This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weak solutions to the stationary Cahn-Hillard/Navier-Stokes equations for compressible fluids

Zhilei Liang School of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China. zhilei0592@gmail.com  and  Dehua Wang Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA. dwang@math.pitt.edu
Abstract.

We are concerned with the Cahn-Hilliard/Navier-Stokes equations for the stationary compressible flows in a three-dimensional bounded domain. The governing equations consist of the stationary Navier-Stokes equations describing the compressible fluid flows and the stationary Cahn-Hilliard type diffuse equation for the mass concentration difference. We prove the existence of weak solutions when the adiabatic exponent γ\gamma satisfies γ>43\gamma>\frac{4}{3}. The proof is based on the weighted total energy estimates and the new techniques developed to overcome the difficulties from the capillary stress.

Key words and phrases:
Stationary equations, weak solutions, Navier-Stokes, Cahn-Hilliard, mixture of fluids, diffuse interface.
2010 Mathematics Subject Classification:
35Q35, 76N10, 35Q30, 34K21, 76T10.
* Corresponding author.

1. Introduction

The Cahn-Hilliard/Navier-Stokes system is one of the important diffuse interface models (cf.[3, 8, 17]) describing the evolution of mixing fluids. The mixture is assumed to be macroscopically immiscible, with a partial mixing in a small interfacial region where the sharp interface is regularized by the Cahn-Hilliard type diffusion in terms of the mass concentration difference. Roughly speaking, the Cahn-Hilliard equation is used for modeling the loss of mixture homogeneity and the formation of pure phase regions, while the Navier-Stokes equations describe the hydrodynamics of the mixture that is influenced by the order parameter, due to the surface tension and its variations, through an extra capillarity force term.

In this paper, we are interested in the following stationary Cahn-Hilliard/Navier-Stokes system for the mixture of compressible fluid flows in a three-dimensional bounded domain Ω3\Omega\subset\mathbb{R}^{3}:

{div(ρu)=0,div(ρuu)=div(𝕊ns+𝕊cP𝕀)+ρg,div(ρuc)=μ,ρμ=ρf(ρ,c)cc,\left\{\begin{aligned} &{\rm div}(\rho u)=0,\\ &{\rm div}(\rho u\otimes u)={\rm div}\left(\mathbb{S}_{ns}+\mathbb{S}_{c}-P\mathbb{I}\right)+\rho g,\\ &{\rm div}(\rho uc)=\triangle\mu,\\ &\rho\mu=\rho\frac{\partial f(\rho,c)}{\partial c}-\triangle c,\end{aligned}\right. (1.1)

where ρ\rho denotes the total density, uu the mean velocity field, cc the mass concentration difference of the two components, μ\mu the chemical potential, and gg the external force; the tensor

𝕊ns=λ1(u+(u))+λ2divu𝕀,\mathbb{S}_{ns}=\lambda_{1}\left(\nabla u+(\nabla u)^{\top}\right)+\lambda_{2}{\rm div}u\mathbb{I}, (1.2)

is the Navier-Stokes stress tensor, where 𝕀\mathbb{I} is the 3×33\times 3 identity matrix, λ1,λ2\lambda_{1},\,\lambda_{2} are constant such that

λ1>0,2λ1+3λ20;\lambda_{1}>0,\quad 2\lambda_{1}+3\lambda_{2}\geq 0; (1.3)

the tensor

𝕊c=cc+12|c|2𝕀,\mathbb{S}_{c}=-\nabla c\otimes\nabla c+\frac{1}{2}|\nabla c|^{2}\mathbb{I}, (1.4)

is the capillary stress tensor; and

P=ρ2f(ρ,c)ρ,P=\rho^{2}\frac{\partial f(\rho,c)}{\partial\rho}, (1.5)

is the pressure with the free energy density (cf. [1, 17])

f(ρ,c)=ργ1+H1(c)lnρ+H2(c),\displaystyle f(\rho,c)=\rho^{\gamma-1}+H_{1}(c)\ln\rho+H_{2}(c), (1.6)

where γ>1\gamma>1 is the adiabatic exponent, and Hi(i=1,2)H_{i}\,(i=1,2) are two given functions. The corresponding evolutionary diffuse interface model was derived in [1, Section 2.2] where the existence of weak solutions was obtained for γ>32\gamma>\frac{3}{2}. We refer the readers to [3, 8, 17, 1, 16] for more discussions on the physics and models of mixing fluids with diffuse interfaces.

We briefly review some related results in literature. For the stationary Navier-Stokes equations of compressible flows, the existence of weak solutions was studied in Lions [15] with γ>53\gamma>\frac{5}{3}, Novotný-Strašcraba [20] with γ>32\gamma>\frac{3}{2}, Frehse-Steinhauer-Weigant [12] with γ>43\gamma>\frac{4}{3}, Plotnikov-Weigant[24] with γ>1\gamma>1, as well as in Jiang-Zhou [14] and Bresch-Burtea [7] for periodic domains. For the stationary Cahn-Hilliard/Navier-Stokes equations of incompressible flows, the existence of weak solutions was obtained in Biswas-Dharmatti-Mahendranath-Mohan [5], Ko-Pustejovska-Suli [22], and Ko-Suli [23]. For the compressible Cahn-Hilliard/Navier-Stokes equations, Liang-Wang in [16] proved the existence of weak solutions in case of the adiabatic exponent γ>2.\gamma>2. See [15, 20, 10, 12, 24, 14, 19, 18, 5, 22, 23, 16, 7, 6, 9] and their references for more results.

In this paper, we shall continue our study on the existence of weak solutions, and improve our previous result obtained in [16] for γ>2\gamma>2 to the case of γ>43\gamma>\frac{4}{3} for the stationary equations (1.1) subject to the following boundary conditions:

u=0,cn=0,μn=0,onΩ,u=0,\,\,\,\frac{\partial c}{\partial n}=0,\,\,\,\frac{\partial\mu}{\partial n}=0,\quad{\rm on}\,\,\,\partial\Omega, (1.7)

and the additional conditions:

ρ(x)𝑑x=m1>0,ρ(x)c(x)𝑑x=m2,\int\rho(x)dx=m_{1}>0,\quad\int\rho(x)c(x)dx=m_{2}, (1.8)

with two given constants m1m_{1} and m2m_{2}, where nn is the normal vector of Ω\partial\Omega.

Before stating our main results, we introduce some notation that will be used throughout this paper. For two given matrices 𝔸=(aij)3×3\mathbb{A}=(a_{ij})_{3\times 3} and 𝔹=(bij)3×3\mathbb{B}=(b_{ij})_{3\times 3}, we denote their scalar product by 𝔸:𝔹=i,j=13aijbij\mathbb{A}:\mathbb{B}=\sum_{i,j=1}^{3}a_{ij}b_{ij}. For two vectors a,b3a,\,b\in\mathbb{R}^{3}, denote ab=(aibj)3×3.a\otimes b=(a_{i}b_{j})_{3\times 3}. We use f=Ωf(x)𝑑x\int f=\int_{\Omega}f(x)dx for simplicity. For any p[1,]p\in[1,\infty] and integer k0,k\geq 0, Wk,p(Ω)W^{k,p}(\Omega) is the standard Sobolev space (cf. [2]), and

W0k,p={fWk,p:f|Ω=0},Wnk,p={fWk,p:fn|Ω=0},\displaystyle W_{0}^{k,p}=\left\{f\in W^{k,p}:\ f|_{\partial\Omega}=0\right\},\quad W_{n}^{k,p}=\left\{f\in W^{k,p}:\ \frac{\partial f}{\partial n}|_{\partial\Omega}=0\right\},
Lp=W0,p,Hk=Wk,2,H0k=W0k,2,Hnk=Wnk,2,\displaystyle L^{p}=W^{0,p},\quad H^{k}=W^{k,2},\quad H_{0}^{k}=W_{0}^{k,2},\quad H_{n}^{k}=W_{n}^{k,2},
Lp¯={fLp:(f)Ω=0},\displaystyle\overline{L^{p}}=\big{\{}f\in L^{p}:\ (f)_{\Omega}=0\big{\}},

where (f)Ω=1|Ω|f(f)_{\Omega}=\frac{1}{|\Omega|}\int f is the average of ff over Ω\Omega.

As in [16], we define the weak solution as follows.

Definition 1.1.

The vector of functions (ρ,u,μ,c)(\rho,u,\mu,c) is called a weak solution to the problem (1.1)-(1.8), if

ρLγ+θ(Ω),ρ0a.e.inΩ,uH01(Ω),μHn1(Ω),cWn2,p(Ω),\displaystyle\begin{aligned} &\rho\in L^{\gamma+\theta}(\Omega),\,\,\,\rho\geq 0\,\,{\rm a.e.\ in}\,\,\Omega,\quad u\in H_{0}^{1}(\Omega),\quad\mu\in H_{n}^{1}(\Omega),\quad c\in W_{n}^{2,p}(\Omega),\end{aligned}

for some p>65p>\frac{6}{5} and θ>0\theta>0, and the following properties hold true:

(i) The system (1.1)\eqref{1} is satisfied in the sense of distributions in Ω\Omega, and (1.8) holds for the given constants m1>0m_{1}>0 and m2.m_{2}\in\mathbb{R}.

(ii) If (ρ,u)(\rho,u) is prolonged by zero outside Ω\Omega, then both the equation (1.1)1\eqref{1}_{1} and

div(b(ρ)u)+(b(ρ)ρb(ρ))divu=0{\rm div}(b(\rho)u)+\left(b^{\prime}(\rho)\rho-b(\rho)\right){\rm div}u=0

are satisfied in the sense of distributions in 3\mathbb{R}^{3}, where bC1([0,))b\in C^{1}([0,\infty)) with b(z)=0b^{\prime}(z)=0 if zz is large enough.

