This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\preprintnumber

KYUSHU-HET-283, OU-HET-1224

2]Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Yet another lattice formulation of 2D U(1)U(1) chiral gauge theory via bosonization

Okuto Morikawa Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan    Soma Onoda    Hiroshi Suzuki [
Abstract

Recently, lattice formulations of Abelian chiral gauge theory in two dimensions have been devised on the basis of the Abelian bosonization. A salient feature of these 2D lattice formulations is that the gauge invariance is exactly preserved for anomaly-free theories and thus is completely free from the question of the gauge mode decoupling. In the present paper, we propose a yet another lattice formulation sharing this desired property. A particularly unique point in our formulation is that the vertex operator of the dual scalar field, which carries the vector charge of the fermion and the “magnetic charge” in the bosonization, is represented by a “hole” excised from the lattice; this is the excision method formulated recently by Abe et al. in a somewhat different context.

\subjectindex

B01, B05, B31, B34

1 Introduction and conclusion

Non-perturbative definition of chiral gauge theory is still quite difficult and, considering its principal and practical importance, it should be studied from various perspectives Luscher:2000hn ; Kaplan:2009yg . Recently, lattice formulations of Abelian chiral gauge theory in two dimensions (2D) have been devised DeMarco:2023hoh ; Berkowitz:2023pnz on the basis of the Abelian bosonization Coleman:1974bu ; Mandelstam:1975hb (further basic references on the bosonization are reprinted in Ref. Stone:1995ys ; §7.5 of Ref. Tong provides a very precise and concise exposition). A salient feature of these 2D lattice formulations is that the gauge invariance is exactly preserved for anomaly-free theories even before taking the continuum limit. This is a very important achievement because if a lattice formulation preserves the exact gauge invariance, then the gauge mode completely decouples under the lattice regularization and, assuming the chirality projection on the correct degrees of freedom is also archived, it becomes quite conceivable that the system is in the same universality class as a target anomaly-free chiral gauge theory. In four dimensions, this kind of exact lattice gauge invariance for anomaly-free chiral gauge theories has been archived only for U(1)U(1) Luscher:1998du and the electroweak SU(2)×U(1)SU(2)\times U(1) Kikukawa:2000kd ; Kadoh:2007xb cases. Although the former lattice formulation can be applied also to the 2D U(1)U(1) chiral gauge theory which we will study here, one finds that the mechanism for the exact lattice gauge invariance is much simpler here; this is because of the fact that the quantum anomaly is reproduced in the classical level in bosonization.

A tricky point in the above lattice formulations on the basis of bosonization is how to represent the vertex operator eiϕ~e^{i\tilde{\phi}} of the dual scalar field ϕ~\tilde{\phi}, which is roughly related to the original 2π2\pi periodic scalar field ϕ\phi by dϕ2dϕ~\star\differential\phi\sim 2\differential\tilde{\phi}. This vertex operator carries a “magnetic charge” associated with the conserved “magnetic current” j(m):=dϕ/2πj^{(m)}:=\differential\phi/2\pi. In the bosonization, this magnetic object is necessary to represent an operator which carries the vector charge of the fermion, such as the fermion field itself. In particular, it is necessary to construct fermion zero modes which saturate a non-zero index in topologically non-trivial sectors. Since the magnetic current trivially conserves dj(m)=d2ϕ/2π=0\differential j^{(m)}=\differential^{2}\phi/2\pi=0 when ϕ\phi is smooth, in order to endow a non-zero magnetic charge to the vertex operator, one has to assume that ϕ\phi is somehow singular at the position of the vertex operator. The most notable difference between the two formulations in Refs. DeMarco:2023hoh ; Berkowitz:2023pnz is attributed to, to our understanding, how to implement this singular nature on the lattice.

In the present paper, we propose yet another lattice formulation sharing the exact lattice gauge invariance for anomaly-free theories on the basis of bosonization. The main difference of our formulation from Refs. DeMarco:2023hoh ; Berkowitz:2023pnz is again how to implement the above singular nature (the breaking of the Bianchi identity) at the position of the vertex operator of the dual scalar field. For this, we employ the “excision method” recently formulated by Abe et al. Abe:2023uan under a somewhat different motivation.111The original motivation of Ref. Abe:2023uan is to formulate the interplay between the topological charge in the presence of the N\mathbb{Z}_{N} 2-form gauge field on the lattice Abe:2022nfq ; Abe:2023ncy and the ’t Hooft line operator. Such a formulation would enable one to carry out the analyses in, e.g. Ref. Gaiotto:2017yup straightforwardly in a lattice regularized framework. In this method, a smoothness of lattice scalar field (the so-called admissibility Luscher:1981zq ; Hernandez:1998et ; Luscher:1998du ) which ensures the conservation of the magnetic current (the Bianchi identity) and the breaking of the Bianchi identity at the magnetic object are reconciled by excising a “hole” on the lattice. In this way, one can define a vertex operator of the dual scalar field with desired quantized charges. The details of the excision method will be recapitulated below.

Now, in terms of bosonization, the fermion sector of a 2D U(1)U(1) chiral gauge theory is represented by the continuum action222We basically follow the notational convention of Ref. Abe:2023uan . The compactification radius RR in Ref. Abe:2023uan is taken to be R=1/2R=1/\sqrt{2} in order to represent 2D fermions.

SB=α[R24πM2|dϕα+2qA,αA|2+i2πqV,αM2A(dϕα+2qA,αA)],S_{\mathrm{B}}=\sum_{\alpha}\left[\frac{R^{2}}{4\pi}\int_{M_{2}}\left|\differential\phi_{\alpha}+2q_{A,\alpha}A\right|^{2}+\frac{i}{2\pi}q_{V,\alpha}\int_{M_{2}}A\wedge\left(\differential\phi_{\alpha}+2q_{A,\alpha}A\right)\right], (1.1)

where α=1\alpha=1, …, NfN_{f} labels the flavor degrees of freedom and ϕα\phi_{\alpha} are 2π2\pi periodic real scalar fields; AA is the U(1)U(1) gauge potential. In order to be compatible with the 2π2\pi periodicity of ϕα\phi_{\alpha}, parameters 2qA,α2q_{A,\alpha} and qV,αq_{V,\alpha} must be integers. According to the bosonization rule, this system describes a 2D U(1)U(1) chiral gauge theory in which the covariant derivative of the fermions is given by333Strictly speaking, the bosonization (1.1) is equivalent to the fermion theory in which all possible spin structures are summed over. If one wants to single out a particular spin structure, one has to introduce a 2\mathbb{Z}_{2} gauge field and the Arf invariant term Thorngren:2018bhj ; Karch:2019lnn ; we do not consider these elements in this paper.

