This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Virtually fibred Montesinos links of type SL2~\widetilde{SL_{2}}

Xiao Guo, Yu Zhang
Department of Mathematics, SUNY at Buffalo
E-mail: xiaoguo@buffalo.eduE-mail: yz26@buffalo.edu
Abstract

We find a larger class of virtually fibred classic Montesinos links of type SL2~\widetilde{SL_{2}}, extending a result of Agol, Boyer and Zhang.

1 Introduction

A 33-manifold is called virtually fibred if it has a finite cover which is a surface bundle over the circle. A link in a connected 33-manifold is said to be virtually fibred if its exterior is a virtually fibred 33-manifold. Thurston conjectured that all closed hyperbolic 33-manifolds and all hyperbolic links in closed 33-manifolds are virtually fibred. This conjecture, which has been named as virtually fibred conjecture, is one of the most fundamental and difficult problems in 33-manifold topology.

Recall that a link KK in S3S^{3} is called a generalized Montesinos link if the double branched cover WKW_{K} of (S3,K)(S^{3},K) is a Seifert fibred 33-manifold. Such a link KK is further said to be of type SL2~\widetilde{SL_{2}} if the canonical geometric structure on WKW_{K} is from the SL2~\widetilde{SL_{2}}-geometry. When every component of the branched set in WKW_{K} is not a fiber of the Seifert fibration of WKW_{K}, KK is called a classic Montesinos link. Recent work of Walsh [Wa] and work of Agol-Boyer-Zhang [ABZ] combined together solved the virtually fibred conjecture for all generalized Montesinos links in S3S^{3} which are not classic Montesinos links of type SL2~\widetilde{SL_{2}}. Agol-Boyer-Zhang [ABZ] also gave an infinite family of virtually fibred classic Montesinos links of type SL2~\widetilde{SL_{2}}. In this paper, we extend the latter result of [ABZ] to a larger family of classic Montesinos links of type SL2~\widetilde{SL_{2}}. Note that every classic Montesinos link has a cyclic rational tangle decomposition of the form (q1/p1,q2/p2,,qn/pn)(q_{1}/p_{1},q_{2}/p_{2},...,q_{n}/p_{n}) with all pi2p_{i}\geq 2 as shown in Figure 1. We prove

Refer to caption
Figure 1: Classic Montesinos link
Theorem 1.1

If a classic Montesinos link KK has a cyclic rational tangle decomposition of the form (q1p,q2p,,qnp)(\displaystyle{\frac{q_{1}}{p},\frac{q_{2}}{p},\cdots,\frac{q_{n}}{p}}) with p3p\geq 3 odd, then KK is virtually fibred.

This theorem is proved in [ABZ] when nn is a multiple of pp. Our approach follows closely to that of [ABZ]. At a number of places we need to deal with some new issues that arise. We shall describe our ways of dealing with these issues when we reach these places.

Let KK be a link as given in Theorem 1.1. The base orbifold K{\cal B}_{K} of the Seifert fibred space WKW_{K} is a 22-sphere with nn cone points each has order pp. Let f:WKKf:W_{K}\rightarrow\mathcal{B}_{K} be the Seifert fibration which is invariant under the covering involution τ:WKWK\tau:W_{K}\rightarrow W_{K}. The Euler number e(WK)e(W_{K}) of WKW_{K} and the orbifold Euler characteristic χ(K)\chi({\cal B}_{K}) of K{\cal B}_{K} are given by the following formulas:

e(WK)=i=1nqip,χ(K)=2n+np.e(W_{K})=-\frac{\sum_{i=1}^{n}q_{i}}{p},\;\;\;\chi({\cal B}_{K})=2-n+\frac{n}{p}.

Note that WKW_{K} has the SL2~\widetilde{SL_{2}}-geometry precisely when e(WK)0e(W_{K})\neq 0 and χ(K)<0\chi({\cal B}_{K})<0. Thus KK is of type SL2~\widetilde{SL_{2}} precisely when

Case (1). n=3n=3, p5p\geq 5, and q1+q2+q30q_{1}+q_{2}+q_{3}\neq 0, or

Case (2). n>3n>3 and q1++qn0q_{1}+...+q_{n}\neq 0.

We shall split our proof of Theorem 1.1 into these two cases, given in Section 2 and Section 3 respectively. All main ingredients of the proof will occur already in Case (1); the proof of Case (2) will be a quick generalization.

In the remainder of this section, we shall give a few additional notes and notations which will be used throughout this paper. From now on we assume that K=K(q1/p,,qn/p)K=K(q_{1}/p,...,q_{n}/p) is a link satisfying the conditions of Case (1) or (2) listed above.

First note that KK is a single component knot if q1++qnq_{1}+...+q_{n} is odd, and a two component link otherwise. The double branched cover WKW_{K} has the SL2~\widetilde{SL_{2}}-geometry and its base orbifold K{\cal B}_{K} is hyperbolic. Let K~\widetilde{K} be the corresponding branched set in WKW_{K} and let K=f(K~)K^{*}=f(\widetilde{K}), where f:WKKf:W_{K}\rightarrow{\cal B}_{K} is the Seifert quotient map. By the orbifold theorem we may assume that the covering involution τ\tau on WKW_{K} is an isometry and the branch set K~=Fix(τ)\widetilde{K}=Fix(\tau) is a geodesic which is orthogonal to the Seifert fibres by Lemma 2.1 of [ABZ]. Also KK^{*} is a geodesic in K{\cal B}_{K}, and is an equator of K{\cal B}_{K} containing all the nn cone points which we denote by c1,c2,,cnc_{1},c_{2},\cdots,c_{n} (indexed so that they appear consecutively along KK^{*}). The order of each cone point cic_{i} is pp. Since pp is odd, the restriction map of ff to each component of K~\widetilde{K} is a double covering onto KK^{*}.

2 Proof of Theorem 1.1 in Case (1).

In this section we prove Theorem 1.1 in the case n=3n=3, p5p\geq 5 and q1+q2+q30q_{1}+q_{2}+q_{3}\neq 0. Throughout this section, without further notice, i,j,ki,j,k as well as numbers expressed by them will be considered as non-negative integers mod pp, and iki\neq k will also be assumed.

2.1 KK is a knot.

Here is an outline of the proof.

Step 1  Take a specific p2p^{2}-fold orbifold cover FF of K=S2(p,p,p){\cal B}_{K}=S^{2}(p,p,p) such that FF is a smooth surface. There is a corresponding free cover Ψ:YWK\Psi:Y\rightarrow W_{K} of the same degree such that the base orbifold of the Seifert space YY is FF and such that the following diagram commutes

Yf^FΨψWKfK\begin{CD}Y@>{\hat{f}}>{}>F\\ @V{}V{\Psi}V@V{}V{\psi}V\\ W_{K}@>{f}>{}>{\mathcal{B}_{K}}\end{CD}

where f^\hat{f} is the Seifert quotient map. Note that YY is a locally-trivial circle bundle over FF since FF is a smooth surface.

Let L=Ψ1(K~)L=\Psi^{-1}(\widetilde{K}). Then LL has exactly p2p^{2} components, which we denote by {Li,j:1i,jp}\{L_{i,j}:1\leqslant i,j\leqslant p\}. Let Li,j=f^(Li,j)L_{i,j}^{*}=\hat{f}(L_{i,j}). Then {Lj,j:1jp}\{L_{j,j}^{*}:1\leqslant j\leqslant p\} are pp mutually disjoint simple closed geodesics in FF.

Step 2  Construct a surface semi-bundle structure on M=Yj=1𝑝N(Lj,j)M=Y-\overset{p}{\underset{j=1}{\cup}}\overset{\circ}{N}(L_{j,j}), where N(Lj,j)N(L_{j,j}) is a small regular neighborhood of Lj,jL_{j,j} in YY, 1jp1\leqslant j\leqslant p.

Note that MM is a graph manifold with non-empty boundary, with vertices M2jM_{2}^{j} and Y1Y_{1}, where M2j=f^1(Lj,j)×[ϵ,ϵ]N(Lj,j)M_{2}^{j}=\hat{f}^{-1}(L_{j,j}^{*})\times[-\epsilon,\epsilon]-\overset{\circ}{N}(L_{j,j}), 1jp1\leqslant j\leqslant p. Y1=Mj=1𝑝M2jY_{1}=M-\overset{p}{\underset{j=1}{\cup}}\overset{\circ}{M^{j}_{2}}. We construct a surface semi-bundle structure on MM by using [WY] and following [ABZ].

Step 3  Isotope all Li,kL_{i,k}, iki\neq k, such that they are transverse to the surface bundle in M2jM_{2}^{j}, denoted by 2j\mathcal{F}_{2}^{j}. This is one of the key parts of the proof. Let Ui,k=f^1(Li,k)U_{i,k}=\hat{f}^{-1}(L_{i,k}^{*}), the vertical torus over Li,kL_{i,k}^{*}. By the construction in Step 2, there are exactly two singular points in the induced foliation by 2j{\cal F}_{2}^{j} on every component of Ui,kM2jU_{i,k}\cap M_{2}^{j}. We show that LL can be oriented such that the arcs Li,kM2jL_{i,k}\cap M_{2}^{j} whose images intersect in FF, all travel from one of f^1(Lj,j)×{ϵ}\hat{f}^{-1}(L_{j,j})^{*}\times\{-\epsilon\} and f^1(Lj,j)×{ϵ}\hat{f}^{-1}(L_{j,j})^{*}\times\{\epsilon\} to the other. This property allows us to arrange these arcs in Ui,kM2jU_{i,k}\cap M_{2}^{j} such that they always travel from the “-” side of the surface bundle in M2jM_{2}^{j} to the “++” side.

Step 4  Construct a double cover of MM, denoted by M˘\breve{M}, so that M˘\breve{M} has a surface bundle structure. Denote the corresponding double cover of YY as Y˘\breve{Y},the lift of Y1Y_{1} as Y˘1,1Y˘1,2\breve{Y}_{1,1}\cup\breve{Y}_{1,2}, and the lift of Li,kL_{i,k} as L˘i,k,1L˘i,k,2\breve{L}_{i,k,1}\cup\breve{L}_{i,k,2}. Perform certain Dehn twist operations on the surface bundles of Y˘1,1Y˘1,2\breve{Y}_{1,1}\cup\breve{Y}_{1,2} so that the L˘i,k,s\breve{L}_{i,k,s} are transverse to the new surface bundles, s=1,2s=1,2.

This is another key part of the proof. We perform these Dehn twist operations along a union of vertical tori, ΓY˘1,1Y˘1,2\Gamma\subset\breve{Y}_{1,1}\cup\breve{Y}_{1,2}. Γ\Gamma contains some boundary parallel tori of Y˘1,1Y˘1,2\breve{Y}_{1,1}\cup\breve{Y}_{1,2} as in [ABZ], different form [ABZ], these boundary parallel tori intersect some arcs of L˘i,k,sY˘1,s\breve{L}_{i,k,s}\cap\breve{Y}_{1,s} two times with different direction or do not intersect at all, s=1,2s=1,2. We call such arcs of L˘i,k,sY˘1,s\breve{L}_{i,k,s}\cap\breve{Y}_{1,s} “bad” arcs. We construct four specific extra tori as members of Γ\Gamma to deal with the “bad” arcs, s=1,2s=1,2.

By Steps 1-4, the exterior of the inverse image of K~\widetilde{K} in Y˘\breve{Y} has a surface bundle structure. It is a free cover of the exterior of K~\widetilde{K} in WKW_{K}, which in turn is a free double cover of the exterior of KK in S3S^{3}. Thus KK is virtually fibred in S3S^{3}.

Now we fill in the details.

Step 1

Instead of taking the pp-fold cyclic cover of K\mathcal{B}_{K} as in [ABZ], we construct the p2p^{2}-fold cover FF of K=S2(p,p,p){\cal B}_{K}=S^{2}(p,p,p), by a composition of two pp-fold cyclic covers.

Let Γ1=π1(S2(p,p,p))\Gamma_{1}=\pi_{1}(S^{2}(p,p,p)) be the orbifold fundametal group of S2(p,p,p)S^{2}(p,p,p). It has a presentation

Γ1=<x1,x2,x3|x1p=x2p=x3p=x1x2x3=1>.\Gamma_{1}=<x_{1},x_{2},x_{3}\ |\ x_{1}^{p}=x_{2}^{p}=x_{3}^{p}=x_{1}x_{2}x_{3}=1>.

where xrx_{r} is represented by a small circular loop in S2(p,p,p)S^{2}(p,p,p) centered at cr,r=1,2,3c_{r},r=1,2,3. Let ψ1:FS2(p,p,p)\psi_{1}:F^{\prime}\rightarrow S^{2}(p,p,p) be the pp-fold cyclic orbifold cover of S2(p,p,p)S^{2}(p,p,p) corresponding to the homomorphism:

h1:Γ1/ph_{1}:\Gamma_{1}\rightarrow\mathbb{Z}/p

where h1(x1)=1¯,h1(x2)=1¯h_{1}(x_{1})=\overline{1},h_{1}(x_{2})=-\overline{1}, and h1(x3)=0¯h_{1}(x_{3})=\overline{0}. FF^{\prime} is as shown in Figure 2 (while p=5p=5).

Refer to caption
Figure 2: Covering space FF^{\prime}

The order of h1(x1)h_{1}(x_{1}) and h1(x2)h_{1}(x_{2}) are both pp, so ψ11(c1)=c^1\psi_{1}^{-1}(c_{1})=\hat{c}_{1} and ψ11(c2)=c^2\psi_{1}^{-1}(c_{2})=\hat{c}_{2} are two points in FF^{\prime} (not cone points). The order of h1(x3)h_{1}(x_{3}) is 0, so ψ11(c3)={c3,1,c3,2,,c3,p}\psi_{1}^{-1}(c_{3})=\{c_{3,1},c_{3,2},\cdots,c_{3,p}\} are the only cone points in FF^{\prime}, each has order pp. We have F=S2(p,p,,p)pF^{\prime}=S^{2}(\underbrace{p,p,\cdots,p)}_{p}. ψ11(K)\psi_{1}^{-1}(K^{*}) is a set of pp geodesics L1,L2,,LpL_{1}^{*},L_{2}^{*},\cdots,L_{p}^{*}, such that LiL_{i}^{*} goes through the cone point c3,ic_{3,i} (cf. Figure 2).

Let τ1\tau_{1}^{*} be the deck transformation of ψ1\psi_{1} corresponding to 1¯p\bar{1}\in\mathbb{Z}_{p}. Fix(τ1)={c^1,c^2}(\tau_{1}^{*})=\{\hat{c}_{1},\hat{c}_{2}\}. We may assume that τ1(Li)=Li+1\tau_{1}^{*}(L_{i}^{*})=L_{i+1}^{*}. Orient L1L_{1}^{*} and give LiL_{i}^{*} the induced orientation, 1<ip1<i\leqslant p. FF^{\prime} admits an orientation such that τ1\tau_{1}^{*} is a counterclockwise rotation by 2π/p{2\pi}/{p} near c^1\hat{c}_{1} and a clockwise rotation by 2π/p{2\pi}/{p} near c^2\hat{c}_{2} on FF^{\prime}, since h1(x1)=1¯h_{1}(x_{1})=\bar{1} and h1(x2)=1¯h_{1}(x_{2})=-\overline{1}. Note that LiL_{i}^{*} intersects LjL_{j}^{*} at c^1\hat{c}_{1} in an angle of 2π(ij)/p{2\pi(i-j)}/{p}, also intersects LjL_{j}^{*} at c^2\hat{c}_{2} in an angle of 2π(ji)/p{2\pi(j-i)}/{p}. (We always suppose that the counterclockwise direction is the positive direction of angles.)

Let Γ2\Gamma_{2} be the orbifold fundamental group of FF^{\prime}. It has the presentation

Γ2=π1(S2(p,p,,pp))=<y1,y2,,yp|y1p=y2p==ypp=y1y2yp=1>,\Gamma_{2}=\pi_{1}(S^{2}(\underbrace{p,p,\cdots,p}_{p}))=<y_{1},y_{2},\cdots,y_{p}\ |\ y_{1}^{p}=y_{2}^{p}=\cdots=y_{p}^{p}=y_{1}y_{2}\cdots y_{p}=1>,

where yjy_{j} is represented by a small circular loop in S2(p,p,,pp)S^{2}(\underbrace{p,p,\cdots,p}_{p}) centered at c3,jc_{3,j}. Let ψ2:FF\psi_{2}:F\rightarrow F^{\prime} be the pp-fold cyclic orbifold cover of FF^{\prime} corresponding to the homomorphism:

h2:Γ2/ph_{2}:\Gamma_{2}\rightarrow\mathbb{Z}/p

where h2(yj)=1¯h_{2}(y_{j})=\overline{1}, 1jp1\leqslant j\leqslant p.

The order of h2(yj)h_{2}(y_{j}) is pp, so ψ21(c3,j)=c^3,j\psi_{2}^{-1}(c_{3,j})=\hat{c}_{3,j} is a point, 1jp1\leqslant j\leqslant p. Hence FF is a smooth closed orientable surface without cone points. For each r=1,2r=1,2, ψ21(c^r)\psi_{2}^{-1}(\hat{c}_{r}) is a set of pp points, which we denote by c^r,1,c^r,2,,c^r,p\hat{c}_{r,1},\hat{c}_{r,2},\cdots,\hat{c}_{r,p}. For each i=1,,pi=1,...,p, ψ21(Li)\psi_{2}^{-1}(L_{i}^{*}) is a set of pp simple closed geodesics, which we denote by Li,1,Li,2,,Li,pL_{i,1}^{*},L_{i,2}^{*},\cdots,L_{i,p}^{*}.

