This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Wavelets for iterated function systems

Jana Bohnstengel and Marc Kesseböhmer Universität Bremen, Fachbereich 3 - Mathematik und Informatik, Bibliothekstrasse 1, 28349 Bremen, Germany
(Date: August 13, 2025)
Abstract.

We construct a wavelet and a generalised Fourier basis with respect to some fractal measures given by one-dimensional iterated function systems. In this paper we will not assume that these systems are given by linear contractions generalising in this way some previous work of Jørgensen and Dutkay to the non-linear setting.

Key words and phrases:
wavelets, scaling functions, Fourier basis, fractals, iterated function systems.
2000 Mathematics Subject Classification:
42C40, 28A80

1. Introduction

In this paper we will construct wavelets and generalised Fourier bases on fractal sets constructed via iterated function systems (IFS), which we do not assume to be linear. More precisely, the wavelets under considerations are constructed in the L2L^{2}-space with respect to the measure of maximal entropy transported to the so-called enlarged fractal, which is dense in \mathbb{R}.

It is a natural approach to consider wavelets in the context of such fractals since both carry a self-similar structure; the fractal inherits it from the prescribed scaling of the IFS while the wavelet satisfies a certain scaling identity (see e.g. (2.1)). Another interesting aspect is that both wavelets and fractals are used in image compression, where both have advantages and disadvantages like blurring by zooming in or long compression times. Because of these common features it is of interest to develop a common mathematical foundation of these objects not least to find out whether it can have an impact on the theory of data or image compression.

The aim of the wavelet analysis is to approximate functions by using superposition from a wavelet basis. This basis is supposed to be orthonormal and derived from a finite set of functions, the so-called mother wavelets (cf. Proposition 2.9). To obtain such a basis we employ the multiresolution analysis (MRA) (cf. Definition 2.4). Our main goal is therefore to set up a MRA in the non-linear situation. For this we generalise some ideas from [DJ06, JP98a], which are restricted to homogeneous linear cases with respect to the restriction of certain Hausdorff measures.

In Section 3 we are also going to generalise the construction of the Fourier basis in the sense of [DJ06] to our non-linear setting. This will be done in virtue of a homeomorphism conjugating the IFS under consideration with a linear homogeneous IFS. As a consequent of this construction we are able to set up a generalised Fourier basis also for such linear IFS which do not a allow a Fourier basis in the sense of [DJ06] (cf. Example 4.4).

2. Wavelets

2.1. Enlarged fractal and the measure of maximal entropy

The family

𝒮:=(σi:[0,1][0,1]:ip¯:={0,,p1})\mathcal{S}:=\left(\sigma_{i}:\left[0,1\right]\to\left[0,1\right]:i\in\underline{p}:=\left\{0,\ldots,p-1\right\}\right)

consisting of pp\in\mathbb{N} injective contractions σi\sigma_{i}, which are uniformly Lipschitz with Lipschitz-constant 0<c𝒮<10<c_{\mathcal{S}}<1, i.e. |σi(x)σi(y)|c𝒮|xy||\sigma_{i}(x)-\sigma_{i}(y)|\leq c_{\mathcal{S}}|x-y|, x,y[0,1]x,y\in[0,1], ip¯i\in\underline{p}. We will always assume that all contractions have the same orientation (in fact are increasing) and that the IFS satisfies the open set condition (OSC), i.e. i=0p1σi((0,1))(0,1)\bigcup_{i=0}^{p-1}\sigma_{i}((0,1))\subset(0,1) and σi((0,1))σj((0,1))=\sigma_{i}((0,1))\cap\sigma_{j}((0,1))=\varnothing, iji\neq j.

It is well known that there exists a unique non empty compact set C[0,1]C\subset[0,1] such that C=i=0p1σi(C)C=\bigcup_{i=0}^{p-1}\sigma_{i}(C). This set will be denoted the limit set of 𝒮\mathcal{S}. Throughout, we will assume that the IFS (σi)i=0p1\left(\sigma_{i}\right)_{i=0}^{p-1} is arrange in ascending order, that is σi([0,1])\sigma_{i}([0,1]) lies to the left of σi+1([0,1])\sigma_{i+1}([0,1]) for all i=0,,p2i=0,\dots,p-2.

It is always possible to extend the IFS 𝒮\mathcal{S} by linear contractions to obtain the IFS

𝒯=(τi:[0,1][0,1]:iN¯:={0,,N1})\mathcal{T}=\left(\tau_{i}:\left[0,1\right]\to\left[0,1\right]:i\in\underline{N}:=\left\{0,\ldots,N-1\right\}\right)

which leaves no gaps. More precisely, there exists a number NpN\geq p and a set AN¯A\subset\underline{N} such that

  1. (1)

    {τj:jA}={σi:ip¯}\left\{\tau_{j}:j\in A\right\}=\left\{\sigma_{i}:i\in\underline{p}\right\},

  2. (2)

    τ0(0)=0\tau_{0}\left(0\right)=0, τN1(1)=1\tau_{N-1}\left(1\right)=1 and τi(1)=τi+1(0)\tau_{i}\left(1\right)=\tau_{i+1}\left(0\right), i=1,,N2i=1,\ldots,N-2,

  3. (3)

    iN¯A\forall i\in\underline{N}\setminus A: τi:[0,1][0,1]\tau_{i}:\left[0,1\right]\to\left[0,1\right] is an affine increasing contraction.

In the following the uniform Lipschitz constant for the IFS 𝒯\mathcal{T} will be denoted by c𝒯c_{\mathcal{T}}.

Remark 2.1.

Note that it is not essential to choose the “gap filling functions” τi\tau_{i}, iN¯Ai\in\underline{N}\setminus A, to be affine. Our analysis would work for any set of contracting injections as long as (1), (2) and (3) above are satisfied. Nevertheless, the particular choice has an influence on the the set RR and the measure HH defined below. Also note that more than one gap filling function can be defined on one gap. Throughout, let

ρj,N:xx+jN.\rho_{j,N}:\,x\mapsto\frac{x+j}{N}.

Then for instance, if 𝒮\mathcal{S} consists of functions σi(x)=x+aiN\sigma_{i}(x)=\frac{x+a_{i}}{N}, aiN¯a_{i}\in\underline{N}, ip¯,i\in\underline{p}, it is a natural choice to extend 𝒮\mathcal{S} by the functions τi(x)=ρi,N(x)\tau_{i}(x)=\rho_{i,N}(x), iN¯\Ai\in\underline{N}\backslash A, such that 𝒯\mathcal{T} is equal to {ρi,N:iN¯}\left\{\rho_{i,N}:i\in\underline{N}\right\}.

For ω:=(i1,,ik)N¯k\omega:=(i_{1},\dots,i_{k})\in\underline{N}^{k} let τω:=τikτi1\tau_{\omega}:=\tau_{i_{k}}\circ\dots\circ\tau_{i_{1}} and τ=id\tau_{\varnothing}=\mbox{id} be the identity on [0,1]\left[0,1\right]. Next we define the enlarged fractal RR in two steps. First we fill the gaps of the fractal CC with scaled copies of itself by letting

R[0,1]:=k0ωN¯kτω(C),R_{[0,1]}:=\bigcup_{k\geq 0}\bigcup_{\omega\in\underline{N}^{k}}\tau_{\omega}(C),

and then set

R:=R[0,1]+=lR[0,1]+l.R:=R_{\left[0,1\right]}+\mathbb{Z}=\bigcup_{l\in\mathbb{Z}}R_{[0,1]}+l.

Now let

Σ:={(i1,,ik)N¯k:k,i1A}\Sigma:=\left\{(i_{1},\dots,i_{k})\in\underline{N}^{k}:\>k\in\mathbb{N},\>i_{1}\notin A\right\}

be the set of finite words over the alphabet N¯\underline{N} such that the initial letter is not from AA. Then we can also write R[0,1]R_{[0,1]} as the disjoint union

R[0,1]=ωΣ{}τω(C).R_{[0,1]}=\bigcup_{\omega\in\Sigma\cup\left\{\varnothing\right\}}\tau_{\omega}(C).

2.1.1. Fractal measures on the enlarged fractal

In this section we will introduce the appropriate measure HH on \mathbb{R} needed for the MRA. The measure will be first defined on [0,1][0,1] and then on \mathbb{R}. The construction is analogue to the construction of R[0,1]R_{[0,1]} and RR. Let μ\mu be the self-similar Borel probability measure supported on CC associated to 𝒮\mathcal{S} with constant weights, i.e. the unique probability measure μ\mu satisfying μ=1piAμτi1\mu=\frac{1}{p}\sum_{i\in A}\mu\circ\tau_{i}^{-1}. This measure has the property that each set of the form τω(C)\tau_{\omega}(C), ωN¯k\omega\in\underline{N}^{k}, has measure pkp^{-k}. Thus, μ\mu is the measure of maximal entropy in the sense of a shift dynamical system.

For ω=(i1,,ik)N¯k\omega=(i_{1},\dots,i_{k})\in\underline{N}^{k} we let |ω|=k\left|\omega\right|=k denote the length of ω\omega and ||=0\left|\varnothing\right|=0.

Fact 2.2.

The function ν:¯0+\nu:\mathcal{B}\rightarrow\overline{\mathbb{R}}_{0}^{+} given by

ν:=ωΣ{}p|ω|μτω1\nu:=\sum_{\omega\in\Sigma\cup\left\{\varnothing\right\}}p^{-\left|\omega\right|}\mu\circ\tau_{\omega}^{-1}

defines a measure on [0,1]\left[0,1\right]. Also, the sum of its translates

H:0+,Bkν(B+k),H:\mathcal{B}\to\mathbb{R}_{0}^{+},\>B\mapsto\sum_{k\in\mathbb{Z}}\nu(B+k),

defines a measure. Its essential support is equal to RR.

