This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Upper bounds for shifted moments of Dirichlet LL-functions to a fixed modulus over function fields

Stephan Baier Stephan Baier
Ramakrishna Mission Vivekananda Educational and Research Institute
Department of Mathematics
G. T. Road, PO Belur Math, Howrah, West Bengal 711202
India
stephanbaier2017@gmail.com
 and  Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, China penggao@buaa.edu.cn
Abstract.

In this paper, we establish sharp upper bounds on shifted moments of the family of Dirichlet LL-functions to a fixed modulus over function fields. We apply the result to obtain upper bounds on moments of Dirichlet character sums over function fields.

Mathematics Subject Classification (2010): 11M38, 11R59, 11T06

Keywords: character sums, Dirichlet LL-functions, function fields, shifted moments, upper bounds

1. Introduction

It is an important subject to study the moments of families of LL-functions in number theory as they have many significant applications. Although it is a challenge to evaluate higher moments in general, there are now many conjectured asymptotic formulas as well as sharp lower and upper bounds concerning the moments. For example, a remarkable method of K. Soundararajan [Sound2009] as well as its refinement by A. J. Harper [Harper] can be applied to establish sharp upper bounds for these moments under the assumption of the generalized Riemann hypothesis (GRH).

The family of Dirichlet LL-functions to a fixed modulus is a typical family of interest with its moments being extensively investigated in the literature, especially in the number fields setting. In [Munsch17], M. Munsch adapted the method in [Sound2009] to show that under GRH, for a large fixed modulus qq, any positive integer kk, and real numbers tjt_{j} such that tjlogqt_{j}\ll\log q,

(1.1) χXq|L(1/2+it1,χ)L(1/2+it2,χ)L(1/2+it2k,χ)|ϵ,kϕ(q)(logq)k/2+ε1i<l2kg1/2(|titl|),\sum_{\chi\in X_{q}^{*}}|L(1/2+it_{1},\chi)\cdot L(1/2+it_{2},\chi)\cdots L(1/2+it_{2k},\chi)|\ll_{\epsilon,k}\phi(q)(\log q)^{k/2+\varepsilon}\prod_{1\leq i<l\leq 2k}g^{1/2}(|t_{i}-t_{l}|),

where XqX_{q}^{*} denotes the set of primitive Dirichlet characters modulo qq, φ\varphi is the Euler totient function, and where g:0g:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R} is the function defined by

g(x)={logqif x1logq or xeq1xif 1logq<x<10,loglogxif 10xeq.g(x)=\begin{cases}\log q&\text{if }x\leq\frac{1}{\log q}\text{ or }x\geq e^{q}\\ \frac{1}{x}&\text{if }\frac{1}{\log q}<x<10,\\ \log\log x&\text{if }10\leq x\leq e^{q}.\end{cases}

Here we point out that one may regard gg as a correlation factor that measures how the values of the LL-functions correlate to each other at various points on the critical line. In [Szab], B. Szabó applied the method [Harper] to improve the estimate given in (1.1) by removing the (logq)ε(\log q)^{\varepsilon} factor and extending it to hold for tjqCt_{j}\ll q^{C} for any fixed real number CC. The same type of upper bound was obtained by M. J. Curran [Curran] for shifted moments of the Riemann zeta function, using similar approaches. We point out here that the correlation factor in the work of Szabó can be taken (see [Szab, Lemma 2]) to be g(t)=|ζ(1+1/logq+it)|g(t)=|\zeta(1+1/\log q+it)|, where ζ(s)\zeta(s) is the Riemann zeta function. This is consistent to the correlation factor appearing in the work of Curran.

Compared to values of LL-functions on arbitrary points on the critical line, much more attention has been paid to central values of LL-functions in the literature, due to rich arithmetic meanings they carry. The works of Szabó and Curran imply that it is also meaningful to study values of LL-functions off the central point, as they may be used to determine the symmetry type of the corresponding family of LL-functions. Moreover, the shifted moments can be applied to achieve bounds for moments of character sums, as done in [Szab, G&Zhao2024, Gao2024].

It is the aim of this paper is to extend the above mentioned result of Szabó to the function fields setting and then apply it to obtain similar bounds for moments of character sums. To state our results, we denote by A=𝔽q[T]A=\mathbb{F}_{q}[T] the polynomial ring over 𝔽q\mathbb{F}_{q}, where 𝔽q\mathbb{F}_{q} is a fixed finite field of cardinality qq. We denote by d(f)d(f) the degree of any fAf\in A, and define the norm |f||f| to be |f|=qd(f)|f|=q^{d(f)} for f0f\neq 0 and |f|=0|f|=0 for f=0f=0. Let χ\chi be a Dirichlet character modulo QQ defined in Section 2 for a fixed polynomial QAQ\in A of degree larger than 11 and let L(s,χ)L(s,\chi) be the Dirichlet LL-function associated to χ\chi. Denote by XQX_{Q}^{*} the set of primitive characters modulo QQ and φ(Q)\varphi(Q) for the Euler totient function on AA. Our first result concerns upper bounds for shifted moments of the family of these Dirichlet LL-functions, which is analogue to [Szab, Theorem 1].

Theorem 1.1.

Keep the notations above. Let 2k12k\geq 1 be a fixed even integer and a1,,a2ka_{1},\ldots,a_{2k} be fixed positive real numbers. Then for any real 2k2k-tuple t=(t1,,t2k)t=(t_{1},\ldots,t_{2k}), we have

χXQ|L(1/2+it1,χ)|a1|L(1/2+it2k,χ)|a2kφ(Q)(log|Q|)(a12++a2k2)/41j<l2k|ζA(1+i(tjtl)+1log|Q|)|ajal/2,\sum_{\chi\in X_{Q}^{*}}\big{|}L\big{(}1/2+it_{1},\chi\big{)}\big{|}^{a_{1}}\cdots\big{|}L\big{(}1/2+it_{2k},\chi\big{)}\big{|}^{a_{2k}}\ll\varphi(Q)(\log|Q|)^{(a_{1}^{2}+\cdots+a_{2k}^{2})/4}\prod_{1\leq j<l\leq 2k}\big{|}\zeta_{A}(1+i(t_{j}-t_{l})+\frac{1}{\log|Q|})\big{|}^{a_{j}a_{l}/2},

where L(s,χ)L(s,\chi) is the LL-function associated to χ\chi defined in (2.2) and where ζA(s)\zeta_{A}(s) is the zeta function associated to AA defined in (2.1).

