This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Zeros and roots of unity in character tables

Alexander Rossi Miller alexander.r.miller@univie.ac.at
Abstract.

For any finite group GG, Thompson proved that, for each χIrr(G)\chi\in{\rm Irr}(G), χ(g)\chi(g) is a root of unity or zero for more than a third of the elements gGg\in G, and Gallagher proved that, for each larger than average class gGg^{G}, χ(g)\chi(g) is a root of unity or zero for more than a third of the irreducible characters χIrr(G)\chi\in{\rm Irr}(G). We show that in many cases “more than a third” can be replaced by “more than half”.

Key words and phrases:
Zeros, roots of unity, characters
1991 Mathematics Subject Classification:
20C15

1. Introduction

For any finite group GG, let

θ(G)=minχIrr(G)|{gG:χ(g)is a root of unity or zero}||G|\theta(G)=\min_{\chi\in{\rm Irr}(G)}\frac{|\{g\in G:\chi(g)\ \text{is a root of unity or zero}\}|}{|G|}

and let

θ(G)=min|gG||G||Cl(G)||{χIrr(G):χ(g)is a root of unity or zero}||Irr(G)|.\theta^{\prime}(G)=\min_{\text{$|g^{G}|\geq\frac{|G|}{|{\rm Cl}(G)|}$}}\frac{|\{\chi\in{\rm Irr}(G):\chi(g)\ \text{is a root of unity or zero}\}|}{|{\rm Irr}(G)|}.

Burnside proved that each χIrr(G)\chi\in{\rm Irr}(G) with χ(1)>1\chi(1)>1 has at least one zero, P. X. Gallagher proved that each gGg\in G with |gG|>|G|/|Cl(G)||g^{G}|>|G|/|{\rm Cl}(G)| is a zero of at least one χIrr(G)\chi\in{\rm Irr}(G), J. G. Thompson proved that

θ(G)>1/3,\theta(G)>1/3,

and Gallagher proved that

θ(G)>1/3.\theta^{\prime}(G)>1/3.

The proofs run by taking the relations gG|χ(g)|2=|G|\sum_{g\in G}|\chi(g)|^{2}=|G| (χIrr(G)\chi\in{\rm Irr}(G)) and χIrr(G)|χ(g)|2=|G|/|gG|\sum_{\chi\in{\rm Irr}(G)}|\chi(g)|^{2}=|G|/|g^{G}|, applying the elements σ\sigma of the Galois group 𝒢=Gal((e2πi/|G|)/)\mathcal{G}={\rm Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q}), averaging over 𝒢\mathcal{G}, and using that the average over 𝒢\mathcal{G} of |σ(α)|2|\sigma(\alpha)|^{2} is 1\geq 1 for any nonzero algebraic integer α(e2πi/|G|)\alpha\in\mathbb{Q}(e^{2\pi i/|G|}), or using the fact, due to C. L. Siegel, that the average over 𝒢\mathcal{G} of |σ(α)|2|\sigma(\alpha)|^{2} is 3/2\geq 3/2 for any algebraic integer α(e2πi/|G|)\alpha\in\mathbb{Q}(e^{2\pi i/|G|}) which is neither a root of unity nor zero, cf. [1, 3, 4, 11]. For certain groups, there are also strong asymptotic results about zeros due to Gallagher, M. Larsen, and the author [5, 8, 10].

Are the lower bounds of 1/31/3 for {θ(G):|G|<}\{\theta(G):|G|<\infty\} and 1/31/3 for {θ(G):|G|<}\{\theta^{\prime}(G):|G|<\infty\} the best possible?

Question 1.

What is the greatest lower bound of {θ(G):|G|<}\{\theta(G):|G|<\infty\}?

Question 2.

What is the greatest lower bound of {θ(G):|G|<}\{\theta^{\prime}(G):|G|<\infty\}?

The author suspects that the answers to these questions are both 1/21/2. In particular, we propose the following:

Conjecture 1.

θ(G)\theta(G) and θ(G)\theta^{\prime}(G) are 1/2\geq 1/2 for every finite group GG.

We establish the conjecture for all finite nilpotent groups by establishing a much stronger result about zeros for this family of groups, which includes all pp-groups. The number of pp-groups of order pnp^{n} was shown by G. Higman [6] and C. C. Sims [12] to equal p227n3+O(n8/3)p^{\frac{2}{27}n^{3}+O(n^{8/3})} with nn\to\infty, and it is a folklore conjecture that almost all finite groups are nilpotent in the sense that

the number of nilpotent groups of order at most nthe number of groups of order at most n=1+o(1),\frac{\text{the number of nilpotent groups of order at most $n$}}{\text{the number of groups of order at most $n$}}=1+o(1),

which, in view of our result, would mean that Conjecture 1 holds for almost all finite groups.

Conjecture 1 is readily verified for rational groups, such as Weyl groups, and all groups of order <29<2^{9}, and although θ(G)=1/2\theta(G)=1/2 for certain dihedral groups, the second inequality is strict in all known cases. The author suspects that both inequalities are strict for all finite simple groups:

Conjecture 2.

θ(G)\theta(G) and θ(G)\theta^{\prime}(G) are >1/2>1/2 for every finite simple group GG.

We verify Conjecture 2 for AnA_{n}, L2(q)L_{2}(q), Suz(22n+1)Suz(2^{2n+1}), Ree(32n+1)Ree(3^{2n+1}), all sporadic groups, and all simple groups of order 109\leq 10^{9}. We also show that both θ(Suz(22n+1))\theta(Suz(2^{2n+1})) and θ(Suz(22n+1))\theta^{\prime}(Suz(2^{2n+1})) tend to 1/21/2 as nn\to\infty. In particular, the answers to Questions 1 and 2 must lie between 1/31/3 and 1/2{1/2}.

2. Nilpotent groups

We begin with our results on finite nilpotent groups.

Theorem 1.

For each finite nilpotent group GG, and each χIrr(G)\chi\in{\rm Irr}(G) with χ(1)>1\chi(1)>1, χ(g)=0\chi(g)=0 for more than half of the elements gGg\in G.

Theorem 2.

