This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Visser frames for sublogics of \IL\IL

Yuya Okawa111Email: math.y.okawa@gmail.com 222Graduate School of Science and Engineering, Chiba University, Japan and Taishi Kurahashi333Email: kurahashi@people.kobe-u.ac.jp 444Graduate School of System Informatics, Kobe University, Japan
Abstract

We study the modal completeness and the finite frame property of several sublogics of the logic ๐ˆ๐‹\mathbf{IL} of interpretability with respect to Visser frames, which are also called simplified Veltman frames. Among other things, we prove that the logic ๐‚๐‹\mathbf{CL} of conservativity has the finite frame property with respect to that frames. This is an affirmative solution to Ignatievโ€™s problem.

1 Introduction

Throughout the introduction, let TT stand for consistent computably enumerable theories extending Peano Arithmetic ๐๐€\mathbf{PA}. The notion of interpretability has been investigated through the framework of modal logic. The language of interpretability logics is obtained from that of modal propositional logic by adding the binary modal operator โŠณ\rhd, where the modal formula AโŠณBA\rhd B is intended to mean โ€œT+BT+B is interpretable in T+AT+Aโ€. The logic \IL\IL of interpretability is a base logic to investigate several interpretability logics. Berarducciย [1] and Shavrukovย [9] independently proved that the extension ๐ˆ๐‹๐Œ\mathbf{ILM} of \IL\IL is arithmetically complete with respect to arithmetical interpretations based on any ฮฃ1\Sigma_{1}-sound theory TT. It is known that the notions of interpretability and ฮ 1\Pi_{1}-conservativity coincide for computably enumerable extensions of ๐๐€\mathbf{PA}, so the logic ๐ˆ๐‹๐Œ\mathbf{ILM} is also the logic of ฮ 1\Pi_{1}-conservativity (cf.ย Hรกjek and Montagnaย [3]), where the formula AโŠณBA\rhd B is read as โ€œT+BT+B is ฮ 1\Pi_{1}-conservative over T+AT+Aโ€. In this context, Ignatievย [4] further investigated the logic of ฮ“\Gamma-conservativity for ฮ“โˆˆ{ฮฃn,ฮ n:nโ‰ฅ1}\Gamma\in\{\Sigma_{n},\Pi_{n}:n\geq 1\} and introduced the logic ๐‚๐‹\mathbf{CL} of conservativity, that is a sublogic of \IL\IL, as a base logic to investigate several conservativity logics.

The logics \IL\IL and ๐‚๐‹\mathbf{CL} are complete with respect to a relational semantics, which is called Veltman semantics. We say that a triple (W,R,{Sx}xโˆˆW)(W,R,\{S_{x}\}_{x\in W}) is an \IL\IL-frame if WW is a non-empty set, RR is a transitive and conversely well-founded binary relation on WW, and for each xโˆˆWx\in W, SxS_{x} is a transitive and reflexive binary relation on Rโ€‹[x]:={yโˆˆWโˆฃxโ€‹Rโ€‹y}R[x]:=\{y\in W\mid xRy\} satisfying the condition (โ€ \dagger): (โˆ€x,y,zโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹z)(\forall x,y,z\in W)(xRy\,\&\,yRz\Rightarrow yS_{x}z). Also, a ๐‚๐‹\mathbf{CL}-frame is obtained by removing the condition (โ€ )(\dagger) from the definition of an \IL\IL-frame. Then, de Jongh and Veltmanย [2] proved that \IL\IL is sound and complete with respect to the class of all finite \IL\IL-frames. Moreover, Ignatievย [4] proved that ๐‚๐‹\mathbf{CL} is sound and complete with respect to the class of all finite ๐‚๐‹\mathbf{CL}-frames.

Visserย [11] introduced and investigated the notion of Visser frames, which are also called simplified Veltman frames. An \IL\IL-Visser frame is a triple (W,R,S)(W,R,S) where (W,R)(W,R) satisfies the same condition as in the definition of Veltman frames and SS is a transitive and reflexive binary relation on WW satisfying the condition (โ€ \daggerโ€™): RโІSR\subseteq S. A ๐‚๐‹\mathbf{CL}-Visser frame is obtained by removing the condition (โ€ \daggerโ€™) from the definition of an \IL\IL-Visser frame. Then, Visserย [11] proved that \IL\IL is sound and complete with respect to the class of all \IL\IL-Visser frames. On the other hand, unlike the case of Veltman frames, Visserย [12] proved that \IL\IL does not have finite frame property with respect to \IL\IL-Visser frames. Ignatievย [4] proved that the modal completeness theorem of ๐‚๐‹\mathbf{CL}, that is, ๐‚๐‹\mathbf{CL} is sound and complete with respect to the class of all ๐‚๐‹\mathbf{CL}-Visser frames555Ignatiev actually proved a stronger result that ๐‚๐‹\mathbf{CL} is sound and complete with respect to the class of all ๐‚๐‹\mathbf{CL}-Visser frames where SS is symmetric.. Then, he proposed the following problem.

Problem 1.1 (Ignatievย [4, p.ย 33]).

Does the logic ๐‚๐‹\mathbf{CL} have finite frame property with respect to ๐‚๐‹\mathbf{CL}-Visser frames?

By using the modal completeness of ๐‚๐‹\mathbf{CL} with respect to Visser frames, Ignatiev also proved the arithmetical completeness of ๐‚๐‹\mathbf{CL}.

Theorem 1.2 (Ignatievย [4, Theorem 2]).

๐‚๐‹\mathbf{CL} is exactly the intersection of logics of ฮ“\Gamma-conservativity for all suitable classes ฮ“\Gamma of sentences.

However, the authors at least think that there is one fault in his proof of Theorem 1.2. His proof is proceeded by embedding a counter ๐‚๐‹\mathbf{CL}-Visser model (W,R,S,โŠฉ)(W,R,S,\Vdash) obtained by his modal completeness theorem into arithmetic as in the proof of Solovayย [10], where WW is an infinite set. Then, Ignatiev stated that for each xโˆˆWx\in W, finite set XโІWX\subseteq W, and modal formula CC, the following relation is represented by a ฮ”0\Delta_{0} formula:

(โˆƒzโˆˆW)โ€‹(xโ€‹Rโ€‹zโˆง(โˆƒyโˆˆX)โ€‹(yโ€‹Sโ€‹z)โˆงzโŠฉC).(\exists{z}\in W)\bigl{(}xRz\land(\exists{y}\in X)({y}S{z})\land{z}\Vdash C\bigr{)}.

However, since WW is an infinite set, the formula โ€œโˆƒzโˆˆW\exists{z}\in Wโ€ is not a ฮ”0\Delta_{0} formula in general. In addition, the author at least think that this formula is not represented by any ฮ”0\Delta_{0} formula as long as we use his model. On the other hand, if ๐‚๐‹\mathbf{CL} has the finite frame property with respect to Visser frames, then the above formula is obviously represented by a ฮ”0\Delta_{0} formula because WW is a finite set. Therefore, if Problemย 1.1 is affirmatively solved, then Ignatievโ€™s proof of Theorem 1.2 is completely correct.

Veltman semantics was also introduced for other sublogics of \IL\IL than ๐‚๐‹\mathbf{CL}. Visserย [11] introduced \ILโˆ’\IL^{-}\!-frames (or Veltman prestructures) which are general notions of \IL\IL-frames and ๐‚๐‹\mathbf{CL}-frames. Kurahashi and Okawaย [8] introduced the sublogic \ILโˆ’\IL^{-} of \IL\IL, and proved that \ILโˆ’\IL^{-} is sound and complete with respect to the class of all finite \ILโˆ’\IL^{-}\!-frames. Inย [8], several sublogics of \IL\IL were introduced by adding several axioms to \ILโˆ’\IL^{-}, and their completeness with respect to \ILโˆ’\IL^{-}\!-frames was investigated.

In this context, we investigate finite frame property with respect to Visser frames for several sublogics of \IL\IL. Tableย 1 summarizes the results obtained in this paper on the soundness and completeness, and the finite frame property of these sublogics with respect to Visser frames. In particular, Theorem 3.2 answers Problemย 1.1 affirmatively.

Table 1: Soundness, completeness, and finite frame property with respect to Visser frames for sublogics of \IL\IL
Soundness and completeness finite frame property
\ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}) โœ“(Theoremย 3.1) โœ“(Theoremย 3.1)
\ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+}) โœ“(Theoremย 3.1) โœ“(Theoremย 3.1)
\ILโˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J4}_{+},\mathbf{J5}) โœ“(Theoremย 3.1) โœ“(Theoremย 3.1)
\ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5}) โœ“(Theoremย 3.1) โœ“(Theoremย 3.1)
\ILโˆ’โ€‹(๐‰๐Ÿ+)\IL^{-}(\mathbf{J2}_{+}) โœ“(Theoremย 3.2) โœ“(Theoremย 3.2)
๐‚๐‹\mathbf{CL} โœ“(Ignatievย [4]) โœ“(Theoremย 3.2)
\ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}) โœ“(Theoremย 3.5) ร—\times (Propositionย 3.4)
\IL\IL โœ“(Visserย [11]) ร—\times (Visserย [12])

2 Preliminaries

In this section, we introduce the logic \IL\IL, sublogics of \IL\IL, and two relational semantics: Veltman frames and Visser frames. Then, we introduce and prove several basic properties for these logics and frames.

The language of interpretability logics consists of propositional variables p,q,r,โ‹ฏp,q,r,\cdots, the logical constants โŠค\top, โŠฅ\bot, the connectives โ†’\to, โˆจ\lor, โˆง\land, and the modal operators โ–ก\Box and โŠณ\rhd. The modal formulas are given by

A::=โŠคโˆฃโŠฅโˆฃpโˆฃAโˆ˜Aโˆฃโ–กAโˆฃAโŠณAA::=\top\mid\bot\mid p\mid A\circ A\mid\Box A\mid A\rhd A

where โˆ˜โˆˆ{โ†’,โˆจ,โˆง}\circ\in\{\to,\lor,\land\}. We define โ—‡A:โ‰กยฌโ–กยฌA\Diamond A:\equiv\lnot\Box\lnot A. The binary modal operator โŠณ\rhd binds stronger than โ†’\to, and weaker than ยฌ\lnot, โˆง\land, โˆจ\lor, โ–ก\Box, and โ—‡\Diamond.

Definition 2.1.

The logic \IL\IL of interpretability is axiomatized by the following axioms and rules:

๐‹๐ŸŽ\mathbf{L0}:

Propositional tautologies;

๐‹๐Ÿ\mathbf{L1}:

โ–กโ€‹(Aโ†’B)โ†’(โ–กโ€‹Aโ†’โ–กโ€‹B)\Box(A\to B)\to(\Box A\to\Box B);

๐‹๐Ÿ\mathbf{L2}:

โ–กโ€‹(โ–กโ€‹Aโ†’A)โ†’โ–กโ€‹A\Box(\Box A\to A)\to\Box A;

๐‰๐Ÿ\mathbf{J1}:

โ–กโ€‹(Aโ†’B)โ†’AโŠณB\Box(A\to B)\to A\rhd B;

๐‰๐Ÿ\mathbf{J2}:

(AโŠณB)โˆง(BโŠณC)โ†’AโŠณC(A\rhd B)\land(B\rhd C)\to A\rhd C;

๐‰๐Ÿ‘\mathbf{J3}:

(AโŠณC)โˆง(BโŠณC)โ†’(AโˆจB)โŠณC(A\rhd C)\land(B\rhd C)\to(A\lor B)\rhd C;

๐‰๐Ÿ’\mathbf{J4}:

AโŠณBโ†’(โ—‡โ€‹Aโ†’โ—‡โ€‹B)A\rhd B\to(\Diamond A\to\Diamond B);

๐‰๐Ÿ“\mathbf{J5}:

โ—‡โ€‹AโŠณA\Diamond A\rhd A;

Modus Ponens:

AAโ†’BB\dfrac{A\quad A\to B}{B};

Necessitation:

Aโ–กโ€‹A\dfrac{A}{\Box A}.

Definition 2.2.

The logic ๐‚๐‹\mathbf{CL} of conservativity is obtained by removing ๐‰๐Ÿ“\mathbf{J5} from \IL\IL.

Definition 2.3.

The logic \ILโˆ’\IL^{-} is axiomatized by the axioms ๐‹๐ŸŽ\mathbf{L0}, ๐‹๐Ÿ\mathbf{L1}, ๐‹๐Ÿ\mathbf{L2}, ๐‰๐Ÿ‘\mathbf{J3}, and

๐‰๐Ÿ”\mathbf{J6}:

โ–กยฌAโ†”AโŠณโŠฅ\Box\lnot A\leftrightarrow A\rhd\bot,

and the rules Modus Ponens, Necessitation,

๐‘๐Ÿ\mathbf{R1}:

Aโ†’BCโŠณAโ†’CโŠณB\dfrac{A\to B}{C\rhd A\to C\rhd B}, and

๐‘๐Ÿ\mathbf{R2}:

Aโ†’BBโŠณCโ†’AโŠณC\dfrac{A\to B}{B\rhd C\to A\rhd C}.

The authors introduced in [8] the logic \ILโˆ’\IL^{-} and proved that \ILโˆ’\IL^{-} is sound and complete with respect to the class of all (finite) \ILโˆ’\IL^{-}\!-frames.

Definition 2.4.