Denote the deck transformation of ψ2\psi_{2} corresponding to 1¯/p\bar{1}\in\mathbb{Z}/p by τ2\tau_{2}^{*}. Fix(τ2)={c^3,1,c^3,2,,c^3,p}(\tau_{2}^{*})=\{\hat{c}_{3,1},\hat{c}_{3,2},\cdots,\hat{c}_{3,p}\}. We may assume that τ2(Li,j)=Li,j+1\tau_{2}^{*}(L_{i,j}^{*})=L_{i,j+1}^{*}, τ2(c^1,j)=c^1,j+1\tau_{2}^{*}(\hat{c}_{1,j})=\hat{c}_{1,j+1}, and τ2(c^2,j)=c^2,j+1\tau_{2}^{*}(\hat{c}_{2,j})=\hat{c}_{2,j+1}. Then ψ21(Li)={Li,j:1jp}\psi_{2}^{-1}(L_{i}^{*})=\{L_{i,j}^{*}:1\leqslant j\leqslant p\}. Now we fix an orientation for each of L1,1,L2,2,,Lp,pL_{1,1}^{*},L_{2,2}^{*},\cdots,L_{p,p}^{*} such that Lj,jL_{j,j}^{*} goes through c^3,j\hat{c}_{3,j}, c^2,j\hat{c}_{2,j} and c^1,j\hat{c}_{1,j} in order, and give Li,j=(τ2)ji(Li,i)L_{i,j}^{*}=(\tau_{2}^{*})^{j-i}(L_{i,i}^{*}) the induced orientation. FF admits an orientation such that τ2\tau_{2}^{*} is a counterclockwise rotation by 2π/p2\pi/p near the fixed points c^3,i\hat{c}_{3,i}, so Li,1,Li,2,,Li,pL_{i,1}^{*},L_{i,2}^{*},\cdots,L_{i,p}^{*} intersect at c^3,i\hat{c}_{3,i}, and Li,jL_{i,j}^{*} intersects Li,iL_{i,i}^{*} at c^3,i\hat{c}_{3,i} in an angle of 2π(ji)/p2\pi(j-i)/p, 1i,jp1\leqslant i,j\leqslant p.

Since c^r=ψ2(c^r,j)\hat{c}_{r}=\psi_{2}(\hat{c}_{r,j}) is not a cone point on FF^{\prime}, a small regular neighborhood of c^r,j\hat{c}_{r,j} on FF is a copy of a small regular neighborhood of c^r\hat{c}_{r} on FF^{\prime}, r=1,2r=1,2. Recall that LiL_{i}^{*} intersects LjL_{j}^{*} at c^1\hat{c}_{1} in an angle of 2π(ij)/p2\pi(i-j)/p, and at c^2\hat{c}_{2} in an angle of 2π(ji)/p2\pi(j-i)/p. Then Li,jL_{i,j}^{*} intersects Lj,jL_{j,j}^{*} at c^1,j\hat{c}_{1,j} in an angle of 2π(ij)/p2\pi(i-j)/p, and at c^2,j\hat{c}_{2,j} in an angle of 2π(ji)/p2\pi(j-i)/p. See the schematic picture, Figure 3, for example p=5p=5. Here we didn’t depict the genus of the surface, so some curves meet in the picture actually do not meet. For convenience, we only draw a part of Lj,jL_{j,j}^{*} in Figure 3, 1jp1\leqslant j\leqslant p.

Refer to caption
Figure 3: Li,j,1i,jpL_{i,j}^{*},1\leqslant i,j\leqslant p with p=5p=5

Summarizing the above discussion, we have the following remark.

Remark 2.1

{Li,j:1i,jp}\{L_{i,j}^{*}:1\leqslant i,j\leqslant p\} only intersects at the points {c^r,j,r=1,2,3,1jp}\{\hat{c}_{r,j},r=1,2,3,1\leqslant j\leqslant p\} on FF, and Li,jL_{i,j}^{*} goes through c^3,i\hat{c}_{3,i}, c^2,j\hat{c}_{2,j} and c^1,j\hat{c}_{1,j} in order following the given orientation of Li,jL_{i,j}^{*}, 1i,jp1\leqslant i,j\leqslant p. In particular Lj,jL_{j,j}^{*} goes through c^3,j,c^2,j\hat{c}_{3,j},\hat{c}_{2,j}, and c^1,j\hat{c}_{1,j}, so {Lj,j,1jp}\{L_{j,j}^{*},1\leqslant j\leqslant p\} are mutually disjoint, and

Li,jintersectsLj,jat{c^1,jin an angle of 2π(ij)/p,c^2,jin an angle of2π(ij)/p,\displaystyle L_{i,j}^{*}\ \text{intersects}\ L_{j,j}^{*}\ \text{at}\begin{cases}\hat{c}_{1,j}\ \text{in an angle of}\ {2\pi(i-j)}/{p},\\ \hat{c}_{2,j}\ \text{in an angle of}\ -{2\pi(i-j)}/{p},\end{cases}
Lj,kintersectsLj,jatc^3,jin an angle of2π(jk)/p,\displaystyle L_{j,k}^{*}\ intersects\ L_{j,j}^{*}\ at\ \hat{c}_{3,j}\ \text{in an angle of}\ {-2\pi(j-k)}/{p},

Note that i,j,k,ij,kji,j,k,i-j,k-j are considered as integers mod pp.

Let ψ=ψ1ψ2:Fψ2S2(p,p,,pp)ψ1S2(p,p,p)\psi=\psi_{1}\circ\psi_{2}:F\xrightarrow{\psi_{2}}S^{2}(\underbrace{p,p,\cdots,p}_{p})\xrightarrow{\psi_{1}}S^{2}(p,p,p), which is a p2p^{2}-fold orbifold covering. We have ψ1(cr)={c^r,1,c^r,2,,c^r,p}\psi^{-1}(c_{r})=\{\hat{c}_{r,1},\hat{c}_{r,2},\cdots,\hat{c}_{r,p}\}, r=1,2,3r=1,2,3, and L=ψ1(K)={Li,j:1i,jp}L^{*}=\psi^{-1}(K^{*})=\{L_{i,j}^{*}:1\leqslant i,j\leqslant p\}.

Let Ψ1:YWK\Psi_{1}:Y^{\prime}\rightarrow W_{K} be the pp-fold cover of WKW_{K} corresponding to ψ1\psi_{1}, Ψ2:YY\Psi_{2}:Y\rightarrow Y^{\prime} the pp-fold cover of YY^{\prime} corresponding to ψ2\psi_{2}, and Ψ=Ψ1Ψ2\Psi=\Psi_{1}\circ\Psi_{2}. Then Ψ:YWK\Psi:Y\rightarrow W_{K} is a p2p^{2}-fold cover of WKW_{K} corresponding to ψ\psi. YY has locally-trivial circle bundle Seifert structure with base surface FF. Set L=Ψ1(K~)L=\Psi^{-1}(\widetilde{K}), which is a geodesic link in YY. We have the following commutative diagram:

[Uncaptioned image]

Note that LL has exactly p2p^{2} components. Let L={Li,j:1i,jp}L=\{L_{i,j}:1\leqslant i,j\leqslant p\}, where Li,j=f^1(Li,j),1i,jpL_{i,j}=\hat{f}^{-1}(L_{i,j}^{*}),1\leqslant i,j\leqslant p. f^|:Li,jLi,j\hat{f}|:L_{i,j}\rightarrow L_{i,j}^{*} is a 2-fold cover.

Step 2

By Remark 2.1, {Lj,j,1jp}\{L_{j,j}^{*},1\leqslant j\leqslant p\} are mutually disjoint. Let F2j=Lj,j×[ϵ,ϵ]F_{2}^{j}=L_{j,j}^{*}\times[-\epsilon,\epsilon], for some small positive number ϵ\epsilon, be a neighborhood of Lj,jL_{j,j}^{*} in FF, such that F2jF_{2}^{j}’s are mutually disjoint. Let β1j=Lj,j×{ϵ}\beta_{1}^{j}=L_{j,j}^{*}\times\{-\epsilon\}, β2j=Lj,j×{ϵ}\beta_{2}^{j}=L_{j,j}^{*}\times\{\epsilon\}, and F1=F(j=1𝑝F2j)¯F_{1}=\overline{F-(\underset{j=1}{\overset{p}{\cup}}F_{2}^{j})}. We may suppose that β1j\beta_{1}^{j} is on the left side of Lj,jL_{j,j}^{*}. By Remark 2.1, Li,kL_{i,k}^{*} goes through c^1.k\hat{c}_{1.k}, c^2,k\hat{c}_{2,k} and c^3,i\hat{c}_{3,i}, so Li,kL_{i,k}^{*} is separated into 2n=62n=6 arcs by F1,F2kF_{1},F_{2}^{k}, and F2iF_{2}^{i}. We denote the six arcs of Li,kL_{i,k}^{*} by (Li,k1)(L_{i,k}^{1})^{*}, (Li,k2)(L_{i,k}^{2})^{*}, \cdots, (Li,k6)(L_{i,k}^{6})^{*}, so that (Li,k2)(Li,k4)F2k(L_{i,k}^{2})^{*}\cup(L_{i,k}^{4})^{*}\subset F_{2}^{k}, (Li,k6)F2i(L_{i,k}^{6})^{*}\subset F_{2}^{i}, (Li,k1)(Li,k3)(Li,k5)F1(L_{i,k}^{1})^{*}\cup(L_{i,k}^{3})^{*}\cup(L_{i,k}^{5})^{*}\subset F_{1}, and c^1,k(Li,k2)\hat{c}_{1,k}\in(L_{i,k}^{2})^{*}, c^2,k(Li,k4)\hat{c}_{2,k}\in(L_{i,k}^{4})^{*}, and c^3,i(Li,k6)\hat{c}_{3,i}\in(L_{i,k}^{6})^{*}. We also require that as we travel along Li,kL_{i,k}^{*} in its orientation, we will pass (Li,k6)(L_{i,k}^{6})^{*}, (Li,k5)(L_{i,k}^{5})^{*}, \cdots, (Li,k1)(L_{i,k}^{1})^{*} consecutively. From the construction, we have Remark 2.2 and Table 1.

Remark 2.2

{(Li,k1) is the part of Li,k between c^3,i and c^1,k inside F1;(Li,k3) is the part of Li,k between c^1,k and c^2,k inside F1;(Li,k5) is the part of Li,k between c^2,k and c^3,i inside F1.\begin{cases}\text{$(L_{i,k}^{1})^{*}$ is the part of $L_{i,k}^{*}$ between $\hat{c}_{3,i}$ and $\hat{c}_{1,k}$ inside $F_{1}$};\\ \text{$(L_{i,k}^{3})^{*}$ is the part of $L_{i,k}^{*}$ between $\hat{c}_{1,k}$ and $\hat{c}_{2,k}$ inside $F_{1}$};\\ \text{$(L_{i,k}^{5})^{*}$ is the part of $L_{i,k}^{*}$ between $\hat{c}_{2,k}$ and $\hat{c}_{3,i}$ inside $F_{1}$}.\end{cases}

(Li,k1)(L_{i,k}^{1})^{*} tail head (Li,k3)(L_{i,k}^{3})^{*} tail head (Li,k5)(L_{i,k}^{5})^{*} tail head
ikp12i-k\leqslant\frac{p-1}{2} β1k\beta_{1}^{k} β1i\beta_{1}^{i} ikp12i-k\leqslant\frac{p-1}{2} β2k\beta_{2}^{k} β2k\beta_{2}^{k} ikp12i-k\leqslant\frac{p-1}{2} β2i\beta_{2}^{i} β1k\beta_{1}^{k}
ik>p12i-k>\frac{p-1}{2} β2k\beta_{2}^{k} β2i\beta_{2}^{i} ik>p12i-k>\frac{p-1}{2} β1k\beta_{1}^{k} β1k\beta_{1}^{k} ik>p12i-k>\frac{p-1}{2} β1i\beta_{1}^{i} β2k\beta_{2}^{k}

Note: iki-k is considered as a nonnegative integer mod pp

Table 1: The induced orientation on (Li,k2l1),1l3(L_{i,k}^{2l-1})^{*},1\leqslant l\leqslant 3.

We need Table 1 in the following lemma and in Step 3.

Lemma 2.3

F1F_{1} is connected.

Proof: It suffices to prove that the boundary components of F1F_{1}, which is the set {β1i,β2j,1i,jp}\{\beta_{1}^{i},\beta_{2}^{j},1\leqslant i,j\leqslant p\}, can be mutually connected to each other by arcs in F1F_{1}.

From Table 1, the arc (Lj+1,j5)(L_{j+1,j}^{5})^{*} connects β2j+1\beta_{2}^{j+1} and β1j\beta_{1}^{j}, and the arc (Lj+1,j1)(L_{j+1,j}^{1})^{*} connects β1j\beta_{1}^{j} and β1j+1\beta_{1}^{j+1}, since j+1j=1p12j+1-j=1\leqslant\displaystyle{\frac{p-1}{2}}, where p3p\geq 3. So β2j+1\beta_{2}^{j+1} and β1j+1\beta_{1}^{j+1} can be connected in F1F_{1}, 1j+1p1\leqslant{j+1}\leqslant p. Also β2j+1\beta_{2}^{j+1} and β1j\beta_{1}^{j} are connected by the arc (Lj+1,j5)(L_{j+1,j}^{5})^{*}. Hence {β1i,β2j,1i,jp}\{\beta_{1}^{i},\beta_{2}^{j},1\leqslant i,j\leqslant p\} can be mutually connected to each other in F1F_{1}. \square

Let Tj=f^1(Lj,j)YT^{j}=\hat{f}^{-1}(L_{j,j}^{*})\subset Y, which is a vertical torus over Lj,jL_{j,j}^{*}. Then Li,jL_{i,j} and Lj,iL_{j,i} are transverse to TjT^{j} for all 1ip1\leqslant i\leqslant p and iji\neq j. The situation near Lj,jL_{j,j}^{*} in FF is described in Figure 4, while p=5p=5.

Refer to caption
Figure 4: A neighborhood of Lj,jL_{j,j}^{*} in FF.

Since Lj,jL_{j,j}^{*} is a geodesic, the torus TjT^{j} is a totally geodesic torus which inherits a Euclidean structure from the SL2~\widetilde{SL_{2}} structure on YY. For any two simple closed geodesics {aj,bj}Tj\{a_{j},b_{j}\}\subset T^{j} with H1(Tj)=<aj,bj>H_{1}(T^{j})=<a_{j},b_{j}>, TjT^{j} can be identified to S1×S1S^{1}\times S^{1} where each S1×{}S^{1}\times\{*\} is a geodesic isotopic to aja_{j} and each {}×S1\{*\}\times S^{1} is a geodesic isotopic to bj,1jpb_{j},1\leqslant j\leqslant p.

Similar to Proposition 6.1 in [ABZ], we have the following proposition.

Proposition 2.4

The exterior of {L1,1L2,2Lp,p}\{L_{1,1}\cup L_{2,2}\cup\cdots\cup L_{p,p}\} in YY is a surface semi-bundle.

Proof: To prove this, we apply [WY] and compare [ABZ].

Let Y2jY_{2}^{j} be the submanifold of YY lying over F2j=Lj,j×[ϵ,ϵ]F_{2}^{j}=L_{j,j}^{*}\times[-\epsilon,\epsilon], and Y1Y_{1} be the submanifold of YY lying over F1F_{1}. Note that Y1Y_{1} is connected since F1F_{1} is connected by Lemma 2.3. Define

T1j=f^1(β1j),T2j=f^1(β2j).T_{1}^{j}=\hat{f}^{-1}(\beta_{1}^{j}),\ T_{2}^{j}=\hat{f}^{-1}(\beta_{2}^{j}).

Let Y0Y_{0} be the 3-manifold obtained by cutting YY open along T2jT_{2}^{j}, and F0F_{0} the surface obtained by cutting FF open along all β2j\beta_{2}^{j}, 1jp1\leqslant j\leqslant p. The restriction of the Seifert fiberation of YY to each of Y0,Y1,Y2j,j=1,,pY_{0},Y_{1},Y_{2}^{j},j=1,...,p, is a trivial circle bundle. We give the circle fibers of Y0Y_{0} a consistent orientation. Choose a horizontal section B0B_{0} of the bundle Y0F0Y_{0}\rightarrow F_{0} such that TjB0T^{j}\cap B_{0} is a geodesic, 1jp1\leqslant j\leqslant p. Let B1B_{1}, B2jB_{2}^{j} be the restriction of B0B_{0} in Y1Y_{1} and Y2jY_{2}^{j} respectively. Fix an orientation of B0B_{0} and let B1,B2jB_{1},B_{2}^{j} have the induced orientation. And let B1\partial B_{1} and B2j\partial B_{2}^{j} have the induced orientation.

We denote the torus TrjT_{r}^{j} by T1,rjT_{1,r}^{j} and T2,rjT_{2,r}^{j} when we think of it as lying in Y1Y_{1} and Y2jY_{2}^{j} respectively, r=1,2r=1,2. Let ϕk,rj\phi_{k,r}^{j} be a fixed circle fiber in the torus Tk,rjT_{k,r}^{j} for each of r=1,2;k=1,2;1jpr=1,2;k=1,2;1\leqslant j\leqslant p. Let αk,rj=Tk,rjB0\alpha_{k,r}^{j}=T_{k,r}^{j}\cap B_{0}. Then αk,1j=αk,2j\alpha_{k,1}^{j}=-\alpha_{k,2}^{j}, ϕk,1j=ϕk,2j\phi_{k,1}^{j}=\phi_{k,2}^{j}, and {αk,rj,ϕk,rj}\{\alpha_{k,r}^{j},\phi_{k,r}^{j}\} form a basis of H1(Tk,rj)H_{1}(T_{k,r}^{j}), k=1,2k=1,2; r=1,2r=1,2; 1jp1\leqslant j\leqslant p.

