This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

W1,pW^{1,p} estimates for Schrödinger equation in the region above a convex graph

Ziyi Xu
Abstract

We investigate the W1,pW^{1,p} estimates of the Neumann problem for the Schrödinger equation Δu+Vu=div(f)-\Delta u+Vu={\rm div}(f) in the region above a convex graph. For any p>2p>2, we obtain a sufficient condition for the W1,pW^{1,p} solvability. As a result, we obtain sharp W1,pW^{1,p} estimate

uLp(Ω)+V12uLp(Ω)CfLp(Ω)\|\nabla u\|_{L^{p}(\Omega)}+\|V^{\frac{1}{2}}u\|_{L^{p}(\Omega)}\leq C\|f\|_{L^{p}(\Omega)}

for 1<p<1<p<\infty with d2d\geq 2 under the assumption that VV is a BB_{\infty} weight.

1 Introduction

The purpose of this paper is to establish W1,pW^{1,p} solvability for Schrödinger operator in the region above a convex graph. Precisely, let

Ω={(x,t):xd1,t and t>ϕ(x)}d,\Omega=\{(x^{\prime},t):x^{\prime}\in\mathbb{R}^{d-1},t\in\mathbb{R}\text{ and }t>\phi(x^{\prime})\}\subset\mathbb{R}^{d},

where ϕ:d1\phi:\mathbb{R}^{d-1}\to\mathbb{R} is a convex function with ϕL(d1)M\|\nabla\phi\|_{L^{\infty}(\mathbb{R}^{d-1})}\leq M. For fLp(Ω,d)f\in L^{p}(\Omega,\mathbb{R}^{d}) and gB1p,p(Ω)g\in B^{-\frac{1}{p},p}(\partial\Omega), we consider the Schrödinger equation

{Δu+Vu=divfin Ω,un=fn+gon Ω,uW1,p(Ω)\displaystyle\begin{cases}-\Delta u+Vu={\rm div}\,f\quad\ \,\text{in }\Omega,\\[2.84544pt] \displaystyle\frac{\partial u}{\partial n}=-f\cdot n+g\quad\text{on }\partial\Omega,\\[5.69046pt] u\in W^{1,p}(\Omega)\end{cases} (1.1)

Following the tradition and physical significance, VV is referred to be the electric potential. Throughout this paper, we assume that 0<VB0<V\in B_{\infty}, i.e., VLloc(d)V\in L_{loc}^{\infty}(\mathbb{R}^{d}), and there exists a constant C>0C>0 such that, for all ball BdB\subset\mathbb{R}^{d}

VL(B)CBV𝑑x.\|V\|_{L^{\infty}(B)}\leq C\fint_{B}V\,dx. (1.2)

Examples of BB_{\infty} weights are |x|a|x|^{a} with 0a<0\leq a<\infty.

To state the main result of the paper, let nn denote the outward unit normal to Ω\partial\Omega and Bα,p(Ω)B^{\alpha,p}(\partial\Omega) with 0<α<10<\alpha<1 and 1<p<1<p<\infty denote the Besov spaces on Ω\partial\Omega.

Theorem 1.1.

Let Ω\Omega be the region above a convex graph. Suppose V(x)>0V(x)>0 a.e. satisfies (1.2). Then given fLp(Ω,d)f\in L^{p}(\Omega,\mathbb{R}^{d}) and gB1p,p(Ω)g\in B^{-\frac{1}{p},p}(\partial\Omega) with

1<p<,1<p<\infty,

the Neumann problem (1.1) is uniquely solvable. Moreover, the solution satisfies

uLp(Ω)+V12uLp(Ω)C{fLp(Ω)+gB1p,p(Ω)},\|\nabla u\|_{L^{p}(\Omega)}+\|V^{\frac{1}{2}}u\|_{L^{p}(\Omega)}\leq C\left\{\|f\|_{L^{p}(\Omega)}+\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\right\}, (1.3)

where CC depending only on d,pd,p and the Lipschitz character of Ω\Omega.

Remark 1.2.

The range of pp is sharp even for the Laplacian.

The W1,pW^{1,p} estimates for inhomogeneous equation Δu=F\Delta u=F in bounded non-smooth domains have been studied extensively. Indeed, it has been known since the 1990s that the Dirichlet problem and the Neumann problem is W1,pW^{1,p} solvable in bounded Lipschitz domains for 32ε<p<3+ε\frac{3}{2}-\varepsilon<p<3+\varepsilon when d3d\geq 3 where ε>0\varepsilon>0 depends on Ω\Omega. For a general second order elliptic equation with coefficients belonging to VMOVMO, W1,pW^{1,p} estimates are reduced to the weak reverse Hölder estimates for local solutions and are established for 32ε<p<3+ε\frac{3}{2}-\varepsilon<p<3+\varepsilon when d3d\geq 3. And the ranges of pp are sharp (see [8, 16, 11, 23]; also see [2, 3, 4, 5, 6, 7] for references on related work on boundary value problems in bounded Lipschitz domains or Reifenberg flat domains). It is worth noting that for every p>3p>3 and d3d\geq 3 there is a Lipschitz domain such that u\nabla u cannot belong to Lp(Ω)L^{p}(\Omega) even if the right side FF is in CC^{\infty}. If a slightly stronger smoothness condition is imposed, that Ω\Omega is a bounded convex domain, the W1,pW^{1,p} solvability was essentially established in [12] for the sharp range 1<p<1<p<\infty. Regarding the convexity of Ω\Omega, with the analysis tools developed in [13] at disposal, the weak reverse Hölder inequality

(B(x,r)Ω|u|p𝑑x)1pC(B(x,2r)Ω|u|2𝑑x)12,for p>3\left(\fint_{B(x,r)\cap\Omega}|\nabla u|^{p}dx\right)^{\frac{1}{p}}\leq C\left(\fint_{B(x,2r)\cap\Omega}|\nabla u|^{2}dx\right)^{\frac{1}{2}},\quad\text{for }p>3 (1.4)

which is the sufficient condition to the W1,pW^{1,p} estimate is established.

For Schrödinger equations, Z. Shen [19] obtained the W1,pW^{1,p} estimate for Dirichlet problems for 2<p<3+ε2<p<3+\varepsilon when d3d\geq 3, and 2<p<4+ε2<p<4+\varepsilon when d=2d=2 if Ω\Omega is a bounded Lipschitz domain and for 2<p<2<p<\infty if Ω\Omega is a bounded C1C^{1} domain under the assumption that the potential VV is positive and bounded. In the region above a Lipschitz graph, Z. Shen [20] established the LpL^{p} solvability for the Neumann problem and the Dirichlet problem if VBV\in B_{\infty}. The W1,pW^{1,p} solvability is formulated in forthcoming paper [14]. One may notice that the region above a Lipschitz graph maybe unbounded, and results in bounded domains do not work. And it worthwhile to flagged up that, in [20], by the decay of solutions at infinity and the limit RR\to\infty, the results in ΩR={(x,t):|x|<R and ϕ(x)<t<ϕ(x)+R}\Omega_{R}=\{(x^{\prime},t):|x^{\prime}|<R\text{ and }\phi(x^{\prime})<t<\phi(x^{\prime})+R\} can be extended to Ω\Omega. We remark that in [21], Z. Shen established uLp(d)+V12uLp(d)CfLp(d)\|\nabla u\|_{L^{p}(\mathbb{R}^{d})}+\|V^{\frac{1}{2}}u\|_{L^{p}(\mathbb{R}^{d})}\leq C\|f\|_{L^{p}(\mathbb{R}^{d})} where 1p2q1\leq p\leq 2q and qdq\geq d for Δu+Vu=divf-\Delta u+Vu={\rm div}f in d\mathbb{R}^{d} with VBqV\in B_{q}. More related work about the Schrödinger operator refers to [1, 17, 18, 22].