A triple โ„ฑ=(W,R,{Sx}xโˆˆW){\mathcal{F}}=(W,R,\{S_{x}\}_{x\in W}) is said to be an \ILโˆ’\IL^{-}\!-frame if the following conditions hold:

  • โ€ข

    WW is a non-empty set;

  • โ€ข

    RR is a transitive and conversely well-founded binary relation on WW;

  • โ€ข

    For each xโˆˆWx\in W, SxโІRโ€‹[x]ร—WS_{x}\subseteq R[x]\times W, where Rโ€‹[x]:={yโˆˆWโˆฃxโ€‹Rโ€‹y}R[x]:=\{y\in W\mid xRy\}.

We say that โ„ฑ{\mathcal{F}} is finite if WW is a finite set.

Definition 2.5.

A quadruple (W,R,{Sx}xโˆˆW,โŠฉ)(W,R,\{S_{x}\}_{x\in W},\Vdash) is said to be an \ILโˆ’\IL^{-}\!-model if the following conditions hold:

  • โ€ข

    (W,R,{Sx}xโˆˆW)(W,R,\{S_{x}\}_{x\in W}) is an \ILโˆ’\IL^{-}\!-frame.

  • โ€ข

    โŠฉ\Vdash is a usual satisfaction relation between WW and the set of all modal formulas fulfilling the following clauses:

    • โ€“

      xโŠฉโ–กโ€‹Aโ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹yโ‡’yโŠฉA)x\Vdash\Box A\iff(\forall y\in W)(xRy\Rightarrow y\Vdash A);

    • โ€“

      xโŠฉAโŠณBโ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’โˆƒzโ€‹(yโ€‹Sxโ€‹z&zโŠฉB))x\Vdash A\rhd B\iff(\forall y\in W)\bigl{(}xRy\,\&\,y\Vdash A\Rightarrow\exists z(yS_{x}z\,\&\,z\Vdash B)\bigr{)}.

Let AA be any modal formula and let โ„ฑ=(W,R,{Sx}xโˆˆW){\mathcal{F}}=(W,R,\{S_{x}\}_{x\in W}) be any \ILโˆ’\IL^{-}\!-frame. We say that AA is valid in โ„ฑ{\mathcal{F}} (โ„ฑโŠงA{\mathcal{F}}\models A) if for any \ILโˆ’\IL^{-}\!-model (W,R,{Sx}xโˆˆW,โŠฉ)(W,R,\{S_{x}\}_{x\in W},\Vdash) and xโˆˆWx\in W, xโŠฉAx\Vdash A.

Here, we introduce the following axioms ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ’+\mathbf{J4}_{+} which were introduced by Kurahashi and Okawaย [8] and Visserย [11], respectively.

๐‰๐Ÿ+\mathbf{J2}_{+}:

(AโŠณ(BโˆจC))โˆงBโŠณCโ†’AโŠณC\bigl{(}A\rhd(B\lor C)\bigr{)}\land B\rhd C\to A\rhd C.

๐‰๐Ÿ’+\mathbf{J4}_{+}:

โ–กโ€‹(Aโ†’B)โ†’(CโŠณAโ†’CโŠณB)\Box(A\to B)\to(C\rhd A\to C\rhd B).

Let Lโ€‹(ฮฃ1,โ€ฆ,ฮฃn)L(\Sigma_{1},\ldots,\Sigma_{n}) denote the logic obtained by adding the axioms ฮฃ1,โ€ฆ,ฮฃn\Sigma_{1},\ldots,\Sigma_{n} to the logic LL. Then, the following facts hold (for a proof, seeย [8]).

Fact 2.6.
  1. 1.

    \ILโˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ\IL^{-}(\mathbf{J2}_{+})\vdash\mathbf{J2}.

  2. 2.

    \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)โŠข๐‰๐Ÿ+\IL^{-}(\mathbf{J1},\mathbf{J2})\vdash\mathbf{J2}_{+}.

  3. 3.

    \ILโˆ’โ€‹(๐‰๐Ÿ+)โŠข๐‰๐Ÿ’+\IL^{-}(\mathbf{J2}_{+})\vdash\mathbf{J4}_{+}.

  4. 4.

    \ILโˆ’โ€‹(๐‰๐Ÿ’+)โŠข๐‰๐Ÿ’\IL^{-}(\mathbf{J4}_{+})\vdash\mathbf{J4}.

  5. 5.

    \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’)โŠข๐‰๐Ÿ’+\IL^{-}(\mathbf{J1},\mathbf{J4})\vdash\mathbf{J4}_{+}.

  6. 6.

    The logics \IL\IL and ๐‚๐‹\mathbf{CL} are deductively equivalent to \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}) and \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\IL^{-}(\mathbf{J1},\mathbf{J2}), respectively

Fact 2.7.

Let โ„ฑ=(W,R,{Sx}xโˆˆW){\mathcal{F}}=(W,R,\{S_{x}\}_{x\in W}) be any \ILโˆ’\IL^{-}\!-frame.

  1. 1.

    โ„ฑโŠง๐‰๐Ÿ{\mathcal{F}}\models\mathbf{J1} โ‡”\iff (โˆ€x,yโˆˆW)โ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sxโ€‹y)(\forall x,y\in W)(xRy\Rightarrow yS_{x}y).

  2. 2.

    โ„ฑโŠง๐‰๐Ÿ+{\mathcal{F}}\models\mathbf{J2}_{+} โ‡”\iff โ„ฑโŠง๐‰๐Ÿ’+&(โˆ€x,y,z,vโˆˆW)โ€‹(yโ€‹Sxโ€‹z&zโ€‹Sxโ€‹vโ‡’yโ€‹Sxโ€‹v){\mathcal{F}}\models\mathbf{J4}_{+}\,\&\,(\forall x,y,z,v\in W)(yS_{x}z\,\&\,zS_{x}v\Rightarrow yS_{x}v).

  3. 3.

    โ„ฑโŠง๐‰๐Ÿ’+{\mathcal{F}}\models\mathbf{J4}_{+} โ‡”\iff (โˆ€x,y,zโˆˆW)โ€‹(yโ€‹Sxโ€‹zโ‡’xโ€‹Rโ€‹z)(\forall x,y,z\in W)(yS_{x}z\Rightarrow xRz).

  4. 4.

    โ„ฑโŠง๐‰๐Ÿ“{\mathcal{F}}\models\mathbf{J5} โ‡”\iff (โˆ€x,y,zโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sxโ€‹z)(\forall x,y,z\in W)(xRy\,\&\,yRz\Rightarrow yS_{x}z).

Fact 2.8.

Let LL be one of logics appearing in Figureย 1. Then the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in any (finite) \ILโˆ’\IL^{-}\!-frame โ„ฑ{\mathcal{F}} in which all axioms of LL are valid.

\ILโˆ’\IL^{-}\ILโˆ’โ€‹(๐‰๐Ÿ“)\IL^{-}(\mathbf{J5})\ILโˆ’โ€‹(๐‰๐Ÿ)\IL^{-}(\mathbf{J1})\ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})\ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J5})\ILโˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J4}_{+},\mathbf{J5})\ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+})\ILโˆ’โ€‹(๐‰๐Ÿ+)\IL^{-}(\mathbf{J2}_{+})\ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5})\ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})๐‚๐‹\mathbf{CL}\IL\IL
Figure 1: Sublogics of \IL\IL complete with respect to a corresponding class of \ILโˆ’\IL^{-}\!-frames

Here, the logics in Figureย 1 extend as it goes to the right along each of lines.

Remark 2.9.

From Factย 2.6, for any extension LL of \ILโˆ’โ€‹(๐‰๐Ÿ)\IL^{-}(\mathbf{J1}) closed under the rules of \ILโˆ’\IL^{-}, we always identify the axioms ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ’+\mathbf{J4}_{+} with ๐‰๐Ÿ\mathbf{J2} and ๐‰๐Ÿ’\mathbf{J4}, respectively. Also, we always identify \IL\IL and ๐‚๐‹\mathbf{CL} with \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J2},\mathbf{J5}) and \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ)\IL^{-}(\mathbf{J1},\mathbf{J2}), respectively.

In the next section, we investigate the modal completeness of several sublogics of \IL\IL in Figureย 1 with respect to Visser frames which were originally introduced by Visserย [11]. In this paper, we consider the following \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frames as the basis, which are general notion of Visserโ€™s Visser frames.

Definition 2.10.

A triple (W,R,S)(W,R,S) is said to be a \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame if the following conditions hold:

  • โ€ข

    WW is a non-empty set;

  • โ€ข

    RR is a transitive and conversely well-founded binary relation on WW;

  • โ€ข

    SS is a binary relation on WW.

Definition 2.11.

A quadruple (W,R,S,โŠฉ)(W,R,S,\Vdash) is said to be a \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model if the following conditions hold:

  • โ€ข

    (W,R,S)(W,R,S) is an \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame;

  • โ€ข

    As in Definitionย 2.5, we define a satisfaction relation โŠฉ\Vdash with the following clause:

    xโŠฉAโŠณBโ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’(โˆƒzโˆˆW)โ€‹(xโ€‹Rโ€‹z&yโ€‹Sโ€‹z&zโŠฉB)).x\Vdash A\rhd B\iff(\forall y\in W)\bigl{(}xRy\,\&\,y\Vdash A\Rightarrow(\exists z\in W)(xRz\,\&\,ySz\,\&\,z\Vdash B)\bigr{)}.

For any modal formula AA and \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame โ„ฑ{\mathcal{F}}, we define โ„ฑโŠงA{\mathcal{F}}\models A as in Definitionย 2.5.

Remark 2.12.

For an \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model (W,R,S,โŠฉ)(W,R,S,\Vdash), it may be natural to consider a satisfaction relation with the following clause:

xโŠฉAโŠณBโ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’(โˆƒzโˆˆW)โ€‹(yโ€‹Sโ€‹z&zโŠฉB)).x\Vdash A\rhd B\iff(\forall y\in W)\bigl{(}xRy\,\&\,y\Vdash A\Rightarrow(\exists z\in W)(ySz\,\&\,z\Vdash B)\bigr{)}.

However, if we adopt this definition, then the persistency axiom

๐\mathbf{P}:

AโŠณBโ†’โ–กโ€‹(AโŠณB)A\rhd B\to\Box(A\rhd B)

is valid in all Visser frames. In fact, the authors with Iwata proved in [6, Theorem 4.13] that the logic \ILโˆ’โ€‹(๐)\IL^{-}(\mathbf{P}) is sound and complete with respect to the class of all (finite) Visser frames in this definition. Therefore, in this paper, we adopt the definition in Definitionย 2.11 which was originally adopted by Visser inย [11]. On the other hand, our definition causes that ๐‰๐Ÿ’+\mathbf{J4}_{+} is valid in all \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frames (see Propositionย 2.13.2). Therefore, we focus on and investigate extensions of \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}).

Proposition 2.13.

Let โ„ฑ=(W,R,S){\mathcal{F}}=(W,R,S) be any \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame.

  1. 1.

    โ„ฑโŠง๐‰๐Ÿ‘{\mathcal{F}}\models\mathbf{J3}.

  2. 2.

    โ„ฑโŠง๐‰๐Ÿ’+{\mathcal{F}}\models\mathbf{J4}_{+}.

  3. 3.

    โ„ฑโŠง๐‰๐Ÿ”{\mathcal{F}}\models\mathbf{J6}.

  4. 4.

    โ„ฑโŠง๐‰๐Ÿ{\mathcal{F}}\models\mathbf{J1} โ‡”\iff (โˆ€x,yโˆˆW)โ€‹(xโ€‹Rโ€‹yโ‡’yโ€‹Sโ€‹y)(\forall x,y\in W)(xRy\Rightarrow ySy).

  5. 5.

    โ„ฑโŠง๐‰๐Ÿ+{\mathcal{F}}\models\mathbf{J2}_{+} โ‡”\iff (โˆ€xโˆˆW)โ€‹(โˆ€y,z,vโˆˆRโ€‹[x])โ€‹(yโ€‹Sโ€‹z&zโ€‹Sโ€‹vโ‡’yโ€‹Sโ€‹v)(\forall x\in W)(\forall y,z,v\in R[x])(ySz\,\&\,zSv\Rightarrow ySv).

  6. 6.

    โ„ฑโŠง๐‰๐Ÿ“{\mathcal{F}}\models\mathbf{J5} โ‡”\iff (โˆ€x,y,zโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโ€‹Rโ€‹zโ‡’yโ€‹Sโ€‹z)(\forall x,y,z\in W)(xRy\,\&\,yRz\Rightarrow ySz).

Proof.

1. Suppose xโŠฉ(AโŠณC)โˆง(BโŠณC)x\Vdash(A\rhd C)\land(B\rhd C). We show xโŠฉ(AโˆจB)โŠณCx\Vdash(A\lor B)\rhd C. Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAโˆจBy\Vdash A\lor B. If yโŠฉAy\Vdash A, then there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉCz\Vdash C by xโŠฉAโŠณCx\Vdash A\rhd C. If yโŠฉBy\Vdash B, then there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉCz\Vdash C by xโŠฉBโŠณCx\Vdash B\rhd C. In any case, we obtain xโŠฉ(AโˆจB)โŠณCx\Vdash(A\lor B)\rhd C.