Let GG be a finite nilpotent group, and let gG{g\in G}.
If |gG|>|G||Cl(G)|{|g^{G}|>\frac{|G|}{|{\rm Cl}(G)|}}, then χ(g)=0\chi(g)=0 for more than half of the nonlinear χIrr(G){\chi\in{\rm Irr}(G)}. If |gG|=|G||Cl(G)|{|g^{G}|=\frac{|G|}{|{\rm Cl}(G)|}}, then χ(g)=0\chi(g)=0 for at least half of the nonlinear χIrr(G)\chi\in{\rm Irr}(G).

Corollary 3.

θ(G)\theta(G) and θ(G)\theta^{\prime}(G) are >1/2>1/2 whenever GG is nilpotent.

The key ingredient in the proof of Theorems 1 and 2 is Theorem 8, which will replace the result of Siegel used by Thompson and Gallagher. Its proof relies on some auxiliary results of independent interest and is based on arithmetic in cyclotomic fields.

For each positive integer kk, we denote by ζk\zeta_{k} a primitive kk-th root of unity. For any algebraic integer α\alpha contained in some cyclotomic field, we denote by 𝔩(α)\mathfrak{l}(\alpha) the least integer ll such that α\alpha is a sum of ll roots of unity, by 𝔣(α)\mathfrak{f}(\alpha) the least positive integer kk such that α(ζk)\alpha\in\mathbb{Q}(\zeta_{k}), and by 𝔪(α)\mathfrak{m}(\alpha) the normalized trace

1[(|α|2):]Tr(|α|2)/(|α|2),\frac{1}{[\mathbb{Q}(|\alpha|^{2}):\mathbb{Q}]}{\rm Tr}_{\mathbb{Q}(|\alpha|^{2})/\mathbb{Q}}(|\alpha|^{2}),

so for any cyclotomic field (ζ)\mathbb{Q}(\zeta) containing α\alpha,

𝔪(α)=1|Gal((ζ)/)|σGal((ζ)/)|σ(α)|2.\mathfrak{m}(\alpha)=\frac{1}{|{\rm Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})|}\sum_{\sigma\in{\rm Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})}|\sigma(\alpha)|^{2}.
Lemma 4.

Let a1,a2,,ala_{1},a_{2},\ldots,a_{l} and b1,b2,,bmb_{1},b_{2},\ldots,b_{m} be rational integers, and let α1,α2,,αl\alpha_{1},\alpha_{2},\ldots,\alpha_{l} and β1,β2,,βm\beta_{1},\beta_{2},\ldots,\beta_{m} be pnp^{n}-th roots of unity with pp prime and nn nonnegative. If

j=1lajαj=k=1mbkβk,\sum_{j=1}^{l}a_{j}\alpha_{j}=\sum_{k=1}^{m}b_{k}\beta_{k},

then

j=1lajk=1mbk(modp).\sum_{j=1}^{l}a_{j}\equiv\sum_{k=1}^{m}b_{k}\pmod{p}.
Proof of Lemma 4.

If n=0n=0, then there is nothing to prove, so assume n1n\geq 1. Let ζ\zeta be a primitive pnp^{n}-th root of unity. For each αj\alpha_{j} and βk\beta_{k}, let rjr_{j} and sks_{k} be nonnegative integers such that αj=ζrj\alpha_{j}=\zeta^{r_{j}} and βk=ζsk\beta_{k}=\zeta^{s_{k}}. Put

P(x)=j=1lajxrjk=1mbkxsk.P(x)=\sum_{j=1}^{l}a_{j}x^{r_{j}}-\sum_{k=1}^{m}b_{k}x^{s_{k}}.

Then P(ζ)=0P(\zeta)=0, so P(x)P(x) is divisible in [x]\mathbb{Z}[x] by the cyclotomic polynomial

Φpn(x)=Φp(xpn1).\Phi_{p^{n}}(x)=\Phi_{p}(x^{p^{n-1}}).

Hence P(1)0(modp)P(1)\equiv 0\pmod{p}. ∎

Proposition 5.

Let GG be a finite group, let χIrr(G)\chi\in{\rm Irr}(G), and let gg be an element of GG with order a power of a prime pp. If p=2p=2 or χ(1)±2(modp)\chi(1)\not\equiv\pm 2\pmod{p}, then either χ(g)=0\chi(g)=0, χ(g)\chi(g) is a root of unity, or 𝔪(χ(g))2\mathfrak{m}(\chi(g))\geq 2.

Proof of Proposition 5.

Suppose that p=2p=2 or χ(1)±2(modp)\chi(1)\not\equiv\pm 2\pmod{p}. Let pnp^{n} be the order of gg, and let ζ\zeta be a primitive pnp^{n}-th root of unity, so χ(g)(ζ)\chi(g)\in\mathbb{Q}(\zeta). Let α=ζmχ(g)\alpha=\zeta^{m}\chi(g) with mm such that

𝔣(α)=mink𝔣(ζkχ(g)).\mathfrak{f}(\alpha)=\min_{k}\mathfrak{f}(\zeta^{k}\chi(g)). (1)

We will show that either α=0\alpha=0, α\alpha is a root of unity, or 𝔪(α)2\mathfrak{m}(\alpha)\geq 2.

Let P=𝔣(α)P=\mathfrak{f}(\alpha). Using (ζk)(ζl)=(ζ(k,l))\mathbb{Q}(\zeta_{k})\cap\mathbb{Q}(\zeta_{l})=\mathbb{Q}(\zeta_{(k,l)}), then PP divides pnp^{n}. If P=1P=1, then α\alpha is rational and the conclusion follows. If PP is divisible by p2p^{2}, then for γ\gamma a primitive PP-th root of unity, α\alpha is uniquely of the shape

α=k=0p1αkγk,αk(ζP/p),\alpha=\sum_{k=0}^{p-1}\alpha_{k}\gamma^{k},\quad\alpha_{k}\in\mathbb{Q}(\zeta_{P/p}), (2)

the αk\alpha_{k} are algebraic integers, and a straightforward calculation [2, p. 115] shows that 𝔪(α)\mathfrak{m}(\alpha) is at least the number of nonzero αk\alpha_{k}. By (1), at least two of the αk\alpha_{k} are nonzero. Hence 𝔪(α)2\mathfrak{m}(\alpha)\geq 2 if p2Pp^{2}\mid P.

