This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Vanishing Moments of Wavelets on pp-adic Fields

Athira N and Lineesh M C
Abstract

A study on the vanishing moments of wavelets on pp-adic fields is carried out in this paper. The pp-vanishing moments and discrete pp-vanishing moments are defined on a pp-adic field and the relation between them is investigated. The pp-vanishing moments of Haar-type and non-Haar type wavelet functions are computed. Also, the connection between pp-vanishing moment of non-Haar type wavelet functions and the approximation order of the indicator function of the compact open subgroup B0(0)B_{0}(0)  of p\mathbb{Q}_{p}  are established. A characterization of the pp-vanishing moments of nonorthogonal wavelets is done.

Department of Mathematics
National Institute of Technology Calicut
NIT Campus P O - 673 601, India
nathira.1996@gmail.com
lineesh@nitc.ac.in

keywords: pp-adic field; pseudo-differential operator; refinable function; p-adic wavelets; approximation order; vanishing moment; compact support.
AMS Subject Classification 2020: 11E95, 11F85, 41A10, 42C40, 43A70.

1 Introduction

Over the past few years, wavelets have gained immense popularity in almost all fields of science and technology due to their unique time-frequency localization feature. One of the most significant facts is that, in addition to the canonical tool of representing a function by its Fourier series, there is a different representation using wavelets which is more suitable to certain problems in data compression and signal processing. The first wavelet construction is due to Alfréd Haar in 1910. Then many mathematicians including Jean Morlet, Alex Grossmann, Yves Meyer, Stephane Mallat and Ingrid Daubechies have contributed various kinds of wavelets to theoretical and applied science. The concept of wavelet is then extended to the Euclidean space as well as many other topological spaces such as pp-adic fields.

Wavelets can be generated from scaling functions as well as wavelet sets. In their paper, Albeverio et al.[1, 2] proposed a complete characterization of scaling functions and explained what types of scaling functions form pp-adic multiresolution analysis. Khrennikov et al. [3] described the procedure to construct pp-adic wavelets from pp-adic scaling functions associated with an expansive automorphism. The authors [4] discussed about all compactly supported orthogonal wavelet bases for L2(p)L_{2}(\mathbb{Q}_{p})  generated by the unique p-adic multiresolution analysis, i.e.,the Haar bases of L2(p)L_{2}(\mathbb{Q}_{p}).

In 2008, Shelkovich and Skopina [5] constructed infinitely many different multidimensional pp-adic Haar orthonormal wavelet bases for L2(pn)L_{2}(\mathbb{Q}_{p}^{n})  and in 2009, Khrennikov and Shelkovich [6] developed infinite family of compactly supported non-Haar type pp-adic wavelet bases for L2(pn),n1L_{2}(\mathbb{Q}_{p}^{n}),\,n\geq 1. Kozyrev et al. [7] also discussed about the one-dimensional and multi-dimensional wavelet bases and their relation to the spectral theory of pseudo-differential operators.

Refinable functions play an important role in the construction and properties of wavelets. Basically, most of the wavelets are generated from refinable functions. In their paper Athira and Lineesh [8] discussed about the approximation order of shift-invariant space of a refinable function on p-adic field. The relation between the approximation order, accuracy of refinable function and order of the Strang–Fix condition are also established.

In order to fulfill the requirements, some properties are relevant for the wavelet bases. One of the important property among them is the vanishing moment. Vanishing moments are essential in the context of compression of a signal. A vanishing moment limits the wavelet’s ability to represent polynomial behaviour or information in a signal. Higher vanishing moments of wavelets are required for signal compression and denoising. In 1999, S. Mallat [9] established that the number of vanishing moments of a wavelet and the approximation order of the corresponding scaling function are equivalent in L2()L_{2}(\mathbb{R}). Then Di-Rong Chen et al. [10] obtained the the relation between the order of sum rules and the number of vanishing moments of wavelets on L2(n)L_{2}(\mathbb{R}^{n}). An explicit formula for refinement masks providing vanishing moments is explored by Skopina[11]. In 2010, Yu Liu and L. Peng [12] proved the connection between discrete vanishing moments and sum rules on the Heisenberg group.

Our goal is to extend the concept of vanishing moments to the pp-adic field p\mathbb{Q}_{p}. Section 2 contains preliminary informations about scaling functions, wavelet functions and accuracy of scaling functions on p\mathbb{Q}_{p}. In section 3, published results about the relationship between accuracy and vanishing moments on Euclidean spaces are discussed. The definitions of pp-vanishing moments of compactly supported functions on p\mathbb{Q}_{p}  and discrete pp-vanishing moments of finitely supported sequences on IpI_{p}  are given in section 4. The relationship between the pp-vanishing moments and discrete pp-vanishing moments are also established in this section. In section 5, the pp-vanishing moments of Haar-type wavelet functions are calculated. The pp-vanishing moments of non-Haar type wavelet functions are computed in section 6. In this section, we proved the connection between pp-vanishing moment of non-Haar type wavelet functions and the approximation order of the indicator function of the compact open subgroup B0(0)B_{0}(0)  of p\mathbb{Q}_{p}. Finally in section 7, we characterized the pp-vanishing moments of nonorthogonal wavelets.

2 Preliminary

Let pp  be a prime number. Consider the completion field of \mathbb{Q}  with respect to the norm ||p\lvert\cdot\rvert_{p}  defined by,

|x|p={0;x=0pγ;x0,x=(pγ)mn,\lvert x\rvert_{p}=\begin{cases}0&;\,x=0\\ p^{-\gamma}&;\,x\neq 0,x=(p^{\gamma})\frac{m}{n},\end{cases}

where γ=γ(x),m,n\gamma=\gamma(x)\in\mathbb{Z},\,m,n\in\mathbb{Z}  not divisible by pp. Denote the above field as G=pG=\mathbb{Q}_{p}. The canonical form of xpx\in\mathbb{Q}_{p}, x0x\neq 0  is,

x=pγ(x0+x1p+x2p2+),x=p^{\gamma}(x_{0}+x_{1}p+x_{2}p^{2}+\cdots), (2.1)

where γ,xj{0,1,,p1},x00\gamma\in\mathbb{Z},\,x_{j}\in\{0,1,\ldots,p-1\},\,x_{0}\neq 0. Then for this xpx\in\mathbb{Q}_{p}, the fractional part of xx  is,

{x}p={0;γ(x)0 or x=0pγ(x0+x1p++xγ1pγ1);γ(x)<0.\{x\}_{p}=\begin{cases}0&;\,\gamma(x)\geq 0\text{ or }x=0\\ p^{\gamma}(x_{0}+x_{1}p+\cdots+x_{-\gamma-1}p^{-\gamma-1})&;\,\gamma(x)<0.\end{cases}

The dual group of p\mathbb{Q}_{p}  is p\mathbb{Q}_{p}  itself and the character on p\mathbb{Q}_{p}  is defined as,

χ(x,ξ)=e2πi{xξ}p,\chi(x,\xi)=e^{2\pi i\{x\xi\}_{p}}, (2.2)

where {}p\{\cdot\}_{p}  is the fractional part of a number. Denote

Bγ(a)={xp:|xa|ppγ}.B_{\gamma}(a)=\{x\in\mathbb{Q}_{p}:\lvert x-a\rvert_{p}\leq p^{\gamma}\}.

Then B0(0)B_{0}(0)  is a compact open subgroup of p\mathbb{Q}_{p}. Let μ\mu  be the Haar measure on p\mathbb{Q}_{p}  with μ(B0(0))=1\mu(B_{0}(0))=1. Denote dμ(x)d\mu(x)  by dxdx. Let Lq(p)L_{q}(\mathbb{Q}_{p})  be the collection of all integrable functions f:pf:\mathbb{Q}_{p}\rightarrow\mathbb{C}  such that p|f(x)|q𝑑x<\int_{\mathbb{Q}_{p}}\lvert f(x)\rvert^{q}dx<\infty. The Fourier transform of a complex-valued function ff  defined on p\mathbb{Q}_{p}  is defined as

f^(ξ):=pf(x)χ(x,ξ)𝑑x.\widehat{f}(\xi):=\int_{\mathbb{Q}_{p}}f(x)\chi(x,\xi)dx.

If EE  is a measurable subset of p\mathbb{Q}_{p}  and 1q<1\leq q<\infty, then fq(E)\lVert f\rVert_{q}(E)  denotes the quantity (E|f(x)|q𝑑x)1/q(\int_{E}\lvert f(x)\rvert^{q}dx)^{1/q}. If q=q=\infty, then f(E)\lVert f\rVert_{\infty}(E)  denotes the essential supremum of ff  over EE.

For the pp-adic analysis related to the mapping p\mathbb{Q}_{p}\rightarrow\mathbb{C}, the operation of differentiation is not defined. An analogy of the differentiation operator is a pseudo-differential operator. The pseudo-differential operator Dα:ϕDαϕD^{\alpha}:\phi\rightarrow D^{\alpha}\phi  is defined [13] by

Dαϕ=fαϕD^{\alpha}\phi=f_{-\alpha}*\phi (2.3)

where fα(x)=|x|pα1Γp(α)f_{\alpha}(x)=\frac{\lvert x\rvert_{p}^{\alpha-1}}{\Gamma_{p}(\alpha)}  with Γp(α)=1pα11pα\Gamma_{p}(\alpha)=\frac{1-p^{\alpha-1}}{1-p^{-\alpha}}.

Remark 2.1.

[13] The derivative DαϕD^{\alpha}\phi, α>0\alpha>0  is given by the expression

(Dαϕ)(x)=p|ξ|pϕ^(ξ)χ(x,ξ)𝑑ξ.(D^{\alpha}\phi)(x)=\int_{\mathbb{Q}_{p}}\lvert\xi\rvert_{p}\widehat{\phi}(\xi)\chi(x,-\xi)d\xi. (2.4)
Remark 2.2.

[13] For α\alpha\in\mathbb{R}  and ap{0}a\in\mathbb{Q}_{p}\setminus\{0\}, Dαχ(a,x)=|a|pαχ(a,x)D^{\alpha}\chi(a,x)=\lvert a\rvert_{p}^{\alpha}\chi(a,x).

Remark 2.3.

[13] For α,γ\alpha\in\mathbb{R},\,\gamma\in\mathbb{Z}, let Φ(x)=δ(|ξ|ppγ)f(ξ)\Phi(x)=\delta(\lvert\xi\rvert_{p}-p^{\gamma})f(\xi). Then

Dα(Φ(x)^)=pγαΦ(x)^.D^{\alpha}(\widehat{\Phi(x)})=p^{\gamma\alpha}\widehat{\Phi(x)}.

A polynomial r(x)r(x)  on p\mathbb{Q}_{p}  is given by

r(x)=c0+c1x++cnxn,xp,r(x)=c_{0}+c_{1}x+\cdots+c_{n}x^{n},\quad x\in\mathbb{Q}_{p},

where each cjpc_{j}\in\mathbb{Q}_{p}. If cn0c_{n}\neq 0, then the degree of r(x)r(x)  is nn. For a nonnegative integer kk, we denote by 𝒫k\mathscr{P}_{k}  the linear span of {r(x):degree of r(x)k}\{r(x):\text{degree of }r(x)\leq k\}. Then 𝒫=k=0𝒫k\mathscr{P}=\bigcup_{k=0}^{\infty}\mathscr{P}_{k}  is the linear space of all polynomials.

Let us consider the set

Ip={a=pγ(a0+a1p++aγ1pγ1):γ,aj{0,1,,p1}}.I_{p}=\{a=p^{-\gamma}(a_{0}+a_{1}p+\cdots+a_{\gamma-1}p^{\gamma-1}):\gamma\in\mathbb{N},\,a_{j}\in\{0,1,\ldots,p-1\}\}.

Then there is a “natural” decomposition of p\mathbb{Q}_{p}  into a union of mutually disjoint discs: p=aIpB0(a)\mathbb{Q}_{p}=\bigcup_{a\in I_{p}}B_{0}(a). So, IpI_{p}  is a “natural set” of shifts for p\mathbb{Q}_{p}.

We denote by l(Ip)l(I_{p})  the linear space of all sequences on IpI_{p}, and by l0(Ip)l_{0}(I_{p})  the linear space of all finitely supported sequences on IpI_{p}.