/
DD
=/+i/A(qV,α+qA,αγ5)\displaystyle={\ooalign{\hfil/\hfil\crcr$\partial$}}+i{\ooalign{\hfil/\hfil\crcr$A$}}(q_{V,\alpha}+q_{A,\alpha}\gamma_{5}) (1.8)
=/+i/A(qR,αPR+qL,αPL),\displaystyle={\ooalign{\hfil/\hfil\crcr$\partial$}}+i{\ooalign{\hfil/\hfil\crcr$A$}}(q_{R,\alpha}P_{R}+q_{L,\alpha}P_{L}), (1.13)

where

PR,L:=1±γ52.P_{R,L}:=\frac{1\pm\gamma_{5}}{2}. (1.14)

In particular, it turns out that the “electric charge” in the scalar theory (1.1), 2qA,α2q_{A,\alpha}, is twice the axial charge of the fermion, qAαq_{A\alpha}. The U(1)U(1) charges introduced above are related to each other as

qV,α=12(qR,α+qL,α),qA,α=12(qR,αqL,α).q_{V,\alpha}=\frac{1}{2}\left(q_{R,\alpha}+q_{L,\alpha}\right),\qquad q_{A,\alpha}=\frac{1}{2}\left(q_{R,\alpha}-q_{L,\alpha}\right). (1.15)

Since the gauge anomaly in the target chiral gauge theory is proportional to

α(qR,α2qL,α2)=4αqV,αqA,α,\sum_{\alpha}\left(q_{R,\alpha}^{2}-q_{L,\alpha}^{2}\right)=4\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}, (1.16)

the anomaly cancellation condition among flavors can be written as

αqV,αqA,α=0.\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}=0. (1.17)

Since we have assumed that qV,αq_{V,\alpha} and 2qA,α2q_{A,\alpha} in Eq. (1.1) are integers, our present lattice formulation is applicable only to cases in which qV,αq_{V,\alpha} given by Eq. (1.15) are integers. These include the so-called 345345 model, in which qR,1=5q_{R,1}=5, qL,1=3q_{L,1}=3, qR,2=0q_{R,2}=0, qL,2=4q_{L,2}=4 (i.e., qV,1=4q_{V,1}=4, qA,1=1q_{A,1}=1, qV,2=2q_{V,2}=2, qA,2=2q_{A,2}=-2), but not the 2111121111 model, in which qR,1=0q_{R,1}=0, qL,1=2q_{L,1}=2, and qR,α=1q_{R,\alpha}=1, qL,α=0q_{L,\alpha}=0 for α=2\alpha=2–5, because some of qV,αq_{V,\alpha} become half-integer. This is a limitation of the present approach on the basis of the bosonization.

Our lattice formulation of 2D chiral gauge theory according to the above idea is presented in the next section. This is still a theoretical clarification and it is not obvious if the formulation is amenable to numerical simulations. For this, it is interesting to investigate a possible equivalent representation which is free from the sign problem, such as the one presented in Ref. Berkowitz:2023pnz . Also, possible generalizations to the non-Abelian gauge group via the non-Abelian bosonization Witten:1983ar and to higher dimensional chiral gauge theories are of great interest.

2 Lattice formulation

2.1 Lattice action: scalar part

We consider 2π2\pi periodic real scalar fields on a 2D square lattice Γ\Gamma. The lattice sites of Γ\Gamma are denoted as nn, mm, etc. For a moment, we assume that Γ\Gamma is a 2D torus and the scalar fields eiϕα(n)e^{i\phi_{\alpha}(n)} obey periodic boundary conditions. We parametrize eiϕα(n)e^{i\phi_{\alpha}(n)} by the logarithm in the principal branch:

ϕα(n):=1ilneiϕα(n),π<ϕα(n)π.\phi_{\alpha}(n):=\frac{1}{i}\ln e^{i\phi_{\alpha}(n)},\qquad-\pi<\phi_{\alpha}(n)\leq\pi. (2.1)

This definition of ϕα(n)\phi_{\alpha}(n) is obviously invariant under the “2π2\pi shift,” eiϕα(n)eiϕα(n)+2πie^{i\phi_{\alpha}(n)}\to e^{i\phi_{\alpha}(n)+2\pi i\mathbb{Z}}.

Our lattice action for the scalar field Abe:2023uan is almost a literal transcription of the continuum action (1.1),444Lorentz indices μ\mu, ν\nu, etc. run over 1 and 2.

SB\displaystyle S_{\mathrm{B}} =αnΓ[R24πμDϕα(n,μ)Dϕα(n,μ)+i2πqV,αμ,νϵμνAμ(n~)Dϕα(n+μ^,ν)\displaystyle=\sum_{\alpha}\sum_{n\in\Gamma}\Biggl{[}\frac{R^{2}}{4\pi}\sum_{\mu}D\phi_{\alpha}(n,\mu)D\phi_{\alpha}(n,\mu)+\frac{i}{2\pi}q_{V,\alpha}\sum_{\mu,\nu}\epsilon_{\mu\nu}A_{\mu}(\tilde{n})D\phi_{\alpha}(n+\hat{\mu},\nu)
+i2qV,αμ,νϵμνNμν(n~)ϕα(n+μ^+ν^)],\displaystyle\qquad\qquad\qquad{}+\frac{i}{2}q_{V,\alpha}\sum_{\mu,\nu}\epsilon_{\mu\nu}N_{\mu\nu}(\tilde{n})\phi_{\alpha}(n+\hat{\mu}+\hat{\nu})\Biggr{]}, (2.2)

except for the last “counter term,” which plays a crucial role to lead an ’t Hooft anomaly in the picture of Ref. Abe:2023uan and the simple form of the lattice gauge anomaly in the present context. For the continuum limit, the radius R2R^{2} should be tuned to a specific value, not the classical value 1/21/2 (see, e.g. Ref. Janke for this issue).

The explanation of various quantities in this expression is in order:

First, the scalar fields ϕα(n)\phi_{\alpha}(n) are coupled to a U(1)U(1) gauge field; at this moment, the gauge field is regarded as background and later we will make it dynamical. For a technical reason caused by introducing the excision method at a later stage, we first introduce two U(1)U(1) lattice gauge fields (link variables), one on Γ\Gamma and another on the dual lattice Γ~\tilde{\Gamma}, whose sites are defined by

n~:=n+121^+122^,\tilde{n}:=n+\frac{1}{2}\hat{1}+\frac{1}{2}\hat{2}, (2.3)

as

U(n,μ)U(1),U(n~,μ)U(1).U(n,\mu)\in U(1),\qquad U(\tilde{n},\mu)\in U(1). (2.4)

See Fig. 1. Then the latter gauge field is simply given as a copy of the former:

U(n~,μ):=U(n,μ).U(\tilde{n},\mu):=U(n,\mu). (2.5)
Figure 1: The square lattice Γ\Gamma (the sold line) and the dual lattice Γ~\tilde{\Gamma} (the broken lines).

Thus, introducing two gauge fields is meaningless at this stage but later when we introduce a magnetic object by the excised method Abe:2023uan , the correspondence (2.3) between the dual and original lattices and, correspondingly, the relation (2.5), must be modified. We parametrize the link variables by the logarithm in the principal branch:

Aμ(n)\displaystyle A_{\mu}(n) :=1ilnU(n,μ),π<Aμ(n)π,\displaystyle:=\frac{1}{i}\ln U(n,\mu),\qquad-\pi<A_{\mu}(n)\leq\pi,
Aμ(n~)\displaystyle A_{\mu}(\tilde{n}) :=1ilnU(n~,μ),π<Aμ(n~)π.\displaystyle:=\frac{1}{i}\ln U(\tilde{n},\mu),\qquad-\pi<A_{\mu}(\tilde{n})\leq\pi. (2.6)

Of course, Aμ(n~)=Aμ(n)A_{\mu}(\tilde{n})=A_{\mu}(n) at this stage.

