2020.
  • [12] Sheel Ganatra, John Pardon, and Vivek Shende. Sectorial descent for wrapped Fukaya categories. J. Am. Math. Soc., 37(2):499–635, 2024.
  • [13] David Gepner and Rune Haugseng. Enriched \infty-categories via non-symmetric \infty-operads. Adv. Math., 279:575–716, 2015.
  • [14] Ezra Getzler and John D. S. Jones. A-algebras and the cyclic bar complex. Ill. J. Math., 34(2):256–283, 1990.
  • [15] Rune Haugseng. Rectification of enriched \infty-categories. Algebr. Geom. Topol., 15(4):1931–1982, 2015.
  • [16] Vladimir Hinich. Dwyer-Kan localization revisited. Homology Homotopy Appl., 18(1):27–48, 2016.
  • [17] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
  • [18] Bernhard Keller. Introduction to AA-infinity algebras and modules. Homology Homotopy Appl., 3(1):1–35, 2001.
  • [19] Henning Krause. Localization theory for triangulated categories, page 161–235. London Mathematical Society Lecture Note Series. Cambridge University Press, 2010.
  • [20] Oleg Lazarev, Zachary Sylvan, and Hiro Lee Tanaka. The infinity-category of stabilized liouville sectors, 2022. arXiv:2110.11754.
  • [21] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
  • [22] Jacob Lurie. Higher algebra. Available at http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf, 2012.
  • [23] Jacob Lurie. Kerodon. https://kerodon.net, 2024.
  • [24] Volodymyr Lyubashenko. Category of AA_{\infty}-categories. Homology Homotopy Appl., 5(1):1–48, 2003.
  • [25] Volodymyr Lyubashenko and Oleksandr Manzyuk. AA_{\infty}-bimodules and serre AA_{\infty}-functors. In Geometry and dynamics of groups and spaces. In memory of Alexander Reznikov. Partly based on the international conference on geometry and dynamics of groups and spaces in memory of Alexander Reznikov, Bonn, Germany, September 22–29, 2006, pages 565–645. Basel: Birkhäuser, 2008.
  • [26] Volodymyr Lyubashenko and Oleksandr Manzyuk. Quotients of unital AA_{\infty}-categories. Theory Appl. Categ., 20:No. 13, 405–496, 2008.
  • [27] Volodymyr Lyubashenko and Sergiy Ovsienko. A construction of quotient AA_{\infty}-categories. Homology Homotopy Appl., 8(2):157–203, 2006.
  • [28] Saunders Mac Lane. Homology. Class. Math. Berlin: Springer-Verlag, reprint of the 3rd corr. print. 1975 edition, 1995.
  • [29] Peter May. Operads and sheaf cohomology. Available at https://www.math.uchicago.edu/~may/PAPERS/Esheaf.pdf, December 2003.
  • [30] Aaron Mazel-Gee. Quillen adjunctions induce adjunctions of quasicategories. New York J. Math., 22:57–93, 2016.
  • [31] Fernando Muro. Dwyer-Kan homotopy theory of enriched categories. J. Topol., 8(2):377–413, 2015.
  • [32] Yong-Geun Oh and Hiro Lee Tanaka. \infty-categorical universal properties of quotients and localizations of A{A}_{\infty}-categories. arXiv:2003.05806, 2024.
  • [33] James Pascaleff. Remarks on the equivalence between differential graded categories and a-infinity categories. Homology Homotopy Appl., 26(1):275 – 285, 2024.
  • [34] N. Spaltenstein. Resolutions of unbounded complexes. Compositio Math., 65(2):121–154, 1988.
  • [35] Goncalo Tabuada. Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris, 340(1):15–19, 2005.
  • [36] Hiro Lee Tanaka. A functor from Lagrangian cobordisms to the Fukaya category. Ph.D. Thesis, Northwestern University, 2013.
  • [37] Hiro Lee Tanaka. Functors (between \infty-categories) that aren’t strictly unital. J. Homotopy Relat. Struct., 13(2):273–286, 2018.
  • [38] Bertrand Toën. The homotopy theory of dgdg-categories and derived Morita theory. Invent. Math., 167(3):615–667, 2007.