By choosing the proper horizontal section B0B_{0}, we can assume that the Seifert manifold YY is obtained form Y1Y_{1} and Y2jY_{2}^{j}’s by gluing T1,1jT_{1,1}^{j} to T2,1jT_{2,1}^{j} and T1,2jT_{1,2}^{j} to T2,2jT_{2,2}^{j} using maps grj:T2,rjT1,rj(r=1,2)g_{r}^{j}:T_{2,r}^{j}\rightarrow T_{1,r}^{j}\ (r=1,2) determined by the conditions

(g1j)(α2,1j)=α1,1j(g1j)(ϕ2,1j)=ϕ1,1j(g_{1}^{j})_{\ast}(\alpha_{2,1}^{j})=-\alpha_{1,1}^{j}\ \ \ \ \ \ (g_{1}^{j})_{\ast}(\phi_{2,1}^{j})=\phi_{1,1}^{j}
(g2j)(α2,2j)=α1,2j+ejϕ1,2j(g2j)(ϕ2,2j)=ϕ1,2j(g_{2}^{j})_{\ast}(\alpha_{2,2}^{j})=-\alpha_{1,2}^{j}+e^{j}\phi_{1,2}^{j}\ \ \ \ \ \ (g_{2}^{j})_{\ast}(\phi_{2,2}^{j})=\phi_{1,2}^{j}

where e=j=1peje=\sum_{j=1}^{p}e^{j}\in\mathbb{Z} is the Euler number of the oriented circle bundle YFY\rightarrow F. YWKY\rightarrow W_{K} is a p2p^{2}-fold cover so

e=p2e(WK)=p2(q1p+q2p+q3p)=p(q1+q2+q3).e=p^{2}e(W_{K})=-p^{2}(\frac{q_{1}}{p}+\frac{q_{2}}{p}+\frac{q_{3}}{p})=-p(q_{1}+q_{2}+q_{3}).

Note that q1+q2+q3q_{1}+q_{2}+q_{3} is an odd number since KK has only one component. For convenience, we may assume e1=e2==ep=ep=(q1+q2+q3)=e~e^{1}=e^{2}=\cdots=e^{p}=\displaystyle{\frac{e}{p}}=-(q_{1}+q_{2}+q_{3})=\tilde{e}, so e~\tilde{e} is odd.

Each Y2j,j=1,,pY_{2}^{j},j=1,...,p also has a circle fibration with Lj,jL_{j,j} as a fiber. As in [ABZ], we call the circle fibers of this circle fibration new fibers and called the fibers of YY original fibers. Give new fibers of Y2jY_{2}^{j} a fixed consistent orientation. We shall denote by ϕ¯j\overline{\phi}^{j} a general new fiber in M2jM_{2}^{j}, and ϕ\phi a general original fiber of YY.

Let NjN^{j} be the regular neighborhood of Lj,jL_{j,j} in Y2jY_{2}^{j}, which is disjoint from other components of LL and consists of new fibers of Y2jY_{2}^{j}. Let M2j=Y2jNjM_{2}^{j}=Y_{2}^{j}\setminus\overset{\circ}{N^{j}}. Then M2jM_{2}^{j} is a Seifert fibered space whose circle fibers are new fibers of Y2jY_{2}^{j}. Set T3j=NjT_{3}^{j}=\partial{N^{j}}. The exterior of {L1,1,L2,2,,Lp,p}\{L_{1,1},L_{2,2},\cdots,L_{p,p}\} in YY, MM, is a graph manifold and has the following JSJ decomposition

M=Y1M21M22M2pM=Y_{1}\cup M_{2}^{1}\cup M_{2}^{2}\cup\cdots\cup M_{2}^{p}

Let B¯2j\overline{B}_{2}^{j} be the image of one section of the circle fibration of M2jM_{2}^{j}, such that B¯2j\overline{B}_{2}^{j} intersects TjT^{j} in a geodesic. Fix an orientation for B¯2j\overline{B}_{2}^{j} and let B¯2j\partial\overline{B}_{2}^{j} have the induced orientation. There is another basis of H1(T2,rj)H_{1}(T_{2,r}^{j}), {α¯2,rj,ϕ¯2,rj}\{\overline{\alpha}_{2,r}^{j},\overline{\phi}_{2,r}^{j}\}, where ϕ¯2,rj\overline{\phi}_{2,r}^{j} is a fixed new fiber on T2,rjT_{2,r}^{j} and α¯2,rj\overline{\alpha}_{2,r}^{j} is the component of B¯2j\partial\overline{B}_{2}^{j} on T2,rjT_{2,r}^{j}, r=1,2r=1,2, with their chosen orientations. Let α¯2,3j=B¯2jT3j\overline{\alpha}_{2,3}^{j}=\overline{B}_{2}^{j}\cap T_{3}^{j}.

The relation between the old basis {α2,1j,ϕ2,1j}\{\alpha_{2,1}^{j},\phi_{2,1}^{j}\} of H1(T2,1j)H_{1}(T_{2,1}^{j}) and the new one {α¯2,1j,ϕ¯2,1j}\{\overline{\alpha}_{2,1}^{j},\overline{\phi}_{2,1}^{j}\} is given by

α¯2,1j=ajα2,1j+bjϕ2,1jϕ¯2,1j=cjα2,1j+djϕ2,1j\overline{\alpha}_{2,1}^{j}=a^{j}\alpha_{2,1}^{j}+b^{j}\phi_{2,1}^{j}\ \ \ \ \ \ \overline{\phi}_{2,1}^{j}=c^{j}\alpha_{2,1}^{j}+d^{j}\phi_{2,1}^{j}

where aj,bj,cj,dja^{j},b^{j},c^{j},d^{j} are integers satisfying ajdjbjcj=±1a^{j}d^{j}-b^{j}c^{j}=\pm 1. We may assume that ajdjbjcj=1a^{j}d^{j}-b^{j}c^{j}=1 by reversing the orientation of the fibres ϕ\phi if necessary. For convenience, we can suppose that a1=a2==ap=a,b1=b2==bp=b,c1=c2==cp=ca^{1}=a^{2}=\cdots=a^{p}=a,\ b^{1}=b^{2}=\cdots=b^{p}=b,\ c^{1}=c^{2}=\cdots=c^{p}=c, and d1=d2==dp=dd^{1}=d^{2}=\cdots=d^{p}=d.

In M2jM_{2}^{j}, we have α¯2,1j=α¯2,2j\overline{\alpha}_{2,1}^{j}=-\overline{\alpha}_{2,2}^{j} and ϕ¯2,1j=ϕ¯2,2j\overline{\phi}_{2,1}^{j}=\overline{\phi}_{2,2}^{j}. Thus

α¯2,2j=aα2,2jbϕ2,2jϕ¯2,2j=cα2,2j+dϕ2,2j.\overline{\alpha}_{2,2}^{j}=a\alpha_{2,2}^{j}-b\phi_{2,2}^{j}\ \ \ \ \ \ \overline{\phi}_{2,2}^{j}=-c\alpha_{2,2}^{j}+d\phi_{2,2}^{j}.

Hence, with respect to the basis {α1,rj,ϕ1,rj}\{\alpha_{1,r}^{j},\phi_{1,r}^{j}\} of H1(T1,rj)H_{1}(T_{1,r}^{j}) and {α¯2,rj,ϕ¯2,rj}\{\overline{\alpha}_{2,r}^{j},\overline{\phi}_{2,r}^{j}\} of H1(T2,rj)(r=1,2)H_{1}(T_{2,r}^{j})\ (r=1,2), the gluing maps g1j:T2,1jT1,1jg_{1}^{j}:T_{2,1}^{j}\rightarrow T_{1,1}^{j} and g2j:T2,2jT1,2jg_{2}^{j}:T_{2,2}^{j}\rightarrow T_{1,2}^{j} can be expressed as

(g1j)(α¯2,1j)=aα1,1j+bϕ1,1j(g1j)(ϕ¯2,1j)=cα1,1j+dϕ1,1j(g_{1}^{j})_{*}(\overline{\alpha}_{2,1}^{j})=-a\alpha_{1,1}^{j}+b\phi_{1,1}^{j}\ \ \ \ \ \ (g_{1}^{j})_{*}(\overline{\phi}_{2,1}^{j})=-c\alpha_{1,1}^{j}+d\phi_{1,1}^{j}
(g2j)(α¯2,2j)=aα1,2j+(ae~b)ϕ1,2j(g2j)(ϕ¯2,2j)=cα1,2j+(dce~)ϕ1,2j(g_{2}^{j})_{*}(\overline{\alpha}_{2,2}^{j})=-a\alpha_{1,2}^{j}+(a\widetilde{e}-b)\phi_{1,2}^{j}\ \ \ \ \ \ (g_{2}^{j})_{*}(\overline{\phi}_{2,2}^{j})=c\alpha_{1,2}^{j}+(d-c\widetilde{e})\phi_{1,2}^{j}

The associated matrices are

G1j=(g1j)=(abcd)G2j=(g2j)=(aae~bcdce~)G_{1}^{j}=(g_{1}^{j})_{*}=\begin{pmatrix}-a&b\\ -c&d\end{pmatrix}\ \ \ \ \ \ G_{2}^{j}=(g_{2}^{j})_{*}=\begin{pmatrix}-a&{a\widetilde{e}-b}\\ c&{d-c\widetilde{e}}\end{pmatrix}
(G1j)1=(dbca)(G2j)1=(c~edae~bca).(G_{1}^{j})^{-1}=\begin{pmatrix}-d&b\\ -c&a\end{pmatrix}\ \ \ \ \ \ (G_{2}^{j})^{-1}=\begin{pmatrix}{c\widetilde{}e-d}&{a\widetilde{e}-b}\\ c&a\end{pmatrix}.

The graph of the JSJ-decomposition of MM consists of p+1p+1 vertices corresponding to Y1,M21,M22,,M2pY_{1},M_{2}^{1},M_{2}^{2},\cdots,M_{2}^{p}, and 2p2p edges corresponding to T1jT_{1}^{j}’s and T2jT_{2}^{j}’s. See Figure 5.

Refer to caption
Figure 5: The graph decomposition of MM.

By [WY], we can get a horizontal surface of MM from every non-zero solution of the following equation.

(YZ)(λλ¯1λ¯p)=(0),λ,λ¯1,,λ¯p,(Y-Z)\left(\begin{array}[]{c}\lambda\\ \bar{\lambda}_{1}\\ \vdots\\ \bar{\lambda}_{p}\end{array}\right)=\left(\begin{array}[]{c}0\\ {\ast}\\ \vdots\\ {\ast}\end{array}\right),\ \lambda,\bar{\lambda}_{1},\cdots,\bar{\lambda}_{p},\ast\in\mathbb{Z}

where YY and ZZ are (p+1)×(p+1)(p+1)\times(p+1) matrices defined on page 450 of [WY]. The entries of YY and ZZ are decided by the gluing matrix. From [WY], we have y1,i=yi,1=2c,2ip+1y_{1,i}=y_{i,1}=\displaystyle{\frac{2}{c}},2\leqslant i\leqslant{p+1}, and other entries of YY are all zeroes. Z=diag(z1,z2,,zp+1)Z=diag(z_{1},z_{2},\cdots,z_{p+1}) is a diagonal matrix with z1=i=1p(dc+ce~dc)=pe~=e,zi=acac=0,2ip+1z_{1}=\sum_{i=1}^{p}(\displaystyle{\frac{d}{c}+\frac{c\widetilde{e}-d}{c}})=p\widetilde{e}=e,z_{i}=\displaystyle{\frac{a}{c}-\frac{a}{c}}=0,2\leqslant i\leqslant{p+1}. The matrix equation (1.6) of [WY] becomes:

(e2c2c2c2c0002c0002c000)(p+1)×(p+1)(λλ¯1λ¯2λ¯p)=(0){eλ+2cλ¯1+2cλ¯2++2cλ¯p=02cλ=\begin{pmatrix}{-e}&{\displaystyle{\frac{2}{c}}}&{\displaystyle{\frac{2}{c}}}&{\cdots}&{\displaystyle{\frac{2}{c}}}\\ {\displaystyle{\frac{2}{c}}}&0&0&{\cdots}&0\\[8.61108pt] {\displaystyle{\frac{2}{c}}}&0&0&{\cdots}&0\\ {\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}\\ {\displaystyle{\frac{2}{c}}}&0&0&{\cdots}&0\end{pmatrix}_{(p+1)\times(p+1)}\begin{pmatrix}\lambda\\ \overline{\lambda}_{1}\\ \overline{\lambda}_{2}\\ {\vdots}\\ \overline{\lambda}_{p}\end{pmatrix}=\begin{pmatrix}0\\ {\ast}\\ {\ast}\\ {\vdots}\\ {\ast}\end{pmatrix}\Rightarrow\begin{cases}{-e\lambda+\displaystyle{\frac{2}{c}}\overline{\lambda}_{1}+\displaystyle{\frac{2}{c}}\overline{\lambda}_{2}+{\cdots}+\displaystyle{\frac{2}{c}}\overline{\lambda}_{p}=0}\\ {\displaystyle{\frac{2}{c}}\lambda=\ast}\end{cases}

We may assume λ¯j=λ¯\overline{\lambda}_{j}=\overline{\lambda}, 1jp1\leqslant j\leqslant p. Then

{eλ+2pcλ¯=02cλ=\begin{cases}{-e\lambda+\displaystyle{\frac{2p}{c}}\overline{\lambda}=0}\\ {\displaystyle{\frac{2}{c}}\lambda=\ast}\end{cases} (1)

We can construct horizontal surfaces H1,H2jH_{1},H_{2}^{j} from the solution of (1) such that the projection of H1H_{1} to F1F_{1} has degree |λ||\lambda| and that of H2jH_{2}^{j} to the base of M2jM_{2}^{j} has degree |λ¯||\overline{\lambda}| ([WY]). Suppose λ0\lambda\neq 0. Then

λλ¯=2pce=2ce~,λ¯λ=ce2p=ce~2.\frac{\lambda}{\bar{\lambda}}=\frac{2p}{ce}=\frac{2}{c\tilde{e}},\ \ \ \ \frac{\bar{\lambda}}{\lambda}=\frac{ce}{2p}=\frac{c\tilde{e}}{2}.

Suppose that H1\partial H_{1} on TijT_{i}^{j} with respect to the basis {α1,ij,ϕ1,ij}\{\alpha_{1,i}^{j},\phi_{1,i}^{j}\} is uijα1,ij+tijϕ1,ij(i=1,2)u_{i}^{j}\alpha_{1,i}^{j}+t_{i}^{j}\phi_{1,i}^{j}\ (i=1,2), and H2j\partial H_{2}^{j} on TijT_{i}^{j} with respect to the basis {α¯2,ij,ϕ¯2,ij}\{\bar{\alpha}_{2,i}^{j},\bar{\phi}_{2,i}^{j}\} is u¯ijα¯2,ij+t¯ijϕ¯2,ij(i=1,2,3)\bar{u}_{i}^{j}\bar{\alpha}_{2,i}^{j}+\bar{t}_{i}^{j}\bar{\phi}_{2,i}^{j}\ (i=1,2,3). Then there are ϵ1j,ϵ2j{±1}\epsilon_{1}^{j},\epsilon_{2}^{j}\in\{\pm 1\}, so that equation (1.2) of [WY] takes on the form:

t1ju1j=ϵ1jλ¯λcdc=ϵ1jce~2d2c,t¯1ju¯1j=ϵ1jλλ¯c+ac=2ϵ1jace~e~c2,\frac{t_{1}^{j}}{u_{1}^{j}}=\frac{\epsilon_{1}^{j}\bar{\lambda}}{-\lambda c}-\frac{d}{c}=\frac{-\epsilon_{1}^{j}c\tilde{e}-2d}{2c},\ \ \ \ \ \ \frac{\bar{t}_{1}^{j}}{\bar{u}_{1}^{j}}=\frac{\epsilon_{1}^{j}\lambda}{-\bar{\lambda}c}+\frac{a}{-c}=\frac{-2\epsilon_{1}^{j}-ac\tilde{e}}{\tilde{e}c^{2}},
t2ju2j=ϵ2jλ¯λcce~dc=2d(2ϵ2j)ce~2c,t¯2ju¯2j=ϵ2jλλ¯c+ac=2ϵ2j+ace~e~c2.\frac{t_{2}^{j}}{u_{2}^{j}}=\frac{\epsilon_{2}^{j}\bar{\lambda}}{\lambda c}-\frac{c\tilde{e}-d}{c}=\frac{2d-(2-\epsilon_{2}^{j})c\tilde{e}}{2c},\ \ \ \ \ \ \frac{\bar{t}_{2}^{j}}{\bar{u}_{2}^{j}}=\frac{\epsilon_{2}^{j}\lambda}{\bar{\lambda}c}+\frac{a}{c}=\frac{2\epsilon_{2}^{j}+ac\tilde{e}}{\tilde{e}c^{2}}.

Without lose of generality, we can assume ϵ11=ϵ12==ϵ1p=ϵ1,ϵ21=ϵ22==ϵ2p=ϵ2\epsilon_{1}^{1}=\epsilon_{1}^{2}=\cdots=\epsilon_{1}^{p}=\epsilon_{1},\epsilon_{2}^{1}=\epsilon_{2}^{2}=\cdots=\epsilon_{2}^{p}=\epsilon_{2}.

We have j=1p(t1ju1j+t2ju2j)=0\sum_{j=1}^{p}(\displaystyle{\frac{t_{1}^{j}}{u_{1}^{j}}+\frac{t_{2}^{j}}{u_{2}^{j}}})=0, since H1H_{1} is a horizontal surface. So

p[ϵ1ce~2d+2d(2ϵ2)ce~]=0p[-\epsilon_{1}c\tilde{e}-2d+2d-(2-\epsilon_{2})c\tilde{e}]=0
ϵ1+ϵ2=2.-\epsilon_{1}+\epsilon_{2}=2.

From the above equation, ϵ2=ϵ1=1\epsilon_{2}=-\epsilon_{1}=1. Then

t1ju1j=ce~2d2c,\displaystyle\frac{t_{1}^{j}}{u_{1}^{j}}=\frac{c\tilde{e}-2d}{2c}, t¯1ju¯1j=2ace~e~c2;\displaystyle\frac{\bar{t}_{1}^{j}}{\bar{u}_{1}^{j}}=\frac{2-ac\tilde{e}}{\tilde{e}c^{2}}; t2ju2j=2dce~2c,\displaystyle\frac{t_{2}^{j}}{u_{2}^{j}}=\frac{2d-c\tilde{e}}{2c}, t¯2ju¯2j=2+ace~e~c2.\displaystyle\frac{\bar{t}_{2}^{j}}{\bar{u}_{2}^{j}}=\frac{2+ac\tilde{e}}{\tilde{e}c^{2}}.