The directional covariant difference, Dϕα(n~,μ)D\phi_{\alpha}(\tilde{n},\mu) in Eq. (2.2), is defined by using the link variable on the original lattice, U(n,μ)U(n,\mu), as

Dϕα(n,μ)\displaystyle D\phi_{\alpha}(n,\mu) :=1iln[eiϕα(n)U(n,μ)2qA,αeiϕα(n+μ^)]\displaystyle:=\frac{1}{i}\ln\left[e^{-i\phi_{\alpha}(n)}U(n,\mu)^{2q_{A,\alpha}}e^{i\phi_{\alpha}(n+\hat{\mu})}\right]
=Δμϕα(n)+2qA,αAμ(n)+2πα,μ(n),\displaystyle=\Delta_{\mu}\phi_{\alpha}(n)+2q_{A,\alpha}A_{\mu}(n)+2\pi\ell_{\alpha,\mu}(n), (2.7)

where μ^\hat{\mu} denotes the unit vector in the positive μ\mu-direction and the branch of the logarithm is taken as π<Dϕα(n,μ)π-\pi<D\phi_{\alpha}(n,\mu)\leq\pi. Note that, when expressed in terms of the simple difference operator,

Δμf(n):=f(n+μ^)f(n),\Delta_{\mu}f(n):=f(n+\hat{\mu})-f(n), (2.8)

we generally have the integer field α,μ(n)\ell_{\alpha,\mu}(n)\in\mathbb{Z} as in Eq. (2.7); α,μ(n)\ell_{\alpha,\mu}(n) is a local functional of ϕα(n)\phi_{\alpha}(n). By construction, the covariant difference (2.7) is invariant under the lattice gauge transformation:

ϕα(n)\displaystyle\phi_{\alpha}(n) ϕα(n)2qA,αΛ(n),\displaystyle\to\phi_{\alpha}(n)-2q_{A,\alpha}\Lambda(n),
U(n,μ)\displaystyle U(n,\mu) eiΛ(n)U(n,μ)eiΛ(n+μ^),\displaystyle\to e^{-i\Lambda(n)}U(n,\mu)e^{i\Lambda(n+\hat{\mu})},
U(n~,μ)\displaystyle U(\tilde{n},\mu) eiΛ(n~)U(n~,μ)eiΛ(n~+μ^).\displaystyle\to e^{-i\Lambda(\tilde{n})}U(\tilde{n},\mu)e^{i\Lambda(\tilde{n}+\hat{\mu})}. (2.9)

Because of Eq. (2.5), the gauge transformation functions are also identified as Λ(n~)=Λ(n)\Lambda(\tilde{n})=\Lambda(n) at this stage. Under Eq. (2.9), we see that the gauge potentials in Eq. (2.6) are transformed as

Aμ(n)\displaystyle A_{\mu}(n) Aμ(n)+ΔμΛ(n)+2πLμ(n),\displaystyle\to A_{\mu}(n)+\Delta_{\mu}\Lambda(n)+2\pi L_{\mu}(n),
Aμ(n~)\displaystyle A_{\mu}(\tilde{n}) Aμ(n~)+ΔμΛ(n~)+2πLμ(n~),\displaystyle\to A_{\mu}(\tilde{n})+\Delta_{\mu}\Lambda(\tilde{n})+2\pi L_{\mu}(\tilde{n}), (2.10)

where we have integer fields Lμ(n)L_{\mu}(n)\in\mathbb{Z} and Lμ(n~)L_{\mu}(\tilde{n})\in\mathbb{Z}; Lμ(n)L_{\mu}(n) (Lμ(n~)L_{\mu}(\tilde{n})) is a local functional of Λ(n)\Lambda(n) (Λ(n~)\Lambda(\tilde{n})). Corresponding to the former, from the gauge invariance of Eq. (2.7), we have the transformation law of α,μ(n)\ell_{\alpha,\mu}(n):

α,μ(n)α,μ(n)2qA,αLμ(n).\ell_{\alpha,\mu}(n)\to\ell_{\alpha,\mu}(n)-2q_{A,\alpha}L_{\mu}(n). (2.11)

Finally, we introduce gauge invariant field strengths by

Fμν(n)\displaystyle F_{\mu\nu}(n) :=1iln[U(n,μ)U(n+μ^,ν)U(n+ν^,μ)1U(n,ν)1],\displaystyle:=\frac{1}{i}\ln\left[U(n,\mu)U(n+\hat{\mu},\nu)U(n+\hat{\nu},\mu)^{-1}U(n,\nu)^{-1}\right],
Fμν(n~)\displaystyle F_{\mu\nu}(\tilde{n}) :=1iln[U(n~,μ)U(n~+μ^,ν)U(n~+ν^,μ)1U(n~,ν)1],\displaystyle:=\frac{1}{i}\ln\left[U(\tilde{n},\mu)U(\tilde{n}+\hat{\mu},\nu)U(\tilde{n}+\hat{\nu},\mu)^{-1}U(\tilde{n},\nu)^{-1}\right], (2.12)

where the branch of the logarithm is taken as π<Fμν(n)π-\pi<F_{\mu\nu}(n)\leq\pi and π<Fμν(n~)π-\pi<F_{\mu\nu}(\tilde{n})\leq\pi. Then, as per Eq. (2.7), we have

Fμν(n)\displaystyle F_{\mu\nu}(n) =ΔμAν(n)ΔνAμ(n)+2πNμν(n),\displaystyle=\Delta_{\mu}A_{\nu}(n)-\Delta_{\nu}A_{\mu}(n)+2\pi N_{\mu\nu}(n),
Fμν(n~)\displaystyle F_{\mu\nu}(\tilde{n}) =ΔμAν(n~)ΔνAμ(n~)+2πNμν(n~),\displaystyle=\Delta_{\mu}A_{\nu}(\tilde{n})-\Delta_{\nu}A_{\mu}(\tilde{n})+2\pi N_{\mu\nu}(\tilde{n}), (2.13)

where the integer fields, Nμν(n)N_{\mu\nu}(n) and Nμν(n~)N_{\mu\nu}(\tilde{n}), are local functionals of U(n,μ)U(n,\mu) and U(n~,μ)U(\tilde{n},\mu), respectively. We note that under the gauge transformation (2.10), Nμν(n)N_{\mu\nu}(n) and Nμν(n~)N_{\mu\nu}(\tilde{n}) transform as

Nμν(n)\displaystyle N_{\mu\nu}(n) Nμν(n)ΔμLν(n)+ΔνLμ(n),\displaystyle\to N_{\mu\nu}(n)-\Delta_{\mu}L_{\nu}(n)+\Delta_{\nu}L_{\mu}(n),
Nμν(n~)\displaystyle N_{\mu\nu}(\tilde{n}) Nμν(n~)ΔμLν(n~)+ΔνLμ(n~).\displaystyle\to N_{\mu\nu}(\tilde{n})-\Delta_{\mu}L_{\nu}(\tilde{n})+\Delta_{\nu}L_{\mu}(\tilde{n}). (2.14)

This completes the explanation on quantities appearing in the lattice action (2.2).

2.2 Admissibility and the magnetic charge

As the correspondence between Eqs. (1.1) and (1.13) in continuum theory shows, in the bosonization, the axial-vector current is given by the “magnetic” current ϵμννϕα\epsilon_{\mu\nu}\partial_{\nu}\phi_{\alpha}. Its lattice counterpart,

ϵμνDϕα(n,ν)\epsilon_{\mu\nu}D\phi_{\alpha}(n,\nu) (2.15)

however, does not generally conserve, ϵμνΔμDϕα(n,ν)0\epsilon_{\mu\nu}\Delta_{\mu}D\phi_{\alpha}(n,\nu)\neq 0, even when Aμ(n)=0A_{\mu}(n)=0, because of the integer field α,μ(n)\ell_{\alpha,\mu}(n) in Eq. (2.7), i.e. generally ϵμνΔμα,ν(n)0\epsilon_{\mu\nu}\Delta_{\mu}\ell_{\alpha,\nu}(n)\neq 0. Then, we cannot define a conserved axial charge even if the target chiral gauge theory is anomaly-free. This failure can be evaded by imposing a certain smoothness condition on lattice fields as follows Abe:2023uan .