For a compactly supported function ϕ\phi  on p\mathbb{Q}_{p}  and a sequence bl(Ip)b\in l(I_{p}), the semi-convolution of ϕ\phi  with bb  is defined by

ϕb(x):=αIpϕ(xα)b(α).\phi*^{\prime}b(x):=\sum_{\alpha\in I_{p}}\phi(x-\alpha)b(\alpha). (2.5)

Let S(ϕ)S(\phi)  denote the linear space {ϕb:bl(Ip)}\{\phi*^{\prime}b:b\in l(I_{p})\}. We call S(ϕ)S(\phi)  the shift-invariant space generated by bb.

Define A:ppA:\mathbb{Q}_{p}\rightarrow\mathbb{Q}_{p}  by A(x)=1pxA(x)=\frac{1}{p}x. Then, AA  is an expansive automorphism with modulus, |A|=μ(A(B0(0)))=μ(B1(0))=p\lvert A\rvert=\mu(A(B_{0}(0)))=\mu(B_{1}(0))=p  and A=AA^{*}=A.

Definition 2.1.

[2] A collection of closed spaces VjL2(p),jV_{j}\subset L_{2}(\mathbb{Q}_{p}),\,j\in\mathbb{Z}, is called a multiresolution analysis(MRA) in L2(p)L_{2}(\mathbb{Q}_{p})  if the following axioms hold:

  1. 1.

    VjVj+1V_{j}\subset V_{j+1}  for all jj\in\mathbb{Z};

  2. 2.

    j=Vj\bigcup_{j=-\infty}^{\infty}V_{j}  is dense in L2(p)L_{2}(\mathbb{Q}_{p});

  3. 3.

    j=Vj={0}\bigcap_{j=-\infty}^{\infty}V_{j}=\{0\};

  4. 4.

    f()Vjf(A)Vj+1f(\cdot)\in V_{j}\Leftrightarrow f(A\cdot)\in V_{j+1}  for all jj\in\mathbb{Z};

  5. 5.

    there exists a function ϕV0\phi\in V_{0}  such that {ϕ(a),aIp}\{\phi(\cdot-a),\,a\in I_{p}\}  is an orthonormal basis for V0V_{0}.

The function ϕ\phi  from axiom (5)(5)  is called scaling function. Then we says that a MRA is generated by its scaling function ϕ\phi  (or ϕ\phi  generates the MRA). It follows immediately from axioms (4)(4)  and (5)(5)  that the functions pj/2ϕ(pja),aIpp^{j/2}\phi(p^{-j}\cdot-a),\,a\in I_{p}, form an orthonormal basis for Vj,jV_{j},\,j\in\mathbb{Z}. Let ϕ\phi  be an orthogonal scaling function for a MRA {Vj}j\{V_{j}\}_{j\in\mathbb{Z}}, then

ϕ(x)=aIpα(a)ϕ(p1xa),α(a).\phi(x)=\sum_{a\in I_{p}}\alpha(a)\phi(p^{-1}x-a),\quad\alpha(a)\in\mathbb{C}. (2.6)

Such equations are called refinement equations, and their solutions are called refinable functions.

Generally, a refinement equation (2.6) does not imply the inclusion property V0V1V_{0}\subset V_{1}  because the set of shifts IpI_{p}  does not form a group. Indeed, we need all the functions ϕ(b),bIp\phi(\cdot-b),b\in I_{p}, to belong to the space V1V_{1}, i.e., the identities ϕ(xb)=aIpα(a,b)ϕ(p1xa)\phi(x-b)=\sum_{a\in I_{p}}\alpha(a,b)\phi(p^{-1}x-a)  should be fulfilled for all bIpb\in I_{p}. Since p1b+ap^{-1}b+a  is not in IpI_{p}  in general, we cannot argue that ϕ(xb)\phi(x-b)  belongs to V1V_{1}  for all bIpb\in I_{p}. Thus the refinement equation must be redefined as in the following definition.

Definition 2.2.

[1, 2] If ϕL2(p)\phi\in L_{2}(\mathbb{Q}_{p})  is a refinable function and supp(ϕ)BN(0)\text{supp}(\phi)\subset B_{N}(0), N0N\geq 0, then its refinement equation is

ϕ(x)=k=0pN+11h(kpN+1)ϕ(xpkpN+1),xp,\phi(x)=\sum_{k=0}^{p^{N+1}-1}h\left(\frac{k}{p^{N+1}}\right)\phi\left(\frac{x}{p}-\frac{k}{p^{N+1}}\right),\quad\forall x\in\mathbb{Q}_{p}, (2.7)

with hl0(Ip)h\in l_{0}(I_{p})  such that h(a)=0h(a)=0  for all aIp{k/pN+1:k=0,1,,pN+11}a\in I_{p}\setminus\{k/p^{N+1}:k=0,1,\ldots,p^{N+1}-1\} and

k=0pN+11h(kpN+1)=p.\sum_{k=0}^{p^{N+1}-1}h\left(\frac{k}{p^{N+1}}\right)=p. (2.8)

Taking Fourier transform on both sides of (2.7), we obtain

ϕ^(ξ)=H(A1ξ)ϕ^(A1ξ),ξp,\widehat{\phi}(\xi)=H(A^{-1}\xi)\widehat{\phi}(A^{-1}\xi),\quad\xi\in\mathbb{Q}_{p}, (2.9)

where

H(ξ)=1pk=0pN+11h(kpN+1)χ(kpN+1,ξ),ξp.H(\xi)=\frac{1}{p}\sum_{k=0}^{p^{N+1}-1}h\left(\frac{k}{p^{N+1}}\right)\chi\left(\frac{k}{p^{N+1}},\xi\right),\quad\xi\in\mathbb{Q}_{p}. (2.10)

Denote by 𝒟NM\mathscr{D}_{N}^{M}  the set of all pMp^{M}-periodic functions supported on BN(0)B_{N}(0). Then we have the following results about refinable functions [2].

Theorem 2.1.

A function ϕ𝒟NM,M,N0\phi\in\mathscr{D}_{N}^{M},\,M,N\geq 0, with ϕ^(0)0\widehat{\phi}(0)\neq 0  generates a MRA if and only if

  1. 1.

    ϕ\phi  is refinable;

  2. 2.

    there exists at most pNp^{N}  integers ll  such that 0l<pM+N0\leq l<p^{M+N}  and ϕ^(lpM)0\widehat{\phi}(\frac{l}{p^{M}})\neq 0.

Theorem 2.2.

Let ϕ^\widehat{\phi}  be defined by (2.9), where HH  is the trigonometric polynomial (2.10) with H(0)=1H(0)=1. If H(k)=0H(k)=0  for all k=1,,pN+11k=1,\ldots,p^{N+1}-1  not divisible by pp, then ϕ𝒟N0\phi\in\mathscr{D}_{N}^{0}. If furthermore, |H(k)|=1\lvert H(k)\rvert=1  for all k=1,,pN+11k=1,\ldots,p^{N+1}-1  divisible by pp, then {ϕ(xa),aIp}\{\phi(x-a),\,a\in I_{p}\}  is an orthonormal system. Conversely, if supp ϕ^B0(0)\text{supp }\widehat{\phi}\subset B_{0}(0)  and the system {ϕ(xa),aIp}\{\phi(x-a),\,a\in I_{p}\}  is orthonormal, then |H(k)|=0\lvert H(k)\rvert=0  whenever kk  is not divisible by pp, |H(k)|=1\lvert H(k)\rvert=1  whenever kk  is divisible by pp, k=1,,pN+11k=1,\ldots,p^{N+1}-1, and |ϕ^(x)|=1\lvert\widehat{\phi}(x)\rvert=1  for any xB0(0)x\in B_{0}(0).

Theorem 2.3.

[2] There exists a unique MRA generated by an orthogonal scaling function.

Remark 2.4.

That is all orthogonal scaling functions generate the same Haar MRA.

Suppose we have a p-adic MRA generated using a scaling function ϕ\phi  satisfying the refinement equation (2.7), then the wavelet functions ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1  are in the form

ψj(x)=k=0pN+11hj(kpN+1)ϕ(xpkpN+1),xp,\psi_{j}(x)=\sum_{k=0}^{p^{N+1}-1}h_{j}\left(\frac{k}{p^{N+1}}\right)\phi\left(\frac{x}{p}-\frac{k}{p^{N+1}}\right),\quad\forall x\in\mathbb{Q}_{p}, (2.11)

where the coefficients hj(kpN+1)h_{j}(\frac{k}{p^{N+1}})  are chosen such that

<ψj,ϕ(a)>=0,<ψj,ψk(a)>=δj,kδ0,a,j,k=1,,p1,<\psi_{j},\phi(\cdot-a)>=0,\,\,<\psi_{j},\psi_{k}(\cdot-a)>=\delta_{j,k}\delta_{0,a},\,\,j,k=1,\ldots,p-1, (2.12)

for any aIpa\in I_{p}.
Set

h=1p(h(0),,h(pN+11pN+1)),h=\frac{1}{\sqrt{p}}\left(h(0),\ldots,h\left(\frac{p^{N+1}-1}{p^{N+1}}\right)\right),
hj=1p(hj(0),,hj(pN+11pN+1)),j=1,,p1,h_{j}=\frac{1}{\sqrt{p}}\left(h_{j}(0),\ldots,h_{j}\left(\frac{p^{N+1}-1}{p^{N+1}}\right)\right),\,j=1,\ldots,p-1,

and

S=[0001100001000010].S=\begin{bmatrix}0&0&\cdots&0&1\\ 1&0&\cdots&0&0\\ 0&1&\cdots&0&0\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&1&0\end{bmatrix}.

In order to satisfy (2.12), we need to find hj,j=1,,p1h_{j},\,j=1,\ldots,p-1  such that the matrix

U=(S0h,,SpN1h,S0h1,,SpN1h1,,S0hp1,,SpN1hp1)U=(S^{0}h,\ldots,S^{p^{N}-1}h,S^{0}h_{1},\ldots,S^{p^{N}-1}h_{1},\ldots,S^{0}h_{p-1},\ldots,S^{p^{N}-1}h_{p-1}) (2.13)

is unitary.[3]

Let ϕ\phi  be a compactly supported function in Lq(p)(1q)L_{q}(\mathbb{Q}_{p})(1\leq q\leq\infty). The norm in Lq(p)L_{q}(\mathbb{Q}_{p})  is denoted by q\lVert\cdot\rVert_{q}. For an element fLq(p)f\in L_{q}(\mathbb{Q}_{p})  and a subset GG  of Lq(p)L_{q}(\mathbb{Q}_{p}), the distance from ff  to FF, denoted by distq(f,F)\text{dist}_{q}(f,F), is defined by

distq(f,F):=infgFfgq.\text{dist}_{q}(f,F):=\inf_{g\in F}\lVert f-g\rVert_{q}.

Let S:=S(ϕ)Lq(p)S:=S(\phi)\cap L_{q}(\mathbb{Q}_{p}). For nn\in\mathbb{Z}, let Sn:=g(An1):gSS^{n}:={g(A_{n}^{-1}\cdot):g\in S}, where An(x)=pnx,xpA_{n}(x)=p^{n}x,\,\,x\in\mathbb{Q}_{p}. For a real number k0k\geq 0, we say that S(ϕ)S(\phi)  provides approximation order kk  if for each sufficiently smooth function fLq(p)f\in L_{q}(\mathbb{Q}_{p}), there exists a constant C>0C>0  such that

distq(f,Sn)Cpnk,n{0}.\text{dist}_{q}(f,S^{n})\leq Cp^{-nk},\quad\forall n\in\mathbb{N}\cup\{0\}.

The relation between the approximation order provided by S(ϕ)S(\phi), the order of the Strang–Fix condition and the accuracy of ϕ\phi  are established in the following theorems.

Theorem 2.4.

[8] Let 1q1\leq q\leq\infty, and let ϕ\phi  be a compactly supported function in Lq(p)L_{q}(\mathbb{Q}_{p})  with ϕ^(0)0\widehat{\phi}(0)\neq 0. For every positive integer kk, the following statements are equivalent:

  1. 1.

    S(ϕ)S(\phi)  provides approximation order kk.

  2. 2.

    S(ϕ)S(\phi)  contains 𝒫k1\mathscr{P}_{k-1}.

  3. 3.

    Dμϕ^(pNα)=0,αIp{0},|μ|k1D^{\mu}\widehat{\phi}(p^{N}\alpha)=0,\,\forall\alpha\in I_{p}\setminus\{0\},\,\lvert\mu\rvert\leq k-1.

