This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\eaddress

ross.street@mq.edu.au thanks: The author gratefully acknowledges the support of Australian Research Council Discovery Grant DP190102432. \amsclass18B10, 18D05 \dedicationDedicated to the memory of R.F.C. (Bob) Walters.

Variation on a comprehensive theme

Ross Street Centre of Australian Category Theory
Department of Mathematics and Statistics
Macquarie University, NSW 2109
Australia
Abstract

The main result concerns a bicategorical factorization system on the bicategory Cat\mathrm{Cat} of categories and functors. Each functor A𝑓BA\xrightarrow{f}B factors up to isomorphism as A𝑗E𝑝BA\xrightarrow{j}E\xrightarrow{p}B where jj is what we call an ultimate functor and pp is what we call a groupoid fibration. Every right adjoint functor is ultimate. Functors whose ultimate factor is a right adjoint are shown to have bearing on the theory of polynomial functors.

keywords:
factorization system; bicategory; fibration; final functor

Introduction

As an undergraduate I came across Russell [14] and was quite disturbed by the state of foundations for mathematics. The comprehension schema seemed central as a connection between mathematics and language. Then I was happy with the breakthrough I saw in the papers [10, 11, 12] of Lawvere.

The factorization described here is an old idea I have been meaning to check thoroughly and write up but only now have found a reason to do so. The reason relates to Cat\mathrm{Cat} as an example of a polynomic bicategory in the sense of my recent paper [17]. We want to define a property of a functor in terms of one of its factors being special in some way.

The idea for the present paper is a variant of the comprehensive factorization of a functor A𝑓BA\xrightarrow{f}B as a composite A𝑗E𝑝BA\xrightarrow{j}E\xrightarrow{p}B where jj is a final functor (in the sense of [13] and used by Walters and the author in [19] but sometimes called cofinal) and pp is a discrete fibration. The name for the factorization system was chosen because of its relationship to the comprehension scheme for sets. This is an orthogonal factorization system in the usual sense on Cat\mathrm{Cat} as an ordinary category and in the enriched sense on Cat\mathrm{Cat} as a (strict) 2-category. Here “discrete” means, of course, that the fibres of pp are sets.

Now we wish to think of Cat\mathrm{Cat} as a bicategory and consider whether we obtain a factorization system in a bicategorical sense when we behave totally bicategorically and close our fibrations up under composition with equivalences and ask that the pseudofibres be groupoids.

This works. Our proof models the proof of the usual comprehensive factorization as described by Verity and the author in [18]. The final functors are replaced by what we call ultimate functors and the discrete fibrations by what we call groupoid fibrations. In our application, we are concerned with functors whose ultimate factor is a right adjoint.

I am grateful to Alexander Campbell for pointing to the significantly related work of Joyal where nn-final, nn-fibration and homotopy factorization system are defined in the context of quasicategories; see page 170 of [8] and Sections A.6-8 of [9].

1 Groupoid fibrations

The following concept is called “strongly cartesian” by Grothendieck. These morphisms are always closed under composition (unlike those he called “cartesian”).

Definition 1.1.

Let p:EBp:E\to B be a functor. A morphism χ:ee\chi:e^{\prime}\to e in EE is called cartesian for pp when the square (1.1) is a pullback for all kEk\in E.

E(k,e)\textstyle{E(k,e^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E(k,χ)\scriptstyle{E(k,\chi)}p\scriptstyle{p}E(k,e)\textstyle{E(k,e)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}B(pk,pe)\textstyle{B(pk,pe^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(pk,pχ)\scriptstyle{B(pk,p\chi)}B(pk,pe)\textstyle{B(pk,pe)} (1.1)

Since any commutative square with a pair of opposite sides invertible is a pullback, we see that all invertible morphisms in EE are cartesian, and, if pp is fully faithful, then all morphisms of EE are cartesian.

Definition 1.2.

The functor p:EBp:E\to B is a groupoid fibration when

  • (i)

    for all eEe\in E and β:bpe\beta:b\to pe in BB, there exist χ:ee\chi:e^{\prime}\to e in EE and invertible bpeb\cong pe^{\prime} such that β=(bpepχpe)\beta=(b\cong pe^{\prime}\xrightarrow{p\chi}pe), and

  • (ii)

    every morphism of EE is cartesian for pp.

Our groupoid fibrations include all equivalences of categories and so are not necessarily fibrations in the sense of Grothendieck.

From the pullback (1.1) it follows that groupoid fibrations are conservative (that is, reflect invertibility). So their pseudofibres EbE_{b} are groupoids.

For functors A𝑓C𝑔BA\xrightarrow{f}C\xleftarrow{g}B, we write f/gf/g for the comma category (or slice) of ff and gg; it is the top left vertex of a universal square

f/g\textstyle{f/g\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}     t\scriptstyle{t}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}     λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}C\textstyle{C} (1.2)

in the bicategory Cat\mathrm{Cat}. In particular, the arrow category of EE is E𝟐=1E/1E=E/EE^{\mathbf{2}}=1_{E}/1_{E}=E/E. For a functor E𝑝BE\xrightarrow{p}B and writing B/p=1B/pB/p=1_{B}/p, there is a canonical functor E𝟐𝑟B/pE^{\mathbf{2}}\xrightarrow{r}B/p defined as follows.