(iii) The following energy inequality is valid:

(λ1|u|2+(λ1+λ2)(divu)2+|μ|2)𝑑xρgu.\displaystyle\int\left(\lambda_{1}|\nabla u|^{2}+(\lambda_{1}+\lambda_{2})({\rm div}u)^{2}+|\nabla\mu|^{2}\right)dx\leq\int\rho g\cdot u.

We now state our main result.

Theorem 1.1.

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with C2C^{2} boundary. Assume that

γ>43,\gamma>\frac{4}{3}, (1.9)

and

gL(Ω),|Hi(c)|+|Hi(c)|H¯c,i=1,2,g\in L^{\infty}(\Omega),\quad|H_{i}(c)|+|H_{i}^{\prime}(c)|\leq\overline{H}\quad\forall\,c\in\mathbb{R},\quad i=1,2, (1.10)

for some constant H¯<\overline{H}<\infty. Then, for any given constants m1>0m_{1}>0 and m2m_{2}, the problem (1.1)-(1.8) admits a weak solution (ρ,u,μ,c)(\rho,u,\mu,c) in the sense of Definition 1.1.

The main contribution of this paper is to develop new ideas to improve the existence result of [16] from the adiabatic exponent γ>2\gamma>2 in [16] to a wider range γ>43\gamma>\frac{4}{3}. Our approach is mainly motivated by the papers [14, 24] where the authors studied the existence of weak solutions to the stationary Navier-Stokes equations of compressible fluids. In order to prove the Theorem 1.1, we start with the approximate solution sequence (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) stated in Proposition 2.1 in Section 2, and use the weighted total energy as in [14, 24] together with new techniques to handle the capillary stress to establish the uniform in δ\delta bound on (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) in (3.1). Then, we shall be able to take the limit as δ0\delta\rightarrow 0 and complete the proof of Theorem 1.1 by means of the weak convergence arguments in [16]. More precisely, our proof includes the following key ingredients and new ideas:

  1. (1)

    In light of [14, 24], for any given xΩ¯x^{*}\in\overline{\Omega} we estimate the weighted total energy

    Ω(δρ4+P+ρ|u|2)(x)|xx|α𝑑x,\int_{\Omega}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx,

    instead of

    Ω(δρ4+P)(x)|xx|α𝑑x,\int_{\Omega}\frac{\left(\delta\rho^{4}+P\right)(x)}{|x-x^{*}|^{\alpha}}dx,

    where the advantage is that the involved kinetic energy

    Ωρ|u|2(x)|xx|α𝑑x\int_{\Omega}\frac{\rho|u|^{2}(x)}{|x-x^{*}|^{\alpha}}dx

    helps us relax the restriction on γ\gamma.

  2. (2)

    In order to analyze the weighted total energy we need to overcome the new difficulties caused by the capillary stress 𝕊c\mathbb{S}_{c} in (1.4), besides the Navier-Stokes stress tensor 𝕊ns\mathbb{S}_{ns}. In particular, we are required to control ρμL322\|\rho\mu\|_{L^{\frac{3}{2}}}^{2} appearing in (3.10) and (3.11). For this purpose we make the following estimate

    ΩBr0(x)(δρ4+P+ρ|u|2)(x)|xx|α2𝑑xCr0α(1α)ΩBr0(x)(δρ4+P+ρ|u|2)(x)|xx|α𝑑x,\displaystyle\begin{aligned} &\int_{\Omega\cap B_{r_{0}}(x^{*})}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx\\ &\leq Cr_{0}^{\alpha(1-\alpha)}\int_{\Omega\cap B_{r_{0}}(x^{*})}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx,\end{aligned}

    where r0>0r_{0}>0 is small and α(0,1)\alpha\in(0,1). By virtue of the Finite Coverage Theorem, Ω¯\overline{\Omega} can be covered by a finite number of balls of radius r0r_{0} centered at x1,,xKx_{1}^{*},...,x_{K}^{*}, then

    supxΩ¯Ω(δρ4+P+ρ|u|2)(x)|xx|α2𝑑xmax1kKΩBr0(xk)(δρ4+P+ρ|u|2)(x)|xx|α2𝑑xCr0α(1α)ρμL322+.\displaystyle\begin{aligned} &\sup_{x^{*}\in\overline{\Omega}}\int_{\Omega}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx\\ &\leq\max_{1\leq k\leq K}\int_{\Omega\cap B_{r_{0}}(x_{k}^{*})}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx\\ &\leq Cr_{0}^{\alpha(1-\alpha)}\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}+\cdots.\end{aligned}

    Next, we assume the following a priori bound

    M=max{1,ρL2}<\textbf{M}=\max\{1,\|\rho\|_{L^{2}}\}<\infty (1.11)

    that is uniform in δ>0.\delta>0. If we select r0=r0(α,M)r_{0}=r_{0}(\alpha,\textbf{M}) small enough such that

    r0α(1α)ρμL322Cr0α(1α)M83(μL22+1)C(μL22+1),\displaystyle r_{0}^{\alpha(1-\alpha)}\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\leq Cr_{0}^{\alpha(1-\alpha)}\textbf{M}^{\frac{8}{3}}(\|\nabla\mu\|_{L^{2}}^{2}+1)\leq C(\|\nabla\mu\|_{L^{2}}^{2}+1),

    we are able to derive the following estimate

    Ω(δρ4+P+ρ|u|2)(x)|xx|α2𝑑xC+CμL22+.\displaystyle\begin{aligned} \int_{\Omega}\frac{\left(\delta\rho^{4}+P+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx\leq C+C\|\nabla\mu\|_{L^{2}}^{2}+\cdots.\end{aligned}
  3. (3)

    With the above two key steps, we can show that there is a constant CC that does not rely on M, such that

    ργLsC+CρμL322C+CρL243C+12ργLs,\displaystyle\|\rho^{\gamma}\|_{L^{s}}\leq C+C\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\leq C+C\|\rho\|_{L^{2}}^{\frac{4}{3}}\leq C+\frac{1}{2}\|\rho^{\gamma}\|_{L^{s}},

    as long as γs>2\gamma s>2. This yields ργLs2C\|\rho^{\gamma}\|_{L^{s}}\leq 2C, and then we have the estimate ρL2C0\|\rho\|_{L^{2}}\leq C_{0} for some positive constant C0C_{0} independent of M. By choosing the a priori bound M=2C0\textbf{M}=2C_{0}, one can close the a priori assumption (1.11) and prove the existence of weak solutions in the Theorem 1.1.

The rest of the paper is organized as follows. In Section 2, we present the approximate solutions constructed in [16] and provide some preliminary lemmas. In Section 3, we prove the Theorem 1.1.


2. Approximate Solutions and Preliminaries

We start with the following approximate solutions constructed in [16].

Proposition 2.1 (Theorem 4.1, [16]).

Under the assumptions of Theorem 1.1, for any fixed parameter δ>0\delta>0 and any given constants m1>0m_{1}>0 and m2m_{2}, the system

{div(ρu)=0,div(ρuu)+(δρ4+ρ2fρ)=div(𝕊ns+𝕊c)+ρg,div(ρuc)=μ,ρμ=ρfcc,\left\{\begin{aligned} &{\rm div}(\rho u)=0,\\ &{\rm div}(\rho u\otimes u)+\nabla\left(\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right)={\rm div}\left(\mathbb{S}_{ns}+\mathbb{S}_{c}\right)+\rho g,\\ &{\rm div}(\rho uc)=\triangle\mu,\\ &\rho\mu=\rho\frac{\partial f}{\partial c}-\triangle c,\end{aligned}\right. (2.1)

with the boundary conditions (1.7), admits a weak solution (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) in the sense of distributions such that

ρδL1=m1,ρδcδ=m2,\|\rho_{\delta}\|_{L^{1}}=m_{1},\quad\int\rho_{\delta}c_{\delta}=m_{2}, (2.2)
ρδL5(Ω),ρδ0 a.e. in Ω,uδH01(Ω),(μδ,cδ)Hn1(Ω)×Hn1(Ω),\displaystyle\rho_{\delta}\in L^{5}(\Omega),\,\,\,\rho_{\delta}\geq 0\text{ a.e. in }\Omega,\,\,\,u_{\delta}\in H_{0}^{1}(\Omega),\,\,\,(\mu_{\delta},\,c_{\delta})\in H_{n}^{1}(\Omega)\times H_{n}^{1}(\Omega), (2.3)

and

(λ1|uδ|2+(λ1+λ2)(divuδ)2+|μδ|2)ρδguδ.\int\left(\lambda_{1}|\nabla u_{\delta}|^{2}+(\lambda_{1}+\lambda_{2})({\rm div}u_{\delta})^{2}+|\nabla\mu_{\delta}|^{2}\right)\leq\int\rho_{\delta}g\cdot u_{\delta}. (2.4)
Lemma 2.1.

Let (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) be the solution in Proposition 2.1. Then we have

μδLpC(1+μδL2)(1+ρδL65),p[1,6],\displaystyle\|\mu_{\delta}\|_{L^{p}}\leq C\left(1+\|\nabla\mu_{\delta}\|_{L^{2}})(1+\|\rho_{\delta}\|_{L^{\frac{6}{5}}}\right),\quad p\in[1,6], (2.5)

where the constant CC is independent of δ.\delta.

Proof.