Definition 2.3.

[8] For a compactly supported function ϕ\phi  on p\mathbb{Q}_{p}, define

N(ϕ)={ξp:ϕ^(ξ)=0}.N(\phi)=\{\xi\in\mathbb{Q}_{p}:\widehat{\phi}(\xi)=0\}.
Theorem 2.5.

[8] Let hh  be a finitely supported sequence on IpI_{p}, satisfying (2.8) and HH  be a function given by (2.10). Let Ω={0,1p,2p,,p1p}\Omega=\{0,\frac{1}{p},\frac{2}{p},\ldots,\frac{p-1}{p}\}. If

DμH(pNA1ω)=0,ωΩ{0},|μ|k1,D^{\mu}H(p^{N}A^{-1}\omega)=0,\,\forall\omega\in\Omega\setminus\{0\},\,\lvert\mu\rvert\leq k-1, (2.14)

then the normalized solution ϕ\phi  of (2.7) has accuracy kk. Conversely, if ϕ\phi  has accuracy kk  and if N(ϕ)(pNA1Ω)=N(\phi)\cap(p^{N}A^{-1}\Omega)=\emptyset, then (2.14) holds true.

3 Vanishing Moments on Euclidean spaces

In this section we recall some facts about vanishing moments on Euclidean spaces.

Let ψ\psi  be a wavelet function on \mathbb{R}. Then we say that ψ\psi  has nn  vanishing moments if

tkψ(t)𝑑t=0, for 0k<n.\int_{-\infty}^{\infty}t^{k}\psi(t)dt=0,\text{ for }0\leq k<n.

A wavelet with nn  vanishing moments is orthogonal to each of the polynomials of degree n1n-1 [9].

The following theorem gives the relationship between the approximation order of the corresponding scaling function and the number of vanishing moments of the wavelets on \mathbb{R}.

Theorem 3.1.

[Theorem 7.4 in Chapter 7 of [9]] Let ψ\psi  and ϕ\phi  be a wavelet and a scaling function that generate an orthogonal basis. Let hh  be the refinement mask for the scaling function ϕ\phi. Suppose that |ψ(x)|=O((1+t2)n21)\lvert\psi(x)\rvert=O((1+t^{2})^{-\frac{n}{2}-1})  and |ϕ(x)|=O((1+t2)n21)\lvert\phi(x)\rvert=O((1+t^{2})^{-\frac{n}{2}-1}). Then the following statements are equivalent:

  1. 1.

    The wavelet ψ\psi  has nn  vanishing moments.

  2. 2.

    ψ^(ω)\widehat{\psi}(\omega)  and its first n1n-1  derivatives are zero at ω=0\omega=0.

  3. 3.

    h^(ω)\widehat{h}(\omega)  and its first n1n-1  derivatives are zero at ω=π\omega=\pi.

  4. 4.

    For any 0k<n0\leq k<n,

    qk(t)=n=nkϕ(tn) is a polynomial of degree k.q_{k}(t)=\sum_{n=-\infty}^{\infty}n^{k}\phi(t-n)\text{ is a polynomial of degree }k. (3.1)

The hypothesis (4)(4)  is called the Strang-Fix condition on \mathbb{R}.

Let MM  be a d×dd\times d  dilation matrix on d\mathbb{R}^{d}  and denote m:=|detM|m:=\lvert\det M\rvert. Let Ω\Omega  be a complete set of representatives of the distinct cosets of the quotient group d/Md\mathbb{Z}^{d}/M\mathbb{Z}^{d}. It is obvious that the cardinality of Ω\Omega  is equal to mm. Without loss of generality we assume that 0Ω0\in\Omega.

For any positive integer kk, a compactly supported function fL2(d)f\in L_{2}(\mathbb{R}^{d})  has kk  vanishing moments if

dp(x)f(x)𝑑x=0,for all p𝒫k,\int_{\mathbb{R}^{d}}p(x)f(x)dx=0,\quad\text{for all }p\in\mathscr{P}_{k},

where 𝒫k\mathscr{P}_{k}  denotes the set of all polynomials of degree less than kk.

Let l0(d)l_{0}(\mathbb{Z}^{d})  denotes the space of all finitely supported sequences on d\mathbb{Z}^{d}. Then a sequence bl0(d)b\in l_{0}(\mathbb{Z}^{d})  has kk  discrete vanishing moments if it satisfies the following equalities

γdb(γ)γj=0,for any j+d,|j|=j1++jd<k,\sum_{\gamma\in\mathbb{Z}^{d}}b(\gamma)\gamma^{j}=0,\quad\text{for any }j\in\mathbb{Z}_{+}^{d},\,\,\lvert j\rvert=j_{1}+\cdots+j_{d}<k,

where γj=γ1j1γdjd\gamma^{j}=\gamma_{1}^{j_{1}}\ldots\gamma_{d}^{j_{d}}.

Proposition 3.1.

[10] Given a multiresolution analsysis on d\mathbb{R}^{d}, with m1m-1  wavelets ψϵ,ϵΩ{0}\psi_{\epsilon},\epsilon\in\Omega\setminus\{0\}. Then ψϵ,ϵΩ{0}\psi_{\epsilon},\epsilon\in\Omega\setminus\{0\}, have kk  vanishing moments if and only if the corresponding wavelet filters {hϵ(γ)},ϵΩ{0}\{h_{\epsilon}(\gamma)\},\epsilon\in\Omega\setminus\{0\}, have kk  discrete vanishing moments.

A finitely supported sequence hh  on d\mathbb{Z}^{d}  satisfies the sum rules [14] of order kk  if

γdh(ϵ+M(γ))p(ϵ+M(γ))=γdh(M(γ))p(M(γ))\sum_{\gamma\in\mathbb{Z}^{d}}h(\epsilon+M(\gamma))p(\epsilon+M(\gamma))=\sum_{\gamma\in\mathbb{Z}^{d}}h(M(\gamma))p(M(\gamma))

for all ϵΩ,p𝒫k\epsilon\in\Omega,\,p\in\mathscr{P}_{k}.

The following proposition gives the relationship between the order of sum rules and the number of discrete vanishing moments on d\mathbb{R}^{d}.

Proposition 3.2.

[10] Let hl0(d)h\in l_{0}(\mathbb{Z}^{d})  satisfies the sum rules of order kk  and γdh(γ)=2d\sum_{\gamma\in\mathbb{Z}^{d}}h(\gamma)=2^{d}. If bl0(d)b\in l_{0}(\mathbb{Z}^{d})  satisfies γdb(γ)h(γM(β))=0\sum_{\gamma\in\mathbb{Z}^{d}}b(\gamma)h(\gamma-M(\beta))=0, for any βd\beta\in\mathbb{Z}^{d}, then bb  has kk  discrete vanishing moments.

If the refinement mask hh  of the scaling function ϕ\phi  satisfies the sum rule of order kk, then the corresponding wavelet filters hϵh_{\epsilon}  satisfies

γdhϵ(γ)h(γM(β))=0,for any βd,ϵΩ{0}.\sum_{\gamma\in\mathbb{Z}^{d}}h_{\epsilon}(\gamma)h(\gamma-M(\beta))=0,\quad\text{for any }\beta\in\mathbb{Z}^{d},\,\epsilon\in\Omega\setminus\{0\}.

Thus, by Propositions 3.1 and 3.2, the corresponding wavelets ψϵ\psi_{\epsilon}  has vanishing moments of order kk, for each ϵΩ{0}\epsilon\in\Omega\setminus\{0\}.

4 pp-Vanishing Moments on p\mathbb{Q}_{p}

This section gives a description of vanishing moments and discrete vanishing moments on p\mathbb{Q}_{p}.

Definition 4.1.

For any positive integer kk, a compactly supported function ff  in L2(p)L_{2}(\mathbb{Q}_{p})  is said to have kkpp-vanishing moments if

p|x|pμf(x)𝑑x=0,for all 0μ<k.\int_{\mathbb{Q}_{p}}\lvert x\rvert_{p}^{\mu}f(x)dx=0,\quad\text{for all }0\leq\mu<k. (4.1)
Theorem 4.1.

Let ff  be a compactly supported function in L2(p)L_{2}(\mathbb{Q}_{p}). Suppose that f^\widehat{f}  is kk  times pseudo-differentiable. Then ff  has kk pp-vanishing moments if and only if Dμf^(0)=0, for all 0μ<kD^{\mu}\widehat{f}(0)=0,\text{ for all }0\leq\mu<k.

Proof.

From the definition of the pseudo-differential operator DμD^{\mu}  we have,

(Dμf)(x)=p|ξ|pμf^(ξ)χ(x,ξ)𝑑ξ,μ>0.(D^{\mu}f)(x)=\int_{\mathbb{Q}_{p}}\lvert\xi\rvert_{p}^{\mu}\widehat{f}(\xi)\chi(x,-\xi)d\xi,\qquad\mu>0.

Thus we have,

(Dμf^)(ξ)=p|x|pμf(x)χ(ξ,x)𝑑x,μ>0.(D^{\mu}\widehat{f})(\xi)=\int_{\mathbb{Q}_{p}}\lvert x\rvert_{p}^{\mu}f(x)\chi(\xi,-x)dx,\qquad\mu>0.

Then,

(Dμf^)(0)=p|x|pμf(x)𝑑x,μ>0.(D^{\mu}\widehat{f})(0)=\int_{\mathbb{Q}_{p}}\lvert x\rvert_{p}^{\mu}f(x)dx,\qquad\mu>0.

Hence, ff  has kk pp-vanishing moments if and only if Dμf^(0)=0,  0μ<kD^{\mu}\widehat{f}(0)=0,\,\forall\,\,0\leq\mu<k. ∎

Definition 4.2.

A sequence bl0(Ip)b\in l_{0}(I_{p})  has kk  discrete pp-vanishing moments if it satisfies the equalities

aIpb(a)|a|pμ=0,for all 0μ<k.\sum_{a\in I_{p}}b(a)\lvert a\rvert_{p}^{\mu}=0,\quad\text{for all }0\leq\mu<k. (4.2)
Theorem 4.2.

Given a multiresolution analsysis on p\mathbb{Q}_{p}, with p1p-1  wavelets ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1. Then ψj\psi_{j}, j=1,,p1j=1,\ldots,p-1, have kkpp-vanishing moments if and only if the corresponding wavelet filters hj,j=1,,p1h_{j},\,j=1,\ldots,p-1, have kk  discrete pp-vanishing moments.

Proof.

From Theorem 4.1, ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1, have kkpp-vanishing moments if and only if Dμψj^(0)=0, for all 0μ<k,j=1,,p1D^{\mu}\widehat{\psi_{j}}(0)=0,\text{ for all }0\leq\mu<k,\,j=1,\ldots,p-1. By the definition of wavelets (2.11), ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1  are of the form,

ψj(x)=k=0pN+11hj(kpN+1)ϕ(xpkpN+1),xp.\psi_{j}(x)=\sum_{k=0}^{p^{N+1}-1}h_{j}\left(\frac{k}{p^{N+1}}\right)\phi\left(\frac{x}{p}-\frac{k}{p^{N+1}}\right),\quad x\in\mathbb{Q}_{p}.

Taking the Fourier transform on both sides,

ψ^j(ξ)=Hj(T1ξ)ϕ^(T1ξ),ξp,\widehat{\psi}_{j}(\xi)=H_{j}(T^{-1}\xi)\widehat{\phi}(T^{-1}\xi),\quad\xi\in\mathbb{Q}_{p}, (4.3)

where

Hj(ξ)=1pk=0pN+11hj(kpN+1)χ(kpN+1,ξ),ξp,j=1,,p1.H_{j}(\xi)=\frac{1}{p}\sum_{k=0}^{p^{N+1}-1}h_{j}\left(\frac{k}{p^{N+1}}\right)\chi\left(\frac{k}{p^{N+1}},\xi\right),\quad\xi\in\mathbb{Q}_{p},\,j=1,\ldots,p-1. (4.4)

Thus, Dμψj^(0)=0, for all 0μ<k,j=1,,p1D^{\mu}\widehat{\psi_{j}}(0)=0,\text{ for all }0\leq\mu<k,\,j=1,\ldots,p-1  if and only if

DμHj(0)=0, for all 0μ<k,j=1,,p1.D^{\mu}H_{j}(0)=0,\text{ for all }0\leq\mu<k,\,j=1,\ldots,p-1.