Throughout, for xx\in\mathbb{R}, let

σ(x):=k𝟙[k,k+1)(x)(Nk+i=0N1𝟙[τi(0),τi(1))(xk)(τi1(xk)+i))\sigma(x):=\sum_{k\in\mathbb{Z}}\mathbbm{1}_{[k,k+1)}\left(x\right)\left(Nk+\sum_{i=0}^{N-1}\mathbbm{1}_{[\tau_{i}(0),\tau_{i}(1))}(x-k)\left(\tau_{i}^{-1}(x-k)+i\right)\right)

denote the scaling function associated to 𝒯\mathcal{T}. Note that σ1\sigma^{-1} is given, for xx\in\mathbb{R}, by

σ1(x)=k𝟙[Nk,N(k+1))(x)(k+i=0N1𝟙[i,i+1)(xNk)(τi(xiNk))).\sigma^{-1}(x)=\sum_{k\in\mathbb{Z}}\mathbbm{1}_{[Nk,N(k+1))}\left(x\right)\left(k+\sum_{i=0}^{N-1}\mathbbm{1}_{[i,i+1)}(x-Nk)\left(\tau_{i}(x-i-Nk)\right)\right).
Example.

Let us give an example for a scaling function σ\sigma.

Take the IFS 𝒮=(σ0,σ1)\mathcal{S=}\left(\sigma_{0},\sigma_{1}\right) and the extended IFS 𝒯=(τ0,τ1,τ2)\mathcal{T}=\left(\tau_{0},\tau_{1},\tau_{2}\right) with σ0=τ0:xx25+25x\sigma_{0}=\tau_{0}:\,x\mapsto\frac{x^{2}}{5}+\frac{2}{5}x, τ1:xx5+35\tau_{1}:\,x\mapsto\frac{x}{5}+\frac{3}{5} and σ1=τ2:xlog(x+1)5log(2)+45\sigma_{1}=\tau_{2}:\,x\mapsto\frac{\log(x+1)}{5\cdot\log(2)}+\frac{4}{5}. The inverse branches of the maps are illustrated in Figure 2.1LABEL:sub@branches_IFS. The scaling function σ\sigma and the inverse of the scaling function σ1\sigma^{-1} are then given by:

σ(x)=\displaystyle\sigma(x)= k𝟙[k,k+1)(x)(𝟙[0,3/5)(xk)(5(xk)+11)\displaystyle\sum_{k\in\mathbb{Z}}\mathbbm{1}_{[k,k+1)}\left(x\right)\Bigg{(}\mathbbm{1}_{[0,3/5)}(x-k)\left(\sqrt{5(x-k)+1}-1\right)
+𝟙[3/5,4/5)(xk)(5(xk)2)+𝟙[4/5,1)(xk)(25(xk)4+1)+3k),\displaystyle+\mathbbm{1}_{[3/5,4/5)}(x-k)\left(5(x-k)-2\right)+\mathbbm{1}_{[4/5,1)}(x-k)\left(2^{5(x-k)-4}+1\right)+3k\Bigg{)},
σ1(x)=\displaystyle\sigma^{-1}(x)= k𝟙[3k,3(k+1))(x)(𝟙[0,1)(x3k)((x3k)25+25x15k)\displaystyle\sum_{k\in\mathbb{Z}}\mathbbm{1}_{[3k,3(k+1))}\left(x\right)\Bigg{(}\mathbbm{1}_{[0,1)}(x-3k)\left(\frac{(x-3k)^{2}}{5}+\frac{2}{5}x-\frac{1}{5}k\right)
+𝟙[1,2)(x3k)(x5+25+25k)+𝟙[2,3)(x3k)(log(x3k1)5log(2)+45+k)).\displaystyle+\mathbbm{1}_{[1,2)}(x-3k)\left(\frac{x}{5}+\frac{2}{5}+\frac{2}{5}k\right)+\mathbbm{1}_{[2,3)}(x-3k)\left(\frac{\log(x-3k-1)}{5\log(2)}+\frac{4}{5}+k\right)\Bigg{)}.

The graph of σ\sigma is shown in Figure 2.1LABEL:sub@scaling_function.

Refer to caption
( (a))
Refer to caption
( (b))
Figure 2.1. The expanding inverse branches of an IFS with corresponding scaling function σ\sigma.

Let us now turn back to the measure HH.

Lemma 2.3.

We have Hσ=pHH\circ\sigma=pH and in particular, for all iN¯i\in\underline{N}, ντi=p1ν\nu\circ\tau_{i}=p^{-1}\nu.

Proof.

For EE\in\mathcal{B} we have

H(σ(E))\displaystyle H(\sigma(E)) =kν(σ(E)+k)=i=0N1lν(σ(E)Nli)\displaystyle=\sum_{k\in\mathbb{Z}}\nu(\sigma(E)+k)=\sum_{i=0}^{N-1}\sum_{l\in\mathbb{Z}}\nu(\sigma(E)-Nl-i)
=lν(i=0N1τi1(El)).\displaystyle=\sum_{l\in\mathbb{Z}}\nu\left(\bigcup_{i=0}^{N-1}\tau_{i}^{-1}(E-l)\right).

Since

ν(i=0N1τi1(El))\displaystyle\!\!\!\!\!\!\!\!\!\!\nu\left(\bigcup_{i=0}^{N-1}\tau_{i}^{-1}(E-l)\right)
=ωΣ{}p|ω|μ(τω1(i=0N1τi1(El)))\displaystyle=\sum_{\omega\in\Sigma\cup\left\{\varnothing\right\}}p^{-|\omega|}\mu\left(\tau_{\omega}^{-1}\left(\bigcup_{i=0}^{N-1}\tau_{i}^{-1}(E-l)\right)\right)
=i=0N1ωΣ{}p|ω|μ(τω1(τi1(El)))\displaystyle=\sum_{i=0}^{N-1}\sum_{\omega\in\Sigma\cup\left\{\varnothing\right\}}p^{-|\omega|}\mu(\tau_{\omega}^{-1}(\tau_{i}^{-1}(E-l)))
=i=0N1ωΣp|ω|μ(τωi1(El))+i=0N1μ(τi1(El))\displaystyle=\sum_{i=0}^{N-1}\sum_{\omega\in\Sigma}p^{-|\omega|}\mu(\tau_{\omega i}^{-1}(E-l))+\sum_{i=0}^{N-1}\mu(\tau_{i}^{-1}(E-l))
=pωΣp|ω|μ(τω1(El))+iAμ(τi1(El))+iAμ(τi1(El))\displaystyle=p\sum_{\omega\in\Sigma^{*}}p^{-|\omega|}\mu(\tau_{\omega}^{-1}(E-l))+\sum_{i\notin A}\mu(\tau_{i}^{-1}(E-l))+\sum_{i\in A}\mu(\tau_{i}^{-1}(E-l))
=pωΣp|ω|μ(τω1(El))+pμ(El)\displaystyle=p\sum_{\omega\in\Sigma}p^{-|\omega|}\mu(\tau_{\omega}^{-1}(E-l))+p\mu(E-l)
=pν(El),\displaystyle=p\nu(E-l),

where Σ={(i1,,ik)N¯k:k2,i1A}\Sigma^{*}=\left\{(i_{1},\dots,i_{k})\in\underline{N}^{k}:\>k\geq 2,\>i_{1}\notin A\right\}, we have H(σ(E))=pH(E)H(\sigma(E))=pH(E). ∎

2.2. Construction of wavelet bases for general self-similar fractals

In this section we will show how to find a wavelet basis for L2(H)L^{2}\left(H\right). This wavelet basis is constructed via an MRA. In our context the definition of the MRA is given as follows.

Definition 2.4.

Let σ:\sigma:\mathbb{R}\to\mathbb{R} be a continuous increasing function, such that, for some fixed N,N\in\mathbb{N},

σ(x+k)=σ(x)+Nk,x[0,1],k.\sigma(x+k)=\sigma(x)+Nk,\quad x\in\left[0,1\right],\>k\in\mathbb{Z}.

Furthermore, let HH be a measure on (,)\left(\mathbb{R},\mathcal{B}\right) such that H(A)=H(A+k)H\left(A\right)=H\left(A+k\right), AA\in\mathcal{B}, kk\in\mathbb{Z} and H(σ(A))=pH(A)H(\sigma(A))=pH(A), for some pp\in\mathbb{N}. We say (H,σ)\left(H,\sigma\right) allows a multiresolution analysis (MRA) if there exists a family {Vj:j}\{V_{j}:j\in\mathbb{Z}\} of closed subspaces of L2(H)L^{2}\left(H\right) and a function φL2(H)\varphi\in L^{2}\left(H\right) (called the father wavelet) such that the following conditions are satisfied.

  1. (1)

    V2V1V0V1V2\dots\subset V_{2}\subset V_{1}\subset V_{0}\subset V_{-1}\subset V_{-2}\subset\dots,

  2. (2)

    cljVj=L2(H)\text{cl}\bigcup_{j\in\mathbb{Z}}V_{j}=L^{2}(H),

  3. (3)

    jVj={0}\bigcap_{j\in\mathbb{Z}}V_{j}=\{0\},

  4. (4)

    fVjfσVj1f\in V_{j}\iff f\circ\sigma\in V_{j-1}, jj\in\mathbb{Z},

  5. (5)

    {xφ(xn):n}\{x\mapsto\varphi(x-n):\;n\in\mathbb{Z}\} is an orthonormal basis in V0V_{0}.

Note that for σ:xNx\sigma:x\mapsto Nx and HH chosen to be the Lebesgue measure, this definition coincides with the classical definition of the MRA (see e.g. [Dau92]).