2. Suppose xโŠฉโ–กโ€‹(Aโ†’B)โˆง(CโŠณA)x\Vdash\Box(A\to B)\land(C\rhd A). We show xโŠฉCโŠณBx\Vdash C\rhd B. Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉCy\Vdash C. Since xโŠฉCโŠณAx\Vdash C\rhd A, there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉAz\Vdash A. Since xโŠฉโ–กโ€‹(Aโ†’B)x\Vdash\Box(A\to B), we have zโŠฉBz\Vdash B. Therefore, xโŠฉCโŠณBx\Vdash C\rhd B.

3. For xโˆˆWx\in W,

xโŠฉโ–กโ€‹ยฌA\displaystyle x\Vdash\Box\lnot A โ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹yโ‡’yโŠฉยฌA)\displaystyle\iff(\forall y\in W)(xRy\Rightarrow y\Vdash\neg A)
โ‡”(โˆ€yโˆˆW)โ€‹(xโ€‹Rโ€‹y&yโŠฉAโ‡’(โˆƒzโˆˆW)โ€‹(xโ€‹Rโ€‹z&yโ€‹Sโ€‹z&zโŠฉโŠฅ))\displaystyle\iff(\forall y\in W)(xRy\ \&\ y\Vdash A\Rightarrow(\exists z\in W)(xRz\ \&\ ySz\ \&\ z\Vdash\bot))
โ‡”xโŠฉAโŠณโŠฅ.\displaystyle\iff x\Vdash A\rhd\bot.

4. (โ‡’\Rightarrow): Suppose xโ€‹Rโ€‹yxRy. Let (W,R,S,โŠฉ)(W,R,S,\Vdash) be an \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model such that aโŠฉpโ‡”a=ya\Vdash p\iff a=y and aโŠฉqโ‡”a=ya\Vdash q\iff a=y. Then, we have xโŠฉโ–กโ€‹(pโ†’q)x\Vdash\Box(p\to q). Thus, xโŠฉpโŠณqx\Vdash p\rhd q by ๐‰๐Ÿ\mathbf{J1}. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, there exists yโ€ฒโˆˆWy^{\prime}\in W such that xโ€‹Rโ€‹yโ€ฒxRy^{\prime}, yโ€‹Sโ€‹yโ€ฒySy^{\prime}, and yโ€ฒโŠฉqy^{\prime}\Vdash q. Then, yโ€ฒ=yy^{\prime}=y, and hence yโ€‹Sโ€‹yySy.

(โ‡\Leftarrow): Suppose xโŠฉโ–กโ€‹(Aโ†’B)x\Vdash\Box(A\to B). We show xโŠฉAโŠณBx\Vdash A\rhd B. Let yโˆˆWy\in W be with xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Since yโŠฉBy\Vdash B and yโ€‹Sโ€‹yySy, we obtain xโŠฉAโŠณBx\Vdash A\rhd B.

5. (โ‡’\Rightarrow): Suppose y,z,vโˆˆRโ€‹[x]y,z,v\in R[x], yโ€‹Sโ€‹zySz, and zโ€‹Sโ€‹vzSv. Let (W,R,S,โŠฉ)(W,R,S,\Vdash) be an \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model such that aโŠฉpโ‡”a=ya\Vdash p\iff a=y, aโŠฉqโ‡”a=za\Vdash q\iff a=z, and aโŠฉrโ‡”a=va\Vdash r\iff a=v. To show xโŠฉpโŠณ(qโˆจr)x\Vdash p\rhd(q\lor r), let yโ€ฒโˆˆWy^{\prime}\in W be with xโ€‹Rโ€‹yโ€ฒxRy^{\prime} and yโ€ฒโŠฉpy^{\prime}\Vdash p. Then, yโ€ฒ=yy^{\prime}=y. Since xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉqโˆจrz\Vdash q\lor r, we have xโŠฉpโŠณ(qโˆจr)x\Vdash p\rhd(q\lor r). To show xโŠฉqโŠณrx\Vdash q\rhd r, let zโ€ฒโˆˆWz^{\prime}\in W be with xโ€‹Rโ€‹zโ€ฒxRz^{\prime} and zโ€ฒโŠฉqz^{\prime}\Vdash q. Then, zโ€ฒ=zz^{\prime}=z. Since xโ€‹Rโ€‹vxRv, zโ€‹Sโ€‹vzSv, and vโŠฉrv\Vdash r, we have xโŠฉqโŠณrx\Vdash q\rhd r. Therefore, by ๐‰๐Ÿ+\mathbf{J2}_{+}, we get xโŠฉpโŠณrx\Vdash p\rhd r. Since xโ€‹Rโ€‹yxRy and yโŠฉpy\Vdash p, there exists vโ€ฒโˆˆWv^{\prime}\in W such that xโ€‹Rโ€‹vโ€ฒxRv^{\prime}, yโ€‹Sโ€‹vโ€ฒySv^{\prime}, and vโ€ฒโŠฉrv^{\prime}\Vdash r. Since vโ€ฒ=vv^{\prime}=v, we conclude yโ€‹Sโ€‹vySv.

(โ‡\Leftarrow): Suppose xโŠฉAโŠณ(BโˆจC)x\Vdash A\rhd(B\lor C) and xโŠฉBโŠณCx\Vdash B\rhd C. We show xโŠฉAโŠณCx\Vdash A\rhd C. Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉAy\Vdash A. Since xโŠฉAโŠณ(BโˆจC)x\Vdash A\rhd(B\lor C), there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉBโˆจCz\Vdash B\lor C. If zโŠฉCz\Vdash C, then we are done. Assume zโŠฉBz\Vdash B. Since xโŠฉBโŠณCx\Vdash B\rhd C and xโ€‹Rโ€‹zxRz, there exists vโˆˆWv\in W such that xโ€‹Rโ€‹vxRv, zโ€‹Sโ€‹vzSv, and vโŠฉCv\Vdash C. Since y,z,vโˆˆRโ€‹[x]y,z,v\in R[x], yโ€‹Sโ€‹zySz, and zโ€‹Sโ€‹vzSv, we obtain yโ€‹Sโ€‹vySv. Therefore, we obtain xโŠฉAโŠณCx\Vdash A\rhd C.

6. (โ‡’\Rightarrow): Suppose xโ€‹Rโ€‹yxRy and yโ€‹Rโ€‹zyRz. Let (W,R,S,โŠฉ)(W,R,S,\Vdash) be an \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model such that aโŠฉpโ‡”a=za\Vdash p\iff a=z. Then, we have yโŠฉโ—‡โ€‹py\Vdash\Diamond p. Since xโŠฉโ—‡โ€‹pโŠณpx\Vdash\Diamond p\rhd p and xโ€‹Rโ€‹yxRy, there exists zโ€ฒโˆˆWz^{\prime}\in W such that xโ€‹Rโ€‹zโ€ฒxRz^{\prime}, yโ€‹Sโ€‹zโ€ฒySz^{\prime}, and zโ€ฒโŠฉpz^{\prime}\Vdash p. Then, zโ€ฒ=zz^{\prime}=z, and hence yโ€‹Sโ€‹zySz.

(โ‡\Leftarrow): Let xโˆˆWx\in W. We show xโŠฉโ—‡โ€‹AโŠณAx\Vdash\Diamond A\rhd A. Let yโˆˆWy\in W be such that xโ€‹Rโ€‹yxRy and yโŠฉโ—‡โ€‹Ay\Vdash\Diamond A. Then, there exists zโˆˆWz\in W such that yโ€‹Rโ€‹zyRz and zโŠฉAz\Vdash A. Since xโ€‹Rโ€‹yxRy and yโ€‹Rโ€‹zyRz, we have xโ€‹Rโ€‹zxRz and yโ€‹Sโ€‹zySz. Therefore, we conclude xโŠฉโ—‡โ€‹AโŠณAx\Vdash\Diamond A\rhd A. โˆŽ

Definition 2.14.

Let LL be one of extensions of \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}) appearing in Figureย 1, and let โ„ฑ=(W,R,S)\mathcal{F}=(W,R,S) be any \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame. We say that โ„ฑ\mathcal{F} is a LL-Visser frame if the following conditions hold:

  • โ€ข

    If ๐‰๐Ÿ\mathbf{J1} is an axiom of LL, then SS is reflexive;

  • โ€ข

    If ๐‰๐Ÿ+\mathbf{J2}_{+} is an axiom of LL, then SS is transitive;

  • โ€ข

    If ๐‰๐Ÿ“\mathbf{J5} is an axiom of LL, then RโІSR\subseteq S.

Proposition 2.13 shows that each logic LL as in Definition 2.14 is sound with respect to all LL-Visser frames, that is, every LL-Visser frame validates all axioms of LL. Conversely, the modal completeness of the logics \IL\IL and ๐‚๐‹\mathbf{CL} with respect to corresponding Visser frames is already known. On the other hand, Visserย [12] proved that \IL\IL does not have finite frame property.

Fact 2.15.

Let AA be any modal formula.

  1. 1.

    (Visserย [11, pp.ย 18โ€“21]) \ILโŠขAโ‡”\IL\vdash A\iff AA is valid in all \IL\IL-Visser frames.

  2. 2.

    (Visserย [12, pp.ย 328โ€“329]) \IL\IL does not have finite frame property with respect to \IL\IL-Visser frames.

  3. 3.

    (Ignatievย [4, Theorem 5]) ๐‚๐‹โŠขAโ‡”\mathbf{CL}\vdash A\iff AA is valid in all ๐‚๐‹\mathbf{CL}-Visser frames.

Our main purpose of this paper is to prove the finite frame property for ๐‚๐‹\mathbf{CL} with respect to Visser frames (Theoremย 3.2).

3 Modal completeness and finite frame property

In this section, we study modal completeness of each extension of \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}) with respect to Visser frames. Among other things, we prove that the logic ๐‚๐‹\mathbf{CL} has finite frame property.

3.1 The finite frame property of \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J4}_{+},\mathbf{J5}), and \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5})

Here we investigate the logics \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J4}_{+},\mathbf{J5}), and \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5}).

Theorem 3.1.

Let LL be either \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+}), \ILโˆ’โ€‹(๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J4}_{+},\mathbf{J5}), or \ILโˆ’โ€‹(๐‰๐Ÿ,๐‰๐Ÿ’+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J1},\mathbf{J4}_{+},\mathbf{J5}). For any modal formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) LL-Visser frames.

Proof.

(1โ‡’21\Rightarrow 2): Let โ„ฑ\mathcal{F} be any LL-Visser frame. By the definition of โ„ฑ\mathcal{F} and Propositionย 2.13, all axioms of LL are valid in โ„ฑ\mathcal{F}. Also, the validity of formulas in โ„ฑ\mathcal{F} is preserved by every rule of \ILโˆ’\IL^{-}.

(2โ‡’12\Rightarrow 1): Suppose LโŠฌAL\nvdash A. Then, there exist an \ILโˆ’\IL^{-}\!-model (W,R,{Sx}xโˆˆW,โŠฉ)(W,R,\{S_{x}\}_{x\in W},\mathord{\Vdash}) and wโˆˆWw\in W such that wโŠฎAw\nVdash A and all axioms of LL are valid in (W,R,{Sx}xโˆˆW)(W,R,\{S_{x}\}_{x\in W}) by Factย 2.8. We define the following set Wโ€ฒW^{\prime} of sequences of elements of WW.

Wโ€ฒ:={โŸจx0,โ€ฆ,xnโŸฉโˆฃnโ‰ฅ0,x0,โ€ฆ,xnโˆˆW,andโ€‹โˆ€j<nโ€‹(xjโ€‹Rโ€‹xj+1)}.W^{\prime}:=\{\langle x_{0},\ldots,x_{n}\rangle\mid n\geq 0,\,x_{0},\ldots,x_{n}\in W,\,\text{and}\,\forall j<n\,(x_{j}Rx_{j+1})\}.

Since RR is transitive and irreflexive, the length of each sequence of Wโ€ฒW^{\prime} is less than or equal to the number of elements of WW. Therefore, Wโ€ฒW^{\prime} is a finite set.

Let ฮต\varepsilon denote the empty sequence, and let ๐ฑ,๐ฒ,๐ณ,โ€ฆ\mathbf{x},\mathbf{y},\mathbf{z},\ldots denote elements of Wโ€ฒโˆช{ฮต}W^{\prime}\cup\{\varepsilon\}.

  • โ€ข

    ๐ฑโŠ‘๐ฒ:โ‡”\mathbf{x}\sqsubseteq\mathbf{y}:\iff ๐ฑ\mathbf{x} is an initial segment of ๐ฒ\mathbf{y}.

  • โ€ข

    ๐ฑโŠ๐ฒ:โ‡”\mathbf{x}\sqsubset\mathbf{y}:\iff ๐ฑโŠ‘๐ฒ\mathbf{x}\sqsubseteq\mathbf{y} and ๐ฑโ‰ ๐ฒ\mathbf{x}\neq\mathbf{y}.

  • โ€ข

    ๐ฒโˆฉ๐ณ\mathbf{y}\cap\mathbf{z} is the longest common initial segment of ๐ฒ\mathbf{y} and ๐ณ\mathbf{z}. That is, ๐ฒโˆฉ๐ณ\mathbf{y}\cap\mathbf{z} is the maximum element of {๐ฐโˆˆWโ€ฒโˆช{ฮต}โˆฃ๐ฐโŠ‘๐ฒ&๐ฐโŠ‘๐ณ}\{\mathbf{w}\in W^{\prime}\cup\{\varepsilon\}\mid\mathbf{w}\sqsubseteq\mathbf{y}\,\&\,\mathbf{w}\sqsubseteq\mathbf{z}\} with respect to โŠ‘\sqsubseteq.