That is, if and only if

k=0pN+11hj(kpN+1)|kpN+1|pμ=0, for all 0μ<k,j=1,,p1.\sum_{k=0}^{p^{N+1}-1}h_{j}\left(\frac{k}{p^{N+1}}\right)\left\lvert\frac{k}{p^{N+1}}\right\rvert_{p}^{\mu}=0,\text{ for all }0\leq\mu<k,\,j=1,\ldots,p-1.

i.e., if and only if each hj,j=1,,p1h_{j},\,j=1,\ldots,p-1, has kk  discrete pp-vanishing moments. ∎

Theorem 4.3.

Let ϕL2(p)\phi\in L_{2}(\mathbb{Q}_{p})  be a scaling function that generates a MRA and supp(ϕ)B0(0)\text{supp}(\phi)\subset B_{0}(0). Then the corresponding refinement mask of ϕ\phi  is of the form {h(kp)}\left\{h\left(\frac{k}{p}\right)\right\}  with h(kp)=1, for all k=0,1,,p1h\left(\frac{k}{p}\right)=1,\text{ for all }k=0,1,\ldots,p-1. Moreover, ϕ\phi  has accuracy 1.

Proof.

Suppose that the scaling function ϕ\phi  that generates an MRA is given by

ϕ(x)=k=0p1h(kp)ϕ(xpkp).\phi(x)=\sum_{k=0}^{p-1}h\left(\frac{k}{p}\right)\phi\left(\frac{x}{p}-\frac{k}{p}\right).

Then by (2.10),

H(ξ)=1pk=0p1h(kp)χ(kp,ξ).H(\xi)=\frac{1}{p}\sum_{k=0}^{p-1}h\left(\frac{k}{p}\right)\chi\left(\frac{k}{p},\xi\right).

Now by theorem 2.2, H(0)=1H(0)=1  and H(k)=0H(k)=0  for all k=1,,p1k=1,\ldots,p-1. Also, we have k=0p1h(kp)=p\sum_{k=0}^{p-1}h\left(\frac{k}{p}\right)=p. Thus we have a system of pp  equations Uh=BUh=B, where

U=1p[11111χ(1p,1)χ(2p,1)χ(p1p,1)1χ(1p,2)χ(2p,2)χ(p1p,2)1χ(1p,p1)χ(2p,p1)χ(p1p,p1)],U=\frac{1}{\sqrt{p}}\begin{bmatrix}1&1&1&\cdots&1\\ 1&\chi\left(\frac{1}{p},1\right)&\chi\left(\frac{2}{p},1\right)&\cdots&\chi\left(\frac{p-1}{p},1\right)\\ 1&\chi\left(\frac{1}{p},2\right)&\chi\left(\frac{2}{p},2\right)&\cdots&\chi\left(\frac{p-1}{p},2\right)\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&\chi\left(\frac{1}{p},p-1\right)&\chi\left(\frac{2}{p},p-1\right)&\cdots&\chi\left(\frac{p-1}{p},p-1\right)\\ \end{bmatrix},
h=[h(0)h(1p)h(2p)h(p1p)] and B=[p000]h=\begin{bmatrix}h(0)\\ h\left(\frac{1}{p}\right)\\ h\left(\frac{2}{p}\right)\\ \vdots\\ h\left(\frac{p-1}{p}\right)\end{bmatrix}\text{ and }B=\begin{bmatrix}\sqrt{p}\\ 0\\ 0\\ \vdots\\ 0\end{bmatrix}

Since χ(kp,l),k,l=0,1,,p1\chi\left(\frac{k}{p},l\right),\,k,l=0,1,\ldots,p-1  are the pthp^{\text{th}}  roots of unity, the matrix UU  is unitary. Also, UU  is symmetric. Hence U1=U¯U^{-1}=\bar{U}. Then Uh=BUh=B  has a solution h=U1Bh=U^{-1}B. That is,

h\displaystyle h =[h(0)h(1p)h(2p)h(p1p)]\displaystyle=\begin{bmatrix}h(0)\\ h\left(\frac{1}{p}\right)\\ h\left(\frac{2}{p}\right)\\ \vdots\\ h\left(\frac{p-1}{p}\right)\end{bmatrix}
=1p[11111χ(1p,1)¯χ(2p,1)¯χ(p1p,1)¯1χ(1p,2)¯χ(2p,2)¯χ(p1p,2)¯1χ(1p,p1)¯χ(2p,p1)¯χ(p1p,p1)¯][p000]\displaystyle=\frac{1}{\sqrt{p}}\begin{bmatrix}1&1&1&\cdots&1\\ 1&\overline{\chi\left(\frac{1}{p},1\right)}&\overline{\chi\left(\frac{2}{p},1\right)}&\cdots&\overline{\chi\left(\frac{p-1}{p},1\right)}\\ 1&\overline{\chi\left(\frac{1}{p},2\right)}&\overline{\chi\left(\frac{2}{p},2\right)}&\cdots&\overline{\chi\left(\frac{p-1}{p},2\right)}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&\overline{\chi\left(\frac{1}{p},p-1\right)}&\overline{\chi\left(\frac{2}{p},p-1\right)}&\cdots&\overline{\chi\left(\frac{p-1}{p},p-1\right)}\\ \end{bmatrix}\begin{bmatrix}\sqrt{p}\\ 0\\ 0\\ \vdots\\ 0\end{bmatrix}

Hence h(kp)=1h\left(\frac{k}{p}\right)=1, for all k=0,1,,p1k=0,1,\ldots,p-1.

That is, H(ξ)=1pk=0p1χ(kp,ξ)H(\xi)=\frac{1}{p}\sum_{k=0}^{p-1}\chi(\frac{k}{p},\xi). Since k=0p1χ(kp,ξ)=0, for all ξ=1,2,,p1\sum_{k=0}^{p-1}\chi(\frac{k}{p},\xi)=0,\text{ for all }\xi=1,2,\ldots,p-1, we have H(j)=0, for all ξ=1,2,,p1H(j)=0,\text{ for all }\xi=1,2,\ldots,p-1  and for μ>1\mu>1,

DμH(ξ)=1pk=0p1|kp|pμχ(kp,ξ)=pμ1k=1p1χ(kp,ξ).D^{\mu}H(\xi)=\frac{1}{p}\sum_{k=0}^{p-1}\left\lvert\frac{k}{p}\right\rvert_{p}^{\mu}\chi(\frac{k}{p},\xi)=p^{\mu-1}\sum_{k=1}^{p-1}\chi(\frac{k}{p},\xi).

But k=1p1χ(kp,ξ)0, for all ξ=1,2,,p1\sum_{k=1}^{p-1}\chi(\frac{k}{p},\xi)\neq 0,\text{ for all }\xi=1,2,\ldots,p-1,DμH(T1ω)0D^{\mu}H(T^{-1}\omega)\neq 0, for all ω{1p,2p,,p1p},μ0\omega\in\{\frac{1}{p},\frac{2}{p},\ldots,\frac{p-1}{p}\},\,\mu\geq 0. Thus by theorem 2.5, the accuracy of ϕ\phi  is 1. ∎

Remark 4.1.

This scaling function ϕ\phi  is called the Haar scaling function.

Theorem 4.4.

Let ϕ\phi  be a Haar scaling function and ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1  be the corresponding wavelets on p\mathbb{Q}_{p}. Then ψj\psi_{j}  has only 11pp-vanishing moment for each j=1,,p1j=1,\ldots,p-1.

Proof.

Here ψj(x)=k=0p1hj(kp)ϕ(xpkp)\psi_{j}(x)=\sum_{k=0}^{p-1}h_{j}\left(\frac{k}{p}\right)\phi\left(\frac{x}{p}-\frac{k}{p}\right), where hjh_{j}  are chosen so that the matrix UU  in (2.13) is unitary. That is hjh_{j}  satisfies the condition

k=0p1h(kp)hj(kp)¯=0, for all j=1,,p1.\sum_{k=0}^{p-1}h\left(\frac{k}{p}\right)\overline{h_{j}\left(\frac{k}{p}\right)}=0,\,\text{ for all }j=1,\ldots,p-1. (4.5)

Since ϕ\phi  is the Haar scaling function, h(kp)=1h\left(\frac{k}{p}\right)=1, for all k=0,1,,p1k=0,1,\ldots,p-1. Thus from (4.5), we can conclude that

k=0p1hj(kp)=0,j=1,,p1.\sum_{k=0}^{p-1}h_{j}\left(\frac{k}{p}\right)=0,\,\forall j=1,\ldots,p-1.

Suppose that ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1  have kkpp-vanishing moments for k>1k>1. Then k=0p1hj(kp)|kp|pμ=0, 0μ<k\sum_{k=0}^{p-1}h_{j}\left(\frac{k}{p}\right)\left\lvert\frac{k}{p}\right\rvert_{p}^{\mu}=0,\,0\leq\mu<k. That is,

k=0p1hj(kp)=0 and pμk=1p1hj(kp)=0,j=1,,p1, 0<μ<k,\sum_{k=0}^{p-1}h_{j}\left(\frac{k}{p}\right)=0\text{ and }p^{\mu}\sum_{k=1}^{p-1}h_{j}\left(\frac{k}{p}\right)=0,\,\forall j=1,\ldots,p-1,\,0<\mu<k,

which is possible only when hj(0)=0h_{j}(0)=0, for all j=1,,p1j=1,\ldots,p-1.

Since the matrix UU  in (2.13) is unitary, its rows are orthonormal. That is |h(0)|2+j=1p1|hj(0)|2=p\lvert h(0)\rvert^{2}+\sum_{j=1}^{p-1}\lvert h_{j}(0)\rvert^{2}=p. This is a contradiction, since hj(0)=0h_{j}(0)=0, for all j=1,,p1j=1,\ldots,p-1.

Hence ψj\psi_{j}  has only 11pp-vanishing moment for each j=1,,p1j=1,\ldots,p-1. ∎

Remark 4.2.
  1. 1.

    If ϕ\phi  be an orthogonal scaling function that generates a MRA and supp(ϕ)BN(0),N>0\text{supp}(\phi)\subset B_{N}(0),\,N>0. Then, by theorem 2.2, ϕ\phi  doesn’t satisfies the sum rules and ϕ\phi  has no accuracy.

  2. 2.

    Let ϕ\phi  be a scaling function that generates a MRA and supp(ϕ)B0(0)\text{supp}(\phi)\subset B_{0}(0). By theorems 4.3 and 4.4, if ϕ\phi  has accuracy 1 then the corresponding wavelet has 1 pp-vanishing moment. But this cannot be true for scaling functions having support BN(0),N>0\subset B_{N}(0),\,N>0.

Example 4.1.

Let p=3,N=1p=3,\,N=1. Set H(k)=0H(k)=0  if kk  is not divisible by 33, and H(0)=1,H(3)=H(6)=1H(0)=1,\,H(3)=H(6)=-1. Then

ϕ^(ξ)={1,|ξ|313,1,|ξ1|313,1,|ξ2|313,0,|ξ|33.\widehat{\phi}(\xi)=\begin{cases}1,&\lvert\xi\rvert_{3}\leq\frac{1}{3},\\ -1,&\lvert\xi-1\rvert_{3}\leq\frac{1}{3},\\ -1,&\lvert\xi-2\rvert_{3}\leq\frac{1}{3},\\ 0,&\lvert\xi\rvert_{3}\geq 3.\end{cases}

Thus, the corresponding refinement equation is ϕ(x)=k=08h(k/9)ϕ(x/3k/9)\phi(x)=\sum_{k=0}^{8}h(k/9)\phi(x/3-k/9)  where h(0)=h(3/9)=h(6/9)=1/3h(0)=h(3/9)=h(6/9)=-1/3, h(1/9)=h(2/9)=h(4/9)=h(5/9)=h(7/9)=h(8/9)=2/3h(1/9)=h(2/9)=h(4/9)=h(5/9)=h(7/9)=h(8/9)=2/3. That is

ϕ(x)={13,|x|31,23,|x13|31,23,|x23|31,0,|ξ|39.\phi(x)=\begin{cases}\frac{-1}{3},&\lvert x\rvert_{3}\leq 1,\\ \frac{2}{3},&\lvert x-\frac{1}{3}\rvert_{3}\leq 1,\\ \frac{2}{3},&\lvert x-\frac{2}{3}\rvert_{3}\leq 1,\\ 0,&\lvert\xi\rvert_{3}\geq 9.\end{cases} (4.6)

The corresponding wavelet functions are

ψ1=32(ϕ(x3)ϕ(x313))\psi_{1}=\sqrt{\frac{3}{2}}\left(\phi\left(\frac{x}{3}\right)-\phi\left(\frac{x}{3}-\frac{1}{3}\right)\right)

and

ψ2=12(ϕ(x3)+ϕ(x313)2ϕ(x323)).\psi_{2}=\frac{1}{\sqrt{2}}\left(\phi\left(\frac{x}{3}\right)+\phi\left(\frac{x}{3}-\frac{1}{3}\right)-2\phi\left(\frac{x}{3}-\frac{2}{3}\right)\right).