Let us now define the shift operator TT and the scaling operator UU on L2(H)L^{2}(H) by

(Tg)(x)=g(x1)and (Ug)(x)=1pg(σ1(x)),gL2(H),x.(Tg)(x)=g(x-1)\;\mbox{and }\;(Ug)(x)=\frac{1}{\sqrt{p}}g(\sigma^{-1}(x)),\;g\in L^{2}(H),\>x\in\mathbb{R}.
Remark 2.5.

Both operators UU and TT are unitary.

For the remaining part of this section we will demonstrate that the MRA can be satisfied if we choose the father wavelet φ\varphi to be the characteristic function of the fractal CC, i.e.

φ:=𝟙C.\varphi:=\mathbbm{1}_{C}.

First we observe that the function φ\varphi satisfies the following scaling equation for HH-almost every xx\in\mathbb{R}.

φ(x)\displaystyle\varphi(x) =𝟙iAτi(C)(x)=iA𝟙τi(C)(x)=iA𝟙C(τi1(x))=iAφ(τi1(x))\displaystyle=\mathbbm{1}_{\bigcup_{i\in A}\tau_{i}(C)}(x)=\sum_{i\in A}\mathbbm{1}_{\tau_{i}(C)}(x)=\sum_{i\in A}\mathbbm{1}_{C}(\tau_{i}^{-1}(x))=\sum_{i\in A}\varphi(\tau_{i}^{-1}(x))
=iAφ(σ(x)i).\displaystyle=\sum_{i\in A}\varphi(\sigma(x)-i). (2.1)

By virtue of the so-called low-pass filter m0m_{0} there exists a relation between the two operators TT and U.U. Let us take the filter m0m_{0} to be given by

m0(z):=1piAzi,z𝕋:={z:|z|=1}.m_{0}(z):=\frac{1}{\sqrt{p}}\sum_{i\in A}z^{i},\qquad z\in\mathbb{T}:=\left\{z\in\mathbb{C}:|z|=1\right\}.

Note that m0m_{0} can also be regarded as a function on the set of unitary operators acting on L2(H)L^{2}\left(H\right). For this choice the following proposition holds.

Proposition 2.6.

The above defined operators UU and TT satisfy the following relations.

  1. (1)

    Tkφ|TφH=δk,\left\langle T^{k}\varphi|T^{\ell}\varphi\right\rangle_{H}=\delta_{\ell k}, k,k,\ell\in\mathbb{Z},

  2. (2)

    Uφ=m0(T)φ,U\varphi=m_{0}\left(T\right)\varphi,

  3. (3)

    UTU1=TN.UTU^{-1}=T^{N}.

Proof.

ad (1): Since H((C+k)(C+))=0H\left((C+k)\cap(C+\ell)\right)=0 for kk\not=\ell and HH is invariant with respect to the mapping xx+1x\mapsto x+1, we have,

Tkφ|TφH=Tkφ(x)Tφ(x)¯𝑑H(x)=𝟙C(xk)𝟙C(x)¯𝑑H(x)=𝟙C+k(x)𝟙C+(x)𝑑H(x)=δkl.\begin{array}[]{lll}\left\langle T^{k}\varphi|T^{\ell}\varphi\right\rangle_{H}&=&\int T^{k}\varphi(x)\overline{T^{\ell}\varphi(x)}\,dH(x)\\ &=&\int\mathbbm{1}_{C}(x-k)\overline{\mathbbm{1}_{C}(x-\ell)}\,dH(x)\\ &=&\int\mathbbm{1}_{C+k}(x)\mathbbm{1}_{C+\ell}(x)\,dH(x)=\delta_{kl}.\end{array}

ad (2): For xx\in\mathbb{R} we have

Uφ(x)\displaystyle U\varphi(x) =1p𝟙C(σ1(x))=1p𝟙σ(C)(x)=1p𝟙iA(τi1(τi(C)))+i(x)\displaystyle=\frac{1}{\sqrt{p}}\mathbbm{1}_{C}\left(\sigma^{-1}(x)\right)=\frac{1}{\sqrt{p}}\mathbbm{1}_{\sigma\left(C\right)}\left(x\right)=\frac{1}{\sqrt{p}}\mathbbm{1}_{\cup_{i\in A}\left(\tau_{i}^{-1}\left(\tau_{i}(C)\right)\right)+i}\left(x\right)
=1piA𝟙C(xi)=m0(T)φ(x).\displaystyle=\frac{1}{\sqrt{p}}\sum_{i\in A}\mathbbm{1}_{C}(x-i)=m_{0}(T)\varphi(x).

ad (3): Let fL2(H)f\in L^{2}(H) and xx\in\mathbb{R}. Then

(UTU1f)(x)=f(σ(σ1(x)1)).\left(UTU^{-1}f\right)(x)=f\left(\sigma(\sigma^{-1}(x)-1)\right).

For x[Nk,N(k+1))x\in[Nk,N(k+1)) we have that σ1(x)=τj(xjNk)+k\sigma^{-1}(x)=\tau_{j}(x-j-Nk)+k for some j{0,,N1}j\in\{0,\dots,N-1\}. Thus, σ1(x)[k,k+1)\sigma^{-1}(x)\in[k,k+1) and σ1(x)1[k1,k)\sigma^{-1}(x)-1\in[k-1,k). Now observe

σ(σ1(x)1)\displaystyle\sigma(\sigma^{-1}(x)-1) =σ(τj(xjNk)+k1)\displaystyle=\sigma\left(\tau_{j}(x-j-Nk)+k-1\right)
=i=0N1𝟙[τi(0),τi(1))(τj(xjNk)+k1(k1))\displaystyle=\sum_{i=0}^{N-1}\mathbbm{1}_{[\tau_{i}(0),\tau_{i}(1))}(\tau_{j}(x-j-Nk)+k-1-(k-1))
×(τi1(τj(xjNk)+k1(k1))+i)+N(k1)\displaystyle\qquad\qquad\times\left(\tau_{i}^{-1}\left(\tau_{j}(x-j-Nk)+k-1-(k-1)\right)+i\right)+N(k-1)
=τj1(τj(xjNk)+k1(k1))+j+N(k1)\displaystyle=\tau_{j}^{-1}\left(\tau_{j}(x-j-Nk)+k-1-(k-1)\right)+j+N(k-1)
=xN.\displaystyle=x-N.

Consequently, f(σ(σ1(x)1))=f(xN)=TNf(x)f\left(\sigma(\sigma^{-1}(x)-1)\right)=f(x-N)=T^{N}f(x).∎

Remark 2.7.

Notice that

UjTkφ(x)\displaystyle U^{j}T^{k}\varphi(x) =(1p)jφ(σj(x)k)=(1p)j𝟙C(σj(x)k)\displaystyle=\left(\frac{1}{\sqrt{p}}\right)^{j}\varphi(\sigma^{-j}(x)-k)=\left(\frac{1}{\sqrt{p}}\right)^{j}\mathbbm{1}_{C}(\sigma^{-j}(x)-k)
=(1p)j𝟙σj(C+k)(x).\displaystyle=\left(\frac{1}{\sqrt{p}}\right)^{j}\mathbbm{1}_{\sigma^{j}(C+k)}(x).
Theorem 2.8.

The pair (σ,H)(\sigma,H) allows an MRA if we set φ:=𝟙C\varphi:=\mathbbm{1}_{C} to be the father wavelet and let V0:=clspan{Tkφ:k}V_{0}:=\operatorname{cl}\operatorname{span}\left\{T^{k}\varphi:k\in\mathbb{Z}\right\}, Vj:=clspan{UjTkφ:k}V_{j}:=\operatorname{cl}\operatorname{span}\left\{U^{j}T^{k}\varphi:k\in\mathbb{Z}\right\}, jj\in\mathbb{Z}. In particular, we have

clspan{UnTkφ:k,n}=L2(H).\operatorname{cl}\operatorname{span}\left\{U^{n}T^{k}\varphi:k,n\in\mathbb{Z}\right\}=L^{2}(H).
Proof.

To prove that this gives an MRA, we show that the conditions (1) to (5) from Definition 2.4 are satisfied.

ad (1): Recall that Uφ=m0(T)φU\varphi=m_{0}(T)\varphi and UTU1=TNUTU^{-1}=T^{N}. Consequently,

U1Tkφ=U1m0(T)U1Tkφ=U2m0(TN)Tkφ.U^{-1}T^{k}\varphi=U^{-1}m_{0}(T)U^{-1}T^{k}\varphi=U^{-2}m_{0}(T^{N})T^{k}\varphi.