It remains to consider the case P=pP=p. Since (ζ2)=(ζ1)\mathbb{Q}(\zeta_{2})=\mathbb{Q}(\zeta_{1}), we must have p>2p>2. If 𝔩(α)=0\mathfrak{l}(\alpha)=0, then α=0\alpha=0; if 𝔩(α)=1\mathfrak{l}(\alpha)=1, then α\alpha is a root of unity; and if 𝔩(α)>2\mathfrak{l}(\alpha)>2, then 𝔪(α)2\mathfrak{m}(\alpha)\geq 2 by a result of Cassels [2, Lemma 3]. So assume 𝔩(α)=2\mathfrak{l}(\alpha)=2. Then by [9, Thm. 1(i)], α\alpha can be written in the shape

α=ϵ1ξ1+ϵ2ξ2,ϵk2=1,\alpha=\epsilon_{1}\xi_{1}+\epsilon_{2}\xi_{2},\quad\epsilon_{k}^{2}=1,

where ξ1\xi_{1} and ξ2\xi_{2} are pp-th roots of unity. If ξ1=ξ2\xi_{1}=\xi_{2}, then either α=0\alpha=0 or 𝔪(α)=4\mathfrak{m}(\alpha)=4. So assume

ξ1ξ2.\xi_{1}\neq\xi_{2}.

By Lemma 4,

ϵ1+ϵ2χ(1)(modp).\epsilon_{1}+\epsilon_{2}\equiv\chi(1)\pmod{p}. (3)

By (3) and the fact that χ(1)±2(modp)\chi(1)\not\equiv\pm 2\pmod{p},

ϵ1+ϵ2=0.\epsilon_{1}+\epsilon_{2}=0.

Hence, for some root of unity ρ\rho and primitive pp-th root of unity ξ\xi,

α=(ξ1)ρ.\alpha=(\xi-1)\rho.

Hence

𝔪(α)=𝔪(ξ1)=21p1k=1p1(ξk+ξk)=2+2p1>2.\mathfrak{m}(\alpha)=\mathfrak{m}(\xi-1)=2-\frac{1}{p-1}\sum_{k=1}^{p-1}(\xi^{k}+\xi^{-k})=2+\frac{2}{p-1}>2.\qed
Lemma 6.

Let GG be a finite group, let χIrr(G)\chi\in{\rm Irr}(G), and let gg be an element of GG with order a power of a prime pp. If χ(1)±1(modp)\chi(1)\not\equiv\pm 1\pmod{p}, then χ(g)\chi(g) is not a root of unity.

Proof of Lemma 6.

Let pnp^{n} be the order of gg, so χ(g)(ζpn)\chi(g)\in\mathbb{Q}(\zeta_{p^{n}}), and suppose that χ(g)\chi(g) is a root of unity. Since the roots of unity in a given cyclotomic field (ζk)\mathbb{Q}(\zeta_{k}) are the ll-th roots of unity for ll the least common multiple of 22 and kk, we then have

χ(g)=ϵξ\chi(g)=\epsilon\xi

for some ϵ{1,1}\epsilon\in\{1,-1\} and pnp^{n}-th root of unity ξ\xi. So by Lemma 4, either χ(1)1(modp)\chi(1)\equiv 1\pmod{p} or χ(1)1(modp)\chi(1)\equiv-1\pmod{p}. ∎

Lemma 7.

Let GG be a finite group of prime-power order, let gGg\in G, and let χIrr(G)\chi\in{\rm Irr}(G). If χ(1)>1\chi(1)>1, then either χ(g)=0\chi(g)=0 or 𝔪(χ(g))2\mathfrak{m}(\chi(g))\geq 2.

Proof of Lemma 7.

If |G|=pn|G|=p^{n} with pp prime, then each gGg\in G has order a power of pp, and each χIrr(G)\chi\in{\rm Irr}(G) has degree a power of pp. So if χ(1)>1\chi(1)>1, then by Proposition 5 and Lemma 6, for each gGg\in G, χ(g)=0\chi(g)=0 or 𝔪(χ(g))2\mathfrak{m}(\chi(g))\geq 2. ∎

For any character χ\chi of a finite group, let

ω(χ)=|{primes dividing χ(1)}|.\omega(\chi)=|\{\text{primes dividing $\chi(1)$}\}|.
Theorem 8.

Let GG be a finite nilpotent group, let χIrr(G)\chi\in{\rm Irr}(G), and let gGg\in G. Then

χ(g)=0or𝔪(χ(g))2ω(χ).\chi(g)=0\quad\text{or}\quad\mathfrak{m}(\chi(g))\geq 2^{\omega(\chi)}. (4)
Proof of Theorem 8.

If |G|=1|G|=1, then χ(g)=χ(1)=1\chi(g)=\chi(1)=1, so assume |G|>1|G|>1. Since GG is nilpotent, it is the direct product of its nontrivial Sylow subgroups P1,P2,,PnP_{1},P_{2},\ldots,P_{n}. Let g1,g2,,gng_{1},g_{2},\ldots,g_{n} be the unique sequence with gkPkg_{k}\in P_{k} and

g=g1g2gn.g=g_{1}g_{2}\ldots g_{n}.