That is

ψ1(x)={32,|x|313,32,|x1|313,0,|x2|313,0,|x|33 and ψ2(x)={12,|x|313,12,|x1|313,2,|x2|313,0,|x|33.\psi_{1}(x)=\begin{cases}-\sqrt{\frac{3}{2}},&\lvert x\rvert_{3}\leq\frac{1}{3},\\ \sqrt{\frac{3}{2}},&\lvert x-1\rvert_{3}\leq\frac{1}{3},\\ -0,&\lvert x-2\rvert_{3}\leq\frac{1}{3},\\ 0,&\lvert x\rvert_{3}\geq 3\\ \end{cases}\text{ and }\psi_{2}(x)=\begin{cases}-\frac{1}{\sqrt{2}},&\lvert x\rvert_{3}\leq\frac{1}{3},\\ -\frac{1}{\sqrt{2}},&\lvert x-1\rvert_{3}\leq\frac{1}{3},\\ \sqrt{2},&\lvert x-2\rvert_{3}\leq\frac{1}{3},\\ 0,&\lvert x\rvert_{3}\geq 3\\ \end{cases}.

Here ϕ\phi  has no accuracy. But ψ1\psi_{1}  and ψ2\psi_{2}  have 11pp-vanishing moment.

5 pp-Vanishing Moments of Haar-type Wavelets

In contrast to the real case, the wavelet basis generated by the Haar MRA in the pp-adic case is not unique. In [4], the authors provides an explicit description about the family of wavelet functions generated by the Haar MRA in L2(p)L_{2}(\mathbb{Q}_{p}).

Theorem 5.1.

[4] Let ϕ=1B0(0)\phi=1_{B_{0}(0)}  be the indicator function of B0(0)B_{0}(0)  and

ψν(0)(x)=r=0p1e2πiνr/pϕ(xprp),xp,ν=1,,p1.\psi_{\nu}^{(0)}(x)=\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\phi\left(\frac{x}{p}-\frac{r}{p}\right),\,x\in\mathbb{Q}_{p},\,\nu=1,\ldots,p-1.

Then the set of all compactly supported wavelet functions on p\mathbb{Q}_{p}  are given by

ψj(x)=ν=1p1k=0ps1αν,kjψν(0)(xkps),xp,j=1,,p1,\psi_{j}(x)=\sum_{\nu=1}^{p-1}\sum_{k=0}^{p^{s}-1}\alpha_{\nu,k}^{j}\psi_{\nu}^{(0)}\left(x-\frac{k}{p^{s}}\right),\,x\in\mathbb{Q}_{p},\,j=1,\ldots,p-1, (5.1)

where s=0,1,2,s=0,1,2,\ldots, and

αν,kj={psm=0ps1e2πiνp+mpskσjmzjj, if j=ν,p2sm=0ps1n=0ps1e2πiνp+mpsk(1e2πijνpe2πijνp+mnps1)σνmzνj, if jν,\alpha_{\nu,k}^{j}=\begin{cases}-p^{-s}\sum_{m=0}^{p^{s}-1}e^{-2\pi i\frac{\frac{-\nu}{p}+m}{p^{s}}k}\sigma_{jm}z_{jj},&\text{ if }j=\nu,\\ p^{-2s}\sum_{m=0}^{p^{s}-1}\sum_{n=0}^{p^{s}-1}e^{-2\pi i\frac{\frac{-\nu}{p}+m}{p^{s}}k}\left(\frac{1-e^{2\pi i\frac{j-\nu}{p}}}{e^{2\pi i\frac{\frac{j-\nu}{p}+m-n}{p^{s}}}-1}\right)\sigma_{\nu m}z_{\nu j},&\text{ if }j\neq\nu,\end{cases} (5.2)

|σjm|=1\lvert\sigma_{jm}\rvert=1  and zjνz_{j\nu}  are entries of a (p1)×(p1)(p-1)\times(p-1)  unitary matrix ZZ.

Example 5.1.

Let s=2s=2  and p=2p=2. Then by (5.1), the wavelet function is given by

ψ1(x)=k=03α1,k1ψ1(0)(xk4),xp.\psi_{1}(x)=\sum_{k=0}^{3}\alpha_{1,k}^{1}\psi_{1}^{(0)}\left(x-\frac{k}{4}\right),\,x\in\mathbb{Q}_{p}.

That is

ψ1(x)=α1,01(ϕ(x2)ϕ(x248))+α1,11(ϕ(x218)ϕ(x258))+α1,21(ϕ(x228)ϕ(x268))+α1,31(ϕ(x238)ϕ(x278)).\begin{split}\psi_{1}(x)=\,&\alpha_{1,0}^{1}\left(\phi\left(\frac{x}{2}\right)-\phi\left(\frac{x}{2}-\frac{4}{8}\right)\right)+\alpha_{1,1}^{1}\left(\phi\left(\frac{x}{2}-\frac{1}{8}\right)-\phi\left(\frac{x}{2}-\frac{5}{8}\right)\right)\\ &+\alpha_{1,2}^{1}\left(\phi\left(\frac{x}{2}-\frac{2}{8}\right)-\phi\left(\frac{x}{2}-\frac{6}{8}\right)\right)+\alpha_{1,3}^{1}\left(\phi\left(\frac{x}{2}-\frac{3}{8}\right)-\phi\left(\frac{x}{2}-\frac{7}{8}\right)\right).\end{split}

Here h1(0)=α1,01,h1(1/8)=α1,11,h1(2/8)=α1,21,h1(3/8)=α1,31,h1(4/8)=α1,01,h1(5/8)=α1,11,h1(6/8)=α1,21,h1(7/8)=α1,31h_{1}(0)=\alpha_{1,0}^{1},\,h_{1}(1/8)=\alpha_{1,1}^{1},\,h_{1}(2/8)=\alpha_{1,2}^{1},\,h_{1}(3/8)=\alpha_{1,3}^{1},\,h_{1}(4/8)=-\alpha_{1,0}^{1},\,h_{1}(5/8)=-\alpha_{1,1}^{1},\,h_{1}(6/8)=-\alpha_{1,2}^{1},\,h_{1}(7/8)=-\alpha_{1,3}^{1}.

Then we have k=07h1(k/8)=0\sum_{k=0}^{7}h_{1}(k/8)=0. That is ψ1\psi_{1}  has 11pp-vanishing moment. Also,

k=07|k8|2μh1(k8)=\displaystyle\sum_{k=0}^{7}\left\lvert\frac{k}{8}\right\rvert_{2}^{\mu}h_{1}\left(\frac{k}{8}\right)= 23μ(h1(18)+h1(38)+h1(58)+h1(78))\displaystyle 2^{3\mu}\left(h_{1}\left(\frac{1}{8}\right)+h_{1}\left(\frac{3}{8}\right)+h_{1}\left(\frac{5}{8}\right)+h_{1}\left(\frac{7}{8}\right)\right)
+22μ(h1(28)+h1(68))+2μh1(48)\displaystyle+2^{2\mu}\left(h_{1}\left(\frac{2}{8}\right)+h_{1}\left(\frac{6}{8}\right)\right)+2^{\mu}h_{1}\left(\frac{4}{8}\right)
=\displaystyle= 8μ(α1,11+α1,31α1,11α1,31)+4μ(α1,21α1,21)2μα1,01\displaystyle 8^{\mu}(\alpha_{1,1}^{1}+\alpha_{1,3}^{1}-\alpha_{1,1}^{1}-\alpha_{1,3}^{1})+4^{\mu}(\alpha_{1,2}^{1}-\alpha_{1,2}^{1})-2^{\mu}\alpha_{1,0}^{1}
=\displaystyle= 2μα1,01.\displaystyle-2^{\mu}\alpha_{1,0}^{1}.

Thus

k=07|k8|2μh1(k8)=0h1(0)=0,μ>0.\sum_{k=0}^{7}\left\lvert\frac{k}{8}\right\rvert_{2}^{\mu}h_{1}\left(\frac{k}{8}\right)=0\Leftrightarrow h_{1}(0)=0,\,\mu>0.

That is ψ1\psi_{1}  has infinite number of pp-vanishing moments if and only if h1(0)=0h_{1}(0)=0.

Example 5.2.

Let s=1s=1  and p=3p=3. Then by (5.1), the wavelet function is given by

ψj(x)=ν=12k=02αν,kjψν(0)(xk3),xp,\psi_{j}(x)=\sum_{\nu=1}^{2}\sum_{k=0}^{2}\alpha_{\nu,k}^{j}\psi_{\nu}^{(0)}\left(x-\frac{k}{3}\right),\,x\in\mathbb{Q}_{p},

where

ψ1(0)(x)=ϕ(x3)+1+i32ϕ(x313)+1i32ϕ(x323),\psi_{1}^{(0)}(x)=\phi\left(\frac{x}{3}\right)+\frac{-1+i\sqrt{3}}{2}\phi\left(\frac{x}{3}-\frac{1}{3}\right)+\frac{-1-i\sqrt{3}}{2}\phi\left(\frac{x}{3}-\frac{2}{3}\right),
ψ2(0)(x)=ϕ(x3)+1i32ϕ(x313)+1+i32ϕ(x323).\psi_{2}^{(0)}(x)=\phi\left(\frac{x}{3}\right)+\frac{-1-i\sqrt{3}}{2}\phi\left(\frac{x}{3}-\frac{1}{3}\right)+\frac{-1+i\sqrt{3}}{2}\phi\left(\frac{x}{3}-\frac{2}{3}\right).

That is,

hj(0)=(α1,0j+α2,0j),hj(19)=(α1,1j+α2,1j),hj(29)=(α1,2j+α2,2j),h_{j}(0)=(\alpha_{1,0}^{j}+\alpha_{2,0}^{j}),\,h_{j}\left(\frac{1}{9}\right)=(\alpha_{1,1}^{j}+\alpha_{2,1}^{j}),\,h_{j}\left(\frac{2}{9}\right)=(\alpha_{1,2}^{j}+\alpha_{2,2}^{j}),
hj(39)=(α1,0j1+i32+α2,0j1i32),h_{j}\left(\frac{3}{9}\right)=\left(\alpha_{1,0}^{j}\frac{-1+i\sqrt{3}}{2}+\alpha_{2,0}^{j}\frac{-1-i\sqrt{3}}{2}\right),
hj(49)=(α1,1j1+i32+α2,1j1i32),h_{j}\left(\frac{4}{9}\right)=\left(\alpha_{1,1}^{j}\frac{-1+i\sqrt{3}}{2}+\alpha_{2,1}^{j}\frac{-1-i\sqrt{3}}{2}\right),
hj(59)=(α1,2j1+i32+α2,2j1i32),h_{j}\left(\frac{5}{9}\right)=\left(\alpha_{1,2}^{j}\frac{-1+i\sqrt{3}}{2}+\alpha_{2,2}^{j}\frac{-1-i\sqrt{3}}{2}\right),
hj(69)=(α1,0j1i32+α2,0j1+i32),h_{j}\left(\frac{6}{9}\right)=\left(\alpha_{1,0}^{j}\frac{-1-i\sqrt{3}}{2}+\alpha_{2,0}^{j}\frac{-1+i\sqrt{3}}{2}\right),
hj(79)=(α1,1j1i32+α2,1j1+i32),h_{j}\left(\frac{7}{9}\right)=\left(\alpha_{1,1}^{j}\frac{-1-i\sqrt{3}}{2}+\alpha_{2,1}^{j}\frac{-1+i\sqrt{3}}{2}\right),
hj(89)=(α1,2j1i32+α2,2j1+i32).h_{j}\left(\frac{8}{9}\right)=\left(\alpha_{1,2}^{j}\frac{-1-i\sqrt{3}}{2}+\alpha_{2,2}^{j}\frac{-1+i\sqrt{3}}{2}\right).