E𝟐\textstyle{E^{\mathbf{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ps\scriptstyle{ps}t\scriptstyle{t}r\scriptstyle{r}B/p\textstyle{B/p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}     h\scriptstyle{h}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}     λ\scriptstyle{\lambda}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1B\scriptstyle{1_{B}}B\textstyle{B}
   
=\textstyle{\Huge{=}}

   E𝟐\textstyle{E^{\mathbf{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ps\scriptstyle{ps}     t\scriptstyle{t}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}     pλ\scriptstyle{p\lambda}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1B\scriptstyle{1_{B}}B\textstyle{B}

We write f/psgf/_{\mathrm{ps}}g for the full subcategory of the comma category f/gf/g of (1.2) consisting of those objects at which the component of λ\lambda is invertible. It is called the pseudopullback or isocomma category of the cospan A𝑓C𝑔BA\xrightarrow{f}C\xleftarrow{g}B; it is the top left vertex of a universal square

f/psg\textstyle{f/_{\mathrm{ps}}g\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s^{\prime}}     t\scriptstyle{t^{\prime}}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}     λ\scriptstyle{\lambda^{\prime}}\scriptstyle{\cong}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}C\textstyle{C} (1.3)

in the bicategory Cat\mathrm{Cat}.

Here are three fairly easy observations.

Proposition 1.3.
  • (a)

    A functor E𝑝BE\xrightarrow{p}B is a groupoid fibration if and only if the canonical E𝟐𝑟B/pE^{\mathbf{2}}\xrightarrow{r}B/p is an equivalence.

  • (b)

    Suppose E𝑝BE\xrightarrow{p}B is a groupoid fibration. A functor F𝑞EF\xrightarrow{q}E is a groupoid fibration if and only if the composite F𝑞E𝑝BF\xrightarrow{q}E\xrightarrow{p}B is.

  • (c)

    The pseudopullback of a groupoid fibration along any functor is a groupoid fibration. That is, if in (1.3) the functor gg is a groupoid fibration, so too is ss^{\prime}.

There is a 2-category GFibB\mathrm{GFib}B of groupoid fibrations over BB defined as follows: The objects are groupoid fibrations E𝑝BE\xrightarrow{p}B over BB. The hom categories are given by the pseudopullbacks:

GFibB(p,q)\textstyle{\mathrm{GFib}B(p,q)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}          [E,F]\textstyle{[E,F]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[E,q]\scriptstyle{[E,q]}          \scriptstyle{\cong}𝟏\textstyle{\mathbf{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{\lceil p\rceil}[E,B]\textstyle{[E,B]}

So the morphisms are triangles with a natural isomorphism therein.

E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}f\scriptstyle{f}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}ϕ\scriptstyle{\phi}\scriptstyle{\cong}B\textstyle{B}
(1.4)

We also consider Cat/B\mathrm{Cat}/B with the same convention on its morphisms.

2 Some fully faithful right adjoint functors

Ord\textstyle{\mathrm{Ord}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}}Set\textstyle{\mathrm{Set}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}EqR\textstyle{\mathrm{EqR}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}}incl\scriptstyle{\mathrm{incl}}Cat\textstyle{\mathrm{Cat}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}nerve\scriptstyle{\mathrm{nerve}}[Δop,Set]\textstyle{[\Delta^{\mathrm{op}},\mathrm{Set}]}Gpd\textstyle{\mathrm{Gpd}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}} (2.5)

All the categories in the diagram (2.5) are cartesian closed. All the functors are “closed under exponentiation”. The left adjoints all preserve finite products (by Day Reflection Theorem). Our focus here is on the inclusion GpdinclCat\mathrm{Gpd}\xrightarrow{\mathrm{incl}}\mathrm{Cat} with left 2-adjoint π1\pi_{1} and right adjoint υ\upsilon. The subcategory υA\upsilon A of the category AA contains all and only the invertible morphisms of AA.

Lemma 2.1.

A functor E𝑝BE\xrightarrow{p}B is an equivalence if and only if both υEυpυB\upsilon E\xrightarrow{\upsilon p}\upsilon B and υ(E𝟐)υ(p𝟐)υ(B𝟐)\upsilon(E^{\mathbf{2}})\xrightarrow{\upsilon(p^{\mathbf{2}})}\upsilon(B^{\mathbf{2}}) are equivalences.

Proof 2.2.

Only if is clear since υ\upsilon is a 2-functor. For the converse first note that surjectivity on objects up to isomorphism for pp is the same as for υp\upsilon p.

So it remains to deduce from the groupoid equivalences that pp is fully faithful. Take e,eEe,e^{\prime}\in E and pe𝛽pepe\xrightarrow{\beta}pe^{\prime} in BB. Since υ(B𝟐)\upsilon(B^{\mathbf{2}}) is surjective on objects up to isomorphism, there exists e1𝜉e1e_{1}\xrightarrow{\xi}e^{\prime}_{1} in EE and a commutative square

pe1\textstyle{pe_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ\scriptstyle{\sigma}\scriptstyle{\cong}pξ\scriptstyle{p\xi}pe\textstyle{pe\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}pe1\textstyle{pe^{\prime}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ\scriptstyle{\sigma^{\prime}}\scriptstyle{\cong}pe.\textstyle{pe^{\prime}\ .}

Since υp\upsilon p is full, there exist invertible e1𝜒ee_{1}\xrightarrow{\chi}e and e1χee^{\prime}_{1}\xrightarrow{\chi^{\prime}}e^{\prime} in EE such that pχ=σp\chi=\sigma and pχ=σp\chi^{\prime}=\sigma^{\prime}. Consequently, β=p(χξχ1)\beta=p(\chi^{\prime}\xi\chi^{-1}) proving that pp is full.