Also t¯1ju¯1j+t¯2ju¯2j+t¯3ju¯3j=0\displaystyle{\frac{\overline{t}_{1}^{j}}{\overline{u}_{1}^{j}}+\frac{\overline{t}_{2}^{j}}{\overline{u}_{2}^{j}}+\frac{\overline{t}_{3}^{j}}{\overline{u}_{3}^{j}}}=0, so

t¯3ju¯3j=(t¯1ju¯1j+t¯2ju¯2j)=(2ace~+2+ace~e~c2)=4e~c2.\frac{\overline{t}_{3}^{j}}{\overline{u}_{3}^{j}}=-(\frac{\overline{t}_{1}^{j}}{\overline{u}_{1}^{j}}+\frac{\overline{t}_{2}^{j}}{\overline{u}_{2}^{j}})=-(\frac{2-ac\tilde{e}+2+ac\tilde{e}}{\tilde{e}c^{2}})=-\frac{4}{\tilde{e}c^{2}}. (3)

In fact, Lj,jL_{j,j} double covers Lj,jL_{j,j}^{*}, so c=2c=2. Then, we can take λ=1,λ¯=e~\lambda=1,\bar{\lambda}=\tilde{e}. As in [ABZ], we take b=0,a=d=1b=0,a=d=1. Since e~\tilde{e} is odd, we can determine tij,uij,t¯ijt_{i}^{j},u_{i}^{j},\overline{t}_{i}^{j} and u¯ij\overline{u}_{i}^{j}, as following

t1j=e~12,u1j=1;t2j=1e~2,u2j=1\displaystyle t_{1}^{j}=\frac{\tilde{e}-1}{2},\ u_{1}^{j}=1;\;\;\;\;\;t_{2}^{j}=\frac{1-\tilde{e}}{2},\ u_{2}^{j}=1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; t¯1j=1e~2,u¯1j=e~;t¯2j=1+e~2,u¯2j=e~;t¯3j=1,u¯3j=e~.\displaystyle\bar{t}_{1}^{j}=\frac{1-\tilde{e}}{2},\ \bar{u}_{1}^{j}=\tilde{e};\;\;\;\;\;\bar{t}_{2}^{j}=\frac{1+\tilde{e}}{2},\ \bar{u}_{2}^{j}=\tilde{e};\;\;\;\;\;\ \bar{t}_{3}^{j}=-1,\ \bar{u}_{3}^{j}=\tilde{e}.

H1T1,ij\partial H_{1}\cap T_{1,i}^{j} has |λuij|=1\displaystyle{|\frac{\lambda}{u_{i}^{j}}|=1} component, i=1,2i=1,2, and H2jT2,ij\partial H_{2}^{j}\cap T_{2,i}^{j} has |λ¯u¯ij|=1\displaystyle{|\frac{\bar{\lambda}}{\bar{u}_{i}^{j}}|=1} component, i=1,2,3i=1,2,3. Since ϵ1j=ϵ2j\epsilon_{1}^{j}=-\epsilon_{2}^{j}, H=H1(j=1𝑝H2j)H=H_{1}\cup(\underset{j=1}{{\overset{p}{\cup}}}H_{2}^{j}) is non-orientable, so MM is a surface semi-bundle. \square

Next, we give the constructions for H1H_{1} and H2jH_{2}^{j} in detail. The construction of H2jH_{2}^{j} is the same as the construction of H2H_{2} in [ABZ].

Set α¯0j=(B¯2jTj)\overline{\alpha}_{0}^{j}=(\overline{B}_{2}^{j}\cap T^{j}). ϕ¯0j\overline{\phi}_{0}^{j} is a fixed new fibre in TjT^{j}. α¯0j\overline{\alpha}_{0}^{j} and ϕ¯0j\overline{\phi}_{0}^{j} are both geodesics. Then TjT^{j} is identified with α¯0j×ϕ¯0j\overline{\alpha}_{0}^{j}\times\overline{\phi}_{0}^{j} and Y2jY_{2}^{j} with α¯0j×ϕ¯0j×[ϵ,ϵ]\overline{\alpha}_{0}^{j}\times\overline{\phi}_{0}^{j}\times\left[-\epsilon,\epsilon\right]. Separate α¯0j\overline{\alpha}_{0}^{j} into two parts, α¯0j=IjJj\overline{\alpha}_{0}^{j}=I^{j}\cup J^{j}, where IjI^{j} meets Lj,jL_{j,j}. Take 0<δ<ϵ0<\delta<\epsilon, then M2jM_{2}^{j} can be expressed as following

M2j=(α¯0j×ϕ¯0j×[ϵ,ϵ])(Ij×ϕ¯0j×(δ,δ)).M_{2}^{j}=(\overline{\alpha}_{0}^{j}\times\overline{\phi}_{0}^{j}\times[-\epsilon,\epsilon])\setminus(\overset{\circ}{I^{j}}\times\overline{\phi}_{0}^{j}\times(-\delta,\delta)).

As in [ABZ], we have H2j=ΘjΘ0jΘ+jH_{2}^{j}=\Theta_{-}^{j}\cup\Theta_{0}^{j}\cup\Theta_{+}^{j}. Θj=γ1×[ϵ,δ]\Theta_{-}^{j}=\gamma_{1}\times[-\epsilon,-\delta], where γ1\gamma_{1} is a fixed connected simple closed geodesic in Tj×{ϵ}T^{j}\times\{-\epsilon\} of slope 12e~12\displaystyle{\frac{1}{2\tilde{e}}-\frac{1}{2}} with respect to the basis {α¯0j×{ϵ},ϕ¯0j×{ϵ}}\{\overline{\alpha}_{0}^{j}\times\{-\epsilon\},\overline{\phi}_{0}^{j}\times\{-\epsilon\}\}. Θ+j=γ2×[δ,ϵ]\Theta_{+}^{j}=\gamma_{2}\times[\delta,\epsilon], where γ2\gamma_{2} is a fixed connected simple closed geodesic in Tj×{δ}T^{j}\times\{\delta\} of slope 12e~12\displaystyle{-\frac{1}{2\tilde{e}}-\frac{1}{2}} with respect to the basis {α¯0j×{δ},ϕ¯0j×{δ}}\{\overline{\alpha}_{0}^{j}\times\{\delta\},\overline{\phi}_{0}^{j}\times\{\delta\}\}, see (2.1). (Note that α¯0j×{δ}=α¯2,2j\overline{\alpha}_{0}^{j}\times\{\delta\}=-\bar{\alpha}_{2,2}^{j}.) Θ0j\Theta_{0}^{j} is a surface in Jj×ϕ¯0j×[δ,δ]J^{j}\times\overline{\phi}_{0}^{j}\times[-\delta,\delta] such that for each t(δ,δ),Θ0jTj×{t}t\in(-\delta,\delta),\ \Theta_{0}^{j}\cap T^{j}\times\{t\} is a union of |e~||\tilde{e}| evenly spaced geodesic arcs of slope 12t2δe~\displaystyle{-\frac{1}{2}-\frac{t}{2\delta\tilde{e}}}. H2jH_{2}^{j} is everywhere transverse to the new fibres. H2jH_{2}^{j} is also transverse to the original fibres except when t=0t=0. Thus we can construct a surface fibration 2j\mathcal{F}_{2}^{j} in M2jM_{2}^{j} by isotoping H2jH_{2}^{j} around the new fibres. Similar as [ABZ], Figure 6 illustrates one fibre of 21\mathcal{F}_{2}^{1} in M21M_{2}^{1}, when K=(15,15,15)K=(\displaystyle{\frac{1}{5},\frac{1}{5},\frac{1}{5}}), e~=3\tilde{e}=-3 and δ\delta is small enough.

Refer to caption
Figure 6: One fibre of 21\mathcal{F}_{2}^{1} in M21M_{2}^{1}.

Next we construct H1H_{1} similarly to [ABZ]. Recall that B1B_{1} is a horizontal section of Y1F1Y_{1}\rightarrow F_{1}, and B1(T1,1jT1,2j)B_{1}\cap(T_{1,1}^{j}\cup T_{1,2}^{j}) are geodesics. F1F_{1} is connected by Lemma 2.3, so B1B_{1} is connected. For each jj, fix a properly embedded arc σj\sigma^{j} in B1B_{1} connecting T1,1jT_{1,1}^{j} and T1,2jT_{1,2}^{j} such that all σj\sigma^{j}, j=1,..,pj=1,..,p are mutually disjoint (such set of arcs obviously exists). Let σj×[1,1]\sigma^{j}\times[-1,1] be a regular neighborhood of σj\sigma^{j} in B1B_{1} such that (σjT1,1j)×[1,1](\sigma^{j}\cap T_{1,1}^{j})\times[-1,1] is a subarc of α1,1j\alpha_{1,1}^{j} which follows the orientation of α1,1j\alpha_{1,1}^{j} as we pass from -1 to 1. Then H1H_{1} is obtained by replacing every σj×[1,1]\sigma^{j}\times[-1,1] in B1B_{1} by a reimbedding of it which wraps around the ϕj\phi^{j}-direction (1e~2)\displaystyle{(\frac{1-\tilde{e}}{2})} times as we pass from -1 to 1 in σj×[1,1]×ϕj\sigma^{j}\times[-1,1]\times\phi^{j}. Let 1{\cal F}_{1} be the corresponding surface fibration of Y1Y_{1} with H1H_{1} as a surface fiber.

As in [ABZ], we may suppose that H1=H21H22H2p\partial H_{1}=\partial H_{2}^{1}\cup\partial H_{2}^{2}\cup\cdots\cup\partial H_{2}^{p} and that 1212p\mathcal{F}_{1}\cup\mathcal{F}_{2}^{1}\cup\cdots\cup\mathcal{F}_{2}^{p} forms a semi-surface bundle \mathcal{F} in MM, as described in Proposition 2.4

Step 3

Recall that Tj=f^1(Lj,j)T^{j}=\hat{f}^{-1}(L_{j,j}^{*}) is vertical in the Seifert structure of YY. Let Ui,k=f^1(Li,k)U_{i,k}=\hat{f}^{-1}(L_{i,k}^{*}), so Li,kUi,kL_{i,k}\subset U_{i,k}. By Remark 2.1, we have Ui,jUk,j=ϕ1,jϕ2,jU_{i,j}\cap U_{k,j}=\phi_{1,j}\cup\phi_{2,j}, iki\neq k, and Ui,jUi,k=ϕ3,iU_{i,j}\cap U_{i,k}=\phi_{3,i}, jkj\neq k, where ϕr,j=f^1(c^r,j),r=1,2\phi_{r,j}=\hat{f}^{-1}(\hat{c}_{r,j}),r=1,2, and ϕ3,i=f^1(c^3,i)\phi_{3,i}=\hat{f}^{-1}(\hat{c}_{3,i}). Lj,jL_{j,j} is a 2-fold cover of Lj,jL_{j,j}^{*}, so it intersects each of ϕ1,j,ϕ2,j\phi_{1,j},\phi_{2,j} and ϕ3,j\phi_{3,j} twice. Then Ui,k0=Ui,kMU_{i,k}^{0}=U_{i,k}\cap M is a 6-punctured torus.

Let Ui,k0,2l=f^1((Li,kl))MU_{i,k}^{0,2l}=\hat{f}^{-1}((L_{i,k}^{l})^{*})\cap M, 1i,kp,ik,1l61\leqslant i,k\leqslant p,i\neq k,1\leqslant l\leqslant 6. Ui,k0,2l1U_{i,k}^{0,2l-1} is a vertical annulus, and Ui,k0,2lU_{i,k}^{0,2l} is a vertical annulus with two punctures, l=1,2,3.l=1,2,3. By the way that we define (Li,kl)(L_{i,k}^{l})^{*} in Step 2, (Ui,k0,1Ui,k0,3Ui,k0,5)Y1(U_{i,k}^{0,1}\cup U_{i,k}^{0,3}\cup U_{i,k}^{0,5})\subset Y_{1}, (Ui,k0,2Ui,k0,4)M2k(U_{i,k}^{0,2}\cup U_{i,k}^{0,4})\subset M_{2}^{k}, Ui,k0,6M2iU_{i,k}^{0,6}\subset M_{2}^{i} and Ui,k0,2lϕl,kU_{i,k}^{0,2l}\cap\phi_{l,k}\neq\emptyset, l=1,2l=1,2, and Ui,k0,6ϕ3,iU_{i,k}^{0,6}\cap\phi_{3,i}\neq\emptyset.

Similarly, Li,kL_{i,k} is separated into 12 parts, Li,k1,Li,k2,,Li,k12L_{i,k}^{1},L_{i,k}^{2},\cdots,L_{i,k}^{12}, such that (Li,klLi,kl+6)Ui,k0,l,1l6(L_{i,k}^{l}\cup L_{i,k}^{l+6})\subset U_{i,k}^{0,l},1\leqslant l\leqslant 6. We have f^(Li,kl)=f^(Li,kl+6)=(Li,kl)\hat{f}(L_{i,k}^{l})=\hat{f}(L_{i,k}^{l+6})=(L_{i,k}^{l})^{*}.

Note that (Li,k2lLi,k2l+6)ϕl,k(L_{i,k}^{2l}\cup L_{i,k}^{2l+6})\cap\phi_{l,k}\neq\emptyset, l=1,2l=1,2. and (Li,k6Li,k12)ϕ3,i(L_{i,k}^{6}\cup L_{i,k}^{12})\cap\phi_{3,i}\neq\emptyset.

By Remark 2.1,

The angle between Lj,j and Li,jij, at c^1,j {(0,π)ijp12 (mod p),(π,2π)otherwise.\text{The angle between $L_{j,j}^{*}$ and $L_{i,j}^{*}$, $i\neq j$, at $\hat{c}_{1,j}$ $\in$}\begin{cases}(0,\pi)&\text{$i-j\leqslant\frac{p-1}{2}$ (mod $p$)},\\ (\pi,2\pi)&\text{otherwise}.\end{cases}
The angle between Lj,j and Li,jij, at c^2,j {(π,2π)ijp12 (mod p),(0,π)otherwise.\text{The angle between $L_{j,j}^{*}$ and $L_{i,j}^{*}$, $i\neq j$, at $\hat{c}_{2,j}$ $\in$}\begin{cases}(\pi,2\pi)&\text{$i-j\leqslant\frac{p-1}{2}$ (mod $p$)},\\ (0,\pi)&\text{otherwise}.\end{cases}
The angle between Lj,j and Lj,kjk at c^3,j {(π,2π)jkp12 (mod p),(0,π)otherwise.\text{The angle between $L_{j,j}^{*}$ and $L_{j,k}^{*}$, $j\neq k$ at $\hat{c}_{3,j}$ $\in$}\begin{cases}(\pi,2\pi)&\text{$j-k\leqslant\frac{p-1}{2}$ (mod $p$)},\\ (0,\pi)&\text{otherwise}.\end{cases}

Now, we reorient {Li,j:1i,jp}\{L_{i,j}^{*}:1\leqslant i,j\leqslant p\} by changing the orientations of {Li,j:1ijp12(mod p),1i,jp}\{L_{i,j}^{*}:1\leqslant i-j\leqslant\displaystyle{\frac{p-1}{2}}\ \text{(mod $p$)},1\leqslant i,j\leqslant p\}. We also change the orientations of the corresponding Li,jL_{i,j}’s.

After this reorientation, the angle between Lj,jL_{j,j}^{*} and Li,jL_{i,j}^{*} at c^1,j\hat{c}_{1,j} (π,2π)\in(\pi,2\pi); the angle between Lj,jL_{j,j}^{*} and Li,jL_{i,j}^{*} at c^2,j\hat{c}_{2,j} (0,π)\in(0,\pi); the angle between Lj,jL_{j,j}^{*} and Lj,kL_{j,k}^{*} at c^3,j\hat{c}_{3,j} (0,π)\in(0,\pi), (ij,jki\neq j,j\neq k, here ii may equal kk).

If we equip {Li,kl:1i,kp,ik,1l12}\{L_{i,k}^{l}:1\leqslant i,k\leqslant p,i\neq k,1\leqslant l\leqslant 12\} with the new induced orientation, then

the tails of{Li,k2andLi,k8lie inT1k,Li,k4andLi,k10lie inT2k,Li,k6andLi,k12lie inT2i.the heads of{Li,k2andLi,k8lie inT2k,Li,k4andLi,k10lie inT1k,Li,k6andLi,k12lie inT1i.\text{the tails of}\begin{cases}L_{i,k}^{2}\ \text{and}\ L_{i,k}^{8}\ \text{lie in}\ T_{1}^{k},\\ L_{i,k}^{4}\ \text{and}\ L_{i,k}^{10}\ \text{lie in}\ T_{2}^{k},\\ L_{i,k}^{6}\ \text{and}\ L_{i,k}^{12}\ \text{lie in}\ T_{2}^{i}.\end{cases}\text{the heads of}\begin{cases}L_{i,k}^{2}\ \text{and}\ L_{i,k}^{8}\ \text{lie in}\ T_{2}^{k},\\ L_{i,k}^{4}\ \text{and}\ L_{i,k}^{10}\ \text{lie in}\ T_{1}^{k},\\ L_{i,k}^{6}\ \text{and}\ L_{i,k}^{12}\ \text{lie in}\ T_{1}^{i}.\end{cases} (5)

The induced orientation on other segments of Li,kL_{i,k}’s are described in Table 2, where r=0r=0 or 66. We get Table 2 from Table 1 by changing the orientation of {Li,k:1i,kp,1ikp12}\{L_{i,k}^{*}:1\leqslant i,k\leqslant p,1\leqslant i-k\leqslant\frac{p-1}{2}\}.