Motivated by [12, 20], we extend the results to the Schrödinger operator Δ+V-\Delta+V in the region above a convex graph. Our proof to Theorem 1.1 follows the approach in [11]. Employing a real-variable perturbation argument and John-Nirenberg inequality, we give a sufficient condition for W1,pW^{1,p} estimates for weak solutions of (1.1) with g=0g=0. Roughly speaking, we prove that for p>2p>2, if the reverse Hölder’s inequality

{B(x,r)Ω(|v|+V12|v|)p}1pC{B(x,2r)Ω(|v|+V12|v|)2}12\bigg{\{}\fint_{B(x,r)\cap\Omega}(|\nabla v|+V^{\frac{1}{2}}|v|)^{p}\bigg{\}}^{\frac{1}{p}}\leq C\bigg{\{}\fint_{B(x,2r)\cap\Omega}(|\nabla v|+V^{\frac{1}{2}}|v|)^{2}\bigg{\}}^{\frac{1}{2}} (1.5)

holds for the solutions of Δv+Vv=0-\Delta v+Vv=0 in Ω\Omega and vn=0\frac{\partial v}{\partial n}=0 on B(x,2r)ΩB(x,2r)\cap\Omega, then the W1,pW^{1,p} estimate is established. Following similar line of [13], we demonstrate the condition (1.5) by the improved Fefferman-Phong inequality, the estimates for the Fefferman-Phong-Shen maximal function m(x,V)m(x,V) as well as the convexity of Ω\Omega. For the case of 1<p<21<p<2, duality arguments and the estimates for the Neumann functions

Ω|yN(x,y)|𝑑yCm(x,V)1\int_{\Omega}|\nabla_{y}N(x,y)|\,dy\leq Cm(x,V)^{-1}

and

Ω|xN(x,y)|m(y,V)q𝑑yCm(x,V)q1for integer q1\int_{\Omega}|\nabla_{x}N(x,y)|m(y,V)^{q}\,dy\leq Cm(x,V)^{q-1}\quad\text{for integer }q\geq 1

play significant roles.

The present paper can be split into three portions. In the first part, we collect some known results for the Fefferman-Phong-Shen maximal function, boundary LL^{\infty} estimate and estimate for the Neumann function. The second portion presents a sufficient condition of W1,pW^{1,p} estimate for p>2p>2. Last segment is devoted to prove W1,pW^{1,p} estimate for 1<p<21<p<2.

We end this section with some notations. We will use Eu\fint_{E}u to denote the average of uu over the set EE; i.e.

Eu=1|E|Eu.\fint_{E}u=\frac{1}{|E|}\int_{E}u.

Let B(x,r)B(x,r) denote the sphere centered at xx with radius rr. Denote D(x,r)=B(x,r)ΩD(x,r)=B(x,r)\cap\Omega and Δ(x,r)=B(x,r)Ω\Delta(x,r)=B(x,r)\cap\partial\Omega. For R>0R>0 large sufficiently, let

ΩR={(x,xd)d:|x|<R and ϕ(x)<xd<ϕ(x)+R}\Omega_{R}=\{(x^{\prime},x_{d})\in\mathbb{R}^{d}:|x^{\prime}|<R\text{ and }\phi(x^{\prime})<x_{d}<\phi(x^{\prime})+R\}

where ϕ:d1\phi:\mathbb{R}^{d-1}\to\mathbb{R} is the convex function.

2 Preliminaries

We first note that VV is a BB_{\infty} weight, defined by Franchi [10, p.153]. Then the measure VdxVdx is doubling, i.e., there exists C>0C>0 such that for any ball BB in d\mathbb{R}^{d},

2BV𝑑xCBV𝑑x.\int_{2B}Vdx\leq C\int_{B}Vdx. (2.1)

Let

ψ(x,r)=1rd2B(x,r)V(y)𝑑y\psi(x,r)=\frac{1}{r^{d-2}}\int_{B(x,r)}V(y)dy

for xd,r>0x\in\mathbb{R}^{d},r>0, then the Fefferman-Phong-Shen maximal function is defined as

m(x,V)=infr>0{r1:ψ(x,r)1}.m(x,V)=\inf_{r>0}\left\{r^{-1}:\psi(x,r)\leq 1\right\}. (2.2)

Several conclusions from [20] and [21] will be quoted in this section. These lemmas and definitions are related to the concepts of Fefferman and Phong discussed in [9]. We list some of them below.

Proposition 2.1.

If VV satisfies (1.2), then for a.e. xdx\in\mathbb{R}^{d},

V(x)Cm(x,V)2.V(x)\leq Cm(x,V)^{2}.
Proof.

See [20]. ∎

Proposition 2.2.

Assume VV satisfies (1.2). Then there exist C>0C>0 and k0>0k_{0}>0 such that

ψ(x,1m(x,V))=1andψ(x,r)C{rm(x,V)}k0.\displaystyle\psi\left(x,\frac{1}{m(x,V)}\right)=1\quad\text{and}\quad\psi(x,r)\leq C\left\{rm(x,V)\right\}^{k_{0}}.

Moreover, rr^r\sim\hat{r} if and only if ψ(x,r)1\psi(x,r)\sim 1.

Proof.

See [20] and [21, Lemma 1.2 and Lemma 1.8]. ∎

Lemma 2.3.

There exist C>0,c>0C>0,c>0 and k0>0k_{0}>0 depending only on dd and the constant in (1.2), such that for x,yx,y in d\mathbb{R}^{d},

cm(y,V)m(x,V)\displaystyle cm(y,V)\leq m(x,V) Cm(y,V) if |xy|Cm(x,V),\displaystyle\leq Cm(y,V)\quad\text{ if }|x-y|\leq\frac{C}{m(x,V)}, (2.3)
c(1+|xy|m(x,V))k0\displaystyle c(1+|x-y|m(x,V))^{-k_{0}} m(x,V)m(y,V)C(1+|xy|m(x,V))k0/(k0+1).\displaystyle\leq\frac{m(x,V)}{m(y,V)}\leq C(1+|x-y|m(x,V))^{k_{0}/\left(k_{0}+1\right)}. (2.4)
Proof.

See [20]. ∎

Next we shall introduce the Fefferman-Phong type inequality.

Lemma 2.4.

Let uC01(d)u\in C_{0}^{1}(\mathbb{R}^{d}). Assume VV satisfies (1.2). Then

Ω|u(x)|2m(x,V)2𝑑xCΩ|u|2𝑑x+CΩV|u|2𝑑x.\int_{\Omega}|u(x)|^{2}m(x,V)^{2}\,dx\leq C\int_{\Omega}|\nabla u|^{2}\,dx+C\int_{\Omega}V|u|^{2}\,dx. (2.5)
Proof.

See [20, Lemma 1.11]. It follows from Proposition 2.2 and Lemma 2.3 as well as a covering argument. ∎

A refine version of Lemma 2.4 was obtained in [1].

Lemma 2.5.

Let uC1(Ω¯)u\in C^{1}(\overline{\Omega}). Assume VV is an AA_{\infty} weight. Then for x0Ωx_{0}\in\Omega and r>0r>0,

min{r2,D(x0,r)V𝑑y}\displaystyle\min\left\{r^{-2},\fint_{D(x_{0},r)}V\,dy\right\} D(x0,r)|u|2𝑑xC{D(x0,r)|u|2𝑑x+D(x0,r)|u|2V𝑑x}.\displaystyle\int_{D(x_{0},r)}|u|^{2}\,dx\leq C\left\{\int_{D(x_{0},r)}|\nabla u|^{2}\,dx+\int_{D(x_{0},r)}|u|^{2}V\,dx\right\}.
Proof.

See [1, Lemma 2.1]. ∎

We end this section with a boundary LL^{\infty} estimate and the estimate for the Neumann function.

Lemma 2.6.

Suppose V(x)>0V(x)>0 a.e. in d\mathbb{R}^{d}. Suppose Δu+Vu=0-\Delta u+Vu=0 in D(x0,r)D(x_{0},r), uν=0\frac{\partial u}{\partial\nu}=0 on D(x0,r)Ω\partial D(x_{0},r)\cap\partial\Omega and (u)L2(D(x0,r)Ω)(\nabla u)^{*}\in L^{2}(\partial D(x_{0},r)\cap\partial\Omega) for some x0Ω¯x_{0}\in\overline{\Omega} and r>0r>0. Then

supxD(x0,r2)|u(x)|Ck{1+rm(x0,V)}k(D(x0,r)|u(x)|2𝑑x)1/2\sup_{x\in D(x_{0},\frac{r}{2})}|u(x)|\leq\frac{C_{k}}{\left\{1+rm\left(x_{0},V\right)\right\}^{k}}\left(\fint_{D(x_{0},r)}|u(x)|^{2}dx\right)^{1/2}

for any integer k>0k>0.