For each PkP_{k}, let χkIrr(Pk)\chi_{k}\in{\rm Irr}(P_{k}) be the unique irreducible constituent of the restriction of χ\chi to PkP_{k}. Then

χ(g)=χ1(g1)χ2(g2)χn(gn),χ(1)=χ1(1)χ2(1)χn(1),\chi(g)=\chi_{1}(g_{1})\chi_{2}(g_{2})\ldots\chi_{n}(g_{n}),\quad\chi(1)=\chi_{1}(1)\chi_{2}(1)\ldots\chi_{n}(1), (5)
χk(1) divides |Pk|,\chi_{k}(1)\text{ divides }|P_{k}|, (6)
(|Pj|,|Pk|)=1forjk,(|P_{j}|,|P_{k}|)=1\quad\text{for}\quad j\neq k, (7)

and

χk(gk)(ζ|Pk|).\chi_{k}(g_{k})\in\mathbb{Q}(\zeta_{|P_{k}|}). (8)

For any algebraic integers α(ζl)\alpha\in\mathbb{Q}(\zeta_{l}) and β(ζm)\beta\in\mathbb{Q}(\zeta_{m}) with (l,m)=1(l,m)=1, we have (ζlm)=(ζl)(ζm)\mathbb{Q}(\zeta_{lm})=\mathbb{Q}(\zeta_{l})\mathbb{Q}(\zeta_{m}) and (ζl)(ζm)=\mathbb{Q}(\zeta_{l})\cap\mathbb{Q}(\zeta_{m})=\mathbb{Q}, and hence

𝔪(αβ)=𝔪(α)𝔪(β).\mathfrak{m}(\alpha\beta)=\mathfrak{m}(\alpha)\mathfrak{m}(\beta). (9)

By (5), (7), (8), and (9),

𝔪(χ(g))=𝔪(χ1(g1))𝔪(χ2(g2))𝔪(χn(gn)).\mathfrak{m}(\chi(g))=\mathfrak{m}(\chi_{1}(g_{1}))\mathfrak{m}(\chi_{2}(g_{2}))\ldots\mathfrak{m}(\chi_{n}(g_{n})). (10)

By (10) and Lemma 7,

χ(g)=0or𝔪(χ(g))2w,\chi(g)=0\quad\text{or}\quad\mathfrak{m}(\chi(g))\geq 2^{w},

where ww denotes the number of characters χk\chi_{k} with χk(1)>1\chi_{k}(1)>1. From (5), (6), and (7), ww is equal to the number of prime divisors of χ(1)\chi(1). ∎

Proposition 9.

For each finite nilpotent group GG, and each χIrr(G)\chi\in{\rm Irr}(G),

|{gG:χ(g)=0}||G|112ω(χ)(|G|χ(1)2+2ω(χ)|G|).\frac{|\{g\in G:\chi(g)=0\}|}{|G|}\geq 1-\frac{1}{2^{\omega(\chi)}}\left(\frac{|G|-\chi(1)^{2}+2^{\omega(\chi)}}{|G|}\right). (11)
Proof of Proposition 9.

Let GG be a finite nilpotent group, and let χIrr(G)\chi\in{\rm Irr}(G). By Theorem 8, for each gGg\in G,

χ(g)=0or𝔪(χ(g))2ω(χ).\chi(g)=0\quad\text{or}\quad\mathfrak{m}(\chi(g))\geq 2^{\omega(\chi)}. (12)

Now take the relation

|G|=gG|χ(g)|2,|G|=\sum_{g\in G}|\chi(g)|^{2},

apply the elements σ\sigma of the Galois group 𝒢=Gal((ζ|G|)/)\mathcal{G}={\rm Gal}(\mathbb{Q}(\zeta_{|G|})/\mathbb{Q}), and average over 𝒢\mathcal{G}. This gives

|G|=gG𝔪(χ(g)).|G|=\sum_{g\in G}\mathfrak{m}(\chi(g)). (13)

From (12) and (13),

|G|χ(1)2+2ω(χ)|{gG:χ(g)0}|2ω(χ).|G|\geq\chi(1)^{2}+2^{\omega(\chi)}|\{g\in G:\chi(g)\neq 0\}|-2^{\omega(\chi)}. (14)

By (14), we have (11). ∎

Proof of Theorem 1.

By Proposition 9. ∎

Proof of Theorem 2.

Taking the relation

|G||gG|=χIrr(G)|χ(g)|2,\frac{|G|}{|g^{G}|}=\sum_{\chi\in{\rm Irr}(G)}|\chi(g)|^{2},

applying the elements σ\sigma of the Galois group 𝒢=Gal((ζ|G|)/)\mathcal{G}={\rm Gal}(\mathbb{Q}(\zeta_{|G|})/\mathbb{Q}), and averaging over 𝒢\mathcal{G}, we have

|G||gG|=χIrr(G)𝔪(χ(g)).\frac{|G|}{|g^{G}|}=\sum_{\chi\in{\rm Irr}(G)}\mathfrak{m}(\chi(g)). (15)

So for ={χIrr(G):χ(1)=1}\mathcal{L}=\{\chi\in{\rm Irr}(G):\chi(1)=1\} and 𝒩=Irr(G)\mathcal{N}={\rm Irr}(G)-\mathcal{L},

|G||gG|=||+χ𝒩𝔪(χ(g)).\frac{|G|}{|g^{G}|}=|\mathcal{L}|+\sum_{\chi\in\mathcal{N}}\mathfrak{m}(\chi(g)). (16)

By Theorem 8, for each χ𝒩\chi\in\mathcal{N},

χ(g)=0or𝔪(χ(g))2.\chi(g)=0\quad\text{or}\quad\mathfrak{m}(\chi(g))\geq 2. (17)

From (16) and (17),

|G||gG|||+2|{χ𝒩:χ(g)0}|.\frac{|G|}{|g^{G}|}\geq|\mathcal{L}|+2|\{\chi\in\mathcal{N}:\chi(g)\neq 0\}|. (18)

By (18), if |Cl(G)|=|G|/|gG||{\rm Cl}(G)|=|G|/|g^{G}|, then |{χ𝒩:χ(g)=0}||𝒩|/2|\{\chi\in\mathcal{N}:\chi(g)=0\}|\geq|\mathcal{N}|/2, and if |Cl(G)|>|G|/|gG||{\rm Cl}(G)|>|G|/|g^{G}|, then |{χ𝒩:χ(g)=0}|>|𝒩|/2|\{\chi\in\mathcal{N}:\chi(g)=0\}|>|\mathcal{N}|/2. ∎

Proof of Corollary 3.

By Theorem 1 and Theorem 2. ∎

3. Simple groups

We now establish Conjecture 2 for several families of simple groups.

Theorem 10.

Let n>0n>0.