Consequently, we have

χXQ|L(1/2+it1,χ)|a1|L(1/2+it2k,χ)|a2kφ(Q)(log|Q|)(a12++a2k2)/41j<l2k(min(log|Q|,1logq|titj|¯))ajal/2,\sum_{\chi\in X_{Q}^{*}}\big{|}L\big{(}1/2+it_{1},\chi\big{)}\big{|}^{a_{1}}\cdots\big{|}L\big{(}1/2+it_{2k},\chi\big{)}\big{|}^{a_{2k}}\ll\varphi(Q)(\log|Q|)^{(a_{1}^{2}+\cdots+a_{2k}^{2})/4}\prod_{1\leq j<l\leq 2k}(\min(\log|Q|,\frac{1}{\overline{\log q|t_{i}-t_{j}|}}))^{a_{j}a_{l}/2},

where we define θ¯=minn|θ2πn|\overline{\theta}=\min_{n\in\mathbb{Z}}|\theta-2\pi n| for any real θ\theta.

The implied constants in the above estimations depend on kk, aja_{j} but not on QQ or the tjt_{j}.

The proof of Theorem 1.1 follows closely the proof of [Szab, Theorem 1]. The special case of tj=0t_{j}=0 and QQ being prime in Theorem 1.1 has been established in [G&Zhao2024-2, Proposition 1.3]. We remark here that Theorem 1.1 is valid unconditionally as the Riemann hypothesis is true for the function fields case. Moreover, Theorem 1.1 holds without any restrictions on tjt_{j}. In fact, our result depends on logq|titj|¯\overline{\log q|t_{i}-t_{j}|} instead of |titj||t_{i}-t_{j}| since the LL-functions L(1/2+it,χ)L(1/2+it,\chi) in the function fields setting are periodic functions of tt.

As shown in Section 2.1, we have L(s,χ)=(qs,χ)L(s,\chi)=\mathcal{L}(q^{-s},\chi), where (qs,χ)\mathcal{L}(q^{-s},\chi) is defined in (2.3). We now set u=q1/2eiθu=q^{-1/2}e^{i\theta} to see that

(eiθq,χ)=L(12θilogq,χ).\mathcal{L}(\frac{e^{i\theta}}{\sqrt{q}},\chi)=L\big{(}\frac{1}{2}-\frac{\theta i}{\log q},\chi\big{)}.

We apply the above to obtain a restatement of Theorem 1.1 in terms of (uq,χ)\mathcal{L}(\frac{u}{\sqrt{q}},\chi).

Corollary 1.2.

With the notation as in the statement of Theorem 1.1, we have

(1.2) χXQ|(eiθ1q,χ)|a1|(eiθ2kq,χ)|a2kφ(Q)(log|Q|)(a12++a2k2)/41j<l2k(min(log|Q|,1|θjθl|¯))ajal/2.\displaystyle\sum_{\chi\in X_{Q}^{*}}\big{|}\mathcal{L}(\frac{e^{i\theta_{1}}}{\sqrt{q}},\chi)\big{|}^{a_{1}}\cdots\big{|}\mathcal{L}(\frac{e^{i\theta_{2k}}}{\sqrt{q}},\chi)\big{|}^{a_{2k}}\ll\varphi(Q)(\log|Q|)^{(a_{1}^{2}+\cdots+a_{2k}^{2})/4}\prod_{1\leq j<l\leq 2k}(\min(\log|Q|,\frac{1}{\overline{|\theta_{j}-\theta_{l}|}}))^{a_{j}a_{l}/2}.

Here the implied constant depends on kk, aja_{j} but not on QQ or the θj\theta_{j}.

As an application of Theorem 1.1, we next consider estimations for moments of Dirichlet character sums. We define for any real m0m\geq 0,

Sm(Q,Y)=χXQ||f|Yχ(f)|2m.\displaystyle S_{m}(Q,Y)=\sum_{\chi\in X_{Q}^{*}}\bigg{|}\sum_{|f|\leq Y}\chi(f)\bigg{|}^{2m}.

Here and throughout the paper, we adapt the convention that when considering a sum over some subset SS of AA, the symbol fS\sum_{f\in S} stands for a sum over monic fSf\in S, unless otherwise specified.

We apply arguments similar to those used in the proof of [Szab, Theorem 3] to establish the following bounds on Sm(Q,Y)S_{m}(Q,Y).

Theorem 1.3.

With the notation as above, for any real number m>2m>2 and large YY, we have

Sm(Q,Y)φ(Q)Ym(log|Q|)(m1)2.\displaystyle S_{m}(Q,Y)\ll\varphi(Q)Y^{m}(\log|Q|)^{(m-1)^{2}}.

2. Preliminaries

2.1. Backgrounds on function fields

We recall some basic facts concerning function fields in this section, most of which can be found in [Rosen02]. The zeta function ζA(s)\zeta_{A}(s) associated to A=𝔽q[T]A=\mathbb{F}_{q}[T] for (s)>1\Re(s)>1 is defined by

(2.1) ζA(s)=fA1|f|s=P(1|P|s)1,\zeta_{A}(s)=\sum_{\begin{subarray}{c}f\in A\end{subarray}}\frac{1}{|f|^{s}}=\prod_{P}(1-|P|^{-s})^{-1},

where we make the convention that we reserve the symbol PP for a monic, irreducible polynomial in AA throughout the paper and we refer to PP as a prime in AA. As there are qnq^{n} monic polynomials of degree nn, we deduce that

ζA(s)=11q1s.\zeta_{A}(s)=\frac{1}{1-q^{1-s}}.

This defines ζA(s)\zeta_{A}(s) on the entire complex plane with a simple pole at s=1s=1.

A Dirichlet character χ\chi modulo fAf\in A is defined in a similar way to that in the number fields case. More precisely, such χ\chi is a homomorphism from (A/fA)(A/fA)^{*} to \mathbb{C} so that χ(g¯)=0\chi(\overline{g})=0 for any (g,f)1(g,f)\neq 1, where g¯\overline{g} is the coset to which gg belongs in A/fAA/fA. Throughout the paper, we shall regard χ\chi as a function defined on AA instead of (A/fA)(A/fA)^{*} such that we have χ(g)=χ(g¯)\chi(g)=\chi(\overline{g}) for any gAg\in A. For a fixed modulus fAf\in A, we denote by χ0\chi_{0} the principal character modulo ff so that χ0(g)=1\chi_{0}(g)=1 for any (g,f)=1(g,f)=1. A character χ\chi modulo ff is said to be primitive if it cannot be factored through (A/fA)(A/f^{\prime}A)^{*} for any proper divisor ff^{\prime} of ff. The LL-function associated to χ\chi for (s)>1\Re(s)>1 is defined to be

(2.2) L(s,χ)=fAχ(f)|f|s=P(1χ(P)|P|s)1.L(s,\chi)=\sum_{\begin{subarray}{c}f\in A\end{subarray}}\frac{\chi(f)}{|f|^{s}}=\prod_{P}(1-\chi(P)|P|^{-s})^{-1}.