Proof.

See [20, Lemma 1.12]. ∎

Let Γ(x,y)\Gamma(x,y) denote the fundamental solution of the Schrödinger operator Δ+V-\Delta+V in d\mathbb{R}^{d}. Fix xΩx\in\Omega, let vx(y)v^{x}(y) be the solution of Δu+Vu=0-\Delta u+Vu=0 in Ω\Omega with Neumann data Γ(x,y)νy\frac{\partial\Gamma(x,y)}{\partial\nu_{y}}. Let N(x,y)=Γ(x,y)vx(y).N(x,y)=\Gamma(x,y)-v^{x}(y). Then we have the following estimate.

Lemma 2.7.

For any x,yΩx,y\in\Omega,

|N(x,y)|Ck(1+|xy|m(y,V))k1|xy|d2,|N(x,y)|\leq\frac{C_{k}}{(1+|x-y|m(y,V))^{k}}\cdot\frac{1}{|x-y|^{d-2}}, (2.6)

where k1k\geq 1 is an arbitrary integer.

Proof.

See [20, Lemma 1.21]. ∎

3 A sufficient condition

The following theorem is a refined real variable argument which established in [24, Theorem 3.2] (see also [25, Theorem 4.2.3]) and can be seen as a duality argument of the Calderón-Zygmund decomposition. With this, the W1,pW^{1,p} estimates follow from the locally weak reverse Hölder inequality.

Theorem 3.1.

Let EdE\subset\mathbb{R}^{d} be a bounded Lipschitz domain and FL2(E)F\in L^{2}(E). Let p>2p>2 and fLq(E)f\in L^{q}(E) for some 2<q<p2<q<p. Suppose that for each ball BB with |B|β|E||B|\leqslant\beta|E|, there exist FBF_{B}, RBR_{B} on 2B2B such that |F||FB|+|RB||F|\leqslant|F_{B}|+|R_{B}| on 2BE2B\cap E,

{2BE|RB|p𝑑x}1pC1{(αBE|F|2𝑑x)12+supBB(BE|f|2𝑑x)12}\left\{\fint_{2B\cap E}|R_{B}|^{p}dx\right\}^{\frac{1}{p}}\leqslant C_{1}\left\{\left(\fint_{\alpha B\cap E}|F|^{2}dx\right)^{\frac{1}{2}}+\sup_{B\subset B^{\prime}}\left(\fint_{B^{\prime}\cap E}|f|^{2}dx\right)^{\frac{1}{2}}\right\} (3.1)

and

2BE|FB|2𝑑xC2supBBB|f|2𝑑x+σαB|F|2𝑑x\fint_{2B\cap E}|F_{B}|^{2}dx\leqslant C_{2}\sup_{B\subset B^{\prime}}\fint_{B^{\prime}}|f|^{2}dx+\sigma\fint_{\alpha B}|F|^{2}dx (3.2)

where C1,C2>0C_{1},C_{2}>0 and 0<β<1<α0<\beta<1<\alpha. Then, if 0σ<σ0=σ0(C1,C2,d,p,q,α,β)0\leqslant\sigma<\sigma_{0}=\sigma_{0}(C_{1},C_{2},d,p,q,\alpha,\beta), we have

{E|F|q𝑑x}1qC{(E|F|2𝑑x)12+(E|f|q𝑑x)1q},\left\{\fint_{E}|F|^{q}dx\right\}^{\frac{1}{q}}\leqslant C\left\{\left(\fint_{E}|F|^{2}dx\right)^{\frac{1}{2}}+\left(\fint_{E}|f|^{q}dx\right)^{\frac{1}{q}}\right\}, (3.3)

where C>0C>0 depends only on C1,C2,d,p,q,α,βC_{1},C_{2},d,p,q,\alpha,\beta.

Proof.

See [12, Theorem 2.1]. ∎

With the real variable method at disposal, we give the sufficient condition.

Theorem 3.2.

Let p>2p>2. Suppose V(x)>0V(x)>0 a.e. in d\mathbb{R}^{d}. Assume that for any ball B(x0,r0)B(x_{0},r_{0}) with the property that either x0ΩRx_{0}\in\partial\Omega_{R} or B(x0,2r0)ΩRB(x_{0},2r_{0})\subset\Omega_{R} for RR large, the weak reverse Hölder inequality

{B(x0,r0)ΩR(|v|+V12|v|)p𝑑x}1pC0{B(x0,2r0)ΩR(|v|+V12|v|)2𝑑x}12\bigg{\{}\fint_{B(x_{0},r_{0})\cap\Omega_{R}}(|\nabla v|+V^{\frac{1}{2}}|v|)^{p}dx\bigg{\}}^{\frac{1}{p}}\leq C_{0}\bigg{\{}\fint_{B(x_{0},2r_{0})\cap\Omega_{R}}(|\nabla v|+V^{\frac{1}{2}}|v|)^{2}dx\bigg{\}}^{\frac{1}{2}} (3.4)

holds, whenever vW1,2(B(x0,2r0)ΩR)v\in W^{1,2}(B(x_{0},2r_{0})\cap\Omega_{R}) satisfies Δv+Vv=0-\Delta v+Vv=0 in B(x0,2r0)ΩRB(x_{0},2r_{0})\cap\Omega_{R} and vn=0\frac{\partial v}{\partial n}=0 on Δ(x0,2r0)ΩR\Delta(x_{0},2r_{0})\cap\partial\Omega_{R}. Let uW1,2(Ω)u\in W^{1,2}(\Omega) be a weak solution of (1.1) with fLp(Ω,d)f\in L^{p}(\Omega,\mathbb{R}^{d}) and g=0g=0. Then uW1,p(Ω)u\in W^{1,p}(\Omega) and

uLp(Ω)+V12uLp(Ω)CfLp(Ω),\|\nabla u\|_{L^{p}(\Omega)}+\|V^{\frac{1}{2}}u\|_{L^{p}(\Omega)}\leq C\|f\|_{L^{p}(\Omega)}, (3.5)

with constant C>0C>0 depending only on d,p,C0d,p,C_{0} and the Lipschitz character of Ω\Omega.

Proof.

For R>0R>0 large sufficiently, let

fR(x)={f(x),xΩR or xΩΩR,0,otherwise.\displaystyle f_{R}(x)=\begin{cases}f(x),\quad&x\in\Omega_{R}\text{ or }x\in\partial\Omega\cap\partial\Omega_{R},\\[2.84544pt] 0,&\text{otherwise}.\end{cases}

By taking the limit RR\to\infty, it suffices for us to show

uLp(ΩR)+V12uLp(ΩR)CfRLp(ΩR)\|\nabla u\|_{L^{p}(\Omega_{R})}+\|V^{\frac{1}{2}}u\|_{L^{p}(\Omega_{R})}\leq C\|f_{R}\|_{L^{p}(\Omega_{R})} (3.6)

where

Δu+Vu=divfR in Ω,anduν=fRn on Ω.-\Delta u+Vu=\mbox{div}\,f_{R}\quad\text{ in }\Omega,\quad\text{and}\quad\frac{\partial u}{\partial\nu}=-f_{R}\cdot n\quad\text{ on }\partial\Omega. (3.7)

Given any ball B(x,r)B(x,r) satisfying |B(x,r)|β|ΩR||B(x,r)|\leqslant\beta|\Omega_{R}| and either B(x,2r)ΩRB(x,2r)\subset\Omega_{R} or B(x,r)B(x,r) centers on ΩR\partial\Omega_{R}, we set a cut-off function φC0(B(x,8r))\varphi\in C_{0}^{\infty}(B(x,8r)) such that φ=1\varphi=1 in B(x,4r)B(x,4r) and φ=0\varphi=0 outside B(x,8r)B(x,8r). Let u1u_{1} be the solution of