We require that possible configurations of the lattice fields satisfy the following gauge-invariant conditions (the latter two are the admissibility Luscher:1981zq ; Luscher:1998du ) for all flavor α\alpha:

supn,μ|Dϕα(n,μ)|<ϵ,supn,μ,ν|2qA,αFμν(n)|<δ,supn~,μ,ν|qV,αFμν(n~)|<δ,\sup_{n,\mu}\left|D\phi_{\alpha}(n,\mu)\right|<\epsilon,\qquad\sup_{n,\mu,\nu}\left|2q_{A,\alpha}F_{\mu\nu}(n)\right|<\delta,\qquad\sup_{\tilde{n},\mu,\nu}\left|q_{V,\alpha}F_{\mu\nu}(\tilde{n})\right|<\delta, (2.16)

where

0<ϵ<π2,0<δ<min(π,2π4ϵ).0<\epsilon<\frac{\pi}{2},\qquad 0<\delta<\min(\pi,2\pi-4\epsilon). (2.17)

Then, from Eqs. (2.7) and (2.13), these conditions follow the bound Abe:2023uan ,

|Δμα,ν(n)Δνα,μ(n)2qA,αNμν(n)|\displaystyle\left|\Delta_{\mu}\ell_{\alpha,\nu}(n)-\Delta_{\nu}\ell_{\alpha,\mu}(n)-2q_{A,\alpha}N_{\mu\nu}(n)\right|
=12π|ΔμDϕα(n,ν)ΔνDϕα(n,μ)2qA,αFμν(n)|\displaystyle=\frac{1}{2\pi}\left|\Delta_{\mu}D\phi_{\alpha}(n,\nu)-\Delta_{\nu}D\phi_{\alpha}(n,\mu)-2q_{A,\alpha}F_{\mu\nu}(n)\right|
<2πϵ+12πδ<1.\displaystyle<\frac{2}{\pi}\epsilon+\frac{1}{2\pi}\delta<1. (2.18)

Since the leftmost term is a sum of integers, this bound implies that

Δμα,ν(n)Δνα,μ(n)\displaystyle\Delta_{\mu}\ell_{\alpha,\nu}(n)-\Delta_{\nu}\ell_{\alpha,\mu}(n) =2qA,αNμν(n),\displaystyle=2q_{A,\alpha}N_{\mu\nu}(n),
ΔμDϕα(n,ν)ΔνDϕα(n,μ)\displaystyle\Delta_{\mu}D\phi_{\alpha}(n,\nu)-\Delta_{\nu}D\phi_{\alpha}(n,\mu) =2qA,αFμν(n).\displaystyle=2q_{A,\alpha}F_{\mu\nu}(n). (2.19)

These are Bianchi identities in the presence of the gauge interaction. Note that these are invariant under the gauge transformation, Eqs. (2.11), (2.14), (2.9) and (2.10).

We now define a gauge-invariant magnetic charge inside a loop CC on Γ\Gamma by:555If the gauge field is turned off, this is the magnetic charge defined in Ref. Abe:2023uan .

mα\displaystyle m_{\alpha} :=12π(n,μ)CDϕα(n,μ)2qA,α2πF(C)\displaystyle:=\frac{1}{2\pi}\sum_{(n,\mu)\in C}D\phi_{\alpha}(n,\mu)-\frac{2q_{A,\alpha}}{2\pi}F(C)
=(n,μ)Cα,μ(n)2qA,αN(C),\displaystyle=\sum_{(n,\mu)\in C}\ell_{\alpha,\mu}(n)-2q_{A,\alpha}N(C)\in\mathbb{Z}, (2.20)

where the sum is taken along the loop. In this expression, we have introduced a logarithm of the Wilson loop along CC,

F(C):=1iln[(n,μ)CU(n,μ)]=(n,μ)CAμ(n)+2πN(C),F(C):=\frac{1}{i}\ln\left[\prod_{(n,\mu)\in C}U(n,\mu)\right]=\sum_{(n,\mu)\in C}A_{\mu}(n)+2\pi N(C), (2.21)

where the branch is π<F(C)π-\pi<F(C)\leq\pi and N(C)N(C) is an integer. In deriving the last expression of Eq. (2.20), we have recalled Eq. (2.7); from this, mαm_{\alpha} is obviously an integer.

The magnetic charge mαm_{\alpha} (2.20) is conserved in the sense that it is invariant under any deformation of the loop CC because of the Bianchi identity (2.19) (the change due to the integration of the field strengths is compensated by the change in the Wilson loop). This topological invariance however implies that mα0m_{\alpha}\equiv 0 on a uniform lattice. We may nevertheless introduce a magnetically-charged object in the system by excising a certain region 𝒟\mathcal{D} from Γ\Gamma, as in Fig. 2. This is the excision method of Ref. Abe:2023uan . The magnetic charge of the excised region 𝒟\mathcal{D} is given by setting C=𝒟C=\partial\mathcal{D} in Eq. (2.20). For a later argument, we assume that for C=𝒟C=\partial\mathcal{D}, for all flavors α\alpha,

|2qA,αF(𝒟)|δ\left|2q_{A,\alpha}F(\partial\mathcal{D})\right|\leq\delta^{\prime} (2.22)

with a sufficiently small δ\delta^{\prime} (we will later specify how δ\delta^{\prime} should be small). Because of the first condition of Eq. (2.16) and this, the size of the region 𝒟\mathcal{D} is of order 11 in lattice units and the magnetic object becomes point-like in the continuum limit; the precise shape of 𝒟\mathcal{D} is thus not important. Note that from the bosonization rule, the magnetic object carries the vector U(1)U(1) charge but no axial U(1)U(1) charge. This localized magnetic object can be identified with the vertex operator eimαϕ~α(x)e^{im_{\alpha}\tilde{\phi}_{\alpha}(x)} of the dual scalar field ϕ~α(x)\tilde{\phi}_{\alpha}(x) in the continuum theory. To realize this magnetic object in quantum theory, the functional integral over ϕα(n)\phi_{\alpha}(n) must be carried out under the boundary condition (2.20).

n~\tilde{n}_{\ast}𝒟\mathcal{D}
Figure 2: An excised region 𝒟\mathcal{D} on Γ\Gamma and the corresponding dual lattice Γ~\tilde{\Gamma} (the broken lines). Inside the excised region, we place a single site of Γ~\tilde{\Gamma}, n~\tilde{n}_{*}. Then the dual lattice in 𝒟\mathcal{D} is defined as in the figure.