We often write L(s,χ)=(u,χ)L(s,\chi)=\mathcal{L}(u,\chi) via a change of variables u=qsu=q^{-s}, where

(2.3) (u,χ)=fAχ(f)ud(f)=P(1χ(P)ud(P))1.\displaystyle\mathcal{L}(u,\chi)=\sum_{f\in A}\chi(f)u^{d(f)}=\prod_{P}(1-\chi(P)u^{d(P)})^{-1}.

2.2. Sums over primes

In this section we include some estimations concerning sums over primes in the function fields setting. The first one reproduces [G&Zhao12, Lemma 2.2].

Lemma 2.3.

Denote by π(n)\pi(n) the number of primes of degree nn. We have

(2.4) π(n)=qnn+O(qn/2n).\pi(n)=\frac{q^{n}}{n}+O\Big{(}\frac{q^{n/2}}{n}\Big{)}.

For x2x\geq 2 and some constant bb, we have

(2.5) |P|xlog|P||P|=\displaystyle\sum_{|P|\leq x}\frac{\log|P|}{|P|}= logx+O(1)and\displaystyle\log x+O(1)\quad\mbox{and}
(2.6) |P|x1|P|=\displaystyle\sum_{|P|\leq x}\frac{1}{|P|}= loglogx+b+O(1logx).\displaystyle\log\log x+b+O\left(\frac{1}{\log x}\right).

Our next result can be regarded as a generalization of (2.6), which is an analogue to [Kou, Lemma 3.2], [Curran, Lemma 2.6] and [Szab, Lemma 2] in the number fields setting.

Lemma 2.4.

Let α>0\alpha>0, then for x2x\geq 2,

(2.7) |P|xcos(αlog|P|)|P|=log|ζA(1+1/logx+iα)|+O(1)=logmin(logx,1αlogq¯)+O(1).\displaystyle\begin{split}\sum_{|P|\leq x}\frac{\cos(\alpha\log|P|)}{|P|}=&\log|\zeta_{A}(1+1/\log x+i\alpha)|+O(1)\\ =&\log\min(\log x,\frac{1}{\overline{\alpha\log q}})+O(1).\end{split}
Proof.

The first equality in (2.7) is an analogue to the special case given in [Kou, Lemma 3.2] concerning the number fields case. We note that the arguments given in the proof of [Kou, Lemma 3.2] carry over to the function fields setting as well, since the zeta function in our case also has an Euler product. Also, applying (2.5), (2.6) and partial summation implies that

(2.8) |P|x(1|P|1|P|1+1/logx)+|P|>x1|P|1+1/logx=O(1).\displaystyle\sum_{\begin{subarray}{c}|P|\leq x\end{subarray}}\big{(}\frac{1}{|P|}-\frac{1}{|P|^{1+1/\log x}}\big{)}+\sum_{\begin{subarray}{c}|P|>x\end{subarray}}\frac{1}{|P|^{1+1/\log x}}=O(1).

This allows us to establish the first equality in (2.7). For the second equality in (2.7), we apply (2.4) to see that

(2.9) |P|xcos(αlog|P|)|P|=d(P)logqxcos(αlog|P|)|P|=nlogqxcos(αlogqn)qnπ(n)=F(logqx,αlogq)+O(1),\displaystyle\sum_{|P|\leq x}\frac{\cos(\alpha\log|P|)}{|P|}=\sum_{d(P)\leq\log_{q}x}\frac{\cos(\alpha\log|P|)}{|P|}=\sum_{n\leq\log_{q}x}\frac{\cos(\alpha\log q^{n})}{q^{n}}\cdot\pi(n)=F(\log_{q}x,\alpha\log q)+O(1),

where we define for real numbers h,θh,\theta with h1h\geq 1,

F(h,θ)=n=1hcos(nθ)n.\displaystyle F(h,\theta)=\sum^{h}_{n=1}\frac{\cos(n\theta)}{n}.

Note that it follows from the discussions given on [B&F20, p. 11] that we have

F(h,θ)=logmin(h,1θ¯)+O(1).\displaystyle F(h,\theta)=\log\min(h,\frac{1}{\overline{\theta}})+O(1).

Applying the above into (2.9), we readily deduce the second equality in (2.7). This completes the proof of the lemma. ∎

2.5. Perron’s formula

As an easy consequence of Cauchy’s residue theorem, we have the following analogue of Perron’s formula in function fields (see [Florea17-2, (2.6)]).

Lemma 2.6.

Suppose that the power series n=0a(n)un\sum^{\infty}_{n=0}a(n)u^{n} is absolutely convergent in |u|r<1|u|\leq r<1, then for integers N0N\geq 0,

(2.10) nNa(n)=12πi|u|=r(n=0a(n)un)du(1u)uN+1.\displaystyle\begin{split}\sum_{n\leq N}a(n)=&\frac{1}{2\pi i}\oint_{|u|=r}\Big{(}\sum^{\infty}_{n=0}a(n)u^{n}\Big{)}\frac{du}{(1-u)u^{N+1}}.\end{split}

3. Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds along the lines of the proof of [Szab, Theorem 1]. We begin with some preliminary bounds for LL-functions.

3.1. Various bounds for LL-functions

It follows from [Rosen02, Proposition 4.3] that the function L(s,χ)L(s,\chi) is a polynomial in qsq^{-s} of degree at most d(Q)1d(Q)-1 when χχ0\chi\neq\chi_{0}, where d(Q)d(Q) is the degree of the modulus QQ of χ\chi. We then proceed as in the proof of [BFK, Proposition 4.3] by setting m=d(Q)1,z=itm=d(Q)-1,z=it there and make use of the proof of [AT14, Theorem 3.3] to arrive at the following analogue of [BFK, Proposition 4.3].

Proposition 3.2.