Δu1+Vu1=div(φfR)in ΩR,andu1ν=φfRnon ΩR.\displaystyle-\Delta u_{1}+Vu_{1}=\operatorname{div}(\varphi f_{R})\quad\text{in }\Omega_{R},\quad\text{and}\quad\frac{\partial u_{1}}{\partial\nu}=-\varphi f_{R}\cdot n\quad\text{on }\partial\Omega_{R}. (3.8)

Let u2=uu1u_{2}=u-u_{1} and DR(x,tr)=B(x,tr)ΩRD_{R}(x,tr)=B(x,tr)\cap\Omega_{R}, then

Δu2+Vu2=0in DR(x,4r) and u2ν=0on Δ(x,4r)ΩR.-\Delta u_{2}+Vu_{2}=0\quad\text{in }D_{R}(x,4r)\quad\text{ and }\quad\displaystyle\frac{\partial u_{2}}{\partial\nu}=0\quad\text{on }\Delta(x,4r)\cap\partial\Omega_{R}. (3.9)

To apply Theorem 3.1, let F=|u|+V12|u|,FB=|u1|+V12|u1|F=|\nabla u|+V^{\frac{1}{2}}|u|,F_{B}=|\nabla u_{1}|+V^{\frac{1}{2}}|u_{1}| and RB=|u2|+V12|u2|R_{B}=|\nabla u_{2}|+V^{\frac{1}{2}}|u_{2}|, Thus |F||FB|+|RB||F|\leqslant\left|F_{B}\right|+\left|R_{B}\right|. Then it follows from integration by parts to (3.8) that

DR(x,2r)|FB|2𝑑xC|DR(x,2r)|ΩR(|u1|2+Vu12)𝑑xCDR(x,8r)|fR|2𝑑x.\fint_{D_{R}(x,2r)}\left|F_{B}\right|^{2}\,dx\leqslant\frac{C}{|D_{R}(x,2r)|}\int_{\Omega_{R}}(|\nabla u_{1}|^{2}+Vu_{1}^{2})\,dx\leqslant C\fint_{D_{R}(x,8r)}|f_{R}|^{2}\,dx.

Claim that the weak reverse Hölder inequality

{DR(x,2r)|RB|p𝑑x}1pC{DR(x,4r)(|u2|2+Vu22)𝑑x}12\left\{\fint_{D_{R}(x,2r)}\left|R_{B}\right|^{p}dx\right\}^{\frac{1}{p}}\leqslant C\left\{\fint_{D_{R}(x,4r)}(|\nabla u_{2}|^{2}+Vu_{2}^{2})dx\right\}^{\frac{1}{2}} (3.10)

holds for a moment, and we obtain

{DR(x,2r)|RB|p𝑑x}1p\displaystyle\left\{\fint_{D_{R}(x,2r)}\left|R_{B}\right|^{p}dx\right\}^{\frac{1}{p}} C{DR(x,4r)(|u|2+Vu2)𝑑x+DR(x,4r)(|u1|2+Vu12)𝑑x}12\displaystyle\leqslant C\left\{\fint_{D_{R}(x,4r)}(|\nabla u|^{2}+Vu^{2})dx+\fint_{D_{R}(x,4r)}(|\nabla u_{1}|^{2}+Vu_{1}^{2})dx\right\}^{\frac{1}{2}}
C{DR(x,4r)|F|2𝑑x}12+C{DR(x,8r)|fR|2𝑑x}12.\displaystyle\leqslant C\left\{\fint_{D_{R}(x,4r)}|F|^{2}dx\right\}^{\frac{1}{2}}+C\left\{\fint_{D_{R}(x,8r)}|f_{R}|^{2}dx\right\}^{\frac{1}{2}}.

Hence by Theorem 3.1 and the self-improving property of the reverse Hölder condition

{ΩR(|u|+V12|u|)p𝑑x}1pC{(ΩR(|u|+V12u)2𝑑x)12+(ΩR|fR|p𝑑x)1p}.\left\{\fint_{\Omega_{R}}(|\nabla u|+V^{\frac{1}{2}}|u|)^{p}dx\right\}^{\frac{1}{p}}\leqslant C\left\{\left(\fint_{\Omega_{R}}(|\nabla u|+V^{\frac{1}{2}}u)^{2}dx\right)^{\frac{1}{2}}+\left(\fint_{\Omega_{R}}|f_{R}|^{p}dx\right)^{\frac{1}{p}}\right\}. (3.11)

This, combining with integration by parts as well as Hölder’s inequality, gives (3.6). ∎

To establish the reverse Hölder inequality, we need an auxiliary lemma as follows.

Lemma 3.3.

Suppose V>0V>0 and Ω\Omega is the region above a convex graph in d\mathbb{R}^{d} with C2C^{2} boundary. Assume uu is a weak solution of Δu+Vu=0-\Delta u+Vu=0 in D(x0,2r)D(x_{0},2r) and vn=0\frac{\partial v}{\partial n}=0 on Δ(x0,2r)\Delta(x_{0},2r). Then for p>1p>1 and 1q=1p1d\frac{1}{q}=\frac{1}{p}-\frac{1}{d},

{B(x0,r)ΩR|u|q𝑑x}1qCr1{B(x0,2r)ΩR(|u|+rV|u|)p𝑑x}1p\left\{\int_{B(x_{0},r)\cap\Omega_{R}}|\nabla u|^{q}dx\right\}^{\frac{1}{q}}\leqslant Cr^{-1}\left\{\int_{B(x_{0},2r)\cap\Omega_{R}}\left(|\nabla u|+rV|u|\right)^{p}dx\right\}^{\frac{1}{p}} (3.12)

where φC0(B(x0,2r)ΩR)\varphi\in C^{\infty}_{0}(B(x_{0},2r)\cap\Omega_{R}).

Proof.

Fix 0<ρ<τ<0<\rho<\tau<\infty, for gG:={g=(g1,,gd)(C02(Ω¯))d:gn=0 on Ω}g\in G:=\{g=(g_{1},\cdots,g_{d})\in(C^{2}_{0}(\overline{\Omega}))^{d}:g\cdot n=0\text{ on }\partial\Omega\} let hg:Ω¯[0,1]h_{g}:\overline{\Omega}\to[0,1] be continuous so that

hg(x)={0,xIg:={xΩ:|g(x)|2ρ},1τρ(|g(x)|2ρ),xIIg:={xΩ:ρ<|g(x)|2<τ},1,xIIIg:={xΩ:|g(x)|2τ}.\displaystyle h_{g}(x)=\begin{cases}0,\quad&x\in I_{g}:=\{x\in\Omega:|g(x)|^{2}\leq\rho\},\\ \frac{1}{\tau-\rho}(|g(x)|^{2}-\rho),\quad&x\in II_{g}:=\{x\in\Omega:\rho<|g(x)|^{2}<\tau\},\\ 1,\quad&x\in III_{g}:=\{x\in\Omega:|g(x)|^{2}\geq\tau\}.\end{cases}

It follows from integration by parts that

2Ωhggkgigkxjgjxi𝑑xΩhg{ginjgjxiginidivg}𝑑σ\displaystyle 2\int_{\Omega}h_{g}^{\prime}g_{k}g_{i}\frac{\partial g_{k}}{\partial x_{j}}\frac{\partial g_{j}}{\partial x_{i}}\,dx-\int_{\partial\Omega}h_{g}\left\{g_{i}n_{j}\frac{\partial g_{j}}{\partial x_{i}}-g_{i}n_{i}{\rm div}g\right\}d\sigma
=Ωhg{(divg)2gixjgjxi}𝑑x+2Ωhggkgigkxidivg𝑑x\displaystyle\qquad=\int_{\Omega}h_{g}\left\{({\rm div}g)^{2}-\frac{\partial g_{i}}{\partial x_{j}}\frac{\partial g_{j}}{\partial x_{i}}\right\}dx+2\int_{\Omega}h_{g}^{\prime}g_{k}g_{i}\frac{\partial g_{k}}{\partial x_{i}}{\rm div}g\,dx

where σ=Hd1\sigma=H^{d-1} denotes the (d1)(d-1)-dimensional Hausdorff measure. Let β(,)\beta(\cdot,\cdot) denote the second fundamental quadratic form of Ω\partial\Omega (see [15, pp.133-134]). The convexity ginidivgginjgjxi=β(g(gn)n,g(gn)n)0 on Ωg_{i}n_{i}{\rm div}g-g_{i}n_{j}\frac{\partial g_{j}}{\partial x_{i}}=-\beta(g-(g\cdot n)n,g-(g\cdot n)n)\geq 0\text{ on }\partial\Omega, gives that