Since υp\upsilon p is faithful, the only automorphisms in EE taken to identities by pp are identities. We will use this special case in our proof now that pp is faithful. Take ξ,ξ:ee1\xi,\xi^{\prime}:e\to e_{1} in EE with pξ=pξp\xi=p\xi^{\prime}. Think of these two morphisms as objects of E𝟐E^{\mathbf{2}} which are taken to two equal objects pξ,pξ:pepe1p\xi,p\xi^{\prime}:pe\to pe_{1} of B𝟐B^{\mathbf{2}}. Since p𝟐p^{\mathbf{2}} is full, the two objects ξ\xi and ξ\xi^{\prime} are isomorphic by an isomorphism in E𝟐E^{\mathbf{2}} made up of automorphisms of ee and e1e_{1} which are taken to identities by pp. Since those automorphisms must be identities, we deduce that ξ=ξ\xi=\xi^{\prime}, as required.

Lemma 2.3.

If E𝑝BE\xrightarrow{p}B is a groupoid fibration and υEυpυB\upsilon E\xrightarrow{\upsilon p}\upsilon B is an equivalence then E𝑝BE\xrightarrow{p}B is an equivalence.

Proof 2.4.

Since υ\upsilon is a right adjoint, it preserves the pseudopullback

E𝟐\textstyle{E^{\mathbf{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cod\scriptstyle{\mathrm{cod}}p𝟐\scriptstyle{p^{\mathbf{2}}}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}B𝟐\textstyle{B^{\mathbf{2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cod\scriptstyle{\mathrm{cod}}B\textstyle{B}

so that both υp\upsilon p and υ(p𝟐)\upsilon(p^{\mathbf{2}}) are equivalences. The result follows by Lemma 2.1.

Proposition 2.5.

The usual “Grothendieck construction” 2-functor

:Hom(Bop,Gpd)GFibB\displaystyle\wr:\mathrm{Hom}(B^{\mathrm{op}},\mathrm{Gpd})\longrightarrow\mathrm{GFib}B

is a biequivalence. If (T)(E𝑝B)\ \wr(T)\simeq(E\xrightarrow{p}B) then TbTb is equivalent to the pseudofibre EbE_{b} of pp over bBb\in B.

The result of applying Hom(Bop,)\mathrm{Hom}(B^{\mathrm{op}},-) to the 2-adjunction

Cat\textstyle{\mathrm{Cat}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1\scriptstyle{\pi_{1}}Gpd\textstyle{\mathrm{Gpd}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}}

transports to a biadjunction

FibB\textstyle{\mathrm{Fib}B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1B\scriptstyle{\pi_{1B}}GFibB\textstyle{\mathrm{GFib}B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}}

via the biequivalences

Hom(Bop,Gpd)GFibB and Hom(Bop,Cat)FibB.\displaystyle\mathrm{Hom}(B^{\mathrm{op}},\mathrm{Gpd})\xrightarrow{\sim}\mathrm{GFib}B\ \text{ and }\ \mathrm{Hom}(B^{\mathrm{op}},\mathrm{Cat})\xrightarrow{\sim}\mathrm{Fib}B\ .
Remark 2.6.

The inclusion 2-functor GFibBCat/B\mathrm{GFib}B\hookrightarrow\mathrm{Cat}/B is fully faithful with a left biadjoint whose value at the object A𝑓BA\xrightarrow{f}B is the groupoid fibration π1B(B/fdomB)\pi_{1B}(B/f\xrightarrow{\mathrm{dom}}B) which corresponds to the pseudofunctor BopGpdB^{\mathrm{op}}\to\mathrm{Gpd} taking bBb\in B to π1(b/f)\pi_{1}(b/f).

The construction of π1A\pi_{1}A by generators and relations is awkward to work with; instead we use the following universal property of the coinverter construction. Write [A,X][A,X]_{\cong} for the full subcategory of [A,X][A,X] consisting of those functors f:AXf:A\to X which invert all the morphisms of AA. The adjunction unit Aπ1AA\to\pi_{1}A induces an isomorphism

[π1A,X][A,X][\pi_{1}A,X]\cong[A,X]_{\cong}

for all categories XX (not just groupoids).

3 Ultimate functors

Definition 3.1.

A functor j:ABj:A\to B is called ultimate when, for all objects bBb\in B, the fundamental groupoid π1(b/j)\pi_{1}(b/j) of the comma category b/jb/j is equivalent to the terminal groupoid:

π1(b/j)𝟏.\pi_{1}(b/j)\simeq\mathbf{1}\ .
Proposition 3.2.

Every right adjoint functor is ultimate.

Proof 3.3.

If kj:ABk\dashv j:A\to B then b/jkb/A𝟏b/j\simeq kb/A\to\mathbf{1} has a left adjoint owing to the initial object 1kb1_{kb} of kb/Akb/A. Applying the 2-functor π1\pi_{1} to the adjunction yields an adjunction between groupoids.

Proposition 3.4.

Ultimate functors are taken by π1\pi_{1} to equivalences.

Proof 3.5.

Let j:ABj:A\to B be ultimate. We must prove π1Aπ1jπ1B\pi_{1}A\xrightarrow{\pi_{1}j}\pi_{1}B is an equivalence. What we prove is that, for any category XX, if each diagonal functor Xδb[b/j,X]X\xrightarrow{\delta_{b}}[b/j,X]_{\cong} is an equivalence then [B,X][j,1][A,X][B,X]_{\cong}\xrightarrow{[j,1]_{\cong}}[A,X]_{\cong} is an equivalence. Since δb\delta_{b} is 2-natural in bBb\in B, any choice γb\gamma_{b} of adjoint equivalence is pseudonatural: choose also counit εb:γbδb1X\varepsilon_{b}:\gamma_{b}\delta_{b}\xRightarrow{\cong}1_{X} and unit ηb:1Aδbγb\eta_{b}:1_{A}\xRightarrow{\cong}\delta_{b}\gamma_{b}. We will show that we have an inverse equivalence θ\theta for [j,1][j,1]_{\cong} defined by