This shows that V1V2V_{-1}\subset V_{-2} and iterating this argument it follows that V1V0V1\dots V_{1}\subset V_{0}\subset V_{-1}\subset\dots.

ad (3): Clearly 0jVj0\in\bigcap_{j\in\mathbb{Z}}V_{j}. Recall that RR is equal to the essential support of HH. Now take fjVjf\in\bigcap_{j\in\mathbb{Z}}V_{j}. Then fVjf\in V_{j} for all jj\in\mathbb{Z}. Notice that if 0fVj0\neq f\in V_{j} for some j0j_{0}\in\mathbb{Z} it follows that f|σj0(C+k)=c𝟙σj0(C+k)f|_{\sigma^{j_{0}}(C+k)}=c\mathbbm{1}_{\sigma^{j_{0}}(C+k)}, c0c\neq 0 and since (Vj)jj0\left(V_{j}\right)_{j\leq j_{0}} is a nested sequence it follows that for every jj0j\leq j_{0} there exists exactly one kjk_{j}\in\mathbb{Z} such that f|σj(C+kj)=c𝟙σj(C+kj)f|_{\sigma^{j}(C+k_{j})}=c\mathbbm{1}_{\sigma^{j}(C+k_{j})} and consequently ff takes the value cc on the nested union jj0σj(C+kj)\bigcup_{j\leq j_{0}}\sigma^{j}(C+k_{j}). Since this union has infinite measure, ff must be constantly 0.

ad (4): Let fVjf\in V_{j}, i.e. for some bkb_{k}\in\mathbb{C}

f(x)=kbkUjTkφ(x)=kckφ(σj(x)k)f(x)=\sum_{k}b_{k}U^{j}T^{k}\varphi(x)=\sum_{k}c_{k}\varphi(\sigma^{-j}(x)-k)

and

f(σ(x))=kbkUjTkφ(σ(x))=kckφ(σj(σ(x))k)=kckφ(σj+1(x)k)=kdkUj1Tkφ(x).\begin{array}[]{lllll}f(\sigma(x))&=&\sum_{k}b_{k}U^{j}T^{k}\varphi(\sigma(x))&=&\sum_{k}c_{k}\varphi(\sigma^{-j}(\sigma(x))-k)\\ &=&\sum_{k}c_{k}\varphi(\sigma^{-j+1}(x)-k)&=&\sum_{k}d_{k}U^{j-1}T^{k}\varphi(x).\end{array}

Thus, fσVj1f\circ\sigma\in V_{j-1}.

ad (5): In Proposition 2.6 it has been shown that (Tkφ)k\left(T^{k}\varphi\right)_{k\in\mathbb{Z}} is orthonormal. The spanning condition is trivially satisfied.

ad (2): First we will shown that 𝟙F\mathbbm{1}_{F} for F|[k,k+1]modHF\in\mathcal{B}|_{[k,k+1]}\,\mod\,H, kk\in\mathbb{Z}, can be approximated by linear combinations of UnTmφ=1/pn𝟙σn(C+m)U^{n}T^{m}\varphi=\sqrt{1/p}^{n}\cdot\mathbbm{1}_{\sigma^{n}(C+m)}, m,nm,n\in\mathbb{Z}. For this let us define the set

𝒱k:={Cω,k:=σn(C+i=0n1aiNi+Nnk):ω𝒞n,n1},\mathcal{V}_{k}:=\left\{C_{\omega,k}:=\sigma^{-n}\left(C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k\right):\,\omega\in\mathcal{C}_{n},\,n\geq 1\right\},

where

𝒞n:={(a1,,an):aiN¯}.\mathcal{C}_{n}:=\left\{(a_{1},\dots,a_{n}):\,a_{i}\in\underline{N}\right\}.

We are going to show that 𝒱k\mathcal{V}_{k}\cup\varnothing defines a semiring for [k,k+1][k,k+1]. Since

C+i=0n1aiNi+Nnk[N(i=1n1aiNi1+Nn1k),N(i=1n1aiNi1+Nn1k+1)]C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k\subset\left[N\left(\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right),N\left(\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k+1\right)\right]

we get inductively

σn(C+i=0n1aiNi+Nn1k)=σn+1(𝟙[j,j+1)(C+i=0n1aiNi+NnkN(i=1n1aiNi1+Nn1k))(τj(C+i=0n1aiNi+NnkN(i=1n1aiNi1+Nn1k)j)+i=1n1aiNi1+Nn1k))=σn+1(j=0N1𝟙[j,j+1)(C+a0)(τj(C+a0j)+i=1n1aiNi1+Nn1k))=σn+1(τa0(C)+i=1n1aiNi1+Nn1k)=σn+2(τa1(τa0(C))+i=2n1aiNi2+Nn2k)=σ1(τan2((τa1(τa0(C))))+an1+Nk)=τan1(τan2((τa1(τa0(C)))))+k.\begin{array}[]{lll}&\!\!\!\!\!\!\!\!\!\!\!\!\sigma^{-n}\left(C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n-1}k\right)\\ =&\sigma^{-n+1}\Bigg{(}\sum\mathbbm{1}_{[j,j+1)}\left(C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k-N\left(\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right)\right)\\ &\,\left(\tau_{j}\left(C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k-N\left(\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right)-j\right)+\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right)\Bigg{)}\\ =&\sigma^{-n+1}\left(\sum_{j=0}^{N-1}\mathbbm{1}_{[j,j+1)}(C+a_{0})\left(\tau_{j}(C+a_{0}-j)+\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right)\right)\\ =&\sigma^{-n+1}\left(\tau_{a_{0}}(C)+\sum_{i=1}^{n-1}a_{i}N^{i-1}+N^{n-1}k\right)\\ =&\sigma^{-n+2}\left(\tau_{a_{1}}\left(\tau_{a_{0}}(C)\right)+\sum_{i=2}^{n-1}a_{i}N^{i-2}+N^{n-2}k\right)\\ \vdots\\ =&\sigma^{-1}\left(\tau_{a_{n-2}}\left(\cdots\left(\tau_{a_{1}}\left(\tau_{a_{0}}(C)\right)\right)\cdots\right)+a_{n-1}+Nk\right)\\ =&\tau_{a_{n-1}}\left(\tau_{a_{n-2}}\left(\cdots\left(\tau_{a_{1}}\left(\tau_{a_{0}}(C)\right)\right)\cdots\right)\right)+k.\end{array}

From this the semiring properties of 𝒱k{}\mathcal{V}_{k}\cup\left\{\varnothing\right\} follow immediately. Then also

𝒱:={=1mB:Bk𝒱k,m}\mathcal{V}:=\left\{\bigcup_{\ell=1}^{m}B_{\ell}:B_{\ell}\in\bigcup_{k}\mathcal{V}_{k},m\in\mathbb{N}\right\}

defines a semiring. Furthermore, we will show that |[k,k+1]σ(𝒱k)\mathcal{B}|_{[k,k+1]}\subset\sigma\left(\mathcal{V}_{k}\right) which would also imply σ(𝒱)\mathcal{B}\subset\sigma\left(\mathcal{V}\right). In fact |[k,k+1]\mathcal{B}|_{[k,k+1]} is generated modH\!\!\mod H by sets of the form (a,b)[k,k+1]R(a,b)\cap[k,k+1]\cap R, a,ba,b\in\mathbb{R}, which belong obviously to σ(𝒱k)\sigma\left(\mathcal{V}_{k}\right). This shows |[k,k+1]σ(𝒱k)\mathcal{B}|_{[k,k+1]}\subset\sigma\left(\mathcal{V}_{k}\right). Thus, every set F|[k,k+1]F\in\mathcal{B}|_{[k,k+1]} can be approximated by sets from 𝒱k\mathcal{V}_{k} and consequently every set EE\in\mathcal{B} can be approximated by sets of 𝒱\mathcal{V}. Since

𝟙Cω,k(x)=𝟙σn(C+i=0n1aiNi+Nnk)(x)=𝟙C(σn(x)i=0n1aiNiNnk)=cUnTlφ(x),\begin{array}[]{lll}\mathbbm{1}_{C_{\omega,k}}(x)&=&\mathbbm{1}_{\sigma^{-n}\left(C+\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k\right)}(x)\\ &=&\mathbbm{1}_{C}\left(\sigma^{n}(x)-\sum_{i=0}^{n-1}a_{i}N^{i}-N^{n}k\right)\\ &=&c\cdot U^{-n}T^{l}\varphi(x),\end{array}

where l=i=0n1aiNi+Nnkl=\sum_{i=0}^{n-1}a_{i}N^{i}+N^{n}k, we find that 𝟙E\mathbbm{1}_{E}, EE\in\mathcal{B}, can be approximated by linear combinations of UnTkφU^{n}T^{k}\varphi. Now the claim follows since the simple functions are dense in L2(H)L^{2}\left(H\right). ∎

For the construction of the mother wavelets we will introduce further filter functions. Let A={a0,,ap1}A=\{a_{0},\dots,a_{p-1}\} and G:={0,N1}\{a0,,ap1}={di:i=0,,Np1}G:=\{0,\dots N-1\}\backslash\{a_{0},\dots,a_{p-1}\}=\left\{d_{i}:i=0,\dots,N-p-1\right\}. Then the first NpN-p high pass filters, m1,,mNpm_{1},\dots,m_{N-p}, on 𝕋\mathbb{T} are defined by

mi+1:zzdi,iNp1¯.m_{i+1}:\,z\mapsto z^{d_{i}},\,i\in\underline{N-p-1}.

The remaining p1p-1 filter functions are defined by

mNp+k:z1pj=0p1ηkjzaj,fork{1,,p1},η=e2πi/p.m_{N-p+k}:\,z\mapsto\frac{1}{\sqrt{p}}\sum_{j=0}^{p-1}\eta^{kj}z^{a_{j}},\>\mbox{for}\>k\in\left\{1,\dots,p-1\right\},\>\eta=e^{2\pi i/p}.

It has been shown in [DJ06] that the matrix

M(z):=1N(mj(ρlz))j,l=0N1,M(z):=\frac{1}{\sqrt{N}}\left(m_{j}(\rho^{l}z)\right)_{j,l=0}^{N-1},

where ρ=e2πi/N\rho=e^{2\pi i/N}, is unitary for almost all z𝕋z\in\mathbb{T} (i.e. M(z)M(z)=IM(z)^{*}M(z)=I, where II denotes the identity matrix).

The following proposition shows that

{ψi:=U1mi(T)φ,i{1,,N1}}\left\{\psi_{i}:=U^{-1}m_{i}\left(T\right)\varphi,\;i\in\{1,\dots,N-1\}\right\}

defines a set of mother wavelets.

Proposition 2.9.