  1. I.

    For G=AnG=A_{n}, we have

    θ(G),θ(G)>{1/2if n<9,3/4if n9.\theta(G),\theta^{\prime}(G)>\begin{cases}1/2&\text{if $n<9$,}\\ 3/4&\text{if $n\geq 9$.}\end{cases} (19)
  2. II.

    For G=Suz(q)G=Suz(q) with q=22n+1q=2^{2n+1}, we have

    θ(G)=12+(q+1)(q2+2)2q2(q2+1)\theta(G)=\frac{1}{2}+\frac{(q+1)(q^{2}+2)}{2q^{2}(q^{2}+1)} (20)

    and

    θ(G)=12+52(q+3),\theta^{\prime}(G)=\frac{1}{2}+\frac{5}{2(q+3)}, (21)

    so θ(G),θ(G)>1/2\theta(G),\theta^{\prime}(G)>1/2 and

    θ(G),θ(G)1/2 as q.\theta(G),\theta^{\prime}(G)\to 1/2\text{ as }q\to\infty. (22)
  3. III.

    For G=L2(q)G=L_{2}(q) with q=pnq=p^{n} a prime power, we have θ(G),θ(G)>1/2\theta(G),\theta^{\prime}(G)>1/2.

  4. IV.

    For G=Ree(32n+1)G=Ree(3^{2n+1}), we have θ(G),θ(G)>1/2\theta(G),\theta^{\prime}(G)>1/2.

  5. V.

    For each sporadic group GG, we have θ(G),θ(G)>1/2\theta(G),\theta^{\prime}(G)>1/2.

  6. VI.

    For each finite simple group GG of order 109\leq 10^{9}, we have θ(G),θ(G)>1/2{\theta(G),\theta^{\prime}(G)>1/2}.

Corollary 11.

inf{θ(G):|G|<},inf{θ(G):|G|<}[1/3,1/2]\inf\{\theta(G):|G|<\infty\},\inf\{\theta^{\prime}(G):|G|<\infty\}\in[1/3,1/2].

Proof of Corollary 11.

Thompson and Gallagher give the lower bound of 1/31/3. The upper bound of 1/21/2 follows from part II of Theorem 10. ∎

Verification of I.

(19) holds up to n=14n=14, so assume n15n\geq 15. In the character table of AnA_{n}, the values are rational integers, except some values χ(g)\chi(g) with

|χ(g)|2=1+λ1λ24|\chi(g)|^{2}=\frac{1+\lambda_{1}\lambda_{2}\ldots}{4}

for some partition λ\lambda of nn into distinct odd parts λ1>λ2>\lambda_{1}>\lambda_{2}>\dots. Since n15n\geq 15, it follows that each pair (χ,g)Irr(G)×G(\chi,g)\in{\rm Irr}(G)\times G satisfies

χ(g)=0,|χ(g)|=1,or|χ(g)|24.\chi(g)=0,\ |\chi(g)|=1,\ \text{or}\ |\chi(g)|^{2}\geq 4. (23)

Using (23) and the fact that simple groups do not have irreducible characters of degree 2, we get that each nonprincipal χIrr(G)\chi\in{\rm Irr}(G) satisfies

|G|>|{gG:|χ(g)|=1}|+4|{gG:|χ(g)|0,1}|,|G|>|\{g\in G:|\chi(g)|=1\}|+4|\{g\in G:|\chi(g)|\neq 0,1\}|, (24)

and from (24) it follows that θ(G)>3/4\theta(G)>3/4. Similarly, for any class gGg^{G} with |gG||G|/|Cl(G)||g^{G}|\geq|G|/|{\rm Cl}(G)|, we have

|Cl(G)||{χIrr(G):|χ(g)|=1}|+4|{χIrr(G):|χ(g)|0,1}|,|{\rm Cl}(G)|\geq|\{\chi\in{\rm Irr}(G):|\chi(g)|=1\}|+4|\{\chi\in{\rm Irr}(G):|\chi(g)|\neq 0,1\}|,

and hence θ(G)>3/4\theta^{\prime}(G)>3/4. ∎

Verification of II.

Let n2n\geq 2, r=2nr=2^{n}, q=22n1q=2^{2n-1}, and G=Suz(q)G=Suz(q), so

|G|=q2(q1)(q2+1)=q2(q1)(qr+1)(q+r+1).|G|=q^{2}(q-1)(q^{2}+1)=q^{2}(q-1)(q-r+1)(q+r+1).

Maintaining the notation of Suzuki [13], there are elements σ,ρ,ξ0,ξ1,ξ2\sigma,\rho,\xi_{0},\xi_{1},\xi_{2} such that each element of GG can be conjugated into exactly one of the sets

1G,σG,ρG,(ρ1)G,A0{1},A1{1},A2{1},1^{G},\sigma^{G},\rho^{G},(\rho^{-1})^{G},A_{0}-\{1\},A_{1}-\{1\},A_{2}-\{1\},

where Ai=ξiA_{i}=\langle\xi_{i}\rangle (i=1,2,3i=1,2,3), and the irreducible characters of GG are given by the following table [13, Theorem 13]:

1σρ,ρ1ξ0t1ξ1t1ξ2t11111111Xq200111Xiq2+111ϵ0i(ξ0t)00Yj(qr+1)(q1)r110ϵ1j(ξ1t)0Zk(q+r+1)(q1)r1100ϵ2k(ξ2t)Wlr(q1)2r2±r12011\begin{matrix}&1&\sigma&\rho,\rho^{-1}&\xi_{0}^{t}\neq 1&\xi_{1}^{t}\neq 1&\xi_{2}^{t}\neq 1\\ 1&1&1&1&1&1&1\\ X&q^{2}&0&0&1&-1&-1\\ X_{i}&q^{2}+1&1&1&\epsilon_{0}^{i}(\xi_{0}^{t})&0&0\\ Y_{j}&(q-r+1)(q-1)&r-1&-1&0&-\epsilon_{1}^{j}(\xi_{1}^{t})&0\\ Z_{k}&(q+r+1)(q-1)&-r-1&-1&0&0&-\epsilon_{2}^{k}(\xi_{2}^{t})\\ W_{l}&\frac{r(q-1)}{2}&-\frac{r}{2}&\pm\frac{r\sqrt{-1}}{2}&0&1&-1\end{matrix}