Let χ\chi be a non-principal primitive character modulo QQ and let m=d(Q)1m=d(Q)-1. We have for hmh\leq m, tt\in\mathbb{R},

(3.1) log|L(12+it,χ)|mh+1h(j1d(Pj)hχ(Pj)logqhjdeg(P)|P|j(1/2+it+1/(hlogq))logqj).\displaystyle\log\big{|}L(\tfrac{1}{2}+it,\chi)\big{|}\leq\frac{m}{h}+\frac{1}{h}\Re\bigg{(}\sum_{\begin{subarray}{c}j\geq 1\\ d(P^{j})\leq h\end{subarray}}\frac{\chi(P^{j})\log q^{h-j\deg(P)}}{|P|^{j\big{(}1/2+it+1/(h\log q)\big{)}}\log q^{j}}\bigg{)}.

Observe further that Lemma 2.3 implies that the terms on the right-hand side of (3.1) corresponding to PjP^{j} with j3j\geq 3 contribute O(1)O(1). This allows us to deduce from (3.1) by setting |Q|=qd(Q),x=qh|Q|=q^{d(Q)},x=q^{h} there to see that

(3.2) log|L(12+it,χ)|(|P|xχ(P)|P|1/2+it+1/logxlog(x/|P|)logx+|P|x1/2χ(P2)|P|1+2it+2/logxlog(x/|P|2)2logx)+log|Q|logx+O(1)(|P|xχ(P)|P|1/2+it+1/logxlog(x/|P|)logx+12|P|x1/2χ(P2)|P|1+2it+2/logx)+log|Q|logx+O(1),\displaystyle\begin{split}\log|L(\tfrac{1}{2}+it,\chi)|\leq&\Re\left(\sum_{\begin{subarray}{c}|P|\leq x\end{subarray}}\frac{\chi(P)}{|P|^{1/2+it+1/\log x}}\frac{\log(x/|P|)}{\log x}+\sum_{\begin{subarray}{c}|P|\leq x^{1/2}\end{subarray}}\frac{\chi(P^{2})}{|P|^{1+2it+2/\log x}}\frac{\log(x/|P|^{2})}{2\log x}\right)+\frac{\log|Q|}{\log x}+O(1)\\ \leq&\Re\left(\sum_{\begin{subarray}{c}|P|\leq x\end{subarray}}\frac{\chi(P)}{|P|^{1/2+it+1/\log x}}\frac{\log(x/|P|)}{\log x}+\frac{1}{2}\sum_{\begin{subarray}{c}|P|\leq x^{1/2}\end{subarray}}\frac{\chi(P^{2})}{|P|^{1+2it+2/\log x}}\right)+\frac{\log|Q|}{\log x}+O(1),\end{split}

where the last estimation above follows from (2.5).

We apply (2.5) again to see that

(3.3) |P|x1/2(χ(P2)|P|1+2itχ(P2)|P|1+2it+2/logx)|P|x1/2log|P||P|logx=O(1).\displaystyle\begin{split}\sum_{\begin{subarray}{c}|P|\leq x^{1/2}\end{subarray}}\Big{(}\frac{\chi(P^{2})}{|P|^{1+2it}}-\frac{\chi(P^{2})}{|P|^{1+2it+2/\log x}}\Big{)}\ll\sum_{\begin{subarray}{c}|P|\leq x^{1/2}\end{subarray}}\frac{\log|P|}{|P|\log x}=O(1).\end{split}

We derive from (3.2) and (3.3) that

(3.4) log|L(12+it,χ)|(|P|xχ(P)|P|1/2+it+1/logxlog(x/|P|)logx+12|P|x1/2χ(P2)|P|1+2it)+log|Q|logx+O(1).\displaystyle\begin{split}\log|L(\tfrac{1}{2}+it,\chi)|\leq&\Re\left(\sum_{\begin{subarray}{c}|P|\leq x\end{subarray}}\frac{\chi(P)}{|P|^{1/2+it+1/\log x}}\frac{\log(x/|P|)}{\log x}+\frac{1}{2}\sum_{\begin{subarray}{c}|P|\leq x^{1/2}\end{subarray}}\frac{\chi(P^{2})}{|P|^{1+2it}}\right)+\frac{\log|Q|}{\log x}+O(1).\end{split}

We set x=log|Q|x=\log|Q| in the above expression and estimation everything trivially to see that for any non-principal primitive character χ\chi modulo QQ, we have for some constant CC,

(3.5) |L(12+it,χ)|exp(Clog|Q|loglog|Q|).\displaystyle\begin{split}|L(\tfrac{1}{2}+it,\chi)|\ll&\exp\big{(}C\frac{\log|Q|}{\log\log|Q|}\big{)}.\end{split}

Moreover, we deduce readily from (3.4) the following upper bound for sums involving log|L(1/2+it,χ)|\log|L(1/2+it,\chi)| with various tt, which is analogous to [Szab, Proposition 2].

Proposition 3.3.

Let 2k2k be a positive integer and let a1,a2,,a2ka_{1},a_{2},\ldots,a_{2k} be positive constants, x2x\geq 2. Let a:=a1++a2k+10a:=a_{1}+\cdots+a_{2k}+10. Let QQ be a large modulus and let t1,,t2kt_{1},\ldots,t_{2k} real numbers. For any monic polynomial ff, let

h(f)=:12(a1|f|it1++a2k|f|it2k).h(f)=:\frac{1}{2}(a_{1}|f|^{-it_{1}}+\cdots+a_{2k}|f|^{-it_{2k}}).

Then

j=12kajlog|L(1/2+itj,χ)|2|P|xh(P)χ(P)|P|1/2+1/logxlog(x/|P|)logx+|P|x1/2h(P2)χ(P2)|P|+alog|Q|logx+O(1).\displaystyle\begin{split}&\sum^{2k}_{j=1}a_{j}\log|L(1/2+it_{j},\chi)|\\ \leq&2\cdot\Re\sum_{|P|\leq x}\frac{h(P)\chi(P)}{|P|^{1/2+1/\log x}}\frac{\log(x/|P|)}{\log x}+\Re\sum_{|P|\leq x^{1/2}}\frac{h(P^{2})\chi(P^{2})}{|P|}+a\frac{\log|Q|}{\log x}+O(1).\end{split}

Lastly, we apply Proposition 3.3 and argue as in the proof of [Szab, Proposition 1] to arrive at the following crude estimation on shifted moments of Dirichlet LL-functions.

Proposition 3.4.