The set

{UnTkψi:i{1,,N1},n,k}\{U^{n}T^{k}\psi_{i}:\,i\in\{1,\dots,N-1\},\,n,\,k\in\mathbb{Z}\}

is an ONB for L2(H)L^{2}(H).

Proof.

In Theorem 2.8 it has been shown that the father wavelet φ\varphi gives rise to an MRA and consequently {UnTkφ:k,n}\left\{U^{n}T^{k}\varphi:\,k,n\in\mathbb{Z}\right\} spans L2(H)L^{2}(H). This implies that also {UnTkψi:i{1,,N1},n,k}\{U^{n}T^{k}\psi_{i}:\,i\in\{1,\dots,N-1\},\,n,\,k\in\mathbb{Z}\} spans L2(H)L^{2}\left(H\right). Furthermore, the orthonormality of {ψi:i{1,,N1}}\left\{\psi_{i}:\,i\in\{1,\dots,N-1\}\right\} follows form the unitarity of the filter functions. Finally, since {Tkψi:i{1,,N1},k}\left\{T^{k}\psi_{i}:\,i\in\{1,\dots,N-1\},\,k\in\mathbb{Z}\right\} is an ONB for V1V0V_{-1}\ominus V_{0} and hence {UnTkψi:i{1,,N1},k}\left\{U^{n}T^{k}\psi_{i}:\,i\in\{1,\dots,N-1\},\,k\in\mathbb{Z}\right\} is an ONB for Vn1VnV_{n-1}\ominus V_{n} the orthonormality of {UnTkψi:i{1,,N1},n,k}\{U^{n}T^{k}\psi_{i}:\,i\in\{1,\dots,N-1\},\,n,\,k\in\mathbb{Z}\} follows. ∎

3. Fourier Basis

Also in this section we will use the set up of Section 2.1. That is, we consider an arbitrary IFS 𝒮=(σi,ip¯)\mathcal{S=}\left(\sigma_{i},i\in\underline{p}\right) extended to a “gap filling” IFS 𝒯=(τi,iN¯)\mathcal{T}=\left(\tau_{i},i\in\underline{N}\right) consisting of NN contractions such that there exists a set AN¯A\subset\underline{N} with {σi:ip¯}={τj:jA}\left\{\sigma_{i}:i\in\underline{p}\right\}=\left\{\tau_{j}:j\in A\right\}. Additionally, we consider two corresponding homogeneous linear IFSs S~=(σ~i,ip¯)\widetilde{S}=\left(\widetilde{\sigma}_{i},i\in\underline{p}\right) and 𝒯~=(τ~i,iN¯)\widetilde{\mathcal{T}}=\left(\widetilde{\tau}_{i},i\in\underline{N}\right), given by the functions τ~i:=ρi,N:xxN+iN\widetilde{\tau}_{i}:=\rho_{i,N}:x\mapsto\frac{x}{N}+\frac{i}{N} such that {σ~i:ip¯}={τ~j:jA}\left\{\widetilde{\sigma}_{i}:i\in\underline{p}\right\}=\left\{\widetilde{\tau}_{j}:j\in A\right\}.

3.1. Construction of a conjugating homeomorphism

Let us now investigate the construction of the conjugating homeomorphism from the linear enlarged fractal to the non-linear one. First the construction is given for [0,1][0,1] to be extended to \mathbb{R} in the second step. This homeomorphism on \mathbb{R} can be employed for a different approach to construct the wavelet basis from Section 2.2. See Remark 3.1 for a detailed discussion.

The aim is to find a homeomorphism ϕ:[0,1][0,1]\phi:[0,1]\rightarrow[0,1] such that ϕ(R~[0,1])=R[0,1]\phi(\widetilde{R}_{[0,1]})=R_{[0,1]}, ϕ(C~)=C\phi(\widetilde{C})=C and ϕτ~i=τiϕ\phi\circ\widetilde{\tau}_{i}=\tau_{i}\circ\phi for iN¯i\in\underline{N}, where C,C, C~\widetilde{C} are the limit sets corresponding to the IFS 𝒮\mathcal{S}, S~\widetilde{S} respectively, and R[0,1]R_{[0,1]}, R~[0,1]\widetilde{R}_{[0,1]} are the corresponding enlarged fractals restricted to [0,1][0,1]. The idea of the construction can be found e.g. in [JKPS].

Let D:={fC([0,1]):f(0)=0,f(1)=1,f:[0,1][0,1]}D:=\{f\in C([0,1]):\,f(0)=0,\,f(1)=1,\,f:[0,1]\rightarrow[0,1]\} and let the operator F:DDF:D\to D be given by

(Ff)(x)=i=0N1τifτ~i1(x)𝟙[τ~i(0),τ~i(1))(x)+𝟙{1}(x),x[0,1].(Ff)(x)=\sum_{i=0}^{N-1}\tau_{i}\circ f\circ\widetilde{\tau}_{i}^{-1}(x)\cdot\mathbbm{1}_{[\widetilde{\tau}_{i}(0),\widetilde{\tau}_{i}(1))}(x)+\mathbbm{1}_{\{1\}}(x),\,\,x\in[0,1].

Then it is easy to see that FF is a contraction and since DD is complete, we have by the Banach Fixed Point Theorem, that there exists a fixed point ϕ\phi of FF in DD. It is not hard to see that the inverse function ϕ1\phi^{-1} of ϕ\phi is the unique fixed point of the contractive operator on DD given by

(Gh)(x)=i=0N1τ~ihτi1(x)𝟙[τi(0),τi(1))(x)+𝟙{1}(x),hD,x[0,1].(Gh)(x)=\sum_{i=0}^{N-1}\widetilde{\tau}_{i}\circ h\circ\tau_{i}^{-1}(x)\cdot\mathbbm{1}_{\left[\tau_{i}(0),\tau_{i}(1)\right)}(x)+\mathbbm{1}_{\{1\}}(x),\,\,h\in D,\,x\in[0,1].

Consequently ϕ:[0,1][0,1]\phi:[0,1]\rightarrow[0,1] is a homeomorphism and it is straight forward to observe that it has all the desired properties. This homeomorphism may then be extended continuously to \mathbb{R}, such that ϕ(R~)=R\phi(\widetilde{R})=R. For this notice that any xx\in\mathbb{R} can be written uniquely as x={x}+xx=\{x\}+\left\lfloor x\right\rfloor, where x\left\lfloor x\right\rfloor\in\mathbb{Z} denotes the largest integer not exceeding xx and {x}=xx\{x\}=x-\left\lfloor x\right\rfloor the fractional part of xx. Then the extended homeomorphism is defined, for xx\in\mathbb{R}, by

ϕ~(x):=ϕ({x})+x,\widetilde{\phi}(x):=\phi(\{x\})+\left\lfloor x\right\rfloor,

and consequently, its inverse function ϕ~1:\widetilde{\phi}^{-1}:\mathbb{R}\rightarrow\mathbb{R} is given by

ϕ~1(z)=ϕ1({z})+z,z.\widetilde{\phi}^{-1}(z)=\phi^{-1}(\{z\})+\left\lfloor z\right\rfloor,\;z\in\mathbb{R}.
Remark 3.1.

(1) We would like to remark that the wavelet bases (constructed in Section 2.2) can also be obtained using the homeomorphisms ϕ:\phi:\mathbb{R}\rightarrow\mathbb{R}. In fact, the wavelet basis for the non-linear IFS is just the composition of ϕ\phi with the basis elements of the linear IFS constructed in [DJ06].

(2) For what follows we only need the homeomorphism restricted to C~\widetilde{C}, i.e. ϕ|C~\phi|_{\widetilde{C}}. Hence, the restricted homeomorphism is in fact independent of the functions defined on the “gaps” of the fractal, i.e. depends only on (τ~a)aA\left(\widetilde{\tau}_{a}\right)_{a\in A}.

3.2. The appropriate function space

It will be essential to construct first the Fourier basis for the linear Cantor set C~\widetilde{C} given as the limit set of the IFS S~=(τ~i:iA)\widetilde{S}=\left(\widetilde{\tau}_{i}:i\in A\right). The Hausdorff dimension of this set C~\widetilde{C} is s=logp/logNs=\log p/\log N. The restriction of the Hausdorff measure HsH^{s} to C~\widetilde{C} will be denoted by μ~\widetilde{\mu}, i.e. μ~=Hs|C~\widetilde{\mu}=H^{s}|_{\widetilde{C}}. This measure satisfies

μ~=1piAμ~τ~i1\widetilde{\mu}=\frac{1}{p}\sum_{i\in A}\widetilde{\mu}\circ\widetilde{\tau}_{i}^{-1}

or equivalently,

f(x)𝑑μ(x)=1piAf(τ~i(x))𝑑μ~(x),fL2(μ~),\int f(x)d\mu(x)=\frac{1}{p}\sum_{i\in A}\int f(\widetilde{\tau}_{i}(x))\,d\widetilde{\mu}(x),\>f\in L^{2}(\widetilde{\mu}),

and hence, it is unique with this property by a theorem of Hutchinson in [Hut81]. Furthermore, Hs(C~)=μ~(C~)=1H^{s}(\widetilde{C})=\widetilde{\mu}(\widetilde{C})=1.

We will consider the homeomorphism ϕ:C~C\phi:\widetilde{C}\rightarrow C from Section 3.1, where CC is the limit set of 𝒮=(σi,ip¯)=(τi,iA)\mathcal{S}=\left(\sigma_{i},i\in\underline{p}\right)=\left(\tau_{i},i\in A\right). Notice that the homeomorphism ϕ\phi is measurable with respect to the Borel-σ\sigma-algebra. This allows us to consider the space L2(μ)L^{2}(\mu), where μ\mu is the transported measure, i.e. μ=μ~ϕ1\mu=\widetilde{\mu}\circ\phi^{-1}, which coincides with the unique measure on CC satisfying

μ=1piAμτi1.\mu=\frac{1}{p}\sum_{i\in A}\mu\circ\tau_{i}^{-1}.