IIg|v|2𝑑x\displaystyle\int_{II_{g}}|v|^{2}dx 2IIg|v||g|{(i,j|gixjgjxi|2)12+|divg|}𝑑x\displaystyle\leqslant 2\int_{II_{g}}|v||g|\bigg{\{}\bigg{(}\sum_{i,j}\left|\frac{\partial g_{i}}{\partial x_{j}}-\frac{\partial g_{j}}{\partial x_{i}}\right|^{2}\bigg{)}^{\frac{1}{2}}+|{\rm div}g|\bigg{\}}dx (3.13)
+2(τρ)IIgIIIghg{|divg|2gixjgjxi}𝑑x.\displaystyle\qquad\qquad+2(\tau-\rho)\int_{II_{g}\cup III_{g}}h_{g}\left\{|{\rm div}g|^{2}-\frac{\partial g_{i}}{\partial x_{j}}\frac{\partial g_{j}}{\partial x_{i}}\right\}dx.

where v=|g|2v=\nabla|g|^{2} and Cauchy’s inequality was also used. Take g=(u)φg=(\nabla u)\varphi in (3.13) where φC0(B(x0,2r)ΩR)\varphi\in C^{\infty}_{0}(B(x_{0},2r)\cap\Omega_{R}) such that φ=1\varphi=1 in B(x0,r)ΩRB(x_{0},r)\cap\Omega_{R} and |φ|Cr1|\nabla\varphi|\leq Cr^{-1}. It is easy to verify

gixj=φ2uxixj+uxiφxj\frac{\partial g_{i}}{\partial x_{j}}=\varphi\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}+\frac{\partial u}{\partial x_{i}}\frac{\partial\varphi}{\partial x_{j}}

and

divg=div((u)φ)=(Δu)φ+uφ=uφ+Vuφ.{\rm div}g={\rm div}((\nabla u)\varphi)=(\Delta u)\varphi+\nabla u\cdot\nabla\varphi=\nabla u\cdot\nabla\varphi+Vu\varphi.

Note that

(i,j|gixjgjxi|2)12+|divg|\displaystyle\bigg{(}\sum_{i,j}\left|\frac{\partial g_{i}}{\partial x_{j}}-\frac{\partial g_{j}}{\partial x_{i}}\right|^{2}\bigg{)}^{\frac{1}{2}}+|{\rm div}g| {2|u|2|φ|2+2|uφ|2}12+|uφ|+V|u||φ|\displaystyle\leqslant\left\{2|\nabla u|^{2}|\nabla\varphi|^{2}+2|\nabla u\cdot\nabla\varphi|^{2}\right\}^{\frac{1}{2}}+|\nabla u\cdot\nabla\varphi|+V|u||\varphi|
C|u||φ|+V|u||φ|\displaystyle\leqslant C|\nabla u||\nabla\varphi|+V|u||\varphi|

and

|divg|2gixjgjxi\displaystyle|{\rm div}g|^{2}-\frac{\partial g_{i}}{\partial x_{j}}\frac{\partial g_{j}}{\partial x_{i}} 2V|uφ||u||φ|+V2|u|2|φ|2φ2|2u|22φ2uxixjuxiφxj\displaystyle\leqslant 2V|\nabla u\cdot\nabla\varphi||u||\varphi|+V^{2}|u|^{2}|\varphi|^{2}-\varphi^{2}\left|\nabla^{2}u\right|^{2}-2\varphi\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}\frac{\partial u}{\partial x_{i}}\frac{\partial\varphi}{\partial x_{j}}
i,j(φ2uxixj+uxiφxj)2+2|u|2|φ|2+V2|u|2|φ|2\displaystyle\leqslant-\sum_{i,j}\left(\varphi\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}+\frac{\partial u}{\partial x_{i}}\frac{\partial\varphi}{\partial x_{j}}\right)^{2}+2|\nabla u|^{2}|\nabla\varphi|^{2}+V^{2}|u|^{2}|\varphi|^{2}
2|u|2|φ|2+V2|u|2|φ|2.\displaystyle\leqslant 2|\nabla u|^{2}|\nabla\varphi|^{2}+V^{2}|u|^{2}|\varphi|^{2}.

By using the co-area formula repeatedly, we have

ρτ{|g|2=s}|v|𝑑σ𝑑s\displaystyle\int_{\rho}^{\tau}\int_{\{|g|^{2}=s\}}|v|d\sigma ds\leqslant Cρτ{|g|2=s}|g|h𝑑σ𝑑s+C(τρ){|g|2>ρ}hgh2𝑑x\displaystyle C\int_{\rho}^{\tau}\int_{\{|g|^{2}=s\}}|g|h\,d\sigma ds+C(\tau-\rho)\int_{\{|g|^{2}>\rho\}}h_{g}h^{2}dx

where h=|u||φ|+V|u||φ|h=|\nabla u||\nabla\varphi|+V|u||\varphi|. Taking τρ+\tau\rightarrow\rho^{+}, we obtain that for ρ(0,)\rho\in(0,\infty),

{|g|2=ρ}|v|𝑑σ\displaystyle\int_{\{|g|^{2}=\rho\}}|v|\,d\sigma\leqslant Cρ12{|g|2=ρ}h𝑑σ+C{|g|2>ρ}h2𝑑x.\displaystyle C\rho^{\frac{1}{2}}\int_{\{|g|^{2}=\rho\}}h\,d\sigma+C\int_{\{|g|^{2}>\rho\}}h^{2}dx. (3.14)

where Lebesgue’s differentiation theorem is also used.

Without loss of generality, assume that |(u)φ|2|(\nabla u)\varphi|^{2} is bounded from below by a positive constant. Multiplying both sides of (3.14) by ρb2\rho^{b-2} and integrating the resulting inequality in ρ\rho over (0,)(0,\infty), we obtain that for b>1b>1,

Ω|(u)φ|2b4|v|2𝑑x=0ρa{|g|2=ρ}|v|𝑑σ𝑑ρ\displaystyle\int_{\Omega}|(\nabla u)\varphi|^{2b-4}|v|^{2}dx=\int_{0}^{\infty}\rho^{a}\int_{\{|g|^{2}=\rho\}}|v|d\sigma d\rho
CεΩ|(u)φ|2b4|v|2𝑑x+CΩ|(u)φ|2b2h2𝑑x\displaystyle\leqslant C\varepsilon\int_{\Omega}|(\nabla u)\varphi|^{2b-4}|v|^{2}dx+C\int_{\Omega}|(\nabla u)\varphi|^{2b-2}h^{2}dx

where the co-area formula and the Cauchy’s inequality are used. Then by Poincaré inequality,

{Ω|(u)φ|b2𝑑x}22CΩ|(u)φ|2b4|v|2𝑑xCΩ|(u)φ|2b2h2𝑑x\left\{\int_{\Omega}|(\nabla u)\varphi|^{b2^{*}}dx\right\}^{\frac{2}{2^{*}}}\leqslant C\int_{\Omega}|(\nabla u)\varphi|^{2b-4}|v|^{2}dx\leqslant C\int_{\Omega}|(\nabla u)\varphi|^{2b-2}h^{2}dx (3.15)

where 2=2dd22^{*}=\frac{2d}{d-2}. Using Hölder’s inequality, we obtain for p,p>1p^{\prime},p>1,

Ω|(u)φ|2b2h2𝑑x{Ω|(u)φ|(2b2)p2𝑑x}2p{Ωhp𝑑x}2p,\int_{\Omega}|(\nabla u)\varphi|^{2b-2}h^{2}dx\leqslant\left\{\int_{\Omega}|(\nabla u)\varphi|^{(2b-2)\frac{p^{\prime}}{2}}dx\right\}^{\frac{2}{p^{\prime}}}\left\{\int_{\Omega}h^{p}dx\right\}^{\frac{2}{p}}, (3.16)

where 1p+1p=12\frac{1}{p^{\prime}}+\frac{1}{p}=\frac{1}{2}. Choose pp^{\prime} so that (b1)p=b2(b-1)p^{\prime}=b2^{*} and let q=b2q=b2^{*}. A direct computation leads 1q=1p1d\frac{1}{q}=\frac{1}{p}-\frac{1}{d} and (3.12). This completes the proof. ∎

Theorem 3.4.