Thanks to (1.6), (1.10), the boundary conditions (1.7), one has, from (2.1)4\eqref{n6}_{4},

ρδμδ=(ρδfcδ+cδ)=ρδfcδC(ρδlnρδL1+1).\int\rho_{\delta}\mu_{\delta}=\int\left(\rho_{\delta}\frac{\partial f}{\partial c_{\delta}}+\triangle c_{\delta}\right)=\int\rho_{\delta}\frac{\partial f}{\partial c_{\delta}}\leq C\left(\|\rho_{\delta}\ln\rho_{\delta}\|_{L^{1}}+1\right). (2.6)

Using (2.6) together with (2.2) and the embedding inequality guarantees that

μδ=|Ω|m1ρδ(μδ)Ω=|Ω|m1ρδμδ|Ω|m1ρ(μδ(μδ)Ω)C(ρδlnρδL1+1)+CρδL65μδL2,\displaystyle\begin{aligned} \int\mu_{\delta}&=\frac{|\Omega|}{m_{1}}\int\rho_{\delta}\left(\mu_{\delta}\right)_{\Omega}\\ &=\frac{|\Omega|}{m_{1}}\int\rho_{\delta}\mu_{\delta}-\frac{|\Omega|}{m_{1}}\int\rho\left(\mu_{\delta}-\left(\mu_{\delta}\right)_{\Omega}\right)\\ &\leq C\left(\|\rho_{\delta}\ln\rho_{\delta}\|_{L^{1}}+1\right)+C\|\rho_{\delta}\|_{L^{\frac{6}{5}}}\|\nabla\mu_{\delta}\|_{L^{2}},\end{aligned}

which implies

μδL1\displaystyle\|\mu_{\delta}\|_{L^{1}} CμδL2+C(ρδlnρδL1+1)+CρδL65μδL2\displaystyle\leq C\|\nabla\mu_{\delta}\|_{L^{2}}+C\left(\|\rho_{\delta}\ln\rho_{\delta}\|_{L^{1}}+1\right)+C\|\rho_{\delta}\|_{L^{\frac{6}{5}}}\|\nabla\mu_{\delta}\|_{L^{2}} (2.7)
C(1+μδL2)(1+ρδL65).\displaystyle\leq C(1+\|\nabla\mu_{\delta}\|_{L^{2}})(1+\|\rho_{\delta}\|_{L^{\frac{6}{5}}}).

From (2.7) and the interpolation inequality, we obtain (2.5). The proof of Lemma 2.1 is completed. ∎

The next lemma gives an embedding from H1H^{1} to L2L^{2} in a three-dimensional bounded domain, via the Green representation formula.

Lemma 2.2.

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with C2C^{2} boundary and fL2(Ω)f\in L^{2}(\Omega) satisfy

f0andΩf(x)|xx|𝑑x𝔼,xΩ,\displaystyle f\geq 0\quad{\rm and}\quad\int_{\Omega}\frac{f(x)}{|x-x^{*}|}dx\leq\mathbb{E},\quad\forall\,\,x^{*}\in\Omega,

for some constant 𝔼>0\mathbb{E}>0. Then, there is a constant CC which depends only on Ω\Omega, such that

(i) If uH01(Ω),u\in H_{0}^{1}(\Omega), then

Ω|u|2f𝑑xC𝔼uH01(Ω)2.\int_{\Omega}|u|^{2}fdx\leq C\mathbb{E}\|u\|_{H_{0}^{1}(\Omega)}^{2}. (2.8)

(ii) If μHn1(Ω)\mu\in H_{n}^{1}(\Omega) and (f)Ω=0(f)_{\Omega}=0, then

Ωμ2f𝑑xC𝔼μL2(Ω)2.\int_{\Omega}\mu^{2}fdx\leq C\mathbb{E}\|\nabla\mu\|_{L^{2}(\Omega)}^{2}. (2.9)
Proof.

The proof of the case (i) can be found in [24, Lemma 4]. Here we prove the case (ii). Let HH be a solution to the Neumann boundary value problem:

H=fL2¯inΩ,withHn=0onΩ.\triangle H=f\in\overline{L^{2}}\,\,\,{\rm in}\,\,\,\Omega,\quad{\rm with}\quad\frac{\partial H}{\partial n}=0\,\,\,{\rm on}\,\,\,\partial\Omega. (2.10)

Recalling the Green representation formula H(x)=ΩG(x,x)f(x)𝑑xH(x^{*})=\int_{\Omega}G(x^{*},x)f(x)dx, we have

HL\displaystyle\|H\|_{L^{\infty}} CsupxΩΩf(x)|xx|𝑑xC𝔼.\displaystyle\leq C\sup_{x^{*}\in\Omega}\int_{\Omega}\frac{f(x)}{|x-x^{*}|}dx\leq C\mathbb{E}. (2.11)

Thanks to (2.10), using integration by parts yields

μ2f\displaystyle\int\mu^{2}f =μ2H=2μμH2μL2(μ2|H|2)12.\displaystyle=\int\mu^{2}\triangle H=-2\int\mu\nabla\mu\cdot\nabla H\leq 2\|\nabla\mu\|_{L^{2}}\left(\int\mu^{2}|\nabla H|^{2}\right)^{\frac{1}{2}}. (2.12)

From (2.12) we then derive the following estimate:

μ2|H|2=μ2HH2μμHHHL|μ|2f+2HLμL2(|μ|2|H|2)124HLμL2(|μ|2|H|2)12,\displaystyle\begin{aligned} \int\mu^{2}|\nabla H|^{2}&=-\int\mu^{2}H\triangle H-2\int\mu\nabla\mu H\nabla H\\ &\leq\|H\|_{L^{\infty}}\int|\mu|^{2}f+2\|H\|_{L^{\infty}}\|\nabla\mu\|_{L^{2}}\left(\int|\mu|^{2}|\nabla H|^{2}\right)^{\frac{1}{2}}\\ &\leq 4\|H\|_{L^{\infty}}\|\nabla\mu\|_{L^{2}}\left(\int|\mu|^{2}|\nabla H|^{2}\right)^{\frac{1}{2}},\end{aligned}

which implies

(|μ|2|H|2)124HLμL2.\displaystyle\begin{aligned} \left(\int|\mu|^{2}|\nabla H|^{2}\right)^{\frac{1}{2}}\leq 4\|H\|_{L^{\infty}}\|\nabla\mu\|_{L^{2}}.\end{aligned}

Substituting the above inequality into (2.12) gives that

μ2fL18HLμL22.\displaystyle\|\mu^{2}f\|_{L^{1}}\leq 8\|H\|_{L^{\infty}}\|\nabla\mu\|_{L^{2}}^{2}.

Then (2.9) follows from (2.11). The proof of Lemma 2.2 is completed. ∎

Finally, we present the properties of the Bogovskii operator whose proof is available in [11, 21].

Lemma 2.3 (Bogovskii).

Let Ω\Omega be a bounded Lipschitz domain. There is a linear operator =(1,2,3):Lp¯W01,p\mathcal{B}=(\mathcal{B}^{1},\mathcal{B}^{2},\mathcal{B}^{3}):\overline{L^{p}}\to W_{0}^{1,p} for p(1,)p\in(1,\infty), such that, for fLp¯f\in\overline{L^{p}},

(i)

div(f)=fa.e.inΩ,\displaystyle{\rm div}\mathcal{B}(f)=f\,\,a.e.\,\,{\rm in}\,\,\Omega,

(ii)

(f)LpC(p,Ω)fLp.\displaystyle\|\nabla\mathcal{B}(f)\|_{L^{p}}\leq C(p,\Omega)\|f\|_{L^{p}}.

3. Proof of Theorem 1.1

For the approximate solution (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) given in Proposition 2.1, if we can show that there is a constant CC uniform in δ\delta such that

δρδ4+ργLs+uδH01+μδHn1+cδWn2,32C,γs>2,\|\delta\rho_{\delta}^{4}+\rho^{\gamma}\|_{L^{s}}+\|u_{\delta}\|_{H_{0}^{1}}+\|\mu_{\delta}\|_{H_{n}^{1}}+\|c_{\delta}\|_{W_{n}^{2,\frac{3}{2}}}\leq C,\quad\gamma s>2, (3.1)

then, from (3.1) we are able to control the possible oscillation of density and the nonlinearity in the free energy density (1.6), and hence we can take the limit as δ0\delta\rightarrow 0 to prove that the approximate solution (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) converges weakly to some limit function which satisfies (1.1)-(1.8) in the sense of Definition 1.1. This convergence proof relies heavily on the compactness arguments in [10, 16, 15, 21] and the details can be found in [16]. Therefore, it suffices to prove the following proposition in order to complete the proof of Theorem 1.1.

Proposition 3.1.

Let the assumptions in Theorem 1.1 hold true. Assume that

2γ<s32and43<γ2.\frac{2}{\gamma}<s\leq\frac{3}{2}\quad{\rm and}\quad\frac{4}{3}<\gamma\leq 2. (3.2)

Then, the solutions (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) stated in Proposition 2.1 satisfy (3.1).

Remark 3.1.

In case when γ>2\gamma>2, the existence of weak solutions to the problem (1.1)-(1.8) has been established in [16].

For the sake of simplicity of notation, in the proof of the Proposition 3.1 below we will drop the subscript in (ρδ,uδ,μδ,cδ)(\rho_{\delta},u_{\delta},\mu_{\delta},c_{\delta}) and denote it by (ρ,u,μ,c)(\rho,u,\mu,c).

Lemma 3.1.

Under the assumptions of Proposition 3.1, we have

δρ4+ρ2fρLsC(1+uL2+ρ|u|2Ls+ρμL6s3+2s2),\displaystyle\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{s}}\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{s}}+\|\rho\mu\|_{L^{\frac{6s}{3+2s}}}^{2}\right), (3.3)

where ss is defined in (3.2). Here and below, the capital letter C>0C>0 denotes a generic constant which may rely on m1,m2,γ,H¯,λ1,λ2,|Ω|,gLm_{1},m_{2},\gamma,\overline{H},\lambda_{1},\lambda_{2},|\Omega|,\|g\|_{L^{\infty}} but is independent of δ.\delta.