Let ๐ฑ=โŸจx0,โ€ฆ,xnโŸฉ\mathbf{x}=\langle x_{0},\ldots,x_{n}\rangle be an element of Wโ€ฒW^{\prime}.

  • โ€ข

    ๐—‰โ€‹(๐ฑ):={โŸจx0,โ€ฆ,xnโˆ’1โŸฉifโ€‹nโ‰ฅ1,ฮตifโ€‹n=0.\mathsf{p}(\mathbf{x}):=\left\{\begin{array}[]{ll}\langle x_{0},\ldots,x_{n-1}\rangle&\text{if}\ n\geq 1,\\ \varepsilon&\text{if}\ n=0.\end{array}\right.

  • โ€ข

    ๐ฑe:=xn\mathbf{x}^{e}:=x_{n}.

  • โ€ข

    For each xโˆˆWx\in W, let ๐ฑโˆ—โŸจxโŸฉ:=โŸจx0,โ€ฆ,xn,xโŸฉ\mathbf{x}*\langle x\rangle:=\langle x_{0},\ldots,x_{n},x\rangle.

Then, we define the binary relations Rโ€ฒR^{\prime} and Sโ€ฒS^{\prime} on Wโ€ฒW^{\prime} and the satisfaction relation โŠฉโ€ฒ\Vdash^{\prime} as follows:

  • โ€ข

    ๐ฑRโ€ฒ๐ฒ:โ‡”๐ฑโŠ๐ฒ\mathbf{x}R^{\prime}\mathbf{y}:\iff\mathbf{x}\sqsubset\mathbf{y};

  • โ€ข

    ๐ฒโ€‹Sโ€ฒโ€‹๐ณ:โ‡”\mathbf{y}S^{\prime}\mathbf{z}:\iff For ๐ฑ:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)โˆˆWโ€ฒโˆช{ฮต}\mathbf{x}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z})\in W^{\prime}\cup\{\varepsilon\}, either (๐ฑ=ฮต\mathbf{x}=\varepsilon and ๐ฒโŠ‘๐ณ\mathbf{y}\sqsubseteq\mathbf{z}) or (๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon and ๐ฒeโ€‹S๐ฑeโ€‹๐ณe\mathbf{y}^{e}S_{\mathbf{x}^{e}}\mathbf{z}^{e}).

  • โ€ข

    ๐ฑโŠฉโ€ฒp:โ‡”๐ฑeโŠฉp\mathbf{x}\Vdash^{\prime}p:\iff\mathbf{x}^{e}\Vdash p.

Since Rโ€ฒR^{\prime} is obviously transitive and irreflexive, โ„ฑ=(Wโ€ฒ,Rโ€ฒ,Sโ€ฒ)\mathcal{F}=(W^{\prime},R^{\prime},S^{\prime}) is a finite \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame. We show that โ„ฑ\mathcal{F} is a finite LL-Visser frame.

  • โ€ข

    The case that ๐‰๐Ÿ\mathbf{J1} is an axiom of LL: we show that Sโ€ฒS^{\prime} is reflexive. For any ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime}, let ๐ฑ:=๐—‰โ€‹(๐ฒ)=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ฒ)\mathbf{x}:=\mathsf{p}(\mathbf{y})=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{y}). If ๐ฑ=ฮต\mathbf{x}=\varepsilon, then we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ฒ\mathbf{y}S^{\prime}\mathbf{y} since ๐ฒโŠ‘๐ฒ\mathbf{y}\sqsubseteq\mathbf{y}. If ๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon, then ๐ฑeโ€‹Rโ€‹๐ฒe{\mathbf{x}}^{e}R\mathbf{y}^{e}. We have ๐ฒeโ€‹S๐ฑeโ€‹๐ฒe\mathbf{y}^{e}S_{{\mathbf{x}}^{e}}\mathbf{y}^{e} by Factย 2.7.1. Therefore, we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ฒ\mathbf{y}S^{\prime}\mathbf{y}.

  • โ€ข

    The case that ๐‰๐Ÿ“\mathbf{J5} is an axiom of LL: we show that Rโ€ฒโІSโ€ฒR^{\prime}\subseteq S^{\prime}. Suppose ๐ฒโ€‹Rโ€ฒโ€‹๐ณ\mathbf{y}R^{\prime}\mathbf{z}. Let ๐ฑ:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)\mathbf{x}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z}). Since ๐—‰โ€‹(๐ฒ)โŠ๐—‰โ€‹(๐ณ)\mathsf{p}(\mathbf{y})\sqsubset\mathsf{p}(\mathbf{z}), we have ๐ฑ=๐—‰โ€‹(๐ฒ)\mathbf{x}=\mathsf{p}(\mathbf{y}). If ๐ฑ=ฮต\mathbf{x}=\varepsilon, then we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} because ๐ฒโŠ‘๐ณ\mathbf{y}\sqsubseteq\mathbf{z}. If ๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon, then we have ๐ฑeโ€‹Rโ€‹๐ฒe{\mathbf{x}}^{e}R\mathbf{y}^{e} and ๐ฒeโ€‹Rโ€‹๐ณe\mathbf{y}^{e}R\mathbf{z}^{e}. By Factย 2.7.4, we get ๐ฒeโ€‹S๐ฑeโ€‹๐ณe\mathbf{y}^{e}S_{{\mathbf{x}}^{e}}\mathbf{z}^{e}. Therefore, we conclude ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}.

Following claim is a key of the proof.

Claim.

For any modal formula DD and ๐ฑโˆˆWโ€ฒ\mathbf{x}\in W^{\prime},

๐ฑโŠฉโ€ฒDโ‡”๐ฑeโŠฉD.\mathbf{x}\Vdash^{\prime}D\iff\mathbf{x}^{e}\Vdash D.
Proof.

We prove the claim by induction on the construction of DD. We only prove the case Dโ‰กBโŠณCD\equiv B\rhd C.

(โ‡’\Rightarrow): Assume ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. We show ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. Let yโˆˆWy\in W be such that ๐ฑeโ€‹Rโ€‹y\mathbf{x}^{e}Ry and yโŠฉBy\Vdash B. Let ๐ฒ:=๐ฑโˆ—โŸจyโŸฉ\mathbf{y}:=\mathbf{x}*\langle y\rangle. Then, we have ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime} and ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}. Since y=๐ฒey=\mathbf{y}^{e}, by the induction hypothesis, ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B. By our assumption, there exists ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} such that ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}, ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}, and ๐ณโŠฉโ€ฒC\mathbf{z}\Vdash^{\prime}C. Then, we get ๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)=๐ฑโ‰ ฮต\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z})=\mathbf{x}\neq\varepsilon because ๐ฑ=๐—‰โ€‹(๐ฒ)\mathbf{x}=\mathsf{p}(\mathbf{y}) and ๐ฑโŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{z}). Then, ๐ฒeโ€‹S๐ฑeโ€‹๐ณe\mathbf{y}^{e}S_{\mathbf{x}^{e}}\mathbf{z}^{e} follows from ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} by the definition of Sโ€ฒS^{\prime}. By the induction hypothesis, we have ๐ณeโŠฉC\mathbf{z}^{e}\Vdash C, and hence we obtain ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C.

(โ‡\Leftarrow): Assume ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. We show ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. Let ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime} be such that ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} and ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B. Then, we have ๐ฑeโ€‹Rโ€‹๐ฒe\mathbf{x}^{e}R\mathbf{y}^{e} and ๐ฒeโŠฉB\mathbf{y}^{e}\Vdash B by the induction hypothesis. By our assumption, there exists zโˆˆWz\in W such that ๐ฒeโ€‹S๐ฑeโ€‹z\mathbf{y}^{e}S_{\mathbf{x}^{e}}z and zโŠฉCz\Vdash C. Let ๐ณ:=๐ฑโˆ—โŸจzโŸฉ\mathbf{z}:=\mathbf{x}*\langle z\rangle. By Factย 2.7.3, ๐ฑeโ€‹Rโ€‹z\mathbf{x}^{e}Rz, and hence we have ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} and ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}. Then, ๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)=๐ฑโ‰ ฮต\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z})=\mathbf{x}\neq\varepsilon because ๐ฑ=๐—‰โ€‹(๐ณ)\mathbf{x}=\mathsf{p}(\mathbf{z}) and ๐ฑโŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{y}). Therefore, we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}. Since ๐ณโŠฉC\mathbf{z}\Vdash C by the induction hypothesis, we conclude ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. โˆŽ

Since wโŠฎAw\nVdash A, we obtain โŸจwโŸฉโŠฎโ€ฒA\langle w\rangle\nVdash^{\prime}A by the claim. Thus, AA is not valid in โ„ฑ\mathcal{F}. โˆŽ

3.2 The finite frame property of \ILโˆ’โ€‹(๐‰๐Ÿ+)\IL^{-}(\mathbf{J2}_{+}) and ๐‚๐‹\mathbf{CL}

In this subsection, we show that the logics \ILโˆ’โ€‹(๐‰๐Ÿ+)\IL^{-}(\mathbf{J2}_{+}) and ๐‚๐‹\mathbf{CL} have finite frame property with respect to Visser frames. This answers Problemย 1.1 affirmatively. We achieved this by constructing a finite Visser frame similar to the one we constructed in the proof of Theorem 3.1, unlike the method of proof due to Ignatiev. However, we need to modify the construction of a frame given in the proof of Theorem 3.1 because the transitivity of Sโ€ฒS^{\prime} is not guaranteed as it is.

Theorem 3.2.

Let LL be either \ILโˆ’โ€‹(๐‰๐Ÿ+)\IL^{-}(\mathbf{J2}_{+}) or ๐‚๐‹\mathbf{CL}. For any modal formula AA, the following are equivalent:

  1. 1.

    LโŠขAL\vdash A.

  2. 2.

    AA is valid in all (finite) LL-Visser frames.

Proof.

We only prove the implication (2โ‡’12\Rightarrow 1). Suppose LโŠฌAL\nvdash A. By Factย 2.8, there exist a finite \ILโˆ’\IL^{-}\!-model (W,R,{Sx}xโˆˆW,โŠฉ)(W,R,\{S_{x}\}_{x\in W},\Vdash) and wโˆˆWw\in W such that wโŠฎAw\nVdash A and all axioms of LL are valid in the frame (W,R,{Sx}xโˆˆW)(W,R,\{S_{x}\}_{x\in W}). Then, we define Wโ€ฒW^{\prime}, Rโ€ฒR^{\prime}, and โŠฉโ€ฒ\Vdash^{\prime} as in the proof of Theoremย 3.1. For ๐ฑ,๐ฒโˆˆWโ€ฒโˆช{ฮต}\mathbf{x},\mathbf{y}\in W^{\prime}\cup\{\varepsilon\} with ๐ฑโŠ‘๐ฒ\mathbf{x}\sqsubseteq\mathbf{y}, let ๐ฒโˆ’๐ฑ\mathbf{y}-\mathbf{x} be the set of all elements of WW which appears in ๐ฒ\mathbf{y} but not in ๐ฑ\mathbf{x}. We define the binary relation Sโ€ฒS^{\prime} on Wโ€ฒW^{\prime} as follows:

  • โ€ข

    ๐ฒโ€‹Sโ€ฒโ€‹๐ณ:โ‡”\mathbf{y}S^{\prime}\mathbf{z}:\iff For ๐ฑ:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)\mathbf{x}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z}), either (๐ฑ=ฮต(\mathbf{x}=\varepsilon and ๐ฒ=๐ณ)\mathbf{y}=\mathbf{z}) or the following three conditions hold:

    1. 1.

      ๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon;

    2. 2.

      ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}); (โ€ \dagger)

    3. 3.

      there exist lโ‰ฅ0l\geq 0, v0,โ€ฆ,vlโˆˆ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)v_{0},\ldots,v_{l}\in\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}), and a0,โ€ฆ,al+1โˆˆWa_{0},\ldots,a_{l+1}\in W such that a0=๐ฒea_{0}=\mathbf{y}^{e}, al+1=๐ณea_{l+1}=\mathbf{z}^{e}, and aiโ€‹Sviโ€‹ai+1a_{i}S_{v_{i}}a_{i+1} for all iโ‰คli\leq l. (โ€ก\ddagger)

Then, โ„ฑ=(Wโ€ฒ,Rโ€ฒ,Sโ€ฒ)\mathcal{F}=(W^{\prime},R^{\prime},S^{\prime}) is a finite \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser frame. We show that LL is a finite LL-Visser frame.

  • โ€ข

    In the case of L=๐‚๐‹L=\mathbf{CL}, we show that Sโ€ฒS^{\prime} is reflexive. Let ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime} and let ๐ฑ:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ฒ)=๐—‰โ€‹(๐ฒ)\mathbf{x}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{y})=\mathsf{p}(\mathbf{y}). If ๐ฑ=ฮต\mathbf{x}=\varepsilon, we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ฒ\mathbf{y}S^{\prime}\mathbf{y} because ๐ฒ=๐ฒ\mathbf{y}=\mathbf{y}. If ๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon, then ๐ฑeโˆˆ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)\mathbf{x}^{e}\in\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}). Since ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}) and ๐ฒeโ€‹S๐ฑeโ€‹๐ฒe\mathbf{y}^{e}S_{{\mathbf{x}}^{e}}\mathbf{y}^{e} by Factย 2.7.1, we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ฒ\mathbf{y}S^{\prime}\mathbf{y}.