Assume V>0V>0 satisfies (1.2) and Ω\Omega is the region above a convex graph in d\mathbb{R}^{d} with C2C^{2} boundary. Then the weak reverse Hölder inequality (3.4) holds for any p>2p>2.

Proof.

Denote DR(x,r)=B(x,r)ΩRD_{R}(x,r)=B(x,r)\cap\Omega_{R}. With Lemma 3.3 at disposal, we obtain that for all p>1p>1 and 1q=1p1d\frac{1}{q}=\frac{1}{p}-\frac{1}{d},

{DR(x0,r)|u|q𝑑x}1q\displaystyle\left\{\fint_{D_{R}(x_{0},r)}|\nabla u|^{q}dx\right\}^{\frac{1}{q}} C{DR(x0,2r)|u|p𝑑x}1p+Cr{DR(x0,2r)|Vu|p𝑑x}1p.\displaystyle\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}|\nabla u|^{p}dx\right\}^{\frac{1}{p}}+Cr\left\{\fint_{D_{R}(x_{0},2r)}|Vu|^{p}dx\right\}^{\frac{1}{p}}.

Using Lemma 2.6 and (1.2), we have

r{DR(x0,r)|Vu|p𝑑x}1p\displaystyle r\left\{\fint_{D_{R}(x_{0},r)}|Vu|^{p}dx\right\}^{\frac{1}{p}} Cr(DR(x0,r)Vp𝑑x)1psupDR(x0,r)|u|\displaystyle\leqslant Cr\left(\fint_{D_{R}(x_{0},r)}V^{p}\,dx\right)^{\frac{1}{p}}\sup_{D_{R}(x_{0},r)}|u|
Cr1d2{1+rm(x0,V)}kDR(x0,2r)V𝑑x(DR(x0,2r)|u(x)|2𝑑x)12\displaystyle\leqslant\frac{Cr^{1-\frac{d}{2}}}{\left\{1+rm\left(x_{0},V\right)\right\}^{k}}\fint_{D_{R}(x_{0},2r)}V\,dx\left(\int_{D_{R}(x_{0},2r)}|u(x)|^{2}dx\right)^{\frac{1}{2}}

If r2D(x0,r)V𝑑x1r^{2}\fint_{D(x_{0},r)}V\,dx\leq 1, it follows from Lemma 2.5 and Hölder’s inequality that for p2p\geq 2,

r{DR(x0,r)|Vu|p𝑑x}1p\displaystyle r\left\{\fint_{D_{R}(x_{0},r)}|Vu|^{p}dx\right\}^{\frac{1}{p}} Crd2(r2DR(x0,r)V𝑑x)12(DR(x0,2r)V𝑑xDR(x0,2r)|u(x)|2𝑑x)12\displaystyle\leqslant Cr^{-\frac{d}{2}}\left(r^{2}\fint_{D_{R}(x_{0},r)}V\,dx\right)^{\frac{1}{2}}\left(\fint_{D_{R}(x_{0},2r)}V\,dx\int_{D_{R}(x_{0},2r)}|u(x)|^{2}dx\right)^{\frac{1}{2}}
C{DR(x0,2r)(|u|+|V12u|)p𝑑x}1p.\displaystyle\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}.

In the case of r2D(x0,r)V𝑑x>1r^{2}\fint_{D(x_{0},r)}V\,dx>1, it follows from Proposition 2.2 and Lemma 2.5 that

r{DR(x0,r)|Vu|p𝑑x}1p\displaystyle r\left\{\fint_{D_{R}(x_{0},r)}|Vu|^{p}dx\right\}^{\frac{1}{p}} Crd2r2DR(x0,r)V𝑑x{1+rm(x0,V)}k(r2DR(x0,2r)|u(x)|2𝑑x)12\displaystyle\leqslant\frac{Cr^{-\frac{d}{2}}\cdot r^{2}\fint_{D_{R}(x_{0},r)}V\,dx}{\left\{1+rm\left(x_{0},V\right)\right\}^{k}}\left(r^{-2}\int_{D_{R}(x_{0},2r)}|u(x)|^{2}dx\right)^{\frac{1}{2}}
C{rm(x0,V)}k0{1+rm(x0,V)}k{DR(x0,2r)(|u|+|V12u|)p𝑑x}1p\displaystyle\leqslant\frac{C\left\{rm(x_{0},V)\right\}^{k_{0}}}{\left\{1+rm\left(x_{0},V\right)\right\}^{k}}\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}
C{DR(x0,2r)(|u|+|V12u|)p𝑑x}1p\displaystyle\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}

if we choose k=k0k=k_{0}. This gives

r{DR(x0,r)|Vu|p𝑑x}1p\displaystyle r\left\{\fint_{D_{R}(x_{0},r)}|Vu|^{p}dx\right\}^{\frac{1}{p}} C{DR(x0,2r)(|u|+|V12u|)p𝑑x}1p\displaystyle\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}

and in similar manner,

{DR(x0,r)|V12u|q𝑑x}1q\displaystyle\left\{\fint_{D_{R}(x_{0},r)}|V^{\frac{1}{2}}u|^{q}dx\right\}^{\frac{1}{q}} C{DR(x0,2r)(|u|+|V12u|)p𝑑x}1p.\displaystyle\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}.

By a iteration and the self-improvement, we have for p>2p>2

{DR(x0,r)(|u|+|V12u|)p𝑑x}1pC{DR(x0,2r)(|u|+|V12u|)2𝑑x}12.\left\{\fint_{D_{R}(x_{0},r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{p}dx\right\}^{\frac{1}{p}}\leqslant C\left\{\fint_{D_{R}(x_{0},2r)}(|\nabla u|+|V^{\frac{1}{2}}u|)^{2}dx\right\}^{\frac{1}{2}}. (3.17)

4 Duality argument

Lemma 4.1.

Let Ω\Omega be the region above a convex graph in d\mathbb{R}^{d} with C2C^{2} boundary. Suppose VV satisfies (1.2). Assume

1<p<.1<p<\infty.

Let uW1,2(Ω)u\in W^{1,2}(\Omega) be a weak solution of (1.1) with fLp(Ω,d)f\in L^{p}(\Omega,\mathbb{R}^{d}) and g=0g=0. Then uW1,p(Ω)u\in W^{1,p}(\Omega) and

uLp(Ω)CfLp(Ω),\|\nabla u\|_{L^{p}(\Omega)}\leq C\|f\|_{L^{p}(\Omega)}, (4.1)

with constant CC depending only on d,pd,p and the Lipschitz character of Ω\Omega.

Proof.