Proof.

For any hLss1h\in L^{\frac{s}{s-1}}, we test the equation (2.1)2\eqref{n6}_{2} against (h(h)Ω)\mathcal{B}(h-(h)_{\Omega}) and deduce that

(δρ4+ρ2fρ)h\displaystyle\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right)h (3.4)
=(h)Ω(δρ4+ρ2fρ)ρg(h(h)Ω)+𝕊ns:(h(h)Ω)\displaystyle=\left(h\right)_{\Omega}\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right)-\int\rho g\cdot\mathcal{B}\left(h-(h)_{\Omega}\right)+\int\mathbb{S}_{ns}:\nabla\mathcal{B}(h-(h)_{\Omega})
ρuu:(h(h)Ω)+𝕊c:(h(h)Ω)\displaystyle\quad-\int\rho u\otimes u:\nabla\mathcal{B}(h-(h)_{\Omega})+\int\mathbb{S}_{c}:\nabla\mathcal{B}(h-(h)_{\Omega})
ChLss1(1+δρ4+ρ2fρL1+uL2+ρ|u|2Ls+cL2s2),\displaystyle\leq C\|h\|_{L^{\frac{s}{s-1}}}\left(1+\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\|_{L^{1}}+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{s}}+\|\nabla c\|_{L^{2s}}^{2}\right),

where we have used (2.2), Lemma 2.3, the fact ss1>2,\frac{s}{s-1}>2, and the following inequality:

hL2+(h(h)Ω)L+(h(h)Ω)L2+(h(h)Ω)Lss1ChLss1.\displaystyle\begin{aligned} &\|h\|_{L^{2}}+\|\mathcal{B}(h-(h)_{\Omega})\|_{L^{\infty}}+\|\nabla\mathcal{B}(h-(h)_{\Omega})\|_{L^{2}}+\|\nabla\mathcal{B}(h-(h)_{\Omega})\|_{L^{\frac{s}{s-1}}}\\ &\leq C\|h\|_{L^{\frac{s}{s-1}}}.\end{aligned}

Now we choose

h=(|δρ4+ρ2fρ|δρ4+ρ2fρLs)s1Lss1\displaystyle h=\left(\frac{|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}|}{\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\|_{L^{s}}}\right)^{s-1}\in L^{\frac{s}{s-1}}

and derive from (3.4) that

δρ4+ρ2fρLsC(1+δρ4+ρ2fρL1+uL2+ρ|u|2Ls+cL2s2).\begin{split}&\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{s}}\\ &\leq C\left(1+\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{1}}+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{s}}+\|\nabla c\|_{L^{2s}}^{2}\right).\end{split} (3.5)

Next, by (1.6), (1.10), and the interpolation theorem, it holds that

ρfcL6s3+2s2\displaystyle\left\|\rho\frac{\partial f}{\partial c}\right\|_{L^{\frac{6s}{3+2s}}}^{2} C+CρlnρL6s3+2s2\displaystyle\leq C+C\|\rho\ln\rho\|_{L^{\frac{6s}{3+2s}}}^{2} (3.6)
C+CργLs(4s3)3(γs1)+η\displaystyle\leq C+C\|\rho^{\gamma}\|_{L^{s}}^{\frac{(4s-3)}{3(\gamma s-1)}+\eta}
C+Cδρ4+ρ2fρLs(4s3)3(γs1)+η.\displaystyle\leq C+C\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{s}}^{\frac{(4s-3)}{3(\gamma s-1)}+\eta}.

Since γ>43\gamma>\frac{4}{3}, if η>0\eta>0 is small, one has

(4s3)3(γs1)+η<1.\frac{(4s-3)}{3(\gamma s-1)}+\eta<1.

Utilizing (1.7) and (3.6), we obtain

cL2s2\displaystyle\|\nabla c\|_{L^{2s}}^{2} C2cL6s3+2s2CcL6s3+2s2\displaystyle\leq C\|\nabla^{2}c\|_{L^{\frac{6s}{3+2s}}}^{2}\leq C\|\triangle c\|_{L^{\frac{6s}{3+2s}}}^{2} (3.7)
CρfcL6s3+2s2+CρμL6s3+2s2\displaystyle\leq C\left\|\rho\frac{\partial f}{\partial c}\right\|_{L^{\frac{6s}{3+2s}}}^{2}+C\|\rho\mu\|_{L^{\frac{6s}{3+2s}}}^{2}
C+12δρ4+ρ2fρLs+CρμL6s3+2s2.\displaystyle\leq C+\frac{1}{2}\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{s}}+C\|\rho\mu\|_{L^{\frac{6s}{3+2s}}}^{2}.

Substituting (3.7) into (3.5), we conclude (3.3). The proof of Lemma 3.1 is completed. ∎

Remark 3.2.

Due to the boundary condition μn=0\frac{\partial\mu}{\partial n}=0 and the coupling of the chemical potential μ\mu with the density ρ\rho, the restriction γ>43\gamma>\frac{4}{3} seems critical in our proof especially when closing a priori estimates on the pressure function. See also Lemmas 3.4-3.5 below.

Next, we shall deduce some weighted estimates on the pressure and kinetic energy together, i.e., the weighted total energy motivated by [14, 24]. As in [12], we introduce

ξ(x)=ϕ(x)ϕ(x)(ϕ(x)+|xx|22α)αwithx,xΩ¯,α(0,1),\xi(x)=\frac{\phi(x)\nabla\phi(x)}{\left(\phi(x)+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}\quad{\rm with}\quad x,\,x^{*}\in\overline{\Omega},\,\,\alpha\in(0,1), (3.8)

where the function ϕ(x)C2(Ω¯)\phi(x)\in C^{2}(\overline{\Omega}) can be regarded as the distance function when xΩx\in\Omega is close to the boundary, smoothly extended to the whole domain Ω.\Omega. In particular,

{ϕ(x)>0inΩandϕ(x)=0onΩ,|ϕ(x)|k1ifxΩanddist(x,Ω)k2,ϕ=xx~ϕ(x)=xx~|xx~|ifxΩanddist(x,Ω)=|xx~|k2,\left\{\begin{aligned} &\phi(x)>0\,\,\,{\rm in}\,\,\Omega\,\,\,{\rm and}\,\,\,\phi(x)=0\,\,\,{\rm on}\,\,\,\partial\Omega,\\ &|\phi(x)|\geq k_{1}\,\,\,{\rm if}\,\,\,x\in\Omega\,\,\,{\rm and}\,\,\,{\rm dist}(x,\,\partial\Omega)\geq k_{2},\\ &\nabla\phi=\frac{x-\tilde{x}}{\phi(x)}=\frac{x-\tilde{x}}{|x-\tilde{x}|}\,\,\,{\rm if}\,\,\,x\in\Omega\,\,\,{\rm and}\,\,\,{\rm dist}(x,\,\partial\Omega)=|x-\tilde{x}|\leq k_{2},\end{aligned}\right. (3.9)

where the constants ki>0k_{i}>0, i=1,2i=1,2, are given. See for example [26, Exercise 1.15] for details.

Lemma 3.2.

Let (ρ,u,μ,c)(\rho,u,\mu,c) be the solutions stated in Proposition 2.1. Then, for α(0,1)\alpha\in(0,1), the following properties hold:

(i) In case of xΩ,x^{*}\in\partial\Omega, we have

Bk2(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{k_{2}}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.10)
C(1+uL2+ρ|u|2L32+ρμL322),\displaystyle\quad\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right),

where k2k_{2} is taken from (3.9), and CC is independent of xx^{*}.

(ii) In case of xΩ,x^{*}\in\Omega, we have

Br(x)(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.11)
C(1+uL2+ρ|u|2L32+ρμL322),\displaystyle\quad\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right),

where r=13dist(x,Ω)>0,r=\frac{1}{3}{\rm dist}(x^{*},\,\partial\Omega)>0, and CC is independent of rr or xx^{*}.

Proof.

In order to prove Lemma 3.2 we borrow some ideas developed in [12, 19, 24] and modify the proof in [16].

Write the function f(ρ,c)f(\rho,c) in (1.6) as

f(ρ,c)=ργ+(H1(c)+H¯)lnρ+H2(c)H¯lnρ=f~(ρ,c)H¯lnρ,\displaystyle\begin{aligned} f(\rho,c)=\rho^{\gamma}+\left(H_{1}(c)+\overline{H}\right)\ln\rho+H_{2}(c)-\overline{H}\ln\rho=\widetilde{f}(\rho,c)-\overline{H}\ln\rho,\end{aligned}

where

f~(ρ,c)=ργ+(H1(c)+H¯)lnρ+H2(c).\widetilde{f}(\rho,c)=\rho^{\gamma}+\left(H_{1}(c)+\overline{H}\right)\ln\rho+H_{2}(c).

Then, we have

ρ2f(ρ,c)ρ\displaystyle\rho^{2}\frac{\partial f(\rho,c)}{\partial\rho} =ρ2f~(ρ,c)ρρH¯,\displaystyle=\rho^{2}\frac{\partial\widetilde{f}(\rho,c)}{\partial\rho}-\rho\overline{H}, (3.12)

and

ρ2f~(ρ,c)ρ=(γ1)ργ+ρ(H1(c)+H¯)(γ1)ργ0,\rho^{2}\frac{\partial\widetilde{f}(\rho,c)}{\partial\rho}=(\gamma-1)\rho^{\gamma}+\rho\left(H_{1}(c)+\overline{H}\right)\geq(\gamma-1)\rho^{\gamma}\geq 0, (3.13)

due to (1.10) and (2.3).