θ(f)b\textstyle{\theta(f)b\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θ(f)β\scriptstyle{\theta(f)\beta}=\textstyle{=}γb(b/jcodA𝑓X)\textstyle{\gamma_{b}(b/j\xrightarrow{\mathrm{cod}}A\xrightarrow{f}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces)}γβ,fcod\scriptstyle{\gamma_{\beta,f\mathrm{cod}}}θ(f)b\textstyle{\theta(f)b^{\prime}}=\textstyle{=}γb(b/jβ/jb/jcodA𝑓X).\textstyle{\gamma_{b}(b^{\prime}/j\xrightarrow{\beta/j}b/j\xrightarrow{\mathrm{cod}}A\xrightarrow{f}X)\ .}

For g[B,X]g\in[B,X]_{\cong}, we have isomorphisms

(θ[j,1]g)b\displaystyle(\theta[j,1]_{\cong}g)b =\displaystyle= γb(b/jcodA𝑗B𝑔X)\displaystyle\gamma_{b}(b/j\xrightarrow{\mathrm{cod}}A\xrightarrow{j}B\xrightarrow{g}X)
\displaystyle\cong γb(b/j!1𝑏B𝑔X)\displaystyle\gamma_{b}(b/j\xrightarrow{!}1\xrightarrow{b}B\xrightarrow{g}X)
\displaystyle\cong γbδb(gb)\displaystyle\gamma_{b}\delta_{b}(gb)
εb\displaystyle\xRightarrow{\varepsilon_{b}\ \cong} gb\displaystyle gb

naturally in gg and bb, while, for f[A,X]f\in[A,X]_{\cong}, we have isomorphisms

([j,1]θ)(f)a\displaystyle([j,1]_{\cong}\theta)(f)a =\displaystyle= θ(f)ja\displaystyle\theta(f)ja
\displaystyle\cong γja(ja/jcodA𝑓X)\displaystyle\gamma_{ja}(ja/j\xrightarrow{\mathrm{cod}}A\xrightarrow{f}X)
η1\displaystyle\xRightarrow{\eta^{-1}\ \cong} (fcod)(ja1jaja,a)\displaystyle(f\mathrm{cod})(ja\xrightarrow{1_{ja}}ja,a)
=\displaystyle= fa\displaystyle fa

naturally in ff and aa.

Proposition 3.6.

A functor is ultimate if and only if its pseudopullback along any (groupoid) opfibration is taken by π1\pi_{1} to an equivalence.

Proof 3.7.

The pseudopullback Pj¯XP\xrightarrow{\bar{j}}X of A𝑗BA\xrightarrow{j}B along an opfibration F𝑞BF\xrightarrow{q}B has x/j¯qx/jx/\bar{j}\simeq qx/j; so j¯\bar{j} is ultimate if jj is. So π1\pi_{1} takes j¯\bar{j} to an equivalence by Proposition 3.4. For the rest, in the pseudopullback

b/j\textstyle{b/j\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cod\scriptstyle{\mathrm{cod}}b/B\textstyle{b/B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cod\scriptstyle{\mathrm{cod}}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}B,\textstyle{B\ ,}

note that b/Bb/B has an initial object and cod\mathrm{cod} is a groupoid opfibration.

Proposition 3.8.

Every coinverter (localization) is ultimate.

Proof 3.9.

Pullback along an opfibration has a right adjoint so coinverters are taken to coinverters. Also, π1\pi_{1} takes coinverters to isomorphisms since it is a left adjoint and all 2-cells in Gpd\mathrm{Gpd} are already invertible. Proposition 3.6 applies.

Proposition 3.10.

Suppose A𝑗BA\xrightarrow{j}B is ultimate. A functor B𝑘CB\xrightarrow{k}C is ultimate if and only if the composite A𝑗B𝑘CA\xrightarrow{j}B\xrightarrow{k}C is ultimate.

Proof 3.11.

Look at the pasting

Q\textstyle{Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{\prime}}q′′\scriptstyle{q^{\prime\prime}}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k^{\prime}}q\scriptstyle{q^{\prime}}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k}C\textstyle{C}

of two pullbacks with qq a groupoid fibration. Since jj is ultimate, jj^{\prime} is equivalenced by π1\pi_{1}. So kjk^{\prime}j^{\prime} is equivalenced by π1\pi_{1} if and only if kk^{\prime} is.

Lemma 3.12.

If E𝑝BE\xrightarrow{p}B is a groupoid fibration and X𝑏BX\xrightarrow{b}B is a functor from a groupoid XX then the composite Ebb/pπ1(b/p)E_{b}\to b/p\to\pi_{1}(b/p) is an equivalence.

Proof 3.13.

Ebb/pE_{b}\to b/p is a left adjoint and EbE_{b} is a groupoid already.

Proposition 3.14.

Ultimate groupoid fibrations E𝑝BE\xrightarrow{p}B are equivalences.

Proof 3.15.

Let υB𝑏B\upsilon B\xrightarrow{b}B be the inclusion. Since pp is ultimate, the pullback b/p𝑔b/Bb/p\xrightarrow{g}b/B of pp along b/BcodBb/B\xrightarrow{\mathrm{cod}}B is equivalenced by π1\pi_{1}. By Lemma 3.12, π1(g)\pi_{1}(g) is equivalent to υ(p)\upsilon(p). By Lemma 2.3, since pp is a groupoid fibration with υ(p)\upsilon(p) an equivalence, pp is an equivalence.

4 Bicategorical factorization systems

The concept of factorization system in a bicategory is not new; for example, see [2, 3]. Before giving the definition, we revise the bicategorical variant of pullback.

Definition 4.1.