The above defined homeomorphism ϕ\phi will be used to carry over a Fourier basis in L2(μ~)L^{2}(\widetilde{\mu}) to a generalised Fourier basis in L2(μ)L^{2}(\mu) in Section 3.4.

3.3. Construction of the Fourier basis for homogeneous linear IFSs

In this section we state the main results on Fourier bases for homogeneous linear IFSs from Jørgensen and Pedersen, and Jørgensen and Dutkay ([JP98b], [DJ06]) without proofs. First we consider the construction of the Fourier basis on the Hilbert space L2(μ~)L^{2}(\widetilde{\mu}) with the inner product f|gμ~=f(x)g(x)¯𝑑μ~(x)\langle f|g\rangle_{\widetilde{\mu}}=\int f(x)\overline{g(x)}\,d\widetilde{\mu}(x). The classical Fourier basis is of the form {en:nM}\{e_{n}:\,n\in M\} with MM\subset\mathbb{Z} and en:xei2πnxe_{n}:\,x\mapsto e^{i2\pi nx}. This kind of basis does not exist for all L2L^{2}-spaces built on a fractal set, it depends on the underlying algebraic structure of the IFS (cf. [DJ06] and Example 4.4).

Recall the definition of the Fourier transform μ^\widehat{\mu} of a measure μ~\widetilde{\mu}:

μ^(t):=ei2πtx𝑑μ~(x),t.\widehat{\mu}(t):=\int e^{i2\pi tx}\,d\widetilde{\mu}(x),\,t\in\mathbb{R}.
Lemma 3.2 ([JP98b]).

The Fourier transform for the measure μ~\widetilde{\mu} satisfies the following relation:

μ^(t)=μ^(N1t)κA(t),\widehat{\mu}(t)=\widehat{\mu}(N^{-1}t)\cdot\kappa_{A}(t),

where κA(t)=1paAei2πtN1a\kappa_{A}(t)=\frac{1}{p}\sum_{a\in A}e^{i2\pi tN^{-1}a} and tt\in\mathbb{R}.

The following assumption guaranties the existence of a classical Fourier basis.

Assumption 3.3.

We assume that 0A0\in A, and that there exists a set LL\subset\mathbb{Z}, such that 0L0\in L, cardL=p\operatorname{card}L=p and

HAL:=p1/2(ei2πalN)aA,lLH_{AL}:=p^{-1/2}\left(e^{i2\pi\frac{al}{N}}\right)_{a\in A,l\in L}

is unitary. The set LL with this property will be called the dual set to AA.

Lemma 3.4 ([JP98b]).

Under Assumption 3.3 we have that the set

{eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\}

is orthonormal in L2(μ~)L^{2}(\widetilde{\mu}), where eλ:xei2πλxe_{\lambda}:\,x\mapsto e^{i2\pi\lambda x} and

Λ:={l0+Nl1+N2l2++Nklk:liL,k}.\Lambda:=\{l_{0}+Nl_{1}+N^{2}l_{2}+\dots+N^{k}l_{k}:l_{i}\in L,\;k\in\mathbb{N}\}.

We now introduce three conditions under which the set {eλ:λΛ}\{e_{\lambda}:\,\lambda\in\Lambda\} gives an orthonormal basis, i.e. when this set spans the space L2(μ~)L^{2}(\widetilde{\mu}). For this we first need the following definitions. Let the dual Ruelle Operator for the above setting be given by

(RLf)(x):=1plL|m0(xlN)|2f(xlN),fC(),(R_{L}f)(x):=\frac{1}{p}\sum_{l\in L}\left|m_{0}\left(\frac{x-l}{N}\right)\right|^{2}f\left(\frac{x-l}{N}\right),\quad f\in C(\mathbb{R}),

where m0:t1paAei2πtam_{0}:\,t\mapsto\frac{1}{\sqrt{p}}\sum_{a\in A}e^{i2\pi ta}.

Definition 3.5.

([DJ06]) Let σ~b:=ρb,N\widetilde{\sigma}_{b}:=\rho_{-b,N} and LL and A:={a0,,ap1}A:=\left\{a_{0},\ldots,a_{p-1}\right\} are given as in Assumption 3.3. Then the the family (z1,z2,,zk)𝕋k\left(z_{1},z_{2},\dots,z_{k}\right)\in\mathbb{T}^{k} with z1=ei2πξ1,z2=ei2πξ2,,zk=ei2πξkz_{1}=e^{i2\pi\xi_{1}},z_{2}=e^{i2\pi\xi_{2}},\dots,z_{k}=e^{i2\pi\xi_{k}} is called an LL-cycle with pairing (b1,b2,,bk+1)Lk+1\left(b_{1},b_{2},\dots,b_{k+1}\right)\in L^{k+1}, if for j=1,,kj=1,\ldots,k and zk+1:=z1z_{k+1}:=z_{1} we have

zj=exp(i2πσbj(ξj+1)),z_{j}=\exp\left(i2\pi\sigma_{b_{j}}(\xi_{j+1})\right),

and |m0(ξj)|2=p\left|m_{0}(\xi_{j})\right|^{2}=p, j=1,,kj=1,\ldots,k.

Proposition 3.6 ([JP98b, DJ06]).

Under Assumption 3.3 the follwing three characterisations of the existence of an orthonormal basis (ONB) in L2(μ~)L^{2}(\widetilde{\mu}) hold.

  1. (1)

    The set {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is an ONB in L2(μ~)L^{2}(\widetilde{\mu}), if and only if Q1Q\equiv 1, where Q(t):=λΛ|μ^(tλ)|2Q(t):=\sum_{\lambda\in\Lambda}\left|\widehat{\mu}(t-\lambda)\right|^{2}, tt\in\mathbb{R} .

  2. (2)

    The set {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is an ONB in L2(μ~)L^{2}(\widetilde{\mu}), if the space

    {fLip():f0,f(0)=1,RL(f)=f}\left\{f\in\operatorname{Lip}(\mathbb{R}):f\geq 0,\>f(0)=1,\>R_{L}(f)=f\right\}

    is one-dimensional.

  3. (3)

    The set {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is an ONB in L2(μ~)L^{2}(\widetilde{\mu}), if the only LL-cycle is trivial, i.e. is equal to (1)(1).

3.4. Fourier basis on homeomorphic fractals

In this section, the above constructed Fourier basis for homogeneous linear IFSs will be carried over to L2(μ)L^{2}\left(\mu\right). In this way a generalised Fourier basis is obtained. In fact, the following proposition shows that the basis elements obtained in our analysis can again be regarded as characters. Its proof is immediate.

Proposition 3.7.

Let (en)\left(e_{n}\right) be the classical Fourier basis on \mathbb{R} and ϕ:\phi:\mathbb{R}\rightarrow\mathbb{R} be a homeomorphism. Then dn:=enϕ1d_{n}:=e_{n}\circ\phi^{-1} define characters on (,)(\mathbb{R},\sharp), where the addition :×\sharp:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R} is given by (x,y)ϕ(ϕ1(x)+ϕ1(y))(x,y)\mapsto\phi\left(\phi^{-1}(x)+\phi^{-1}(y)\right).

Now we are turning to the construction of the generalised Fourier basis on L2(μ)L^{2}(\mu). It will be crucial that we impose the restriction 0C0\in C. Suppose that ϕ:C~C\phi:\widetilde{C}\rightarrow C is the homeomorphism introduced in Section 3.1. We begin with the analogue statement to Lemma 3.4.

Lemma 3.8.

Let {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} (as specified above) be orthonormal in L2(μ~)L^{2}(\widetilde{\mu}), then {eλϕ1:λΛ}\{e_{\lambda}\circ\phi^{-1}:\lambda\in\Lambda\} is orthonormal in L2(μ)L^{2}(\mu).

Proof.

We have

eλϕ1|eλϕ1μ=eλϕ1¯eλϕ1𝑑μ=ei2πϕ1(t)λei2πϕ1(t)λ𝑑μ(t)=ei2πtλei2πtλ𝑑μ~(t)=eλ|eλμ~=δλλ.\begin{array}[]{lll}\langle e_{\lambda}\circ\phi^{-1}|e_{\lambda^{\prime}}\circ\phi^{-1}\rangle_{\mu}&=&\int\overline{e_{\lambda}\circ\phi^{-1}}e_{\lambda^{\prime}}\circ\phi^{-1}\,d\mu\\ &=&\int e^{-i2\pi\phi^{-1}(t)\lambda}e^{i2\pi\phi^{-1}(t)\lambda^{\prime}}\,d\mu(t)\\ &=&\int e^{-i2\pi t\lambda}e^{i2\pi t\lambda^{\prime}}\,d\widetilde{\mu}(t)\\ &=&\langle e_{\lambda}|e_{\lambda^{\prime}}\rangle_{\widetilde{\mu}}\\ &=&\delta_{\lambda\lambda^{\prime}}.\end{array}

The existence of an ONB can be also transferred by the homeomorphism ϕ\phi.

Theorem 3.9.

If {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is an ONB in L2(μ~)L^{2}(\widetilde{\mu}), then {eλϕ1:λΛ}\{e_{\lambda}\circ\phi^{-1}:\lambda\in\Lambda\} is an ONB in L2(μ)L^{2}(\mu).

Proof.