  • โ€ข

    We show that Sโ€ฒS^{\prime} is transitive. Suppose ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} and ๐ณโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{z}S^{\prime}\mathbf{v}, and let

    • โ€“

      ๐ฑ1:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)\mathbf{x}_{1}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z}),

    • โ€“

      ๐ฑ2:=๐—‰โ€‹(๐ณ)โˆฉ๐—‰โ€‹(๐ฏ)\mathbf{x}_{2}:=\mathsf{p}(\mathbf{z})\cap\mathsf{p}(\mathbf{v}),

    • โ€“

      ๐ฑ:=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ฏ)\mathbf{x}:=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{v}).

    If ๐ฑ1=ฮต\mathbf{x}_{1}=\varepsilon or ๐ฑ2=ฮต\mathbf{x}_{2}=\varepsilon, then ๐ฒ=๐ณ\mathbf{y}=\mathbf{z} or ๐ณ=๐ฏ\mathbf{z}=\mathbf{v}, and hence we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{y}S^{\prime}\mathbf{v}. So, we may assume ๐ฑ1โ‰ ฮต\mathbf{x}_{1}\neq\varepsilon and ๐ฑ2โ‰ ฮต\mathbf{x}_{2}\neq\varepsilon. Since ๐ฑ1\mathbf{x}_{1} and ๐ฑ2\mathbf{x}_{2} are initial segments of ๐—‰โ€‹(๐ณ)\mathsf{p}(\mathbf{z}), there are three possibilities: ๐ฑ1โŠ๐ฑ2\mathbf{x}_{1}\sqsubset\mathbf{x}_{2}, ๐ฑ2โŠ๐ฑ1\mathbf{x}_{2}\sqsubset\mathbf{x}_{1}, and ๐ฑ1=๐ฑ2\mathbf{x}_{1}=\mathbf{x}_{2}. In either case, we have that ๐ฑโ€ฒ:=๐ฑ1โˆฉ๐ฑ2\mathbf{x}^{\prime}:=\mathbf{x}_{1}\cap\mathbf{x}_{2} equals to ๐ฑ1\mathbf{x}_{1} or ๐ฑ2\mathbf{x}_{2}, and hence ๐ฑโ€ฒโ‰ ฮต\mathbf{x}^{\prime}\neq\varepsilon. Since ๐ฑโ€ฒ\mathbf{x}^{\prime} is an initial segment of ๐—‰โ€‹(๐ฒ)\mathsf{p}(\mathbf{y}) and ๐—‰โ€‹(๐ฏ)\mathsf{p}(\mathbf{v}), we have ๐ฑโ€ฒโŠ‘๐ฑ\mathbf{x}^{\prime}\sqsubseteq\mathbf{x} by the maximality of ๐ฑ\mathbf{x}. Thus, we get ๐ฑโ‰ ฮต\mathbf{x}\neq\varepsilon. To show ๐ฒโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{y}S^{\prime}\mathbf{v}, we need to prove that ๐ฑ\mathbf{x} satisfies (โ€ \dagger) and (โ€ก\ddagger). We distinguish the following three cases.

    Case 1:

    ๐ฑ1โŠ๐ฑ2\mathbf{x}_{1}\sqsubset\mathbf{x}_{2}.

    At first, we show ๐ฑ=๐ฑ1\mathbf{x}=\mathbf{x}_{1}. Since ๐ฑ1โŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}_{1}\sqsubseteq\mathsf{p}(\mathbf{y}) and ๐ฑ1โŠ๐ฑ2โŠ‘๐—‰โ€‹(๐ฏ)\mathbf{x}_{1}\sqsubset\mathbf{x}_{2}\sqsubseteq\mathsf{p}(\mathbf{v}), we have ๐ฑ1โŠ‘๐ฑ\mathbf{x}_{1}\sqsubseteq\mathbf{x} by the maximality of ๐ฑ\mathbf{x}. On the other hand, since both ๐ฑ\mathbf{x} and ๐ฑ2\mathbf{x}_{2} are initial segments of ๐—‰โ€‹(๐ฏ)\mathsf{p}(\mathbf{v}), we have ๐ฑโŠ‘๐ฑ2\mathbf{x}\sqsubseteq\mathbf{x}_{2} or ๐ฑ2โŠ‘๐ฑ\mathbf{x}_{2}\sqsubseteq\mathbf{x}. If ๐ฑ2โŠ‘๐ฑ\mathbf{x}_{2}\sqsubseteq\mathbf{x}, then we would have ๐ฑ2โŠ‘๐ฑโŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}_{2}\sqsubseteq\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{y}). Since ๐ฑ2โŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}_{2}\sqsubseteq\mathsf{p}(\mathbf{z}), we would get ๐ฑ2โŠ‘๐ฑ1\mathbf{x}_{2}\sqsubseteq\mathbf{x}_{1} by the maximality of ๐ฑ1\mathbf{x}_{1}, a contradiction. Therefore, we obtain ๐ฑโŠ‘๐ฑ2\mathbf{x}\sqsubseteq\mathbf{x}_{2}. Since ๐ฑโŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{y}) and ๐ฑโŠ‘๐ฑ2โŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}\sqsubseteq\mathbf{x}_{2}\sqsubseteq\mathsf{p}(\mathbf{z}), we have ๐ฑโŠ‘๐ฑ1\mathbf{x}\sqsubseteq\mathbf{x}_{1} by the maximality of ๐ฑ1\mathbf{x}_{1} again. We have proved ๐ฑ=๐ฑ1\mathbf{x}=\mathbf{x}_{1}. To conclude ๐ฒโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{y}S^{\prime}\mathbf{v}, we verify the conditions (โ€ \dagger) and (โ€ก\ddagger) as follows:

    (โ€ \dagger): We obtain the inclusion ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}) as follows:

    ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)\displaystyle\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}) =๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)\displaystyle=\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}) (๐ฑ=๐ฑ1\mathbf{x}=\mathbf{x}_{1})
    โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ1)\displaystyle\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{1}) (๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z})
    =(๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2))โˆช(๐—‰โ€‹(๐ฑ2)โˆ’๐—‰โ€‹(๐ฑ1))\displaystyle=(\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}))\cup(\mathsf{p}(\mathbf{x}_{2})-\mathsf{p}(\mathbf{x}_{1})) (๐ฑ1โŠ๐ฑ2โŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}_{1}\sqsubset\mathbf{x}_{2}\sqsubseteq\mathsf{p}(\mathbf{z}))
    โЇ(๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ2))โˆช(๐—‰โ€‹(๐ฑ2)โˆ’๐—‰โ€‹(๐ฑ1))\displaystyle\supseteq(\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{2}))\cup(\mathsf{p}(\mathbf{x}_{2})-\mathsf{p}(\mathbf{x}_{1})) (๐ณโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{z}S^{\prime}\mathbf{v})
    =๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ1)\displaystyle=\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{1}) (๐ฑ1โŠ๐ฑ2โŠ‘๐—‰โ€‹(๐ฏ)\mathbf{x}_{1}\sqsubset\mathbf{x}_{2}\sqsubseteq\mathsf{p}(\mathbf{v}))
    =๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ).\displaystyle=\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}). (๐ฑ=๐ฑ1\mathbf{x}=\mathbf{x}_{1})

    (โ€ก\ddagger): Since ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} and ๐ณโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{z}S^{\prime}\mathbf{v},

    • โ€“

      there exist w0,โ€ฆ,wlโˆˆ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)w_{0},\ldots,w_{l}\in\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}) and a0,โ€ฆ,al+1โˆˆWa_{0},\ldots,a_{l+1}\in W such that a0=๐ฒea_{0}=\mathbf{y}^{e}, al+1=๐ณea_{l+1}=\mathbf{z}^{e} and aiโ€‹Swiโ€‹ai+1a_{i}S_{w_{i}}a_{i+1} for all iโ‰คli\leq l, and

    • โ€“

      there exist w0โ€ฒ,โ€ฆ,wlโ€ฒโ€ฒโˆˆ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)w^{\prime}_{0},\ldots,w^{\prime}_{l^{\prime}}\in\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}) and b0,โ€ฆ,blโ€ฒ+1โˆˆWb_{0},\ldots,b_{l^{\prime}+1}\in W such that b0=๐ณeb_{0}=\mathbf{z}^{e}, blโ€ฒ+1=๐ฏeb_{l^{\prime}+1}=\mathbf{v}^{e} and biโ€‹Swiโ€ฒโ€‹bi+1b_{i}S_{w_{i}^{\prime}}b_{i+1} for all iโ‰คlโ€ฒi\leq l^{\prime}.

    We have ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ1)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{1})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}). So, w0โ€ฒ,โ€ฆ,wlโ€ฒโ€ฒw^{\prime}_{0},\ldots,w^{\prime}_{l^{\prime}} are also in ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}). Then, w0,โ€ฆ,wl,w0โ€ฒ,โ€ฆ,wlโ€ฒโ€ฒโˆˆ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)w_{0},\ldots,w_{l},w^{\prime}_{0},\ldots,w^{\prime}_{l^{\prime}}\in\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}) and ๐ฒe=a0,โ€ฆ,al+1=b0,b1,โ€ฆ,blโ€ฒ+1=๐ฏe\mathbf{y}^{e}=a_{0},\ldots,a_{l+1}=b_{0},b_{1},\ldots,b_{l^{\prime}+1}=\mathbf{v}^{e} match the condition (โ€ก\ddagger).

    Case 2:

    ๐ฑ2โŠ๐ฑ1\mathbf{x}_{2}\sqsubset\mathbf{x}_{1}.

    As in Case 1, it is shown that ๐ฑ=๐ฑ2\mathbf{x}=\mathbf{x}_{2}.

    (โ€ \dagger): The inclusion ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}) is obtained as follows:

    ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)\displaystyle\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}) =๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ2)\displaystyle=\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{2}) (๐ฑ=๐ฑ2\mathbf{x}=\mathbf{x}_{2})
    =(๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1))โˆช(๐—‰โ€‹(๐ฑ1)โˆ’๐—‰โ€‹(๐ฑ2))\displaystyle=(\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}))\cup(\mathsf{p}(\mathbf{x}_{1})-\mathsf{p}(\mathbf{x}_{2})) (๐ฑ2โŠ๐ฑ1โŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}_{2}\sqsubset\mathbf{x}_{1}\sqsubseteq\mathsf{p}(\mathbf{y}))
    โЇ(๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ1))โˆช(๐—‰โ€‹(๐ฑ1)โˆ’๐—‰โ€‹(๐ฑ2))\displaystyle\supseteq(\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{1}))\cup(\mathsf{p}(\mathbf{x}_{1})-\mathsf{p}(\mathbf{x}_{2})) (๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z})
    =๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)\displaystyle=\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}) (๐ฑ2โŠ๐ฑ1โŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}_{2}\sqsubset\mathbf{x}_{1}\sqsubseteq\mathsf{p}(\mathbf{z}))
    โЇ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ2)\displaystyle\supseteq\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{2}) (๐ณโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{z}S^{\prime}\mathbf{v})
    =๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ).\displaystyle=\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}). (๐ฑ=๐ฑ2\mathbf{x}=\mathbf{x}_{2})

    (โ€ก\ddagger): The inclusions ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}) and ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}) also hold in this case. These inclusions together with ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} and ๐ณโ€‹Sโ€ฒโ€‹๐ฏ\mathbf{z}S^{\prime}\mathbf{v} guarantee the condition (โ€ก\ddagger).

    Case 3:

    ๐ฑ1=๐ฑ2\mathbf{x}_{1}=\mathbf{x}_{2}.

    We prove ๐ฑ1=๐ฑ2=๐ฑ\mathbf{x}_{1}=\mathbf{x}_{2}=\mathbf{x}. We already showed that ๐ฑ1โˆฉ๐ฑ2โŠ‘๐ฑ\mathbf{x}_{1}\cap\mathbf{x}_{2}\sqsubseteq\mathbf{x}, and hence ๐ฑ1=๐ฑ2โŠ‘๐ฑ\mathbf{x}_{1}=\mathbf{x}_{2}\sqsubseteq\mathbf{x}. Suppose, towards a contradiction, that ๐ฑ2โŠ๐ฑ\mathbf{x}_{2}\sqsubset\mathbf{x}. Then, there exists aโˆˆWa\in W such that ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐ฑ\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathbf{x}. Since ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐ฑโŠ‘๐—‰โ€‹(๐ฏ)\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{v}), we have aโˆˆ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ2)a\in\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{2}). Then,

    aโˆˆ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)a\in\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}) (1)

    because ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ2)โІ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{2})\subseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}). Let bโˆˆWb\in W be any element such that ๐ฑ2eโ€‹Rโ€‹bโ€‹Rโ€‹a\mathbf{x}_{2}^{e}RbRa. Since ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐ฑโŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{y}), we have bโˆ‰๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ2)b\notin\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{2}). Then, we obtain bโˆ‰๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)b\notin\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}) because ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ1)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{1}) and ๐ฑ1=๐ฑ2\mathbf{x}_{1}=\mathbf{x}_{2}. By combining this with (1), we get ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathsf{p}(\mathbf{z}). Since ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐—‰โ€‹(๐ฏ)\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathsf{p}(\mathbf{v}), we have ๐ฑ2โˆ—โŸจaโŸฉโŠ‘๐ฑ2\mathbf{x}_{2}\ast\langle a\rangle\sqsubseteq\mathbf{x}_{2} by the maximality of ๐ฑ2\mathbf{x}_{2}, a contradiction. So, we have proved that ๐ฑ2=๐ฑ\mathbf{x}_{2}=\mathbf{x}.