A square

W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}     q\scriptstyle{q}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}     σ\scriptstyle{\sigma}\scriptstyle{\cong}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}C\textstyle{C} (4.6)

in a bicategory 𝒦{\mathscr{K}} is called a bipullback of the cospan A𝑓C𝑔BA\xrightarrow{f}C\xleftarrow{g}B when, for all objects K𝒦K\in{\mathscr{K}}, the functor

𝒦(K,W)(p,σ,q)𝒦(K,f)/ps𝒦(K,g),{\mathscr{K}}(K,W)\xrightarrow{(p,\sigma,q)}{\mathscr{K}}(K,f)/_{\mathrm{ps}}{\mathscr{K}}(K,g)\ ,

obtained from the universal property of the pseudopullback, is an equivalence.

Remark 4.2.

In the square (4.6), if gg and pp are groupoid fibrations, then the square is a bipullback if and only if

υ(𝒦(K,W))υ(p,σ,q)υ(𝒦(K,f)/ps𝒦(K,g))\upsilon({\mathscr{K}}(K,W))\xrightarrow{\upsilon(p,\sigma,q)}\upsilon({\mathscr{K}}(K,f)/_{\mathrm{ps}}{\mathscr{K}}(K,g))

is an equivalence of groupoids. This is because Proposition 1.3 (b) and (c) imply (p,σ,q)(p,\sigma,q) is a groupoid fibration so that Lemma 2.3 applies.

A factorization system on a bicategory 𝒦{\mathscr{K}} consists of a pair (,)({\mathscr{E}},{\mathscr{M}}) of sets {\mathscr{E}} and {\mathscr{M}} of morphisms of 𝒦{\mathscr{K}} satisfying:

  • FS0.

    if fmwf\cong mw with mm\in{\mathscr{M}} and ww an equivalence then ff\in{\mathscr{M}}, while if fwef\cong we with ee\in{\mathscr{E}} and ww an equivalence then ff\in{\mathscr{E}};

  • FS1.

    for all X𝑒YX\xrightarrow{e}Y\in{\mathscr{E}} and A𝑚BA\xrightarrow{m}B\in{\mathscr{M}}, the diagram

    𝒦(Y,A)\textstyle{{\mathscr{K}}(Y,A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒦(Y,m)\scriptstyle{{\mathscr{K}}(Y,m)}    𝒦(e,A)\scriptstyle{{\mathscr{K}}(e,A)}𝒦(X,A)\textstyle{{\mathscr{K}}(X,A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒦(X,m)\scriptstyle{{\mathscr{K}}(X,m)}    \scriptstyle{\cong}𝒦(Y,B)\textstyle{{\mathscr{K}}(Y,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒦(e,B)\scriptstyle{{\mathscr{K}}(e,B)}𝒦(X,B)\textstyle{{\mathscr{K}}(X,B)} (4.7)

    (in which the isomorphism has components of the associativity constraints for 𝒦{\mathscr{K}}) is a bipullback;

  • FS2.

    every morphism ff factorizes fmef\cong m\circ e with ee\in{\mathscr{E}} and mm\in{\mathscr{M}}.

It follows that {\mathscr{E}} and {\mathscr{M}} are closed under composition and their intersection consists of precisely the equivalences. Moreover, in the square (4.7), the morphism mm is in {\mathscr{M}} if the square is a bipullback for all ee\in{\mathscr{E}}, and dually. Also note that, if all morphisms in {\mathscr{M}} are groupoid fibrations then Remark 4.2 applies to simplify the bipullback verification for FS1.

5 Main theorem

Theorem 5.1.

Ultimate functors and groupoid fibrations form a bicategorical factorization system on Cat\mathrm{Cat}. So every functor f:ABf:A\to B factors pseudofunctorially as f(A𝑗E𝑝B)f\cong(A\xrightarrow{j}E\xrightarrow{p}B) with jj ultimate and pp a groupoid fibration.

Proof 5.2.

FS0 is obvious. For FS2 construct the diagram

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}f\scriptstyle{f}B/f\textstyle{B/f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}n\scriptstyle{n}dom\scriptstyle{\mathrm{dom}}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\scriptstyle{1}B\textstyle{B}

where (E𝑝B)=π1B(B/fdomB)(E\xrightarrow{p}B)=\pi_{1B}(B/f\xrightarrow{\mathrm{dom}}B), the squares commute up to isomorphism, ii has a left adjoint cod\mathrm{cod}, and nn is a coinverter.

It remains to prove FS1. By Remark 4.2, we must prove that, for any groupoid fibration E𝑝CE\xrightarrow{p}C and any ultimate functor A𝑗BA\xrightarrow{j}B, the functor

([j,E],[B,p]):[B,E][A,p]/ps[j,C]([j,E],[B,p]):[B,E]\longrightarrow[A,p]/_{\mathrm{ps}}[j,C]

is taken to an equivalence of groupoids by υ\upsilon. By Remark 2.6, the value of the left biadjoint to GFibBCat/B\mathrm{GFib}B\hookrightarrow\mathrm{Cat}/B at the ultimate functor A𝑗BA\xrightarrow{j}B is equivalent to B1BBB\xrightarrow{1_{B}}B. So every morphism j(f,ϕ)qj\xrightarrow{(f,\phi)}q over BB with qq a groupoid fibration factors up to isomorphism as

j\textstyle{j\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(f,ϕ)\scriptstyle{(f,\phi)}(j,1j)\scriptstyle{(j,1_{j})}1B\textstyle{1_{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(w,ψ)\scriptstyle{(w,\psi)}σ\scriptstyle{\sigma}\scriptstyle{\cong}q\textstyle{q}
(5.8)

uniquely up to a unique isomorphism. In this, we have f𝜎wjf\xRightarrow{\sigma}wj and 1B𝜓qw1_{B}\xRightarrow{\psi}qw such that ψj=(jϕqfqσqwj)\psi j=(j\xRightarrow{\phi}qf\xRightarrow{q\sigma}qwj). Take any object (u,γ,v)(u,\gamma,v) of [A,p]/ps[j,C][A,p]/_{\mathrm{ps}}[j,C]; it consists of functors A𝑢E,B𝑣CA\xrightarrow{u}E,B\xrightarrow{v}C and an invertible natural transformation pu𝛾vjpu\xRightarrow{\gamma}vj. By the universal property of the pseudopullback p/psvp/_{\mathrm{ps}}v, the isomorphism γ\gamma is equal to the pasted composite