Li,k1+rL_{i,k}^{1+r} tail head Li,k3+rL_{i,k}^{3+r} tail head Li,k5+rL_{i,k}^{5+r} tail head
ikp12{i-k}\leqslant\frac{p-1}{2} T1iT_{1}^{i} T1kT_{1}^{k} ikp12{i-k}\leqslant\frac{p-1}{2} T2kT_{2}^{k} T2kT_{2}^{k} ikp12{i-k}\leqslant\frac{p-1}{2} T1kT_{1}^{k} T2iT_{2}^{i}
ik>p12{i-k}>\frac{p-1}{2} T2kT_{2}^{k} T2iT_{2}^{i} ik>p12{i-k}>\frac{p-1}{2} T1kT_{1}^{k} T1kT_{1}^{k} ik>p12{i-k}>\frac{p-1}{2} T1iT_{1}^{i} T2kT_{2}^{k}

Note: ik{i-k} is considered as a nonnegative integer mod pp, r=0r=0 or 66.

Table 2: The induced orientation on Li,k2l1,1l6L_{i,k}^{2l-1},1\leqslant l\leqslant 6.

Fix a transverse orientation on the surface bundle 2j\mathcal{F}_{2}^{j} in M2jM_{2}^{j}. By the construction of HH in Step 2, there are two singular points in the foliation of Ui,k0,2lU_{i,k}^{0,2l} given by Ui,k0,2l2U_{i,k}^{0,2l}\cap\mathcal{F}_{2} if δ\delta is small enough, l=1,2,3l=1,2,3 (cf. Figure 7). We can isotope Li,k2l+rL_{i,k}^{2l+r} in Ui,k0,2lU_{i,k}^{0,2l} such that Li,k2lL_{i,k}^{2l} is transverse to j=1𝑝2j\overset{p}{\underset{j=1}{\cup}}\mathcal{F}_{2}^{j}, and travels from the “-” side of 2j\mathcal{F}_{2}^{j} to the “++” side (1l3,r=0,61\leqslant l\leqslant 3,\ r=0,6). We only discuss the isotopy in M21M_{2}^{1}, and others are similar.

Refer to caption
Figure 7: Ui,10,2U_{i,1}^{0,2} and Ui,10,4U_{i,1}^{0,4}.

By the definition of Ui,k0,l(1l6)U_{i,k}^{0,l}(1\leqslant l\leqslant 6), (Ui,10,2Ui,10,4U1,i0,6)M21U_{i,1}^{0,2}\cup U_{i,1}^{0,4}\cup U_{1,i}^{0,6})\subset M_{2}^{1}, 2ip2\leqslant i\leqslant p. Suppose that δ\delta is small enough so that the singular foliation on Ui,10,2U_{i,1}^{0,2}, Ui,10,4U_{i,1}^{0,4} or U1,i0,6U_{1,i}^{0,6} induced by 21\mathcal{F}_{2}^{1} has two singular points. The singular points on Ui,10,2lϕl,1U_{i,1}^{0,2l}\in\phi_{l,1} (l=1,2)(l=1,2), and the singular points on U1,i0,6ϕ3,1U_{1,i}^{0,6}\in\phi_{3,1}, 2ip2\leqslant i\leqslant p. Recall that Li,klLi,kl+6Ui,k0,lL_{i,k}^{l}\cup L_{i,k}^{l+6}\in U_{i,k}^{0,l}, 1l61\leqslant l\leqslant 6, so {Li,k2l+r:1i,kp,ik,(k,l)=(1,1),(1,2), or (i,l)=(1,3),r=0,6}=LM21\{L_{i,k}^{2l+r}:1\leqslant i,k\leqslant p,i\neq k,(k,l)=(1,1),(1,2),\text{ or }(i,l)=(1,3),r=0,6\}=L\cap M_{2}^{1}.

Let S={(i,k,l,r):1i,kp,ik,(k,l)=(1,1),(1,2)S=\{(i,k,l,r):1\leqslant i,k\leqslant p,i\neq k,(k,l)=(1,1),(1,2), or (i,l)=(1,3),r=0,6}(i,l)=(1,3),r=0,6\}. Fix (i,k,l,r)S(i,k,l,r)\in S. By Lemma 2.1 in [ABZ], Li,k2l+rL_{i,k}^{2l+r} is always perpendicular to the original fibers in Ui,k0,2lU_{i,k}^{0,2l}. If Li,k2l+rL_{i,k}^{2l+r} passes from the “++” to the “-” side of 21\mathcal{F}_{2}^{1}’s leaves along its orientation, we isotope Li,k2l+rL_{i,k}^{2l+r} passing the singular point smoothly along the original fibres in a small neighborhood of Ui,kM21U_{i,k}\cap M_{2}^{1}, and place them as in Figure 7. By (5), Li,12+rUi,10,2L_{i,1}^{2+r}\subset U_{i,1}^{0,2} travels from T2,11T_{2,1}^{1} to T2,21T_{2,2}^{1}; Li,14+rUi,10,4L_{i,1}^{4+r}\subset U_{i,1}^{0,4} travel from T2,21T_{2,2}^{1} to T2,11T_{2,1}^{1}. Then Li,12L_{i,1}^{2} and Li,14L_{i,1}^{4} are in the different sides of their own singular points, so are Li,18L_{i,1}^{8} and Li,110L_{i,1}^{10}. Also by (5), Li,14+rUi,10,4L_{i,1}^{4+r}\subset U_{i,1}^{0,4} and L1,i6+rU1,i0,6L_{1,i}^{6+r}\subset U_{1,i}^{0,6} are both travel from T2,21T_{2,2}^{1} to T2,11T_{2,1}^{1}, so U1,i0,621U_{1,i}^{0,6}\cap\mathcal{F}_{2}^{1} is similar to Ui,10,421U_{i,1}^{0,4}\cap\mathcal{F}_{2}^{1}. Ui,10,221U_{i,1}^{0,2}\cap\mathcal{F}_{2}^{1} is as shown in Figure 7-1, and Ui,10,421U_{i,1}^{0,4}\cap\mathcal{F}_{2}^{1} is as shown in Figure 7-2, in other words, they alternate with the singular points in the original circle fiber direction.

The isotopies are similar to that in [ABZ]. Next, we want to show that the above isotopies of Li,k2l+rL_{i,k}^{2l+r} won’t block each other. Since Ui,10,2Uk,10,2=ϕ1,1U_{i,1}^{0,2}\cap U_{k,1}^{0,2}=\phi_{1,1}, Ui,10,4Uk,10,4=ϕ2,1U_{i,1}^{0,4}\cap U_{k,1}^{0,4}=\phi_{2,1}, and U1,i0,6U1,k0,6=ϕ3,1U_{1,i}^{0,6}\cap U_{1,k}^{0,6}=\phi_{3,1}, 2i,kp,ik2\leqslant i,k\leqslant p,i\neq k, potential obstructions happen in the set {Li,12+r:2ip,r=0,6}\{L_{i,1}^{2+r}:2\leqslant i\leqslant p,r=0,6\}, {Li,14+r:2ip,r=0,6}\{L_{i,1}^{4+r}:2\leqslant i\leqslant p,r=0,6\}, or {L1,i6+r:2ip,r=0,6}\{L_{1,i}^{6+r}:2\leqslant i\leqslant p,r=0,6\}. Li,k2lL_{i,k}^{2l} and Li,k2l+rL_{i,k}^{2l+r} are in the different halves of Ui,k0,2lU_{i,k}^{0,2l} (cf. Figure 7), so they won’t block each other since the smooth ϕ\phi-vertical isotopy can not cross the punctures on Ui,k0,2lU_{i,k}^{0,2l}. Next we check {Li,12:2ip}\{L_{i,1}^{2}:2\leqslant i\leqslant p\}, and the discussions for {Li,14:2ip}\{L_{i,1}^{4}:2\leqslant i\leqslant p\} and {L1,i6:2ip}\{L_{1,i}^{6}:2\leqslant i\leqslant p\} are similar. By (5), Li,12L_{i,1}^{2} travels from T2,11T_{2,1}^{1} to T2,21T_{2,2}^{1} for any 2ip2\leqslant i\leqslant p. We may assume that we need isotope Li,12L_{i,1}^{2} smoothly along ϕ\phi above its singular point, as shown in Figure 8-1, 2ip2\leqslant i\leqslant p. (There is only half of Ui,10,2(T1×[δ,δ])U_{i,1}^{0,2}\cap(T^{1}\times[-\delta,\delta]) in Figure 8-1). Although the singular points of Ui,10,2U_{i,1}^{0,2}’s in ϕ1,1\phi_{1,1} are at different positions, and the distribution of the intersection points of ϕ1,1\phi_{1,1} and {Li,12:2ip}\{L_{i,1}^{2}:2\leqslant i\leqslant p\} may be different for different (q1,q2,q3)(q_{1},q_{2},q_{3}), we can isotope Li,12L_{i,1}^{2} in the positive direction of ϕ1,1\phi_{1,1} above all singular points, so they won’t block each other. Figure 8-2 illustrates the situation near Ui,10,4T1×[δ,δ]U_{i,1}^{0,4}\cap T^{1}\times[-\delta,\delta]. In Figure 8, si,12ls_{i,1}^{2l} denotes the singular point of Li,12lL_{i,1}^{2l}, for i=2,3,4,5i=2,3,4,5 and l=1,2l=1,2.

Refer to caption
Figure 8: The positions of Li,12L_{i,1}^{2} and Li,14L_{i,1}^{4}.

By generalizing the above discussion to M2jM_{2}^{j}, 1jp1\leqslant j\leqslant p, we have the following proposition which is analogous to Proposition 6.2 in [ABZ].

Proposition 2.5

Suppose 1jp1\leqslant j\leqslant p. Fix a transverse orientation on 2j\mathcal{F}_{2}^{j} in M2jM_{2}^{j}. There is a smooth ϕ\phi-vertical isotope of Li,jL_{i,j} and Lj,iL_{j,i} (1ip,ij)(1\leqslant i\leqslant p,i\neq j) in i=1,ij𝑝(Ui,j0Uj,i0)\overset{p}{\underset{i=1,i\neq j}{\cup}}(U_{i,j}^{0}\cup U_{j,i}^{0}), fixed outside a small neighborhood of (i=1,ij𝑝(Ui,j0Uj,i0))M2j)(\overset{p}{\underset{i=1,i\neq j}{\cup}}(U_{i,j}^{0}\cup U_{j,i}^{0}))\cap M_{2}^{j}), which reposition Li,jlL_{i,j}^{l} and Lj,ikL_{j,i}^{k} to be transverse to 2j\mathcal{F}_{2}^{j} and to pass from the negative to the positive side of 2j\mathcal{F}_{2}^{j}’s leaves while traveling along the orientation on Li,jlL_{i,j}^{l} and L1,jkL_{1,j}^{k}, where 1ip,ij;l=2,8,4,10;k=6,121\leqslant i\leqslant p,i\neq j;l=2,8,4,10;k=6,12.

Proposition 2.5 finishes Step 3.

Step 4

At first we construct a double cover of MM similarly to [ABZ]. Set M0M_{0} to be the 3-manifold obtained by cutting MM open along {T2j\{T_{2}^{j}, 1jp}1\leqslant j\leqslant p\}. Take two copies of M0M_{0}, denoted M˘0,1\breve{M}_{0,1} and M˘0,2\breve{M}_{0,2}. We have M˘0,s=Y˘1,sM˘2,s1M˘2,s2M˘2,sp\breve{M}_{0,s}=\breve{Y}_{1,s}\cup\breve{M}_{2,s}^{1}\cup\breve{M}_{2,s}^{2}\cup\cdots\cup\breve{M}_{2,s}^{p}, where Y˘1,s\breve{Y}_{1,s} is a copy of Y1Y_{1}, and M˘2,sj\breve{M}_{2,s}^{j} is a copy of M2jM_{2}^{j}, 1jp1\leqslant j\leqslant p and s=1,2s=1,2. M˘\breve{M} is a 3-manifold obtained by gluing M˘2,1j\breve{M}_{2,1}^{j} to Y˘1,2\breve{Y}_{1,2} along T˘2,1j\breve{T}_{2,1}^{j}, and M˘2,2j\breve{M}_{2,2}^{j} to Y˘1,1\breve{Y}_{1,1} along T˘2,2j\breve{T}_{2,2}^{j}, where T˘2,sjM˘0,s\breve{T}_{2,s}^{j}\subset\breve{M}_{0,s} is a copy of T2jT_{2}^{j}, 1jp1\leqslant j\leqslant p and s=1,2s=1,2. The gluing map is the same as the one used to glue M2jM_{2}^{j} back to Y1Y_{1} to get MM for every 1jp1\leqslant j\leqslant p. This construction is shown in Figure 9. It’s clear that M˘\breve{M} is a free double cover of MM. We denote p2p_{2} to be the covering map. Then

p21(Y1)=Y˘1,1Y˘1,2p_{2}^{-1}(Y_{1})=\breve{Y}_{1,1}\cup\breve{Y}_{1,2}
p21(M2j)=M˘2,1jM˘2,2jp_{2}^{-1}(M_{2}^{j})=\breve{M}_{2,1}^{j}\cup\breve{M}_{2,2}^{j}
p21(Trj)=T˘r,1jT˘r,2j(r=1,2)p_{2}^{-1}(T_{r}^{j})=\breve{T}_{r,1}^{j}\cup\breve{T}_{r,2}^{j}\ (r=1,2)

M˘\breve{M} is also a graph manifold and Figure 9 illustrates the graph of the JSJ-decomposition of M˘\breve{M}.

Refer to caption
Figure 9: The graph decomposition of M˘\breve{M}.

By construction, M˘\breve{M} is fibred. In Step 2, we construct H=H1(j=1𝑝H2j)H=H_{1}\cup(\overset{p}{\underset{j=1}{\cup}}H_{2}^{j}) as a leaf of the semi-bundle structure of MM. Let H˘=p21(H)\breve{H}=p_{2}^{-1}(H). It’s not hard to see that H˘\breve{H} is a connected orientable surface in M˘\breve{M}. Let

˘=˘1,1˘1,2(s=12j=1𝑝˘2,sj),\breve{\mathcal{F}}=\breve{\mathcal{F}}_{1,1}\cup\breve{\mathcal{F}}_{1,2}\cup(\underset{s=1}{\overset{2}{\cup}}\underset{j=1}{\overset{p}{\cup}}\breve{\mathcal{F}}_{2,s}^{j}),

where ˘1,s=p21(1)Y˘1,s,˘2,sj=p21(2j)M˘2,sj,s=1,2\breve{\mathcal{F}}_{1,s}=p_{2}^{-1}(\mathcal{F}_{1})\cap\breve{Y}_{1,s},\breve{\mathcal{F}}_{2,s}^{j}=p_{2}^{-1}(\mathcal{F}_{2}^{j})\cap\breve{M}_{2,s}^{j},s=1,2. Then F˘\breve{F} is a surface bundle in M˘\breve{M}, and H˘\breve{H} is one leaf of F˘\breve{F}. Fix a transverse orientation for ˘\breve{\mathcal{F}} and let ˘1,s\breve{\mathcal{F}}_{1,s} and ˘2,sj\breve{\mathcal{F}}_{2,s}^{j} have the induced transverse orientation, s=1,2s=1,2, 1jp1\leqslant j\leqslant p.

p2p_{2} can be extended to a double cover of YY. Denote the covering space by Y˘\breve{Y}. Y˘\breve{Y} inherits the Seifert fibred structure from YY with fibre ϕ˘\breve{\phi}. Let ϕ˘\breve{\phi} have the inherited orientation from ϕ\phi.

Y˘=Y˘1,1Y˘1,2(s=12j=1𝑝Y˘2,sj)\breve{Y}=\breve{Y}_{1,1}\cup\breve{Y}_{1,2}\cup(\underset{s=1}{\overset{2}{\cup}}\underset{j=1}{\overset{p}{\cup}}\breve{Y}_{2,s}^{j})

where Y˘2,1jY˘2,2j=p21(Y2j)\breve{Y}^{j}_{2,1}\cup\breve{Y}_{2,2}^{j}=p_{2}^{-1}(Y_{2}^{j}) and M˘2,sjY˘2,sj\breve{M}_{2,s}^{j}\subset\breve{Y}_{2,s}^{j}, s=1,2s=1,2, 1jp1\leqslant j\leqslant p. By construction, p21(Lj,j)p_{2}^{-1}(L_{j,j}) are two copies of Lj,jL_{j,j}, denoted L˘j,j,1\breve{L}_{j,j,1}, and L˘j,j,2\breve{L}_{j,j,2}. L˘j,j,sY˘2,sj\breve{L}_{j,j,s}\subset{\breve{Y}_{2,s}^{j}}, s=1,2s=1,2. Then

M˘=Y˘(s=12j=1𝑝N(L˘j,j,s)).\breve{M}=\breve{Y}\setminus(\underset{s=1}{\overset{2}{\cup}}\underset{j=1}{\overset{p}{\cup}}N(\breve{L}_{j,j,s})).

Equip L˘j,j,s\breve{L}_{j,j,s} with the inherited orientation from Lj,jL_{j,j}, 1jp,s=1,21\leqslant j\leqslant p,s=1,2.