Then we have k=08hj(k/9)=0\sum_{k=0}^{8}h_{j}(k/9)=0. That is ψj\psi_{j}  has 11pp-vanishing moment. Also,

k=08|k9|3μ\displaystyle\sum_{k=0}^{8}\left\lvert\frac{k}{9}\right\rvert_{3}^{\mu} hj(k9)\displaystyle h_{j}\left(\frac{k}{9}\right)
=32μ(hj(19)+hj(29)+hj(49)+hj(59)+hj(79)+hj(89))\displaystyle=3^{2\mu}\left(h_{j}\left(\frac{1}{9}\right)+h_{j}\left(\frac{2}{9}\right)+h_{j}\left(\frac{4}{9}\right)+h_{j}\left(\frac{5}{9}\right)+h_{j}\left(\frac{7}{9}\right)+h_{j}\left(\frac{8}{9}\right)\right)
+3μ(hj(39)+hj(69))\displaystyle+3^{\mu}\left(h_{j}\left(\frac{3}{9}\right)+h_{j}\left(\frac{6}{9}\right)\right)
=\displaystyle= 3μ(α1,0j+α2,0j).\displaystyle-3^{\mu}(\alpha_{1,0}^{j}+\alpha_{2,0}^{j}).

Thus

k=08|k9|3μhj(k9)=0hj(0)=0,μ>0,j=1,2.\sum_{k=0}^{8}\left\lvert\frac{k}{9}\right\rvert_{3}^{\mu}h_{j}\left(\frac{k}{9}\right)=0\Leftrightarrow h_{j}(0)=0,\,\mu>0,\,j=1,2.

That is ψj\psi_{j}  has infinite number of pp-vanishing moments if and only if hj(0)=0h_{j}(0)=0.

Remark 5.1.

We can rewrite (5.1) as

ψj(x)\displaystyle\psi_{j}(x) =ν=1p1k=0ps1αν,kjψν(0)(xkps)\displaystyle=\sum_{\nu=1}^{p-1}\sum_{k=0}^{p^{s}-1}\alpha_{\nu,k}^{j}\psi_{\nu}^{(0)}\left(x-\frac{k}{p^{s}}\right)
=ν=1p1k=0ps1αν,kjr=0p1e2πiνr/pϕ(xpkps+1rp)\displaystyle=\sum_{\nu=1}^{p-1}\sum_{k=0}^{p^{s}-1}\alpha_{\nu,k}^{j}\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\phi\left(\frac{x}{p}-\frac{k}{p^{s+1}}-\frac{r}{p}\right)
=l=0ps+11hj(lps+1)ϕ(xplps+1),\displaystyle=\sum_{l=0}^{p^{s+1}-1}h_{j}\left(\frac{l}{p^{s+1}}\right)\phi\left(\frac{x}{p}-\frac{l}{p^{s+1}}\right),

where

hj(lps+1)=hj(k+rpsps+1)=ν=1p1αν,kje2πiνr/p,h_{j}\left(\frac{l}{p^{s+1}}\right)=h_{j}\left(\frac{k+rp^{s}}{p^{s+1}}\right)=\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}e^{2\pi i\nu r/p},

for r=0,1,,p1,k=0,1,,ps1r=0,1,\ldots,p-1,\,k=0,1,\ldots,p^{s}-1.

The following theorem gives a characterization for pp-vanishing moments of Haar-type wavelets.

Theorem 5.2.

Let ψj,j=1,,p1\psi_{j},\,j=1,\ldots,p-1  be the wavelet finctions described in theorem 5.1. then ψj\psi_{j}  always have 11pp-vanishing moment. Moreover, ψj\psi_{j}  has infinite number of pp-vanishing moments if and only if hj(0)=0,j=1,,p1h_{j}(0)=0,\,j=1,\ldots,p-1.

Proof.

We have

ψj(x)=l=0ps+11hj(lps+1)ϕ(xplps+1),\psi_{j}(x)=\sum_{l=0}^{p^{s+1}-1}h_{j}\left(\frac{l}{p^{s+1}}\right)\phi\left(\frac{x}{p}-\frac{l}{p^{s+1}}\right),

where

hj(lps+1)=hj(k+rpsps+1)=ν=1p1αν,kje2πiνr/p,h_{j}\left(\frac{l}{p^{s+1}}\right)=h_{j}\left(\frac{k+rp^{s}}{p^{s+1}}\right)=\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}e^{2\pi i\nu r/p},

for r=0,1,,p1,k=0,1,,ps1r=0,1,\ldots,p-1,\,k=0,1,\ldots,p^{s}-1. Then

l=0ps+11hj(lps+1)\displaystyle\sum_{l=0}^{p^{s+1}-1}h_{j}\left(\frac{l}{p^{s+1}}\right) =k=0ps1r=0p1ν=1p1αν,kje2πiνr/p\displaystyle=\sum_{k=0}^{p^{s}-1}\sum_{r=0}^{p-1}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}e^{2\pi i\nu r/p}
=k=0ps1ν=1p1αν,kj(r=0p1e2πiνr/p)\displaystyle=\sum_{k=0}^{p^{s}-1}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}\left(\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\right)
=k=0ps1ν=1p1αν,kj×0\displaystyle=\sum_{k=0}^{p^{s}-1}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}\times 0
=0,\displaystyle=0,

for j=1,,p1j=1,\ldots,p-1. That is ψj\psi_{j}  always have 11pp-vanishing moment.

We can write any kps+1\frac{k}{p^{s+1}}, for k=0,1,2,,ps1k=0,1,2,\ldots,p^{s}-1  in the form

kps+1=k0ps+1+k1ps++ks1p2,k0,k1,,ks1{0,1,,p1}.\frac{k}{p^{s+1}}=\frac{k_{0}}{p^{s+1}}+\frac{k_{1}}{p^{s}}+\cdots+\frac{k_{s-1}}{p^{2}},\,k_{0},k_{1},\ldots,k_{s-1}\in\{0,1,\ldots,p-1\}.

Let MγM_{\gamma}  for γ=2,,s\gamma=2,\ldots,s  be the set given by,

Mγ={k=k0+k1p+k2p2+ks1ps1:k0=k1==ksγ=0,ksγ+1,ksγ+2,,ks1=0,1,,p1,ksγ+10},\begin{split}M_{\gamma}=\{k=k_{0}+k_{1}p&+k_{2}p^{2}+\cdots k_{s-1}p^{s-1}:k_{0}=k_{1}=\cdots=k_{s-\gamma}=0,\\ &k_{s-\gamma+1},k_{s-\gamma+2},\ldots,k_{s-1}=0,1,\ldots,p-1,\,k_{s-\gamma+1}\neq 0\},\end{split}

and

Ms+1={k=k0+k1p+k2p2+ks1ps1:k0,k1,,ks1=0,1,,p1,k00}.M_{s+1}=\{k=k_{0}+k_{1}p+k_{2}p^{2}+\cdots k_{s-1}p^{s-1}:k_{0},k_{1},\ldots,k_{s-1}=0,1,\ldots,p-1,\,k_{0}\neq 0\}.

Then

l=1ps+11|lps+1|pμhj(lps+1)=\displaystyle\sum_{l=1}^{p^{s+1}-1}\left\lvert\frac{l}{p^{s+1}}\right\rvert_{p}^{\mu}h_{j}\left(\frac{l}{p^{s+1}}\right)= k=0ps1r=0p1|k+rpsps+1|pμhj(k+rpsps+1)\displaystyle\sum_{k=0}^{p^{s}-1}\sum_{r=0}^{p-1}\left\lvert\frac{k+rp^{s}}{p^{s+1}}\right\rvert_{p}^{\mu}h_{j}\left(\frac{k+rp^{s}}{p^{s+1}}\right)
=\displaystyle= r=1p1pμν=1p1αν,0je2πiνr/p\displaystyle\sum_{r=1}^{p-1}p^{\mu}\sum_{\nu=1}^{p-1}\alpha_{\nu,0}^{j}e^{2\pi i\nu r/p}
+k=1ps1r=0p1ν=1p1|k+rpsps+1|pμαν,kje2πiνr/p\displaystyle+\sum_{k=1}^{p^{s}-1}\sum_{r=0}^{p-1}\sum_{\nu=1}^{p-1}\left\lvert\frac{k+rp^{s}}{p^{s+1}}\right\rvert_{p}^{\mu}\alpha_{\nu,k}^{j}e^{2\pi i\nu r/p}
=\displaystyle= pμν=1p1αν,0j(r=1p1e2πiνr/p)\displaystyle\,p^{\mu}\sum_{\nu=1}^{p-1}\alpha_{\nu,0}^{j}\left(\sum_{r=1}^{p-1}e^{2\pi i\nu r/p}\right)
+p2μkM2ν=1p1αν,kj(r=0p1e2πiνr/p)\displaystyle+p^{2\mu}\sum_{k\in M_{2}}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}\left(\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\right)
+p3μkM3ν=1p1αν,kj(r=0p1e2πiνr/p)\displaystyle+p^{3\mu}\sum_{k\in M_{3}}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}\left(\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\right)
++p(s+1)μkMs+1ν=1p1αν,kj(r=0p1e2πiνr/p)\displaystyle+\cdots+p^{(s+1)\mu}\sum_{k\in M_{s+1}}\sum_{\nu=1}^{p-1}\alpha_{\nu,k}^{j}\left(\sum_{r=0}^{p-1}e^{2\pi i\nu r/p}\right)
=\displaystyle= pμν=1p1αν,0j=hj(0).\displaystyle\,-p^{\mu}\sum_{\nu=1}^{p-1}\alpha_{\nu,0}^{j}=-h_{j}(0).

Thus, ψj\psi_{j}  has infinite number of pp-vanishing moments if and only if hj(0)=0,j=1,,p1h_{j}(0)=0,\,j=1,\ldots,p-1. ∎

6 pp-Vanishing Moments of non-Haar type Wavelets

In [6], wavelet bases different from those described above were constructed; these bases were called non-Haar bases.

Theorem 6.1.

[6] Let

Jp,m={s=pm(s0+s1p+s2p2++sm1pm1):sj=0,1,,p1;j=0,1,,m1;s00},\begin{split}J_{p,m}=\{s=p^{-m}(s_{0}+s_{1}p+s_{2}p^{2}+\cdots&+s_{m-1}p^{m-1}):s_{j}=0,1,\ldots,p-1;\\ &j=0,1,\ldots,m-1;\,s_{0}\neq 0\},\end{split} (6.1)

where m1m\geq 1  is a fixed positive integer. Consider the set of (p1)pm1(p-1)p^{m-1}  functions

θs(m)(x)=χ(x,s)1B0(0)(x),sJp,m,xp,\theta_{s}^{(m)}(x)=\chi(x,s)1_{B_{0}(0)}(x),\quad s\in J_{p,m},\,x\in\mathbb{Q}_{p}, (6.2)

and the family of functions generated by their dilations and translations:

θs;ja(m)(x)=pj/2θs(m)(pjxa),sJp,m,xp,j,aIp,\theta_{s;ja}^{(m)}(x)=p^{-j/2}\theta_{s}^{(m)}(p^{j}x-a),\quad s\in J_{p,m},\,x\in\mathbb{Q}_{p},\,j\in\mathbb{Z},\,a\in I_{p}, (6.3)

where 1B0(0)1_{B_{0}(0)}  is the indicator function of B0(0)B_{0}(0). Then the functions (6.3) form an orthonormal pp-adic wavelet basis in L2(p)L_{2}(\mathbb{Q}_{p})  which is non-Haar type for m2m\geq 2.

Theorem 6.2.

[6] For any fixed ν=1,2,\nu=1,2,\ldots, the functions

ψs(m),ν(x)=k=0pν1αs,kθs(m)(xkpν),sJp,m,\psi_{s}^{(m),\nu}(x)=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\theta_{s}^{(m)}\left(x-\frac{k}{p^{\nu}}\right),\quad s\in J_{p,m}, (6.4)

are wavelet functions if and only if

αs,k=pνr=0pν1γs,re2πis+rpνk,\alpha_{s,k}=p^{-\nu}\sum_{r=0}^{p^{\nu}-1}\gamma_{s,r}e^{-2\pi i\frac{-s+r}{p^{\nu}}k}, (6.5)

where γs,k,|γs,k|=1,k=0,1,,pν1,sJp,m\gamma_{s,k}\in\mathbb{C},\,\lvert\gamma_{s,k}\rvert=1,\,k=0,1,\ldots,p^{\nu}-1,\,s\in J_{p,m}.