With the notation as in Proposition 3.3. We have

χXQ|L(1/2+it1,χ)|a1|L(1/2+it2k,χ)|a2kφ(Q)(log|Q|)O(1).\sum_{\chi\in X_{Q}^{*}}\big{|}L\big{(}1/2+it_{1},\chi\big{)}\big{|}^{a_{1}}\cdots\big{|}L\big{(}1/2+it_{2k},\chi\big{)}\big{|}^{a_{2k}}\leq\varphi(Q)(\log|Q|)^{O(1)}.

Here the implied constant depends on k,ajk,a_{j}, but not on QQ or the tjt_{j}.

3.5. Completion of the proof

We follow the treatment in [Szab, Section 4] to write β0=0\beta_{0}=0, βi=20i1(loglog|Q|)2\beta_{i}=\frac{20^{i-1}}{(\log\log|Q|)^{2}} for i1i\geq 1 and let =1+max{i:βie10000a2}\mathcal{I}=1+\max\{i:\beta_{i}\leq e^{-10000a^{2}}\}. For any 1ij1\leq i\leq j\leq\mathcal{I}, we define

G(i,j)(χ)=|Q|βi1<|P||Q|βiχ(P)h(P)|P|1/2+1/βjlog|Q|log(|Q|βj/|P|)log(|Q|βj).G_{(i,j)}(\chi)=\sum_{|Q|^{\beta_{i-1}}<|P|\leq|Q|^{\beta_{i}}}\frac{\chi(P)h(P)}{|P|^{1/2+1/\beta_{j}\log|Q|}}\frac{\log(|Q|^{\beta_{j}}/|P|)}{\log(|Q|^{\beta_{j}})}.

We also define

𝒯={χXQ:|G(i,)(χ)|βi3/4,1i},\mathcal{T}=\{\chi\in X_{Q}^{*}:|\Re G_{(i,\mathcal{I})}(\chi)|\leq\beta_{i}^{-3/4},\forall 1\leq i\leq\mathcal{I}\},

and we set for each 0j<0\leq j<\mathcal{I},

𝒮(j)={χXQ:|G(i,l)(χ)|βi3/41ij,ilbut|G(j+1,l)(χ)|>βj+13/4for somej+1l}.\mathcal{S}(j)=\{\chi\in X_{Q}^{*}:|\Re G_{(i,l)}(\chi)|\leq\beta_{i}^{-3/4}\;\forall 1\leq i\leq j,\,\forall i\leq l\leq\mathcal{I}\,\text{but}\,|\Re G_{(j+1,l)}(\chi)|>\beta_{j+1}^{-3/4}\,\text{for some}\,j+1\leq l\leq\mathcal{I}\}.

It follows from the arguments in [Szab, Section 4] that in order to prove Theorem 1.1, it suffices to establish Propositions 3.3-3.4 together with the following three lemmas.

Lemma 3.6.

We have

χ𝒯exp2(|P||Q|βχ(P)h(P)|P|1/2+1/(βlog|Q|)log(|Q|β/|P|)log(|Q|β))φ(Q)(log|Q|)(a12++a2k2)/41j<l2k|ζA(1+i(tjtl)+1log|Q|)|ajal/2.\displaystyle\begin{split}&\sum_{\chi\in\mathcal{T}}\exp^{2}\bigg{(}\Re\sum_{|P|\leq|Q|^{\beta_{\mathcal{I}}}}\frac{\chi(P)h(P)}{|P|^{1/2+1/(\beta_{\mathcal{I}}\log|Q|)}}\frac{\log(|Q|^{\beta_{\mathcal{I}}}/|P|)}{\log(|Q|^{\beta_{\mathcal{I}}})}\bigg{)}\\ \ll&\varphi(Q)(\log|Q|)^{(a_{1}^{2}+\cdots+a_{2k}^{2})/4}\prod_{1\leq j<l\leq 2k}\Big{|}\zeta_{A}(1+i(t_{j}-t_{l})+\frac{1}{\log|Q|})\Big{|}^{a_{j}a_{l}/2}.\end{split}
Lemma 3.7.

We have |𝒮(0)||Q|e(loglog|Q|)2|\mathcal{S}(0)|\ll|Q|e^{-(\log\log|Q|)^{2}} and for 1j11\leq j\leq\mathcal{I}-1 we have

χ𝒮(j)exp2(|P||Q|βjχ(P)h(P)|P|1/2+1/(βjlog|Q|)log(|Q|βj/|P|)log(|Q|βj))eβj+11log(βj+11)/200φ(Q)(log|Q|)(a12++a2k2)/41j<l2k|ζA(1+i(tjtl)+1log|Q|)|ajal/2.\displaystyle\begin{split}&\sum_{\chi\in\mathcal{S}(j)}\exp^{2}\bigg{(}\Re\sum_{|P|\leq|Q|^{\beta_{j}}}\frac{\chi(P)h(P)}{|P|^{1/2+1/(\beta_{j}\log|Q|)}}\frac{\log(|Q|^{\beta_{j}}/|P|)}{\log(|Q|^{\beta_{j}})}\bigg{)}\\ \ll&e^{-\beta_{j+1}^{-1}\log(\beta_{j+1}^{-1})/200}\varphi(Q)(\log|Q|)^{(a_{1}^{2}+\cdots+a_{2k}^{2})/4}\prod_{1\leq j<l\leq 2k}\Big{|}\zeta_{A}(1+i(t_{j}-t_{l})+\frac{1}{\log|Q|})\Big{|}^{a_{j}a_{l}/2}.\end{split}
Lemma 3.8.

The statements of the previous two lemmas remain true if we replace the Dirichlet polynomial by

|P||Q|βjχ(P)h(P)|P|1/2+1/(βjlog|Q|)log(|Q|βj/|P|)log(|Q|βj)+12|P||Q|βj/2χ(P2)h(P2)|P|.\Re\sum_{|P|\leq|Q|^{\beta_{j}}}\frac{\chi(P)h(P)}{|P|^{1/2+1/(\beta_{j}\log|Q|)}}\frac{\log(|Q|^{\beta_{j}}/|P|)}{\log(|Q|^{\beta_{j}})}+\frac{1}{2}\Re\sum_{|P|\leq|Q|^{\beta_{j}/2}}\frac{\chi(P^{2})h(P^{2})}{|P|}.