By the construction of M˘\breve{M}, p21(Ui,k)p_{2}^{-1}(U_{i,k}) is a ϕ˘\breve{\phi}-vertical torus, 1i,kp,ik1\leqslant i,k\leqslant p,i\neq k. Let U˘i,k=p21(Ui,k)\breve{U}_{i,k}=p_{2}^{-1}(U_{i,k}), and U˘i,k0=U˘i,kM˘\breve{U}_{i,k}^{0}=\breve{U}_{i,k}\cap\breve{M}. Denote p21(Ui,k0,l)=U˘i,k,10,lU˘i,k,20,lp_{2}^{-1}(U_{i,k}^{0,l})=\breve{U}_{i,k,1}^{0,l}\cup\breve{U}_{i,k,2}^{0,l}, 1l61\leqslant l\leqslant 6, where (U˘i,k,s0,1U˘i,k,s0,3U˘i,k,s0,5)Y˘1,s(\breve{U}_{i,k,s}^{0,1}\cup\breve{U}_{i,k,s}^{0,3}\cup\breve{U}_{i,k,s}^{0,5})\subset\breve{Y}_{1,s}, (U˘i,k,s0,2U˘i,k,s0,4)M˘2,sk(\breve{U}_{i,k,s}^{0,2}\cup\breve{U}_{i,k,s}^{0,4})\subset\breve{M}_{2,s}^{k}, and U˘i,k,s0,6M˘2,si,s=1,2\breve{U}_{i,k,s}^{0,6}\subset\breve{M}_{2,s}^{i},s=1,2. Denote L˘=p21(L)\breve{L}=p_{2}^{-1}(L). p21(Li,k)p_{2}^{-1}(L_{i,k}) has two components, and two-fold trivially covers its Seifert quotient image, since Li,kL_{i,k} is a two-fold cyclic cover of Li,kL^{*}_{i,k}. Then L˘\breve{L} has 2p22p^{2} components. Suppose (L˘i,k,slL˘i,k,sl+6)U˘i,k,s0,l(\breve{L}_{i,k,s}^{l}\cup\breve{L}_{i,k,s}^{l+6})\subset\breve{U}_{i,k,s}^{0,l} to be the lift of (Li,klLi,kl+6)Ui,k0,l,1l6(L_{i,k}^{l}\cup L_{i,k}^{l+6})\subset U_{i,k}^{0,l},1\leqslant l\leqslant 6. Equip L˘i,k,sl\breve{L}_{i,k,s}^{l} with the inherited orientation, 1l12,s=1,21\leqslant l\leqslant 12,s=1,2.

Now we fix s=1,2s=1,2 in the following discussion.

By construction, proposition 2.5 holds for every M˘2,sj\breve{M}_{2,s}^{j}, 1jp1\leqslant j\leqslant p. In particular, we can isotope {L˘i,j,sL˘j,i,s:1i,jp,ij,s=1,2}\{\breve{L}_{i,j,s}\cup\breve{L}_{j,i,s}:1\leqslant i,j\leqslant p,i\neq j,s=1,2\} smoothly along ϕ˘\breve{\phi} such that {L˘i,j,s2+rL˘i,j,s4+rL˘j,i,s6+r:1i,jp,ij,r=0,6,s=1,2}\{\breve{L}^{2+r}_{i,j,s}\cup\breve{L}^{4+r}_{i,j,s}\cup\breve{L}^{6+r}_{j,i,s}:1\leqslant i,j\leqslant p,i\neq j,r=0,6,s=1,2\} pass from the negative side to the positive side of ˘2,sj\breve{\mathcal{F}}_{2,s}^{j}’s leaves when traveling along their orientation in M˘2,sj\breve{M}_{2,s}^{j}. This isotopy is fixed outside a small neighborhood of s=12(i=1,ij𝑝(Ui,j,s0Uj,i,s0))M˘2,sj)\overset{2}{\underset{s=1}{\cup}}(\overset{p}{\underset{i=1,i\neq j}{\cup}}(U_{i,j,s}^{0}\cup U_{j,i,s}^{0}))\cap\breve{M}_{2,s}^{j}). Then {L˘i,k,s:1i,kp,ik,s=1,2}\{\breve{L}_{i,k,s}:1\leqslant i,k\leqslant p,i\neq k,s=1,2\} are transverse to {˘2,sj,1jp,s=1,2}\{\breve{\mathcal{F}}_{2,s}^{j},1\leqslant j\leqslant p,s=1,2\}. Next, we perform Dehn twist operations a sufficiently large number of times on {˘1,s:s=1,2}\{\breve{\mathcal{F}}_{1,s}:s=1,2\} along a set of tori Γ\Gamma, such that the new surface fiber is transverse to {L˘i,k,s,1i,kp,ik,s=1,2}\{\breve{L}_{i,k,s},1\leqslant i,k\leqslant p,i\neq k,s=1,2\} everywhere. Unlike in [ABZ], here we need more vertical tori. Γ\Gamma consists 2p+42p+4 ϕ˘\breve{\phi}-vertical tori,{V˘sj:1jp+2,s=1,2}\{\breve{V}_{s}^{j}:1\leqslant j\leqslant p+2,s=1,2\}. {V˘sj:1jp,s=1,2}\{\breve{V}_{s}^{j}:1\leqslant j\leqslant p,s=1,2\} are 2p2p vertical tori, where V˘sj\breve{V}_{s}^{j} parallel to T˘1,sj\breve{T}_{1,s}^{j} for 1jp,s=1,21\leqslant j\leqslant p,s=1,2. In addition to these boundary parallel tori, we need 44 extra tori, which we will give the construction later.

U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} is a ϕ˘\breve{\phi}-vertical annulus, 1l61\leqslant l\leqslant 6. L˘i,k,s2l1L˘i,k,s2l+5U˘i,k,s0,2l1\breve{L}_{i,k,s}^{2l-1}\cup\breve{L}_{i,k,s}^{2l+5}\subset\breve{U}_{i,k,s}^{0,2l-1}, and transverse to ϕ˘\breve{\phi} by Lemma 2.1 in [ABZ], 1l31\leqslant l\leqslant 3. By the construction of \mathcal{F} in Step 2, we may assume that the oriented arcs L˘i,k,s2l1L˘i,k,s2l+5\breve{L}_{i,k,s}^{2l-1}\cup\breve{L}_{i,k,s}^{2l+5} are always transverse from the negative to the positive side of ˘1,s\breve{\mathcal{F}}_{1,s} near the boundary of U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1}, 1l31\leqslant l\leqslant 3. By the construction of H1H_{1} in Step 2, ˘1,s\breve{\mathcal{F}}_{1,s} is transverse to the original fibre ϕ˘\breve{\phi}. ˘1,sU˘i,k,s0,2l1\breve{\mathcal{F}}_{1,s}\cap\breve{U}_{i,k,s}^{0,2l-1} gives another foliation of U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1}, 1l31\leqslant l\leqslant 3. One leaf of ˘1,sU˘i,k,s0,2l1\breve{\mathcal{F}}_{1,s}\cap\breve{U}_{i,k,s}^{0,2l-1} is shown in Figure 10.

Refer to caption
Figure 10: Dehn twist of ˘1,s\breve{\mathcal{F}}_{1,s}.

Let V˘sj\breve{V}_{s}^{j} be a ϕ˘\breve{\phi}-vertical torus in a small neighborhood of T˘1,sj\breve{T}_{1,s}^{j} in int(Y˘1,s)int(\breve{Y}_{1,s}) and parallel to T˘1,sj\breve{T}_{1,s}^{j}, 1jp,s=1,21\leqslant j\leqslant p,s=1,2. By the above discussion we may assume that V˘sj\breve{V}_{s}^{j} intersect L˘i,k,s2l1L˘i,k,s2l+5\breve{L}_{i,k,s}^{2l-1}\cup\breve{L}_{i,k,s}^{2l+5} transversely, 1l31\leqslant l\leqslant 3.

Now we introduce a sign for every intersection point of an arc η\eta and a ϕ˘\breve{\phi}-vertical torus TT in M˘\breve{M}. Suppose η\eta^{*} and ι\iota^{*} are the images of η\eta and TT under the Seifert quotient map respectively. We say η\eta intersects T positively if the algebraic intersection number i(η,ι)=+1i(\eta^{*},\iota^{*})=+1(cf. Figure 11), otherwise we say η\eta intersects T negatively. Equip the image of V˘sj\breve{V}_{s}^{j} under the Seifert quotient map the same orientation as L˘j,j,s\breve{L}_{j,j,s}, 1jp1\leqslant j\leqslant p. It’s easy to see that if the tail of L˘i,k,s2l1+r\breve{L}_{i,k,s}^{2l-1+r} is in T˘1,sj\breve{T}_{1,s}^{j}, L˘i,k,s2l1+r\breve{L}_{i,k,s}^{2l-1+r} intersects V˘sj\breve{V}_{s}^{j} positively,(cf. Figure 10-1),1l3,r=0,61\leqslant l\leqslant 3,r=0,6.

Refer to caption
Figure 11: Algebraic intersection number

The following remark is obtained from Table 2.

Remark 2.6

Any of {L˘i,k,s1+r,ikp12,r=0,6,s=1,2}{L˘i,k,s3+r,ik>p12,r=0,6,s=1,2}\{\breve{L}_{i,k,s}^{1+r},{i-k}\leqslant\displaystyle\frac{p-1}{2},r=0,6,s=1,2\}\cup\{\breve{L}_{i,k,s}^{3+r},{i-k}>\displaystyle\frac{p-1}{2},r=0,6,s=1,2\}, intersects s=12j=1𝑝V˘sj\overset{2}{\underset{s=1}{\cup}}\overset{p}{\underset{j=1}{\cup}}\breve{V}_{s}^{j} twice and in different signs, and any of {L˘i,k,s5+r:1i,kp,ik,r=0,6,s=1,2}\{\breve{L}_{i,k,s}^{5+r}:1\leqslant i,k\leqslant p,i\neq k,r=0,6,s=1,2\} intersects s=12j=1𝑝V˘sj\overset{2}{\underset{s=1}{\cup}}\overset{p}{\underset{j=1}{\cup}}\breve{V}_{s}^{j} once and positively. Note that s=12j=1𝑝V˘sj\overset{2}{\underset{s=1}{\cup}}\overset{p}{\underset{j=1}{\cup}}\breve{V}_{s}^{j} only intersects the above arcs.

By the above remark, when we perform Dehn twist along {V˘sj:1jp,s=1,2}\{\breve{V}_{s}^{j}:1\leqslant j\leqslant p,s=1,2\}, the relation between {L˘i,k,s1+r,ikp12,r=0,6,s=1,2}{L˘i,k,s3+r,ik>p12,r=0,6,s=1,2}\{\breve{L}_{i,k,s}^{1+r},{i-k}\leqslant\displaystyle\frac{p-1}{2},r=0,6,s=1,2\}\cup\{\breve{L}_{i,k,s}^{3+r},{i-k}>\displaystyle\frac{p-1}{2},r=0,6,s=1,2\} and the new fibres are the same as the relation of those with the old fibres. To make {L˘i,k,s1+r,ikp12,r=0,6,s=1,2}{L˘i,k,s3+r,ik>p12,r=0,6,s=1,2}\{\breve{L}_{i,k,s}^{1+r},{i-k}\leqslant\displaystyle\frac{p-1}{2},r=0,6,s=1,2\}\cup\{\breve{L}_{i,k,s}^{3+r},{i-k}>\displaystyle\frac{p-1}{2},r=0,6,s=1,2\} transverse to the new fibres, we need extra Dehn twists. We now construct {V˘sp+1V˘sp+2Y˘1,s,s=1,2}\{\breve{V}_{s}^{p+1}\cup\breve{V}_{s}^{p+2}\subset\breve{Y}_{1,s},s=1,2\}. V˘sp+r\breve{V}_{s}^{p+r} is the lift of ϕ\phi-vertical torus Vp+rY1V^{p+r}\subset Y_{1}, where Vp+r=f^1(lr),r=1,2V^{p+r}=\hat{f}^{-1}(l_{r}),r=1,2. l1l_{1} and l2l_{2} are two simple closed curves in F1F_{1} and constructed as follows.

Recall that β1j=Lj,j×{ϵ}\beta_{1}^{j}=L_{j,j}^{*}\times\{-\epsilon\}, β2j=Lj,j×{ϵ}\beta_{2}^{j}=L_{j,j}^{*}\times\{\epsilon\}, 1jp1\leqslant j\leqslant p. Let arja_{r}^{j} be the intersection of βrj\beta_{r}^{j} and a small disk centered at c^1,j\hat{c}_{1,j} with radius bigger than ϵ\epsilon, 1jp1\leqslant j\leqslant p. Push arja_{r}^{j} into F1F_{1} a little bit, as shown in Figure 12. By Remark 2.1, {Li,j,1i,jp,ij}\{L_{i,j}^{*},1\leqslant i,j\leqslant p,i\neq j\} intersect Lj,jL_{j,j}^{*} at c^1,j\hat{c}_{1,j}. Then arjLi,ja_{r}^{j}\cap L_{i,j}^{*}\neq\emptyset, 1i,jp1\leqslant i,j\leqslant p, iji\neq j, r=1,2r=1,2. Since {Li,k:1i,kp,ik}\{L_{i,k}^{*}:1\leqslant i,k\leqslant p,i\neq k\} intersects Lj,jL_{j,j}^{*} only at c^1,j\hat{c}_{1,j}, c^2,j\hat{c}_{2,j} and c^3,j\hat{c}_{3,j}, we can take an arc brjb_{r}^{j} in F1F_{1} which is parallel to βrj\beta_{r}^{j} and between c^2,j\hat{c}_{2,j} and c^3,j\hat{c}_{3,j}, 1jp1\leqslant j\leqslant p, r=1,2r=1,2 (cf. Figure 12).

Refer to caption
Figure 12: l1l_{1} and l2l_{2}

By Remark 2.1 and Remark 2.2, we can connect

{a1jandb1j, by the arc parallel to (Lj+p+12,j3),b1janda1j+p+12by the arc parallel to (Lj,j+p+121);a2jandb2j, by the arc parallel to (Lj+p12,j3),b2janda2j+p12by the arc parallel to (Lj,j+p121).\begin{cases}a_{1}^{j}\ \text{and}\ b_{1}^{j},&\text{ by the arc parallel to $(L_{j+\frac{p+1}{2},j}^{3})^{*}$},\\ b_{1}^{j}\ \text{and}\ a_{1}^{j+\frac{p+1}{2}}&\text{by the arc parallel to $(L_{j,j+\frac{p+1}{2}}^{1})^{*}$};\\ a_{2}^{j}\ \text{and}\ b_{2}^{j},&\text{ by the arc parallel to $(L_{j+\frac{p-1}{2},j}^{3})^{*}$},\\ b_{2}^{j}\ \text{and}\ a_{2}^{j+\frac{p-1}{2}}&\text{by the arc parallel to $(L_{j,j+\frac{p-1}{2}}^{1})^{*}$}.\\ \end{cases} (6)

1jp1\leqslant j\leqslant p. Note that the indices are in /p\mathbb{Z}/p. Then we get two simple closed curve l1l_{1}, and l2l_{2} in F1F_{1}, (cf. Figure 12). l1l_{1} and l2l_{2} can be oriented as in Figure 12, such that the orientations on a1ja_{1}^{j} and a2ja_{2}^{j} are the same as the orientation on Lj,jL_{j,j}^{*}.

By the construction of l1l_{1} and l2l_{2}, they only intersect Li,kL_{i,k}^{*} at the arcs a1ja_{1}^{j} and a2ja_{2}^{j}, 1jp1\leqslant j\leqslant p. {a1ja2j:1jp}\{a_{1}^{j}\cup a_{2}^{j}:1\leqslant j\leqslant p\} only intersects the arcs of Li,kL_{i,k}^{*} between c^3,i\hat{c}_{3,i} and c^1,k\hat{c}_{1,k}, and between c^1,k\hat{c}_{1,k} and c^2,k\hat{c}_{2,k}, i.e. (Li,k1)(L_{i,k}^{1})^{*} and (Li,k3)(L_{i,k}^{3})^{*} by Remark 2.2. l1l2l_{1}\cup l_{2} intersects (Li,k1)(L_{i,k}^{1})^{*} or (Li,k3)(L_{i,k}^{3})^{*} exactly once and does not intersect (Li,k5)(L_{i,k}^{5})^{*}, 1i,kp1\leqslant i,k\leqslant p, iki\neq k. Moreover i((Li,k1),lr)=i((Li,k3),lr)=1,r=1,2i((L_{i,k}^{1})^{*},l_{r})=i((L_{i,k}^{3})^{*},l_{r})=-1,r=1,2, since the angle between Lj,jL_{j,j}^{*} and Li,jL_{i,j}^{*} at c^1,j(π,2π)\hat{c}_{1,j}\in(\pi,2\pi) after the reorientation in Step 3(cf. Figure 12). Since V˘sp+m\breve{V}_{s}^{p+m} and L˘i,k,s2m1+r\breve{L}_{i,k,s}^{2m-1+r} are the lifts of Vp+mV^{p+m} and Li,k2m1+rL_{i,k}^{2m-1+r} respectively, and their images under the Seifert quotient map are lml_{m} and (Li,k2m1)(L_{i,k}^{2m-1})^{*}, respectively, m=1,2,r=0,6m=1,2,r=0,6, we have the following remark.

Remark 2.7

s=12(V˘sp+1V˘sp+2)\overset{2}{\underset{s=1}{\cup}}(\breve{V}_{s}^{p+1}\cup\breve{V}_{s}^{p+2}) intersects L˘i,k,s1+r\breve{L}_{i,k,s}^{1+r} and L˘i,k,s3+r\breve{L}_{i,k,s}^{3+r} exactly once and negatively, and s=12(V˘sp+1V˘sp+2)L˘i,k,s5+r=\overset{2}{\underset{s=1}{\cup}}(\breve{V}_{s}^{p+1}\cup\breve{V}_{s}^{p+2})\cap\breve{L}_{i,k,s}^{5+r}=\emptyset, 1i,kp1\leqslant i,k\leqslant p, iki\neq k, r=0,6.r=0,6.

Note that l1l2{Lj,j,1jp}=l_{1}\cup l_{2}\cap\{L_{j,j}^{*},1\leqslant j\leqslant p\}=\emptyset, so we may suppose that the tori in Γ\Gamma are mutually disjoint.