The following two theorems gives the connection between pp-vanishing moment of non-Haar type wavelet functions and the approximation order of the indicator function of the compact open subgroup B0(0)B_{0}(0)  of p\mathbb{Q}_{p}.

Theorem 6.3.

Let ϕ=1B0(0)\phi=1_{B_{0}(0)}  and θs(m)\theta_{s}^{(m)}  be defined by (6.3). If ϕ\phi  has approximation order kk, then θs(m)\theta_{s}^{(m)}  has kkpp-vanishing moments.

Proof.

We have for a fixed integer m>2m>2,

θs(m)(x)=χ(x,s)1B0(0)(x),sJp,m,xp.\theta_{s}^{(m)}(x)=\chi(x,s)1_{B_{0}(0)}(x),\quad s\in J_{p,m},\,x\in\mathbb{Q}_{p}.

That is, θs(m)(x)=χ(x,s)ϕ(x)\theta_{s}^{(m)}(x)=\chi(x,s)\phi(x). Now,

θs(m)^(ξ)\displaystyle\widehat{\theta_{s}^{(m)}}(\xi) =pχ(x,s)ϕ(x)χ(x,ξ)𝑑x\displaystyle=\int_{\mathbb{Q}_{p}}\chi(x,s)\phi(x)\chi(x,\xi)dx
=pϕ(x)χ(x,ξ+s)𝑑x\displaystyle=\int_{\mathbb{Q}_{p}}\phi(x)\chi(x,\xi+s)dx
=ϕ^(ξ+s).\displaystyle=\widehat{\phi}(\xi+s).

Hence Dμθs(m)^(0)=Dμϕ^(s)D^{\mu}\widehat{\theta_{s}^{(m)}}(0)=D^{\mu}\widehat{\phi}(s).

From theorem 2.4, ϕ\phi  has kk  approximation order if and only if Dμϕ^(α)=0D^{\mu}\widehat{\phi}(\alpha)=0  for all αIp{0},|μ|k1\alpha\in I_{p}\setminus\{0\},\,\lvert\mu\rvert\leq k-1. Here Ip{0}=m1Jp,mI_{p}\setminus\{0\}=\bigcup_{m\geq 1}J_{p,m}.

We have {θs(m)}sJp,m\{\theta_{s}^{(m)}\}_{s\in J_{p,m}}  has kkpp-vanishing moments if and only if Dμθs(m)^(0)=0D^{\mu}\widehat{\theta_{s}^{(m)}}(0)=0  for all sJp,m, 0μk1s\in J_{p,m},\,0\leq\mu\leq k-1. That is, if and only if Dμϕ^(s)=0D^{\mu}\widehat{\phi}(s)=0  for all sJp,m, 0μk1s\in J_{p,m},\,0\leq\mu\leq k-1.

Since mm  is fixed, we can conclude that if ϕ\phi  has approximation order kk, then θs(m)\theta_{s}^{(m)}  has kkpp-vanishing moments. ∎

Theorem 6.4.

Let ϕ=1B0(0)\phi=1_{B_{0}(0)}  and ψs(m),ν\psi_{s}^{(m),\nu}  be the wavelet functions defined by (6.4). If ϕ\phi  has approximation order kk, then ψs(m),ν\psi_{s}^{(m),\nu}  has kkpp-vanishing moments.

Proof.

For any fixed ν=1,2,\nu=1,2,\ldots, let ψs(m),ν\psi_{s}^{(m),\nu}  be the wavelet functions defined by (6.4),

ψs(m),ν(x)=k=0pν1αs,kθs(m)(xkpν),sJp,m,\psi_{s}^{(m),\nu}(x)=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\theta_{s}^{(m)}\left(x-\frac{k}{p^{\nu}}\right),\quad s\in J_{p,m},

with

αs,k=pνr=0pν1γs,re2πis+rpνk,\alpha_{s,k}=p^{-\nu}\sum_{r=0}^{p^{\nu}-1}\gamma_{s,r}e^{-2\pi i\frac{-s+r}{p^{\nu}}k},

where γs,k,|γs,k|=1,k=0,1,,pν1,sJp,m\gamma_{s,k}\in\mathbb{C},\,\lvert\gamma_{s,k}\rvert=1,\,k=0,1,\ldots,p^{\nu}-1,\,s\in J_{p,m}. That is,

ψs(m),ν(x)=k=0pν1αs,kχ(xkpν,s)ϕ(xkpν),sJp,m.\psi_{s}^{(m),\nu}(x)=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\chi\left(x-\frac{k}{p^{\nu}},s\right)\phi\left(x-\frac{k}{p^{\nu}}\right),\quad s\in J_{p,m}.

Now,

ψs(m),ν^(ξ)\displaystyle\widehat{\psi_{s}^{(m),\nu}}(\xi) =pk=0pν1αs,kχ(xkpν,s)ϕ(xkpν)χ(x,ξ)dx\displaystyle=\int_{\mathbb{Q}_{p}}\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\chi\left(x-\frac{k}{p^{\nu}},s\right)\phi\left(x-\frac{k}{p^{\nu}}\right)\chi(x,\xi)dx
=k=0pν1αs,kpϕ(t)χ(t,s)χ(t+kpν,ξ)𝑑t\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\int_{\mathbb{Q}_{p}}\phi(t)\chi(t,s)\chi\left(t+\frac{k}{p^{\nu}},\xi\right)dt
=k=0pν1αs,kχ(kpν,ξ)pϕ(t)χ(t,s)χ(t,ξ)𝑑t\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\chi\left(\frac{k}{p^{\nu}},\xi\right)\int_{\mathbb{Q}_{p}}\phi(t)\chi(t,s)\chi(t,\xi)dt
=k=0pν1αs,kχ(kpν,ξ)pϕ(t)χ(t,ξ+s)¯𝑑t\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\chi\left(\frac{k}{p^{\nu}},\xi\right)\int_{\mathbb{Q}_{p}}\phi(t)\overline{\chi(t,\xi+s)}dt
=k=0pν1αs,kχ(kpν,ξ)ϕ^(ξ+s).\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\chi\left(\frac{k}{p^{\nu}},\xi\right)\widehat{\phi}(\xi+s).

Let f(ξ)=χ(kpν,ξ)f(\xi)=\chi\left(\frac{k}{p^{\nu}},\xi\right)  and g(ξ)=ϕ^(ξ+s)g(\xi)=\widehat{\phi}(\xi+s). Then applying the Leibniz formula for differentiation,

Dμψs(m),ν^(ξ)\displaystyle D^{\mu}\widehat{\psi_{s}^{(m),\nu}}(\xi) =k=0pν1αs,kβμ(μβ)Dβf(ξ)Dμβg(ξ)\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\sum_{\beta\leq\mu}{\mu\choose\beta}D^{\beta}f(\xi)D^{\mu-\beta}g(\xi)
=k=0pν1αs,kβμ(μβ)pνβχ(kpν,ξ)Dμβϕ^(ξ+s).\displaystyle=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\sum_{\beta\leq\mu}{\mu\choose\beta}p^{\nu\beta}\chi\left(\frac{k}{p^{\nu}},\xi\right)D^{\mu-\beta}\widehat{\phi}(\xi+s).

That is,

Dμψs(m),ν^(0)=k=0pν1αs,kβμ(μβ)pνβDμβϕ^(s).D^{\mu}\widehat{\psi_{s}^{(m),\nu}}(0)=\sum_{k=0}^{p^{\nu}-1}\alpha_{s,k}\sum_{\beta\leq\mu}{\mu\choose\beta}p^{\nu\beta}D^{\mu-\beta}\widehat{\phi}(s).

From theorem 2.4, ϕ\phi  has kk  approximation order if and only if Dμϕ^(α)=0D^{\mu}\widehat{\phi}(\alpha)=0  for all αIp{0},|μ|k1\alpha\in I_{p}\setminus\{0\},\,\lvert\mu\rvert\leq k-1. Here Ip{0}=m1Jp,mI_{p}\setminus\{0\}=\bigcup_{m\geq 1}J_{p,m}.

We have {ψs(m),ν}sJp,m\{\psi_{s}^{(m),\nu}\}_{s\in J_{p,m}}  has kkpp-vanishing moments if and only if Dμψs(m),ν^(0)=0D^{\mu}\widehat{\psi_{s}^{(m),\nu}}(0)=0  for all sJp,m, 0μk1s\in J_{p,m},\,0\leq\mu\leq k-1. That is, if and only if Dμβϕ^(s)=0D^{\mu-\beta}\widehat{\phi}(s)=0  for all sJp,m, 0μk1,βμs\in J_{p,m},\,0\leq\mu\leq k-1,\,\beta\leq\mu.

Since mm  is fixed, we can conclude that if ϕ\phi  has approximation order kk, then ψs(m),ν\psi_{s}^{(m),\nu}  has kkpp-vanishing moments. ∎

Remark 6.1.

Let ϕ=1B0(0)\phi=1_{B_{0}(0)}  and ψ\psi  be a non-Haar type wavelet function. If ϕ\phi  has approximation order kk, then ψ\psi  has kkpp-vanishing moments.

7 pp-vanishing moments of nonorthogonal wavelets

In [15], the authors developed a method for constructing MRA-based p-adic wavelet systems that form Riesz bases in L2(p)L_{2}(\mathbb{Q}_{p}). The explicit construction is as follows:

For an integer K0K\geq 0, we set

AK={apjbpj+1,pK+1bpK+1:j=1,,K,a,b=1,,p1},A_{K}=\{\frac{ap^{j}-b}{p^{j+1}},\frac{p^{K+1}-b}{p^{K+1}}:\,j=1,\ldots,K,\,a,b=1,\ldots,p-1\},
BK={0,pjbpj:j=1,,K,b=1,,p1}B_{K}=\{0,\frac{p^{j}-b}{p^{j}}:\,j=1,\ldots,K,\,b=1,\ldots,p-1\}

It is easily seen that #AK=(p1)#BK\#A_{K}=(p-1)\#B_{K}  and #BK=1+K(p1)\#B_{K}=1+K(p-1)  for all KK. Moreover, AK,BKIpA_{K},B_{K}\subset I_{p}  and

AKBK=,AKBK=j=0p11p(j+BK).A_{K}\cap B_{K}=\emptyset,\quad A_{K}\cup B_{K}=\bigcup_{j=0}^{p-1}\frac{1}{p}(j+B_{K}).

Set χp(ξ)=e2πi{ξ}p\chi_{p}(\xi)=e^{2\pi i\{\xi\}_{p}}. Let us define trigonometric polynomials m0=m0,Km_{0}=m_{0,K}  and n0=n0,Kn_{0}=n_{0,K}  of degrees (p1)(1+(p1)K)(p-1)(1+(p-1)K)  and 1+(p1)K1+(p-1)K, respectively, by

m0,K(ξ)=1prAK(χp(ξ)χp(r)),n0,K(ξ)=1prBK(χp(ξ)χp(r)).m_{0,K}(\xi)=\frac{1}{p}\prod_{r\in A_{K}}\left(\chi_{p}(\xi)-\chi_{p}(r)\right),\qquad n_{0,K}(\xi)=\frac{1}{p}\prod_{r\in B_{K}}\left(\chi_{p}(\xi)-\chi_{p}(r)\right). (7.1)

One can easily verify that m0,K(0)=1m_{0,K}(0)=1  for all K0K\geq 0.

Given integers M0M\geq 0  and N0N\geq 0, we define the Fourier transform of functions ϕ=ϕM,N\phi=\phi_{M,N}  and ψ=ψM,N\psi=\psi_{M,N}  by

ϕ^M,N(ξ)=j=0m0,K(ξpNj),ξp,\widehat{\phi}_{M,N}(\xi)=\prod_{j=0}^{\infty}m_{0,K}(\frac{\xi}{p^{N-j}}),\qquad\xi\in\mathbb{Q}_{p}, (7.2)
ψ^M,N(ξ)=n0,K(ξpN)ϕ^M,N(pξ),ξp.\widehat{\psi}_{M,N}(\xi)=n_{0,K}(\frac{\xi}{p^{N}})\widehat{\phi}_{M,N}(p\xi),\qquad\xi\in\mathbb{Q}_{p}. (7.3)

where K=M+NK=M+N.