Stpe 1: Proof of (3.10):   From (3.8) and (3.9) we see that ξLW01,p\xi\in L^{\infty}\cap W^{1,p}_{0} with p[2,3α)p\in[2,\frac{3}{\alpha}). Furthermore, by (3.9) and the fact 22α>1\frac{2}{2-\alpha}>1, one has

ϕ(x)<ϕ(x)+|xx|22αC|xx|.\phi(x)<\phi(x)+|x-x^{*}|^{\frac{2}{2-\alpha}}\leq C|x-x^{*}|. (3.14)

With (3.9) and (3.14), one deduces that, for dist(x,Ω)k2,{\rm dist}(x,\,\partial\Omega)\leq k_{2},

C+C|xx|αdivξ(x)\displaystyle C+\frac{C}{|x-x^{*}|^{\alpha}}\geq{\rm div}\xi(x) C+(1α)2|ϕ(x)|2(ϕ(x)+|xx|22α)α\displaystyle\geq-C+\frac{(1-\alpha)}{2}\frac{|\nabla\phi(x)|^{2}}{\left(\phi(x)+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}} (3.15)
C+C|xx|α.\displaystyle\geq-C+\frac{C}{|x-x^{*}|^{\alpha}}.

Thanks to (3.12), we multiply (2.1)2\eqref{n6}_{2} by ξ\xi to obtain

(δρ4+ρ2f~ρ)divξ+ρuu:ξ\displaystyle\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\right){\rm div}\xi+\int\rho u\otimes u:\nabla\xi (3.16)
=ρgξ+(𝕊ns+𝕊c):ξ+H¯ρdivξ.\displaystyle=-\int\rho g\cdot\xi+\int\left(\mathbb{S}_{ns}+\mathbb{S}_{c}\right):\nabla\xi+\overline{H}\int\rho{\rm div}\xi.

By (1.10), (2.2)-(2.3), (3.15), and the fact ξLW01,3\xi\in L^{\infty}\cap W_{0}^{1,3}, we estimate the right-hand side of (3.16) as

|ρgξ+(𝕊ns+𝕊c):ξ|\displaystyle\left|-\int\rho g\cdot\xi+\int\left(\mathbb{S}_{ns}+\mathbb{S}_{c}\right):\nabla\xi\right| C(α)(1+uL2+cL32)\displaystyle\leq C(\alpha)\left(1+\|\nabla u\|_{L^{2}}+\|\nabla c\|_{L^{3}}^{2}\right) (3.17)
C(α)(1+uL2+cL322),\displaystyle\leq C(\alpha)\left(1+\|\nabla u\|_{L^{2}}+\|\triangle c\|_{L^{\frac{3}{2}}}^{2}\right),

and

|H¯ρdivξ|C(1+ρ(x)|xx|α𝑑x).\left|\overline{H}\int\rho{\rm div}\xi\right|\leq C\left(1+\int\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx\right). (3.18)

For the left-hand side of (3.16), it holds from (3.13) and (3.15) that

(δρ4+ρ2f~ρ)divξ\displaystyle\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\,\right){\rm div}\xi\geq C(δρ4+ρ2f~ρ)\displaystyle-C\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\,\right) (3.19)
+CΩBk2(x)(δρ4+ρ2f~ρ)|xx|α.\displaystyle+C\int_{\Omega\cap B_{k_{2}}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\,\right)}{|x-x^{*}|^{\alpha}}.

By (3.9), one has

jiϕ=i(xx~)jϕjϕiϕϕ.\partial_{j}\partial_{i}\phi=\frac{\partial_{i}(x-\tilde{x})^{j}}{\phi}-\frac{\partial_{j}\phi\partial_{i}\phi}{\phi}.

Then,

ϕρuujiϕ(ϕ+|xx|22α)α=ρ|u|2(ϕ+|xx|22α)αρ|uϕ|2(ϕ+|xx|22α)α.\displaystyle\begin{aligned} &\int\frac{\phi\rho u\otimes u\partial_{j}\partial_{i}\phi}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}=\int\frac{\rho|u|^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}-\int\frac{\rho|u\cdot\nabla\phi|^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}.\end{aligned}

Thus we have the following computation and estimate:

ρuu:ξ\displaystyle\int\rho u\otimes u:\nabla\xi (3.20)
=ρ|u|2(ϕ+|xx|22α)ααϕρ(uϕ)2(ϕ+|xx|22α)α+1\displaystyle=\int\frac{\rho|u|^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}-\alpha\int\frac{\phi\rho(u\cdot\nabla\phi)^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha+1}}
αϕρ(u|xx|22α)(uϕ)(ϕ+|xx|22α)α+1\displaystyle\quad-\alpha\int\frac{\phi\rho(u\cdot\nabla|x-x^{*}|^{\frac{2}{2-\alpha}})(u\cdot\nabla\phi)}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha+1}}
(1α)ρ|u|2(ϕ+|xx|22α)ααϕρ(u|xx|22α)(uϕ)(ϕ+|xx|22α)α+1\displaystyle\geq(1-\alpha)\int\frac{\rho|u|^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}-\alpha\int\frac{\phi\rho(u\cdot\nabla|x-x^{*}|^{\frac{2}{2-\alpha}})(u\cdot\nabla\phi)}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha+1}}
(1α)2ρ|u|2(ϕ+|xx|22α)αCϕ2ρ|u|2|xx|2α2α(ϕ+|xx|22α)α+2\displaystyle\geq\frac{(1-\alpha)}{2}\int\frac{\rho|u|^{2}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha}}-C\int\frac{\phi^{2}\rho|u|^{2}|x-x^{*}|^{\frac{2\alpha}{2-\alpha}}}{\left(\phi+|x-x^{*}|^{\frac{2}{2-\alpha}}\right)^{\alpha+2}}
CΩBk2(x)ρ|u|2|xx|αCρ|u|2L1,\displaystyle\geq C\int_{\Omega\cap B_{k_{2}}(x^{*})}\frac{\rho|u|^{2}}{|x-x^{*}|^{\alpha}}-C\|\rho|u|^{2}\|_{L^{1}},

where we have used (3.14) and the Cauchy inequality. Therefore, taking (3.17)-(3.20) into account, using (3.7), (3.3), and 6s3+2s<32\frac{6s}{3+2s}<\frac{3}{2}, we deduce from (3.16) that

ΩBk2(x)δρ4+ρ2f~ρ+ρ|u|2|xx|α\displaystyle\int_{\Omega\cap B_{k_{2}}(x^{*})}\frac{\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}}{|x-x^{*}|^{\alpha}} (3.21)
C(δρ4+ρ2fρL1+uL2+ρ|u|2L1+cL322)\displaystyle\leq C\left(\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\|_{L^{1}}+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{1}}+\|\triangle c\|_{L^{\frac{3}{2}}}^{2}\right)
+Cρ(x)|xx|α𝑑x\displaystyle\qquad+C\int\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx
C(1+uL2+ρ|u|2L32+ρμL322)+Cρ(x)|xx|α𝑑x.\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right)+C\int\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx.

Finally, thanks to (2.3) and (3.13), one has

Cρ(x)|xx|α𝑑x\displaystyle C\int\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx =C(Ω\Bk2(x)+ΩBk2(x))ρ(x)|xx|αdx\displaystyle=C\left(\int_{\Omega\backslash B_{k_{2}}(x^{*})}+\int_{\Omega\cap B_{k_{2}}(x^{*})}\right)\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx (3.22)
C+CΩBk2(x)ρ(x)|xx|α𝑑x\displaystyle\leq C+C\int_{\Omega\cap B_{k_{2}}(x^{*})}\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx
C+12ΩBk2(x)ρ2f~ρ|xx|α.\displaystyle\leq C+\frac{1}{2}\int_{\Omega\cap B_{k_{2}}(x^{*})}\frac{\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}}{|x-x^{*}|^{\alpha}}.

Substituting (3.22) back into (3.21), we obtain (3.10).

Stpe 2: Proof of (3.11):   Let dist(x,Ω)=3r>0{\rm dist}(x^{*},\,\partial\Omega)=3r>0, and χ\chi be the smooth cut-off function satisfying

χ(x)=1ifxBr(x),χ(x)=0ifxB2r(x),|χ(x)|2r1.\chi(x)=1\,\,{\rm if}\,\,x\in B_{r}(x^{*}),\quad\chi(x)=0\,\,{\rm if}\,\,x\notin B_{2r}(x^{*}),\quad|\nabla\chi(x)|\leq 2r^{-1}. (3.23)

If we multiply (2.1)2\eqref{n6}_{2} by xx|xx|αχ2\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}, we get

(δρ4+ρ2f~ρ)3α|xx|αχ2+ρuu:(xx|xx|αχ2)\displaystyle\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\,\right)\frac{3-\alpha}{|x-x^{*}|^{\alpha}}\chi^{2}+\int\rho u\otimes u:\nabla\left(\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}\right) (3.24)
=ρgxx|xx|αχ2+(𝕊ns+𝕊c):(xx|xx|αχ2)\displaystyle=-\int\rho g\cdot\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}+\int\left(\mathbb{S}_{ns}+\mathbb{S}_{c}\right):\nabla\left(\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}\right)
2(δρ4+ρ2fρ)χχ(xx)|xx|α+H¯ρ3α|xx|αχ2.\displaystyle\quad-2\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right)\chi\frac{\nabla\chi\cdot(x-x^{*})}{|x-x^{*}|^{\alpha}}+\overline{H}\int\rho\frac{3-\alpha}{|x-x^{*}|^{\alpha}}\chi^{2}.