Let N(V˘sj)N(\breve{V}_{s}^{j}) be a small regular neighborhood of V˘sj\breve{V}_{s}^{j} in int(Y˘1,s)int(\breve{Y}_{1,s}) consisting of ϕ˘\breve{\phi}-circle fibres, 1jp+21\leqslant j\leqslant p+2. We may suppose that N(V˘si)N(V˘sj)=(1i,jp+2;ij)N(\breve{V}_{s}^{i})\cap N(\breve{V}_{s}^{j})=\emptyset\ (1\leqslant i,j\leqslant p+2;i\neq j) if we take the regular neighborhoods small enough. Define N(V˘sj)=˘1,sj˘2,sj,1jp+2\partial N(\breve{V}_{s}^{j})=\breve{\partial}_{1,s}^{j}\cup\breve{\partial}_{2,s}^{j},1\leqslant j\leqslant p+2. ˘1,sj\breve{\partial}_{1,s}^{j} and ˘2,sj\breve{\partial}_{2,s}^{j} are two ϕ˘\breve{\phi}-vertical tori, 1jp+21\leqslant j\leqslant p+2.

By Remark 2.6 j=1𝑝N(V˘sj)\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j}) intersects each of L˘i,k,s5\breve{L}_{i,k,s}^{5} and L˘i,k,s11\breve{L}_{i,k,s}^{11} in a single arc, 1i,kp1\leqslant i,k\leqslant p, iki\neq k, s=1,2s=1,2. We may assume that the tail of this arc (with the induced orientation) is contained in ˘1,sj\breve{\partial}_{1,s}^{j}, since {L˘i,k,s5L˘i,k,s11:1i,kp,ik,s=1,2}\{\breve{L}_{i,k,s}^{5}\cup\breve{L}_{i,k,s}^{11}:1\leqslant i,k\leqslant p,i\neq k,s=1,2\} intersects j=1𝑝N(V˘sj)\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j}) in the same sign. On the other hand, N(V˘sp+1)N(V˘sp+2)N(\breve{V}_{s}^{p+1})\cup N(\breve{V}_{s}^{p+2}) intersects each of L˘i,k,s1,L˘i,k,s7,L˘i,k,s3,L˘i,k,s9\breve{L}_{i,k,s}^{1},\breve{L}_{i,k,s}^{7},\breve{L}_{i,k,s}^{3},\breve{L}_{i,k,s}^{9} in a single arc, by Remark 2.7. We also assume that the tail of this arc (with the induced orientation) contained in ˘1,sp+r\breve{\partial}_{1,s}^{p+r}, r=1,2r=1,2.

Since ˘1,s\breve{\mathcal{F}}_{1,s} is transverse to the old fibres, ˘1,sN(V˘sj)\breve{\mathcal{F}}_{1,s}\cap N(\breve{V}_{s}^{j}) is a foliation of N(V˘sj)N(\breve{V}_{s}^{j}) by annuli, 1jp+21\leqslant j\leqslant p+2, s=1,2s=1,2. The Dehn twist operation on ˘1,s\breve{\mathcal{F}}_{1,s}, denoted by DsjD_{s}^{j} wraps these annuli sufficiently large number of times around the ϕ˘\breve{\phi}-fibres in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s} as we pass from ˘1,sj\breve{\partial}_{1,s}^{j} to ˘2,sj\breve{\partial}_{2,s}^{j}, 1jp+21\leqslant j\leqslant p+2. Figure 13 shows one Dehn twist.

Refer to caption
Figure 13: Dehn twist in N(V˘sj)N(\breve{V}_{s}^{j}) in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s}.

We perform Dehn twist operations on ˘1,s\breve{\mathcal{F}}_{1,s}, by two steps. At first, perform {Dsj,1jp}\{D_{s}^{j},1\leqslant j\leqslant p\}, then perform Dsp+1D_{s}^{p+1} and Dsp+2D_{s}^{p+2}. Let ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} be the new surface bundle obtained by Dehn twist operations {Dsj,1jp}\{D_{s}^{j},1\leqslant j\leqslant p\} on ˘1,s\breve{\mathcal{F}}_{1,s}. By Remark 2.6, there are two cases for the foliation of U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} by U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}}, s=1,2s=1,2.

Case A. l=1l=1 and ikp12{i-k}\leqslant\displaystyle{\frac{p-1}{2}}, or l=2l=2 and ik>p12{i-k}>\displaystyle{\frac{p-1}{2}}. 1i,kp,ik1\leqslant i,k\leqslant p,i\neq k

In this case j=1𝑝N(V˘sj)L˘i,k,s2l1\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j})\cap\breve{L}_{i,k,s}^{2l-1} and j=1𝑝N(V˘sj)L˘i,k,s2l+5\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j})\cap\breve{L}_{i,k,s}^{2l+5} are both two arcs. In particular L˘i,k,s1\breve{L}_{i,k,s}^{1} and L˘i,k,s7\breve{L}_{i,k,s}^{7} intersect V˘si\breve{V}_{s}^{i} and V˘sk\breve{V}_{s}^{k}, and L˘i,k,s3\breve{L}_{i,k,s}^{3} and L˘i,k,s9\breve{L}_{i,k,s}^{9} intersect V˘sk\breve{V}_{s}^{k} twice by Table 2. Then L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} intersect j=1𝑝N(V˘sj)\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j}) two times, and in different signs by Remark 2.6. If the tail of one arc of L˘i,k,s2l1j=1𝑝N(V˘sj)\breve{L}_{i,k,s}^{2l-1}\cap\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j}) lies in j=1𝑝˘1,sj\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{1,s}^{j}, the tail of the other one lies in j=1𝑝˘2,sj\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{2,s}^{j}. The same thing happens for L˘i,k,s2l+5\breve{L}_{i,k,s}^{2l+5}.

U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is obtained from U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s} by DsjD_{s}^{j}’s (1jp1\leqslant j\leqslant p, s=1,2s=1,2) in a regular neighborhood of two ϕ˘\breve{\phi}-circle fibres in U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s} as we pass from (j=1𝑝˘1,sj)U˘i,k,s0,2l1(\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{1,s}^{j})\cap\breve{U}_{i,k,s}^{0,2l-1} to (j=1𝑝˘2,sj)U˘i,k,s0,2l1(\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{2,s}^{j})\cap\breve{U}_{i,k,s}^{0,2l-1}, 1l31\leqslant l\leqslant 3. Figure 10-2 shows U˘i,k,s0,3˘1,s\breve{U}_{i,k,s}^{0,3}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}}, and U˘i,k,s0,1˘1,s\breve{U}_{i,k,s}^{0,1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is similar to U˘i,k,s0,3˘1,s\breve{U}_{i,k,s}^{0,3}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}}.

Now we perform an isotope of ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} in a small regular neighborhood of U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} in Y˘1,s\breve{Y}_{1,s}, say N(U˘i,k,s0,2l1)N(\breve{U}_{i,k,s}^{0,2l-1}), such that U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} changes back to U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s} as shown in Figure 10-1, and N(U˘i,k,s0,2l1)˘1,s\partial N(\breve{U}_{i,k,s}^{0,2l-1})\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} always keeps to be the same. The isotope is described as following. Push the whole arc ABAB (like a finger move) along ϕ˘\breve{\phi} in U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} in the direction opposite to the Dehn twist and the same times as the Dehn twist, meanwhile keep N(U˘i,k,s0,2l1˘1,s)\partial N(\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}}) all the time (cf. Figure 10-2). We still call the surface bundle ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} after this isotope.

In case A, U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is same as U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}.

Case B. l=3,1i,kp,ikl=3,1\leqslant i,k\leqslant p,i\neq k.

In this case, j=1𝑝N(V˘sj)L˘i,k,s2l1\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j})\cap\breve{L}_{i,k,s}^{2l-1} and j=1𝑝N(V˘sj)L˘i,k,s2l+5\overset{p}{\underset{j=1}{\cup}}N(\breve{V}_{s}^{j})\cap\breve{L}_{i,k,s}^{2l+5} are both one arc. The foliation of U˘i,k,s0,5\breve{U}_{i,k,s}^{0,5} determined by U˘i,k,s0,5˘1,s\breve{U}_{i,k,s}^{0,5}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is obtained from the foliation U˘i,k,s0,5˘1,s\breve{U}_{i,k,s}^{0,5}\cap\breve{\mathcal{F}}_{1,s} by DsjD_{s}^{j}’s (1jp)(1\leqslant j\leqslant p) in a regular neighborhood of one ϕ˘\breve{\phi}-circle fibre in U˘i,k,s0,5\breve{U}_{i,k,s}^{0,5} in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s} as we pass from (j=1𝑝˘1,sj)U˘i,k,s0,5(\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{1,s}^{j})\cap\breve{U}_{i,k,s}^{0,5} to(j=1𝑝˘2,sj)U˘i,k,s0,5(\overset{p}{\underset{j=1}{\cup}}\breve{\partial}_{2,s}^{j})\cap\breve{U}_{i,k,s}^{0,5} (cf. Figure 10-3).

Now we perform the Dehn twist operations Dsp+1D_{s}^{p+1}, Dsp+2D_{s}^{p+2} on 1,s\mathcal{F}^{\prime}_{1,s}.

Suppose ˘1,s′′\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime}} is the new surface bundle of Y˘1,s\breve{Y}_{1,s} obtained by Dsp+1D_{s}^{p+1} and Dsp+2D_{s}^{p+2}. By Remark 2.7, (N(V˘sp+1)N(V˘sp+2))L˘i,k,s2l1(N(\breve{V}_{s}^{p+1})\cup N(\breve{V}_{s}^{p+2}))\cap\breve{L}_{i,k,s}^{2l-1} and (N(V˘sp+1)N(V˘sp+2))L˘i,k,s2l+5(N(\breve{V}_{s}^{p+1})\cup N(\breve{V}_{s}^{p+2}))\cap\breve{L}_{i,k,s}^{2l+5} are both one arc, l=1,2l=1,2. Then the situation of U˘i,k,s0,2l1˘1,s′′\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime}} is the same as case B in the first step (cf. Figure 10-3), l=1,2l=1,2. The foliation of U˘i,k,s0,5\breve{U}_{i,k,s}^{0,5} determined by U˘i,k,s0,5˘1,s′′\breve{U}_{i,k,s}^{0,5}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime}} is the same as U˘i,k,s0,5˘1,s\breve{U}_{i,k,s}^{0,5}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} because (N(V˘sp+1)N(V˘sp+2))(U˘i,k,s0,5)=(N(\breve{V}_{s}^{p+1})\cup N(\breve{V}_{s}^{p+2}))\cap(\breve{U}_{i,k,s}^{0,5})=\emptyset.

Finally like [ABZ], we adjust ˘1,s′′\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime}} by isotope which is the identity in a small regular neighborhood of Y˘1,s\partial\breve{Y}_{1,s} and outside a small regular neighborhood of l=13(1i,kp,ikU˘i,k,s0,2l1)\overset{3}{\underset{l=1}{\cup}}(\underset{1\leqslant i,k\leqslant p,i\neq k}{\cup}\breve{U}_{i,k,s}^{0,2l-1}) such that the interval foliation in each U˘i,k,s0,2l1\breve{U}_{i,k,s}^{0,2l-1} becomes transverse to L˘i,k,s2l1L˘i,k,s2l+5\breve{L}_{i,k,s}^{2l-1}\cup\breve{L}_{i,k,s}^{2l+5}, 1l31\leqslant l\leqslant 3 (cf. Figure 10-4). We denote the resulting surface bundle ˘1,s′′′\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime\prime}}. Since ˘1,s′′′Y˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime\prime\prime}}\cap\partial\breve{Y}_{1,s} is same as ˘1,sY˘1,s\breve{\mathcal{F}}_{1,s}\cap\partial\breve{Y}_{1,s}, the resulting surface bundle ˘′′′\breve{\mathcal{F}}^{{}^{\prime\prime\prime}} in M˘\breve{M} is transverse to the link s=12(1i,kp;ikL˘i,k,s)\overset{2}{\underset{s=1}{\cup}}(\underset{1\leqslant i,k\leqslant p;i\neq k}{\cup}\breve{L}_{i,k,s}) every where. In other words, the exterior of s=12(1i,kp;ikL˘i,k,s)\overset{2}{\underset{s=1}{\cup}}(\underset{1\leqslant i,k\leqslant p;i\neq k}{\cup}\breve{L}_{i,k,s}) in M˘\breve{M} has a surface bundle structure, i.e., s=12(1i,kp;ikL˘i,k,s)\overset{2}{\underset{s=1}{\cup}}(\underset{1\leqslant i,k\leqslant p;i\neq k}{\cup}\breve{L}_{i,k,s}) is a fibred link, i.e. KK is a virtually fibred Montesinos knot. Now we finish the proof of Theorem 1.1 when KK is a classic Montesinos knot, and n=3n=3.

2.2 𝐊\mathbf{K} is a link of two components.

The proof in this case is mostly same as in section 2.1, except for the following changes.

In this case, f|:K~Kf|:\widetilde{K}\rightarrow K^{*} is a trivial 2-fold cover. Then L=Ψ1(K~)L=\Psi^{-1}(\widetilde{K}) is a geodesic link with 2p22p^{2} components. Let L={Li,jr:1i,jp,r=1,2}L=\{L_{i,j}^{r}:1\leqslant i,j\leqslant p,r=1,2\}. f^(Li,jr)=Li,j\hat{f}(L_{i,j}^{r})=L_{i,j}^{*}, r=1,2r=1,2. Now we take MM to be the complement of {Lj,j1:1jp}\{L_{j,j}^{1}:1\leqslant j\leqslant p\} in YY. As in the proof of Proposition 2.4, we have M=Y1M21M22M2pM=Y_{1}\cup M_{2}^{1}\cup M_{2}^{2}\cup\cdots\cup M_{2}^{p}, where M2j=f^1(Lj,j×[ϵ,ϵ])N(Lj,j1)M_{2}^{j}=\hat{f}^{-1}(L_{j,j}^{*}\times[-\epsilon,\epsilon])-\overset{\circ}{N}(L_{j,j}^{1}), 1jp1\leqslant j\leqslant p. Note that Lj,j2L_{j,j}^{2} is a fibre of the Seifert fibre structure on M2j,1jpM_{2}^{j},1\leqslant j\leqslant p.

Since KK has two components, and pp is odd, we have q1+q2+q3q_{1}+q_{2}+q_{3} is even.

e=p2e(WK)=p(q1+q2+q3),e~=ep=(q1+q2+q3)e=p^{2}e(W_{K})=-p(q_{1}+q_{2}+q_{3}),\ \ \ \ \ \ \tilde{e}=\frac{e}{p}=-(q_{1}+q_{2}+q_{3})

so |e~||\tilde{e}| is even and non-zero. We use the definitions of a,b,c,da,b,c,d in the proof of Proposition 2.4 , and in this case c=1c=1. We can take a=c=d=1a=c=d=1 and b=0b=0. i.e.

α¯j=αj,ϕ¯j=αj+ϕj, 1jp.\overline{\alpha}^{j}=\alpha^{j},\ \ \ \ \ \ \overline{\phi}^{j}=\alpha^{j}+\phi^{j},\ \ \ \ \ \ 1\leqslant j\leqslant p.

In the following discussion, we will always assume that 1jp1\leqslant j\leqslant p except for special indication.

By a similar analysis in Proposition 2.4, we can see that there are orientable horizontal surfaces H1H_{1} in Y1Y_{1}, and H2jH_{2}^{j} in M2jM_{2}^{j} which piece together to form the semifibre HH where the projection of H1H_{1} to F1F_{1} has degree |λ|=1|\lambda|=1 and that of H2jH_{2}^{j} to the base of M2jM_{2}^{j} has degree |λ¯|=|e~2||\overline{\lambda}|=\displaystyle|\frac{\tilde{e}}{2}|.

Further, if we suppose that the slope of H1H_{1} on TijT_{i}^{j} is given by uijα1,ij+tijϕ1,ij(i=1,2)u_{i}^{j}\alpha_{1,i}^{j}+t_{i}^{j}\phi_{1,i}^{j}\ (i=1,2), and that of H2jH_{2}^{j} on TijT_{i}^{j} is u¯ijα2,ij+t¯ijϕ2,ij(i=1,2,3)\overline{u}_{i}^{j}\alpha_{2,i}^{j}+\overline{t}_{i}^{j}\phi_{2,i}^{j}\ (i=1,2,3). Then we get the following result from (2.1) and (3)

t1ju1j=e~22,t2ju2j=2e~2;t¯1ju¯1j=2e~e~,t¯2ju¯2j=2+e~e~,t¯3ju¯3j=4e~.\frac{t_{1}^{j}}{u_{1}^{j}}=\frac{\tilde{e}-2}{2},\ \frac{t_{2}^{j}}{u_{2}^{j}}=\frac{2-\tilde{e}}{2};\ \ \ \ \ \ \ \ \frac{\overline{t}_{1}^{j}}{\overline{u}_{1}^{j}}=\frac{2-\tilde{e}}{\tilde{e}},\ \frac{\overline{t}_{2}^{j}}{\overline{u}_{2}^{j}}=\frac{2+\tilde{e}}{\tilde{e}},\ \frac{\overline{t}_{3}^{j}}{\overline{u}_{3}^{j}}=-\frac{4}{\tilde{e}}.

Since e~\tilde{e} is even, the values of the coefficients uij,tij,u¯ij,t¯iju_{i}^{j},t_{i}^{j},\overline{u}_{i}^{j},\overline{t}_{i}^{j} are given as following

t1j=e~21,u1j=1;t2j=1e~2,u2j=1;\displaystyle t_{1}^{j}=\frac{\tilde{e}}{2}-1,\ \ u_{1}^{j}=1;\ \ \ \ \ \ t_{2}^{j}=1-\frac{\tilde{e}}{2},\ \ u_{2}^{j}=1;
t¯1j=1e~2,u¯1j=e~2;t¯2j=1+e~2,u¯2j=e~2;\displaystyle\overline{t}_{1}^{j}=1-\frac{\tilde{e}}{2},\ \ \overline{u}_{1}^{j}=\frac{\tilde{e}}{2};\ \ \ \ \ \overline{t}_{2}^{j}=1+\frac{\tilde{e}}{2},\ \ \overline{u}_{2}^{j}=\frac{\tilde{e}}{2};
(t¯3j,u¯3j)={(2,e~2)if e~=4k+2,(1,e~4)if e~=4k,k.\displaystyle(\overline{t}_{3}^{j},\overline{u}_{3}^{j})=\begin{cases}(-2,\displaystyle{\frac{\tilde{e}}{2}})&\text{if $\tilde{e}=4k+2$},\\[8.61108pt] (-1,\displaystyle{\frac{\tilde{e}}{4}})&\text{if $\tilde{e}=4k$},\end{cases}k\in\mathbb{Z}.