Lemma 7.1.

[15] For all MM  and NN, the following statements hold:

  1. 1.

    ϕ^M,N𝒟MN\widehat{\phi}_{M,N}\in\mathcal{D}_{M}^{N}  and ψ^M,N𝒟M+1N\widehat{\psi}_{M,N}\in\mathcal{D}_{M+1}^{N},

  2. 2.

    ϕ^M,N(lpM)0\widehat{\phi}_{M,N}(\frac{l}{p^{M}})\neq 0  if and only if lpKBK, 0lpK1l\in p^{K}B_{K},\,0\leq l\leq p^{K}-1,

  3. 3.

    ψ^M,N(lpM+1)0\widehat{\psi}_{M,N}(\frac{l}{p^{M+1}})\neq 0  if and only if lpK+1AK, 0lpK+11l\in p^{K+1}A_{K},\,0\leq l\leq p^{K+1}-1.

Set

ψ(ν)(x)=ψ(xν+1),ν=1,,p1.\psi^{(\nu)}(x)=\psi(x-\nu+1),\,\nu=1,\ldots,p-1. (7.4)
Theorem 7.1.

[15] For integers M,N0M,N\geq 0, the function ϕM,N\phi_{M,N}  defined by its Fourier transform (7.2) generates an MRA if and only if MpN1p1NM\leq\frac{p^{N}-1}{p-1}-N. Moreover, in this case, ψM,N(ν),ν=1,,p1\psi^{(\nu)}_{M,N},\,\nu=1,\ldots,p-1  is a set of wavelet functions, and the corresponding wavelet system {ψja(ν)(x):=pj/2ψ(ν)(pjxa):ν=1,,r,aIp,j\{\psi^{(\nu)}_{ja}(x):=p^{j/2}\psi^{(\nu)}(p^{-j}x-a):\nu=1,\ldots,r,\,a\in I_{p},\,j\in\mathbb{Z}  forms a Riesz basis for L2(p)L_{2}(\mathbb{Q}_{p})  if and only if M=pN1p1NM=\frac{p^{N}-1}{p-1}-N.

It is easy to see that if (M,N)=(0,0)(M,N)=(0,0)  or (M,N)=(0,1)(M,N)=(0,1), then ϕM,N(x)=Ω(|x|p)\phi_{M,N}(x)=\Omega(\lvert x\rvert_{p})  and we obtain the Haar MRA. On the contrary, for N>1N>1  and M=pN1p1NM=\frac{p^{N}-1}{p-1}-N, the functions ϕM,N\phi_{M,N}  generate pairwise distinct MRAs and each of these scaling functions is not orthogonal, which leads to nonorthogonal wavelet Riesz bases.

Example 7.1.

Let p=2,N=2p=2,\,N=2  and M=1M=1, then K=3K=3 and

A3={14,38,716,1516} and B3={0,12,34,78}.A_{3}=\{\frac{1}{4},\frac{3}{8},\frac{7}{16},\frac{15}{16}\}\text{ and }B_{3}=\{0,\frac{1}{2},\frac{3}{4},\frac{7}{8}\}.

Then

m0,K(ξ)=1p(χp(ξ)χp(14))(χp(ξ)χp(38))(χp(ξ)χp(716))(χp(ξ)χp(1516)),m_{0,K}(\xi)=\frac{1}{p}\left(\chi_{p}(\xi)-\chi_{p}(\frac{1}{4})\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{3}{8})\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{7}{16})\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{15}{16})\right),

and

n0,K(ξ)=1p(χp(ξ)1)(χp(ξ)χp(12))(χp(ξ)χp(34))(χp(ξ)χp(78)).n_{0,K}(\xi)=\frac{1}{p}\left(\chi_{p}(\xi)-1\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{1}{2})\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{3}{4})\right)\left(\chi_{p}(\xi)-\chi_{p}(\frac{7}{8})\right).

Then the refinable function is given by (7.2) and the corresponding wavelets function is ψM,N(ν)\psi^{(\nu)}_{M,N}  where ψM,N\psi_{M,N}  is given by (7.3).

The following theorem characterizes the pp-vanishing moment of nonorthogonal MRA wavelets.

Theorem 7.2.

Let ψM,N(ν)\psi^{(\nu)}_{M,N}  be the wavelet functions defined by (7.4). Then ψM,N(ν)\psi^{(\nu)}_{M,N}  has kkpp-vanishing moments if and only if Dμn0,K(0)=0,0μk1D^{\mu}n_{0,K}(0)=0,\,\forall 0\leq\mu\leq k-1.

Proof.

We have ψ(ν)(x)=ψ(xν+1)\psi^{(\nu)}(x)=\psi(x-\nu+1). Then the Fourier transform of ψM,N(ν)\psi^{(\nu)}_{M,N}  is given by

ψ(ν)^M,n(ξ)\displaystyle\widehat{\psi^{(\nu)}}_{M,n}(\xi) =pψM,N(ν)(x)χ(x,ξ)𝑑x\displaystyle=\int_{\mathbb{Q}_{p}}\psi^{(\nu)}_{M,N}(x)\chi(x,\xi)dx
=pψM,N(xν+1)χ(x,ξ)𝑑x\displaystyle=\int_{\mathbb{Q}_{p}}\psi_{M,N}(x-\nu+1)\chi(x,\xi)dx
=pψM,N(t)χ(t+ν1,ξ)𝑑x\displaystyle=\int_{\mathbb{Q}_{p}}\psi_{M,N}(t)\chi(t+\nu-1,\xi)dx
=χ(ν1,ξ)pψM,N(t)χ(t,ξ)𝑑x\displaystyle=\chi(\nu-1,\xi)\int_{\mathbb{Q}_{p}}\psi_{M,N}(t)\chi(t,\xi)dx
=χ(ν1,ξ)ψ^M,N(ξ).\displaystyle=\chi(\nu-1,\xi)\widehat{\psi}_{M,N}(\xi).

Then applying the Leibniz formula for differentiation,

Dμψ^M,N(ν)(ξ)=βμ(μβ)Dβχ(ν1,ξ)Dμβψ^M,N(ξ).D^{\mu}\widehat{\psi}^{(\nu)}_{M,N}(\xi)=\sum_{\beta\leq\mu}{\mu\choose\beta}D^{\beta}\chi(\nu-1,\xi)D^{\mu-\beta}\widehat{\psi}_{M,N}(\xi).

Also ψ^M,N(ξ)=n0,K(ξpN)ϕ^M,N(pξ)\widehat{\psi}_{M,N}(\xi)=n_{0,K}(\frac{\xi}{p^{N}})\widehat{\phi}_{M,N}(p\xi). By the Leibniz formula for differentiation,

Dμψ^M,N(ξ)=βμ(μβ)Dβn0,K(ξpN)Dμβϕ^M,N(ξ).D^{\mu}\widehat{\psi}_{M,N}(\xi)=\sum_{\beta\leq\mu}{\mu\choose\beta}D^{\beta}n_{0,K}(\frac{\xi}{p^{N}})D^{\mu-\beta}\widehat{\phi}_{M,N}(\xi).

By Lemma 7.1 we have, ϕM,N(0)0\phi_{M,N}(0)\neq 0. Thus we can see that ψM,N(ν)\psi^{(\nu)}_{M,N}  has kkpp-vanishing moments if and only if Dμn0,K(0)=0,0μk1D^{\mu}n_{0,K}(0)=0,\,\forall 0\leq\mu\leq k-1. ∎

8 Conclusion

The definitions of pp-vanishing moments of compactly supported functions on p\mathbb{Q}_{p}  and discrete pp-vanishing moments of finitely supported sequences on IpI_{p}  are given in this work. The relationship between the pp-vanishing moments and discrete pp-vanishing moments are established. The pp-vanishing moments of Haar-type and non-Haar type wavelet functions are calculated. We proved the connection between pp-vanishing moment of non-Haar type wavelet functions and the approximation order of the indicator function of the compact open subgroup B0(0)B_{0}(0)  of p\mathbb{Q}_{p}. Finally, we characterized the pp-vanishing moments of nonorthogonal wavelets.

Acknowledgement

We are very grateful to the authors of the articles in the references.

References

  • [1] S. Albeverio, S. Evdokimov, and M. Skopina, “pp-adic multiresolution analysis and wavelet frames,” J. Fourier Anal. Appl., vol. 16, no. 5, pp. 693–714, 2010. [Online]. Available: https://doi.org/10.1007/s00041-009-9118-5
  • [2] ——, “pp-adic multiresolution analysis,” arXiv preprint arXiv:0810.1147, 2008.
  • [3] A. Y. Khrennikov, V. M. Shelkovich, and M. Skopina, “pp-adic refinable functions and MRA-based wavelets,” J. Approx. Theory, vol. 161, no. 1, pp. 226–238, 2009. [Online]. Available: https://doi.org/10.1016/j.jat.2008.08.008
  • [4] ——, “pp-adic orthogonal wavelet bases,” p-Adic Numbers Ultrametric Anal. Appl., vol. 1, no. 2, pp. 145–156, 2009. [Online]. Available: https://doi.org/10.1134/S207004660902006X
  • [5] V. Shelkovich and M. Skopina, “pp-adic Haar multiresolution analysis and pseudo-differential operators,” J. Fourier Anal. Appl., vol. 15, no. 3, pp. 366–393, 2009. [Online]. Available: https://doi.org/10.1007/s00041-008-9050-0
  • [6] A. Y. Khrennikov and V. M. Shelkovich, “Non-Haar pp-adic wavelets and their application to pseudo-differential operators and equations,” Appl. Comput. Harmon. Anal., vol. 28, no. 1, pp. 1–23, 2010. [Online]. Available: https://doi.org/10.1016/j.acha.2009.05.007
  • [7] S. V. Kozyrev, A. Y. Khrennikov, and V. M. Shelkovich, “pp-adic wavelets and their applications,” Proc. Steklov Inst. Math., vol. 285, no. 1, pp. 157–196, 2014, translation of Tr. Mat. Inst. Steklova 285 (2014), 166–206. [Online]. Available: https://doi.org/10.1134/S0081543814040129
  • [8] N. Athira and M. C. Lineesh, “Approximation properties of wavelets on pp-adic fields,” Int. J. Wavelets Multiresolut. Inf. Process., vol. 21, no. 3, pp. Paper No. 2 250 057, 14, 2023. [Online]. Available: https://doi.org/10.1142/S0219691322500576
  • [9] S. Mallat, A wavelet tour of signal processing.   Academic Press, Inc., San Diego, CA, 1998.
  • [10] D.-R. Chen, B. Han, and S. D. Riemenschneider, “Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments,” Adv. Comput. Math., vol. 13, no. 2, pp. 131–165, 2000. [Online]. Available: https://doi.org/10.1023/A:1018950126225
  • [11] M. Skopina, “On construction of multivariate wavelets with vanishing moments,” Appl. Comput. Harmon. Anal., vol. 20, no. 3, pp. 375–390, 2006. [Online]. Available: https://doi.org/10.1016/j.acha.2005.06.001
  • [12] Y. Liu and L. Peng, “Wavelets with vanishing moments on the Heisenberg group,” Int. J. Wavelets Multiresolut. Inf. Process., vol. 8, no. 1, pp. 1–18, 2010. [Online]. Available: https://doi.org/10.1142/S0219691310003328
  • [13] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, pp-adic analysis and mathematical physics, ser. Series on Soviet and East European Mathematics.   World Scientific Publishing Co., Inc., River Edge, NJ, 1994, vol. 1. [Online]. Available: https://doi.org/10.1142/1581
  • [14] R.-Q. Jia, “Approximation properties of multivariate wavelets,” Math. Comp., vol. 67, no. 222, pp. 647–665, 1998. [Online]. Available: https://doi.org/10.1090/S0025-5718-98-00925-9
  • [15] S. Albeverio, S. Evdokimov, and M. Skopina, “pp-adic nonorthogonal wavelet bases,” Tr. Mat. Inst. Steklova, vol. 265, pp. 7–18, 2009. [Online]. Available: https://doi.org/10.1134/S0081543809020011