With the presence of an excised region 𝒟\mathcal{D} as depicted in Fig. 2, however, the correspondence between links of Γ\Gamma and those of Γ~\tilde{\Gamma} is not obvious and the simple identification of gauge fields (2.5) does not work. For such a case with an excised region, we adopt the following rule: If the link (n~,μ)(\tilde{n},\mu) on Γ~\tilde{\Gamma} possesses the corresponding link (n,μ)(n,\mu) on Γ\Gamma with Eq. (2.3), we apply the simple identification (2.5). We find that precisely when the link (n~,μ)(\tilde{n},\mu) crosses the boundary of 𝒟\mathcal{D}, 𝒟\partial\mathcal{D} (i.e., when n~=n~\tilde{n}=\tilde{n}_{*} or n~+μ^=n~\tilde{n}+\hat{\mu}=\tilde{n}_{*}), such a correspondence breaks. For such a case, U(n~,μ)U(\tilde{n},\mu) is not given by U(n,μ)U(n,\mu) and it should be treated as an independent variable:

U(n~,μ) is an independent variable if the link (n~,μ) crosses the boundary of 𝒟.\text{$U(\tilde{n},\mu)$ is an independent variable if the link $(\tilde{n},\mu)$ crosses the boundary of~{}$\mathcal{D}$}. (2.23)

Also, the gauge transformation functions, Λ(n~)\Lambda(\tilde{n}), can almost be given by Λ(n)\Lambda(n) on Γ\Gamma by Eq. (2.3) but we find that the site n~\tilde{n}_{*} is the exception, i.e.,

Λ(n~) is an independent gauge transformation variable.\text{$\Lambda(\tilde{n}_{*})$ is an independent gauge transformation variable}. (2.24)

2.3 Anomaly under the gauge transformation

Now, let us study how our lattice action (2.2) changes under the lattice gauge transformation. In general, it should not be invariant in order to reproduce the gauge anomaly in the target chiral gauge theory. One may still hope that the lattice action becomes perfectly gauge invariant if the anomaly cancellation condition (1.17) matches. Remarkably, this actually occurs.

It is straightforward to see that under the gauge transformation the action SBS_{\mathrm{B}} (2.2) changes into Abe:2023uan

SB+i2παqV,αnΓμ,νϵμνΔμΛ(n~)Dϕα(n+μ^,ν^)\displaystyle S_{\mathrm{B}}+\frac{i}{2\pi}\sum_{\alpha}q_{V,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Delta_{\mu}\Lambda(\tilde{n})D\phi_{\alpha}(n+\hat{\mu},\hat{\nu})
iαqV,αqA,αnΓμ,νϵμν[Nμν(n~)ΔμLν(n~)+ΔνLμ(n~)]Λ(n+μ^+ν^)\displaystyle\qquad{}-i\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\left[N_{\mu\nu}(\tilde{n})-\Delta_{\mu}L_{\nu}(\tilde{n})+\Delta_{\nu}L_{\mu}(\tilde{n})\right]\Lambda(n+\hat{\mu}+\hat{\nu})
+2iαqV,αqA,αnΓμ,νϵμνLμ(n~)Aν(n+μ^)\displaystyle\qquad{}+2i\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}L_{\mu}(\tilde{n})A_{\nu}(n+\hat{\mu})
+iαqV,αnΓμ,νϵμνΔν[Lμ(n~)ϕα(n+μ^)]\displaystyle\qquad{}+i\sum_{\alpha}q_{V,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Delta_{\nu}\left[L_{\mu}(\tilde{n})\phi_{\alpha}(n+\hat{\mu})\right]
+2πiαqV,αnΓμ,νϵμνLμ(n~)ν(n+μ^).\displaystyle\qquad{}+2\pi i\sum_{\alpha}q_{V,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}L_{\mu}(\tilde{n})\ell_{\nu}(n+\hat{\mu}). (2.25)

The last term is 2πi2\pi i\mathbb{Z} and is negligible in the partition function,

αnΓdϕα(n)eSB.\int\prod_{\alpha}\prod_{n\in\Gamma}d\phi_{\alpha}(n)\,e^{-S_{\mathrm{B}}}. (2.26)

Also, the total divergence term Δν[]\Delta_{\nu}[\dotsc] can be neglected because we are assuming the boundary conditions are periodic.

The second term of Eq. (2.25), nΓμ,νϵμνΔμΛ(n~)Dϕα(n+μ^,ν^)\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Delta_{\mu}\Lambda(\tilde{n})D\phi_{\alpha}(n+\hat{\mu},\hat{\nu}), requires a close look Abe:2023uan . By considering combinations containing Λ(n~)\Lambda(\tilde{n}) with a particular site n~\tilde{n} (see Fig. 3), one finds that the second term can be written as

i2παqV,αnΓμ,νϵμνΔμΛ(n~)Dϕα(n+μ^,ν^)\displaystyle\frac{i}{2\pi}\sum_{\alpha}q_{V,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Delta_{\mu}\Lambda(\tilde{n})D\phi_{\alpha}(n+\hat{\mu},\hat{\nu})
=i4παqV,αnΓμ,νϵμνΛ(n~)[ΔμDϕα(n,ν^)ΔνDϕα(n,μ^)]\displaystyle=-\frac{i}{4\pi}\sum_{\alpha}q_{V,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Lambda(\tilde{n})\left[\Delta_{\mu}D\phi_{\alpha}(n,\hat{\nu})-\Delta_{\nu}D\phi_{\alpha}(n,\hat{\mu})\right]
=i2παqV,αqA,αnΓμ,νϵμνΛ(n~)Fμν(n),\displaystyle=-\frac{i}{2\pi}\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}\Lambda(\tilde{n})F_{\mu\nu}(n), (2.27)

where, in the last step, we have noted Eq. (2.19). In total, the action changes into

SB+i(αqV,αqA,α)nΓμ,νϵμν\displaystyle S_{\mathrm{B}}+i\left(\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}\right)\sum_{n\in\Gamma}\sum_{\mu,\nu}\epsilon_{\mu\nu}
×{12πΛ(n~)Fμν(n)[Nμν(n~)ΔμLν(n~)+ΔνLμ(n~)]Λ(n+μ^+ν^)\displaystyle\qquad{}\times\biggl{\{}-\frac{1}{2\pi}\Lambda(\tilde{n})F_{\mu\nu}(n)-\left[N_{\mu\nu}(\tilde{n})-\Delta_{\mu}L_{\nu}(\tilde{n})+\Delta_{\nu}L_{\mu}(\tilde{n})\right]\Lambda(n+\hat{\mu}+\hat{\nu})
+2Lμ(n~)Aν(n+μ^)},\displaystyle\qquad\qquad{}+2L_{\mu}(\tilde{n})A_{\nu}(n+\hat{\mu})\biggr{\}}, (2.28)

up to 2πi2\pi i\mathbb{Z}. Since the change is proportional to the anomaly coefficient (1.16), for anomaly-free chiral gauge theories, our lattice action and hence the regularized partition function (2.26) is exactly gauge invariant.

nnn+μ^n+\hat{\mu}n+ν^n+\hat{\nu}n+μ^+ν^n+\hat{\mu}+\hat{\nu}n~\tilde{n}
Figure 3: Structure appearing in Eq. (2.27).

The above argument proceeds in an almost equal way, even with an excised region 𝒟\mathcal{D} which represents a magnetically charged object. For this case, we have the contribution from 𝒟\mathcal{D} in addition to Eq. (2.28Abe:2023uan ,

iαqV,αΛ(n~)(n,μ)𝒟[α,μ(n)+2qA,α2πAμ(n)]\displaystyle-i\sum_{\alpha}q_{V,\alpha}\Lambda(\tilde{n}_{*})\sum_{(n,\mu)\in\partial\mathcal{D}}\left[\ell_{\alpha,\mu}(n)+\frac{2q_{A,\alpha}}{2\pi}A_{\mu}(n)\right]
=iαqV,αΛ(n~)[(n,μ)𝒟α,μ(n)2qA,αN(𝒟)]iπ(αqV,αqA,α)Λ(n~)F(𝒟)\displaystyle=-i\sum_{\alpha}q_{V,\alpha}\Lambda(\tilde{n}_{*})\left[\sum_{(n,\mu)\in\partial\mathcal{D}}\ell_{\alpha,\mu}(n)-2q_{A,\alpha}N(\partial\mathcal{D})\right]-\frac{i}{\pi}\left(\sum_{\alpha}q_{V,\alpha}q_{A,\alpha}\right)\Lambda(\tilde{n}_{*})F(\partial\mathcal{D})
=iαqV,αmαΛ(n~),\displaystyle=-i\sum_{\alpha}q_{V,\alpha}m_{\alpha}\Lambda(\tilde{n}_{*}), (2.29)