Only the spanning condition remains to be checked. So let fL2(μ)\clspan{eλϕ1:λΛ}f\in L^{2}(\mu)\backslash\operatorname{cl}\text{span}\{e_{\lambda}\circ\phi^{-1}:\lambda\in\Lambda\}, then fϕL2(μ~)\clspan{eλ:λΛ}f\circ\phi\in L^{2}(\widetilde{\mu})\backslash\operatorname{cl}\text{span}\{e_{\lambda}:\lambda\in\Lambda\}. Hence, fϕ=0f\circ\phi=0, since {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is an ONB of L2(μ~)L^{2}\left(\widetilde{\mu}\right). Since ϕ\phi bijective, we also have f=0f=0. ∎

4. Examples

4.1. Wavelet analysis

Example 4.1 (1/31/3-Cantor set).

As an example for the affine case we will determine the wavelet basis for the 1/31/3-Cantor set C3C_{3} (we refer to [DJ06] for further details). The IFS on [0,1][0,1] for this set is 𝒮=(σk:k=0,1)\mathcal{S}=\left(\sigma_{k}:k=0,1\right) with σk=ρak,3:xx+ak3\sigma_{k}=\rho_{a_{k},3}:x\mapsto\frac{x+a_{k}}{3}, a0:=0a_{0}:=0 and a1:=2a_{1}:=2 and the gap filling IFS is 𝒯=(τk:k=0,1,2)\mathcal{T}=\left(\tau_{k}:k=0,1,2\right) with τk:=ρk,3\tau_{k}:=\rho_{k,3}. The father wavelet is φ=𝟙C3\varphi=\mathbbm{1}_{C_{3}}. The resulting filter functions on 𝕋\mathbb{T} are

m0:z12(1+z2),m1:zz,m2:z12(1z2).\begin{array}[]{lll}m_{0}:&z\mapsto&\frac{1}{\sqrt{2}}(1+z^{2}),\\ m_{1}:&z\mapsto&z,\\ m_{2}:&z\mapsto&\frac{1}{\sqrt{2}}(1-z^{2}).\end{array}

So the mother wavelets are, for xx\in\mathbb{R},

ψ1(x)=2𝟙C3(3x1),ψ2(x)=𝟙C3(3x)𝟙C3(3x2).\begin{array}[]{lll}\psi_{1}(x)&=&\sqrt{2}\mathbbm{1}_{C_{3}}(3x-1),\\ \psi_{2}(x)&=&\mathbbm{1}_{C_{3}}(3x)-\mathbbm{1}_{C_{3}}(3x-2).\end{array}

Furthermore, the basis of L2(Hs)L^{2}(H^{s}), where s=log2/log3s=\log 2/\log 3 and HsH^{s} is the ss-Hausdorff measure (cf. [DJ06, Fal81]), is

{x2k/2ψi(3kxl):i=1,2,k,l}.\left\{x\mapsto 2^{-k/2}\psi_{i}(3^{k}x-l):i=1,2,\,k,l\in\mathbb{Z}\right\}.
Example 4.2 (1/41/4-Cantor set with one gap-filling contraction).

We now consider the IFS 𝒮:=(σ0,σ1)\mathcal{S}:=\left(\sigma_{0},\sigma_{1}\right) and the gap filling IFS 𝒯:=(τ0,τ1,τ2)\mathcal{T}:=\left(\tau_{0},\tau_{1},\tau_{2}\right) with σ0=τ0=ρ0,4,σ1=τ2=ρ3,4,τ1:xx2+14\sigma_{0}=\tau_{0}=\rho_{0,4},\,\sigma_{1}=\tau_{2}=\rho_{3,4},\,\tau_{1}:x\mapsto\frac{x}{2}+\frac{1}{4}. Then the limit set of 𝒮\mathcal{S} is the 1/41/4-Cantor set C4C_{4} and let HH be the fractal measure constructed in Subsection 2.1.1. Already this example is not covered by [DJ06] since the system is not homogeneous, i.e. τ1\tau_{1} has a different scaling than τ0\tau_{0} and τ3\tau_{3} .

The operators TT and UU for fL2(H)f\in L^{2}(H) are then given by (Tf)(x):=f(x1)(Tf)(x):=f(x-1) and (Uf)(x):=12f(σ1(x))(Uf)(x):=\frac{1}{\sqrt{2}}f\left(\sigma^{-1}(x)\right), where the scaling function σ\sigma restricted to [0,1][0,1] is given by

σ(x):=𝟙[0,14)(x)4x+𝟙[14,34)(x)(2x+12)+𝟙[34,1)(x)(4x1),x[0,1].\sigma(x):=\mathbbm{1}_{[0,\frac{1}{4})}(x)\cdot 4x+\mathbbm{1}_{[\frac{1}{4},\frac{3}{4})}(x)\cdot\left(2x+\frac{1}{2}\right)+\mathbbm{1}_{[\frac{3}{4},1)}(x)\cdot\left(4x-1\right),\,x\in[0,1].

The father wavelet is φ=𝟙C4\varphi=\mathbbm{1}_{C_{4}}. The filter functions on 𝕋\mathbb{T} for the construction of the mother wavelets are the same as for the 1/31/3-Cantor case (see Example 4.1), because the form of the filter functions depends only on the number and position of the gaps, i.e.

m0(z)=12(1+z2),m1(z)=z,m2(z)=12(1z2).\begin{array}[]{lll}m_{0}(z)&=&\frac{1}{\sqrt{2}}(1+z^{2}),\\ m_{1}(z)&=&z,\\ m_{2}(z)&=&\frac{1}{\sqrt{2}}(1-z^{2}).\end{array}

So the mother wavelets are given, for x[0,1]x\in[0,1], by

ψ1(x)=(U1m1(T))φ(x)=2φ(σ(x)1)=2φ(𝟙(x)4x+𝟙[14,34)(x)(2x+12)+𝟙[34,1)(x)(4x1)1),ψ2(x)=(U1m2(T))φ=φ(σ(x))φ(σ(x)2)=φ(𝟙[0,14)(x)4x+𝟙[14,34)(x)(2x+12)+𝟙[34,1)(x)(4x1))φ(𝟙[0,14)(x)4x+𝟙[14,34)(x)(2x+12)+𝟙[34,1)(x)(4x1)2).\begin{array}[]{lll}\psi_{1}(x)&=&(U^{-1}m_{1}(T))\varphi(x)=\sqrt{2}\varphi\left(\sigma(x)-1\right)\\ &=&\sqrt{2}\varphi\left(\mathbbm{1}(x)\cdot 4x+\mathbbm{1}_{[\frac{1}{4},\frac{3}{4})}(x)\cdot\left(2x+\frac{1}{2}\right)+\mathbbm{1}_{[\frac{3}{4},1)}(x)\cdot\left(4x-1\right)-1\right),\\ \psi_{2}(x)&=&(U^{-1}m_{2}(T))\varphi=\varphi\left(\sigma(x)\right)-\varphi\left(\sigma(x)-2\right)\\ &=&\varphi\left(\mathbbm{1}_{[0,\frac{1}{4})}(x)\cdot 4x+\mathbbm{1}_{[\frac{1}{4},\frac{3}{4})}(x)\cdot\left(2x+\frac{1}{2}\right)+\mathbbm{1}_{[\frac{3}{4},1)}(x)\cdot\left(4x-1\right)\right)\\ &&-\varphi\left(\mathbbm{1}_{[0,\frac{1}{4})}(x)\cdot 4x+\mathbbm{1}_{[\frac{1}{4},\frac{3}{4})}(x)\cdot\left(2x+\frac{1}{2}\right)+\mathbbm{1}_{[\frac{3}{4},1)}(x)\cdot\left(4x-1\right)-2\right).\end{array}

Thus, the orthonormal basis for L2(H)L^{2}(H) is

{UnTkψi:i=1,2,n,k}.\left\{U^{n}T^{k}\psi_{i}:\,i=1,2,\,n,k\in\mathbb{Z}\right\}.

4.2. Fourier bases

Example 4.3 (1/41/4-Cantor set ([Jør06])).

Let us recall the standard example for a Fourier basis for the 1/41/4-Cantor set C4C_{4} supporting the Cantor measure μ4\mu_{4} and with Hausdorff dimension equal to 1/21/2. This set is the limit set of the IFS on [0,1][0,1] 𝒮=(σ0,σ1)\mathcal{S}=\left(\sigma_{0},\sigma_{1}\right) given byσ0=ρ0,4\sigma_{0}=\rho_{0,4} and σ1=ρ3,4\sigma_{1}=\rho_{3,4}. Hence, in Assumption 3.3 we have A={0,3}A=\{0,3\}. For L:={0,2}L:=\{0,2\} the matrix HAL=21/2(ei2πal/4)aA,lLH_{AL}=2^{-1/2}\left(e^{i2\pi al/4}\right)_{a\in A,l\in L} is unitary and so the set {eλ:λΛ}\left\{e_{\lambda}:\lambda\in\Lambda\right\} is orthonormal in L2(μ4)L^{2}(\mu_{4}), where

Λ={j=0klj4j:lj{0,2},k}.\Lambda=\left\{\sum_{j=0}^{k}l_{j}4^{j}:\,l_{j}\in\{0,2\},\,k\in\mathbb{N}\right\}.

To show now that {eλ:λΛ}\{e_{\lambda}:\,\lambda\in\Lambda\} is an ONB we will use the characterization by LL-cycles as stated in Proposition 3.6. We have that z=ei2πξ𝕋z_{\ell}=e^{i2\pi\xi_{\ell}}\in\mathbb{T}, =1,,k+1\ell=1,\ldots,k+1, is an LL-cycle of length k+1k+1 for b1,,bk+1{0,2}b_{1},\dots,b_{k+1}\in\{0,2\} if zj=ei2πξj+1bj4z_{j}=e^{i2\pi\frac{\xi_{j+1}-b_{j}}{4}}, j=1,,kj=1,\ldots,k, and zk+1=z1z_{k+1}=z_{1}. Thus, zj=ei2πξj+14z_{j}=e^{i2\pi\frac{\xi_{j+1}}{4}} or zj=ei2πξj+124z_{j}=e^{i2\pi\frac{\xi_{j+1}-2}{4}} for j=1,,kj=1,\ldots,k and z1=zk+1z_{1}=z_{k+1}. These conditions can only be satisfied for k=0k=0, i.e. for the cycle (1)\left(1\right). Hence by Proposition 3.6, {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} gives an ONB basis in L2(μ4)L^{2}(\mu_{4}).