Here, 1iq211\leq i\leq\frac{q}{2}-1, 1jq+r41\leq j\leq\frac{q+r}{4}, 1kqr41\leq k\leq\frac{q-r}{4}, 1l21\leq l\leq 2,

ϵ0i(ξ0t)=ζit+ζit,ζ=e2π1/(q1),\epsilon_{0}^{i}(\xi_{0}^{t})=\zeta^{it}+\zeta^{-it},\quad\zeta=e^{2\pi\sqrt{-1}/(q-1)}, (25)

and ϵ1j\epsilon_{1}^{j} and ϵ2k\epsilon_{2}^{k} are certain characters on A1A_{1} and A2A_{2}. The AiA_{i}’s satisfy

|A0|=q1,|A1|=q+r+1,|A2|=qr+1,|A_{0}|=q-1,\quad|A_{1}|=q+r+1,\quad|A_{2}|=q-r+1, (26)

and denoting by GiG_{i} (i=0,1,2i=0,1,2) the set of elements gGg\in G that can be conjugated into Ai{1}A_{i}-\{1\}, we have

|Gi|=|Ai|1li|G||Ai|,|G_{i}|=\frac{|A_{i}|-1}{l_{i}}\frac{|G|}{|A_{i}|}, (27)

where l0=2l_{0}=2 and l1=l2=4l_{1}=l_{2}=4.

Let γs=ζs+ζs\gamma_{s}=\zeta^{s}+\zeta^{-s} with ζ=e2π1/(q1)\zeta=e^{2\pi\sqrt{-1}/(q-1)} and ss\in\mathbb{Z}. Then

|γs|=16s±(q1)0(mod3(q1))|\gamma_{s}|=1\Leftrightarrow 6s\pm(q-1)\equiv 0\pmod{3(q-1)}

and

γs=04s±(q1)0(mod2(q1)).\gamma_{s}=0\Leftrightarrow 4s\pm(q-1)\equiv 0\pmod{2(q-1)}.

Since q11(mod3)q-1\equiv 1\pmod{3}, and q11(mod2)q-1\equiv 1\pmod{2}, it follows that

|γs|{0,1} for all s.|\gamma_{s}|\not\in\{0,1\}\text{ for all }s\in\mathbb{Z}. (28)

So for any XiX_{i},

|{gG:Xi(g)is a root of unity or zero}|=|G||G0|1,|\{g\in G:X_{i}(g)\ \text{is a root of unity or zero}\}|=|G|-|G_{0}|-1, (29)

and for any gG0g\in G_{0},

|{χIrr(G):χ(g)is a root of unity or zero}|=q2+4.|\{\chi\in{\rm Irr}(G):\chi(g)\ \text{is a root of unity or zero}\}|=\frac{q}{2}+4. (30)

By (29) and (26)–(27),

θ(G)12+(q+1)(q2+2)2q2(q2+1).\theta(G)\leq\frac{1}{2}+\frac{(q+1)(q^{2}+2)}{2q^{2}(q^{2}+1)}. (31)

Equality must hold in (31) because

|{gG:Wl(g){0,1,1}|=|G0|+|G1|+|G2|>|G||G0|1|\{g\in G:W_{l}(g)\in\{0,1,-1\}|=|G_{0}|+|G_{1}|+|G_{2}|>|G|-|G_{0}|-1

and for any χIrr(G){Xi}{Wl}\chi\in{\rm Irr}(G)-\{X_{i}\}-\{W_{l}\},

|{gG:χ(g){0,1,1}}|2|ρG|+|G0|+|G2|>|G||G0|1.|\{g\in G:\chi(g)\in\{0,1,-1\}\}|\geq 2|\rho^{G}|+|G_{0}|+|G_{2}|>|G|-|G_{0}|-1.

By (30) and the fact that, for any gG0g\in G_{0}, |CG(g)|=q1<q+3=|Cl(G)||C_{G}(g)|=q-1<q+3=|{\rm Cl}(G)|, we have

θ(G)12+52(q+3).\theta^{\prime}(G)\leq\frac{1}{2}+\frac{5}{2(q+3)}. (32)

Equality must hold in (32) because 1G1^{G}, σG\sigma^{G}, and ρG\rho^{G} have size <|G|/|Cl(G)|<|G|/|{\rm Cl}(G)|, and for any gG1G2g\in G_{1}\cup G_{2},

|{χIrr(G):χ(g){0,1,1}}|3qr+124q2+4.|\{\chi\in{\rm Irr}(G):\chi(g)\in\{0,1,-1\}\}|\geq\frac{3q-r+12}{4}\geq\frac{q}{2}+4.\qed
Verification of III.

Let q=pnq=p^{n} with pp prime, G=L2(q)G=L_{2}(q), let RR and SS be as in [7, pp. 402–403], and let G0G_{0} (resp. G1G_{1}) be the set of nonidentity elements gGg\in G that can be conjugated into R\langle R\rangle (resp. S\langle S\rangle).

Assuming first p2p\neq 2, then

|G|\displaystyle|G| =q(q21)2,\displaystyle=\frac{q(q^{2}-1)}{2}, |Cl(G)|\displaystyle\quad|{\rm Cl}(G)| =q+52,\displaystyle=\frac{q+5}{2}, (33)
|G0|\displaystyle|G_{0}| =q(q+1)(q3)4,\displaystyle=\frac{q(q+1)(q-3)}{4}, |G1|\displaystyle\quad|G_{1}| =|G0|+q=q(q1)24,\displaystyle=|G_{0}|+q=\frac{q(q-1)^{2}}{4}, (34)

and GG0G1G-G_{0}\cup G_{1} consists of 3 classes: 1G1^{G}, aGa^{G}, bGb^{G}, with |CG(a)|=|CG(b)|=q|C_{G}(a)|=|C_{G}(b)|=q. Inspecting Jordan’s table [7, p. 402], each χIrr(G)\chi\in{\rm Irr}(G) satisfies either

  1. (i)

    χ(g){0,1,1}\chi(g)\in\{0,1,-1\} on G0G1G_{0}\cup G_{1}, or

  2. (ii)

    χ(g){1,1}\chi(g)\in\{1,-1\} on aGbGa^{G}\cup b^{G} and χ(g)=0\chi(g)=0 on G0G_{0} or G1G_{1}.