where, in the first equality, we have used Eq. (2.21) with C=𝒟C=\partial\mathcal{D}. In the second equality, we have used the anomaly cancellation condition (1.17) and the definition of the magnetic charge (2.20) taking C=𝒟C=\partial\mathcal{D}. This breaking of the gauge symmetry owing to the magnetic object may be cured by connecting to the magnetic object an “open ’t Hooft line” in the dual lattice Abe:2023uan ,

exp[iαqV,αmα(n~,μ)P~n~Aμ(n~)],\exp\left[-i\sum_{\alpha}q_{V,\alpha}m_{\alpha}\sum_{(\tilde{n},\mu)\in\tilde{P}}^{\tilde{n}_{*}}A_{\mu}(\tilde{n})\right], (2.30)

where P~\tilde{P} denotes a path on the dual lattice ending at n~\tilde{n}_{*}. In this way, under the gauge anomaly cancellation condition (1.17), the fermion sector of the target chiral gauge theory is formulated in a manifestly gauge invariant manner with the lattice regularization.

2.4 Selection rule and the fermion zero modes

Under the gauge transformation (2.9), the vertex operator of the original scalar fields,

V{nα}(n):=eiαnαϕα(n),V_{\{n_{\alpha}\}}(n):=e^{i\sum_{\alpha}n_{\alpha}\phi_{\alpha}(n)}, (2.31)

changes as

V{nα}(n)exp[iα2qA,αnαΛ(n)]V{nα}(n).V_{\{n_{\alpha}\}}(n)\to\exp\left[-i\sum_{\alpha}2q_{A,\alpha}n_{\alpha}\Lambda(n)\right]V_{\{n_{\alpha}\}}(n). (2.32)

Thus, this vertex operator possesses the axial U(1)U(1) charge α2qA,αnα\sum_{\alpha}2q_{A,\alpha}n_{\alpha} while no vector U(1)U(1) charge. We can make this vertex operator gauge invariant by connecting an open Wilson line

exp[iα2qA,αnα(n,μ)PnAμ(n)]\exp\left[i\sum_{\alpha}2q_{A,\alpha}n_{\alpha}\sum_{(n,\mu)\in P}^{n}A_{\mu}(n)\right] (2.33)

to it, where PP denotes a path on the lattice ending at the position of the vertex operator, nn.

If we perform a constant shift of ϕα(n)\phi_{\alpha}(n), ϕα(n)ϕα(n)+ξα\phi_{\alpha}(n)\to\phi_{\alpha}(n)+\xi_{\alpha}, in the partition function (2.26), the lattice action SBS_{\mathrm{B}} (2.2) produces a factor,

exp[iαξαqV,αp~Γ~N12(p~)]=exp[i2παξαqV,αp~Γ~F12(p~)],\exp\left[-i\sum_{\alpha}\xi_{\alpha}q_{V,\alpha}\sum_{\tilde{p}\in\tilde{\Gamma}}N_{12}(\tilde{p})\right]=\exp\left[-\frac{i}{2\pi}\sum_{\alpha}\xi_{\alpha}q_{V,\alpha}\sum_{\tilde{p}\in\tilde{\Gamma}}F_{12}(\tilde{p})\right], (2.34)

where the lattice sum is taken over all plaquettes on the dual lattice Γ~\tilde{\Gamma}. This shows that, when the lattice first Chern number of the background gauge field,

Q~:=12πp~Γ~F12(p~)=p~Γ~N12(p~)\tilde{Q}:=\frac{1}{2\pi}\sum_{\tilde{p}\in\tilde{\Gamma}}F_{12}(\tilde{p})=\sum_{\tilde{p}\in\tilde{\Gamma}}N_{12}(\tilde{p})\in\mathbb{Z} (2.35)

is non-zero, the partition function vanishes as expected from the index theorem in the corresponding gauge theory containing fermions. Here, we should note that the lattice first Chern number (2.35) can be non-trivial under the admissibility (2.16Luscher:1998du . We can make the partition function (2.26) non-zero by inserting vertex operators (2.31) in an appropriate way. Since

V{nα}(n)eiαξαnαV{nα}(n),V_{\{n_{\alpha}\}}(n)\to e^{i\sum_{\alpha}\xi_{\alpha}n_{\alpha}}V_{\{n_{\alpha}\}}(n), (2.36)

under the constant shift, the condition for non-vanishingness is

InI,α=qV,α2πp~Γ~F12(p~)=qV,αQ~,\sum_{I}n_{I,\alpha}=\frac{q_{V,\alpha}}{2\pi}\sum_{\tilde{p}\in\tilde{\Gamma}}F_{12}(\tilde{p})=q_{V,\alpha}\tilde{Q}, (2.37)

where II labels the inserted vertex operators.

On the other hand, for the magnetic object introduced by the excision method,

M{mα}(𝒟),M_{\{m_{\alpha}\}}(\mathcal{D}), (2.38)

the gauge transformation induces (see Eq. (2.29)),

M{mα}(𝒟)exp[iαqV,αmαΛ(n~)]M{mα}(𝒟).M_{\{m_{\alpha}\}}(\mathcal{D})\to\exp\left[i\sum_{\alpha}q_{V,\alpha}m_{\alpha}\Lambda(\tilde{n}_{*})\right]M_{\{m_{\alpha}\}}(\mathcal{D}). (2.39)

Therefore, this object possesses the vector U(1)U(1) charge αqV,αmα-\sum_{\alpha}q_{V,\alpha}m_{\alpha} while possessing no axial U(1)U(1) charge. For the magnetic objects, we have the consistency condition,

I~mI~,α=2qA,α2πpΓI~𝒟I~F12(p)2qA,α2πI~F(𝒟I~)=2qA,αQ,\sum_{\tilde{I}}m_{\tilde{I},\alpha}=-\frac{2q_{A,\alpha}}{2\pi}\sum_{p\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}}F_{12}(p)-\frac{2q_{A,\alpha}}{2\pi}\sum_{\tilde{I}}F(\partial\mathcal{D}_{\tilde{I}})=-2q_{A,\alpha}Q, (2.40)

where I~\tilde{I} labels the magnetic objects and the first lattice sum on the right-hand side is taken over the plaquette pp on ΓI~𝒟I~\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}. This consistency is obtained by simply summing the Bianchi identity (2.19) over the region ΓI~𝒟I~\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}} and noting the definition of the magnetic charge (2.20). In Eq. (2.40), we have introduced another lattice first Chern number:

Q\displaystyle Q :=12πpΓI~𝒟I~F12(p)+12πI~F(𝒟I~)\displaystyle:=\frac{1}{2\pi}\sum_{p\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}}F_{12}(p)+\frac{1}{2\pi}\sum_{\tilde{I}}F(\partial\mathcal{D}_{\tilde{I}})
=pΓI~𝒟I~N12(p)+I~N(𝒟I~),\displaystyle=\sum_{p\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}}N_{12}(p)+\sum_{\tilde{I}}N(\partial\mathcal{D}_{\tilde{I}})\in\mathbb{Z}, (2.41)

where, in the last line, we have used Eqs. (2.13) and (2.21). Although we have two lattice Chern numbers Q~\tilde{Q} (2.35) and QQ (2.41), one might expect that those two coincide in the continuum limit. In fact, since the difference between Q~\tilde{Q} and QQ arises only from the differences in the sum of F12(n~)F_{12}(\tilde{n}) and of F12(n)F_{12}(n) on a finite number of plaquettes around the magnetic objects and the sum of F(𝒟I~)F(\partial\mathcal{D}_{\tilde{I}}), if we take δ\delta in Eq. (2.16) and δ\delta^{\prime} in Eq. (2.22) small enough, the equality of two integers, Q~=Q\tilde{Q}=Q, automatically holds. We assume this in what follows.