The proofs of Lemma 3.6 and 3.7 follow by adapting the proofs for Lemma 4 and 5 in [Szab] for the function fields setting in a straightforward way, upon using Lemma 2.4. The proof of Lemma 3.8 also follows from that given for Lemma 6 in [Szab], upon using (3.5) to see that one may ignore the contribution from quadratic characters. Moreover, we apply (2.8) and apply partial summation to see that for any non-quadratic character χ\chi,

log|Q|<|P||Q|χ(P2)h(P2)|P|1.\displaystyle\begin{split}&\sum_{\log|Q|<|P|\leq|Q|}\frac{\chi(P^{2})h(P^{2})}{|P|}\ll 1.\end{split}

Thus we may again truncate the Dirichlet polynomial coming from the squares of primes at log|Q|\log|Q|, as in the proof of Lemma 6 in [Szab]. The arguments in the proof of Lemma 6 in [Szab] then lead to the proof of Lemma 3.8. This then completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3

Our proof of Theorem 1.3 uses ideas in the proof of [Szab, Theorem 3]. Without loss of generality, we may assume that logqY\log_{q}Y is a positive integer. We first apply Perron’s formula given in (2.10) to see that for a small r>0r>0,

(4.1) |f|Yχ(f)=\displaystyle\sum_{|f|\leq Y}\chi(f)= 12πi|u|=r(fχ(f)ud(f))du(1u)ulogqY+1=12πi|u|=r(u,χ)du(1u)ulogqY+1.\displaystyle\frac{1}{2\pi i}\oint_{|u|=r}\Big{(}\sum_{f}\chi(f)u^{d(f)}\Big{)}\frac{du}{(1-u)u^{\log_{q}Y+1}}=\frac{1}{2\pi i}\oint_{|u|=r}\frac{\mathcal{L}(u,\chi)du}{(1-u)u^{\log_{q}Y+1}}.

We shift the line of integration in (4.1) to |u|=q1/2|u|=q^{-1/2} without encountering any pole. This way, we obtain that

|f|Yχ(f)=12πi|u|=q1/2(u,χ)du(1u)ulogqY+1=Y1/22πi|u|=1(u/q,χ)du(1u/q)ulogqY+1.\displaystyle\sum_{|f|\leq Y}\chi(f)=\frac{1}{2\pi i}\oint_{|u|=q^{-1/2}}\frac{\mathcal{L}(u,\chi)du}{(1-u)u^{\log_{q}Y+1}}=\frac{Y^{1/2}}{2\pi i}\oint_{|u|=1}\frac{\mathcal{L}(u/\sqrt{q},\chi)du}{(1-u/\sqrt{q})u^{\log_{q}Y+1}}.

We deduce from the above that

χXQ||f|Yχ(f)|2m\displaystyle\sum_{\chi\in X_{Q}^{*}}\Big{|}\sum_{|f|\leq Y}\chi(f)\Big{|}^{2m}\ll YmχXQ||u|=1(u/q,χ)du(1u/q)ulogqY+1|2mYmχXQ(02π|(eit/q,χ)|𝑑t)2m.\displaystyle Y^{m}\sum_{\chi\in X_{Q}^{*}}\Big{|}\oint_{|u|=1}\frac{\mathcal{L}(u/\sqrt{q},\chi)du}{(1-u/\sqrt{q})u^{\log_{q}Y+1}}\Big{|}^{2m}\ll Y^{m}\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{2\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}.

It follows from the above that in order to prove Theorem 1.3, it suffices to establish the following result.

Proposition 4.1.

With the notation as above, we have for any fixed integer k1k\geq 1 and any real numbers 2mk+12m\geq k+1,

(4.2) χXQ(02π|(eit/q,χ)|𝑑t)2mφ(Q)(log|Q|)(m1)2.\displaystyle\begin{split}&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{2\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll\varphi(Q)(\log|Q|)^{(m-1)^{2}}.\end{split}
Proof.

Note that we have |(eit/q,χ)|=|(ei(2πt)/q,χ¯)¯||\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}=|\overline{\mathcal{L}(e^{i(2\pi-t)}/\sqrt{q},\overline{\chi})}\Big{|}. Also, when χXQ\chi\in X_{Q}^{*}, so is χ¯XQ\overline{\chi}\in X_{Q}^{*}. It follows that

(4.3) χXQ(02π|(eit/q,χ)|𝑑t)2mχXQ(0π|(eit/q,χ)|𝑑t)2m.\displaystyle\begin{split}&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{2\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}.\end{split}

Moreover, we see that

(4.4) χXQ(0π|(eit/q,χ)|𝑑t)2mχXQ(0π/2|(eit/q,χ)|𝑑t)2m+χXQ(π/2π|(eit/q,χ)|𝑑t)2m=χXQ(0π/2|(eit/q,χ)|𝑑t)2m+χXQ(π/20|(ei(πt)/q,χ)|d(πt))2m=χXQ(0π/2|(eit/q,χ)|𝑑t)2m+χXQ(0π/2|(eit/q,χ)|𝑑t)2m.\displaystyle\begin{split}\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi/2}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}+\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{\pi/2}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\\ =&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi/2}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}+\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{\pi/2}^{0}\Big{|}\mathcal{L}(e^{i(\pi-t)}/\sqrt{q},\chi)\Big{|}d(\pi-t)\Big{)}^{2m}\\ =&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi/2}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}+\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi/2}\Big{|}\mathcal{L}(-e^{-it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}.\end{split}

We treat the first sum in the last expression above by deducing via symmetry that,

(4.5) (0π|(eit/q,χ)|𝑑t)2m[0,π/2]ka=1k|(eita/q,χ)|(𝒟|(eiv/q,χ)|𝑑v)2mkd𝐭,\displaystyle\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll\int_{[0,\pi/2]^{k}}\prod_{a=1}^{k}|\mathcal{L}(e^{it_{a}}/\sqrt{q},\chi)|\cdot\bigg{(}\int_{\mathcal{D}}|\mathcal{L}(e^{iv}/\sqrt{q},\chi)|dv\bigg{)}^{2m-k}d\mathbf{t},

where 𝒟=𝒟(t1,,tk)={v[0,π/2]:|t1v||t2v||tkv|}\mathcal{D}=\mathcal{D}(t_{1},\ldots,t_{k})=\{v\in[0,\pi/2]:|t_{1}-v|\leq|t_{2}-v|\leq\ldots\leq|t_{k}-v|\}.