From the following computation,

i(xj(x)j|xx|αχ2)=i(xj(x)j)|xx|αχ2α(xj(x)j)(xi(x)i)|xx|α+2χ2+2χxj(x)j|xx|αiχ,\displaystyle\begin{aligned} &\partial_{i}\left(\frac{x^{j}-(x^{*})^{j}}{|x-x^{*}|^{\alpha}}\chi^{2}\right)\\ &=\frac{\partial_{i}(x^{j}-(x^{*})^{j})}{|x-x^{*}|^{\alpha}}\chi^{2}-\alpha\frac{(x^{j}-(x^{*})^{j})(x^{i}-(x^{*})^{i})}{|x-x^{*}|^{\alpha+2}}\chi^{2}+2\chi\frac{x^{j}-(x^{*})^{j}}{|x-x^{*}|^{\alpha}}\partial_{i}\chi,\end{aligned}

one sees that the second term on the left-hand side of (3.24) satisfies

ρuu:(xx|xx|αχ2)\displaystyle\int\rho u\otimes u:\nabla\left(\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}\right) (3.25)
(1α)ρ|u|2|xx|αχ2+2χρ(uχ)(u(xx))|xx|α\displaystyle\geq(1-\alpha)\int\frac{\rho|u|^{2}}{|x-x^{*}|^{\alpha}}\chi^{2}+2\int\frac{\chi\rho(u\cdot\nabla\chi)(u\cdot(x-x^{*}))}{|x-x^{*}|^{\alpha}}
1α2ρ|u|2|xx|αχ2CB2r(x)\Br(x)ρ|u|2|xx|α,\displaystyle\geq\frac{1-\alpha}{2}\int\frac{\rho|u|^{2}}{|x-x^{*}|^{\alpha}}\chi^{2}-C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\rho|u|^{2}}{|x-x^{*}|^{\alpha}},

where the constant CC is independent of r,r, and for the last inequality we have used |χ||xx|4|\nabla\chi||x-x^{*}|\leq 4 for any xB2r(x)\Br(x).x\in B_{2r}(x^{*})\backslash B_{r}(x^{*}). Owing to (3.23), (3.7), and the fact

(xx|xx|αχ2)L3,\nabla\left(\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}\right)\in L^{3},

we have the following estimates:

|ρgxx|xx|αχ2+(𝕊ns+𝕊c):(xx|xx|αχ2)|\displaystyle\left|-\int\rho g\cdot\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}+\int\left(\mathbb{S}_{ns}+\mathbb{S}_{c}\right):\nabla\left(\frac{x-x^{*}}{|x-x^{*}|^{\alpha}}\chi^{2}\right)\right| (3.26)
C(1+uL2+cL322),\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\triangle c\|_{L^{\frac{3}{2}}}^{2}\right),

and

|2(δρ4+ρ2fρ)χχ(xx)|xx|α+H¯ρ3α|xx|αχ2|\displaystyle\left|-2\int\left(\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right)\chi\frac{\nabla\chi\cdot(x-x^{*})}{|x-x^{*}|^{\alpha}}+\overline{H}\int\rho\frac{3-\alpha}{|x-x^{*}|^{\alpha}}\chi^{2}\right| (3.27)
CB2r(x)\Br(x)(δρ4+ρ2f~ρ)|xx|α+CB2r(x)ρ(x)|xx|α𝑑x,\displaystyle\leq C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}\right)}{|x-x^{*}|^{\alpha}}+C\int_{B_{2r}(x^{*})}\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx,

where CC is independent of r.r.

With the above three estimates (LABEL:325)-(LABEL:327) in hand, we deduce from (3.24) that

Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.28)
C(1+uL2+cL322)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\triangle c\|_{L^{\frac{3}{2}}}^{2}\right)
+CB2r(x)\Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\quad+C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx
+CB2r(x)ρ(x)|xx|α𝑑x.\displaystyle\quad+C\int_{B_{2r}(x^{*})}\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx.

By (3.21)-(3.22) and the following estimate

CB2r(x)ρ(x)|xx|α𝑑x=C(Br(x)+B2r(x)\Br(x))ρ(x)|xx|αdxC+12ρ2f~ρ(x)|xx|α+CB2r(x)\Br(x)ρ2f~ρ(x)|xx|α𝑑x,\displaystyle\begin{aligned} C\int_{B_{2r}(x^{*})}\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx&=C\left(\int_{B_{r}(x^{*})}+\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\right)\frac{\rho(x)}{|x-x^{*}|^{\alpha}}dx\\ &\leq C+\frac{1}{2}\int\frac{\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}(x)}{|x-x^{*}|^{\alpha}}+C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}(x)}{|x-x^{*}|^{\alpha}}dx,\end{aligned}

we obtain from (LABEL:328) that

Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.29)
C(1+uL2+ρ|u|2L32+ρμL322)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right)
+CB2r(x)\Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x.\displaystyle\quad+C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx.

It remains to deal with the last term in (3.29). To this end, we use the ideas developed in [16] and divide the proof into two cases: (1)(1) xΩx^{*}\in\Omega is far away from the boundary; (2)(2) xΩx^{*}\in\Omega is close to the boundary.

(1)(1) For the case of dist(x,Ω)=3rk22>0{\rm dist}(x^{*},\,\partial\Omega)=3r\geq\frac{k_{2}}{2}>0 with k2k_{2} being taken from (3.9), it is clear that

B2r(x)\Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑xC(k2)δρ4+ρ2f~ρ+ρ|u|2L1.\displaystyle\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx\leq C(k_{2})\left\|\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right\|_{L^{1}}. (3.30)

With (3.30), as well as (3.12)-(3.13), (3.22), Lemma 3.1, we deduce from (3.29) that

Br(x)(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.31)
CBr(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\leq C\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx
C(1+uL2+ρ|u|2L32+ρμL322+δρ4+ρ2f~ρ+ρ|u|2L1)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}+\|\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\|_{L^{1}}\right)
C(1+uL2+ρ|u|2L32+ρμL322).\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right).

(2)(2) For the case of xΩx^{*}\in\Omega close to the boundary, that is, dist(x,Ω)=3r<k22{\rm dist}(x^{*},\,\partial\Omega)=3r<\frac{k_{2}}{2}, let |xx~|=dist(x,Ω)|x^{*}-\tilde{x}^{*}|={\rm dist}(x^{*},\,\partial\Omega) with x~Ω.\tilde{x}^{*}\in\partial\Omega. Then, one deduces (see Figure 1 below) that

4|xx||xx~|,xBr(x).4|x-x^{*}|\geq|x-\tilde{x}^{*}|,\quad\forall\,\,\,x\notin B_{r}(x^{*}). (3.32)
Refer to caption
Figure 1. Near boundary points

Making use of (3.32) and (3.21)-(3.22), we have the following estimate,

CB2r(x)\Br(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle C\int_{B_{2r}(x^{*})\backslash B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.33)
CΩBk2(x~)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx~|α𝑑x\displaystyle\leq C\int_{\Omega\cap B_{k_{2}}(\tilde{x}^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-\tilde{x}^{*}|^{\alpha}}dx
C(1+uL2+ρ|u|2L32+ρμL322).\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right).

This inequality (LABEL:333) and (3.12)-(3.13) ensure that (3.29) leads to

Br(x)(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx (3.34)
CBr(x)(δρ4+ρ2f~ρ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\leq C\int_{B_{r}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{2}\frac{\partial\widetilde{f}}{\partial\rho}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx
C(1+uL2+ρ|u|2L32+ρμL322).\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right).

Therefore, the desired estimate (3.11) follows immediately from (3.31) and (3.34). The proof of Lemma 3.2 is completed. ∎

The next lemma provides a refined estimate on the weighted energy obtained in Lemma 3.2.

Lemma 3.3.

Let the assumptions in Lemma 3.2 hold true. Assume that there is a constant 𝐌\mathbf{M} uniform in δ\delta, such that

𝐌=max{1,ρL2}<.\mathbf{M}=\max\{1,\|\rho\|_{L^{2}}\}<\infty. (3.35)

Then,

supxΩ¯Ω(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑xC(1+uL2+ρ|u|2L32+μL22).\displaystyle\sup_{x^{*}\in\overline{\Omega}}\int_{\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\nabla\mu\|_{L^{2}}^{2}\right). (3.36)
Proof.

If xΩ,x^{*}\in\partial\Omega, it holds that, for any r(0,k2)r\in(0,k_{2}),

1rα(1α)Br(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑x\displaystyle\frac{1}{r^{\alpha(1-\alpha)}}\int_{B_{r}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx (3.37)
Br(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\leq\int_{B_{r}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx
Bk2(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x.\displaystyle\leq\int_{B_{k_{2}}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx.

Combining (3.37) with (3.10), we obtain for any r(0,k2)r\in(0,k_{2}),

Br(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑x\displaystyle\int_{B_{r}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx (3.38)
Crα(1α)(1+uL2+ρ|u|2L32+ρμL322),\displaystyle\leq Cr^{\alpha(1-\alpha)}\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right),

where the constant CC is independent of rr or xx^{*}. Using (2.2), (2.5), and the interpolation inequality, we have the following estimate:

ρμL322\displaystyle\|\rho\mu\|_{L^{\frac{3}{2}}}^{2} CρL22μL62\displaystyle\leq C\|\rho\|_{L^{2}}^{2}\|\mu\|_{L^{6}}^{2} (3.39)
CρL22(1+ρL65μL2)2\displaystyle\leq C\|\rho\|_{L^{2}}^{2}\left(1+\|\rho\|_{L^{\frac{6}{5}}}\|\nabla\mu\|_{L^{2}}\right)^{2}
CM83(1+μL22),\displaystyle\leq C\textbf{M}^{\frac{8}{3}}\left(1+\|\nabla\mu\|_{L^{2}}^{2}\right),

where, and in what follows, the constant CC is independent of M. Choosing r0r_{0} small so that

r0min{k22,M83α(1α)}.r_{0}\leq\min\left\{\frac{k_{2}}{2},\,\textbf{M}^{\frac{-8}{3\alpha(1-\alpha)}}\right\}. (3.40)

It follows from (3.38) that

Br0(x)Ω(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑x\displaystyle\int_{B_{r_{0}}(x^{*})\cap\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx (3.41)
C(1+uL2+ρ|u|2L32)+Cr0α(1α)ρμL322\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}\right)+Cr_{0}^{\alpha(1-\alpha)}\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}
C(1+uL2+ρ|u|2L32)+Cr0α(1α)M83(1+μL22)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}\right)+Cr_{0}^{\alpha(1-\alpha)}\textbf{M}^{\frac{8}{3}}\left(1+\|\nabla\mu\|_{L^{2}}^{2}\right)
C(1+uL2+ρ|u|2L32+μL2),\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\nabla\mu\|_{L^{2}}\right),

where, for the last two inequalities, we have used (3.39) and (3.40).