The elementary fermion fields in the target theory may be represented by “superposing” the vertex operator (2.31) and the magnetic object (2.38). For a flavor α\alpha, we have

PRψα:e+iϕα(n)/2Mmα=1(𝒟),\displaystyle P_{R}\psi_{\alpha}:e^{+i\phi_{\alpha}(n)/2}M_{m_{\alpha}=-1}(\mathcal{D}),
ψ¯αPL:eiϕα(n)/2Mmα=+1(𝒟).\displaystyle\bar{\psi}_{\alpha}P_{L}:e^{-i\phi_{\alpha}(n)/2}M_{m_{\alpha}=+1}(\mathcal{D}).
PLψα:eiϕα(n)/2Mmα=1(𝒟),\displaystyle P_{L}\psi_{\alpha}:e^{-i\phi_{\alpha}(n)/2}M_{m_{\alpha}=-1}(\mathcal{D}),
ψ¯αPR:e+iϕα(n)/2Mmα=+1(𝒟).\displaystyle\bar{\psi}_{\alpha}P_{R}:e^{+i\phi_{\alpha}(n)/2}M_{m_{\alpha}=+1}(\mathcal{D}). (2.42)

These representations can be identified by examining the transformation law under the gauge transformation. These representations may be used to compute correlation functions containing fermion fields. These elementary fields are not gauge invariant but we may dress them by open Wilson and ’t Hooft lines to render them gauge invariant. For instance,

PLψα^:eiϕα(n)/2Mmα=1(𝒟)exp[iqA,α(n,μ)PnAμ(n)+iqV,α(n~,μ)P~n~Aμ(n~)]\widehat{P_{L}\psi_{\alpha}}:e^{-i\phi_{\alpha}(n)/2}M_{m_{\alpha}=-1}(\mathcal{D})\exp\left[-iq_{A,\alpha}\sum_{(n,\mu)\in P}^{n}A_{\mu}(n)+iq_{V,\alpha}\sum_{(\tilde{n},\mu)\in\tilde{P}}^{\tilde{n}_{*}}A_{\mu}(\tilde{n})\right] (2.43)

is gauge invariant, where the hat ^\widehat{\phantom{x}} indicates the field is dressed. We may use such a gauge invariant field to saturate the selection rule. When Q~=Q\tilde{Q}=Q, the selection rules in Eqs. (2.37) and (2.40) imply that correlation functions vanish unless the (gauge-invariant) |qL,αQ||q_{L,\alpha}Q| product of

{PLψαwhen qL,αQ<0,ψ¯αPRwhen qL,αQ>0,\begin{cases}P_{L}\psi_{\alpha}&\text{when $q_{L,\alpha}Q<0$},\\ \bar{\psi}_{\alpha}P_{R}&\text{when $q_{L,\alpha}Q>0$},\\ \end{cases} (2.44)

and the (gauge-invariant) |qR,αQ||q_{R,\alpha}Q| product of

{PRψαwhen qR,αQ>0,ψ¯αPLwhen qR,αQ<0,\begin{cases}P_{R}\psi_{\alpha}&\text{when $q_{R,\alpha}Q>0$},\\ \bar{\psi}_{\alpha}P_{L}&\text{when $q_{R,\alpha}Q<0$},\\ \end{cases} (2.45)

are inserted in addition to pairs of ψα\psi_{\alpha} and ψ¯α\bar{\psi}_{\alpha}. In the target chiral gauge theory in continuum, one may define gauge-invariant fermion number currents of the left-handed and right-handed Weyl fermions, respectively, as (see Ref. Fujikawa:1994np and references cited therein)

JμL,R(x):=limΛtrγμPL,R1/DL,Re/DL,R2/Λ2δ(xy)|yx,J_{\mu}^{L,R}(x):=-\lim_{\Lambda\to\infty}\tr\gamma_{\mu}P_{L,R}\frac{1}{{\ooalign{\hfil/\hfil\crcr$D$}}_{L,R}}e^{{\ooalign{\hfil/\hfil\crcr$D$}}_{L,R}^{2}/\Lambda^{2}}\delta(x-y)|_{y\to x}, (2.46)

where /DL,R:=γμ(μ+iqL,RAμ){\ooalign{\hfil/\hfil\crcr$D$}}_{L,R}:=\gamma_{\mu}(\partial_{\mu}+iq_{L,R}A_{\mu}). Then the fermion number anomaly is given by666Our convention is γ5=iγ1γ2\gamma_{5}=i\gamma_{1}\gamma_{2} and ϵ12=1\epsilon_{12}=1.

μJμL,R(x)\displaystyle\partial_{\mu}J_{\mu}^{L,R}(x) =limΛtrγ5e/DL,R2/Λ2δ(xy)|yx=qL,R2πF12(x).\displaystyle=\mp\lim_{\Lambda\to\infty}\tr\gamma_{5}e^{{\ooalign{\hfil/\hfil\crcr$D$}}_{L,R}^{2}/\Lambda^{2}}\delta(x-y)|_{y\to x}=\mp\frac{q_{L,R}}{2\pi}F_{12}(x). (2.49)

The above selection rule in Eqs. (2.44) and (2.45) is precisely consistent with the 2D integral of these non-conservation laws.

2.5 Making the gauge field dynamical

It is straightforward to make the hitherto background U(1)U(1) gauge fields dynamical while preserving the manifest gauge invariance. The total expectation value of a gauge-invariant observable 𝒪\mathcal{O} may be defined by the functional integral,

𝒪=1𝒵link (n,μ)ΓI~𝒟I~dU(n,μ)link (n~,μ) crossing I~𝒟I~dU(n~,μ)eSG𝒪B,\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}}\int\prod_{\text{link $(n,\mu)\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}$}}dU(n,\mu)\,\int\prod_{\text{link $(\tilde{n},\mu)$ crossing $\sum_{\tilde{I}}\partial\mathcal{D}_{\tilde{I}}$}}dU(\tilde{n},\mu)\,e^{-S_{\mathrm{G}}}\left\langle\mathcal{O}\right\rangle_{\mathrm{B}}, (2.50)

where I~\tilde{I} labels the excised regions (magnetic objects) and

𝒪B=w[Q]αnΓI~𝒟I~dϕα(n)eSB𝒪,\langle\mathcal{O}\rangle_{\mathrm{B}}=w[Q]\int\prod_{\alpha}\prod_{n\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}}d\phi_{\alpha}(n)\,e^{-S_{\mathrm{B}}}\,\mathcal{O}, (2.51)

is the integration over the scalar fields. The total partition function 𝒵\mathcal{Z} is determined by requiring 1=1\langle 1\rangle=1. The integrals over the U(1)U(1) gauge fields are defined by the Haar measure at each link; recall the corresponding rule in Eqs. (2.5) and (2.24). We may adopt a somewhat unconventional gauge action SGS_{\mathrm{G}}, imitating that of Ref. Luscher:1998du ,