Theorem 3.4, together with Theorem 3.2, gives that uW1,p(Ω)u\in W^{1,p}(\Omega) and that for any q>2q>2,

uLq(Ω)CfLq(Ω).\|\nabla u\|_{L^{q}(\Omega)}\leqslant C\|f\|_{L^{q}(\Omega)}. (4.2)

Let hC0(Ω,d)h\in C_{0}^{\infty}(\Omega,\mathbb{R}^{d}) and vv be a weak solution of Δv+Vv=divh-\Delta v+Vv=\operatorname{div}h in Ω\Omega and vν=0\frac{\partial v}{\partial\nu}=0 on Ω\partial\Omega. Suppose p,qp,q are conjugate. The weak formulations of variational solution of uu and vv imply that

|Ωhiuxi𝑑x|=|Ωfivxi𝑑x|fLp(Ω)vLq(Ω)CfLp(Ω)hLq(Ω).\left|\int_{\Omega}h_{i}\frac{\partial u}{\partial x_{i}}dx\right|=\left|\int_{\Omega}f_{i}\frac{\partial v}{\partial x_{i}}dx\right|\leqslant\|f\|_{L^{p}(\Omega)}\|\nabla v\|_{L^{q}(\Omega)}\leqslant C\|f\|_{L^{p}(\Omega)}\|h\|_{L^{q}(\Omega)}. (4.3)

where Hölder’s inequality and (4.2) are also used. This gives that for 1<p<21<p<2

uLp(Ω)=suphLq(Ω)1|h,u|CfLp(Ω),\|\nabla u\|_{L^{p}(\Omega)}=\sup_{\|h\|_{L^{q}(\Omega)}\leqslant 1}|\langle h,\nabla u\rangle|\leqslant C\|f\|_{L^{p}(\Omega)}, (4.4)

and thus (4.1) holds for all 1<p<1<p<\infty in the region above a convex graph. ∎

Lemma 4.2.

Assume Ω\Omega and VV are same as in Lemma 4.1. Let

1<p<.1<p<\infty.

Then the solution uW1,p(Ω)u\in W^{1,p}(\Omega) to (1.1) with gB1p,p(Ω)g\in B^{-\frac{1}{p},p}(\partial\Omega) and f=0f=0 satisfies

uLp(Ω)CgB1p,p(Ω),\|\nabla u\|_{L^{p}(\Omega)}\leq C\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}, (4.5)

where CC depends only on d,pd,p and the Lipschitz character of Ω\Omega.

Proof.

Let hC0(Ω)h\in C^{\infty}_{0}(\Omega) and ww be the weak solution to

Δ(vc)+V(vc)=divhin Ω, and vν=0on Ω,-\Delta(v-c)+V(v-c)={\rm div}\;h\quad\text{in }\Omega,\quad\text{ and }\quad\frac{\partial v}{\partial\nu}=0\quad\text{on }\partial\Omega,

where c=Ωv𝑑xc=\fint_{\Omega}v\,dx. Then the weak formulation, the Sobolev embedding and Poincaré inequality imply that

|Ωhudx|=|Ωg(vc)𝑑x|\displaystyle\left|\int_{\Omega}h\cdot\nabla u\,dx\right|=\left|\int_{\partial\Omega}g(v-c)\,dx\right| gB1p,p(Ω)vcB1p,q(Ω)\displaystyle\leq\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\|v-c\|_{B^{\frac{1}{p},q}(\partial\Omega)} (4.6)
gB1p,p(Ω)vcW1,q(Ω)\displaystyle\leq\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\|v-c\|_{W^{1,q}(\Omega)}
gB1p,p(Ω)vLq(Ω)\displaystyle\leq\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\|\nabla v\|_{L^{q}(\Omega)}

where p,qp,q are conjugate. It follows from Lemma 4.1 that for 1<q<1<q<\infty,

vLq(Ω)=(vc)Lq(Ω)ChLq(Ω).\|\nabla v\|_{L^{q}(\Omega)}=\|\nabla(v-c)\|_{L^{q}(\Omega)}\leq C\|h\|_{L^{q}(\Omega)}.

This gives

uLp(Ω)=suphLq(Ω)1|Ωhudx|CgB1p,p(Ω)\|\nabla u\|_{L^{p}(\Omega)}=\sup_{\|h\|_{L^{q}(\Omega)}\leq 1}\left|\int_{\Omega}h\cdot\nabla u\,dx\right|\leq C\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)} (4.7)

and thus (4.5) holds for 1<p<1<p<\infty. ∎

Finally we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1.

It follows directly from Lemma 4.1 and Lemma 4.2 that

uLp(Ω)C{fLp(Ω)+gB1p,p(Ω)}\|\nabla u\|_{L^{p}(\Omega)}\leq C\left\{\|f\|_{L^{p}(\Omega)}+\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\right\}

for 1<p<1<p<\infty. Next, to show

V12uLp(Ω)C{fLp(Ω)+gB1p,p(Ω)},\|V^{\frac{1}{2}}u\|_{L^{p}(\Omega)}\leq C\left\{\|f\|_{L^{p}(\Omega)}+\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\right\}, (4.8)

decompose u=u1+u2u=u_{1}+u_{2} where u1,u2u_{1},u_{2} are weak solutions of

{Δu1+Vu1=divfin Ω,u1ν=fnon Ω, and {Δu2+Vu2=0in Ω,u2ν=gon Ω.\begin{aligned} \begin{cases}-\Delta u_{1}+Vu_{1}={\rm div}f&\text{in }\Omega,\\[2.84544pt] \hskip 33.5001pt\frac{\partial u_{1}}{\partial\nu}=-f\cdot n&\text{on }\partial\Omega,\end{cases}\end{aligned}\quad\text{ and }\quad\begin{aligned} \begin{cases}-\Delta u_{2}+Vu_{2}=0\quad&\text{in }\Omega,\\[2.84544pt] \hskip 33.5001pt\frac{\partial u_{2}}{\partial\nu}=g\ &\text{on }\partial\Omega.\end{cases}\end{aligned}

It follows from the Poisson representation formula and integration by parts that

u1(x)=ΩN(x,y)u1ν𝑑σ(y)+ΩN(x,y)(Δ+V)u1𝑑y=ΩyN(x,y)f(y)𝑑y.u_{1}(x)=\int_{\partial\Omega}N(x,y)\frac{\partial u_{1}}{\partial\nu}d\sigma(y)+\int_{\Omega}N(x,y)(-\Delta+V)u_{1}\,dy=-\int_{\Omega}\nabla_{y}N(x,y)f(y)dy.

By Hölder’s inequality we have

|u1(x)|{Ω|yN(x,y)|dy}1q{Ω|yN(x,y)||f(y)|p𝑑y}1p|u_{1}(x)|\leq\left\{\int_{\Omega}|\nabla_{y}N(x,y)|dy\right\}^{\frac{1}{q}}\left\{\int_{\Omega}|\nabla_{y}N(x,y)||f(y)|^{p}dy\right\}^{\frac{1}{p}} (4.9)

where q=pp1q=\frac{p}{p-1}. Fix xΩx\in\partial\Omega. Let r0=1m(x,V)r_{0}=\frac{1}{m(x,V)} and Ej={yΩ:|xy|2jr0}E_{j}=\{y\in\Omega:|x-y|\sim 2^{j}r_{0}\}. It follows from (2.6) and Caccippoli’s inequality that

Ej|yN(x,y)|𝑑y\displaystyle\int_{E_{j}}|\nabla_{y}N(x,y)|\,dy C(2jr0)d2(Ej|yN(x,y)|2𝑑y)12C(2jr0)d21(Ej|N(x,y)|2𝑑y)12\displaystyle\leq C(2^{j}r_{0})^{\frac{d}{2}}\left(\int_{E_{j}}|\nabla_{y}N(x,y)|^{2}\,dy\right)^{\frac{1}{2}}\leq C(2^{j}r_{0})^{\frac{d}{2}-1}\left(\int_{E_{j}}|N(x,y)|^{2}\,dy\right)^{\frac{1}{2}} (4.10)
C(2jr0)d21(2jr0)d2(1+2j)k(2jr0)d2=C2jr0(1+2j)k\displaystyle\leq C(2^{j}r_{0})^{\frac{d}{2}-1}\cdot\frac{(2^{j}r_{0})^{\frac{d}{2}}}{(1+2^{j})^{k}(2^{j}r_{0})^{d-2}}=\frac{C2^{j}r_{0}}{(1+2^{j})^{k}}

where Hölder’s inequality was also used in the first inequality. Taking k=2k=2, we have

|u1(x)|\displaystyle|u_{1}(x)| Cm(x,V)1/q{Ω|yN(x,y)f(y)|pdy}1/p\displaystyle\leq\frac{C}{m(x,V)^{1/q}}\left\{\int_{\Omega}|\nabla_{y}N(x,y)\|f(y)|^{p}dy\right\}^{1/p}

This combining with Proposition 2.1 gives that

Ω|V12(x)u1(x)|p𝑑x\displaystyle\int_{\Omega}|V^{\frac{1}{2}}(x)u_{1}(x)|^{p}dx CΩ|m(x,V)u1|p𝑑xCΩ|f(y)|p{Ωm(x,V)|yN(x,y)|dx}𝑑y.\displaystyle\leq C\int_{\Omega}\left|m(x,V)u_{1}\right|^{p}dx\leq C\int_{\Omega}|f(y)|^{p}\left\{\int_{\Omega}m(x,V)|\nabla_{y}N(x,y)|dx\right\}dy.