We let 1=[π2log|Q|,π2log|Q|]\mathcal{B}_{1}=\big{[}-\frac{\pi}{2\log|Q|},\frac{\pi}{2\log|Q|}\big{]} and j=[ej1π2log|Q|,ej2π2log|Q|][ej2π2log|Q|,ej1π2log|Q|]\mathcal{B}_{j}=\big{[}-\frac{e^{j-1}\pi}{2\log|Q|},-\frac{e^{j-2}\pi}{2\log|Q|}\big{]}\cup\big{[}\frac{e^{j-2}\pi}{2\log|Q|},\frac{e^{j-1}\pi}{2\log|Q|}\big{]} for 2j<loglog|Q|:=K2\leq j<\lfloor\log\log|Q|\rfloor:=K. We further denote K=[π/2,π/2]1j<Kj\mathcal{B}_{K}=[-\pi/2,\pi/2]\setminus\bigcup_{1\leq j<K}\mathcal{B}_{j}.

Observe that for any t1[0,π/2]t_{1}\in[0,\pi/2], we have 𝒟[0,π/2]t1+[π/2,π/2]1jKt1+j\mathcal{D}\subset[0,\pi/2]\subset t_{1}+[-\pi/2,\pi/2]\subset\bigcup_{1\leq j\leq K}t_{1}+\mathcal{B}_{j}. Thus if we denote 𝒜j=j(t1+𝒟)\mathcal{A}_{j}=\mathcal{B}_{j}\cap(-t_{1}+\mathcal{D}), then (t1+𝒜j)1jK(t_{1}+\mathcal{A}_{j})_{1\leq j\leq K} form a partition of 𝒟\mathcal{D}. We apply Hölder’s inequality twice to deduce that

(4.6) (𝒟|(eiv/q,χ)|𝑑v)2mk(1jK1jjt1+𝒜j|(eiv/q,χ)|𝑑v)2mk(1jKj2mk(t1+𝒜j|(eiv/q,χ)|𝑑v)2mk)(1jKj(2mk)/(2mk1))2mk11jKj2mk(t1+𝒜j|(eiv/q,χ)|𝑑v)2mk1jKj2mk|j|2mk1t1+𝒜j|(eiv/q,χ)|2mk𝑑v.\displaystyle\begin{split}&\bigg{(}\int_{\mathcal{D}}|\mathcal{L}(e^{iv}/\sqrt{q},\chi)|dv\bigg{)}^{2m-k}\\ \leq&\bigg{(}\sum_{1\leq j\leq K}\frac{1}{j}\cdot j\int_{t_{1}+\mathcal{A}_{j}}|\mathcal{L}(e^{iv}/\sqrt{q},\chi)|dv\bigg{)}^{2m-k}\\ \leq&\bigg{(}\sum_{1\leq j\leq K}j^{2m-k}\bigg{(}\int_{t_{1}+\mathcal{A}_{j}}\big{|}\mathcal{L}(e^{iv}/\sqrt{q},\chi)\big{|}dv\bigg{)}^{2m-k}\bigg{)}\bigg{(}\sum_{1\leq j\leq K}j^{-(2m-k)/(2m-k-1)}\bigg{)}^{2m-k-1}\\ \ll&\sum_{1\leq j\leq K}j^{2m-k}\bigg{(}\int_{t_{1}+\mathcal{A}_{j}}\big{|}\mathcal{L}(e^{iv}/\sqrt{q},\chi)\big{|}dv\bigg{)}^{2m-k}\\ \leq&\sum_{1\leq j\leq K}j^{2m-k}|\mathcal{B}_{j}|^{2m-k-1}\int_{t_{1}+\mathcal{A}_{j}}\big{|}\mathcal{L}(e^{iv}/\sqrt{q},\chi)\big{|}^{2m-k}dv.\end{split}

We denote for 𝐭=(t1,,tk)\mathbf{t}=(t_{1},\ldots,t_{k}),

(𝐭,v)=χXQa=1k|(eita/q,χ)||(eiv/q,χ)|2mk.\mathcal{L}(\mathbf{t},v)=\sum_{\chi\in X_{Q}^{*}}\prod_{a=1}^{k}|\mathcal{L}(e^{it_{a}}/\sqrt{q},\chi)|\cdot|\mathcal{L}(e^{iv}/\sqrt{q},\chi)|^{2m-k}.

We then deduce from (4.5) and (4.6) that

(4.7) χXQ(0π|(eit/q,χ)|𝑑t)2m1l0Kl02mk|l0|2mk1[0,π/2]kt1+𝒜l0(𝐭,v)𝑑v𝑑𝐭1l0,l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1(𝐭,v)𝑑v𝑑𝐭,\displaystyle\begin{split}\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll&\sum_{1\leq l_{0}\leq K}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{[0,\pi/2]^{k}}\int_{t_{1}+\mathcal{A}_{l_{0}}}\mathcal{L}(\mathbf{t},v)dvd\mathbf{t}\\ \ll&\sum_{1\leq l_{0},l_{1},\ldots l_{k-1}\leq K}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\mathcal{L}(\mathbf{t},v)dvd\mathbf{t},\end{split}

where

𝒞l0,l1,,lk1={(t1,,tk,v)[0,π/2]k+1:ut1+𝒜l0,|ti+1v||tiv|li,1 1ik1}.\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}=\{(t_{1},\ldots,t_{k},v)\in[0,\pi/2]^{k+1}:u\in t_{1}+\mathcal{A}_{l_{0}},\,|t_{i+1}-v|-|t_{i}-v|\in\mathcal{B}_{l_{i}},1\ 1\leq i\leq k-1\}.