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}j\scriptstyle{j}u\scriptstyle{u^{\prime}}p/psv\textstyle{p/_{\mathrm{ps}}v\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s^{\prime}}      t\scriptstyle{t^{\prime}}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}v\scriptstyle{v}      λ\scriptstyle{\lambda^{\prime}}\scriptstyle{\cong}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}C.\textstyle{C\ .}

By Proposition 1.3, p/psvtBp/_{\mathrm{ps}}v\xrightarrow{t^{\prime}}B is a groupoid fibration. We can apply (5.8) with f=uf=u^{\prime}, q=tq=t^{\prime} and ϕ\phi the identity of j=tuj=t^{\prime}u^{\prime} to obtain u𝜎wju^{\prime}\xRightarrow{\sigma}wj and 1B𝜓tw1_{B}\xRightarrow{\psi}t^{\prime}w such that ψj=(j=tutσtwj)\psi j=(j=t^{\prime}u^{\prime}\xRightarrow{t^{\prime}\sigma}t^{\prime}wj) uniquely up to a unique isomorphism of (w,ψ,σ)(w,\psi,\sigma). This gives us w=sw[B,E]w^{\prime}=s^{\prime}w\in[B,E] and an isomorphism (u,γ,v)(wj,1pwj,pw)=([j,E],[B,p])w(u,\gamma,v)\cong(w^{\prime}j,1_{pw^{\prime}j},pw^{\prime})=([j,E],[B,p])w^{\prime} determined by the isomorphisms

u=susσswj=wj and vvψvtw=vtw(λw)1psw=pw.u=s^{\prime}u^{\prime}\xRightarrow{s^{\prime}\sigma}s^{\prime}wj=w^{\prime}j\ \text{ and }\ v\xRightarrow{v\psi}vt^{\prime}w=vt^{\prime}w\xRightarrow{(\lambda^{\prime}w)^{-1}}ps^{\prime}w=pw^{\prime}\ .

This proves that the functor υ([j,E],[B,p])\upsilon([j,E],[B,p]) is surjective on objects up to isomorphism. Now suppose we also have h[B,E]h\in[B,E] and an isomorphism

(ξ,ζ):([j,E],[B,p])h(wj,1pwj,pw)(\xi,\zeta):([j,E],[B,p])h\cong(w^{\prime}j,1_{pw^{\prime}j},pw^{\prime})

which means we have invertible hj𝜉swjhj\xRightarrow{\xi}s^{\prime}wj and ph𝜁pswph\xRightarrow{\zeta}ps^{\prime}w such that pξ=ζjp\xi=\zeta j. By the universal property of the pseudopullback, there exists a unique k:Bp/psvk:B\to p/_{\mathrm{ps}v} such that sk=hs^{\prime}k=h, tk=1Bt^{\prime}k=1_{B} and λk=(ph𝜁pswλwvtwvψ1v)\lambda^{\prime}k=(ph\xRightarrow{\zeta}ps^{\prime}w\xRightarrow{\lambda^{\prime}w}vt^{\prime}w\xRightarrow{v\psi^{-1}}v), and there also exists a unique invertible τ:kjwj\tau:kj\Rightarrow wj such that ξ=(hj=skjsτswj)\xi=(hj=s^{\prime}kj\xRightarrow{s^{\prime}\tau}s^{\prime}wj) and ψj=(tkjtτtwj)\psi j=(t^{\prime}kj\xRightarrow{t^{\prime}\tau}t^{\prime}wj). So we have

j\textstyle{j\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(u,1j)\scriptstyle{(u^{\prime},1_{j})}(j,1j)\scriptstyle{(j,1_{j})}1B\textstyle{1_{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(k,11B)\scriptstyle{(k,1_{1_{B}})}τ1σ\scriptstyle{\tau^{-1}\sigma}\scriptstyle{\cong}t\textstyle{t^{\prime}}

which allows us to use the uniqueness of (w,ψ,σ)(w,\psi,\sigma) to obtain a unique isomorphism κ:kw\kappa:k\Rightarrow w such that κj=τ\kappa j=\tau and tκ=ψt^{\prime}\kappa=\psi. Then κ=sκ:hw\kappa^{\prime}=s^{\prime}\kappa:h\Rightarrow w^{\prime} is such that κj=sκj=sτ=ξ\kappa^{\prime}j=s^{\prime}\kappa j=s^{\prime}\tau=\xi and pκ=psκ=(λw)1(vψ)(λk)=ζp\kappa^{\prime}=ps^{\prime}\kappa=(\lambda^{\prime}w)^{-1}(v\psi)(\lambda^{\prime}k)=\zeta. Hence υ([j,E],[B,p])\upsilon([j,E],[B,p]) is full and it remains to prove it faithful. So suppose we have an invertible δ:hw\delta^{\prime}:h\Rightarrow w^{\prime} such that δj=ξ\delta^{\prime}j=\xi and pδ=ζ=(λw)1(vψ)(λk)p\delta^{\prime}=\zeta=(\lambda^{\prime}w)^{-1}(v\psi)(\lambda^{\prime}k). The universal property of pseudopullback implies there exists δ:kw\delta:k\Rightarrow w such that sδ=δs^{\prime}\delta=\delta^{\prime} and tδ=ψt^{\prime}\delta=\psi, and implies we can deduce that δj=τ\delta j=\tau from the equations sδj=ξs^{\prime}\delta j=\xi and tδj=ψj=tτt^{\prime}\delta j=\psi j=t^{\prime}\tau. By the uniqueness of κ\kappa, we have δ=κ\delta=\kappa and hence δ=κ\delta^{\prime}=\kappa^{\prime}, as required.