    (โ€ \dagger): We obtain ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}) because

    ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ1)=๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)โЇ๐—‰โ€‹(๐ฏ)โˆ’๐—‰โ€‹(๐ฑ2).\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{1})=\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2})\supseteq\mathsf{p}(\mathbf{v})-\mathsf{p}(\mathbf{x}_{2}).

    (โ€ก\ddagger): This follows from ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)=๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ1)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})=\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}_{1}) and ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ2)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}_{2}).

    We have proved that Sโ€ฒS^{\prime} is transitive.

Finally, We prove the following claim.

Claim.

For any modal formula DD and ๐ฑโˆˆWโ€ฒ\mathbf{x}\in W^{\prime},

๐ฑโŠฉโ€ฒDโ‡”๐ฑeโŠฉD.\mathbf{x}\Vdash^{\prime}D\iff\mathbf{x}^{e}\Vdash D.
Proof.

We prove the claim by induction on the construction of DD. We only prove the case Dโ‰กBโŠณCD\equiv B\rhd C.

(โ‡’\Rightarrow): Assume ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. We show ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. Suppose ๐ฑeโ€‹Rโ€‹y\mathbf{x}^{e}Ry and yโŠฉBy\Vdash B. Let ๐ฒ:=๐ฑโˆ—โŸจyโŸฉ\mathbf{y}:=\mathbf{x}*\langle y\rangle, then obviously ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime} and ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}. By the induction hypothesis, ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B. By our assumption, there exists ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} such that ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}, ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}, and ๐ณโŠฉโ€ฒC\mathbf{z}\Vdash^{\prime}C. Since ๐—‰โ€‹(๐ฒ)=๐ฑ\mathsf{p}(\mathbf{y})=\mathbf{x} and ๐ฑโŠ‘๐—‰โ€‹(๐ณ)\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{z}), we have ๐ฑ=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)\mathbf{x}=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z}). Also, since ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)={๐ฑe}\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})=\{\mathbf{x}^{e}\}, it follows from ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z} that

(โˆƒa0,โ€ฆ,al+1โˆˆW)โ€‹(a0=๐ฒe&al+1=๐ณe&(โˆ€iโ‰คl)โ€‹(aiโ€‹S๐ฑeโ€‹ai+1)).(\exists a_{0},\ldots,a_{l+1}\in W)\bigl{(}a_{0}=\mathbf{y}^{e}\,\&\,a_{l+1}=\mathbf{z}^{e}\,\&\,(\forall i\leq l)(a_{i}S_{\mathbf{x}^{e}}a_{i+1})\bigr{)}.

By Propositionย 2.7.2, S๐ฑeS_{\mathbf{x}^{e}} is transitive, and hence ๐ฒeโ€‹S๐ฑeโ€‹๐ณe\mathbf{y}^{e}S_{\mathbf{x}^{e}}\mathbf{z}^{e}. By the induction hypothesis, ๐ณeโŠฉC\mathbf{z}^{e}\Vdash C, and therefore ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C.

(โ‡\Leftarrow): Assume ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. We show ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. Suppose ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} and ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B. Then, ๐ฑeโ€‹Rโ€‹๐ฒe\mathbf{x}^{e}R\mathbf{y}^{e} and ๐ฒeโŠฉB\mathbf{y}^{e}\Vdash B by the induction hypothesis. By our assumption, there exists zโˆˆWz\in W such that ๐ฒeโ€‹S๐ฑeโ€‹z\mathbf{y}^{e}S_{\mathbf{x}^{e}}z and zโŠฉCz\Vdash C. Let ๐ณ:=๐ฑโˆ—โŸจzโŸฉ\mathbf{z}:=\mathbf{x}*\langle z\rangle. By Propositionsย 2.7.3, we have ๐ฑeโ€‹Rโ€‹z\mathbf{x}^{e}Rz. Thus, ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} and ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}. Since ๐—‰โ€‹(๐ณ)=๐ฑ\mathsf{p}(\mathbf{z})=\mathbf{x} and ๐ฑโŠ‘๐—‰โ€‹(๐ฒ)\mathbf{x}\sqsubseteq\mathsf{p}(\mathbf{y}), we have ๐ฑ=๐—‰โ€‹(๐ฒ)โˆฉ๐—‰โ€‹(๐ณ)\mathbf{x}=\mathsf{p}(\mathbf{y})\cap\mathsf{p}(\mathbf{z}). Then, ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ)={๐ฑe}\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x})=\{\mathbf{x}^{e}\}, and hence ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)โЇ๐—‰โ€‹(๐ณ)โˆ’๐—‰โ€‹(๐ฑ)\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x})\supseteq\mathsf{p}(\mathbf{z})-\mathsf{p}(\mathbf{x}). Also, we have ๐ฑeโˆˆ๐—‰โ€‹(๐ฒ)โˆ’๐—‰โ€‹(๐ฑ)\mathbf{x}^{e}\in\mathsf{p}(\mathbf{y})-\mathsf{p}(\mathbf{x}) and ๐ฒeโ€‹S๐ฑeโ€‹๐ณe\mathbf{y}^{e}S_{\mathbf{x}^{e}}\mathbf{z}^{e}. Therefore, we obtain ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}. By the induction hypothesis, ๐ณโŠฉโ€ฒC\mathbf{z}\Vdash^{\prime}C, and therefore we conclude ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. โˆŽ

By the claim, we conclude โŸจwโŸฉโŠฎโ€ฒA\langle w\rangle\nVdash^{\prime}A. โˆŽ

3.3 The modal completeness of \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})

In this subsection, we investigate the logic \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}). The logic \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}) is complete with respect to the class of all \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frames, however, it does not have the finite frame property.

At first, we show that \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}) lacks the finite frame property. For this, we prepare the so-called generated submodel lemma. Let M=(W,R,S,โŠฉ)M=(W,R,S,\Vdash) be any \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model. For each rโˆˆWr\in W, let Mโˆ—=(Wโˆ—,Rโˆ—,Sโˆ—,โŠฉโˆ—)M^{\ast}=(W^{*},R^{*},S^{*},\Vdash^{*}) be the \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model simply obtained from MM by restricting WW to Rโ€‹[r]โˆช{r}R[r]\cup\{r\}. We call the model Mโˆ—M^{\ast} the submodel of MM generated by rr.

Lemma 3.3 (The Generated Submodel Lemma).

Let M=(W,R,S,โŠฉ)M=(W,R,S,\Vdash) be any \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+})-Visser model, rโˆˆWr\in W, and Mโˆ—=(Wโˆ—,Rโˆ—,Sโˆ—,โŠฉโˆ—)M^{*}=(W^{*},R^{*},S^{*},\Vdash^{*}) be the generated submodel of MM by rr. Then, for any xโˆˆWโˆ—x\in W^{*} and any modal formula AA,

xโŠฉAโ‡”xโŠฉโˆ—A.x\Vdash A\iff x\Vdash^{*}A.
Proof.

This lemme is proved by induction on the construction of AA. In particular, the assumption โ€˜xโŠฉBโŠณCx\Vdash B\rhd C and xโ€‹Rโ€‹yxRyโ€™ implies the existence of zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€‹zySz, and zโŠฉCz\Vdash C. Since xโˆˆRโ€‹[r]โˆช{r}x\in R[r]\cup\{r\}, we have zโˆˆRโ€‹[r]โІWโˆ—z\in R[r]\subseteq W^{*}. This observation shows the equivalence of the lemma in the case of Aโ‰กBโŠณCA\equiv B\rhd C. โˆŽ

In [7, Proposition 10], the authors with Iwata proved that for any modal formula AA, \ILโŠขA\IL\vdash A if and only if

\ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)โŠขโ‹€{(CโŠณC)โˆงโ–กโ€‹(CโŠณC)โˆฃCโˆˆSubโ€‹(A)}โ†’A,\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})\vdash\bigwedge\{(C\rhd C)\land\Box(C\rhd C)\mid C\in\mathrm{Sub}(A)\}\to A,

where Subโ€‹(A)\mathrm{Sub}(A) is the set of all subformulas of AA. By using this equivalence, we then proved that the Craig interpolation property of \IL\IL follows from that of \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}). We prove the following proposition based on the same idea.

Proposition 3.4.

The logic \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}) does not have finite frame property with respect to \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frames.

Proof.

Suppose that \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}) has the finite frame property with respect to \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frames. Then, we show that \IL\IL also has the finite frame property with respect to \IL\IL-Visser frames. This contradicts Factย 2.15.2.

Suppose \ILโŠฌA\IL\nvdash A. It suffices to show that there exists a finite \IL\IL-Visser frame in which AA is not valid. Since \IL\IL proves CโŠณCC\rhd C for any modal formula CC, we have

\ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)โŠฌโ‹€{(CโŠณC)โˆงโ–กโ€‹(CโŠณC)โˆฃCโˆˆSubโ€‹(A)}โ†’A.\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})\nvdash\bigwedge\{(C\rhd C)\land\Box(C\rhd C)\mid C\in\mathrm{Sub}(A)\}\to A.

By our supposition, there exist a finite \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frame โ„ฑ=(W,R,S)\mathcal{F}=(W,R,S) and wโˆˆWw\in W such that wโŠฉโ‹€{(CโŠณC)โˆงโ–กโ€‹(CโŠณC)โˆฃCโˆˆSubโ€‹(A)}w\Vdash\bigwedge\{(C\rhd C)\land\Box(C\rhd C)\mid C\in\mathrm{Sub}(A)\} and wโŠฎAw\nVdash A. By the generated submodel lemma, we may assume that ww is the root of WW, that is, W=Rโ€‹[w]โˆช{w}W=R[w]\cup\{w\}. Hence, for any xโˆˆWx\in W and any CโˆˆSubโ€‹(A)C\in\mathrm{Sub}(A), we have xโŠฉCโŠณCx\Vdash C\rhd C. We define the binary relation Sโ€ฒS^{\prime} and the satisfaction relation โŠฉโ€ฒ\Vdash^{\prime} as follows:

  • โ€ข

    ySโ€ฒz:โ‡”ySzyS^{\prime}z:\iff ySz or y=zy=z.

  • โ€ข

    xโŠฉโ€ฒp:โ‡”xโŠฉpx\Vdash^{\prime}p:\iff x\Vdash p.

Obviously, โ„ฑโ€ฒ=(W,R,Sโ€ฒ)\mathcal{F}^{\prime}=(W,R,S^{\prime}) is a finite \IL\IL-Visser frame. We then prove the following claim.

Claim.

For any modal formula DโˆˆSubโ€‹(A)D\in\mathrm{Sub}(A) and xโˆˆWx\in W,

xโŠฉโ€ฒDโ‡”xโŠฉD.x\Vdash^{\prime}D\iff x\Vdash D.
Proof.

We prove the claim by induction on the construction of DD. We only prove the case Dโ‰กBโŠณCD\equiv B\rhd C.

(โ‡’\Rightarrow): Assume xโŠฉโ€ฒBโŠณCx\Vdash^{\prime}B\rhd C and we show xโŠฉBโŠณCx\Vdash B\rhd C. Suppose xโ€‹Rโ€‹yxRy and yโŠฉBy\Vdash B. By the induction hypothesis, yโŠฉโ€ฒBy\Vdash^{\prime}B, and hence there exists zโˆˆWz\in W such that xโ€‹Rโ€‹zxRz, yโ€‹Sโ€ฒโ€‹zyS^{\prime}z, and zโŠฉโ€ฒCz\Vdash^{\prime}C. By the induction hypothesis, zโŠฉCz\Vdash C. If yโ€‹Sโ€‹zySz, then we are done. If y=zy=z, then yโŠฉCy\Vdash C, and so xโŠฉCโŠณCx\Vdash C\rhd C implies that there exists zโ€ฒโˆˆWz^{\prime}\in W such that xโ€‹Rโ€‹zโ€ฒxRz^{\prime}, yโ€‹Sโ€‹zโ€ฒySz^{\prime}, and zโ€ฒโŠฉCz^{\prime}\Vdash C. In either case, we obtain xโŠฉBโŠณCx\Vdash B\rhd C.

(โ‡\Leftarrow): This is obviously proved. โˆŽ

Since wโŠฎAw\nVdash A, we obtain wโŠฎโ€ฒAw\nVdash^{\prime}A by the claim. Therefore, we conclude AA is not valid in โ„ฑ\mathcal{F}. โˆŽ

Next, we prove the modal completeness \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5}). Our proof is based on Ignatievโ€™s construction of models presented inย [4].

Theorem 3.5.

For any modal formula AA, the following are equivalent:

  1. 1.

    \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)โŠขA\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})\vdash A.

  2. 2.

    AA is valid in all \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frames.

Proof.