Note that the volume of the region 𝒞l0,l1,,lk1\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}} is el0+l1++lk1(log|Q|)k\ll\frac{e^{l_{0}+l_{1}+\cdots+l_{k-1}}}{(\log|Q|)^{k}}. Also, by the definition of 𝒞l0,l1,,lk1\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}} we have |t1v|el0log|Q||t_{1}-v|\sim\frac{e^{l_{0}}}{\log|Q|} so that w(|t1v|)log|Q|el0w(|t_{1}-v|)\ll\frac{\log|Q|}{e^{l_{0}}}, where we define for simplicity that w(t)=min(log|Q|,1/|t|¯)w(t)=\min(\log|Q|,1/\overline{|t|}). We deduce from the definition of 𝒜j\mathcal{A}_{j} that |t2v||t1v||t_{2}-v|\geq|t_{1}-v|, so that π|t2v|=|t1v|+(|t2v||t1v|)el0log|Q|+el1log|Q|\pi\gg|t_{2}-v|=|t_{1}-v|+(|t_{2}-v|-|t_{1}-v|)\gg\frac{e^{l_{0}}}{\log|Q|}+\frac{e^{l_{1}}}{\log|Q|}, which implies that w(|t2v|)log|Q|emax(l0,l1)w(|t_{2}-v|)\ll\frac{\log|Q|}{e^{\max(l_{0},l_{1})}}. Similarly, we have w(|tiv|)log|Q|emax(l0,l1,,li1)w(|t_{i}-v|)\ll\frac{\log|Q|}{e^{\max(l_{0},l_{1},\ldots,l_{i-1})}} for any 1ik1\leq i\leq k. Moreover, we have s=ij1(|ts+1v||tsv|)|tjti|\sum^{j-1}_{s=i}(|t_{s+1}-v|-|t_{s}-v|)\leq|t_{j}-t_{i}| for any 1i<jk1\leq i<j\leq k, so that we have w(|tjti|)log|Q|emax(li,,lj1)w(|t_{j}-t_{i}|)\ll\frac{\log|Q|}{e^{\max(l_{i},\ldots,l_{j-1})}}. We then deduce from Corollary 1.2 that for (t1,,tk,v)𝒞l0,l1,,lk1(t_{1},\ldots,t_{k},v)\in\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}},

(𝐭,v)\displaystyle\mathcal{L}(\mathbf{t},v)
\displaystyle\ll φ(Q)(log|Q|)((2mk)2+k)/4(i=0k1log|Q|emax(l0,l1,,li))(2mk)/2(i=1k1j=i+1klog|Q|emax(li,,lj1))1/2\displaystyle\varphi(Q)(\log|Q|)^{((2m-k)^{2}+k)/4}\bigg{(}\prod^{k-1}_{i=0}\frac{\log|Q|}{e^{\max(l_{0},l_{1},\ldots,l_{i})}}\bigg{)}^{(2m-k)/2}\bigg{(}\prod^{k-1}_{i=1}\prod^{k}_{j=i+1}\frac{\log|Q|}{e^{\max(l_{i},\ldots,l_{j-1})}}\bigg{)}^{1/2}
=\displaystyle= φ(Q)(log|Q|)m2exp(2mk2i=0k1max(l0,l1,,li)12i=1k1j=i+1kmax(li,,lj1)).\displaystyle\varphi(Q)(\log|Q|)^{m^{2}}\exp\Big{(}-\frac{2m-k}{2}\sum^{k-1}_{i=0}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}.

Moreover, we have |l0|el0log|Q||\mathcal{B}_{l_{0}}|\ll\frac{e^{l_{0}}}{\log|Q|}, so that we have

(4.8) 1l0K1l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1(𝐭,v)𝑑v𝑑𝐭φ(Q)(log|Q|)(m1)2×1l0K1l1,lk1Kl02mkexp((2mk1)l0+i=0k1li2mk2i=0k1max(l0,l1,,li)12i=1k1j=i+1kmax(li,,lj1))=φ(Q)(log|Q|)(m1)2×1l0K1l1,lk1Kl02mkexp(2mk2l0+12i=1k1li2mk2i=1k1max(l0,l1,,li)12i=1k1j=i+2kmax(li,,lj1)).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}1\leq l_{0}\leq K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\mathcal{L}(\mathbf{t},v)dvd\mathbf{t}\\ \ll&\varphi(Q)(\log|Q|)^{(m-1)^{2}}\\ &\times\sum_{\begin{subarray}{c}1\leq l_{0}\leq K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}(2m-k-1)l_{0}+\sum^{k-1}_{i=0}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=0}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}\\ =&\varphi(Q)(\log|Q|)^{(m-1)^{2}}\\ &\times\sum_{\begin{subarray}{c}1\leq l_{0}\leq K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}\frac{2m-k}{2}l_{0}+\frac{1}{2}\sum^{k-1}_{i=1}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=1}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+2}\max(l_{i},\ldots,l_{j-1})\Big{)}.\end{split}

We now set k=3k=3 to see that in this case we have

2mk2l0+12i=1k1li2mk2i=1k1max(l0,l1,,li)12i=1k1j=i+2kmax(li,,lj1)(2m4)max(l0,,lk1).\displaystyle\begin{split}&\frac{2m-k}{2}l_{0}+\frac{1}{2}\sum^{k-1}_{i=1}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=1}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+2}\max(l_{i},\ldots,l_{j-1})\\ \leq&-(2m-4)\max(l_{0},\ldots,l_{k-1}).\end{split}

We deduce from (4.7), (4.8) and the above that

(4.9) χXQ(0π|(eit/q,χ)|𝑑t)2m1l0K1l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1(𝐭,v)𝑑v𝑑𝐭φ(Q)(log|Q|)(m1)21l0<K1l1,lk1Kl02mkexp((2m4)max(l0,,lk1))φ(Q)(log|Q|)(m1)2,\displaystyle\begin{split}&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\\ \ll&\sum_{\begin{subarray}{c}1\leq l_{0}\leq K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\mathcal{L}(\mathbf{t},v)dvd\mathbf{t}\\ \ll&\varphi(Q)(\log|Q|)^{(m-1)^{2}}\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}-(2m-4)\max(l_{0},\ldots,l_{k-1})\Big{)}\\ \ll&\varphi(Q)(\log|Q|)^{(m-1)^{2}},\end{split}

where the last estimation above follows by noting that we have m>2m>2.

Note that Corollary 1.2 is still valid with θi\theta_{i} being replaced by πθi\pi-\theta_{i} on the left-hand side of (1.2) while keeping θj,θl\theta_{j},\theta_{l} intact on the right-hand side of (1.2). Using this, one checks that our arguments above carry over to show that

(4.10) χXQ(0π|(eit/q,χ)|𝑑t)2mφ(Q)(log|Q|)(m1)2.\displaystyle\begin{split}&\sum_{\chi\in X_{Q}^{*}}\Big{(}\int_{0}^{\pi}\Big{|}\mathcal{L}(-e^{it}/\sqrt{q},\chi)\Big{|}dt\Big{)}^{2m}\ll\varphi(Q)(\log|Q|)^{(m-1)^{2}}.\end{split}

We then deduce from (4.3), (4.4), (4.9) and (4.10) that the estimation given in (4.2) holds. This completes the proof of the proposition. ∎

Acknowledgments. S.B. would like to thank Beihang University in Beijing for its great hospitality during his visit in May 2024, where part of this work was started. P. G. is supported in part by NSFC grant 11871082.

References