If q>3q>3, then

|G0|+|G1|>|G|/2and|aG|+|bG|+|G0|>|G|/2,|G_{0}|+|G_{1}|>|G|/2\quad\text{and}\quad|a^{G}|+|b^{G}|+|G_{0}|>|G|/2, (35)

and if q=3q=3, then GA4G\cong A_{4}. So θ(G)>1/2\theta(G)>1/2. Similarly,

|{χIrr(G):χ(a),χ(b){0,1,1}}|=q+12,|\{\chi\in{\rm Irr}(G):\chi(a),\chi(b)\in\{0,1,-1\}\}|=\frac{q+1}{2},

and for gG0g\in G_{0} (resp. gG1g\in G_{1}) and χIrr(G)\chi\in{\rm Irr}(G), we have χ(g){0,1,1}\chi(g)\in\{0,1,-1\} away from the (q3)/4\leq(q-3)/4 irreducible characters of degree q+1q+1 (resp. the (q1)/4\leq(q-1)/4 characters of degree q1q-1), from which it follows that θ(G)>1/2\theta^{\prime}(G)>1/2.

For p=2p=2, we have |G|=q(q21)|G|=q(q^{2}-1), |Cl(G)|=q+1|{\rm Cl}(G)|=q+1,

|G0|=q(q+1)(q2)2,|G1|=q2(q1)2,|G_{0}|=\frac{q(q+1)(q-2)}{2},\quad|G_{1}|=\frac{q^{2}(q-1)}{2}, (36)

and GG0G1G-G_{0}\cup G_{1} consists of 2 classes: 1G1^{G} and aGa^{G} with |CG(a)|=q|C_{G}(a)|=q. The irreducible characters of GG are given by Jordan [7, p. 403]. There is the principal character, 11 character of degree qq, q/2q/2 characters of degree q1q-1, and q/21q/2-1 characters of degree q+1q+1. All the characters satisfy χ(g){0,1,1}\chi(g)\in\{0,1,-1\} on aGa^{G}, the character of degree qq is ±1\pm 1 on G0G_{0} and G1G_{1}, the characters of degree q1q-1 vanish on G0G_{0}, and the characters of degree q+1q+1 vanish on G1G_{1}. From this, it follows that θ(G)\theta(G) and θ(G)\theta^{\prime}(G) are >1/2>1/2. ∎

Verification of IV.

Let nn be a positive integer, m=3nm=3^{n}, q=32n+1q=3^{2n+1}, and G=Ree(q){G=Ree(q)}, so

|G|=q3(q1)(q+1)(q2q+1),|Cl(G)|=q+8.|G|=q^{3}(q-1)(q+1)(q^{2}-q+1),\quad|{\rm Cl}(G)|=q+8.

The irreducible characters of GG are given by Ward [14] in a 16-by-16 table, with the last 6 rows being occupied by 6 families of exceptional characters, the sizes of which are, from top to bottom,

q34,q34,q324,q38,q3m6,q+3m6.\frac{q-3}{4},\ \frac{q-3}{4},\ \frac{q-3}{24},\ \frac{q-3}{8},\ \frac{q-3m}{6},\ \frac{q+3m}{6}.

From Ward’s table, we find that for any class gG{1G,XG,JG}g^{G}\not\in\{1^{G},X^{G},J^{G}\}, χ(g){0,1,1}\chi(g)\in\{0,1,-1\} for more than half of the irreducible characters χ\chi of GG. Since the classes 1G,XG,JG1^{G},X^{G},J^{G} all have size <|G|/|Cl(G)|<|G|/|{\rm Cl}(G)|, we conclude that θ(G)>1/2\theta^{\prime}(G)>1/2.

The first step in verifying θ(G)>1/2\theta(G)>1/2 is to compute the following table:

Table 1.
      ΩG\Omega\subset G |gGgΩg1||\cup_{g\in G}g{\Omega}g^{-1}|
      {1}\{1\} 1
      R{1}\langle R\rangle-\{1\} q3(q3)(q3+1)4\frac{q^{3}(q-3)(q^{3}+1)}{4}
      S{1}\langle S\rangle-\{1\} q3(q1)(q3)(q2q+1)24\frac{q^{3}(q-1)(q-3)(q^{2}-q+1)}{24}
      M{1}{M^{-}}-\{1\} q3(q1)(q+1)(q22q3m)6\frac{q^{3}(q-1)(q+1)(q^{2}-2q-3m)}{6}
      M+{1}M^{+}-\{1\} q3(q1)(q+1)(q22q+3m)6\frac{q^{3}(q-1)(q+1)(q^{2}-2q+3m)}{6}
      {X}\{X\} |G|/q3|G|/q^{3}
      {Y}\{Y\} |G|/3q|G|/3q
      {T}\{T\} |G|/2q2|G|/2q^{2}
      {T1}\{T^{-1}\} |G|/2q2|G|/2q^{2}
      {YT}\{YT\} |G|/3q|G|/3q
      {YT1}\{YT^{-1}\} |G|/3q|G|/3q
      {JT}\{JT\} |G|/2q|G|/2q
      {JT1}\{JT^{-1}\} |G|/2q|G|/2q
      JR{J}J\langle R\rangle-\{J\} q3(q3)(q3+1)4\frac{q^{3}(q-3)(q^{3}+1)}{4}
      JS{J}J\langle S\rangle-\{J\} q3(q1)(q3)(q2q+1)8\frac{q^{3}(q-1)(q-3)(q^{2}-q+1)}{8}
      {J}\{J\} |G|/q(q21)|G|/q(q^{2}-1)

Then with Table 1 and Ward’s table in hand, a straightforward check establishes that, for each χIrr(G)\chi\in{\rm Irr}(G),

|{gG:χ(g){0,1,1}}|>|G|/2.|\{g\in G:\chi(g)\in\{0,1,-1\}\}|>|G|/2.