If xΩ,x^{*}\in\Omega, we use the similar arguments to obtain

Br0(x)(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑x\displaystyle\int_{B_{r_{0}}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx (3.42)
Cr0α(1α)Br0(x)(δρ4+ργ+ρ|u|2)(x)|xx|α𝑑x\displaystyle\leq Cr_{0}^{\alpha(1-\alpha)}\int_{B_{r_{0}}(x^{*})}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha}}dx
Cr0α(1α)(1+uL2+ρ|u|2L32+ρμL322)\displaystyle\leq Cr_{0}^{\alpha(1-\alpha)}\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right)
C(1+uL2+ρ|u|2L32+μL22).\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\nabla\mu\|_{L^{2}}^{2}\right).

As a result of (3.41) and (3.42), we conclude (3.36) by using the Finite Coverage Theorem, as the domain Ω¯\overline{\Omega} is bounded. The proof of Lemma 3.3 is completed. ∎

The final two Lemmas 3.4 and 3.5 are devoted to proving the desired inequality (3.1) and the a priori bound (3.35).

Lemma 3.4.

Let the assumptions in Proposition 3.1 hold true. Then

uH01+μL2C.\displaystyle\|u\|_{H_{0}^{1}}+\|\nabla\mu\|_{L^{2}}\leq C. (3.43)
Proof.

Define

𝔸=ρ|u|2|u|2(1θ)withθ=3γ48γ.\mathbb{A}=\int\rho|u|^{2}|u|^{2(1-\theta)}\quad{\rm with}\quad\theta=\frac{3\gamma-4}{8\gamma}. (3.44)

By (3.2), one has

θ(0,18].\theta\in(0,\,\frac{1}{8}]. (3.45)

Thanks to (2.2) and the Hölder inequality, it holds that

ρuL1ρ|u|2|u|2(1θ)L112(2θ)ρL132θ2(2θ)C𝔸12(2θ)\|\rho u\|_{L^{1}}\leq\|\rho|u|^{2}|u|^{2(1-\theta)}\|_{L^{1}}^{\frac{1}{2(2-\theta)}}\|\rho\|_{L^{1}}^{\frac{3-2\theta}{2(2-\theta)}}\leq C\mathbb{A}^{\frac{1}{2(2-\theta)}} (3.46)

and

ρ|u|2L32ρ|u|2|u|2(1θ)L112θρL1(1θ)2θC𝔸12θ.\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}\leq\|\rho|u|^{2}|u|^{2(1-\theta)}\|_{L^{1}}^{\frac{1}{2-\theta}}\|\rho\|_{L^{1}}^{\frac{(1-\theta)}{2-\theta}}\leq C\mathbb{A}^{\frac{1}{2-\theta}}. (3.47)

By means of (1.3), (1.10), (2.4), (3.46), we get

(|u|2+|μ|2)CρuL1C𝔸12(2θ).\displaystyle\int\left(|\nabla u|^{2}+|\nabla\mu|^{2}\right)\leq C\|\rho u\|_{L^{1}}\leq C\mathbb{A}^{\frac{1}{2(2-\theta)}}. (3.48)

Let

α2=1θ2.\alpha^{2}=1-\frac{\theta}{2}. (3.49)

One calculates as the following,

ρ|u|2(1θ)|xx|\displaystyle\frac{\rho|u|^{2(1-\theta)}}{|x-x^{*}|} =(ρ|u|2|xx|α2)1θ(ργ|xx|α2)θγ(1|xx|γ2(γ1)+α2)(γ1)θγ,\displaystyle=\left(\frac{\rho|u|^{2}}{|x-x^{*}|^{\alpha^{2}}}\right)^{1-\theta}\left(\frac{\rho^{\gamma}}{|x-x^{*}|^{\alpha^{2}}}\right)^{\frac{\theta}{\gamma}}\left(\frac{1}{|x-x^{*}|^{\frac{\gamma}{2(\gamma-1)}+\alpha^{2}}}\right)^{\frac{(\gamma-1)\theta}{\gamma}}, (3.50)

where γ2(γ1)+α2<3\frac{\gamma}{2(\gamma-1)}+\alpha^{2}<3 since γ>43.\gamma>\frac{4}{3}. Hence, utilizing (3.36), (3.47), (3.48), we integrate (3.50) and obtain

ρ|u|2(1θ)(x)|xx|𝑑x\displaystyle\int\frac{\rho|u|^{2(1-\theta)}(x)}{|x-x^{*}|}dx ρ|u|2(x)|xx|α2𝑑x+ργ(x)|xx|α2𝑑x+C\displaystyle\leq\int\frac{\rho|u|^{2}(x)}{|x-x^{*}|^{\alpha^{2}}}dx+\int\frac{\rho^{\gamma}(x)}{|x-x^{*}|^{\alpha^{2}}}dx+C (3.51)
CΩ(δρ4+ργ+ρ|u|2)(x)|xx|α2𝑑x\displaystyle\leq C\int_{\Omega}\frac{\left(\delta\rho^{4}+\rho^{\gamma}+\rho|u|^{2}\right)(x)}{|x-x^{*}|^{\alpha^{2}}}dx
C(1+uL2+ρ|u|2L32+μL22)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\nabla\mu\|_{L^{2}}^{2}\right)
C(1+𝔸12θ).\displaystyle\leq C\left(1+\mathbb{A}^{\frac{1}{2-\theta}}\right).

From (3.48), (3.51), and Part (i) in Lemma 2.2, one deduces

𝔸uL22supxΩ¯ρ|u|2(1θ)(x)|xx|𝑑xC𝔸12(2θ)(1+𝔸12θ)1+C𝔸32(2θ),\displaystyle\begin{aligned} \mathbb{A}&\leq\|\nabla u\|_{L^{2}}^{2}\sup_{x^{*}\in\overline{\Omega}}\int\frac{\rho|u|^{2(1-\theta)}(x)}{|x-x^{*}|}dx\\ &\leq C\mathbb{A}^{\frac{1}{2(2-\theta)}}\left(1+\mathbb{A}^{\frac{1}{2-\theta}}\right)\\ &\leq 1+C\mathbb{A}^{\frac{3}{2(2-\theta)}},\end{aligned}

which together with (3.45) yields

𝔸C.\mathbb{A}\leq C. (3.52)

Combining (3.52) with (3.48), we get (3.43). The proof of Lemma 3.4 is completed. ∎

Lemma 3.5.

Let the assumptions in Theorem 3.1 hold true. Then,

δρ4+ργLs+μL6+cWn2,32C.\displaystyle\|\delta\rho^{4}+\rho^{\gamma}\|_{L^{s}}+\|\mu\|_{L^{6}}+\|c\|_{W_{n}^{2,\frac{3}{2}}}\leq C. (3.53)
Proof.

Owing to (3.44) and (3.49), one has

3γ4α23γ4(0,3).\displaystyle\frac{3\gamma-4\alpha^{2}}{3\gamma-4}\in(0,3).

By (3.2), (3.51), (3.52), and the Hölder inequality, we have the following estimate,

ρ43(x)|xx|𝑑x\displaystyle\int\frac{\rho^{\frac{4}{3}}(x)}{|x-x^{*}|}dx (ργ(x)|xx|α2𝑑x)43γ(dx|xx|3γ4α23γ4)3γ43γ\displaystyle\leq\left(\int\frac{\rho^{\gamma}(x)}{|x-x^{*}|^{\alpha^{2}}}dx\right)^{\frac{4}{3\gamma}}\left(\int\frac{dx}{|x-x^{*}|^{\frac{3\gamma-4\alpha^{2}}{3\gamma-4}}}\right)^{\frac{3\gamma-4}{3\gamma}} (3.54)
C(ργ(x)|xx|α2𝑑x)43γ\displaystyle\leq C\left(\int\frac{\rho^{\gamma}(x)}{|x-x^{*}|^{\alpha^{2}}}dx\right)^{\frac{4}{3\gamma}}
C.\displaystyle\leq C.