SG\displaystyle S_{\mathrm{G}} =12g02plaquette (n,1,2)ΓI~𝒟I~12(n)\displaystyle=\frac{1}{2g_{0}^{2}}\sum_{\text{plaquette $(n,1,2)\in\Gamma-\sum_{\tilde{I}}\mathcal{D}_{\tilde{I}}$}}\mathcal{L}_{12}(n)
+12g02plaquette (n~,1,2)Γ~ containing a link crossing I~𝒟I~12(n~)\displaystyle\qquad{}+\frac{1}{2g_{0}^{2}}\sum_{\text{plaquette $(\tilde{n},1,2)\in\tilde{\Gamma}$ containing a link crossing $\sum_{\tilde{I}}\partial\mathcal{D}_{\tilde{I}}$}}\mathcal{L}_{12}(\tilde{n}) (2.52)

with g0g_{0} being the bare coupling and

μν(n)\displaystyle\mathcal{L}_{\mu\nu}(n) :={[Fμν(n)]2[1[qFμν(n)]2/δ2}1if |qFμν(n)|<δ,otherwise,\displaystyle:=\begin{cases}[F_{\mu\nu}(n)]^{2}\left[1-[q_{*}F_{\mu\nu}(n)]^{2}/\delta^{2}\right\}^{-1}&\text{if $|q_{*}F_{\mu\nu}(n)|<\delta$},\\ \infty&\text{otherwise},\\ \end{cases}
μν(n~)\displaystyle\mathcal{L}_{\mu\nu}(\tilde{n}) :={[Fμν(n~)]2[1[q~Fμν(n~)]2/δ2}1if |q~Fμν(n~)|<δ,otherwise,\displaystyle:=\begin{cases}[F_{\mu\nu}(\tilde{n})]^{2}\left[1-[\tilde{q}_{*}F_{\mu\nu}(\tilde{n})]^{2}/\delta^{2}\right\}^{-1}&\text{if $|\tilde{q}_{*}F_{\mu\nu}(\tilde{n})|<\delta$},\\ \infty&\text{otherwise},\\ \end{cases} (2.53)

where q:=maxα|2qA,α|q_{*}:=\max_{\alpha}|2q_{A,\alpha}| and q~:=maxα|qV,α|\tilde{q}_{*}:=\max_{\alpha}|q_{V,\alpha}|, to dynamically impose the admissibility (2.16).777For compatibility with the admissibility (2.16), it might be better to adopt a somewhat different form of the kinetic term also for the scalar field: [Dϕα(n,μ)]2{1[Dϕα(n,μ)]2/ϵ2}1[D\phi_{\alpha}(n,\mu)]^{2}\{1-[D\phi_{\alpha}(n,\mu)]^{2}/\epsilon^{2}\}^{-1} if |Dϕα(n,μ)|<ϵ|D\phi_{\alpha}(n,\mu)|<\epsilon and \infty otherwise. Any conclusions so far are not modified even with this choice. It might also be natural to add a term such as, F(𝒟)2{1[qF(𝒟)]2/δ2}1F(\partial\mathcal{D})^{2}\{1-[q_{*}F(\partial\mathcal{D})]^{2}/\delta^{\prime 2}\}^{-1} if |qF(𝒟)|<δ|q_{*}F(\partial\mathcal{D})|<\delta^{\prime} and \infty otherwise, to implement Eq. (2.22).

As already noted, under the admissibility (2.16), the topological charge Q~\tilde{Q} (2.35) is well-defined and can be non-trivial. The space of such admissible lattice gauge fields is thus a disjoint union of topological sectors labeled by Q~\tilde{Q} Luscher:1998du . There is a freedom in the relative weight and phase for each topological sector and the factor w[Q~=Q]w[\tilde{Q}=Q] parametrizes this freedom.

Acknowledgments

We would like to thank Jun Nishimura, Tetsuya Onogi, and Yuya Tanizaki for suggestive discussions and useful information. This work was partially supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research Grant Numbers JP22KJ2096 (O.M.) and JP23K03418 (H.S.).

References

  • (1) M. Lüscher, Subnucl. Ser. 38, 41-89 (2002) doi:10.1142/9789812778253_0002 [arXiv:hep-th/0102028 [hep-th]].
  • (2) D. B. Kaplan, [arXiv:0912.2560 [hep-lat]].
  • (3) M. DeMarco, E. Lake and X. G. Wen, [arXiv:2305.03024 [cond-mat.str-el]].
  • (4) E. Berkowitz, A. Cherman and T. Jacobson, [arXiv:2310.17539 [hep-lat]].
  • (5) S. R. Coleman, Phys. Rev. D 11, 2088 (1975) doi:10.1103/PhysRevD.11.2088
  • (6) S. Mandelstam, Phys. Rev. D 11, 3026 (1975) doi:10.1103/PhysRevD.11.3026
  • (7) M. Stone, “Bosonization,” World Scientific, Singapore (1995)
  • (8) http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
  • (9) M. Lüscher, Nucl. Phys. B 549, 295-334 (1999) doi:10.1016/S0550-3213(99)00115-7 [arXiv:hep-lat/9811032 [hep-lat]].
  • (10) Y. Kikukawa and Y. Nakayama, Nucl. Phys. B 597, 519-536 (2001) doi:10.1016/S0550-3213(00)00714-8 [arXiv:hep-lat/0005015 [hep-lat]].
  • (11) D. Kadoh and Y. Kikukawa, JHEP 05, 095 (2008) [erratum: JHEP 03, 095 (2011)] doi:10.1088/1126-6708/2008/05/095 [arXiv:0709.3658 [hep-lat]].
  • (12) M. Abe, O. Morikawa, S. Onoda, H. Suzuki and Y. Tanizaki, PTEP 2023, no.7, 073B01 (2023) doi:10.1093/ptep/ptad078 [arXiv:2304.14815 [hep-lat]].
  • (13) M. Abe, O. Morikawa and H. Suzuki, PTEP 2023, no.2, 023B03 (2023) doi:10.1093/ptep/ptad009 [arXiv:2210.12967 [hep-th]].
  • (14) M. Abe, O. Morikawa, S. Onoda, H. Suzuki and Y. Tanizaki, JHEP 08, 118 (2023) doi:10.1007/JHEP08(2023)118 [arXiv:2303.10977 [hep-lat]].
  • (15) D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, JHEP 05, 091 (2017) doi:10.1007/JHEP05(2017)091 [arXiv:1703.00501 [hep-th]].
  • (16) M. Lüscher, Commun. Math. Phys. 85, 39 (1982) doi:10.1007/BF02029132
  • (17) P. Hernández, K. Jansen and M. Lüscher, Nucl. Phys. B 552, 363-378 (1999) doi:10.1016/S0550-3213(99)00213-8 [arXiv:hep-lat/9808010 [hep-lat]].
  • (18) R. Thorngren, Commun. Math. Phys. 378, no.3, 1775-1816 (2020) doi:10.1007/s00220-020-03830-0 [arXiv:1810.04414 [cond-mat.str-el]].
  • (19) A. Karch, D. Tong and C. Turner, SciPost Phys. 7, 007 (2019) doi:10.21468/SciPostPhys.7.1.007 [arXiv:1902.05550 [hep-th]].
  • (20) E. Witten, Commun. Math. Phys. 92, 455-472 (1984) doi:10.1007/BF01215276
  • (21) W. Janke and K. Nather, Phys. Rev. B 48, no.10, 7419–7433 (1993) doi:10.1103/PhysRevB.48.7419
  • (22) K. Fujikawa, Nucl. Phys. B 428, 169-188 (1994) doi:10.1016/0550-3213(94)90197-X [arXiv:hep-th/9405166 [hep-th]].