6 Other possible variants

It is possible that the factorization carries through for (,1)(\infty,1)-categories (also called quasicategories or weak Kan complexes); see [8, 9]. For the case of the tricategory (2,1)-Cat(2,1)\text{-}\mathrm{Cat} whose objects are bicategories with all 2-cells invertible, a basic ingredient would be the triadjunction

(2,1)-Cat\textstyle{(2,1)\text{-}\mathrm{Cat}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1\scriptstyle{\pi_{1}}\scriptstyle{\perp}(2,0)-Cat\textstyle{(2,0)\text{-}\mathrm{Cat}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}incl\scriptstyle{\mathrm{incl}}

where (2,0)-Cat(2,0)\text{-}\mathrm{Cat} is the subtricategory of (2,1)-Cat(2,1)\text{-}\mathrm{Cat} with all morphisms equivalences. There is an obvious core providing a right triadjoint too. This requires the bumping up to factorization systems on tricategories. And, after all, as yet my application only needs the Cat\mathrm{Cat} case.

There is presumably also a version of the (ultimate, groupoid fibration) for categories internal to a category {\mathscr{E}} as done in [18] for the usual comprehensive factorization.

Another direction concerns the laxer hierarchy of comprehension schema proposed by John Gray; see [6, 7]. What kinds of factorization do they provide?

7 Application to polynomials

In this section, we use our factorization to understand the implications of the paper [17] for polynomials in Cat\mathrm{Cat} as a bicategory.

A morphism p:EBp:E\to B in a bicategory is called a groupoid fibration when, for all objects AA\in{\mathscr{M}}, the functor (A,p):(A,E)(A,B){\mathscr{M}}(A,p):{\mathscr{M}}(A,E)\to{\mathscr{M}}(A,B) is a groupoid fibration as per Definition 1.2.

A morphism n:YZn:Y\to Z is called a right lifter when, for all u:KZu:K\to Z, there exists a right lifting of of uu through nn (in the sense of [20]).

Recall from [17] that a bicategory {\mathscr{M}} with bipullbacks is always calibrated by the groupoid fibrations as the neat morphisms; that is, such a bicategory is polynomic. This allows for the construction of a bicategory of “polynomials” in {\mathscr{M}}. Indeed, Definition 8.2 of [17] means for this situation that a polynomial (m,S,p)(m,S,p) from XX to YY in {\mathscr{M}} is a span

X𝑚S𝑝YX\xleftarrow{m}S\xrightarrow{p}Y

in {\mathscr{M}} with mm a right lifter and pp a groupoid fibration. To have a more explicit description we need to identify the right lifters in the given {\mathscr{M}}.

Proposition 7.1.

A functor is a right lifter in Cat\mathrm{Cat} if and only if it is a right adjoint.

Proof 7.2.

Right adjoints in any bicategory are right lifters since the lifting is given by composing with the left adjoint. Conversely, suppose the functor Y𝑛ZY\xrightarrow{n}Z is a right lifter. A right lift 1n(z)Y1\xrightarrow{n_{*}(z)}Y for each object 1𝑧Z1\xrightarrow{z}Z of ZZ gives the components nn(z)ϵzznn_{*}(z)\xrightarrow{\epsilon_{z}}z of the counit of an adjunction nnn_{*}\dashv n; as in any book introducing adjoint functors, we know that the universal property of right lifter allows us to define nn_{*} on morphisms and so on.

In order to distinguish polynomials in the polynomic bicategory Cat\mathrm{Cat} from polynomials in Cat\mathrm{Cat}, in the sense of Weber [22], as a category with pullbacks, I use the term abstract polynomial for the former; that is, it is a span

AjE𝑝BA\xleftarrow{j_{*}}E\xrightarrow{p}B

of functors, where pp is a groupoid fibration and jjj_{*}\dashv j.

A functor f:ABf:A\to B is an abstract polynomial functor when, in its factorization

f(A𝑗E𝑝B)f\cong(A\xrightarrow{j}E\xrightarrow{p}B)

as per Theorem 5.1, the ultimate functor jj is a right adjoint.

The next result follows from the work in [17]; for convenience, we will include a direct proof.

Proposition 7.3.

Abstract polynomial functors compose.

Proof 7.4.

Take A𝑗E𝑝B𝑘F𝑞CA\xrightarrow{j}E\xrightarrow{p}B\xrightarrow{k}F\xrightarrow{q}C with jjj_{*}\dashv j, kkk_{*}\dashv k and with p,qp,q groupoid fibrations. Form the pseudopullback

P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k^{\prime}_{*}}     p\scriptstyle{p^{\prime}}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}k\scriptstyle{k_{*}}     θ\scriptstyle{\theta}\scriptstyle{\cong}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}B\textstyle{B} (7.9)

to obtain the required “distributive law”. One easily verifies there exists kkk^{\prime}_{*}\dashv k^{\prime}, pp^{\prime} is a groupoid fibration and the Chevalley-Beck condition (as recalled on page 150 of [15])

pkkpp^{\prime}\circ k^{\prime}\cong k\circ p

holds. So qkpjqpkjq\circ k\circ p\circ j\cong q\circ p^{\prime}\circ k^{\prime}\circ j where qpq\circ p^{\prime} is a groupoid fibration and kjk^{\prime}\circ j is a right adjoint.