For fixed yΩy\in\partial\Omega, Let r1=1m(y,V)r_{1}=\frac{1}{m(y,V)} and Fj={xΩ:|xy|2jr1}F_{j}=\{x\in\Omega:|x-y|\sim 2^{j}r_{1}\}. Together Lemma 2.3 with (4.10) yields that

Fj|yN(x,y)|m(x,V)𝑑xC2jr1(1+2j)k(1+2j)k0r11=C2j(1+2j)2\int_{F_{j}}|\nabla_{y}N(x,y)|m(x,V)\,dx\leq\frac{C2^{j}r_{1}}{(1+2^{j})^{k}}\cdot(1+2^{j})^{k_{0}}r_{1}^{-1}=\frac{C2^{j}}{(1+2^{j})^{2}}

where kk is chosen to be k0+2k_{0}+2 in the second inequality. Thus we have

Ωm(x,V)|yN(x,y)|𝑑xCj=2j(1+2j)2C\int_{\Omega}m(x,V)|\nabla_{y}N(x,y)|dx\leq C\sum_{j=-\infty}^{\infty}\frac{2^{j}}{(1+2^{j})^{2}}\leq C (4.11)

which implies for 1<p<1<p<\infty,

V12u1Lp(Ω)CfLp(Ω).\|V^{\frac{1}{2}}u_{1}\|_{L^{p}(\Omega)}\leq C\|f\|_{L^{p}(\Omega)}. (4.12)

Let hC0(Ω)h\in C_{0}^{\infty}(\Omega) and vv solves

{Δv+Vv=hin Ω,vν=0on Ω.\displaystyle\begin{cases}-\Delta v+Vv=h&\text{in }\Omega,\\[2.84544pt] \hskip 28.00006pt\frac{\partial v}{\partial\nu}=0&\text{on }\partial\Omega.\end{cases}

Then as in (4.6)

|Ωu2h𝑑x|=|Ωgv𝑑σ|gB1p,p(Ω)vLq(Ω).\displaystyle\left|\int_{\Omega}u_{2}h\,dx\right|=\left|\int_{\partial\Omega}gv\,d\sigma\right|\leq\|g\|_{B^{-\frac{1}{p},p}(\partial\Omega)}\|\nabla v\|_{L^{q}(\Omega)}.

By a duality argument, it suffices to show that

Ω|v|q𝑑xCΩ|h(x)|qm(x,V)q𝑑x.\int_{\Omega}|\nabla v|^{q}\,dx\leq C\int_{\Omega}\frac{|h(x)|^{q}}{m(x,V)^{q}}\,dx. (4.13)

To show (4.13), note that

|v(x)|\displaystyle|\nabla v(x)| =|ΩxN(x,y)h(y)𝑑σ(y)|\displaystyle=\left|\int_{\Omega}\nabla_{x}N(x,y)h(y)\,d\sigma(y)\right| (4.14)
C(Ω|xN(x,y)|m(y,V)p𝑑y)1p(Ω|xN(x,y)||h(y)|qm(y,V)q𝑑y)1q.\displaystyle\leq C\left(\int_{\Omega}|\nabla_{x}N(x,y)|m(y,V)^{p}\,dy\right)^{\frac{1}{p}}\left(\int_{\Omega}|\nabla_{x}N(x,y)|\frac{|h(y)|^{q}}{m(y,V)^{q}}\,dy\right)^{\frac{1}{q}}.

A similar computation as (4.11) shows

Ω|xN(x,y)|m(y,V)p𝑑yCm(x,V)p1.\int_{\Omega}|\nabla_{x}N(x,y)|m(y,V)^{p}\,dy\leq Cm(x,V)^{p-1}. (4.15)

Plugging (4.11) and (4.15) into (4.14) gives that

Ω|v|q𝑑x\displaystyle\int_{\Omega}|\nabla v|^{q}\,dx CΩ|h(y)|qm(y,V)qΩm(x,V)|xN(x,y)|𝑑x𝑑yCΩ|h(y)|qm(y,V)q𝑑y.\displaystyle\leq C\int_{\Omega}\frac{|h(y)|^{q}}{m(y,V)^{q}}\int_{\Omega}m(x,V)|\nabla_{x}N(x,y)|\,dxdy\leq C\int_{\Omega}\frac{|h(y)|^{q}}{m(y,V)^{q}}dy.

The uniqueness for p>2p>2 and 1<p<21<p<2 follows from the uniqueness for p=2p=2 and the duality argument. And a limit argument leads the existence. ∎

References

  • [1] P. Auscher, On necessary and sufficient conditions for Lp{L}^{p}-estimates of Riesz transforms associated to elliptic operators on n\mathbb{{R}}^{n} and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, xviii+75 pp.
  • [2] P. Auscher and M. Qafsaoui, Observations on W1,p{W}^{1,p} estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 2, 487–509.
  • [3] S. Byun, Elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc. 357 (2005), no. 3, 1025–1046.
  • [4] S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math. 57 (2004), no. 10, 1283–1310.
  • [5]  , The conorma derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains, Proc. London Math. Soc. 90 (2005), 245–272.
  • [6]  , Gradient estimates for elliptic systems in non-smooth domains, Math. Ann. 341 (2008), no. 3, 629–650.
  • [7] H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arch Rational Mech Anal 196 (2010), no. 1, 25–70.
  • [8] E. Fabes, O. Méndez, and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998), 323–368.
  • [9] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206.
  • [10] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), no. 1, 125–158.
  • [11] J. Geng, W1,p{W}^{1,p} estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains, Adv. Math. 229 (2012), no. 4, 2427–2448.
  • [12]  , Homogenization of elliptic problems with Neumann boundary conditions in non-smooth domains, Acta Math. Sin. (Engl. Ser.) 34 (2018), 612–628.
  • [13] J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains., J. Funct. Anal. 259 (2010), no. 8, 2147–2164.
  • [14] J. Geng and Z. Xu, On the Schrödinger equations with BB_{\infty} potentials in the region above a Lipschitz graph, submitted.
  • [15] P Grisvard, Elliptic problems in nonsmooth domains, SIAM, Philadelphia, 2011.
  • [16] D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219.
  • [17] M. Lee and J. Ok, Interior and boundary W1,q{W}^{1,q}-estimates for quasi-linear elliptic equations of Schrödinger type, J. Differ. Equa 269 (2020), no. 5, 4406–4439.
  • [18] M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163 (1999), no. 2, 181–251.
  • [19] R. Righi and Z. Shen, Dirichlet problems in perforated domains, arXiv:2402.13021, 2024.
  • [20] Z. Shen, On the Neumann problem for Schro¨\ddot{o}dinger operators in Lipschitz domains, Indiana Univ. Math. J. 43 (1994), no. 1, 143–176.
  • [21]  , Lp{L}^{p} estimates for Schro¨\ddot{o}dinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 224–251.
  • [22]  , On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal. 167 (1999), no. 2, 521–564.
  • [23]  , Bounds of Riesz transforms on Lp{L}^{p} spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 173–197.
  • [24]  , The Lp{L}^{p} boundary value problems on Lipschitz domains, Adv. Math. 216 (2007), no. 1, 212–254.
  • [25]  , Periodic homogenization of elliptic systems, Operator Theory: Advances and Applications, vol. 269, Advances in Partial Differential Equations (Basel), Birkha¨{\rm\ddot{a}}user/Springer, Cham, 2018.

Ziyi Xu, School of Mathematics and Statistics, Lanzhou University, Lanzhou, P.R. China.

E-mail: 120220907780@lzu.edu.cn