As in 2.1 H2jH_{2}^{j} is a surface which interpolates between the slope 2e~e~\displaystyle{\frac{2-\tilde{e}}{\tilde{e}}} on T1jT_{1}^{j} and 2+e~e~\displaystyle{\frac{2+\tilde{e}}{-\tilde{e}}} on T2jT_{2}^{j}. H1T1,rj\partial H_{1}\cap T_{1,r}^{j} has |λurj|=|11|=1\displaystyle{|\frac{\lambda}{u_{r}^{j}}|=|\frac{1}{1}|=1} component r=1,2r=1,2, and H2jT2,rj\partial H_{2}^{j}\cap T_{2,r}^{j} has |λ¯u¯rj|=|e~/2e~/2|=1\displaystyle{|\frac{\overline{\lambda}}{\overline{u}_{r}^{j}}|=|\frac{\tilde{e}/2}{\tilde{e}/2}|=1} component r=1,2,3r=1,2,3. Still ϵ1=ϵ2\epsilon_{1}=-\epsilon_{2} implies that MM is a surface semi-bundle. Denote the associated fibring in M2jM_{2}^{j} by 2j\mathcal{F}_{2}^{j}. 2j\mathcal{F}_{2}^{j} is transverse to all the new fibres, and in particular to Lj,j2L_{j,j}^{2}.

Now Lj,j1L_{j,j}^{1} only intersects the original fibre once, so Ui,j0,2lU_{i,j}^{0,2l} is a once-punctured annulus, and there is only one singular point on Ui,j0,2l,1i,jp,ij,l=1,2,3U_{i,j}^{0,2l},1\leqslant i,j\leqslant p,i\neq j,l=1,2,3.

Refer to caption
Figure 14: Ui,10,2U_{i,1}^{0,2} and Ui,10,4U_{i,1}^{0,4}.

The intersection of Ui,10,2U_{i,1}^{0,2} with 21\mathcal{F}_{2}^{1} is depicted in Figure 14-1, Ui,10,421U_{i,1}^{0,4}\cap\mathcal{F}_{2}^{1} is depicted in Figure 14-2, and U1,i0,621U_{1,i}^{0,6}\cap\mathcal{F}_{2}^{1} is similar to Ui,10,421,2ipU_{i,1}^{0,4}\cap\mathcal{F}_{2}^{1},2\leqslant i\leqslant p. The previous argument can be proceed without significant change to produce the desired surface bundle structure on M˘2,sj\breve{M}_{2,s}^{j} which is transverse to L˘=s=12(r=121i,jp;ijL˘i,j,sr(j=1𝑝L˘j,j,s2))\breve{L}^{\prime}=\underset{s=1}{\overset{2}{\cup}}(\underset{r=1}{\overset{2}{\cup}}\underset{1\leqslant i,j\leqslant p;i\neq j}{\cup}\breve{L}_{i,j,s}^{r}\cup(\overset{p}{\underset{j=1}{\cup}}\breve{L}_{j,j,s}^{2})). By similar Dehn twist operation on ˘1,s\breve{\mathcal{F}}_{1,s}, we can get a surface bundle in Y˘1,s\breve{Y}_{1,s}, say ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} such that ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is transverse to L˘,s=1,2\breve{L}^{\prime},s=1,2. The proof of Theorem 1.1 is finished in Case (1).

3 Proof of Theorem 1.1 in Case (2).

In this section, we consider classic Montesinos link K(q1/p,q2/p,,qn/p)K({q_{1}}/{p},{q_{2}}/{p},\cdots,{q_{n}}/{p}), where n>3n>3, pp odd and p3p\geq 3. We do not consider the case e(WK)=0e(W_{K})=0, otherwise KK is virtually fibred by Theorem 1.2 [ABZ].

We still consider KK is a knot first, and prove Theorem 1.1 by the same four steps as in Sec 2.1.

The Seifert structure is f:WKS2(p,p,,pn)f:W_{K}\rightarrow S^{2}(\underbrace{p,p,\cdots,p}_{n}), and Γ1=π1(S2(p,p,,pn))\Gamma_{1}=\pi_{1}(S^{2}(\underbrace{p,p,\cdots,p}_{n})) has a presentation

Γ1=<x1,x2,,xn|x1p==xnp=x1x2xn=1>.\Gamma_{1}=<x_{1},x_{2},\cdots,x_{n}\ |\ x_{1}^{p}=\cdots=x_{n}^{p}=x_{1}x_{2}\cdots x_{n}=1>.

Define h1h_{1} similarly as in Sec. 2.1.

h1:Γ1/ph_{1}:\Gamma_{1}\rightarrow\mathbb{Z}/p

where h1(x1)=1¯,h1(x2)=1¯h_{1}(x_{1})=\overline{1},h_{1}(x_{2})=-\overline{1}, and h1(xi)=0¯h_{1}(x_{i})=\overline{0}, for 3in3\leqslant i\leqslant n. Let ψ1:FS2(p,p,,pn)\psi_{1}:F^{\prime}\rightarrow S^{2}(\underbrace{p,p,\cdots,p}_{n}) be the pp-fold cyclic orbifold cover of S2(p,p,,pn)S^{2}(\underbrace{p,p,\cdots,p}_{n}) corresponding to h1h_{1}. Then F=S2(p,p,,p(n2)p)F^{\prime}=S^{2}(\underbrace{p,p,\cdots,p}_{(n-2)p}) and

Γ2=π1(F)=<y1,y2,,y(n2)p|y1p=y2p==y(n2)pp=y1y2y(n2)p=1>.\Gamma_{2}=\pi_{1}(F^{\prime})=<y_{1},y_{2},\cdots,y_{(n-2)p}\ |\ y_{1}^{p}=y_{2}^{p}=\cdots=y_{(n-2)p}^{p}=y_{1}y_{2}\cdots y_{(n-2)p}=1>.

Define

h2:Γ2/ph_{2}:\Gamma_{2}\rightarrow\mathbb{Z}/p

where h2(yi)=1¯h_{2}(y_{i})=\overline{1} for 1i(n2)p1\leqslant i\leqslant(n-2)p. Suppose that ψ2:FF\psi_{2}:F\rightarrow F^{\prime} is the pp-fold cyclic orbifold cover of FF^{\prime} corresponding to h2h_{2}, and ψ=ψ1ψ2\psi=\psi_{1}\circ\psi_{2}. Now let Ψ:YWK\Psi:Y\rightarrow W_{K} be the associated p2p^{2}-fold cover. L=Ψ1(K~)L=\Psi^{-1}(\widetilde{K}) is still a geodesic link in YY with exactly p2p^{2} components. We use the same notations as in section 2. L={Li,j,1i,jp}L=\{L_{i,j},1\leqslant i,j\leqslant p\}, f^(Li,j)=Li,j\hat{f}(L_{i,j})=L_{i,j}^{*}, 1i,jp1\leqslant i,j\leqslant p, and ψ1(ci)=c^i,j\psi^{-1}(c_{i})=\hat{c}_{i,j}, 1in,1jp1\leqslant i\leqslant n,1\leqslant j\leqslant p.

Let M=Y(j=1𝑝N(Lj,j))M=Y\setminus(\overset{p}{\underset{j=1}{\cup}}\overset{\circ}{N}(L_{j,j})). By the same process from Step 2 to Step 4 as described in section 2.1, we can find a double cover of MM, say M˘\breve{M} and a surface bundle ˘′′\breve{\mathcal{F}}^{{}^{\prime\prime}} in M˘\breve{M} such that it is transverse to the lift of Li,jL_{i,j}, 1i,jp,ij1\leqslant i,j\leqslant p,i\neq j.

The only thing different here is the construction of Γ\Gamma. In Step 4, we perform Dehn twist operations on ˘1,s\breve{\mathcal{F}}_{1,s} along a set of ϕ˘\breve{\phi}-vertical tori Γ\Gamma such that the new surface fibre is transverse to L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} everywhere, 1l2n1\leqslant l\leqslant 2n, s=1,2s=1,2, 1i,kp1\leqslant i,k\leqslant p, iki\neq k. Γ={V˘s1,V˘s2:s=1,2}\Gamma=\{\breve{V}_{s}^{1},\breve{V}_{s}^{2}:s=1,2\} contains four tori not 2p+42p+4 as in Case (1). They are the lifts of two ϕ\phi-vertical tori, Vr=f^1(lr)V^{r}=\hat{f}^{-1}(l_{r}), r=1,2r=1,2. l1l_{1} and l2l_{2} are two simple closed curves on FF, which intersect all (Li,k2l1)(L_{i,k}^{2l-1})^{*}’s once or twice when n5n\geq 5 in the same signs, 1i,kp,ik1\leqslant i,k\leqslant p,i\neq k, and 1ln1\leqslant l\leqslant n.

Note that we always suppose that 1i,j,kp1\leqslant i,j,k\leqslant p, iki\neq k

Recall that F2j=Lj,j×[ϵ,ϵ]F_{2}^{j}=L_{j,j}^{*}\times[-\epsilon,\epsilon], and F1=Fj=1𝑝F2jF_{1}=F-\overset{p}{\underset{j=1}{\cup}}{\overset{\circ}{F_{2}^{j}}}. As before, Li,kL_{i,k}^{*} is separated into 2n2n parts by j=1𝑝F2j\overset{p}{\underset{j=1}{\cup}}F_{2}^{j} and F1F_{1}. Table 1 is still true in this case. In addition, if 4ln4\leqslant l\leqslant n,

the tail of (Li,k2l1)(L_{i,k}^{2l-1})^{*} in {β2iikp12,β1iik>p12,\begin{cases}\beta_{2}^{i}&\displaystyle{i-k}\leqslant\frac{p-1}{2},\\[8.61108pt] \beta_{1}^{i}&\displaystyle{i-k}>\frac{p-1}{2},\end{cases}

the head of (Li,k2l1)(L_{i,k}^{2l-1})^{*} in {β1iikp12,β2iik>p12.\begin{cases}\beta_{1}^{i}&\displaystyle{i-k}\leqslant\frac{p-1}{2},\\[8.61108pt] \beta_{2}^{i}&\displaystyle{i-k}>\frac{p-1}{2}.\end{cases}

As in Step 3 in Section 2, we can reorient {Li,k,1i,kp,ik}\{L_{i,k},1\leqslant i,k\leqslant p,i\neq k\} such that

the tail of {Li,k2 and Li,k2+2n lie in T1k,Li,k4 and Li,k4+2n lie in T2k,Li,k2l and Li,k2l+2n lie in T2i3ln.\begin{cases}\text{$L_{i,k}^{2}$ and $L_{i,k}^{2+2n}$ lie in $T_{1}^{k}$},\\ \text{$L_{i,k}^{4}$ and $L_{i,k}^{4+2n}$ lie in $T_{2}^{k}$},\\ \text{$L_{i,k}^{2l}$ and $L_{i,k}^{2l+2n}$ lie in $T_{2}^{i}$, $3\leqslant l\leqslant n$}.\end{cases}

Table 2 is also true in this case and the tail of Li,k2l1+rL_{i,k}^{2l-1+r} is in T1iT_{1}^{i}, and the head of Li,k2l1+rL_{i,k}^{2l-1+r} is in T2iT_{2}^{i}, 4ln4\leqslant l\leqslant n, r=0,2nr=0,2n.

The construction of l1l_{1} and l2l_{2} is similar as before.

arja_{r}^{j} is still the intersection of βrj\beta_{r}^{j} and a small disk centered at c^1,j\hat{c}_{1,j} with radius bigger than ϵ\epsilon, 1jp1\leqslant j\leqslant p, r=1,2r=1,2. Push arja_{r}^{j} into F1F_{1} a little bit. brjb_{r}^{j} is different. We take brjb_{r}^{j} in F1F_{1} which is parallel to βrj\beta_{r}^{j} and between c^2,j\hat{c}_{2,j} and c^n,j\hat{c}_{n,j}, 1jp1\leqslant j\leqslant p, r=1,2r=1,2. Then j=1𝑝(a1ja2j)\overset{p}{\underset{j=1}{\cup}}(a_{1}^{j}\cup a_{2}^{j}) intersects (Li,k2l1)(L_{i,k}^{2l-1})^{*} once, where l=1,2l=1,2, and j=1𝑝(b1jb2j)\overset{p}{\underset{j=1}{\cup}}(b_{1}^{j}\cup b_{2}^{j}), intersects (Li,k5)(L_{i,k}^{5})^{*} and (Li,k2n1)(L_{i,k}^{2n-1})^{*} both once and intersect (Li,k2l1)(L_{i,k}^{2l-1})^{*} twice where 3<l<n3<l<n, 1i,kp1\leqslant i,k\leqslant p, iki\neq k.

We still can connect arja_{r}^{j}’s and brjb_{r}^{j}’s by the same arcs as in (6), 1jp1\leqslant j\leqslant p, r=1,2r=1,2. See Figure 15 in the case n=4n=4, and Figure 16 in the case n=5n=5. When n>5n>5, l1l_{1} and l2l_{2} are similar to the ones in the case n=5n=5.

Refer to caption
Figure 15: l1l_{1} and l2l_{2} when n=4n=4.
Refer to caption
Figure 16: l1l_{1} and l2l_{2} when n=5n=5.

V˘s1=p21(V1)Y˘1,s\breve{V}_{s}^{1}=p_{2}^{-1}(V^{1})\cap\breve{Y}_{1,s}, V˘s2=p21(V2)Y˘1,s\breve{V}_{s}^{2}=p_{2}^{-1}(V^{2})\cap\breve{Y}_{1,s}, s=1,2s=1,2. Recall that p2:M˘Mp_{2}:\breve{M}\rightarrow M is the double cover of MM. We have Remark 3.1 by the construction of l1l_{1} and l2l_{2}.

Remark 3.1

L˘i,k,s2l1+r\breve{L}_{i,k,s}^{2l-1+r}’s intersect {V˘s1,V˘s2:s=1,2}\{\breve{V}_{s}^{1},\breve{V}_{s}^{2}:s=1,2\} negatively. In addition, L˘i,k,s2l1+r\breve{L}_{i,k,s}^{2l-1+r} intersects {V˘s1,V˘s2:s=1,2}\{\breve{V}_{s}^{1},\breve{V}_{s}^{2}:s=1,2\} exactly once when l=1,2,3,nl=1,2,3,n, and twice when 3<l<n3<l<n, where 1i,kp1\leqslant i,k\leqslant p, iki\neq k, r=0,2nr=0,2n.

By Remark 3.1 we can define (N(V˘sr))=˘1,sr˘2,sr\partial(N(\breve{V}_{s}^{r}))=\breve{\partial}_{1,s}^{r}\cup\breve{\partial}_{2,s}^{r} such that the tail of L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} and L˘i,k,s2l1+2n\breve{L}_{i,k,s}^{2l-1+2n} on ˘1,sr\breve{\partial}_{1,s}^{r}, r=1,2r=1,2, s=1,2s=1,2, 1i,kp1\leqslant i,k\leqslant p, iki\neq k, 1ln1\leqslant l\leqslant n.

Now we perform a Dehn twist operation DsrD_{s}^{r} which wraps these annuli mm times around the ϕ˘\breve{\phi}-fibres in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s} as we pass from ˘1,sr\breve{\partial}_{1,s}^{r} to ˘2,sr\breve{\partial}_{2,s}^{r}, r=1,2r=1,2, s=1,2s=1,2. By Remark 3.1 L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} intersects (V˘s1V˘s2)(\breve{V}_{s}^{1}\cup\breve{V}_{s}^{2}) once, U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is similar as in Figure 10-3, when l=1,2,3,nl=1,2,3,n. When 3<l<n3<l<n, L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} intersects (V˘s1V˘s2)(\breve{V}_{s}^{1}\cup\breve{V}_{s}^{2}) twice and in the same sign. U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is shown in Figure 17-1. In this case, L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} goes from T˘1,si\breve{T}_{1,s}^{i} to T˘2,si\breve{T}_{2,s}^{i}. Now U˘i,k,s0,2l1˘1,s\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} is wrapped 2m2m times around the ϕ˘\breve{\phi}-fibres in the direction opposite to the transverse orientation of ˘1,s\breve{\mathcal{F}}_{1,s} as we pass from U˘i,k,s0,2l1T˘1,si\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{T}_{1,s}^{i} to U˘i,k,s0,2l1T˘2,si\breve{U}_{i,k,s}^{0,2l-1}\cap\breve{T}_{2,s}^{i}, 1i,kp1\leqslant i,k\leqslant p, iki\neq k, 3<l<n3<l<n. We adjust ˘1,s\breve{\mathcal{F}}_{1,s}^{{}^{\prime}} by isotope, and denote the resulting surface bundle ˘′′\breve{\mathcal{F}}^{{}^{\prime\prime}} in M˘\breve{M} such that it is transverse to L˘i,k,s2l1\breve{L}_{i,k,s}^{2l-1} as shown in Figure 17-2.

Refer to caption
Figure 17: Dehn twist of ˘1,s\breve{\mathcal{F}}_{1,s}.

Now we finish the proof of Theorem 1.1 in Case (2) when KK is a knot. If KK has two components, Theorem 1.1 can be proved by combining Sec. 2.2 with the argument in this section.

References

  • [ABZ] Ian Agol, Steven Boyer, and Xingru Zhang, Virtually fibred Montesinos Links, Journal of Topology, to appear.
  • [Wa] G. Walsh, Great circle links and virtually fibred knots, Topology, 44 (2005) No. 5, 947-958.
  • [WY] S. Wang and F. Yu, Graph manifolds with non-empty boundary are covered by surface bundles, Math. Proc. Camb. Phil. Soc. 122 (1997) 447-455.