Hence, using (3.48), (3.52), (3.54), Part (ii) in Lemma 2.2, we find

(ρ43(ρ43)Ω)μ2L1μL22(1+supxρ43(x)|xx|𝑑x)C.\|\left(\rho^{\frac{4}{3}}-(\rho^{\frac{4}{3}})_{\Omega}\right)\mu^{2}\|_{L^{1}}\leq\|\nabla\mu\|_{L^{2}}^{2}\left(1+\sup_{x^{*}}\int\frac{\rho^{\frac{4}{3}}(x)}{|x-x^{*}|}dx\right)\leq C. (3.55)

On the other hand, it follows from (2.2), (3.54), Lemma 2.1, Lemma 3.4, and the interpolation inequality that

(ρ43)Ωμ2L1(ρ43)Ωμ2L1μL22CρL223.\|(\rho^{\frac{4}{3}})_{\Omega}\mu^{2}\|_{L^{1}}\leq(\rho^{\frac{4}{3}})_{\Omega}\|\mu^{2}\|_{L^{1}}\leq\|\mu\|_{L^{2}}^{2}\leq C\|\rho\|_{L^{2}}^{\frac{2}{3}}. (3.56)

Therefore, utilizing (3.55)-(3.56) and the fact 6s3+2s32\frac{6s}{3+2s}\leq\frac{3}{2}, we conclude

ρμL6s3+2s2\displaystyle\|\rho\mu\|_{L^{\frac{6s}{3+2s}}}^{2} CρμL322\displaystyle\leq C\|\rho\mu\|_{L^{\frac{3}{2}}}^{2} (3.57)
Cρ43μ2L1ρL223\displaystyle\leq C\|\rho^{\frac{4}{3}}\mu^{2}\|_{L^{1}}\|\rho\|_{L^{2}}^{\frac{2}{3}}
C((ρ43(ρ43)Ω)μ2L1+(ρ43)Ωμ2L1)ρL223\displaystyle\leq C\left(\left\|\left(\rho^{\frac{4}{3}}-(\rho^{\frac{4}{3}})_{\Omega}\right)\mu^{2}\right\|_{L^{1}}+\left\|(\rho^{\frac{4}{3}})_{\Omega}\mu^{2}\right\|_{L^{1}}\right)\|\rho\|_{L^{2}}^{\frac{2}{3}}
CρL243.\displaystyle\leq C\|\rho\|_{L^{2}}^{\frac{4}{3}}.

Substituting (3.57) into (3.3), using (3.47), (3.48), (3.52), we get

δρ4+ργLs\displaystyle\|\delta\rho^{4}+\rho^{\gamma}\|_{L^{s}} δρ4+ρ2fρLs\displaystyle\leq\left\|\delta\rho^{4}+\rho^{2}\frac{\partial f}{\partial\rho}\right\|_{L^{s}} (3.58)
C(1+uL2+ρ|u|2Ls+ρμL6s3+2s2)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{s}}+\|\rho\mu\|_{L^{\frac{6s}{3+2s}}}^{2}\right)
C(1+uL2+ρ|u|2L32+ρμL322)\displaystyle\leq C\left(1+\|\nabla u\|_{L^{2}}+\|\rho|u|^{2}\|_{L^{\frac{3}{2}}}+\|\rho\mu\|_{L^{\frac{3}{2}}}^{2}\right)
C(1+ρL243).\displaystyle\leq C\left(1+\|\rho\|_{L^{2}}^{\frac{4}{3}}\right).

Thanks to (3.2), one has

CρL243CργL2γ43γC+12ργLsC+12δρ4+ργLs.\displaystyle C\|\rho\|_{L^{2}}^{\frac{4}{3}}\leq C\|\rho^{\gamma}\|_{L^{\frac{2}{\gamma}}}^{\frac{4}{3\gamma}}\leq C+\frac{1}{2}\|\rho^{\gamma}\|_{L^{s}}\leq C+\frac{1}{2}\|\delta\rho^{4}+\rho^{\gamma}\|_{L^{s}}. (3.59)

The combination of (3.58) with (3.59) gives rise to

δρ4+ργLsC¯,(γs>2),\displaystyle\|\delta\rho^{4}+\rho^{\gamma}\|_{L^{s}}\leq\overline{C},\quad(\gamma s>2), (3.60)

where C¯\overline{C} depends only on m1,γ,H¯,λ1,λ2,|Ω|,gLm_{1},\gamma,\overline{H},\lambda_{1},\lambda_{2},|\Omega|,\|g\|_{L^{\infty}}. From (3.60), there is a constant C0C_{0} independent of δ\delta, such that

ρL2C0,\|\rho\|_{L^{2}}\leq C_{0},

and hence we are allowed to select in (3.35)

M=2C0\textbf{M}=2C_{0} (3.61)

and close the a priori assumption in (3.35).

It only remains to derive the bound of cWn2,32.\|c\|_{W_{n}^{2,\frac{3}{2}}}. From (1.6), (3.57), (3.60), it follows that

2cL32\displaystyle\|\nabla^{2}c\|_{L^{\frac{3}{2}}} CcL32\displaystyle\leq C\|\triangle c\|_{L^{\frac{3}{2}}} (3.62)
CρfcL32+CρμL32\displaystyle\leq C\left\|\rho\frac{\partial f}{\partial c}\right\|_{L^{\frac{3}{2}}}+C\|\rho\mu\|_{L^{\frac{3}{2}}}
C.\displaystyle\leq C.

From (2.3) and (3.60), the same argument as (2.7) yields

c=|Ω|m1ρ(c)Ω=|Ω|m1ρc|Ω|m1ρ(c(c)Ω)=|Ω|m2m1|Ω|m1ρ(c(c)Ω)C+CρL65cL2C+CcL2,\displaystyle\begin{aligned} \int c=\frac{|\Omega|}{m_{1}}\int\rho\left(c\right)_{\Omega}&=\frac{|\Omega|}{m_{1}}\int\rho c-\frac{|\Omega|}{m_{1}}\int\rho\left(c-\left(c\right)_{\Omega}\right)\\ &=\frac{|\Omega|m_{2}}{m_{1}}-\frac{|\Omega|}{m_{1}}\int\rho\left(c-\left(c\right)_{\Omega}\right)\\ &\leq C+C\|\rho\|_{L^{\frac{6}{5}}}\|\nabla c\|_{L^{2}}\\ &\leq C+C\|\nabla c\|_{L^{2}},\end{aligned}

which implies

cL1\displaystyle\|c\|_{L^{1}} c(c)ΩL1+(c)ΩL1C+CcL2.\displaystyle\leq\|c-\left(c\right)_{\Omega}\|_{L^{1}}+\|\left(c\right)_{\Omega}\|_{L^{1}}\leq C+C\|\nabla c\|_{L^{2}}. (3.63)

Then (3.63) and (3.62) provide us the following estimate:

cWn2,32C.\|c\|_{W_{n}^{2,\frac{3}{2}}}\leq C. (3.64)

In conclusion, the desired estimate (3.53) follows from (2.5), (3.48), (3.52), (3.60), and (3.64). The proof of Lemma 3.5 is completed. ∎

Therefore, the proof of Proposition 3.1 and hence Theorem 1.1 is completed.


Acknowledgement

The research of D. Wang was partially supported by the National Science Foundation under grant DMS-1907519. The authors would like to thank the anonymous referees for valuable comments and suggestions.


References

  • [1] H. Abels, E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J. 57(2) (2008), 659-698.
  • [2] R. Adams, Sobolev spaces, New York: Academic Press, 1975.
  • [3] D. Anderson, G. McFadden, A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, Annual Reviews, Palo Alto, CA, (1998) 139-165.
  • [4] L. Antanovskii, A phase field model of capillarity, Phys. Fluids A 7 (1995), 747-753.
  • [5] T. Biswas, S. Dharmatti, P. Mahendranath, M. Mohan, On the stationary nonlocal Cahn-Chilliard-Navier-Stokes system: existence, uniqueness and exponential stability. Asymptotic Analysis 125 (2021), no. 1-2, 59-99.
  • [6] T. Biswas, S. Dharmatti, M. Mohan, Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hillard-Navier-Stokes equations. Nonlinear Stud 28 (2021), no. 1, 29-43.
  • [7] D. Bresch, C. Burtea, Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system. J. Math. Pures Appl. (9) 146 (2021), 183-217.
  • [8] J. Cahn, J. Hilliard, Free energy of non-uniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
  • [9] S. Chen, S. Ji, H. Wen, C. Zhu, Existence of weak solutions to steady Navier-Stokes/Allen-Cahn system. J. Differential Equations 269 (2020), no. 10, 8331-8349.
  • [10] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press (2004).
  • [11] Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I. Spinger- Verlag, Heidelberg, New-York, 1994.
  • [12] J. Frehse, M. Steinhauer, W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions, J. Math. Pures Appl. 97 (2012), 85-97.
  • [13] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
  • [14] S. Jiang, C. Zhou, Existence of weak solutions to the three-dimensional steady compressible Naiver-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 485-498.
  • [15] P. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
  • [16] Z. Liang, D. Wang, Stationary Cahn-Hilliard-Navier-Stokes equations for the diffuse interface model of compressible flows, Math. Mod. Meth. Appl. Sci. 30 (2020), 2445-2486.
  • [17] J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A 454 (1998), 2617-2654.
  • [18] P. B. Mucha, M. Pokorný, On a new approach to the issue of existence and regularity for the steady compressible Navier-Stokes equations, Nonlinearity 19, (2006), 1747-1768.
  • [19] P. B. Mucha, M. Pokorný, E. Zatorska, Existence of stationary weak solutions for compressible heat conducting flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2595-2662, Springer, Cham, 2018.
  • [20] S. Novo, A. Novotný, On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Fluid Mech. 42 3 (2002), 531-550.
  • [21] A. Novotný, I. Stras̆kraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford, 2004.
  • [22] S. Ko, P. Pustejovska, E. Suli, Finite element approximation of an incompressible chemically reacting non-Newtonian fluid, Math. Mod. Numerical Appl. 52(2) (2018), 509-541.
  • [23] S. Ko, E. Suli, Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index, Math. Comp. 88 (2019), no. 317, 1061-1090.
  • [24] P. I. Plotnikov, W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ(1,)\gamma\in(1,\infty), J. Math. Pures Appl. 104 (2015) 58-82.
  • [25] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
  • [26] W. P. Ziemer, Weakly Differentiable Functions. Springer, New York, 1989.