We only prove the implication (2โ‡’1)(2\Rightarrow 1). Suppose \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)โŠฌA\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})\nvdash A. By Factย 2.8, there exist a finite \ILโˆ’\IL^{-}\!-model (W,R,{Sx}xโˆˆW,โŠฉ)(W,R,\{S_{x}\}_{x\in W},\Vdash) and wโˆˆWw\in W such that wโŠฎAw\nVdash A and both ๐‰๐Ÿ+\mathbf{J2}_{+} and ๐‰๐Ÿ“\mathbf{J5} are valid in the frame (W,R,{Sx}xโˆˆW)(W,R,\{S_{x}\}_{x\in W}). We may assume 0โˆ‰W0\notin W. For each finite sequence ฮ“\Gamma of elements of Wโˆช{0}W\cup\{0\}, let |ฮ“||\Gamma| denote the length of ฮ“\Gamma. We define the set Wโ€ฒW^{\prime} as follows:

Wโ€ฒ:={(ฮ“,ฮ”)โˆฃ\displaystyle W^{\prime}:=\{(\Gamma,\Delta)\mid 1)\displaystyle 1) ฮ“โ€‹is a finite sequence of elements ofโ€‹Wโ€‹andโ€‹ฮ“โ‰ ฮต,\displaystyle\Gamma\,\text{is a finite sequence of elements of}\ W\,\text{and}\,\Gamma\neq\varepsilon,
2)\displaystyle 2) ฮ”โ€‹is a finite sequence of elements ofโ€‹Wโˆช{0}โ€‹and\displaystyle\Delta\,\text{is a finite sequence of elements of}\,W\cup\{0\}\,\text{and}
ฮ”=ฮตโ€‹is allowed,\displaystyle\Delta=\varepsilon\,\text{is allowed,}
3)\displaystyle 3) |ฮ”|+1=|ฮ“|,\displaystyle|\Delta|+1=|\Gamma|,
4)\displaystyle 4) forโ€‹ฮ“=โŸจx0,โ€ฆ,xnโŸฉโ€‹andโ€‹ฮ”=โŸจv0,โ€ฆ,vnโˆ’1โŸฉ,\displaystyle\text{for}\,\Gamma=\langle x_{0},\ldots,x_{n}\rangle\,\text{and}\,\Delta=\langle v_{0},\ldots,v_{n-1}\rangle,
(โˆ€i<n)[(vi=0โ‡’xiRxi+1)โˆง(viโ‰ 0โ‡’xiSvixi+1)]}.\displaystyle(\forall i<n)[(v_{i}=0\Rightarrow x_{i}Rx_{i+1})\land(v_{i}\neq 0\Rightarrow x_{i}S_{v_{i}}x_{i+1})]\}.

In the following, ๐ฑ,๐ฒ,๐ณ,โ€ฆ\mathbf{x},\mathbf{y},\mathbf{z},\ldots denote elements of Wโ€ฒW^{\prime}. Here, we prepare several notation. In this paragraph, let ๐ฑ\mathbf{x} and ๐ฒ\mathbf{y} be (โŸจx0,โ€ฆ,xnโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1โŸฉ)(\langle x_{0},\ldots,x_{n}\rangle,\langle v_{0},\ldots,v_{n-1}\rangle) and (โŸจy0,โ€ฆ,ymโŸฉ,โŸจw1,โ€ฆ,wmโˆ’1โŸฉ)(\langle y_{0},\ldots,y_{m}\rangle,\langle w_{1},\ldots,w_{m-1}\rangle), respectively.

  • โ€ข

    ๐ฑโŠ๐ฒ:โ‡”\mathbf{x}\sqsubset\mathbf{y}:\iff the first and the second components of ๐ฑ\mathbf{x} are proper initial segments of those of ๐ฒ\mathbf{y}, respectively. In other words, n<mn<m, (โˆ€iโ‰คn)โ€‹(xi=yi)(\forall i\leq n)(x_{i}=y_{i}), and (โˆ€j<n)โ€‹(vj=wj)(\forall j<n)(v_{j}=w_{j}).

  • โ€ข

    ๐ฑโŠ‘๐ฒ:โ‡”๐ฑโŠ๐ฒ\mathbf{x}\sqsubseteq\mathbf{y}:\iff\mathbf{x}\sqsubset\mathbf{y} or ๐ฑ=๐ฒ\mathbf{x}=\mathbf{y}.

  • โ€ข

    k๐ฑ:=minโก{jโˆฃโˆ€iโ€‹(jโ‰คi<nโ‡’viโˆ’1โ‰ 0)}k_{\mathbf{x}}:=\min\{j\mid\forall i\,(j\leq i<n\Rightarrow v_{i-1}\neq 0)\}.

  • โ€ข

    Kโ€‹(๐ฑ):=(โŸจx0,โ€ฆ,xk๐ฑโŸฉ,โŸจv0,โ€ฆ,vk๐ฑโˆ’1โŸฉ)K(\mathbf{x}):=(\langle x_{0},\ldots,x_{k_{\mathbf{x}}}\rangle,\langle v_{0},\ldots,v_{k_{\mathbf{x}}-1}\rangle).

  • โ€ข

    |๐ฑ|:=nโˆ’1|\mathbf{x}|:=n-1.

  • โ€ข

    ๐ฑe:=xn\mathbf{x}^{e}:=x_{n}.

It follows from the definitions that for any ๐ฑโˆˆWโ€ฒ\mathbf{x}\in W^{\prime}, we have k๐ฑโ‰ค|๐ฑ|k_{\mathbf{x}}\leq|\mathbf{x}|, Kโ€‹(๐ฑ)โŠ‘๐ฑK(\mathbf{x})\sqsubseteq\mathbf{x}, and Kโ€‹(๐ฑ)โˆˆWโ€ฒK(\mathbf{x})\in W^{\prime}. Also, ๐ฑโŠ‘๐ฒ\mathbf{x}\sqsubseteq\mathbf{y} implies k๐ฑโ‰คk๐ฒk_{\mathbf{x}}\leq k_{\mathbf{y}}, and hence Kโ€‹(๐ฑ)โŠ‘Kโ€‹(๐ฒ)K(\mathbf{x})\sqsubseteq K(\mathbf{y}). We define the binary relations Rโ€ฒR^{\prime} and Sโ€ฒS^{\prime} on Wโ€ฒW^{\prime} and the satisfaction relation โŠฉโ€ฒ\Vdash^{\prime} as follows:

  • โ€ข

    ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ:โ‡”\mathbf{x}R^{\prime}\mathbf{y}:\iff ๐ฑโŠ๐ฒ\mathbf{x}\sqsubset\mathbf{y} and

    โˆ€iโ€‹(nโ‰คi<m&viโ‰ 0โ‡’โˆƒuโ€‹(nโ‰คuโ‰คi&vi=xu)).\forall i\,\bigl{(}n\leq i<m\,\&\,v_{i}\neq 0\Rightarrow\exists u\,(n\leq u\leq i\,\&\,v_{i}=x_{u})\bigr{)}. (2)
  • โ€ข

    ๐ฒSโ€ฒ๐ณ:โ‡”K(๐ฒ)โŠ‘K(๐ณ)\mathbf{y}S^{\prime}\mathbf{z}:\iff K(\mathbf{y})\sqsubseteq K(\mathbf{z}) and |๐ฒ|<|๐ณ||\mathbf{y}|<|\mathbf{z}|.

  • โ€ข

    ๐ฑโŠฉโ€ฒp:โ‡”๐ฑeโŠฉp\mathbf{x}\Vdash^{\prime}p:\iff\mathbf{x}^{e}\Vdash p.

We show that โ„ฑ:=(Wโ€ฒ,Rโ€ฒ,Sโ€ฒ)\mathcal{F}:=(W^{\prime},R^{\prime},S^{\prime}) is an \ILโˆ’โ€‹(๐‰๐Ÿ+,๐‰๐Ÿ“)\IL^{-}(\mathbf{J2}_{+},\mathbf{J5})-Visser frame. Since Sโ€ฒS^{\prime} is obviously transitive and satisfies Rโ€ฒโІSโ€ฒR^{\prime}\subseteq S^{\prime}, it suffices to prove that Rโ€ฒR^{\prime} is transitive and conversely well-founded.

Firstly, we show that Rโ€ฒR^{\prime} is transitive. Suppose ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} and ๐ฒโ€‹Rโ€ฒโ€‹๐ณ\mathbf{y}R^{\prime}\mathbf{z}. We show ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}. Let

  • โ€ข

    ๐ฑ=(โŸจx0,โ€ฆ,xnโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1โŸฉ)\mathbf{x}=(\langle x_{0},\ldots,x_{n}\rangle,\langle v_{0},\ldots,v_{n-1}\rangle),

  • โ€ข

    ๐ฒ=(โŸจx0,โ€ฆ,xmโŸฉ,โŸจv0,โ€ฆ,vmโˆ’1โŸฉ)\mathbf{y}=(\langle x_{0},\ldots,x_{m}\rangle,\langle v_{0},\ldots,v_{m-1}\rangle),

  • โ€ข

    ๐ณ=(โŸจx0,โ€ฆ,xlโŸฉ,โŸจv0,โ€ฆ,vlโˆ’1โŸฉ)\mathbf{z}=(\langle x_{0},\ldots,x_{l}\rangle,\langle v_{0},\ldots,v_{l-1}\rangle), where n<m<ln<m<l.

Let ii be such that nโ‰คi<ln\leq i<l and viโ‰ 0v_{i}\neq 0.

  • โ€ข

    If nโ‰คi<mn\leq i<m, then by (2) of ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}, there exists uu such that nโ‰คuโ‰คin\leq u\leq i and vi=xuv_{i}=x_{u}.

  • โ€ข

    If mโ‰คi<lm\leq i<l, then by (2) of ๐ฒโ€‹Rโ€ฒโ€‹๐ณ\mathbf{y}R^{\prime}\mathbf{z}, there exists uu such that mโ‰คuโ‰คim\leq u\leq i and vi=xuv_{i}=x_{u}.

Hence, (2) of ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z} is verified. Thus, we conclude that ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z} holds.

Secondly, we show that Rโ€ฒR^{\prime} is conversely well-founded. We prove the following claim.

Claim.

For ๐ฑ,๐ฒโˆˆWโ€ฒ\mathbf{x},\mathbf{y}\in W^{\prime}, suppose ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}, ๐ฑ=(โŸจx0,โ€ฆ,xnโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1โŸฉ)\mathbf{x}=(\langle x_{0},\ldots,x_{n}\rangle,\langle v_{0},\ldots,v_{n-1}\rangle), and ๐ฒ=(โŸจx0,โ€ฆ,xmโŸฉ,โŸจv0,โ€ฆ,vmโˆ’1โŸฉ)\mathbf{y}=(\langle x_{0},\ldots,x_{m}\rangle,\langle v_{0},\ldots,v_{m-1}\rangle), where n<mn<m. Then, for any ii with n+1โ‰คiโ‰คmn+1\leq i\leq m, we have xnโ€‹Rโ€‹xix_{n}Rx_{i}.

Proof.

We prove the claim by induction on ii. Let ii be such that n+1โ‰คiโ‰คmn+1\leq i\leq m and suppose that the statement holds for all jj with n+1โ‰คj<in+1\leq j<i. We distinguish the following two cases.

  • Case 1:

    viโˆ’1=0v_{i-1}=0. Then, xiโˆ’1โ€‹Rโ€‹xix_{i-1}Rx_{i}. If iโˆ’1=ni-1=n, then we are done. If iโˆ’1โ‰ฅn+1i-1\geq n+1, then by the induction hypothesis, xnโ€‹Rโ€‹xiโˆ’1x_{n}Rx_{i-1}, and so we obtain xnโ€‹Rโ€‹xix_{n}Rx_{i}.

  • Case 2:

    viโˆ’1โ‰ 0v_{i-1}\neq 0. Then, xiโˆ’1โ€‹Sviโˆ’1โ€‹xix_{i-1}S_{v_{i-1}}x_{i}. Since nโ‰คiโˆ’1<mn\leq i-1<m, by (2), there exists uu such that nโ‰คuโ‰คiโˆ’1n\leq u\leq i-1 and viโˆ’1=xuv_{i-1}=x_{u}. So, xiโˆ’1โ€‹Sxuโ€‹xix_{i-1}S_{x_{u}}x_{i}, and hence we have xuโ€‹Rโ€‹xix_{u}Rx_{i} by Factย 2.7.2. If u=nu=n, then we are done. If uโ‰ nu\neq n, then n+1โ‰คu<in+1\leq u<i, and so by the induction hypothesis, xnโ€‹Rโ€‹xux_{n}Rx_{u}. Thus, we conclude xnโ€‹Rโ€‹xix_{n}Rx_{i}. โˆŽ

If ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}, then by the claim, we have ๐ฑeโ€‹Rโ€‹๐ฒe\mathbf{x}^{e}R\mathbf{y}^{e}. So, the converse well-foundedness of Rโ€ฒR^{\prime} follows from that of RR.

Similar to the above claim, the following claim on the family {Sx}xโˆˆW\{S_{x}\}_{x\in W} holds.

Claim.