Write Catapf\mathrm{Cat}_{\mathrm{apf}} for the subcategory of Cat\mathrm{Cat} obtained by restricting the morphisms to abstract polynomial functors.

The next result is essentially Proposition 8.6 of [17].

Proposition 7.5.

If the bicategory {\mathscr{M}} is calibrated then, for each KK\in{\mathscr{M}}, there is a pseudofunctor K:PolyCatapf\mathbb{H}_{K}:\mathrm{Poly}{\mathscr{M}}\longrightarrow\mathrm{Cat}_{\mathrm{apf}} taking the polynomial X𝑚S𝑝YX\xleftarrow{m}S\xrightarrow{p}Y to the abstract polynomial functor which is the composite

(K,X)rif(m,)(K,S)(K,p)(K,Y){\mathscr{M}}(K,X)\xrightarrow{\mathrm{rif}(m,-)}{\mathscr{M}}(K,S)\xrightarrow{{\mathscr{M}}(K,p)}{\mathscr{M}}(K,Y)

in Cat\mathrm{Cat}.

Corollary 7.6.

The pseudofunctor 𝟏:PolyCatCatapf\mathbb{H}_{\mathbf{1}}:\mathrm{Poly}\mathrm{Cat}\longrightarrow\mathrm{Cat}_{\mathrm{apf}}, taking each abstract polynomial AjE𝑝BA\xleftarrow{j_{*}}E\xrightarrow{p}B its associated abstract polynomial functor A𝑗E𝑝BA\xrightarrow{j}E\xrightarrow{p}B with jjj_{*}\dashv j, is a biequivalence.

Remark 7.7.

After my talk on this topic in the Workshop on Polynomial Functors https://topos.site/p-func-2021-workshop/, Paul Taylor kindly pointed out his 1988 preprint [21] in which he distinguished parametric (or local) right adjoint functors with motivation from proof theory and consequently calling them stable functors. His trace factorization for such a functor is a right adjoint functor followed by a groupoid fibration. I am grateful to Clemens Berger for observing that the groupoid fibrations so arising are a resticted class: their pseudofibres are coproducts of codiscrete (chaotic) categories. However, it does show that every parametric right adjoint functor provides an example of an abstract polynomial functor.

——————————————————–

References

  • [1] Jean Bénabou, Introduction to bicategories, Lecture Notes in Math. 47 (Springer, Berlin, 1967) 1–77.
  • [2] Renato Betti, Dietmar Schumacher and Ross Street, Factorizations in bicategories Dipartimento di Matematica, Politecnico di Milano, n. 22/R (May 1999); see 1997 draft at http://science.mq.edu.au/~street/61.pdf.
  • [3] Magali Dupont and Enrico M. Vitale, Proper factorization systems in 2-categories, J. Pure Appl. Algebra 179(1-2) (2003) 65–86.
  • [4] Hans Ehrbar and Oswald Wyler, On subobjects and images in categories, Report 68-34 (Carnegie Mellon University, November 1968) 28pp.
  • [5] Peter J. Freyd and G. Max Kelly, Categories of continuous functors I, J. Pure and Applied Algebra 2 (1972) 169–191; Erratum Ibid. 4 (1974) 121.
  • [6] John W. Gray, The categorical comprehension scheme, Lecture Notes in Math. 99 (Springer-Verlag, Berlin and New York, 1969) 242–312.
  • [7] John W. Gray, Formal category theory–Adjointness for 2-categories, Lecture Notes in Math. 391 (Springer-Verlag, New York, 1974).
  • [8] André Joyal, Notes on quasi-categories (University of Chicago, 22 June 2008); https://www.math.uchicago.edu/~may/IMA/Joyal.pdf.
  • [9] André Joyal, The theory of quasi-categories and its applications, Volume 2; https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf.
  • [10] F.W. Lawvere, The category of categories as a foundation for mathematics, Proceedings of the Conference on Categorical Algebra, La Jolla 1965 (Springer-Verlag, New York 1966) 1–20.
  • [11] F.W. Lawvere, Adjointness in Foundations, Dialectica 23 (1969) 281–296.
  • [12] F.W. Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor, Proceedings of the AMS Symposium on Pure Mathematics XVII (1970) 1–14.
  • [13] Saunders Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (Springer-Verlag, 1971).
  • [14] Bertrand Russell, The Principles of Mathematics (Cambridge University Press, U/K. 1903).
  • [15] Ross Street, Elementary cosmoi I, Lecture Notes in Math. 420 (Springer-Verlag, 1974) 134–180.
  • [16] Ross Street, Fibrations in bicategories, Cahiers de topologie et géométrie différentielle 21 (1980) 111–160.
  • [17] Ross Street, Polynomials as spans, Cahiers de topologie et géométrie différentielle catégoriques 61(3) (2020) 113–153.
  • [18] Ross Street and Dominic Verity, The comprehensive factorization and torsors, Theory and Applications of Categories 23(3) (2010) 42–75.
  • [19] Ross Street and R.F.C. Walters, The comprehensive factorization of a functor, Bulletin American Math. Soc. 79 (1973) 936–941.
  • [20] Ross Street and Robert F.C. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978) 350–379.
  • [21] Paul Taylor, The trace factorisation of stable functors, Preprint (1988); available at http://www.paultaylor.eu/stable/.
  • [22] Mark Weber, Polynomials in categories with pullbacks, Theory and Applications of Categories 30(16) (2015) 533–598.