Hence θ(G)>1/2\theta(G)>1/2. ∎

Verification of V and VI

Here, in Tables 2 and 3, we report the values of θ\theta and θ\theta^{\prime} for sporadic groups and simple groups of order 109\leq 10^{9}. All values are rounded to the number of digits shown.

Table 2. The sporadic groups.
       GG θ(G)\theta(G) θ(G)\theta^{\prime}(G)
       M11M_{11} 0.7290 0.8000
       M12M_{12} 0.7955 0.8667
       M22M_{22} 0.7117 0.8333
       M23M_{23} 0.6827 0.7647
       M24M_{24} 0.6913 0.7692
       J1J_{1} 0.5583 0.6000
       J2J_{2} 0.6373 0.6190
       J3J_{3} 0.5840 0.7143
       J4J_{4} 0.6925 0.7903
       Co1Co_{1} 0.8739 0.8515
       Co2Co_{2} 0.8347 0.8333
       Co3Co_{3} 0.7528 0.8333
       Fi22Fi_{22} 0.8029 0.8769
       GG θ(G)\theta(G) θ(G)\theta^{\prime}(G)
       Fi23Fi_{23} 0.8328 0.8469
       Fi24Fi_{24}^{\prime} 0.8808 0.8056
       HSHS 0.7853 0.8750
       McLMcL 0.6722 0.8333
       HeHe 0.7088 0.7576
       RuRu 0.8517 0.8333
       SuzSuz 0.8141 0.8372
       ONO\text{'}N 0.6830 0.8667
       HNHN 0.6362 0.7593
       LyLy 0.7879 0.8491
       ThTh 0.7978 0.8750
       BB 0.8812 0.8587
       MM 0.8855 0.8711
Table 3. The simple groups of order 109\leq 10^{9} that are not cyclic, AnA_{n}, L2(q)L_{2}(q), Suz(22n+1)Suz(2^{2n+1}), Ree(32n+1)Ree(3^{2n+1}), or sporadic.
       GG θ(G)\theta(G) θ(G)\theta^{\prime}(G)
       L3(3)L_{3}(3) 0.6736 0.8333
       U3(3)U_{3}(3) 0.7049 0.8571
       L3(4)L_{3}(4) 0.6000 0.8000
       S4(3)S_{4}(3) 0.8713 0.9000
       U3(4)U_{3}(4) 0.6892 0.7273
       U3(5)U_{3}(5) 0.7103 0.8571
       L3(5)L_{3}(5) 0.6754 0.8667
       S4(4)S_{4}(4) 0.6433 0.7037
       S6(2)S_{6}(2) 0.8867 0.8333
       L3(7)L_{3}(7) 0.6235 0.7273
       U4(3)U_{4}(3) 0.7121 0.9000
       G2(3)G_{2}(3) 0.8321 0.9130
       S4(5)S_{4}(5) 0.6501 0.6471
       U3(8)U_{3}(8) 0.5701 0.6786
       U3(7)U_{3}(7) 0.6741 0.7586
       L4(3)L_{4}(3) 0.6911 0.8621
       GG θ(G)\theta(G) θ(G)\theta^{\prime}(G)
       L5(2)L_{5}(2) 0.7038 0.7778
       U5(2)U_{5}(2) 0.8041 0.9149
       L3(8)L_{3}(8) 0.6650 0.7083
       F42(2){}^{2}F_{4}(2)^{\prime} 0.7006 0.8182
       L3(9)L_{3}(9) 0.5488 0.6000
       U3(9)U_{3}(9) 0.6237 0.6739
       U3(11)U_{3}(11) 0.5494 0.6250
       S4(7)S_{4}(7) 0.7341 0.7308
       O8+(2)O_{8}^{+}(2) 0.8555 0.9245
       O8(2)O_{8}^{-}(2) 0.7578 0.8462
       D43(2){}^{3}D_{4}(2) 0.6920 0.6571
       L3(11)L_{3}(11) 0.6660 0.6970
       G2(4)G_{2}(4) 0.6449 0.7500
       L3(13)L_{3}(13) 0.5354 0.5938
       U3(13)U_{3}(13) 0.6662 0.6957
       L4(4)L_{4}(4) 0.6020 0.5714

References

  • [1] W. Burnside, On an arithmetical theorem connected with roots of unity, and its application to group-characteristics. Proc. Lond. Math. Soc. 1 (1904) 112–116.
  • [2] J. W. S. Cassels, On a conjecture of R. M. Robinson about sums of roots of unity. J. Reine Angew. Math. 238 (1969) 112–131.
  • [3] P. X. Gallagher, Group characters and commutators. Math. Z. 79 (1962) 122–126.
  • [4] P. X. Gallagher, Degrees, class sizes and divisors of character values. J. Group Theory 15 (2012) 455–467.
  • [5] P. X. Gallagher, M. J. Larsen, and A. R. Miller, Many zeros of many characters of GL(n,q){\rm GL}(n,q). Int. Math. Res. Not. IMRN 2022 (2022) 4376–4386.
  • [6] G. Higman, Enumerating pp-groups. I: Inequalities. Proc. London Math. Soc. 10 (1960) 24–30.
  • [7] H. E. Jordan, Group-characters of various types of linear groups. Amer. J. Math. 29 (1907) 387–405.
  • [8] M. J. Larsen and A. R. Miller, The sparsity of character tables of high rank groups of Lie type. Represent. Theory 25 (2021) 173–192.
  • [9] J. H. Loxton, On two problems of R. M. Robinson about sums of roots of unity. Acta Arith. 26 (1974) 159–174.
  • [10] A. R. Miller, The probability that a character value is zero for the symmetric group. Math. Z. 277 (2014) 1011–1015.
  • [11] C. L. Siegel, The trace of totally positive and real algebraic integers. Ann. of Math. 46 (1945) 302–312.
  • [12] C. C. Sims, Enumerating pp-groups. Proc. London Math. Soc. 15 (1965) 151–166.
  • [13] M. Suzuki, On a class of doubly transitive groups. Ann. of Math. 75 (1962) 105–145.
  • [14] H. N. Ward, On Ree’s series of simple groups. Trans. Amer. Math. Soc. 121 (1966) 62–89.