For ๐ฑ,๐ฒโˆˆWโ€ฒ\mathbf{x},\mathbf{y}\in W^{\prime}, suppose ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y}, ๐ฑ=(โŸจx0,โ€ฆ,xnโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1โŸฉ)\mathbf{x}=(\langle x_{0},\ldots,x_{n}\rangle,\langle v_{0},\ldots,v_{n-1}\rangle), and ๐ฒ=(โŸจx0,โ€ฆ,xmโŸฉ,โŸจv0,โ€ฆ,vmโˆ’1โŸฉ)\mathbf{y}=(\langle x_{0},\ldots,x_{m}\rangle,\langle v_{0},\ldots,v_{m-1}\rangle), where n<mn<m. Then, for any ii with n+2โ‰คiโ‰คmn+2\leq i\leq m, we have xn+1โ€‹Sxnโ€‹xix_{n+1}S_{x_{n}}x_{i}.

Proof.

We prove the claim by induction on ii. Let ii be such that n+2โ‰คiโ‰คmn+2\leq i\leq m and suppose that the statement holds for all jj with n+2โ‰คj<in+2\leq j<i. We distinguish the following two cases.

  • Case 1:

    viโˆ’1=0v_{i-1}=0. Then, xiโˆ’1โ€‹Rโ€‹xix_{i-1}Rx_{i}. Since n+1โ‰คiโˆ’1โ‰คmn+1\leq i-1\leq m, by the claim above, we have xnโ€‹Rโ€‹xiโˆ’1x_{n}Rx_{i-1}. We then obtain xiโˆ’1โ€‹Sxnโ€‹xix_{i-1}S_{x_{n}}x_{i} by Factย 2.7.4. If iโˆ’1=n+1i-1=n+1, then we are done. If iโˆ’1โ‰ฅn+2i-1\geq n+2, then by the induction hypothesis, we get xn+1โ€‹Sxnโ€‹xiโˆ’1x_{n+1}S_{x_{n}}x_{i-1}. Then, we obtain xn+1โ€‹Sxnโ€‹xix_{n+1}S_{x_{n}}x_{i} by Factย 2.7.2.

  • Case 2:

    viโˆ’1โ‰ 0v_{i-1}\neq 0. Then, xiโˆ’1โ€‹Sviโˆ’1โ€‹xix_{i-1}S_{v_{i-1}}x_{i}. Since nโ‰คiโˆ’1<mn\leq i-1<m, by (2), there exists a natural number uu such that nโ‰คuโ‰คiโˆ’1n\leq u\leq i-1 and viโˆ’1=xuv_{i-1}=x_{u}, and hence xiโˆ’1โ€‹Sxuโ€‹xix_{i-1}S_{x_{u}}x_{i}. If u=nu=n, we then obtain xn+1โ€‹Sxnโ€‹xix_{n+1}S_{x_{n}}x_{i} as in Case 1. If uโ‰ฅn+1u\geq n+1, then we have xnโ€‹Rโ€‹xux_{n}Rx_{u} by the claim above. Since xuโ€‹Rโ€‹xix_{u}Rx_{i} follows from xiโˆ’1โ€‹Sxuโ€‹xix_{i-1}S_{x_{u}}x_{i} by Factย 2.7.3, we obtain xuโ€‹Sxnโ€‹xix_{u}S_{x_{n}}x_{i} by Factย 2.7.4. If u=n+1u=n+1, then we are done. If uโ‰ฅn+2u\geq n+2, then by the induction hypothesis, we have xn+1โ€‹Sxnโ€‹xux_{n+1}S_{x_{n}}x_{u}. Then, we conclude xn+1โ€‹Sxnโ€‹xix_{n+1}S_{x_{n}}x_{i} by Factย 2.7.2. โˆŽ

Finally, we prove the following claim.

Claim.

For any modal formula DD and ๐ฑโˆˆWโ€ฒ\mathbf{x}\in W^{\prime},

๐ฑโŠฉโ€ฒDโ‡”๐ฑeโŠฉD.\mathbf{x}\Vdash^{\prime}D\iff\mathbf{x}^{e}\Vdash D.
Proof.

Let ๐ฑ=(โŸจx0,โ€ฆ,xnโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1โŸฉ)\mathbf{x}=(\langle x_{0},\ldots,x_{n}\rangle,\langle v_{0},\ldots,v_{n-1}\rangle). We prove the claim by induction on the construction of DD. We only prove the case Dโ‰กBโŠณCD\equiv B\rhd C.

(โ‡’\Rightarrow): Assume ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. We show ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. Suppose ๐ฑeโ€‹Rโ€‹y\mathbf{x}^{e}Ry and yโŠฉBy\Vdash B. Let ๐ฒ:=(โŸจx0,โ€ฆ,xn,yโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1,0โŸฉ)\mathbf{y}:=(\langle x_{0},\ldots,x_{n},y\rangle,\langle v_{0},\ldots,v_{n-1},0\rangle). Then, we have ๐ฒโˆˆWโ€ฒ\mathbf{y}\in W^{\prime} and ๐ฑโŠ๐ฒ\mathbf{x}\sqsubset\mathbf{y}. Also, since the condition (2) of ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} trivially meets, we have that ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} holds. By the induction hypothesis, we have ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B, and so there exists ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} such that ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}, ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}, and ๐ณโŠฉโ€ฒC\mathbf{z}\Vdash^{\prime}C. Since ๐ฑโŠ๐ณ\mathbf{x}\sqsubset\mathbf{z}, we have that ๐ณ\mathbf{z} is of the form

(โŸจx0,โ€ฆ,xn,xn+1,โ€ฆ,xmโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1,vn,โ€ฆ,vmโˆ’1โŸฉ)(\langle x_{0},\ldots,x_{n},x_{n+1},\ldots,x_{m}\rangle,\langle v_{0},\ldots,v_{n-1},v_{n},\ldots,v_{m-1}\rangle)

for some m>nm>n. By the definition of ๐ฒ\mathbf{y}, we have k๐ฒ=nk_{\mathbf{y}}=n, and so ๐ฒ=Kโ€‹(๐ฒ)\mathbf{y}=K(\mathbf{y}). Also, by the definition of Sโ€ฒS^{\prime} we have Kโ€‹(๐ฒ)โŠ‘Kโ€‹(๐ณ)K(\mathbf{y})\sqsubseteq K(\mathbf{z}). Thus ๐ฒโŠ‘Kโ€‹(๐ณ)\mathbf{y}\sqsubseteq K(\mathbf{z}). This means that xn+1=yx_{n+1}=y. Moreover, since |๐ฒ|<|๐ณ||\mathbf{y}|<|\mathbf{z}|, we have mโ‰ฅn+2m\geq n+2. By the second claim, we obtain xn+1โ€‹Sxnโ€‹xmx_{n+1}S_{x_{n}}x_{m}, that is, yโ€‹S๐ฑeโ€‹๐ณeyS_{\mathbf{x}^{e}}\mathbf{z}^{e}. By the induction hypothesis, ๐ณeโŠฉC\mathbf{z}^{e}\Vdash C, and hence ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C.

(โ‡\Leftarrow): Assume ๐ฑeโŠฉBโŠณC\mathbf{x}^{e}\Vdash B\rhd C. We show ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. Suppose ๐ฑโ€‹Rโ€ฒโ€‹๐ฒ\mathbf{x}R^{\prime}\mathbf{y} and ๐ฒโŠฉโ€ฒB\mathbf{y}\Vdash^{\prime}B. Then, ๐ฒ\mathbf{y} is of the form (โŸจx0,โ€ฆ,xn,xn+1,โ€ฆ,xmโŸฉ,โŸจv0,โ€ฆ,vnโˆ’1,vn,โ€ฆ,vmโˆ’1โŸฉ)(\langle x_{0},\ldots,x_{n},x_{n+1},\ldots,x_{m}\rangle,\langle v_{0},\ldots,v_{n-1},v_{n},\ldots,v_{m-1}\rangle) for some m>nm>n. By the first claim, we have xnโ€‹Rโ€‹xmx_{n}Rx_{m}, that is, ๐ฑeโ€‹Rโ€‹๐ฒe\mathbf{x}^{e}R\mathbf{y}^{e}. Since ๐ฒeโŠฉB\mathbf{y}^{e}\Vdash B by the induction hypothesis, there exists zโˆˆWz\in W such that ๐ฒeโ€‹S๐ฑeโ€‹z\mathbf{y}^{e}S_{\mathbf{x}^{e}}z and zโŠฉCz\Vdash C. Let ๐ณ:=(โŸจx0,โ€ฆ,xm,zโŸฉ,โŸจv0,โ€ฆ,vmโˆ’1,๐ฑeโŸฉ)\mathbf{z}:=(\langle x_{0},\ldots,x_{m},z\rangle,\langle v_{0},\ldots,v_{m-1},\mathbf{x}^{e}\rangle). Obviously, we have ๐ณโˆˆWโ€ฒ\mathbf{z}\in W^{\prime} and ๐ฑโ€‹Rโ€ฒโ€‹๐ณ\mathbf{x}R^{\prime}\mathbf{z}. Then, |๐ฒ|<|๐ณ||\mathbf{y}|<|\mathbf{z}|. Also, since k๐ฒ=k๐ณk_{\mathbf{y}}=k_{\mathbf{z}}, we have Kโ€‹(๐ฒ)=Kโ€‹(๐ณ)K(\mathbf{y})=K(\mathbf{z}). Thus, ๐ฒโ€‹Sโ€ฒโ€‹๐ณ\mathbf{y}S^{\prime}\mathbf{z}. By the induction hypothesis, ๐ณโŠฉโ€ฒC\mathbf{z}\Vdash^{\prime}C, and hence ๐ฑโŠฉโ€ฒBโŠณC\mathbf{x}\Vdash^{\prime}B\rhd C. โˆŽ

By the claim, we conclude (โŸจwโŸฉ,ฮต)โŠฎโ€ฒA(\langle w\rangle,\varepsilon)\nVdash^{\prime}A. โˆŽ

4 Concluding remarks

In this paper, we investigated the modal completeness and the finite frame property of several extensions of \ILโˆ’โ€‹(๐‰๐Ÿ’+)\IL^{-}(\mathbf{J4}_{+}) with respect to Visser frames. Among other things, we proved that ๐‚๐‹\mathbf{CL} has the finite frame property with respect to ๐‚๐‹\mathbf{CL}-Visser frames (Theoremย 3.2). Then, Ignatievโ€™s proof of the arithmetical completeness of ๐‚๐‹\mathbf{CL} (Theorem 1.2) is now verified.

Moreover, our result is applicable to the completeness of these logics with respect to topological semantics. Inย [5], a topological semantics of extensions of ๐‚๐‹\mathbf{CL} was introduced. Also, it is proved that ๐‚๐‹\mathbf{CL} is sound and complete with respect to that topological semantics by translating every ๐‚๐‹\mathbf{CL}-Visser frame into a bitopological space. Since Ignatievโ€™s counter ๐‚๐‹\mathbf{CL}-Visser model is infinite, it is asked in [5, Problem 6.3] whether ๐‚๐‹\mathbf{CL} has the finite frame property with respect to topological semantics or not. Theoremย 3.2 of the present paper also answers this problem affirmatively.

Corollary 4.1.

The logic ๐‚๐‹\mathbf{CL} has the finite frame property with respect to Iwata and Kurahashiโ€™s topological semantics.

Acknowledgement

The first author was supported by Foundation of Research Fellows, The Mathematical Society of Japan. The second author was supported by JSPS KAKENHI Grant Numbers JP19K14586 and JP23K03200.

References

  • [1] Alessandro Berarducci. The interpretability logic of Peano arithmetic. The Journal of Symbolic Logic, 55(3):1059โ€“1089, 1990.
  • [2] Dick deย Jongh and Frank Veltman. Provability logics for relative interpretability. In Mathematical logic, pages 31โ€“42, New York, 1990. Plenum Press.
  • [3] Petr Hรกjek and Franco Montagna. The logic of ฮ 1\Pi_{1}-conservativity. Archive for Mathematical Logic, 30(2):113โ€“123, 1990.
  • [4] Konstantinย N. Ignatiev. Partial conservativity and modal logics. ITLI Publication Series X-91-04, 1991.
  • [5] Sohei Iwata and Taishi Kurahashi. Topological semantics of conservativity and interpretability logics. Journal of Logic and Computation, 31(7):1716โ€“1739, 2021.
  • [6] Sohei Iwata, Taishi Kurahashi, and Yuya Okawa. The persistence principle over weak interpretability logic. Mathematical Logic Quarterly. accepted.
  • [7] Sohei Iwata, Taishi Kurahashi, and Yuya Okawa. The fixed point and the Craig interpolation properties for sublogics of ๐ˆ๐‹\mathbf{IL}. Archive for Mathematical Logic, 63(1-2):1โ€“37, 2024.
  • [8] Taishi Kurahashi and Yuya Okawa. Modal completeness of sublogics of the interpretability logic ๐ˆ๐‹\mathbf{IL}. Mathematical Logic Quarterly, 67(2):164โ€“185, 2021.
  • [9] V.ย Yu. Shavrukov. The logic of relative interpretability over Peano arithmetic (in Russian). Technical Reportย 5, Stekhlov Mathematical Institute, Moscow, 1988.
  • [10] Robertย M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3-4):287โ€“304, 1976.
  • [11] Albert Visser. Preliminary notes on interpretability logic. Technical Reportย 29, Department of Philosophy, Utrecht University, 1988.
  • [12] Albert Visser. An overview of interpretability logic. In Advances in modal logic, volumeย 1, pages 307โ€“359, 1997.