Example 4.4 (1/31/3-Cantor set).

The 1/31/3-Cantor set is the example for the case where a Fourier basis in the sense of [DJ06] does not exists. The 1/31/3-Cantor set C3C_{3} is given by the IFS 𝒮=(σ0,σ1)\mathcal{S}=\left(\sigma_{0},\sigma_{1}\right) acting on [0,1][0,1] with σ0=ρ0,3\sigma_{0}=\rho_{0,3} and σ1=ρ2,3\sigma_{1}=\rho_{2,3}. Consequently, in Assumption 3.3 we have A={0,2}A=\{0,2\}. To get a Fourier basis, for the orthonormality a set LL\subset\mathbb{Z} is sufficient such that cardL=2\operatorname{card}L=2 and HALH_{AL} is unitary. But it is not possible to find such a set LL satisfying these conditions (cf. [Jør06, JP98b]). If we would relax the condition LL\subset\mathbb{Z}, we could choose L={0,34}L=\{0,\frac{3}{4}\} to obtain HALH_{AL} unitary. If we now set Λ:={34(l0+3l1+32l2++3klk):li{0,1},k}\Lambda:=\left\{\frac{3}{4}(l_{0}+3l_{1}+3^{2}l_{2}+\dots+3^{k}l_{k}):\>l_{i}\in\{0,1\},\,k\in\mathbb{N}\right\} we will find that {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} is not orthonormal. In fact, if we consider λ=34\lambda=\frac{3}{4} and λ=94Λ\lambda^{\prime}=\frac{9}{4}\in\Lambda, then

eλ|eλμ=ei2πx(9434)𝑑μ(x)=μ^(23).\begin{array}[]{lll}\langle e_{\lambda}|e_{\lambda^{\prime}}\rangle_{\mu}&=&\int e^{i2\pi x\left(\frac{9}{4}-\frac{3}{4}\right)}d\mu(x)=\widehat{\mu}\left(\frac{2}{3}\right).\end{array}

Since (cf. [JP98b])

μ^(t)=ei2πtx𝑑μ(x)=12(ei2πt3x𝑑μ(x)+ei2πt3xei2πt23𝑑μ(x))=12(μ^(t3)+ei43πtμ^(t3))=12(1+ei43πt)μ^(t3).\begin{array}[]{lll}\widehat{\mu}(t)&=&\int e^{i2\pi tx}\>d\mu(x)\\ &=&\frac{1}{2}\left(\int e^{i2\pi\frac{t}{3}x}\>d\mu(x)+\int e^{i2\pi\frac{t}{3}x}\cdot e^{i2\pi t\frac{2}{3}}\>d\mu(x)\right)\\ &=&\frac{1}{2}\left(\widehat{\mu}(\frac{t}{3})+e^{i\frac{4}{3}\pi t}\widehat{\mu}\left(\frac{t}{3}\right)\right)\\ &=&\frac{1}{2}\left(1+e^{i\frac{4}{3}\pi t}\right)\cdot\widehat{\mu}\left(\frac{t}{3}\right).\end{array}

we find

μ^(32)=12(1+ei2π)=1μ^(12)0,\widehat{\mu}\left(\frac{3}{2}\right)=\underbrace{\frac{1}{2}\left(1+e^{i2\pi}\right)}_{=1}\cdot\widehat{\mu}\left(\frac{1}{2}\right)\neq 0,

This shows that the condition LL\subset\mathbb{Z} cannot be omitted. In fact by [JP98b, JP98a] there does not exist a set LL\subset\mathbb{R} such that {eλ:λΛ}\left\{e_{\lambda}:\lambda\in\Lambda\right\} is a Fourier basis.

Remark 4.5.

(1) From [Jør06] we know that there are no more than two orthogonal functions eλe_{\lambda} (for any λ\lambda\in\mathbb{R}) in the Hilbert space L2(μ)L^{2}(\mu).

(2) It has been shown in [JP98a] that for an IFS with two branches of the form σi(x)=N1x+bi\sigma_{i}(x)=N^{-1}x+b_{i}, with bi{0,a}b_{i}\in\{0,a\}, i=1, 2i=1,\,2, a{0}a\in\mathbb{R}\setminus\{0\} and N{1,0,1}N\in\mathbb{Z}\setminus\left\{-1,0,1\right\} such that the OSC is satisfied there does not exist a Fourier basis for any a{0}a\in\mathbb{R}\setminus\{0\} if NN is odd and there exists a basis for all a{0}a\in\mathbb{R}\setminus\{0\} if NN is even and |N|4|N|\geq 4.

Example 4.6 (A generalised Fourier basis on the 1/31/3-Cantor set).

As seen in the last example, it is not possible to construct a classical Fourier basis in the sense of [Jør06] on L2(μ3)L^{2}(\mu_{3}), where μ3\mu_{3} is the Cantor measure on the 1/31/3-Cantor set C3C_{3} given by 𝒮=(σ0,σ1)\mathcal{S}=\left(\sigma_{0},\sigma_{1}\right), σ0=ρ0,3\sigma_{0}=\rho_{0,3}, σ1=ρ2,3\sigma_{1}=\rho_{2,3}. In Section 3.1 we have shown that there exists a homeomorphism ϕ\phi conjugating the IFS 𝒯=(τk,k{0,1,2})\mathcal{T}=\left(\tau_{k},k\in\left\{0,1,2\right\}\right) with τk=ρk,3\tau_{k}=\rho_{k,3} and 𝒯~=(τ~0,τ~1,τ~2)\widetilde{\mathcal{T}}=\left(\widetilde{\tau}_{0},\widetilde{\tau}_{1},\widetilde{\tau}_{2}\right) with τ~0=ρ0,4\widetilde{\tau}_{0}=\rho_{0,4}, τ~1:x2x+14\widetilde{\tau}_{1}:x\mapsto\frac{2x+1}{4}, τ~2=ρ3,4\widetilde{\tau}_{2}=\rho_{3,4} (see Fig. 4.1).

Refer to caption
Figure 4.1. Homeomorphism ϕ:[0,1][0,1]\phi:\left[0,1\right]\to\left[0,1\right] conjugating the IFSs (τ0,τ1,τ2)\left(\tau_{0},\tau_{1},\tau_{2}\right) and (τ~0,τ~1,τ~2)\left(\widetilde{\tau}_{0},\widetilde{\tau}_{1},\widetilde{\tau}_{2}\right) from Example 4.6.

Note that μ3=μ4ϕ1\mu_{3}=\mu_{4}\circ\phi^{-1} and that the homeomorphism restricted to the 1/41/4-Cantor set C4C_{4} is given explicitly by

ϕ:C4C3iai4ii23ai3i,ai{0,3}.\begin{array}[]{lllll}\phi:&C_{4}&\rightarrow&C_{3}\\ &\sum_{i}\frac{a_{i}}{4^{i}}&\mapsto&\sum_{i}\frac{\frac{2}{3}a_{i}}{3^{i}},&a_{i}\in\{0,3\}.\end{array}

Consequently, by Theorem 3.9 the Fourier basis of L2(μ4)L^{2}\left(\mu_{4}\right) can be carried over to L2(μ3)L^{2}\left(\mu_{3}\right). As mentioned above {eλ:λΛ}\{e_{\lambda}:\lambda\in\Lambda\} with Λ={j=0klj4j:lj{0,2},k}\Lambda=\{\sum_{j=0}^{k}l_{j}4^{j}:\>l_{j}\in\{0,2\},\,k\in\mathbb{N}\} is an ONB in L2(μ4)L^{2}(\mu_{4}) and hence {eλϕ1:λΛ}\{e_{\lambda}\circ\phi^{-1}:\lambda\in\Lambda\} is an ONB in L2(μ3)L^{2}(\mu_{3}) .

References

  • [DMP08] J. D’Andrea, K.D. Merrill, J. Packer, Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space, Frames and operator theory in analysis and signal processing, 69-88, Contemp. Math., 451, Amer. Math. Soc., Providence, RI, 2008.
  • [Dau92] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM, Philadelphia, 1992.
  • [DJ06] D. Dutkay, P. Jørgensen, Wavelets on Fractals, Rev. Math. Iberoamericana, 2006.
  • [Dut06] D. Dutkay, Positive definite maps, representations and frames, Reviews in Mathematical Physics, Vol. 16, Issue 04, 2004.
  • [Fal81] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wily & Sons, Chichester, 1990.
  • [Hut81] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30, 1981.
  • [JKPS] T. Jordan, M. Kesseböhmer, M. Pollicott, B. Stratmann, Sets of non-differentiability for conjugacies between expanding interval maps, to appear in: Fundamenta Mathematicae.
  • [Jør06] P. Jørgensen, Analysis and Probability; Wavelets, Signals, Fractals, Springer, New York, 2006.
  • [JP98a] P. Jørgensen, S. Pedersen, Orthogonal harmonic analysis and scaling of fractal measures, C. R. Acad. Sci. Paris Sr. I Math. 326, no. 3, p. 301-306, 1998.
  • [JP98b] P. Jørgensen, S. Pedersen, Dense analytic subspaces in fractal L2L^{2}- spaces, J. Anal. Math. 75, 1998.